WO2009139395A1 - Process for producing three-dimensional shaped object, material for three-dimensional shaping, and three-dimensional shaped object - Google Patents

Process for producing three-dimensional shaped object, material for three-dimensional shaping, and three-dimensional shaped object Download PDF

Info

Publication number
WO2009139395A1
WO2009139395A1 PCT/JP2009/058863 JP2009058863W WO2009139395A1 WO 2009139395 A1 WO2009139395 A1 WO 2009139395A1 JP 2009058863 W JP2009058863 W JP 2009058863W WO 2009139395 A1 WO2009139395 A1 WO 2009139395A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
compound
dimensional structure
dimensional
modeling
Prior art date
Application number
PCT/JP2009/058863
Other languages
French (fr)
Japanese (ja)
Inventor
竜輝 柿野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2009139395A1 publication Critical patent/WO2009139395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional structure, a material for three-dimensional structure used in the manufacturing method, and a three-dimensional structure obtained by the manufacturing method.
  • additive manufacturing methods have been developed as a technique for modeling a three-dimensional three-dimensional object by computer control.
  • These additive manufacturing methods have the following advantages compared to conventional modeling by removal processing such as cutting (including casting, plastic processing, and molding of a mold for injection molding). That is, (1) Even a three-dimensional object with a complicated internal structure that cannot contain a cutting tool can be automatically produced by a single modeling process. (2) Tool exchange and tool wear due to non-contact processing Tool management such as countermeasures is unnecessary, and unattended operation is possible at night. (3) Since no chips are generated and there is no noise / vibration, it can be operated in the office work environment. (4) Machine The advantage is that anyone can operate it without requiring specialized knowledge about processing.
  • an optical modeling method As a representative method of the layered manufacturing method having such a feature, an optical modeling method, a powder sintering method, an extrusion method, a sheet cutting method, an ink jet method, and the like are known.
  • the optical modeling method is known to be able to produce a high-definition three-dimensional modeled object because the liquid is cured.
  • the stereolithography method irradiates a liquid photocurable resin with light such as ultraviolet laser light, and cures the irradiated portion by a polymerization reaction to form a solidified layer.
  • This stereolithography method is disclosed in Patent Document 1, for example.
  • the photocurable resin liquid that was not used for modeling in the tank is affected by the light irradiation during modeling, and its performance deteriorates. Was invited.
  • the laser head necessary for curing the resin material is very expensive, it is difficult to make a multi-head.
  • it is necessary to limit the scanning speed of the laser beam in order to irradiate the light amount necessary for curing the resin material and there is a problem that the modeling speed cannot be improved to a certain extent.
  • the stereolithography method has a drawback that a full-color model cannot be formed in principle.
  • an object of the present invention is to provide a method for producing a three-dimensional structure that can produce a full-color and high-definition object at high speed. Furthermore, this invention aims at providing the three-dimensional modeling material obtained by the three-dimensional modeling material used for the said manufacturing method, and the said manufacturing method.
  • ⁇ 1> A step of forming the liquid B in a layer having a predetermined thickness and a solid by mixing the liquid to be mixed with the liquid B in a layer of the liquid B so as to have a cross-sectional shape obtained by cutting the modeling target object in a parallel cross section.
  • a step of applying a liquid A capable of forming a liquid, and a method for producing a three-dimensional structure characterized by sequentially repeating ⁇ 2> The method for producing a three-dimensional structure according to ⁇ 1>, wherein the liquid A and / or the liquid B contains a dye and / or a pigment, ⁇ 3>
  • One of the liquid A or the liquid B has two or more cationic residues and / or groups that can be induced to a cationic residue, and the other one is an organic acid residue and / or an organic acid salt.
  • the method for producing a three-dimensional structure according to ⁇ 1> or ⁇ 2> above, having two or more residues, ⁇ 4> The step of applying the A liquid is a step of dripping the A liquid, and the dropping of the A liquid is performed by a nozzle capable of discharging a fine liquid droplet, any of the above ⁇ 1> to ⁇ 3>
  • the manufacturing method of the three-dimensional structure as described in one, ⁇ 5> The method for producing a three-dimensional structure according to ⁇ 4>, wherein the nozzle is an inkjet recording head or a dispenser, ⁇ 6>
  • a material for three-dimensional modeling including the liquid A and the liquid B used in the method for producing a three-dimensional structure according to any one of the above items ⁇ 1> to ⁇ 5> ⁇ 7> A three-dimensional structure manufactured by the manufacturing method according to any one of ⁇ 1> to ⁇ 5> above.
  • the present invention it was possible to provide a method for manufacturing a three-dimensional structure capable of producing a full-color, high-definition object at high speed. Furthermore, according to this invention, the three-dimensional modeling material used by the said manufacturing method and the three-dimensional modeling thing obtained by the said manufacturing method were able to be provided.
  • FIG. 1 It is schematic structure sectional drawing which shows an example of the manufacturing method of the three-dimensional structure according to the present invention. It is a perspective view which shows typically the cross-sectional shape formed in each adjacent layer in manufacture of a three-dimensional structure. It is a top view which shows an example of the cross-sectional data subdivided into the grid
  • the method for producing a three-dimensional structure of the present invention includes a step of forming the liquid B in a layer having a predetermined thickness, and a layer of the liquid B so as to have a cross-sectional shape obtained by cutting the modeling object in a parallel cross section. And the step of applying the liquid A capable of forming a solid by mixing with the liquid B, in order.
  • the description of “A to B” indicating a numerical range means “A or more and B or less” unless otherwise specified. That is, a numerical range including A and B which are end points is represented.
  • the present invention is characterized by using the liquid A (solid formable liquid A) and the liquid B (solid formable liquid B) that can form a solid by mixing with each other.
  • the A liquid and the B liquid are not particularly limited as long as they form a solid when mixed with each other.
  • “form a solid” means a state having a certain shape and volume. That is, liquid A and liquid B are liquids and have fluidity, whereas solids formed by mixing do not have fluidity.
  • the gel corresponds to a solid from the viewpoint of not having fluidity.
  • Examples of combinations of compounds that form solids when mixed include, for example, “Quarterly Chemical Review No. 8, Organic Polymer Gel” (edited by the Chemical Society of Japan, 1990), “Functional Polymer Gels and Latest Application Trends” (( Toray Research Center Co., Ltd., 1996), Yoshihito Nagata, Obayashi “Development technology of functional polymer gel” (CMC, 1999), etc. Can be mentioned.
  • a combination of compounds that form a solid when mixed for example, a combination of compounds that gel by physical cohesion between molecules can be mentioned.
  • the physical cohesion between molecules include ionic bonds and coordinate bonds, and combinations using them include two or more cationic residues and / or groups that can be induced to cationic residues.
  • a combination of a compound (polyvalent cationic compound) and a compound having two or more organic acid residues and / or organic acid salt residues (multivalent anionic compound) can be mentioned. Each will be described below.
  • the polyvalent anionic compound is a compound having two or more organic acid residues and / or organic acid salt residues in total.
  • the polyvalent anionic compound for example, two or more organic acid residues and / or organic acid salt residues (hereinafter, “organic acid residues” and “organic acid salt residues” are collectively referred to as “organic acid ( And a polymer compound having a salt) residue ”.
  • organic acid residues examples include the organic acid residues listed in the following (1) to (6).
  • Ar represents a divalent aryl linking group
  • R represents a monovalent hydrocarbon group.
  • organic acid residues selected from the above (1) to (6) (3) a substituted sulfonamide acid group, (4) a carboxylic acid group, (5) a sulfonic acid group, or (6) a phosphate ester group Those having a phosphoric acid group or a phosphonic acid ester group are preferred. (4) Carboxylic acid groups are more preferred from the viewpoint of ease of material synthesis and mechanical strength obtained.
  • the organic acid salt may be either an inorganic salt or an organic salt.
  • Alkali metal salts such as lithium salts, sodium salts and potassium salts, onium salts such as sulfonium salts and iodonium salts, tetraalkylammonium salts, tetra Quaternary ammonium salts such as aryl ammonium salts can be exemplified.
  • the polymer compound only needs to have two or more organic acid (salt) residues as a whole compound, and may have a plurality of monomer units each having one organic acid (salt) residue in the side chain, The monomer unit may have a side chain having two or more organic acid (salt) residues.
  • the polyvalent anionic polymer compound can be obtained by addition polymerization of an ethylenically unsaturated compound having an organic acid (salt) residue.
  • an organic acid ( Salt) A copolymer having a monomer unit having no residue may be used.
  • the polyvalent anionic compound is not limited to a polymer compound as long as it has a plurality of the above-mentioned organic acid (salt) residues in one molecule, and can be used without any particular limitation.
  • a low molecular compound having a plurality of organic acid (salt) residues may be used.
  • Low molecular weight compounds having a plurality of organic acid (salt) residues in one molecule include adipic acid, succinic acid, maleic acid, 1,2,3,4-butanetetracarboxylic acid, phthalic acid, sulfophthalic acid, etc. Is mentioned.
  • the preferred molecular weight of the polyvalent anionic compound is 200 or more and 300,000 or less, more preferably 300 or more and 200,000 or less, and even more preferably 500. More than 100,000.
  • the molecular weight of the polyvalent anionic compound is within the above range, the strength is improved, which is preferable.
  • the liquid A it is preferable to use a polymer compound having an organic acid (salt) residue in the side chain as a polyvalent anionic compound, and the molecular weight of the polymer compound is 1,000 or more and 300,000 or less. It is preferably 3,000 or more and 200,000 or less, and more preferably 5,000 or more and 100,000 or less.
  • the preferable molecular weight of the said polyvalent anionic compound is 30 or more and 100,000 or less, More preferably, it is 50 or more and 50,000 or less, More preferably Is 50 or more and 20,000 or less.
  • the molecular weight of the polyvalent anionic compound is within the above range, the viscosity can be kept low, so that the leveling property of the liquid B is improved and the productivity is improved.
  • the polyvalent cationic compound is a generic term for a cationic residue and / or a group that can be derived from a cationic residue (hereinafter referred to as “cationic residue” and “group that can be derived from a cationic residue”). (Also referred to as “cationic residue (inducible group)”) having two or more cationic residues, having two or more cationic residues, and having a group that can be induced to two or more cationic residues. It may be one having a group capable of being derived from a cationic residue and a cationic residue, and is not particularly limited. Examples of the polyvalent cationic compound include a polymer compound having an onium salt.
  • onium salt examples include a sulfonium salt, an iodonium salt, a phosphonium salt, and an ammonium salt, and an ammonium salt, and an ammonium salt is particularly preferable.
  • a tertiary amino group can be illustrated and can be induced
  • the polyvalent cationic compound can be used without particular limitation as long as it has a plurality of the above-mentioned cationic residues (inducible groups) in one molecule.
  • a low-valent polyvalent compound having a plurality of onium groups in one molecule can be used.
  • Molecular compounds and the like can be used.
  • the low molecular weight compound having a plurality of onium groups in one molecule include ammonium salts such as hexamethonium, decamethonium and pentamesonium, and two or more onium groups in one molecule shown in the following specific examples. Examples include sulfonium salts and iodonium salts.
  • the inorganic polyvalent cationic compound include polyvalent inorganic ions such as magnesium ion, calcium ion, and barium ion.
  • the polyvalent cationic compound When the polyvalent cationic compound is used as the liquid A, the polyvalent cationic compound preferably has a molecular weight of 200 or more and 300,000 or less, more preferably 300 or more and 200,000 or less, and even more preferably 500 or more and 100. , 000 or less. It is preferable that the molecular weight of the polyvalent cationic compound is within the above range because the strength is improved.
  • the polyvalent cationic compound may be a polymer compound having two or more monomer units having a cationic residue (inducible group) in the side chain.
  • the molecular weight of the polymer compound is preferably 1,000 or more and 300,000 or less, more preferably 3,000 or more and 200,000 or less, and further preferably 5,000 or more and 100,000 or less.
  • the polyvalent cationic compound when used as the liquid B, the polyvalent cationic compound preferably has a molecular weight of 30 or more and 100,000 or less, more preferably 50 or more and 50,000 or less, and still more preferably. Is 50 or more and 20,000 or less.
  • the molecular weight of the polyvalent cationic compound is within the above range, the viscosity can be kept low, so that the leveling property of the liquid B is improved and the productivity is improved, which is preferable.
  • polyvalent anionic compounds ((A-1) to (A-23)) and the polyvalent cationic compounds ((K-1) to (K-23)) are shown below. It is not limited to. In the following exemplary compounds, the polymerization ratio of the copolymer is shown in molar ratio.
  • the polyvalent anionic compound for liquid A includes (A-2), (A-4), (A-5), (A-6), (A-8) is preferable, and (A-5) and (A-6) are more preferable.
  • the polyvalent anionic compound for liquid B is preferably (A-15), (A-16), (A-21), or (A-23), more preferably (A-15), (A A-21).
  • the polyvalent cationic compound for liquid A is preferably (K-1), (K-2), (K-3), or (K-5), more preferably (K-1) and (K-2).
  • the polyvalent cationic compound for liquid B is preferably (K-14), (K-16), (K-18), (K-19), or (K-20), more preferably (K-20). K-18), (K-19), and (K-20).
  • the combination of compounds that produce a solid when mixed is a combination of compounds in which a chemical reaction proceeds when two liquids are mixed and a covalent bond is generated.
  • combinations thereof include (1) ring-opening compounds such as epoxy compounds and oxetane compounds (compounds capable of ring-opening reaction), and ring-opening compounds such as amine compounds, alcohol compounds, and carboxylic acid compounds.
  • a combination with a compound that causes a ring-opening reaction by reacting (a compound that causes a ring-opening reaction), and (2) a combination of compounds capable of polycondensation such as an isocyanate compound and an amine compound and / or an alcohol compound. It is done. Specific examples of these compounds are described below.
  • the ring-opening compound is a compound capable of ring-opening reaction, and examples of the ring-opening compound include epoxy compounds and oxetane compounds.
  • examples of the epoxy compound may be any of glycidyl ether type, glycidyl ester type, glycidyl amine type, and alicyclic type.
  • Examples of the glycidyl ether type epoxy compound include diglycidyl ethers (for example, ethylene glycol diglycidyl ether, bisphenol A diglycidyl ether), tri- or more functional glycidyl ethers (trimethylolethane triglycidyl ether, trimethylolpropane triglycidyl ether, glycerol Triglycidyl ether, triglycidyl trishydroxyethyl isocyanurate, etc.), tetra- or higher functional glycidyl ethers (sorbitol tetraglycidyl ether, pentaerythritol tetraglycyl ether, polyglycidyl ether of cresol novolac resin, polyglycidyl ether of phenol novolac resin, etc.)
  • diglycidyl ethers for example, ethylene glycol diglycidyl ether, bisphenol A diglycid
  • the glycidyl ether compound examples include 1,3-bis (2,3-epoxypropyloxy) benzene, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Aromatic glycidyl ether compounds such as trisphenol methane type epoxy resin, aliphatic glycidyl ether compounds such as 1,4-butanediol glycidyl ether, glycerol triglycidyl ether, propylene glycol diglycidyl ether, trimethylolpropane tritriglycidyl ether .
  • glycidyl ester compound examples include glycidyl ester of linolenic acid dimer.
  • Glycidyl ethers can be obtained commercially from Yuka Shell Epoxy Co., Ltd.
  • glycidylamine type compound examples include tetraglycidyldiaminediphenylmethane (TGDDM), triglycidyl isocyanurate (TGIC), hydantoin type, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (TETRAD-D) type, amino Examples include phenol type, aniline type, and toluidine type.
  • TGDDM tetraglycidyldiaminediphenylmethane
  • TGIC triglycidyl isocyanurate
  • hydantoin type 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (TETRAD-D) type
  • amino Examples include phenol type, aniline type, and toluidine type.
  • the alicyclic epoxy compound is preferably a polyfunctional alicyclic epoxy having two or more cyclohexene oxide groups or cyclopentene oxide groups in one molecule.
  • Specific examples of the polyfunctional alicyclic epoxy compound include 4-vinylcyclohexylene dioxide, (3,4-epoxycyclohexyl) methyl-3,4-epoxycyclohexylcarboxylate, di (3,4-epoxycyclohexyl) adipate.
  • Various alicyclic epoxy compounds are commercially available and can be obtained from Union Carbide Japan Co., Ltd., Daicel Chemical Industries, Ltd., and the like.
  • Examples of the alicyclic epoxy compound include Celoxide 2021P, Celoxide 2081, Epolide GT-301, Epolide GT-401 (manufactured by Daicel Chemical Industries, Ltd.), EHPE (manufactured by Daicel Chemical Industries, Ltd.), phenol novolac.
  • Examples thereof include polycyclohexyl epoxy methyl ether of resin.
  • a glycidyl compound having a normal epoxy group having no alicyclic structure in the molecule can also be used without problems in the present invention.
  • oxetane compound that can be used in the present invention
  • known oxetane compounds such as those described in JP-A Nos. 2001-220526, 2001-310937, and 2003-341217 can be used, and polyvalent oxetane compounds can be used. Is preferred.
  • Oxetane compounds are commercially available, and examples thereof include OX-SQ and PNOX-1009 (above, manufactured by Toagosei Co., Ltd.).
  • Examples of the compound that causes a ring-opening reaction by reacting with a ring-opening compound such as the above epoxy compound or oxetane compound include an amine compound and an alcohol compound.
  • amine compound a polyamine compound having two or more amino groups is preferable, and as the polyamine compound, diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylenediamine (MXDA), isophoronediamine (IPDA), 1, 3 -Bisaminomethylcyclohexane (1,3BAC), diaminodiphenylmethane (MDZ), m-phenylenediamine (MPDA), diaminodiphenylsulfone (DDS), dicyandiamide (DlCY) and the like.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylenediamine
  • IPDA isophoronediamine
  • 1, 3 -Bisaminomethylcyclohexane 1, 3 -Bisaminomethylcyclohexane (1,3BAC)
  • MDZ diaminodiphenylmethane
  • MPDA m-phenylenedi
  • polyalcohol having two or more hydroxyl groups
  • polyether polyol those having a weight average molecular weight of 200 to 100,000 are widely used and classified into polyether polyols, polyester polyols, and other polyols.
  • polyether polyols include polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polymer polyol (polymerized with acrylonitrile / styrene in PPG), and modified products such as polyether polyamine.
  • polyester polyol include condensed polyester polyol, lactone polyester polyol, and polycarbonate polyol.
  • the condensed polyester polyol examples include a condensation dehydration reaction product of dibasic acid (mainly adipic acid) and glycol (ethylene glycol, 1,4-butanediol) or triol (trimethylolpropane).
  • examples of other polyols include polybutadiene polyol (butadiene and copolymer having a hydroxyl group at the terminal), acrylic polyol (polyol having a hydroxyl group introduced into an acrylic copolymer), and partially saponified EVA (ethylene-vinyl acetate copolymer).
  • phenolic polyols examples include phenolic polyols, phosphorus-containing polyols and halogen-containing polyols as flame retardant polyols, fluorine polyols, PET resin wastes and low-cost polyester polyols produced from DMT residues.
  • the isocyanate compound is a compound having one or more isocyanato groups in the molecule, and is preferably a compound having two or more isocyanato groups.
  • Specific examples of the isocyanate compound include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymeric MDI (MDI), tolidine diisocyanate (TODI), naphthalene diisocyanate (NDI), xylylene diisocyanate (XDI), paraphenylene diisocyanate, Aromatic or aromatic polyisocyanates such as hydrogenated XDI and hydrogenated MDI; Aliphatic isocyanates such as isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HMDI); Other lysine diisocyanates (LDI) and tetramethylxyresodiisocyanates (TMXDI) and the like.
  • TDI toly
  • examples of the combination of the above-mentioned isocyanate compound and the compound capable of polycondensation include an amine compound and an alcohol compound, and specific examples thereof include the above-mentioned polyamine compound and polyol compound.
  • the A liquid and the B liquid can be appropriately selected from the combinations described above.
  • one of the A liquid and the B liquid is a polyvalent cationic compound, and the other is a polyvalent anionic compound.
  • the combination of is preferable.
  • the liquid A is a polymer compound having two or more organic acid (salt) residues or a polymer compound having two or more cationic residues (inducible groups).
  • the liquid B is a low molecular weight compound having two or more cationic residues (inducible groups) or a low molecular weight compound having two or more organic acid (salt) residues.
  • the preferable content of the polyvalent anion compound and the polyvalent cationic compound is preferably selected as long as the curability of the obtained three-dimensional structure can be imparted, and is not particularly limited.
  • the amount is preferably 0.01 to 50% by weight, more preferably 0.1 to 30% by weight, and still more preferably 1 to 20% by weight with respect to the total amount of the liquid. It is preferable for the content of the polyvalent anionic compound and the polyvalent cationic compound to be in the above-mentioned range since the ink jet marking has high stability and a solid product having good curability can be obtained.
  • a coloring agent in the present invention, a coloring agent, a solvent, a wetting agent, a fluidity enhancing agent, and the like can be added to the liquid A and / or liquid B in addition to the above components.
  • a coloring agent When coloring a three-dimensional structure, colored A liquid and / or B liquid can be used. When manufacturing a full-color three-dimensional structure, it is preferable to color A liquid.
  • the colored liquid A is preferably a combination of the three primary colors of yellow (Y), magenta (M), and cyan (C), which are the three primary colors of the subtractive color method.
  • the liquid A colored yellow is referred to as “yellow liquid A”
  • the liquid A colored magenta is referred to as “magenta liquid A”
  • the liquid A colored cyan is referred to as “cyan liquid A”.
  • the M dye and the C dye may be liquid A colored in two shades.
  • the colorless A liquid can be used to adjust the color density of CMY.
  • a liquid (white A liquid) containing white pigments, such as titanium white, and A liquid (black A liquid) colored with black (black) dye can be used together, and a desired effect can be expressed.
  • the total discharge amount of the colored A liquid, colorless A liquid, and white A liquid is preferably constant per unit area, for example, per grid point or per adjacent 4 grid points.
  • a colored three-dimensional structure can be produced by adding a colorant to the A liquid and / or the B liquid, and in particular, a full-color tertiary having a desired coloring pattern by adding the colorant to the A liquid.
  • An original model can be manufactured.
  • Colorants that can be used in the present invention are broadly classified into dyes and pigments, and dyes can be preferably used.
  • a coloring agent it is not limited to the compound as described in this specification, What kind of coloring agent can be used if it is a dye and a pigment which show solubility to A liquid.
  • magenta dye examples include dyes described in JP-A Nos. 2001-181549, 2002-121414, 2002-105370, 2003-12981, and 2003-26974. It is done. Among these, pyrazolotriazole azomethine compounds represented by the general formula (III) described in JP-A No. 2002-121414 are preferably used, and M-1 and M-6 shown below can be exemplified.
  • Examples of the cyan dye include dyes described in JP-A Nos. 2002-121414, 2002-105370, 2003-3109, and 2003-26974.
  • a pyrrolotriazole azomethine compound represented by the general formula (IV-1a) and a phthalocyanine compound represented by the general formulas (C-II-1) and (C-II-2) described in JP-A No. 2002-121414 are disclosed.
  • C-1, C-101 and C-105 shown below are preferably used.
  • a black (black) dye may be used in combination with the three primary colors of CMY.
  • the black dye can also be made by mixing CMY3 dye.
  • dyes other than those described above those generally used in the technical field of printing (for example, color materials for copying or color proofing plates such as printing ink, thermal ink jet recording, and electrophotographic recording) can be used.
  • “Organization of Organic Synthetic Chemistry” “Dye Handbook” Maruzen Co., Ltd. (published in 1970), Sadaharu Abeda, Kunihiko Imada “Commentary Dye Chemistry” Co., Ltd. ) Kodansha (published in 1986), Chemicals for Inkjet Printers-Materials Development Trends and Prospects Survey-"CMC Co., Ltd. (1997), Takeshi Amari” Inkjet Printers-Technology and Materials ", etc. .
  • the pigment is not particularly limited, and all commercially available organic pigments and inorganic pigments, or pigments dispersed in an insoluble resin or the like as a dispersion medium, or a resin grafted on the pigment surface. Can be used. Moreover, what dye
  • the white reflective layer has a role corresponding to, for example, a base in color printing, and it is preferable to use liquid A containing white pigment (white liquid A) immediately inside the wearing image.
  • the white pigment include basic lead carbonate (2PbCO 3 Pb (OH) 2 , so-called silver white), zinc oxide (ZnO, so-called zinc white), titanium oxide (TiO 2 , so-called titanium white), Strontium titanate (SrTiO 3 , so-called titanium strontium white) or the like can be used.
  • titanium oxide has a smaller specific gravity than other white pigments, a large refractive index, and is chemically and physically stable. Therefore, it has a high hiding power and coloring power as a pigment, and further, acid and alkali. Excellent durability against other environments. Therefore, it is preferable to use titanium oxide as the white pigment.
  • other white pigments may be other than the listed white pigments may be used depending on the types of the B liquid and the A liquid.
  • CMY pigment can be used as a colorant in place of the above-described CMY dye.
  • organic pigments and inorganic pigments include, for example, C.I. I. Pigment Yellow 1 (Fast Yellow G etc.), C.I. I. A monoazo pigment such as C.I. Pigment Yellow 74; I. Pigment Yellow 12 (disaji yellow AAA, etc.), C.I. I. Disazo pigments such as C.I. Pigment Yellow 17; I. Non-benzidine type azo pigments such as CI Pigment Yellow 180; I. Azo lake pigments such as C.I. Pigment Yellow 100 (eg Tartrazine Yellow Lake); I.
  • Condensed azo pigments such as CI Pigment Yellow 95 (Condensed Azo Yellow GR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Yellow 115 (such as quinoline yellow lake); I. Basic dye lake pigments such as CI Pigment Yellow 18 (Thioflavin Lake, etc.), anthraquinone pigments such as Flavantron Yellow (Y-24), isoindolinone pigments such as Isoindolinone Yellow 3RLT (Y-110), and quinophthalone yellow Quinophthalone pigments such as (Y-138), isoindoline pigments such as isoindoline yellow (Y-139), C.I. I. Nitroso pigments such as C.I. Pigment Yellow 153 (nickel nitroso yellow, etc.); I. And metal complex salt azomethine pigments such as CI Pigment Yellow 117 (copper azomethine yellow, etc.).
  • C.I. I. Monoazo pigments such as CI Pigment Red 3 (Toluidine Red, etc.); I. Disazo pigments such as C.I. Pigment Red 38 (Pyrazolone Red B, etc.); I. Pigment Red 53: 1 (Lake Red C, etc.) and C.I. I. Azo lake pigments such as C.I. Pigment Red 57: 1 (Brilliant Carmine 6B); I. Condensed azo pigments such as C.I. Pigment Red 144 (condensed azo red BR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Red 174 (Phloxine B Lake, etc.); I.
  • Basic dye lake pigments such as C.I. Pigment Red 81 (Rhodamine 6G 'lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Red 177 (eg, dianthraquinonyl red); I. Thioindigo pigments such as C.I. Pigment Red 88 (Thioindigo Bordeaux, etc.); I. Perinone pigments such as C.I. Pigment Red 194 (perinone red, etc.); I. Perylene pigments such as C.I. Pigment Red 149 (perylene scarlet, etc.); I. Quinacridone pigments such as CI Pigment Red 122 (quinacridone magenta, etc.); I. Isoindolinone pigments such as CI Pigment Red 180 (isoindolinone red 2BLT, etc.); I. And alizarin lake pigments such as CI Pigment Red 83 (Mada Lake, etc.).
  • C.I. I. Disazo pigments such as C.I. Pigment Blue 25 (Dianisidine Blue, etc.); I. Phthalocyanine pigments such as C.I. Pigment Blue 15 (phthalocyanine blue, etc.); I. Acidic dye lake pigments such as C.I. Pigment Blue 24 (Peacock Blue Lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Blue 1 (Victoria Pure Blue BO Lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Blue 60 (Indantron Blue, etc.); I. And alkali blue pigments such as CI Pigment Blue 18 (Alkali Blue V-5: 1).
  • the average particle diameter of the pigment is preferably 0.001 to 100 ⁇ m, more preferably 0.01 to 50 ⁇ m, and further preferably 0.1 to 10 ⁇ m. It is preferable that the average particle diameter of the pigment is within the above numerical range because the dispersion stability of the pigment is good and a colorful three-dimensional product is obtained.
  • the content of the colorant is preferably selected as long as a desired coloring can be imparted to the three-dimensional structure to be obtained, and is not particularly limited.
  • the liquid A or liquid B (preferably liquid A) is used.
  • the total solid content excluding the solvent is preferably 0.01 to 50% by weight, more preferably 0.1 to 30% by weight, and even more preferably 1 to 20% by weight. It is preferable for the content of the colorant to be within the above numerical value range because the stability of inkjet marking is high and a colorful three-dimensional object is obtained.
  • a solvent is added to the liquid A and / or liquid B.
  • the solvent is preferably a solvent that is contained in each of the liquid A and the liquid B and dissolves a component that can form a solid by mixing, but is a solvent that can disperse the component that can form the solid.
  • a solvent can also be used individually by 1 type and may use 2 or more types of solvents together.
  • the said solvent can be suitably selected according to the component which can form solid, the coloring agent to add, etc.
  • it is water or a hydrophilic organic compound
  • examples of the hydrophilic organic compound include monohydric alcohols such as methanol, ethanol and propanol, polyhydric alcohols such as ethylene glycol, diethylene glycol and propylene glycol.
  • the solvent is water.
  • a combination of a polyvalent cationic compound and a polyvalent anionic compound is used as a component capable of forming a solid, it is preferable to use water or a hydrophilic organic compound, and it is more preferable to use water. .
  • a combination of a polyvalent cationic compound and a polyvalent anionic compound is used as a component capable of forming a solid, a polyvalent cationic compound and / or a polyvalent anionic compound, and a colorant, etc.
  • the content of all components constituting the three-dimensional structure including other additives is preferably 0.01 to 50% by weight, more preferably 0.1 to 40% by weight with respect to the liquid A or liquid B. %, More preferably 1 to 30% by weight.
  • the solvent contained in the liquid A and the solvent contained in the liquid B are compatible with each other. That is, when the solvent contained in the liquid A and the solvent contained in the liquid B are mixed, it is preferable to use a combination of solvents that form a single phase without separation. Thereby, mixing of A liquid and B liquid is performed more rapidly, and since solid formation is quick, it is preferable.
  • ⁇ Wetting agent> it is also preferable to add a wetting agent to the liquid A and / or liquid B.
  • a wetting agent is added to the B liquid, it is preferable because evaporation of the solvent from the surface of the B liquid layer can be delayed and a finer three-dimensional structure can be manufactured.
  • a wetting agent to the liquid A because drying / clogging of the nozzle for dropping the liquid A can be prevented.
  • glycerol can be exemplified as a particularly preferable wetting agent when the solvent is aqueous.
  • wetting agent examples include ethylene glycol, diethylene glycol and propylene glycol, which are also known in the art to retard evaporation, It is not limited to these.
  • Other wetting agents include thiodiethanol, n-methylpyrrolidinone and dimethylhydantoin.
  • the liquid A and / or the liquid B may contain a fluidity enhancer.
  • Fluidity enhancers have some humectant properties, but mainly change the hydrodynamic or wetting properties of the liquid to maximize the volume of liquid ejected by nozzles such as inkjet printheads. It works like this.
  • the enhancement of fluidity is considered to be a viscoelastic phenomenon that increases the flow rate of liquid. Thereby, a thick layer can be formed and a three-dimensional structure can be manufactured more quickly.
  • Specific compounds that increase the fluidity of the liquid either by reducing the friction between the jet liquid and the nozzle inner wall or by reducing the viscosity of the liquid include ethylene glycol diacetate and sulfuric acid.
  • An example is potassium aluminum.
  • Other suitable compounds used as flow enhancers can be selected from the following list, but are not limited thereto. Tetraethylene glycol dimethyl ether, isopropyl alcohol, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, dodecyldimethylammoniopropane sulfonate, glycerol triacetate, ethyl acetoacetate, and polyvinylpyrrolidone having a molecular weight of about 30,000, polyethylene glycol, poly It can be selected from water-soluble polymers including acrylic acid and sodium polyacrylate. For ionic polymers such as sodium polyacrylate, the increase in fluidity varies with pH. Salts that can be used to increase fluidity include potassium sulfate, potassium aluminum sulfate, sodium hydrogen phosphate and sodium polyphosphate.
  • the A liquid it is preferable to add the A liquid to the B liquid by dropping, and it is more preferable that the dropping of the A liquid is performed by a nozzle capable of discharging a fine droplet.
  • the micro droplet refers to a droplet of 1 ml or less.
  • the fine droplets of the liquid A are preferably 0.01 pl to 1 ml, more preferably 0.1 pl to 100 ⁇ l, still more preferably 1 pl to 10 ⁇ l.
  • the nozzle is preferably an ink jet recording head or a dispenser, and particularly preferably an ink jet recording head.
  • the dispenser is a liquid dispensing device, and is marketed by Iwashita Engineering Co., Ltd., Tsunami, Ishikawajima General-Purpose Machine Service Co., Ltd., etc.
  • Examples of the dispenser method include a flow rate control method, a pressurization control method, a flow path control method, and a volume measurement method, and are not particularly limited.
  • the ink jet recording head is preferably an on-demand type ink jet recording head, and examples thereof include a thermal method, a piezo method, and an electrostatic method.
  • a piezo ink jet recording head can be particularly preferably used. .
  • Use of the piezo method is preferable because the ink discharge amount is excellent in controllability and the liquid A can be discharged without heating.
  • the step of applying the A liquid to the B liquid layer is preferably a process of discharging the A liquid onto the B liquid layer by inkjet.
  • the preferable physical property in such a use aspect is demonstrated.
  • the viscosity is preferably 7 to 30 mPa at the temperature at the time of ejection (for example, 20 to 80 ° C., preferably 25 to 50 ° C.) in consideration of the ejectability.
  • ⁇ S more preferably 7 to 25 mPa ⁇ s.
  • the viscosity of the liquid A at room temperature is preferably 35 to 500 mPa ⁇ s, more preferably 35 to 200 mPa ⁇ s.
  • the surface tension of the solution A at 30 ° C. is preferably 20 to 30 mN / m, more preferably 23 to 28 mN / m.
  • the B liquid needs to be a liquid that can form a liquid layer on the bottom plate or the manufactured three-dimensional structure.
  • the viscosity of the liquid B during the production of the three-dimensional structure is preferably 2 to 100,000 mPa ⁇ s, more preferably 3 to 1,000 mPa ⁇ s, and more preferably 5 to 1,000 mPa ⁇ s. -More preferably, it is s.
  • the temperature at the time of production is not particularly limited, but it is preferably 15 ° C. to 50 ° C., particularly preferably room temperature, from the viewpoint of ease of production of the three-dimensional modeling apparatus and the cost of production.
  • the three-dimensional modeling material of the present invention includes the A liquid and the B liquid.
  • the three-dimensional modeling material of the present invention is preferably a three-dimensional modeling material composed of the A liquid and the B liquid.
  • a liquid and / or B liquid can also be made into a concentrated liquid.
  • the three-dimensional modeling apparatus may be configured so as to be diluted immediately before use, or the A liquid and / or the B liquid diluted in advance may be used, and is not particularly limited.
  • this content means content (concentration) at the time of use.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a method for producing a three-dimensional structure according to the present invention.
  • the three-dimensional modeling apparatus 1 includes a modeling container 10, and the modeling container 10 is provided with a B liquid supply port 30 that supplies a B liquid.
  • a bottom plate 12 that can be moved up and down is provided.
  • B liquid is supplied into the modeling container 10, a B liquid layer is formed on the bottom plate 12, and A liquid is supplied onto the thin layer of B liquid from the nozzle 21 of the A liquid applying unit 20 according to the cross-sectional shape data.
  • the A liquid application region forms a solid by mixing the A liquid and the B liquid to form a cross-sectional shape, and is combined with the cross-sectional shape below the second layer after the second layer.
  • the B liquid area A liquid application area
  • the A liquid By applying the A liquid while scanning the A liquid applying unit 20 in the horizontal direction, a cross-sectional shape having a predetermined pattern is obtained.
  • the bottom plate 12 is moved downward by one slice pitch, B liquid is newly supplied according to the amount of movement, and a B liquid layer is formed.
  • the A liquid is applied from the nozzle 21 of the A liquid applying unit 20 according to the next adjacent cross-sectional shape data, and a new A liquid applying area is formed.
  • a solid is formed in this area
  • the slice pitch (lamination pitch) is preferably 1 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, and still more preferably 10 to 200 ⁇ m. Further, the droplet amount of the liquid A to be applied is preferably 0.01 pl to 100 ⁇ l, more preferably 0.1 pl to 10 ⁇ l, still more preferably 1 pl to 1 ⁇ l. It is preferable that the slice pitch and the amount of droplets are within the above ranges because the strength is high and a high-definition three-dimensional structure can be obtained.
  • the three-dimensional structure 40 can be obtained by separating the B liquid in the region where the A liquid is not applied.
  • the three-dimensional structure manufacturing method of the present invention unlike the conventional optical modeling method, the three-dimensional structure can be manufactured by applying the liquid A without irradiating light. Therefore, the three-dimensional modeling apparatus can be manufactured at a low cost.
  • the liquid B is colorless and transparent or white, preferably colorless and transparent, and the liquid A containing a colorant is applied to the liquid B.
  • a three-dimensional structure having a desired color can be manufactured by using the A liquid applying unit 20 including a plurality of nozzles 21 and applying the A liquid having different colors from each nozzle.
  • FIG. 2 is a perspective view schematically showing the cross-sectional shape formed in each adjacent layer in the manufacture of the three-dimensional structure as described above.
  • a preferred embodiment of the method for producing a three-dimensional structure of the present invention will be described below.
  • a three-dimensional shape color data creating step and a colored cross-sectional shape data creating step for each cross-section are performed prior to the B liquid layer forming step and the cross-sectional shape forming step.
  • the computer is made to create model data representing a three-dimensional modeling object having a colored pattern or the like on the surface.
  • model data that becomes the basis for modeling
  • color three-dimensional model data created by general 3D-CAD modeling software can be used. It is also possible to use data and texture of the three-dimensional colored shape measured by the three-dimensional shape input device.
  • the computer creates cross-section data for each cross-section obtained by slicing the modeling object in the horizontal direction from the model data.
  • a cross-sectional body sliced at a pitch (layer thickness t) corresponding to the thickness of one layer of the liquid B to be laminated is cut out from the model data, and shape data and coloring data indicating a cross-sectional area are created as cross-sectional data.
  • shape data and coloring data are also collectively referred to as “colored (cross-sectional) shape data”.
  • the liquid B serving as a material for manufacturing the three-dimensional structure is supplied in the modeling stage.
  • the fourth step is a step of forming a colored cross-sectional shape based on the colored shape data of the cut surface under the control of the drive control unit.
  • This process preferably employs a non-contact method. A typical example will be described below using an inkjet method as an example.
  • the data is converted into bitmap information of each color of CMY subdivided into a grid, and the inkjet head is moved in the XY plane. Then, during the movement, the A liquid is appropriately discharged from each inkjet discharge nozzle based on the color data.
  • the liquid A it is preferable to use two or more liquids A selected from the group consisting of at least one colored liquid A, a white liquid A, and a colorless and transparent liquid A.
  • At least one lattice point located in the outermost layer of the modeled object is applied with A liquid 1.05 to 5 times the liquid A applied to the grid point positioned inside the modeled object. It is one of.
  • the liquid A to be applied is preferably 1.1 to 2.5 times. It is preferable that the amount of the liquid A to be applied is within the above range because the surface glossiness and strength of the molded article are improved.
  • the at least one grid point located in the outermost layer of the modeled object is the grid point of the entire bottom layer cross-sectional shape of the modeled object, the grid point of the entire cross-sectional shape of the top layer, and the middle located between the bottom layer and the top layer It means that a grid point (contour grid point) constituting the outer contour shape of the cross-sectional shape of the layer may be included, and one or a plurality of grid points (adjacent grid points) adjacent to these may be included as appropriate. In this case, it is not always necessary to discharge the liquid A increased to the same degree at the contour grid points and the adjacent grid points. The discharge magnification can be adjusted with an appropriate gradient.
  • FIG. 3 is a plan view showing an example of cross-sectional data subdivided into a grid generated in the second step.
  • the hatched grid is the area where the A liquid is discharged.
  • the discharge magnification may be increased up to adjacent grid points for several grids adjacent to the contour grid point.
  • the adjacent number lattice is preferably 1 to 10 lattice portions, more preferably 1 to 5 lattice portions.
  • the discharge magnification can be adjusted by changing the discharge amount at one time and / or increasing the number of discharges to the same grid point.
  • the colored liquid A is preferably a combination of the three primary colors of yellow (Y), magenta (M), and cyan (C), which are the three primary colors of the subtractive color method.
  • the M dye and the C dye may be liquid A colored in two shades.
  • Colorless binders can be used to adjust the color density of CMY.
  • a binder (white binder) containing a white pigment such as titanium white or a binder (black binder) colored with a black (black) dye can be used in combination to develop a desired effect.
  • the total discharge amount of the colored A liquid, colorless A liquid, and white A liquid is preferably constant per unit area, for example, per grid point or per adjacent 4 grid points.
  • a normal CMY ink that does not contain the liquid A can be a two-stage process that ejects the liquid B on the solid.
  • a colored solid formed by mixing the B liquid and the A liquid corresponding to the cut surface obtained by cutting the modeling object on a plurality of surfaces is sequentially stacked to form a tertiary An original model can be manufactured.
  • solid is not formed in the area
  • the B liquid in the region where the A liquid is not applied is separated, and the three-dimensional structure is taken out.
  • B liquid which A liquid A was not provided can be collect
  • a three-dimensional modeling target is not limited to this. That is, it is needless to say that a monochromatic or colorless three-dimensional structure can be manufactured based on cross-sectional shape data that does not have color data.
  • FIG. 4 is a perspective view showing an embodiment of a three-dimensional modeling apparatus that can be used in the present invention.
  • the three-dimensional modeling apparatus 1 includes a modeling container 10 to which a B liquid is roughly supplied, and an A liquid applying unit 20 that applies the A liquid to the B liquid from above.
  • the modeling container 10 includes a B liquid supply port 30 that supplies the B liquid to the modeling container 10.
  • the B liquid supply port 30 is configured so that the B liquid can be supplied by a pump or the like (not shown), and the supply amount of the B liquid can be controlled.
  • a bottom plate (not shown) is disposed inside the modeling container 10 so as to be movable up and down.
  • the A liquid application unit 20 is disposed above the modeling container 10.
  • the three-dimensional modeling apparatus 1 has an X-axis guide rail 22b and a Y-axis guide rail 22a for moving the A liquid applying unit 20 to two axes of the XY axes. As a result, the liquid A applying unit 20 moves along the XY axis, that is, parallel to the modeling surface.
  • a nozzle (not shown) is formed on the lower surface of the A liquid applying unit 20, and the A liquid is discharged from the nozzle. Moreover, it is comprised so that A liquid can be supplied to the said nozzle.
  • Said nozzle can be suitably selected from a well-known dispenser and an inkjet recording head.
  • the ink jet recording head for example, a cleaning blade that cleans a face surface on which nozzles (ejection ports) are formed while moving in a predetermined cleaning direction, and a cleaning blade that is disposed downstream of the face surface, the cleaning surface is disposed.
  • An ink jet recording head provided with an absorber that absorbs the liquid A adhering to the blade can be obtained.
  • JP-A 2007-38558, JP-A 2007-38604, and the like can be referred to.
  • Liquid A (2) to liquid A (30) were obtained by changing the exemplified compound (A-1) of liquid A (1) to the compounds shown in Table 1.
  • Liquid A (32) to Liquid A (45) were obtained by changing 1,4-butanediol diglycidyl ether of Liquid A (31) to the compounds shown in Table 1.
  • Table 1 when the exemplified compound is a polymer, the molecular weight is described.
  • Magenta liquid A (1) was produced in the same manner as liquid A (1) except that M-1 was used instead of liquid A (1) Y-1.
  • Liquid B (32) to Liquid B (45) were obtained by changing 1,4-butanediol diglycidyl ether of Liquid B (31) to the compounds shown in Table 2.
  • Table 2 when the exemplified compound used was a polymer, the molecular weight was described.
  • Example 1 Using the three-dimensional modeling apparatus described in the specification, the liquid A (1) supplied from the liquid A supply hose to the liquid injection nozzle is applied to the liquid B (27) installed in a thin layer on the bottom plate. By spraying from the hole, a thin-layer cured product having a cross-sectional shape obtained by cutting the modeling target object along a parallel cross-section was obtained.
  • a piezo-type ink jet recording head was used as the liquid A ejection nozzle, and the amount of liquid A discharged was 6 pl per dot.
  • One slice pitch was set to 50 ⁇ m.
  • Examples 2 to 15 and Comparative Examples 1 to 4 A three-dimensional structure was manufactured in the same manner as in Example 1, except that the liquid A (1) and liquid B (27) were changed to those shown in Table 3 in Example 1.
  • a plate having a diameter of 5 cm and a thickness of 1 cm was prepared by the method of Example 1, placed on a donut-shaped table having a diameter of 4 cm (outer diameter of 4 cm, inner diameter of 3 cm) and a thickness of 1 cm, and a weight of 100 g was placed on the plate. The time until the plate broke was evaluated. This evaluation shows that the longer the time, the higher the strength.
  • Liquid B was filled in the petri dish to a depth of 1 cm, and liquid A droplets were dropped from above with a dropper, and the time until curing was measured. This evaluation shows that the shorter the time, the faster the curing rate.
  • Example 16 Evaluation was carried out in the same manner as in Example 1 except that Magenta A liquid (1) was used instead of A liquid (1) in Example 1.
  • Example 17 Evaluation was performed in the same manner as in Example 1 except that Cyan A liquid (1) was used instead of A liquid (1) in Example 1.
  • Example 18 Evaluation was carried out in the same manner as in Example 1, except that the black A liquid (1) was used instead of the A liquid (1) in Example 1.
  • Example 19 Evaluation was performed in the same manner as in Example 1, except that the white A liquid (1) was used instead of the A liquid (1) in Example 1. The results are shown in Table 4 below.
  • Example 20 As a result of performing modeling by filling different nozzles with yellow A liquid (1), magenta A liquid (1), cyan A liquid (1), black A liquid (1), and white A liquid (1), A model was obtained.

Abstract

A process for producing a three-dimensional shaped object is provided.  By the process, a full-color shaped object having high resolution can be produced at a high rate.  Also provided are: a material for three-dimensional shaping which is for use in the process; and a three-dimensional shaped object obtained by the process. The process for producing a three-dimensional shaped object is characterized by successively repeating the following steps: a step in which a liquid (B) is formed into a layer having a given thickness; and a step in which a liquid (A) which is capable of forming a solid upon mixing with the liquid (B) is added to the layer of the liquid (B) so that the resultant solid has the shape equal to a sectional shape which would be formed by cutting the target shaped object along parallel planes.

Description

三次元造形物の製造方法、三次元造形用材料及び三次元造形物Manufacturing method of three-dimensional structure, three-dimensional structure material, and three-dimensional structure
 本発明は三次元造形物の製造方法、前記製造方法に使用する三次元造形用材料及び前記製造方法により得られた三次元造形物に関する。 The present invention relates to a method for manufacturing a three-dimensional structure, a material for three-dimensional structure used in the manufacturing method, and a three-dimensional structure obtained by the manufacturing method.
 近年、三次元の立体形状物をコンピュータ制御により造形する技術として、各種の積層造形法が開発されている。これら積層造形法は、従前の切削加工などの除去加工による造形(鋳造、塑性加工、射出成型のための型の造形を含む)と比べて次のような利点を有している。すなわち、(1)切削刃物が入っていけない複雑な内部構造を持った立体形状物でも1回の造形プロセスで自動的に作製することができる、(2)非接触の加工なので工具交換、工具摩耗対策などの工具管理が不要であり、夜間無人運転も行える、(3)切り屑が発生せず、騒音・振動もないので、事務作業の環境の下でも稼働することができる、(4)機械加工に関する専門知識を必要とせず、誰でも操作することができる、等の利点が挙げられる。 In recent years, various additive manufacturing methods have been developed as a technique for modeling a three-dimensional three-dimensional object by computer control. These additive manufacturing methods have the following advantages compared to conventional modeling by removal processing such as cutting (including casting, plastic processing, and molding of a mold for injection molding). That is, (1) Even a three-dimensional object with a complicated internal structure that cannot contain a cutting tool can be automatically produced by a single modeling process. (2) Tool exchange and tool wear due to non-contact processing Tool management such as countermeasures is unnecessary, and unattended operation is possible at night. (3) Since no chips are generated and there is no noise / vibration, it can be operated in the office work environment. (4) Machine The advantage is that anyone can operate it without requiring specialized knowledge about processing.
 このような特徴を有する積層造形法の代表的な方法として、光造形法、粉末焼結法、押し出し法、シート切断法、インクジェット法等が知られている。
 中でも、光造形法は液体を硬化させることから、高精細な三次元造形物が作製できることで知られている。光造形法とは、液状の光硬化性樹脂に紫外レーザ光等の光を照射し、その光照射部分を重合反応により硬化させて固化層を形成し、この固化層を光硬化性樹脂液の液面より微小量だけ沈めて、光照射により次の固化層を形成するといった工程を繰り返すことにより、固化層を順次積み重ねて所望の形状の立体物を生成する方法である。この光造形法は、例えば、特許文献1に開示されている。
As a representative method of the layered manufacturing method having such a feature, an optical modeling method, a powder sintering method, an extrusion method, a sheet cutting method, an ink jet method, and the like are known.
Among them, the optical modeling method is known to be able to produce a high-definition three-dimensional modeled object because the liquid is cured. The stereolithography method irradiates a liquid photocurable resin with light such as ultraviolet laser light, and cures the irradiated portion by a polymerization reaction to form a solidified layer. This is a method of generating a three-dimensional object having a desired shape by sequentially stacking the solidified layers by repeating a process of sinking a minute amount from the liquid surface and forming the next solidified layer by light irradiation. This stereolithography method is disclosed in Patent Document 1, for example.
特開平5-237944号公報JP-A-5-237944
 しかし、光造形法では、タンク内の造形に使用されなかった光硬化性樹脂液は、造形時の光照射の影響を受けて性能が劣化するため、廃棄せざるを得ず、資源の無駄使いを招いていた。また、樹脂材料を硬化するために必要なレーザーヘッドは大変高価であるために、マルチヘッド化することが難しい。さらに、樹脂材料の硬化に必要な光量を照射するためにレーザ光のスキャンスピードを制限する必要があり、造形スピードをある程度以上に向上することができないという問題点があった。また、光造形法では原理的にフルカラーの造形物が造形できないという欠点もあった。 However, in the optical modeling method, the photocurable resin liquid that was not used for modeling in the tank is affected by the light irradiation during modeling, and its performance deteriorates. Was invited. In addition, since the laser head necessary for curing the resin material is very expensive, it is difficult to make a multi-head. Furthermore, it is necessary to limit the scanning speed of the laser beam in order to irradiate the light amount necessary for curing the resin material, and there is a problem that the modeling speed cannot be improved to a certain extent. In addition, the stereolithography method has a drawback that a full-color model cannot be formed in principle.
 本発明は上記課題を解決することを目的とするものである。すなわち本発明は、フルカラーで高精細な造形物が高速で作製できる三次元造形物の製造方法を提供することを目的とする。さらに、本発明は前記製造方法に使用される三次元造形用材料、及び、前記製造方法により得られる三次元造形物を提供することを目的とする。 The present invention aims to solve the above problems. That is, an object of the present invention is to provide a method for producing a three-dimensional structure that can produce a full-color and high-definition object at high speed. Furthermore, this invention aims at providing the three-dimensional modeling material obtained by the three-dimensional modeling material used for the said manufacturing method, and the said manufacturing method.
 本発明の上記課題は、以下の<1>、<6>及び<7>に記載の手段により解決された。好ましい実施態様である<2>~<5>とともに以下に記載する。
<1> B液を所定の厚さを有する層に形成する工程と、造形対象物を平行な断面で切断した断面形状になるように、B液の層に、B液と混合することにより固体を形成可能なA液を付与する工程と、を順次繰り返すことを特徴とする三次元造形物の製造方法、
<2> 前記A液及び/又は前記B液が、染料及び/又は顔料を含有する、上記<1>に記載の三次元造形物の製造方法、
<3> 前記A液又はB液の一方が、カチオン性残基及び/又はカチオン性残基に誘導しうる基を2以上有し、他の一方が、有機酸残基及び/又は有機酸塩残基を2以上有する、上記<1>又は上記<2>に記載の三次元造形物の製造方法、
<4> 前記A液を付与する工程が、A液を滴下する工程であり、A液の滴下が、微小液滴を吐出可能なノズルにより行われる、上記<1>~上記<3>いずれか1つに記載の三次元造形物の製造方法、
<5> 前記ノズルが、インクジェット記録ヘッド又はディスペンサである、上記<4>に記載の三次元造形物の製造方法、
<6> 上記<1>~上記<5>いずれか1つに記載の三次元造形物の製造方法に使用されるA液及びB液を含む三次元造形用材料、
<7> 上記<1>~上記<5>のいずれか1つに記載の製造方法にて製造した、三次元造形物。
The above-described problems of the present invention have been solved by means described in the following <1>, <6>, and <7>. It is described below together with <2> to <5> which are preferred embodiments.
<1> A step of forming the liquid B in a layer having a predetermined thickness and a solid by mixing the liquid to be mixed with the liquid B in a layer of the liquid B so as to have a cross-sectional shape obtained by cutting the modeling target object in a parallel cross section. A step of applying a liquid A capable of forming a liquid, and a method for producing a three-dimensional structure characterized by sequentially repeating
<2> The method for producing a three-dimensional structure according to <1>, wherein the liquid A and / or the liquid B contains a dye and / or a pigment,
<3> One of the liquid A or the liquid B has two or more cationic residues and / or groups that can be induced to a cationic residue, and the other one is an organic acid residue and / or an organic acid salt. The method for producing a three-dimensional structure according to <1> or <2> above, having two or more residues,
<4> The step of applying the A liquid is a step of dripping the A liquid, and the dropping of the A liquid is performed by a nozzle capable of discharging a fine liquid droplet, any of the above <1> to <3> The manufacturing method of the three-dimensional structure as described in one,
<5> The method for producing a three-dimensional structure according to <4>, wherein the nozzle is an inkjet recording head or a dispenser,
<6> A material for three-dimensional modeling including the liquid A and the liquid B used in the method for producing a three-dimensional structure according to any one of the above items <1> to <5>
<7> A three-dimensional structure manufactured by the manufacturing method according to any one of <1> to <5> above.
 本発明によれば、フルカラーで高精細な造形物が高速で作製できる三次元造形物の製造方法を提供することができた。さらに、本発明によれば、前記製造方法に使用される三次元造形用材料、及び、前記製造方法により得られる三次元造形物を提供することができた。 According to the present invention, it was possible to provide a method for manufacturing a three-dimensional structure capable of producing a full-color, high-definition object at high speed. Furthermore, according to this invention, the three-dimensional modeling material used by the said manufacturing method and the three-dimensional modeling thing obtained by the said manufacturing method were able to be provided.
本発明の三次元造形物の製造方法の一例を示す概略構成断面図である。It is schematic structure sectional drawing which shows an example of the manufacturing method of the three-dimensional structure according to the present invention. 三次元造形物の製造において隣接する各層に形成された断面形状を模式的に示す斜視図である。It is a perspective view which shows typically the cross-sectional shape formed in each adjacent layer in manufacture of a three-dimensional structure. 格子状に細分化された断面データの一例を示す平面図である。It is a top view which shows an example of the cross-sectional data subdivided into the grid | lattice form. 本発明において使用できる三次元造形装置の一実施態様を示す斜視図である。It is a perspective view which shows one embodiment of the three-dimensional modeling apparatus which can be used in this invention.
 本発明の三次元造形物の製造方法は、B液を所定の厚さを有する層に形成する工程と、造形対象物を平行な断面で切断した断面形状になるように、B液の層に、B液と混合することにより固体を形成可能なA液を付与する工程と、を順次繰り返すことを特徴とする。
 なお、以下の説明において、数値範囲を示す「A~B」の記載は、特に断りのない限り、「A以上B以下」を意味する。すなわち、端点であるA及びBを含む数値範囲を表す。
The method for producing a three-dimensional structure of the present invention includes a step of forming the liquid B in a layer having a predetermined thickness, and a layer of the liquid B so as to have a cross-sectional shape obtained by cutting the modeling object in a parallel cross section. And the step of applying the liquid A capable of forming a solid by mixing with the liquid B, in order.
In the following description, the description of “A to B” indicating a numerical range means “A or more and B or less” unless otherwise specified. That is, a numerical range including A and B which are end points is represented.
(A液及びB液)
 上記の通り、本発明は、互いに混合することによって固体を形成可能なA液(固体形成性A液)及びB液(固体形成性B液)を用いることを特徴とする。
 A液及びB液は、互いに混合すると固体を形成するものであれば特に限定されない。
 ここで、「固体を形成する」とは、一定の形、体積をもつ状態となることを意味する。すなわち、A液及びB液は液体であり流動性を有しているのに対し、混合して形成された固体は、流動性を有していない。ここで、ゲルは流動性を有していない観点から、固体に該当する。
(A liquid and B liquid)
As described above, the present invention is characterized by using the liquid A (solid formable liquid A) and the liquid B (solid formable liquid B) that can form a solid by mixing with each other.
The A liquid and the B liquid are not particularly limited as long as they form a solid when mixed with each other.
Here, “form a solid” means a state having a certain shape and volume. That is, liquid A and liquid B are liquids and have fluidity, whereas solids formed by mixing do not have fluidity. Here, the gel corresponds to a solid from the viewpoint of not having fluidity.
 混合すると固体を生成する化合物の組合せとしては、例えば、「季刊化学総説No.8 有機高分子ゲル」(日本化学会編、1990年)、「機能性高分子ゲルと最新の応用動向」((株)東レリサーチセンター、1996年)、長田義仁、王林「機能性高分子ゲルの開発技術」((株)シーエムシー、1999年)などに記載のある高分子ゲルを生成する化合物の組合せが挙げられる。 Examples of combinations of compounds that form solids when mixed include, for example, “Quarterly Chemical Review No. 8, Organic Polymer Gel” (edited by the Chemical Society of Japan, 1990), “Functional Polymer Gels and Latest Application Trends” (( Toray Research Center Co., Ltd., 1996), Yoshihito Nagata, Obayashi “Development technology of functional polymer gel” (CMC, 1999), etc. Can be mentioned.
 混合すると固体を生成する化合物の具体的な組合せとしては、例えば分子間の物理的凝集力でゲル化する化合物の組合せが挙げられる。ここでいう分子間の物理的凝集力としてはイオン結合、配位結合等があり、これらを利用した組合せとしては、カチオン性残基及び/又はカチオン性残基に誘導しうる基を2以上有する化合物(多価カチオン性化合物)と有機酸残基及び/又は有機酸塩残基を2以上有する化合物(多価アニオン性化合物)との組合せが挙げられる。以下、それぞれについて説明する。 As a specific combination of compounds that form a solid when mixed, for example, a combination of compounds that gel by physical cohesion between molecules can be mentioned. Examples of the physical cohesion between molecules include ionic bonds and coordinate bonds, and combinations using them include two or more cationic residues and / or groups that can be induced to cationic residues. A combination of a compound (polyvalent cationic compound) and a compound having two or more organic acid residues and / or organic acid salt residues (multivalent anionic compound) can be mentioned. Each will be described below.
<多価カチオン性化合物/多価アニオン性化合物>
〔多価アニオン性化合物〕
 多価アニオン性化合物とは、有機酸残基及び/又は有機酸塩残基を、合計して2以上有する化合物である。
 多価アニオン性化合物としては、例えば2以上の有機酸残基及び/又は有機酸塩残基(以下、「有機酸残基」及び「有機酸塩残基」を総称して、「有機酸(塩)残基」ともいう。)を有するポリマー化合物が挙げられる。
 用いられる有機酸残基としては、下記(1)~(6)に挙げる有機酸残基が挙げられる。
 (1)フェノール性水酸基(-Ar-OH)
 (2)スルホンアミド基(-SO2NH-R、-SO2NH2
 (3)置換スルホンアミド系酸基(以下、「活性イミド基」という。)(-SO2NHOR、-SO2NHSO2R、-CONHSO2R)
 (4)カルボン酸基(-CO2H)
 (5)スルホン酸基(-SO3H)
 (6)リン酸エステル基、リン酸基、ホスホン酸エステル基(-OPO32、-PO32、-OP(O)H(OH))
 上記(1)~(6)中、Arは2価のアリール連結基を表し、Rは、1価の炭化水素基を表す。
 上記(1)~(6)より選ばれる有機酸残基の中でも、(3)置換スルホンアミド系酸基、(4)カルボン酸基、(5)スルホン酸基、又は(6)リン酸エステル基、リン酸基、ホスホン酸エステル基を有するものが好ましい。材料合成の容易さ、及び、得られる機械的強度の観点から、(4)カルボン酸基がより好ましい。
<Multivalent cationic compound / Multivalent anionic compound>
[Multivalent anionic compound]
The polyvalent anionic compound is a compound having two or more organic acid residues and / or organic acid salt residues in total.
As the polyvalent anionic compound, for example, two or more organic acid residues and / or organic acid salt residues (hereinafter, “organic acid residues” and “organic acid salt residues” are collectively referred to as “organic acid ( And a polymer compound having a salt) residue ”.
Examples of the organic acid residue used include the organic acid residues listed in the following (1) to (6).
(1) Phenolic hydroxyl group (-Ar-OH)
(2) Sulfonamide group (—SO 2 NH—R, —SO 2 NH 2 )
(3) substituted sulfonamide-based acid group (hereinafter, referred to as "active imide group".) (- SO 2 NHOR, -SO 2 NHSO 2 R, -CONHSO 2 R)
(4) Carboxylic acid group (—CO 2 H)
(5) Sulfonic acid group (—SO 3 H)
(6) Phosphate ester group, phosphate group, phosphonate ester group (—OPO 3 H 2 , —PO 3 H 2 , —OP (O) H (OH))
In the above (1) to (6), Ar represents a divalent aryl linking group, and R represents a monovalent hydrocarbon group.
Among the organic acid residues selected from the above (1) to (6), (3) a substituted sulfonamide acid group, (4) a carboxylic acid group, (5) a sulfonic acid group, or (6) a phosphate ester group Those having a phosphoric acid group or a phosphonic acid ester group are preferred. (4) Carboxylic acid groups are more preferred from the viewpoint of ease of material synthesis and mechanical strength obtained.
 なお、上記の有機酸塩としては、無機塩及び有機塩のいずれでもよく、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、スルホニウム塩、ヨードニウム塩等のオニウム塩、テトラアルキルアンモニウム塩、テトラアリールアンモニウム塩等の4級アンモニウム塩が例示できる。 The organic acid salt may be either an inorganic salt or an organic salt. Alkali metal salts such as lithium salts, sodium salts and potassium salts, onium salts such as sulfonium salts and iodonium salts, tetraalkylammonium salts, tetra Quaternary ammonium salts such as aryl ammonium salts can be exemplified.
 前記ポリマー化合物は、化合物全体として2以上の有機酸(塩)残基を有していればよく、有機酸(塩)残基を側鎖に1つ有するモノマー単位を複数有するものでもよいし、モノマー単位に有機酸(塩)残基を2以上有する側鎖を有していてもよい。前記多価アニオン性のポリマー化合物は、有機酸(塩)残基を有するエチレン性不飽和化合物を付加重合することにより得ることができる。
 なお、多価アニオン性化合物は、化合物全体として2以上の有機酸(塩)残基を有するものであれば、有機酸(塩)残基を側鎖に有するモノマー単位の他に、有機酸(塩)残基を有していないモノマー単位を有する共重合体であってもよい。
The polymer compound only needs to have two or more organic acid (salt) residues as a whole compound, and may have a plurality of monomer units each having one organic acid (salt) residue in the side chain, The monomer unit may have a side chain having two or more organic acid (salt) residues. The polyvalent anionic polymer compound can be obtained by addition polymerization of an ethylenically unsaturated compound having an organic acid (salt) residue.
In addition, as long as the polyvalent anionic compound has two or more organic acid (salt) residues as a whole compound, in addition to the monomer unit having an organic acid (salt) residue in the side chain, an organic acid ( Salt) A copolymer having a monomer unit having no residue may be used.
 また、多価アニオン性化合物は1分子中に上記の有機酸(塩)残基を複数個有すればポリマー化合物に限定されるものではなく、特に制限なく用いることができ、例えば1分子中に複数個の有機酸(塩)残基を有する低分子化合物を用いてもよい。1分子中に複数個の有機酸(塩)残基を有する低分子化合物としては、アジピン酸、スクシン酸、マレイン酸、1,2,3,4-ブタンテトラカルボン酸、フタル酸、スルホフタル酸等が挙げられる。 The polyvalent anionic compound is not limited to a polymer compound as long as it has a plurality of the above-mentioned organic acid (salt) residues in one molecule, and can be used without any particular limitation. A low molecular compound having a plurality of organic acid (salt) residues may be used. Low molecular weight compounds having a plurality of organic acid (salt) residues in one molecule include adipic acid, succinic acid, maleic acid, 1,2,3,4-butanetetracarboxylic acid, phthalic acid, sulfophthalic acid, etc. Is mentioned.
 前記多価アニオン性化合物をA液として用いる場合には、前記多価アニオン性化合物の好ましい分子量は200以上300,000以下であり、より好ましくは300以上200,000以下であり、さらに好ましくは500以上100,000以下である。多価アニオン性化合物の分子量が上記範囲内であると、強度が向上するため好ましい。
 特に、A液としては、多価アニオン性化合物として有機酸(塩)残基を側鎖に有するポリマー化合物を使用することが好ましく、該ポリマー化合物の分子量は1,000以上300,000以下であることが好ましく、3,000以上200,000以下であることがより好ましく、5,000以上100,000以下であることがさらに好ましい。
When the polyvalent anionic compound is used as the liquid A, the preferred molecular weight of the polyvalent anionic compound is 200 or more and 300,000 or less, more preferably 300 or more and 200,000 or less, and even more preferably 500. More than 100,000. When the molecular weight of the polyvalent anionic compound is within the above range, the strength is improved, which is preferable.
In particular, as the liquid A, it is preferable to use a polymer compound having an organic acid (salt) residue in the side chain as a polyvalent anionic compound, and the molecular weight of the polymer compound is 1,000 or more and 300,000 or less. It is preferably 3,000 or more and 200,000 or less, and more preferably 5,000 or more and 100,000 or less.
 また、前記多価アニオン性化合物をB液として用いる場合には、前記多価アニオン性化合物の好ましい分子量は30以上100,000以下であり、より好ましくは50以上50,000以下であり、さらに好ましくは50以上20,000以下である。
 多価アニオン性化合物の分子量が上記範囲内であると、粘度が低く抑えられるために、B液のレベリング性が向上し、生産性が向上するので好ましい。
Moreover, when using the said polyvalent anionic compound as B liquid, the preferable molecular weight of the said polyvalent anionic compound is 30 or more and 100,000 or less, More preferably, it is 50 or more and 50,000 or less, More preferably Is 50 or more and 20,000 or less.
When the molecular weight of the polyvalent anionic compound is within the above range, the viscosity can be kept low, so that the leveling property of the liquid B is improved and the productivity is improved.
〔多価カチオン性化合物〕
 多価カチオン性化合物とは、カチオン性残基及び/又はカチオン性残基に誘導しうる基(以下、「カチオン性残基」及び「カチオン性残基に誘導しうる基」を総称して、「カチオン性残基(誘導可能基)」ともいう。)を2以上有する化合物であり、2以上のカチオン性残基を有するものでもよく、2以上のカチオン性残基に誘導しうる基を有するものでもよく、また、カチオン性残基及びカチオン性残基に誘導しうる基を有するものでもよく、特に限定されない。
 多価カチオン性化合物としては、例えばオニウム塩を有するポリマー化合物が挙げられる。オニウム塩としては、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩などが挙げられるが、特に好ましくはアンモニウム塩である。
 また、カチオン性残基に誘導しうる基としては、3級アミノ基が例示でき、3級アミノ基を4級化することによって、カチオン性残基に誘導することができる。
[Multivalent cationic compound]
The polyvalent cationic compound is a generic term for a cationic residue and / or a group that can be derived from a cationic residue (hereinafter referred to as “cationic residue” and “group that can be derived from a cationic residue”). (Also referred to as “cationic residue (inducible group)”) having two or more cationic residues, having two or more cationic residues, and having a group that can be induced to two or more cationic residues. It may be one having a group capable of being derived from a cationic residue and a cationic residue, and is not particularly limited.
Examples of the polyvalent cationic compound include a polymer compound having an onium salt. Examples of the onium salt include a sulfonium salt, an iodonium salt, a phosphonium salt, and an ammonium salt, and an ammonium salt is particularly preferable.
Moreover, as a group which can be induced | guided | derived to a cationic residue, a tertiary amino group can be illustrated and can be induced | guided | derived to a cationic residue by quaternizing a tertiary amino group.
 また、多価カチオン性化合物は1分子中に上記のカチオン性残基(誘導可能基)を複数個有すれば特に制限なく用いることができ、例えば1分子中に複数個のオニウム基を有する低分子化合物などを用いることができる。1分子中に複数個のオニウム基を有する低分子化合物としては、例えばヘキサメソニウム、デカメソニウム、ペンタメソニウム等のアンモニウム塩や以下の具体例に示す1分子中に2つ以上のオニウム基を有するスルホニウム塩、ヨードニウム塩等が挙げられる。また、無機の多価カチオン性化合物としては、マグネシウムイオン、カルシウムイオン、バリウムイオン等の多価の無機イオンが挙げられる。 The polyvalent cationic compound can be used without particular limitation as long as it has a plurality of the above-mentioned cationic residues (inducible groups) in one molecule. For example, a low-valent polyvalent compound having a plurality of onium groups in one molecule can be used. Molecular compounds and the like can be used. Examples of the low molecular weight compound having a plurality of onium groups in one molecule include ammonium salts such as hexamethonium, decamethonium and pentamesonium, and two or more onium groups in one molecule shown in the following specific examples. Examples include sulfonium salts and iodonium salts. Examples of the inorganic polyvalent cationic compound include polyvalent inorganic ions such as magnesium ion, calcium ion, and barium ion.
 前記多価カチオン性化合物をA液として用いる場合、前記多価カチオン性化合物の好ましい分子量は200以上300,000以下であり、より好ましくは300以上200,000以下であり、さらに好ましくは500以上100,000以下である。前記多価カチオン性化合物の分子量が上記範囲内であると、強度が向上するため好ましい。
 特に、A液として多価カチオン性化合物を使用する場合には、多価カチオン性化合物は、カチオン性残基(誘導可能基)を側鎖に有するモノマー単位を2以上有するポリマー化合物であることが好ましく、該ポリマー化合物の分子量は1,000以上300,000以下であることが好ましく、より好ましくは3,000以上200,000以下であり、さらに好ましくは5,000以上100,000以下である。
When the polyvalent cationic compound is used as the liquid A, the polyvalent cationic compound preferably has a molecular weight of 200 or more and 300,000 or less, more preferably 300 or more and 200,000 or less, and even more preferably 500 or more and 100. , 000 or less. It is preferable that the molecular weight of the polyvalent cationic compound is within the above range because the strength is improved.
In particular, when a polyvalent cationic compound is used as the liquid A, the polyvalent cationic compound may be a polymer compound having two or more monomer units having a cationic residue (inducible group) in the side chain. Preferably, the molecular weight of the polymer compound is preferably 1,000 or more and 300,000 or less, more preferably 3,000 or more and 200,000 or less, and further preferably 5,000 or more and 100,000 or less.
 また、前記多価カチオン性化合物をB液として用いる場合には、前記多価カチオン性化合物の好ましい分子量は30以上100,000以下であり、より好ましくは50以上50,000以下であり、さらに好ましくは50以上20,000以下である。多価カチオン性化合物の分子量が上記範囲内であると、粘度が低く抑えられるため、B液のレベリング性が向上し、生産性が向上するので好ましい。 When the polyvalent cationic compound is used as the liquid B, the polyvalent cationic compound preferably has a molecular weight of 30 or more and 100,000 or less, more preferably 50 or more and 50,000 or less, and still more preferably. Is 50 or more and 20,000 or less. When the molecular weight of the polyvalent cationic compound is within the above range, the viscosity can be kept low, so that the leveling property of the liquid B is improved and the productivity is improved, which is preferable.
 以下に多価アニオン性化合物((A-1)~(A-23))、多価カチオン性化合物((K-1)~(K-23))の具体例を示すが、本発明はこれに限定されるものではない。なお、以下の例示化合物において、共重合体の重合比はモル比で示している。 Specific examples of the polyvalent anionic compounds ((A-1) to (A-23)) and the polyvalent cationic compounds ((K-1) to (K-23)) are shown below. It is not limited to. In the following exemplary compounds, the polymerization ratio of the copolymer is shown in molar ratio.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記の例示化合物のうち、強度及び硬化速度の観点から、A液用多価アニオン性化合物としては、(A-2)、(A-4)、(A-5)、(A-6)、(A-8)が好ましく、より好ましくは、(A-5)、(A-6)である。
 また、B液用多価アニオン性化合物としては、(A-15)、(A-16)、(A-21)、(A-23)が好ましく、より好ましくは、(A-15)、(A-21)である。
 また、強度及び硬化速度の観点から、A液用多価カチオン性化合物としては、(K-1)、(K-2)、(K-3)、(K-5)が好ましく、より好ましくは(K-1)、(K-2)である。
 また、B液用多価カチオン性化合物としては、(K-14)、(K-16)、(K-18)、(K-19)、(K-20)が好ましく、より好ましくは、(K-18)、(K-19)、(K-20)である。
Among the above exemplary compounds, from the viewpoint of strength and curing speed, the polyvalent anionic compound for liquid A includes (A-2), (A-4), (A-5), (A-6), (A-8) is preferable, and (A-5) and (A-6) are more preferable.
The polyvalent anionic compound for liquid B is preferably (A-15), (A-16), (A-21), or (A-23), more preferably (A-15), (A A-21).
Further, from the viewpoint of strength and curing rate, the polyvalent cationic compound for liquid A is preferably (K-1), (K-2), (K-3), or (K-5), more preferably (K-1) and (K-2).
The polyvalent cationic compound for liquid B is preferably (K-14), (K-16), (K-18), (K-19), or (K-20), more preferably (K-20). K-18), (K-19), and (K-20).
 多価カチオン性化合物と多価アニオン性化合物の組合せ以外の、混合すると固体を生成する化合物の組合せとしては、2液が混合した際に化学反応が進行し、共有結合が生成する化合物の組合せが挙げられ、それらの組合せとしては、例えば(1)エポキシ化合物、オキセタン化合物のような開環化合物(開環反応可能な化合物)とアミン化合物、アルコール化合物、カルボン酸化合物のような上記開環化合物と反応させることにより、開環反応を起こす化合物(開環反応を生じさせる化合物)との組合せ、(2)イソシアネート化合物とアミン化合物及び/又はアルコール化合物とのような重縮合可能な化合物の組合せが挙げられる。
 以下にそれらの化合物の具体例を記載する。
Other than the combination of a polyvalent cationic compound and a polyvalent anionic compound, the combination of compounds that produce a solid when mixed is a combination of compounds in which a chemical reaction proceeds when two liquids are mixed and a covalent bond is generated. Examples of combinations thereof include (1) ring-opening compounds such as epoxy compounds and oxetane compounds (compounds capable of ring-opening reaction), and ring-opening compounds such as amine compounds, alcohol compounds, and carboxylic acid compounds. A combination with a compound that causes a ring-opening reaction by reacting (a compound that causes a ring-opening reaction), and (2) a combination of compounds capable of polycondensation such as an isocyanate compound and an amine compound and / or an alcohol compound. It is done.
Specific examples of these compounds are described below.
(1)開環化合物及び開環反応を生じさせる化合物
〔開環化合物〕
 前記開環化合物とは、開環反応可能な化合物であり、開環化合物としては、エポキシ化合物及びオキセタン化合物が例示できる。
 エポキシ化合物の例としては、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、脂環式等のいずれでもよい。
 グリシジルエーテル型エポキシ化合物としては、ジグリシジルエーテル類(例えばエチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル)、3官能以上のグリシジルエーテル類(トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、トリグリシジルトリスヒドロキシエチルイソシアヌレートなど)、4官能以上のグリシジルエーテル類(ソルビトールテトラグリシジルエーテル、ペンタエリスリトールテトラグリシルエーテル、クレゾールノボラック樹脂のポリグリシジルエーテル、フェノールノボラック樹脂のポリグリシジルエーテルなど)などが挙げられるが、本発明はこれらに限定されるものではない。
(1) Ring-opening compound and compound causing ring-opening reaction [ring-opening compound]
The ring-opening compound is a compound capable of ring-opening reaction, and examples of the ring-opening compound include epoxy compounds and oxetane compounds.
Examples of the epoxy compound may be any of glycidyl ether type, glycidyl ester type, glycidyl amine type, and alicyclic type.
Examples of the glycidyl ether type epoxy compound include diglycidyl ethers (for example, ethylene glycol diglycidyl ether, bisphenol A diglycidyl ether), tri- or more functional glycidyl ethers (trimethylolethane triglycidyl ether, trimethylolpropane triglycidyl ether, glycerol Triglycidyl ether, triglycidyl trishydroxyethyl isocyanurate, etc.), tetra- or higher functional glycidyl ethers (sorbitol tetraglycidyl ether, pentaerythritol tetraglycyl ether, polyglycidyl ether of cresol novolac resin, polyglycidyl ether of phenol novolac resin, etc.) However, the present invention is not limited to these.
 グリシジルエーテル化合物の具体例を挙げると、1,3-ビス(2,3-エポキシプロピロキシ)ベンゼン、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポシキ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂等の芳香族グリシジルエーテル化合物、1,4-ブタンジオールグリシジルエーテル、グリセロールトリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリメチロールプロパントリトリグリシジルエーテル等の脂肪族グリシジルエーテル化合物が挙げられる。 Specific examples of the glycidyl ether compound include 1,3-bis (2,3-epoxypropyloxy) benzene, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Aromatic glycidyl ether compounds such as trisphenol methane type epoxy resin, aliphatic glycidyl ether compounds such as 1,4-butanediol glycidyl ether, glycerol triglycidyl ether, propylene glycol diglycidyl ether, trimethylolpropane tritriglycidyl ether .
 グリシジルエステル化合物としては、リノレン酸ダイマーのグリシジルエステルを挙げることができる。
 グリシジルエーテル類は油化シェルエポキシ(株)等から市販品を入手することができる。
Examples of the glycidyl ester compound include glycidyl ester of linolenic acid dimer.
Glycidyl ethers can be obtained commercially from Yuka Shell Epoxy Co., Ltd.
 グリシジルアミン型化合物としては、テトラグリシジルジアミンジフェニルメタン(TGDDM)、トリグリシジルイソシアヌレート(TGIC)、ヒダントイン型、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(TETRAD-D)型、アミノフェノール型、アニリン型、トルイジン型等が挙げられる。 Examples of the glycidylamine type compound include tetraglycidyldiaminediphenylmethane (TGDDM), triglycidyl isocyanurate (TGIC), hydantoin type, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (TETRAD-D) type, amino Examples include phenol type, aniline type, and toluidine type.
 脂環式エポキシ化合物としては、シクロヘキセンオキシド基又はシクロペンテンオキシド基を1分子内に2個以上有する多官能脂環式エポキシ類が好ましい。多官能の脂環式エポキシ化合物の具体例としては、4-ビニルシクロヘキセンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート、ジ(3,4-エポキシシクロヘキシル)アジペート、ジ(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(2,3-エポキシシクロペンチル)エーテル、ジ(2,3-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタジエンジオキサイド、が挙げられる。種々の脂環式エポキシ化合物が市販されており、ユニオンカーバイド日本(株)、ダイセル化学工業(株)等から入手できる。
 また、脂環式エポキシ化合物としては、セロキサイド2021P、セロキサイド2081、エポリードGT-301、エポリードGT-401(以上、ダイセル化学工業(株)製)、EHPE(ダイセル化学工業(株)製)、フェノールノボラック樹脂のポリシクロヘキシルエポキシメチルエーテルなどが挙げられる。
 分子内に脂環式構造を有しない通常のエポキシ基を有するグリシジル化合物も本発明では問題なく使用できる。
The alicyclic epoxy compound is preferably a polyfunctional alicyclic epoxy having two or more cyclohexene oxide groups or cyclopentene oxide groups in one molecule. Specific examples of the polyfunctional alicyclic epoxy compound include 4-vinylcyclohexylene dioxide, (3,4-epoxycyclohexyl) methyl-3,4-epoxycyclohexylcarboxylate, di (3,4-epoxycyclohexyl) adipate. , Di (3,4-epoxycyclohexylmethyl) adipate, bis (2,3-epoxycyclopentyl) ether, di (2,3-epoxy-6-methylcyclohexylmethyl) adipate, and dicyclopentadiene dioxide. Various alicyclic epoxy compounds are commercially available and can be obtained from Union Carbide Japan Co., Ltd., Daicel Chemical Industries, Ltd., and the like.
Examples of the alicyclic epoxy compound include Celoxide 2021P, Celoxide 2081, Epolide GT-301, Epolide GT-401 (manufactured by Daicel Chemical Industries, Ltd.), EHPE (manufactured by Daicel Chemical Industries, Ltd.), phenol novolac. Examples thereof include polycyclohexyl epoxy methyl ether of resin.
A glycidyl compound having a normal epoxy group having no alicyclic structure in the molecule can also be used without problems in the present invention.
 本発明に使用できるオキセタン化合物としては、特開2001-220526号、同2001-310937号、同2003-341217号の各公報に記載される如き、公知のオキセタン化合物を使用でき、多価のオキセタン化合物が好ましい。
 オキセタン化合物は上市されており、例えば、OX-SQ、PNOX-1009(以上、東亞合成(株)製)が例示できる。
As the oxetane compound that can be used in the present invention, known oxetane compounds such as those described in JP-A Nos. 2001-220526, 2001-310937, and 2003-341217 can be used, and polyvalent oxetane compounds can be used. Is preferred.
Oxetane compounds are commercially available, and examples thereof include OX-SQ and PNOX-1009 (above, manufactured by Toagosei Co., Ltd.).
〔開環反応を生じさせる化合物〕
 上記のエポキシ化合物、オキセタン化合物のような開環化合物との反応により、開環反応を起こす化合物(開環反応を生じさせる化合物)としては、アミン化合物、アルコール化合物が挙げられる。
 アミン化合物としては、アミノ基を2以上有するポリアミン化合物が好ましく、ポリアミン化合物としては、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシリレンジアミン(MXDA)、イソホロンジアミン(IPDA)、1,3-ビスアミノメチルシクロヘキサン(1,3BAC)、ジアミノジフェニルメタン(MDZ)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)、ジシアンジアミド(DlCY)等が挙げられる。
[Compound causing ring-opening reaction]
Examples of the compound that causes a ring-opening reaction by reacting with a ring-opening compound such as the above epoxy compound or oxetane compound (a compound that causes a ring-opening reaction) include an amine compound and an alcohol compound.
As the amine compound, a polyamine compound having two or more amino groups is preferable, and as the polyamine compound, diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylenediamine (MXDA), isophoronediamine (IPDA), 1, 3 -Bisaminomethylcyclohexane (1,3BAC), diaminodiphenylmethane (MDZ), m-phenylenediamine (MPDA), diaminodiphenylsulfone (DDS), dicyandiamide (DlCY) and the like.
 アルコール化合物としては、水酸基を2以上有するポリアルコール(ポリオール)が好ましく、ポリオールとしては、重量平均分子量200~100,000のものが広く使用され、ポリエーテルポリオール、ポリエステルポリオール、その他のポリオールに区分される。
 ポリエーテルポリオールとしては、ポリプロピレングリコール(PPG)、ポリテトラメチレングリコール(PTMG)、及びポリマーポリオール(PPG中でアクリルニトリル/スチレンを重合させたもの)、ポリエーテルポリアミン等の変性体等が挙げられる。
 ポリエステルポリオールとしては、縮合系ポリエステルポリオール、ラクトン系ポリエステルポリオール、ポリカーボネートポリオール等が挙げられる。縮合系ポリエステルポリオールとしては二塩基酸(主としてアジピン酸)とグリコール(エチレングリコール、1,4-ブタンジオール)やトリオール(トリメチロールプロパン)との縮合脱水反応物等が挙げられる。
 その他のポリオールとしては、ポリブタジエンポリオール(末端に水酸基を有するブタジエン及び共重合体)、アクリルポリオール(アクリル共重合体に水酸基を導入したポリオール)、部分鹸化EVA(エチレン-酢酸ビニル共重合体)がある。その他フェノール系ポリオール、難燃ポリオールとしての含燐ポリオールとハロゲン含有ポリオール、フッ素ポリオール、PET樹脂廃物やDMT残渣から製造される低コストポリエステルポリオール等が挙げられる。
As the alcohol compound, a polyalcohol (polyol) having two or more hydroxyl groups is preferable. As the polyol, those having a weight average molecular weight of 200 to 100,000 are widely used and classified into polyether polyols, polyester polyols, and other polyols. The
Examples of polyether polyols include polypropylene glycol (PPG), polytetramethylene glycol (PTMG), polymer polyol (polymerized with acrylonitrile / styrene in PPG), and modified products such as polyether polyamine.
Examples of the polyester polyol include condensed polyester polyol, lactone polyester polyol, and polycarbonate polyol. Examples of the condensed polyester polyol include a condensation dehydration reaction product of dibasic acid (mainly adipic acid) and glycol (ethylene glycol, 1,4-butanediol) or triol (trimethylolpropane).
Examples of other polyols include polybutadiene polyol (butadiene and copolymer having a hydroxyl group at the terminal), acrylic polyol (polyol having a hydroxyl group introduced into an acrylic copolymer), and partially saponified EVA (ethylene-vinyl acetate copolymer). . Other examples include phenolic polyols, phosphorus-containing polyols and halogen-containing polyols as flame retardant polyols, fluorine polyols, PET resin wastes and low-cost polyester polyols produced from DMT residues.
(2)イソシアネート化合物とアミン化合物及び/又はアルコール化合物とのような重縮合可能な化合物の組合せ
 エポキシ化合物、オキセタン化合物のような開環化合物とアミン化合物、アルコール化合物のような上記開環化合物と反応させることにより、開環反応を起こす化合物の組合せ以外の、2液が混合した際に化学反応が進行して共有結合が生成する化合物の組合せとしては、イソシアネート化合物とアミン化合物及び/又はアルコール化合物とのような重縮合可能な化合物の組合せが挙げられる。
(2) Combinations of polycondensable compounds such as isocyanate compounds and amine compounds and / or alcohol compounds Ring-opening compounds such as epoxy compounds and oxetane compounds and reaction with the above ring-opening compounds such as amine compounds and alcohol compounds As a combination of compounds other than the combination of compounds that cause a ring-opening reaction, a chemical reaction proceeds and a covalent bond is generated when the two liquids are mixed, an isocyanate compound and an amine compound and / or an alcohol compound The combination of the compound which can be polycondensed like these is mentioned.
 イソシアネート化合物は、分子内にイソシアナト基を1つ以上有する化合物であり、イソシアナト基を2以上有する化合物であることが好ましい。
 イソシアネート化合物の具体例としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメリックMDI(MDI)、トリジンジイソシアネート(TODI)、ナフタリンジイソシアネート(NDI)、キシリレンジイソシアネート(XDI)、パラフェニレンジイソシアネート、水添XDI、水添MDI等の芳香族もしくは芳香族由来のポリイソシアネート;イソフォロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HMDI)等の脂肪族イソシアネート;その他リジンジイソシアネート(LDI)、テトラメチルキシレソジイソシアネート(TMXDI)等が挙げられる。
The isocyanate compound is a compound having one or more isocyanato groups in the molecule, and is preferably a compound having two or more isocyanato groups.
Specific examples of the isocyanate compound include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymeric MDI (MDI), tolidine diisocyanate (TODI), naphthalene diisocyanate (NDI), xylylene diisocyanate (XDI), paraphenylene diisocyanate, Aromatic or aromatic polyisocyanates such as hydrogenated XDI and hydrogenated MDI; Aliphatic isocyanates such as isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HMDI); Other lysine diisocyanates (LDI) and tetramethylxyresodiisocyanates (TMXDI) and the like.
 また、上記のイソシアネート化合物と重縮合可能な化合物の組合せとしては、例えば、アミン化合物、アルコール化合物等が挙げられ、それらの具体例としては、上記のポリアミン化合物、ポリオール化合物などが挙げられる。 Further, examples of the combination of the above-mentioned isocyanate compound and the compound capable of polycondensation include an amine compound and an alcohol compound, and specific examples thereof include the above-mentioned polyamine compound and polyol compound.
 A液及びB液は、上述した組合せの中から、適宜選択することができるが、これらの中でも、A液又はB液の一方を多価カチオン性化合物とし、他の一方を多価アニオン性化合物とする組合せが好ましい。A液を2以上の有機酸(塩)残基を有するポリマー化合物又は2以上のカチオン性残基(誘導可能基)を有するポリマー化合物とすることがより好ましい。また、B液を2以上のカチオン性残基(誘導可能基)を有する低分子量化合物又は2以上の有機酸(塩)残基を有する低分子量化合物とすることがより好ましい。 The A liquid and the B liquid can be appropriately selected from the combinations described above. Among these, one of the A liquid and the B liquid is a polyvalent cationic compound, and the other is a polyvalent anionic compound. The combination of is preferable. More preferably, the liquid A is a polymer compound having two or more organic acid (salt) residues or a polymer compound having two or more cationic residues (inducible groups). More preferably, the liquid B is a low molecular weight compound having two or more cationic residues (inducible groups) or a low molecular weight compound having two or more organic acid (salt) residues.
 多価アニオン化合物及び多価カチオン性化合物の好ましい含有量は、得られる三次元造形物の硬化性を付与することのできる範囲内で適宜選択することが好ましく、特に限定されないが、A液又はB液の全量に対して、0.01~50重量%であることが好ましく、0.1~30重量%であることがより好ましく、1~20重量%であることがさらに好ましい。多価アニオン性化合物および多価カチオン性化合物の含有量が上記の範囲内であると、インクジェットマーキングの安定性が高く、硬化性の良好な立体物が得られるため好ましい。 The preferable content of the polyvalent anion compound and the polyvalent cationic compound is preferably selected as long as the curability of the obtained three-dimensional structure can be imparted, and is not particularly limited. The amount is preferably 0.01 to 50% by weight, more preferably 0.1 to 30% by weight, and still more preferably 1 to 20% by weight with respect to the total amount of the liquid. It is preferable for the content of the polyvalent anionic compound and the polyvalent cationic compound to be in the above-mentioned range since the ink jet marking has high stability and a solid product having good curability can be obtained.
(添加剤)
 本発明において、A液及び/又はB液には、上記の成分以外に、着色剤、溶媒、湿潤剤、流動性増強剤等を添加することができる。
<着色剤>
 三次元造形物を着色する場合には、着色したA液及び/又はB液を使用することができる。
 フルカラーの三次元造形物を製造する場合には、A液を着色することが好ましい。着色されたA液としては、減色法の3原色である、イエロー(Y)、マゼンタ(M)、シアン(C)の3色の組合せとすることが好ましい。本発明において、イエローに着色されたA液を「イエローA液」、マゼンタに着色されたA液を「マゼンタA液」、シアンに着色されたA液を「シアンA液」という。M染料及びC染料は濃淡2種類に着色したA液としてもよい。無色のA液は、CMYの色濃度を調節するために使用することができる。また、チタンホワイト等の白色顔料を含むA液(白色A液)や黒(ブラック)染料で着色したA液(ブラックA液)を併用して所望の効果を発現させることができる。
 着色したA液、無色のA液及び白色A液の吐出総量は単位面積あたり、例えば1格子点当たり、又は隣接4格子点当たり、一定となるようにすることが好ましい。ただし、三次元造形物の外形を形成する輪郭格子点においては、これらのA液の総量を、内部格子点よりも増量することもできる。
 A液及び/又はB液に着色剤を添加することにより、着色した三次元造形物を製造可能であり、特に、A液に着色剤を添加することにより、所望の着色パターンを有するフルカラーの三次元造形物を製造することができる。
 本発明において使用できる着色剤は染料と顔料に大別され、染料を好ましく使用することができる。なお、着色剤としては、本明細書に記載の化合物に限定されるものではなく、A液に溶解性を示す染料や、顔料であれば、どのような着色剤でも使用することができる。
(Additive)
In the present invention, a coloring agent, a solvent, a wetting agent, a fluidity enhancing agent, and the like can be added to the liquid A and / or liquid B in addition to the above components.
<Colorant>
When coloring a three-dimensional structure, colored A liquid and / or B liquid can be used.
When manufacturing a full-color three-dimensional structure, it is preferable to color A liquid. The colored liquid A is preferably a combination of the three primary colors of yellow (Y), magenta (M), and cyan (C), which are the three primary colors of the subtractive color method. In the present invention, the liquid A colored yellow is referred to as “yellow liquid A”, the liquid A colored magenta is referred to as “magenta liquid A”, and the liquid A colored cyan is referred to as “cyan liquid A”. The M dye and the C dye may be liquid A colored in two shades. The colorless A liquid can be used to adjust the color density of CMY. Moreover, A liquid (white A liquid) containing white pigments, such as titanium white, and A liquid (black A liquid) colored with black (black) dye can be used together, and a desired effect can be expressed.
The total discharge amount of the colored A liquid, colorless A liquid, and white A liquid is preferably constant per unit area, for example, per grid point or per adjacent 4 grid points. However, the total amount of these A liquids can also be increased more than an internal lattice point in the contour lattice point which forms the external shape of a three-dimensional structure.
A colored three-dimensional structure can be produced by adding a colorant to the A liquid and / or the B liquid, and in particular, a full-color tertiary having a desired coloring pattern by adding the colorant to the A liquid. An original model can be manufactured.
Colorants that can be used in the present invention are broadly classified into dyes and pigments, and dyes can be preferably used. In addition, as a coloring agent, it is not limited to the compound as described in this specification, What kind of coloring agent can be used if it is a dye and a pigment which show solubility to A liquid.
〔染料〕
 染料としては、減色法の3原色であるイエロー(Y)、マゼンタ(M)及びシアン(C)の染料を使用することにより、広い範囲の色相を異なる彩度で再現することができる。本発明において、カラー写真のカラープリントに利用される染料を使用することが好ましい。以下に詳しく述べる。
〔dye〕
By using dyes of yellow (Y), magenta (M) and cyan (C), which are the three primary colors of the subtractive color method, a wide range of hues can be reproduced with different saturations. In this invention, it is preferable to use the dye utilized for the color print of a color photograph. Details are described below.
 イエロー染料としては、米国特許3,933,501号、同4,022,620号、同4,326,024号、同4,401,752号、同4,248,961号、特公昭58-10739号、英国特許1,425,020号、同1,476,760号、米国特許3,973,968号、同4,314,023号、同4,511,649号、欧州特許249,473A号、同502,424A号の式(I),(II)で表されるカプラー、同513,496A号の式(1),(2)で表されるカプラー(特に18頁のY-28)、同568,037A号のクレーム1の式(I)で表されるカプラー、米国特許5,066,576号のカラム1の45~55行の一般式(I)で表されるカプラー、特開平4-274425号の段落0008の一般式(I)で表されるカプラー、欧州特許498,381A1号の40頁のクレーム1に記載のカプラー(特に18頁のD-35)、同447,969A1号の4頁の式(Y)で表されるカプラー(特に、Y-1(17頁),Y-54(41頁))、米国特許4,476,219号のカラム7の36~58行の式(II)~(IV)で表されるカプラー(特にII-17,19(カラム17),II-24(カラム19))から得られるケトイミン型染料が挙げられる。好ましくは、特開2001-294773号公報、特開2002-121414号公報、特開2002-105370号公報、特開2003-26974号公報、特開2003-73598号公報に記載の染料が挙げられ、中でも特開2003-73598号公報に記載の一般式(Y-II)で表されるピラゾール化合物がより好ましく用いられ、以下に示すY-1が例示できる。 As yellow dyes, U.S. Pat. Nos. 3,933,501, 4,022,620, 4,326,024, 4,401,752, 4,248,961, JP-B 58- 10739, British Patents 1,425,020, 1,476,760, U.S. Patents 3,973,968, 4,314,023, 4,511,649, European Patent 249,473A Couplers represented by formulas (I) and (II) of No. 502,424A, and couplers represented by formulas (1) and (2) of No. 513,496A (particularly Y-28 on page 18). A coupler represented by formula (I) in claim 1 of US Pat. No. 568,037A, a coupler represented by general formula (I) in lines 45 to 55 of column 1 of US Pat. No. 5,066,576, One of the paragraphs 0008 of 4-274425 A coupler represented by formula (I), a coupler described in claim 1 on page 40 of European Patent 498,381A1 (particularly D-35 on page 18), and a formula (Y) on page 4 of 447,969A1. Couplers represented (especially Y-1 (page 17), Y-54 (page 41)), US Pat. No. 4,476,219, column 7, lines 36 to 58, formulas (II) to (IV) And ketimine type dyes obtained from the couplers represented (particularly II-17, 19 (column 17), II-24 (column 19)). Preferred examples include the dyes described in JP-A Nos. 2001-294773, 2002-121414, 2002-105370, 2003-26974, and 2003-73598. Of these, pyrazole compounds represented by the general formula (Y-II) described in JP-A-2003-73598 are more preferably used, and Y-1 shown below can be exemplified.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 マゼンタ染料としては、特開2001-181549号公報、特開2002-121414号公報、特開2002-105370号公報、特開2003-12981号公報、特開2003-26974号公報に記載の染料が挙げられる。
 中でも特開2002-121414号公報に記載の一般式(III)で表されるピラゾロトリアゾールアゾメチン化合物が好ましく用いられ、以下に示すM-1及びM-6が例示できる。
Examples of the magenta dye include dyes described in JP-A Nos. 2001-181549, 2002-121414, 2002-105370, 2003-12981, and 2003-26974. It is done.
Among these, pyrazolotriazole azomethine compounds represented by the general formula (III) described in JP-A No. 2002-121414 are preferably used, and M-1 and M-6 shown below can be exemplified.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 シアン染料としては、特開2002-121414号公報、特開2002-105370号公報、特開2003-3109号公報、特開2003-26974号公報に記載の染料が挙げられる。
 特開2002-121414号公報に記載の一般式(IV-1a)で表されるピロロトリアゾールアゾメチン化合物並びに一般式(C-II-1)及び(C-II-2)で表されるフタロシアニン化合物が好ましく用いられ、以下に示すC-1、C-101及びC-105が例示できる。
Examples of the cyan dye include dyes described in JP-A Nos. 2002-121414, 2002-105370, 2003-3109, and 2003-26974.
A pyrrolotriazole azomethine compound represented by the general formula (IV-1a) and a phthalocyanine compound represented by the general formulas (C-II-1) and (C-II-2) described in JP-A No. 2002-121414 are disclosed. C-1, C-101 and C-105 shown below are preferably used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 必要に応じて、CMY3原色に黒(ブラック)染料を併用してもよい。黒染料はCMY3染料を混合して作ることもできる。 If necessary, a black (black) dye may be used in combination with the three primary colors of CMY. The black dye can also be made by mixing CMY3 dye.
 上記以外の染料としては、印刷の技術分野(例えば印刷インキ、感熱インクジェット記録、静電写真記録等のコピー用色材又は色校正版など)で一般に用いられるものを使用することができる。
 例えば、有機合成化学協会編「染料便覧」丸善(株)(1970年刊)、安部田貞治、今田邦彦「解説 染料化学」(株)色染社(1988年刊)、大河原信編「色素ハンドブック」(株)講談社(1986年刊)、インクジェットプリンタ用ケミカルス-材料の開発動向・展望調査-」(株)シーエムシー(1997年刊)、甘利武司「インクジェットプリンタ-技術と材料」等に記載の染料類が挙げられる。
As dyes other than those described above, those generally used in the technical field of printing (for example, color materials for copying or color proofing plates such as printing ink, thermal ink jet recording, and electrophotographic recording) can be used.
For example, “Organization of Organic Synthetic Chemistry” “Dye Handbook” Maruzen Co., Ltd. (published in 1970), Sadaharu Abeda, Kunihiko Imada “Commentary Dye Chemistry” Co., Ltd. ) Kodansha (published in 1986), Chemicals for Inkjet Printers-Materials Development Trends and Prospects Survey-"CMC Co., Ltd. (1997), Takeshi Amari" Inkjet Printers-Technology and Materials ", etc. .
〔顔料〕
 顔料としては、特に限定されるものではなく、一般に市販されているすべての有機顔料及び無機顔料、又は、顔料を、分散媒として不溶性の樹脂等に分散させたもの、あるいは顔料表面に樹脂をグラフト化したもの等を用いることができる。また、樹脂粒子を染料で染色したもの等も用いることができる。
[Pigment]
The pigment is not particularly limited, and all commercially available organic pigments and inorganic pigments, or pigments dispersed in an insoluble resin or the like as a dispersion medium, or a resin grafted on the pigment surface. Can be used. Moreover, what dye | stained the resin particle with dye can be used.
 本発明おいて造形物の外表面に彩色するためには、断面形状の輪郭に上記のYMCA液による着色画像を形成し、この着色画像の直下に白色反射層を設けることが好ましい。白色反射層は、例えばカラープリントにおける下地に相当する役割を有し、白色顔料を含むA液(白色A液)を着画像のすぐ内側に使用することが好ましい。
 白色顔料の具体例としては、塩基性炭酸鉛(2PbCO3Pb(OH)2、いわゆる、シルバーホワイト)、酸化亜鉛(ZnO、いわゆる、ジンクホワイト)、酸化チタン(TiO2、いわゆる、チタンホワイト)、チタン酸ストロンチウム(SrTiO3、いわゆる、チタンストロンチウムホワイト)などが利用可能である。
In order to color the outer surface of the modeled object in the present invention, it is preferable to form a colored image by the YMCA liquid on the contour of the cross-sectional shape and to provide a white reflective layer directly under the colored image. The white reflective layer has a role corresponding to, for example, a base in color printing, and it is preferable to use liquid A containing white pigment (white liquid A) immediately inside the wearing image.
Specific examples of the white pigment include basic lead carbonate (2PbCO 3 Pb (OH) 2 , so-called silver white), zinc oxide (ZnO, so-called zinc white), titanium oxide (TiO 2 , so-called titanium white), Strontium titanate (SrTiO 3 , so-called titanium strontium white) or the like can be used.
 ここで、酸化チタンは他の白色顔料と比べて比重が小さく、屈折率が大きく、化学的、物理的にも安定であるため、顔料としての隠蔽力や着色力が大きく、さらに、酸やアルカリ、その他の環境に対する耐久性にも優れている。したがって、白色顔料としては酸化チタンを利用することが好ましい。もちろん、B液やA液の種類に応じて他の白色顔料(列挙した白色顔料以外であってもよい。)を使用してもよい。 Here, titanium oxide has a smaller specific gravity than other white pigments, a large refractive index, and is chemically and physically stable. Therefore, it has a high hiding power and coloring power as a pigment, and further, acid and alkali. Excellent durability against other environments. Therefore, it is preferable to use titanium oxide as the white pigment. Of course, other white pigments (may be other than the listed white pigments) may be used depending on the types of the B liquid and the A liquid.
 本発明において着色剤として、上述のCMY染料に替えてCMY顔料を使用することもできる。
 有機顔料及び無機顔料の具体例としては、例えば、イエロー色を呈するものとして、C.I.ピグメントイエロー1(ファストイエローG等),C.I.ピグメントイエロー74の如きモノアゾ顔料、C.I.ピグメントイエロー12(ジスアジイエローAAA等),C.I.ピグメントイエロー17の如きジスアゾ顔料、C.I.ピグメントイエロー180の如き非ベンジジン系のアゾ顔料、C.I.ピグメントイエロー100(タートラジンイエローレーキ等)の如きアゾレーキ顔料、C.I.ピグメントイエロー95(縮合アゾイエローGR等)の如き縮合アゾ顔料、C.I.ピグメントイエロー115(キノリンイエローレーキ等)の如き酸性染料レーキ顔料、C.I.ピグメントイエロー18(チオフラビンレーキ等)の如き塩基性染料レーキ顔料、フラバントロンイエロー(Y-24)の如きアントラキノン系顔料、イソインドリノンイエロー3RLT(Y-110)の如きイソインドリノン顔料、キノフタロンイエロー(Y-138)の如きキノフタロン顔料、イソインドリンイエロー(Y-139)の如きイソインドリン顔料、C.I.ピグメントイエロー153(ニッケルニトロソイエロー等)の如きニトロソ顔料、C.I.ピグメントイエロー117(銅アゾメチンイエロー等)の如き金属錯塩アゾメチン顔料等が挙げられる。
In the present invention, a CMY pigment can be used as a colorant in place of the above-described CMY dye.
Specific examples of organic pigments and inorganic pigments include, for example, C.I. I. Pigment Yellow 1 (Fast Yellow G etc.), C.I. I. A monoazo pigment such as C.I. Pigment Yellow 74; I. Pigment Yellow 12 (disaji yellow AAA, etc.), C.I. I. Disazo pigments such as C.I. Pigment Yellow 17; I. Non-benzidine type azo pigments such as CI Pigment Yellow 180; I. Azo lake pigments such as C.I. Pigment Yellow 100 (eg Tartrazine Yellow Lake); I. Condensed azo pigments such as CI Pigment Yellow 95 (Condensed Azo Yellow GR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Yellow 115 (such as quinoline yellow lake); I. Basic dye lake pigments such as CI Pigment Yellow 18 (Thioflavin Lake, etc.), anthraquinone pigments such as Flavantron Yellow (Y-24), isoindolinone pigments such as Isoindolinone Yellow 3RLT (Y-110), and quinophthalone yellow Quinophthalone pigments such as (Y-138), isoindoline pigments such as isoindoline yellow (Y-139), C.I. I. Nitroso pigments such as C.I. Pigment Yellow 153 (nickel nitroso yellow, etc.); I. And metal complex salt azomethine pigments such as CI Pigment Yellow 117 (copper azomethine yellow, etc.).
 マゼンタ色を呈するものとして、C.I.ピグメントレッド3(トルイジンレッド等)の如きモノアゾ系顔料、C.I.ピグメントレッド38(ピラゾロンレッドB等)の如きジスアゾ顔料、C.I.ピグメントレッド53:1(レーキレッドC等)やC.I.ピグメントレッド57:1(ブリリアントカーミン6B)の如きアゾレーキ顔料、C.I.ピグメントレッド144(縮合アゾレッドBR等)の如き縮合アゾ顔料、C.I.ピグメントレッド174(フロキシンBレーキ等)の如き酸性染料レーキ顔料、C.I.ピグメントレッド81(ローダミン6G’レーキ等)の如き塩基性染料レーキ顔料、C.I.ピグメントレッド177(ジアントラキノニルレッド等)の如きアントラキノン系顔料、C.I.ピグメントレッド88(チオインジゴボルドー等)の如きチオインジゴ顔料、C.I.ピグメントレッド194(ペリノンレッド等)の如きペリノン顔料、C.I.ピグメントレッド149(ペリレンスカーレット等)の如きペリレン顔料、C.I.ピグメントレッド122(キナクリドンマゼンタ等)の如きキナクリドン顔料、C.I.ピグメントレッド180(イソインドリノンレッド2BLT等)の如きイソインドリノン顔料、C.I.ピグメントレッド83(マダーレーキ等)の如きアリザリンレーキ顔料等が挙げられる。 As a magenta color, C.I. I. Monoazo pigments such as CI Pigment Red 3 (Toluidine Red, etc.); I. Disazo pigments such as C.I. Pigment Red 38 (Pyrazolone Red B, etc.); I. Pigment Red 53: 1 (Lake Red C, etc.) and C.I. I. Azo lake pigments such as C.I. Pigment Red 57: 1 (Brilliant Carmine 6B); I. Condensed azo pigments such as C.I. Pigment Red 144 (condensed azo red BR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Red 174 (Phloxine B Lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Red 81 (Rhodamine 6G 'lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Red 177 (eg, dianthraquinonyl red); I. Thioindigo pigments such as C.I. Pigment Red 88 (Thioindigo Bordeaux, etc.); I. Perinone pigments such as C.I. Pigment Red 194 (perinone red, etc.); I. Perylene pigments such as C.I. Pigment Red 149 (perylene scarlet, etc.); I. Quinacridone pigments such as CI Pigment Red 122 (quinacridone magenta, etc.); I. Isoindolinone pigments such as CI Pigment Red 180 (isoindolinone red 2BLT, etc.); I. And alizarin lake pigments such as CI Pigment Red 83 (Mada Lake, etc.).
 シアン色を呈する顔料として、C.I.ピグメントブルー25(ジアニシジンブルー等)の如きジスアゾ系顔料、C.I.ピグメントブルー15(フタロシアニンブルー等)の如きフタロシアニン顔料、C.I.ピグメントブルー24(ピーコックブルーレーキ等)の如き酸性染料レーキ顔料、C.I.ピグメントブルー1(ビクトリアピュアブルーBOレーキ等)の如き塩基性染料レーキ顔料、C.I.ピグメントブルー60(インダントロンブルー等)の如きアントラキノン系顔料、C.I.ピグメントブルー18(アルカリブルーV-5:1)の如きアルカリブルー顔料等が挙げられる。 C. As a pigment exhibiting a cyan color, C.I. I. Disazo pigments such as C.I. Pigment Blue 25 (Dianisidine Blue, etc.); I. Phthalocyanine pigments such as C.I. Pigment Blue 15 (phthalocyanine blue, etc.); I. Acidic dye lake pigments such as C.I. Pigment Blue 24 (Peacock Blue Lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Blue 1 (Victoria Pure Blue BO Lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Blue 60 (Indantron Blue, etc.); I. And alkali blue pigments such as CI Pigment Blue 18 (Alkali Blue V-5: 1).
 上記顔料の平均粒径は、0.001~100μmであることが好ましく、0.01~50μmであることがより好ましく、0.1~10μmであることがさらに好ましい。顔料の平均粒径が、上記の数値の範囲内であると、顔料の分散安定性が良好であり、色鮮やかな立体物が得られるため好ましい。 The average particle diameter of the pigment is preferably 0.001 to 100 μm, more preferably 0.01 to 50 μm, and further preferably 0.1 to 10 μm. It is preferable that the average particle diameter of the pigment is within the above numerical range because the dispersion stability of the pigment is good and a colorful three-dimensional product is obtained.
 上記着色剤の含有量は、得られる三次元造形物に所望の彩色を付与することができる範囲で適宜選択することが好ましく、特に限定されないが、A液又はB液(好ましくはA液)の溶媒を除いた全固形分に対して、0.01~50重量%であることが好ましく、0.1~30重量%であることがより好ましく、1~20重量%であることがさらに好ましい。着色剤の含有量が上記の数値の範囲内であると、インクジェットマーキングの安定性が高く、色鮮やかな立体物が得られるため好ましい。 The content of the colorant is preferably selected as long as a desired coloring can be imparted to the three-dimensional structure to be obtained, and is not particularly limited. However, the liquid A or liquid B (preferably liquid A) is used. The total solid content excluding the solvent is preferably 0.01 to 50% by weight, more preferably 0.1 to 30% by weight, and even more preferably 1 to 20% by weight. It is preferable for the content of the colorant to be within the above numerical value range because the stability of inkjet marking is high and a colorful three-dimensional object is obtained.
<溶媒>
 本発明において、A液及び/又はB液には、溶媒を添加することが好ましい。
 前記溶媒は、A液及びB液にそれぞれ含有され、混合することにより固体を形成可能な成分を溶解する溶媒であることが好ましいが、前記固体を形成可能な成分を分散可能な溶媒であってもよく、特に限定されない。また、溶媒は1種を単独で使用することもできるし、2種以上の溶媒を併用してもよい。
<Solvent>
In the present invention, it is preferable to add a solvent to the liquid A and / or liquid B.
The solvent is preferably a solvent that is contained in each of the liquid A and the liquid B and dissolves a component that can form a solid by mixing, but is a solvent that can disperse the component that can form the solid. There is no particular limitation. Moreover, a solvent can also be used individually by 1 type and may use 2 or more types of solvents together.
 前記溶媒は、固体を形成可能な成分や、添加する着色剤等に応じて適宜選択することができる。
 好ましくは、水又は親水性有機化合物であり、親水性有機化合物としてはメタノール、エタノール、プロパノール等の単価アルコール、エチレングリコール、ジエチレングリコール及びプロピレングリコール等の多価アルコール等が挙げられる。
 溶媒として最も好ましくは水である。
 特に、固体を形成可能な成分として多価カチオン性化合物及び多価アニオン性化合物の組合せを使用する場合には、水又は親水性有機化合物を使用することが好ましく、水を使用することがより好ましい。また、固体を形成可能な成分として、多価カチオン性化合物及び多価アニオン性化合物の組み合わせを使用する場合には、多価カチオン性化合物及び/又は多価アニオン性化合物、並びに、着色剤等のその他の添加剤を含めた、三次元造形物を構成する全成分の含有量が、A液又はB液に対して、好ましくは0.01~50重量%、より好ましくは0.1~40重量%、さらに好ましくは1~30重量%となるように、溶媒を添加することが好ましい。
The said solvent can be suitably selected according to the component which can form solid, the coloring agent to add, etc.
Preferably, it is water or a hydrophilic organic compound, and examples of the hydrophilic organic compound include monohydric alcohols such as methanol, ethanol and propanol, polyhydric alcohols such as ethylene glycol, diethylene glycol and propylene glycol.
Most preferably, the solvent is water.
In particular, when a combination of a polyvalent cationic compound and a polyvalent anionic compound is used as a component capable of forming a solid, it is preferable to use water or a hydrophilic organic compound, and it is more preferable to use water. . In addition, when a combination of a polyvalent cationic compound and a polyvalent anionic compound is used as a component capable of forming a solid, a polyvalent cationic compound and / or a polyvalent anionic compound, and a colorant, etc. The content of all components constituting the three-dimensional structure including other additives is preferably 0.01 to 50% by weight, more preferably 0.1 to 40% by weight with respect to the liquid A or liquid B. %, More preferably 1 to 30% by weight.
 A液が含有する溶媒とB液が含有する溶媒とは、互いに相溶性があることが好ましい。すなわち、A液が含有する溶媒とB液が含有する溶媒とを混合したとき、分離することなく、一相を形成する溶媒の組み合わせを使用することが好ましい。これにより、A液とB液の混合がより速やかに行われ、固体の形成が速やかであるので好ましい。 It is preferable that the solvent contained in the liquid A and the solvent contained in the liquid B are compatible with each other. That is, when the solvent contained in the liquid A and the solvent contained in the liquid B are mixed, it is preferable to use a combination of solvents that form a single phase without separation. Thereby, mixing of A liquid and B liquid is performed more rapidly, and since solid formation is quick, it is preferable.
<湿潤剤>
 本発明において、A液及び/又はB液に湿潤剤を添加することも好ましい。B液に湿潤剤を添加する場合には、B液層の表面からの溶媒の蒸発を遅らせることができ、より精細な三次元造形物を製造可能であるので好ましい。また、A液に湿潤剤を添加する場合には、A液を滴下するノズルの乾燥/目詰まりを防止することができるので好ましい。
 具体的には、グリセロールは、溶媒が水性の場合に特に好ましい湿潤剤として例示できる。また、湿潤剤として他の多価アルコールが例示でき、他の多価アルコールとしては、エチレングリコール、ジエチレングリコール及びプロピレングリコールが挙げられ、これらもまた蒸発を遅らせることが当技術分野で公知であるが、これらに限定されない。別の湿潤剤には、チオジエタノール、n-メチルピロリジノン及びジメチルヒダントインが挙げられる。
<Wetting agent>
In the present invention, it is also preferable to add a wetting agent to the liquid A and / or liquid B. When a wetting agent is added to the B liquid, it is preferable because evaporation of the solvent from the surface of the B liquid layer can be delayed and a finer three-dimensional structure can be manufactured. Further, it is preferable to add a wetting agent to the liquid A because drying / clogging of the nozzle for dropping the liquid A can be prevented.
Specifically, glycerol can be exemplified as a particularly preferable wetting agent when the solvent is aqueous. In addition, other polyhydric alcohols can be exemplified as the wetting agent, and other polyhydric alcohols include ethylene glycol, diethylene glycol and propylene glycol, which are also known in the art to retard evaporation, It is not limited to these. Other wetting agents include thiodiethanol, n-methylpyrrolidinone and dimethylhydantoin.
<流動性増強剤>
 本発明において、A液及び/又はB液は流動性増強剤を含有してもよい。
 流動性増強剤は、湿潤剤としての特性を幾分か有するが、主に液体の流体力学的特性又は湿潤特性を変化させて、インクジェットプリントヘッド等のノズルが噴射する液体の容積を最大化するよう作用する。流動性の増強は、液体の流量を増加させる粘弾性現象であると考えられる。これにより厚い層を形成でき、三次元造形物の製作をより迅速に行うことができる。ジェットの液体とノズルの内壁との間の摩擦を低減するか、又は、液体の粘度を低下させるか、のいずれかにより液体の流動性を増大させる特定の化合物には、エチレングリコールジアセテート及び硫酸カリウムアルミニウムが挙げられる。
 流動性増強剤として用いられる他の適切な化合物は、以下のリストから選択することができるが、これに限定されない。すなわち、テトラエチレングリコールジメチルエーテル、イソプロピルアルコール、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、ドデシルジメチルアンモニオプロパンスルホネート、グリセロールトリアセテート、アセト酢酸エチル、並びに、約30,000の分子量を有するポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸及びポリアクリル酸ナトリウムを含む水溶性ポリマーから選択できる。ポリアクリル酸ナトリウムのようなイオン性ポリマーでは、流動性の増加はpHによって変動する。流動性を増加させるのに使用できる塩には、硫酸カリウム、硫酸カリウムアルミニウム、リン酸水素ナトリウム及びポリリン酸ナトリウムが挙げられる。
<Fluidity enhancer>
In the present invention, the liquid A and / or the liquid B may contain a fluidity enhancer.
Fluidity enhancers have some humectant properties, but mainly change the hydrodynamic or wetting properties of the liquid to maximize the volume of liquid ejected by nozzles such as inkjet printheads. It works like this. The enhancement of fluidity is considered to be a viscoelastic phenomenon that increases the flow rate of liquid. Thereby, a thick layer can be formed and a three-dimensional structure can be manufactured more quickly. Specific compounds that increase the fluidity of the liquid either by reducing the friction between the jet liquid and the nozzle inner wall or by reducing the viscosity of the liquid include ethylene glycol diacetate and sulfuric acid. An example is potassium aluminum.
Other suitable compounds used as flow enhancers can be selected from the following list, but are not limited thereto. Tetraethylene glycol dimethyl ether, isopropyl alcohol, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, dodecyldimethylammoniopropane sulfonate, glycerol triacetate, ethyl acetoacetate, and polyvinylpyrrolidone having a molecular weight of about 30,000, polyethylene glycol, poly It can be selected from water-soluble polymers including acrylic acid and sodium polyacrylate. For ionic polymers such as sodium polyacrylate, the increase in fluidity varies with pH. Salts that can be used to increase fluidity include potassium sulfate, potassium aluminum sulfate, sodium hydrogen phosphate and sodium polyphosphate.
(A液及びB液の性質)
 本発明において、A液を滴下によりB液に付与することが好ましく、A液の滴下は、微小液滴を吐出可能なノズルにより行われることがさらに好ましい。ここで、微小液滴とは、1ml以下の液滴をいう。A液の微小液滴は0.01pl~1mlであることが好ましく、より好ましくは0.1pl~100μlであり、さらに好ましくは1pl~10μlである。
 また、前記ノズルは、インクジェット記録ヘッド又はディスペンサであることが好ましく、インクジェット記録ヘッドであることが特に好ましい。ここで、ディスペンサとは、液体定量吐出装置であり、岩下エンジニアリング(株)、(株)つねみ、石川島汎用機サービス(株)等から上市されている。ディスペンサの方式としては、流量制御方式、加圧制御方式、流路制御方式、容積計量方式等が例示でき、特に限定されない。
 インクジェット記録ヘッドは、オンデマンド型のインクジェット記録ヘッドであることが好ましく、サーマル方式、ピエゾ方式、静電方式が例示できるが、本発明ではピエゾ方式のインクジェット記録ヘッドを特に好適に使用することができる。ピエゾ方式を使用することにより、インク吐出量の制御性に優れ、また、A液を加熱することなく吐出可能であるので好ましい。
(Properties of liquid A and liquid B)
In the present invention, it is preferable to add the A liquid to the B liquid by dropping, and it is more preferable that the dropping of the A liquid is performed by a nozzle capable of discharging a fine droplet. Here, the micro droplet refers to a droplet of 1 ml or less. The fine droplets of the liquid A are preferably 0.01 pl to 1 ml, more preferably 0.1 pl to 100 μl, still more preferably 1 pl to 10 μl.
The nozzle is preferably an ink jet recording head or a dispenser, and particularly preferably an ink jet recording head. Here, the dispenser is a liquid dispensing device, and is marketed by Iwashita Engineering Co., Ltd., Tsunami, Ishikawajima General-Purpose Machine Service Co., Ltd., etc. Examples of the dispenser method include a flow rate control method, a pressurization control method, a flow path control method, and a volume measurement method, and are not particularly limited.
The ink jet recording head is preferably an on-demand type ink jet recording head, and examples thereof include a thermal method, a piezo method, and an electrostatic method. However, in the present invention, a piezo ink jet recording head can be particularly preferably used. . Use of the piezo method is preferable because the ink discharge amount is excellent in controllability and the liquid A can be discharged without heating.
 すなわち、A液をB液の層に付与する工程は、A液をインクジェットによりB液の層に吐出する工程であることが好ましい。このような使用態様における好ましい物性について説明する。
 本発明において、A液をインクジェットで吐出する場合には、吐出性を考慮し、吐出時の温度(例えば、20~80℃、好ましくは25~50℃)において、粘度が、好ましくは7~30mPa・sであり、より好ましくは7~25mPa・sである。例えば、A液の室温(25~30℃)での粘度は、好ましくは35~500mPa・s、より好ましくは35~200mPa・sである。
 また、本発明において、A液の30℃における表面張力は、好ましくは20~30mN/m、より好ましくは23~28mN/mである。
That is, the step of applying the A liquid to the B liquid layer is preferably a process of discharging the A liquid onto the B liquid layer by inkjet. The preferable physical property in such a use aspect is demonstrated.
In the present invention, when the liquid A is ejected by inkjet, the viscosity is preferably 7 to 30 mPa at the temperature at the time of ejection (for example, 20 to 80 ° C., preferably 25 to 50 ° C.) in consideration of the ejectability. · S, more preferably 7 to 25 mPa · s. For example, the viscosity of the liquid A at room temperature (25 to 30 ° C.) is preferably 35 to 500 mPa · s, more preferably 35 to 200 mPa · s.
In the present invention, the surface tension of the solution A at 30 ° C. is preferably 20 to 30 mN / m, more preferably 23 to 28 mN / m.
 B液は、底板又は製造された三次元造形物上に液層を形成可能な液体とすることが必要である。前記観点から、B液の三次元造形物の製造時における粘度は、2~100,000mPa・sであることが好ましく、3~1,000mPa・sであることがより好ましく、5~1,000mPa・sであることがさらに好ましい。
 なお、製造時の温度は特に限定されないが、三次元造形装置の製造の容易さや、作製時の経費の点から、15℃~50℃であることが好ましく、室温であることが特に好ましい。
The B liquid needs to be a liquid that can form a liquid layer on the bottom plate or the manufactured three-dimensional structure. From the above viewpoint, the viscosity of the liquid B during the production of the three-dimensional structure is preferably 2 to 100,000 mPa · s, more preferably 3 to 1,000 mPa · s, and more preferably 5 to 1,000 mPa · s. -More preferably, it is s.
The temperature at the time of production is not particularly limited, but it is preferably 15 ° C. to 50 ° C., particularly preferably room temperature, from the viewpoint of ease of production of the three-dimensional modeling apparatus and the cost of production.
(三次元造形用材料)
 本発明の三次元造形用材料は、上記A液及びB液を含む。本発明の三次元造形用材料は、上記A液及びB液からなる三次元造形用材料であることが好ましい。
 また、A液及び/又はB液を濃縮液とすることもできる。
 具体的には、使用の直前に希釈するように、三次元造形用装置を構成してもよく、また、予め希釈したA液及び/又はB液を使用してもよく、特に限定されない。なお、本明細書中において、A液やB液中の各成分の好ましい含有量が記載されている場合、該含有量は、使用時の含有量(濃度)を意味するものである。
(Three-dimensional modeling material)
The three-dimensional modeling material of the present invention includes the A liquid and the B liquid. The three-dimensional modeling material of the present invention is preferably a three-dimensional modeling material composed of the A liquid and the B liquid.
Moreover, A liquid and / or B liquid can also be made into a concentrated liquid.
Specifically, the three-dimensional modeling apparatus may be configured so as to be diluted immediately before use, or the A liquid and / or the B liquid diluted in advance may be used, and is not particularly limited. In addition, in this specification, when preferable content of each component in A liquid and B liquid is described, this content means content (concentration) at the time of use.
(三次元造形物の製造方法)
 本発明の三次元造形物の製造方法を、以下図面を参照しながら説明する。
 図1は、本発明の三次元造形物の製造方法の一例を示す概略構成断面図である。
 図1において、三次元造形装置1は、造形容器10を備え、造形容器10には、B液を供給するB液供給口30が設けられている。造形容器10内には、昇降自在な底板12が備えられている。B液を造形容器10内に供給して、底板12上にB液層を形成し、断面形状データにしたがって、A液付与部20のノズル21からA液がB液の薄層上に供給される。このA液付与領域は、A液とB液とが混合することにより固体を形成し、断面形状を形成するとともに、第2層目以降では、すくその下の断面形状とも結合する。A液の付与により、B液面と、底板又は三次元造形物と、の間のA液が付与されたB液の領域(A液付与領域)が固体となる。A液付与部20を水平方向に走査しながらA液を付与することにより、所定のパターンを有する断面形状が得られる。
 次に、底板12を1スライスピッチだけ下方に移動させ、移動分に応じて、新たにB液を供給し、B液層を形成する。新たに形成されたB液層の上に、A液付与部20のノズル21から、隣接する次の断面形状データにしたがって、A液が付与され、新たなA液付与領域が形成される。A液とB液とが混合することにより、この領域に固体が形成される。
(Method for manufacturing a three-dimensional structure)
The manufacturing method of the three-dimensional structure of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view illustrating an example of a method for producing a three-dimensional structure according to the present invention.
In FIG. 1, the three-dimensional modeling apparatus 1 includes a modeling container 10, and the modeling container 10 is provided with a B liquid supply port 30 that supplies a B liquid. In the modeling container 10, a bottom plate 12 that can be moved up and down is provided. B liquid is supplied into the modeling container 10, a B liquid layer is formed on the bottom plate 12, and A liquid is supplied onto the thin layer of B liquid from the nozzle 21 of the A liquid applying unit 20 according to the cross-sectional shape data. The The A liquid application region forms a solid by mixing the A liquid and the B liquid to form a cross-sectional shape, and is combined with the cross-sectional shape below the second layer after the second layer. By application of the A liquid, the B liquid area (A liquid application area) to which the A liquid is applied between the B liquid surface and the bottom plate or the three-dimensional structure becomes a solid. By applying the A liquid while scanning the A liquid applying unit 20 in the horizontal direction, a cross-sectional shape having a predetermined pattern is obtained.
Next, the bottom plate 12 is moved downward by one slice pitch, B liquid is newly supplied according to the amount of movement, and a B liquid layer is formed. On the newly formed B liquid layer, the A liquid is applied from the nozzle 21 of the A liquid applying unit 20 according to the next adjacent cross-sectional shape data, and a new A liquid applying area is formed. A solid is formed in this area | region by mixing A liquid and B liquid.
 スライスピッチ(積層ピッチ)は、好ましくは1~500μmであり、より好ましくは5~300μmであり、さらに好ましくは10~200μmである。
 また、付与するA液の液滴量は0.01pl~100μlであることが好ましく、より好ましくは0.1pl~10μlであり、さらに好ましくは1pl~1μlである、
 スライスピッチ及び液滴量が上記範囲内であると、強度が強く、高精細な三次元造形物を得ることができるので好ましい。
The slice pitch (lamination pitch) is preferably 1 to 500 μm, more preferably 5 to 300 μm, and still more preferably 10 to 200 μm.
Further, the droplet amount of the liquid A to be applied is preferably 0.01 pl to 100 μl, more preferably 0.1 pl to 10 μl, still more preferably 1 pl to 1 μl.
It is preferable that the slice pitch and the amount of droplets are within the above ranges because the strength is high and a high-definition three-dimensional structure can be obtained.
 B液の薄層の形成及びA液の付与を必要な回数順次繰り返した後、A液が付与されていない領域のB液を分離することにより、三次元造形物40を得ることができる。
 本発明の三次元造形物の製造方法では、従来の光造形法とは異なり、光を照射することなくA液の付与によって三次元造形物を製造することができる。したがって、三次元造形装置を安価に製造することができる。
 また、従来の光造形法では、不可能であった色再現性に優れる三次元造形物を製造することができる。具体的には、B液を無色透明又は白色、好ましくは無色透明とし、着色剤を含有するA液をB液に塗布する。複数のノズル21を備えるA液付与部20を使用し、各ノズルから異なる色彩を有するA液を付与することにより、所望の色彩を有する三次元造形物を製造可能である。
After the formation of the thin layer of the B liquid and the application of the A liquid are sequentially repeated as many times as necessary, the three-dimensional structure 40 can be obtained by separating the B liquid in the region where the A liquid is not applied.
In the three-dimensional structure manufacturing method of the present invention, unlike the conventional optical modeling method, the three-dimensional structure can be manufactured by applying the liquid A without irradiating light. Therefore, the three-dimensional modeling apparatus can be manufactured at a low cost.
In addition, it is possible to manufacture a three-dimensional structure that is excellent in color reproducibility, which is impossible with conventional stereolithography. Specifically, the liquid B is colorless and transparent or white, preferably colorless and transparent, and the liquid A containing a colorant is applied to the liquid B. A three-dimensional structure having a desired color can be manufactured by using the A liquid applying unit 20 including a plurality of nozzles 21 and applying the A liquid having different colors from each nozzle.
 従来の光造形方法では、造形容器に供給される樹脂液は光硬化性を有するため、三次元造形物を製造する間に硬化、増粘し、樹脂液の再利用ができないという問題があった。本発明では、B液を光硬化性とする必要がなく、B液はA液と混合することによって初めて硬化するものであり、A液付与領域以外のB液の劣化がほとんどない。したがって、三次元造形物を製造後、A液付与領域以外のB液を回収し、再利用することができる。
 なお、図2は、上記のような三次元造形物の製造において隣接する各層に形成された断面形状を模式的に示す斜視図である。
In the conventional optical modeling method, since the resin liquid supplied to the modeling container has photocurability, there is a problem that the resin liquid is hardened and thickened while the three-dimensional structure is manufactured, and the resin liquid cannot be reused. . In this invention, it is not necessary to make B liquid photocurable, B liquid hardens | cures only by mixing with A liquid, and there is almost no deterioration of B liquid other than A liquid provision area | region. Therefore, after manufacturing the three-dimensional structure, the liquid B other than the liquid A application area can be collected and reused.
FIG. 2 is a perspective view schematically showing the cross-sectional shape formed in each adjacent layer in the manufacture of the three-dimensional structure as described above.
 本発明の三次元造形物の製造方法における好ましい一実施態様について、以下に説明する。以下の5ステップは、B液層形成工程及び断面形状形成工程に先立って、3次元形状色彩データ作成工程及び断面毎の着色断面形状データ作成工程を実施するものである。 A preferred embodiment of the method for producing a three-dimensional structure of the present invention will be described below. In the following five steps, prior to the B liquid layer forming step and the cross-sectional shape forming step, a three-dimensional shape color data creating step and a colored cross-sectional shape data creating step for each cross-section are performed.
 第1ステップでは、コンピュータに、表面に着色模様等が施された三次元造形対象物を表現したモデルデータを作成させる。造形するための基になるモデルデータには、一般の3D-CADモデリングソフトウェアで作成されるカラー三次元モデルデータを使用することができる。また、三次元形状入力装置で計測された三次元着色形状のデータ及びテクスチャを利用することも可能である。 In the first step, the computer is made to create model data representing a three-dimensional modeling object having a colored pattern or the like on the surface. As the model data that becomes the basis for modeling, color three-dimensional model data created by general 3D-CAD modeling software can be used. It is also possible to use data and texture of the three-dimensional colored shape measured by the three-dimensional shape input device.
 第2ステップでは、コンピュータが上記のモデルデータから造形対象物を水平方向にスライスした各断面ごとの断面データを作成する。モデルデータから積層するB液の一層分の厚みに相当するピッチ(層厚t)でスライスされた断面体を切り出し、断面の存在する領域を示す形状データ及び彩色データを断面データとして作成する。なお、本発明において、「形状データ」及び「彩色データ」を併せて「着色(断面)形状データ」ともいう。
 続いて、造形対象物を造形する際におけるB液層の厚さ(断面データ作成の際のスライスピッチ)及び積層数(着色形状データのセット数)に関する情報が、コンピュータからパターン作成装置の駆動制御部に入力される。
In the second step, the computer creates cross-section data for each cross-section obtained by slicing the modeling object in the horizontal direction from the model data. A cross-sectional body sliced at a pitch (layer thickness t) corresponding to the thickness of one layer of the liquid B to be laminated is cut out from the model data, and shape data and coloring data indicating a cross-sectional area are created as cross-sectional data. In the present invention, “shape data” and “coloring data” are also collectively referred to as “colored (cross-sectional) shape data”.
Subsequently, information on the thickness of the B liquid layer (slice pitch at the time of creating cross-sectional data) and the number of layers (the number of sets of colored shape data) when modeling the modeling object are controlled from the computer to drive the pattern creation device. Is input to the department.
 第3ステップでは、造形ステージにおいて三次元造形物を製造する材料となるB液の供給を行う。
 第4ステップでは、駆動制御部の制御の下に、切断面の着色形状データに基づき着色した断面形状を形成する工程である。この工程は非接触の方式を採用することが好ましい。代表例としてインクジェット方式を例として、以下に説明する。
 第2ステップで作成された形状データ及び彩色データに基づき、格子状に細分化したCMY各色のビットマップ情報に変換して、インクジェットヘッドをXY平面内に移動させる。そして、移動中に彩色データに基づいて各インクジェット吐出ノズルからA液の吐出を適宜に行わせる。A液としては、少なくとも1種の着色されたA液、白色のA液、及び無色透明のA液よりなる群から選ばれた2種以上のA液を使用することが好ましい。
In the third step, the liquid B serving as a material for manufacturing the three-dimensional structure is supplied in the modeling stage.
The fourth step is a step of forming a colored cross-sectional shape based on the colored shape data of the cut surface under the control of the drive control unit. This process preferably employs a non-contact method. A typical example will be described below using an inkjet method as an example.
Based on the shape data and the color data created in the second step, the data is converted into bitmap information of each color of CMY subdivided into a grid, and the inkjet head is moved in the XY plane. Then, during the movement, the A liquid is appropriately discharged from each inkjet discharge nozzle based on the color data. As the liquid A, it is preferable to use two or more liquids A selected from the group consisting of at least one colored liquid A, a white liquid A, and a colorless and transparent liquid A.
 本発明において、造形物の最外層に位置する少なくとも1つの格子点に、造形物の内部に位置する格子点に付与するA液の1.05~5倍のA液を付与することも好ましい態様の1つである。付与するA液は1.1~2.5倍であることが好ましい。付与するA液の量を上記範囲内とすることにより、造形物の表面光沢度や強度が向上するので好ましい。
 造形物の最外層に位置する少なくとも1つの格子点とは、造形物の最下層断面形状全体の格子点、最上層の断面形状全体の格子点、及び最下層と最上層の中間に位置する途中層の断面形状の外部輪郭形状を構成する格子点(輪郭格子点)を含み、適宜、これらに隣接する1つ又は複数の格子点(隣接格子点)を含んでもよいことを意味する。この場合、輪郭格子点と隣接格子点とに必ずしも同程度に増量したA液を吐出する必要はない。適当な勾配を付けて吐出倍率を調節することができる。調節する場合にも輪郭格子点を最大倍率にする必要はなく、輪郭格子点にすぐ隣り合う隣接格子点の吐出倍率を最大にすることも可能である。
 図3は第2ステップで生成される格子状に細分化された断面データの一例を示す平面図である。図3において、斜線を付した格子がA液の吐出される領域である。このとき、造形物の最外層に位置する格子点の吐出倍率を高くしてもよい。途中の断面形状では外表面に相当する輪郭格子点に内部格子点よりも多量のA液を吐出させることが好ましい。輪郭格子点に隣接する数格子分の隣接格子点にまで吐出倍率を高くしてもよい。隣接する数格子とは、1~10格子分であることが好ましく、1~5格子分とすることがより好ましい。吐出倍率の調節は、1回の吐出量を変化すること、及び/又は、同じ格子点への吐出回数を多くすることにより、可能である。
In the present invention, it is also preferable that at least one lattice point located in the outermost layer of the modeled object is applied with A liquid 1.05 to 5 times the liquid A applied to the grid point positioned inside the modeled object. It is one of. The liquid A to be applied is preferably 1.1 to 2.5 times. It is preferable that the amount of the liquid A to be applied is within the above range because the surface glossiness and strength of the molded article are improved.
The at least one grid point located in the outermost layer of the modeled object is the grid point of the entire bottom layer cross-sectional shape of the modeled object, the grid point of the entire cross-sectional shape of the top layer, and the middle located between the bottom layer and the top layer It means that a grid point (contour grid point) constituting the outer contour shape of the cross-sectional shape of the layer may be included, and one or a plurality of grid points (adjacent grid points) adjacent to these may be included as appropriate. In this case, it is not always necessary to discharge the liquid A increased to the same degree at the contour grid points and the adjacent grid points. The discharge magnification can be adjusted with an appropriate gradient. Even in the case of adjustment, it is not necessary to set the contour grid point to the maximum magnification, and it is also possible to maximize the discharge magnification of the adjacent grid point immediately adjacent to the contour grid point.
FIG. 3 is a plan view showing an example of cross-sectional data subdivided into a grid generated in the second step. In FIG. 3, the hatched grid is the area where the A liquid is discharged. At this time, you may make high the discharge magnification of the lattice point located in the outermost layer of a molded article. In the middle cross-sectional shape, it is preferable to discharge a larger amount of liquid A to the contour lattice points corresponding to the outer surface than the internal lattice points. The discharge magnification may be increased up to adjacent grid points for several grids adjacent to the contour grid point. The adjacent number lattice is preferably 1 to 10 lattice portions, more preferably 1 to 5 lattice portions. The discharge magnification can be adjusted by changing the discharge amount at one time and / or increasing the number of discharges to the same grid point.
 着色されたA液としては、減色法の3原色である、イエロー(Y)、マゼンタ(M)、シアン(C)の3色の組合せとすることが好ましい。M染料及びC染料は濃淡2種類に着色したA液としてもよい。無色の結合剤は、CMYの色濃度を調節するために使用することができる。また、チタンホワイト等の白色顔料を含む結合剤(白色結合剤)や黒(ブラック)染料で着色した結合剤(ブラック結合剤)を併用して所望の効果を発現させることができる。
 着色したA液、無色のA液及び白色A液の吐出総量は単位面積あたり、例えば1格子点当たり、又は隣接4格子点当たり、一定となるようにすることが好ましい。
 なお、着色した断面形状の別の形成工程例として、形状データに基づき無色のA液のみをB液に吐出してB液と混合することによりA液付与部に固体を形成した後に、その層の彩色データに基づき、A液を含まない通常のCMYインクを、固体を形成したB液上に吐出する2段階の工程とすることもできる。
The colored liquid A is preferably a combination of the three primary colors of yellow (Y), magenta (M), and cyan (C), which are the three primary colors of the subtractive color method. The M dye and the C dye may be liquid A colored in two shades. Colorless binders can be used to adjust the color density of CMY. In addition, a binder (white binder) containing a white pigment such as titanium white or a binder (black binder) colored with a black (black) dye can be used in combination to develop a desired effect.
The total discharge amount of the colored A liquid, colorless A liquid, and white A liquid is preferably constant per unit area, for example, per grid point or per adjacent 4 grid points.
In addition, as another example of the formation process of the colored cross-sectional shape, after forming a solid in the A liquid application part by discharging only the colorless A liquid to the B liquid based on the shape data and mixing with the B liquid, the layer Based on the coloring data, a normal CMY ink that does not contain the liquid A can be a two-stage process that ejects the liquid B on the solid.
 第3ステップ~第4ステップを順次繰り返すことにより、造形対象物を複数の面で切断した切断面に対応する、B液とA液の混合により形成した着色した固体を、順次積層形成して三次元造形物を製造することができる。
 なお、A液が付与されないB液の領域では固体が形成されない。
By sequentially repeating the third to fourth steps, a colored solid formed by mixing the B liquid and the A liquid corresponding to the cut surface obtained by cutting the modeling object on a plurality of surfaces is sequentially stacked to form a tertiary An original model can be manufactured.
In addition, solid is not formed in the area | region of B liquid to which A liquid is not provided.
 第5ステップでは、A液が付与されていない領域のB液を分離して、三次元造形物を取り出す。なお、A液が付与されなかったB液は回収して、再度材料として利用することが可能である。 In the fifth step, the B liquid in the region where the A liquid is not applied is separated, and the three-dimensional structure is taken out. In addition, B liquid which A liquid A was not provided can be collect | recovered and it can utilize again as a material.
 得られた三次元造形物に対して掃除、熱処理、樹脂又はワックス浸透、研磨などの後処理工程を行ってもよい。掃除は、上記三次元造形物を洗浄することによって行われ、余分なB液が取り除かれる。熱処理は、上記三次元造形物の強度及び耐久性を増加させる。ワックス浸透は間隙率を低下させ、上記三次元造形物を耐水性にし、より研磨仕上げをしやすくすることができる。研磨仕上げは表面平滑性を改良する。
 なお、本実施例では、着色模様等が施された三次元造形対象物を例にして説明したが、本発明において、三次元造形対象物はこれに限定されるものではない。すなわち、彩色データを有していない断面形状データに基づいて、単色あるいは無色の三次元造形物を製造することもできることはいうまでもない。
You may perform post-processing processes, such as cleaning, heat processing, resin or wax penetration, and grinding | polishing, with respect to the obtained three-dimensional structure. Cleaning is performed by washing the three-dimensional structure, and excess B liquid is removed. The heat treatment increases the strength and durability of the three-dimensional structure. Wax permeation reduces the porosity, makes the three-dimensional structure water-resistant, and makes it easier to polish. Abrasive finish improves surface smoothness.
In addition, although the present Example demonstrated as an example the three-dimensional modeling target to which the coloring pattern etc. were given, in this invention, a three-dimensional modeling target is not limited to this. That is, it is needless to say that a monochromatic or colorless three-dimensional structure can be manufactured based on cross-sectional shape data that does not have color data.
(三次元造形物の製造装置)
 次に本発明に好適に使用できる三次元造形物の製造装置(三次元造形装置)について説明する。
 図4は、本発明において使用できる三次元造形装置の一実施態様を示す斜視図である。
図4中、三次元造形装置1は、大きく分けてB液が供給される造形容器10と、B液に上方からA液を付与するA液付与部20とを備えている。
 造形容器10は、造形容器10にB液を供給するB液供給口30を備える。B液供給口30には、図示しないポンプ等によりB液を供給することができるように構成されており、また、B液の供給量を制御可能に構成されている。なお、造形容器10の内部には、底板(不図示)が昇降可能に配置されている。
(Three-dimensional structure manufacturing equipment)
Next, a manufacturing apparatus (three-dimensional modeling apparatus) for a three-dimensional structure that can be suitably used in the present invention will be described.
FIG. 4 is a perspective view showing an embodiment of a three-dimensional modeling apparatus that can be used in the present invention.
In FIG. 4, the three-dimensional modeling apparatus 1 includes a modeling container 10 to which a B liquid is roughly supplied, and an A liquid applying unit 20 that applies the A liquid to the B liquid from above.
The modeling container 10 includes a B liquid supply port 30 that supplies the B liquid to the modeling container 10. The B liquid supply port 30 is configured so that the B liquid can be supplied by a pump or the like (not shown), and the supply amount of the B liquid can be controlled. In addition, a bottom plate (not shown) is disposed inside the modeling container 10 so as to be movable up and down.
 造形容器10の上方には、A液付与部20が配置されている。三次元造形装置1は、A液付与部20をX-Y軸の2軸に移動させるためのX軸ガイドレール22b及びY軸ガイドレール22aを有している。これにより、A液付与部20は、X-Y軸に沿って、すなわち、造形面に対して平行に移動する。 The A liquid application unit 20 is disposed above the modeling container 10. The three-dimensional modeling apparatus 1 has an X-axis guide rail 22b and a Y-axis guide rail 22a for moving the A liquid applying unit 20 to two axes of the XY axes. As a result, the liquid A applying unit 20 moves along the XY axis, that is, parallel to the modeling surface.
 A液付与部20の下面には、ノズル(不図示)が形成されており、ノズルからA液を吐出する。また、上記ノズルにA液を供給可能に構成されている。
 上記のノズルは、公知のディスペンサ、インクジェット記録ヘッドから適宜選択することができる。インクジェット記録ヘッドとしては、例えば、ノズル(吐出口)が形成されたフェイス面を所定の清掃方向に移動しながら清掃するクリーニングブレードと、前記フェイス面よりも前記清掃面下流側に配置され、前記クリーニングブレードに付着したA液を吸収する吸収体を備えたインクジェット記録ヘッドとすることができ、例えば、特開2007-38558号公報、特開2007-38604号公報等を参照することができる。
A nozzle (not shown) is formed on the lower surface of the A liquid applying unit 20, and the A liquid is discharged from the nozzle. Moreover, it is comprised so that A liquid can be supplied to the said nozzle.
Said nozzle can be suitably selected from a well-known dispenser and an inkjet recording head. As the ink jet recording head, for example, a cleaning blade that cleans a face surface on which nozzles (ejection ports) are formed while moving in a predetermined cleaning direction, and a cleaning blade that is disposed downstream of the face surface, the cleaning surface is disposed. An ink jet recording head provided with an absorber that absorbs the liquid A adhering to the blade can be obtained. For example, JP-A 2007-38558, JP-A 2007-38604, and the like can be referred to.
 以下、本発明を実施例により説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
<A液(1)>
 以下の成分を撹拌機により撹拌してA液(1)を得た。
・例示化合物(A-1)(アルドリッチ):10重量部
・着色剤:Y-1:2重量部
・水:88重量部
<Liquid A (1)>
The following components were stirred with a stirrer to obtain liquid A (1).
Exemplified compound (A-1) (Aldrich): 10 parts by weight Colorant: Y-1: 2 parts by weight Water: 88 parts by weight
<A液(2)~A液(30)>
 A液(1)の例示化合物(A-1)を表1に記載の化合物に変えることにより、A液(2)~A液(30)を得た。
<A liquid (2) to A liquid (30)>
Liquid A (2) to liquid A (30) were obtained by changing the exemplified compound (A-1) of liquid A (1) to the compounds shown in Table 1.
<A液(31)>
 以下の成分を撹拌機により撹拌してA液(31)を得た。
・1,4-ブタンジオールジグリシジルエーテル(アルドリッチ):98重量部
・着色剤:Y-1:2重量部
<Liquid A (31)>
The following components were stirred with a stirrer to obtain liquid A (31).
-1,4-butanediol diglycidyl ether (Aldrich): 98 parts by weight-Colorant: Y-1: 2 parts by weight
<A液(32)~A液(45)>
 A液(31)の1,4-ブタンジオールジグリシジルエーテルを表1に記載の化合物に変えることにより、A液(32)~A液(45)を得た。
 なお、表1において、例示化合物が重合体である場合には、分子量を記載している。
<A liquid (32) to A liquid (45)>
Liquid A (32) to Liquid A (45) were obtained by changing 1,4-butanediol diglycidyl ether of Liquid A (31) to the compounds shown in Table 1.
In Table 1, when the exemplified compound is a polymer, the molecular weight is described.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<マゼンタA液(1)>
 A液(1)のY-1の代わりに、M-1を用いた以外はA液(1)と同様の方法でマゼンタA液(1)を製造した。
<シアンA液(1)>
 A液(1)のY-1の代わりに、C-1を用いた以外はA液(1)と同様の方法でシアンA液(1)を製造した。
<ブラックA液(1)>
 A液(1)のY-1の代わりに、カーボンブラックを用いた以外はA液(1)と同様の方法でブラックA液(1)を製造した。
<ホワイトA液(1)>
 A液(1)のY-1の代わりに、酸化チタンを用いた以外はA液(1)と同様の方法でホワイトA液(1)を製造した。
<Magenta A liquid (1)>
Magenta liquid A (1) was produced in the same manner as liquid A (1) except that M-1 was used instead of liquid A (1) Y-1.
<Cyan A liquid (1)>
Cyan A liquid (1) was produced in the same manner as A liquid (1) except that C-1 was used instead of Y-1 in A liquid (1).
<Black A liquid (1)>
Black A liquid (1) was produced in the same manner as liquid A (1) except that carbon black was used instead of Y-1 in liquid A (1).
<White A liquid (1)>
A white A liquid (1) was produced in the same manner as the A liquid (1) except that titanium oxide was used instead of Y-1 in the A liquid (1).
<B液(1)>
 以下の成分を撹拌機により撹拌してB液(1)を得た。
・例示化合物(A-1)(アルドリッチ):2重量部
・水:98重量部
<Liquid B (1)>
The following components were stirred with a stirrer to obtain liquid B (1).
Exemplified compound (A-1) (Aldrich): 2 parts by weight Water: 98 parts by weight
<B液(2)~B液(30)>
 B液(1)の例示化合物(A-1)を表2に記載の化合物に変えることにより、B液(2)~B液(30)を得た。
<Liquid B (2) to Liquid B (30)>
Liquid B (2) to liquid B (30) were obtained by changing the exemplified compound (A-1) of liquid B (1) to the compounds shown in Table 2.
<B液(31)>
 以下の成分を撹拌機により撹拌してB液(31)を得た。
・1,4-ブタンジオールジグリシジルエーテル(アルドリッチ)  100重量部
<Liquid B (31)>
The following components were stirred with a stirrer to obtain liquid B (31).
・ 100 parts by weight of 1,4-butanediol diglycidyl ether (Aldrich)
<B液(32)~B液(45)>
 B液(31)の1,4-ブタンジオールジグリシジルエーテルを表2に記載の化合物に変えることにより、B液(32)~B液(45)を得た。
 なお、以下の表2において、使用した例示化合物が重合体である場合には、分子量を記載した。
<Liquid B (32) to Liquid B (45)>
Liquid B (32) to Liquid B (45) were obtained by changing 1,4-butanediol diglycidyl ether of Liquid B (31) to the compounds shown in Table 2.
In Table 2 below, when the exemplified compound used was a polymer, the molecular weight was described.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<比較用X液(1)>
 以下の成分を撹拌機により撹拌して比較用X液(1)を得た。
・着色剤:Y-1:2重量部
・水:98重量部
<Comparison X solution (1)>
The following components were stirred with a stirrer to obtain a comparative X solution (1).
Colorant: Y-1: 2 parts by weight Water: 98 parts by weight
<比較用X液(2)>
 以下の成分を撹拌機により撹拌して比較用X液(2)を得た。
・エチレングリコールジメチルエーテル(アルドリッチ):98重量部
・着色剤:Y-1:2重量部
<Comparison X solution (2)>
The following components were stirred with a stirrer to obtain a comparative X solution (2).
-Ethylene glycol dimethyl ether (Aldrich): 98 parts by weight-Colorant: Y-1: 2 parts by weight
<比較用Y液(1)>
 以下の成分を撹拌機により撹拌して比較用Y液(1)を得た。
・水:100重量部
<Comparison Y liquid (1)>
The following components were stirred with a stirrer to obtain a comparative Y liquid (1).
・ Water: 100 parts by weight
<比較用Y液(2)>
 以下の成分を撹拌機により撹拌して比較用Y液(2)を得た。
・エチレングリコールジメチルエーテル(アルドリッチ):100重量部
<Comparison Y liquid (2)>
The following components were stirred with a stirrer to obtain a comparative Y liquid (2).
・ Ethylene glycol dimethyl ether (Aldrich): 100 parts by weight
(実施例1)
 明細書記載の三次元造形装置を用いて、底板上に薄層設置されたB液(27)に、A液供給ホースから液噴射ノズルに供給されたA液(1)を液噴射ノズルのノズル孔から噴射することにより、造形対象物を平行な断面で切断した断面形状になる薄層の硬化物が得られた。
 ここで、A液の噴射ノズルとしては、ピエゾ型のインクジェット記録ヘッドを用い、A液の吐出量は1ドット当たり6plとした。また、1スライスピッチを50μmとした。
Example 1
Using the three-dimensional modeling apparatus described in the specification, the liquid A (1) supplied from the liquid A supply hose to the liquid injection nozzle is applied to the liquid B (27) installed in a thin layer on the bottom plate. By spraying from the hole, a thin-layer cured product having a cross-sectional shape obtained by cutting the modeling target object along a parallel cross-section was obtained.
Here, a piezo-type ink jet recording head was used as the liquid A ejection nozzle, and the amount of liquid A discharged was 6 pl per dot. One slice pitch was set to 50 μm.
(実施例2~実施例15、比較例1~比較例4)
 実施例1において、A液(1)及びB液(27)を表3に記載のものに変更した以外は、実施例1と同様にして三次元造形物を製造した。
(Examples 2 to 15 and Comparative Examples 1 to 4)
A three-dimensional structure was manufactured in the same manner as in Example 1, except that the liquid A (1) and liquid B (27) were changed to those shown in Table 3 in Example 1.
<強度評価>
 実施例1の手法で直径5cm、厚さ1cmのプレートを作製し、直径4cm(外径4cm、内径3cm)、厚さ1cmのドーナツ状の台に置き、プレートの上から100gの重りを載せて、プレートが壊れるまでの時間を評価した。
 本評価は時間が長いほど、強度が高いことを示す。
<Strength evaluation>
A plate having a diameter of 5 cm and a thickness of 1 cm was prepared by the method of Example 1, placed on a donut-shaped table having a diameter of 4 cm (outer diameter of 4 cm, inner diameter of 3 cm) and a thickness of 1 cm, and a weight of 100 g was placed on the plate. The time until the plate broke was evaluated.
This evaluation shows that the longer the time, the higher the strength.
<硬化速度>
 B液をシャーレに深さ1cmになるように充填し、上からスポイトにてA液の液滴を滴下し、硬化するまでの時間を計った。
 本評価は時間が短いほど、硬化速度が速いことを示す。
<Curing speed>
Liquid B was filled in the petri dish to a depth of 1 cm, and liquid A droplets were dropped from above with a dropper, and the time until curing was measured.
This evaluation shows that the shorter the time, the faster the curing rate.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例16)
 実施例1のA液(1)の代わりにマゼンタA液(1)を用いた以外は、実施例1と同様の方法で評価を実施した。
(Example 16)
Evaluation was carried out in the same manner as in Example 1 except that Magenta A liquid (1) was used instead of A liquid (1) in Example 1.
(実施例17)
 実施例1のA液(1)の代わりにシアンA液(1)を用いた以外は、実施例1と同様の方法で評価を実施した。
(Example 17)
Evaluation was performed in the same manner as in Example 1 except that Cyan A liquid (1) was used instead of A liquid (1) in Example 1.
(実施例18)
 実施例1のA液(1)の代わりにブラックA液(1)を用いた以外は、実施例1と同様の方法で評価を実施した。
(Example 18)
Evaluation was carried out in the same manner as in Example 1, except that the black A liquid (1) was used instead of the A liquid (1) in Example 1.
(実施例19)
 実施例1のA液(1)の代わりにホワイトA液(1)を用いた以外は、実施例1と同様の方法で評価を実施した。
 結果を以下の表4に示す。
(Example 19)
Evaluation was performed in the same manner as in Example 1, except that the white A liquid (1) was used instead of the A liquid (1) in Example 1.
The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<実施例20>
 イエローA液(1)、マゼンタA液(1)、シアンA液(1)、ブラックA液(1)、ホワイトA液(1)を別々のノズルに充填して造形を実施した結果、フルカラーの造形物が得られた。
<Example 20>
As a result of performing modeling by filling different nozzles with yellow A liquid (1), magenta A liquid (1), cyan A liquid (1), black A liquid (1), and white A liquid (1), A model was obtained.
1   三次元造形装置
10   造形容器
12   底板
20   A液付与部
21   ノズル
22a   Y軸ガイドレール
22b   X軸ガイドレール
30   B液供給口
40   三次元造形物
DESCRIPTION OF SYMBOLS 1 3D modeling apparatus 10 Modeling container 12 Bottom plate 20 A liquid provision part 21 Nozzle 22a Y-axis guide rail 22b X-axis guide rail 30 B liquid supply port 40 Three-dimensional structure

Claims (7)

  1.  B液を所定の厚さを有する層に形成する工程と、
     造形対象物を平行な断面で切断した断面形状になるように、B液の層に、B液と混合することにより固体を形成可能なA液を付与する工程と、を順次繰り返すことを特徴とする
     三次元造形物の製造方法。
    Forming the liquid B into a layer having a predetermined thickness;
    It is characterized by sequentially repeating the step of applying the liquid A that can form a solid by mixing with the liquid B to the layer of the liquid B so as to have a cross-sectional shape obtained by cutting the modeling object in a parallel cross section. A method for producing a three-dimensional structure.
  2.  前記A液及び/又は前記B液が、染料及び/又は顔料を含有する、請求項1に記載の三次元造形物の製造方法。 The method for producing a three-dimensional structure according to claim 1, wherein the liquid A and / or the liquid B contains a dye and / or a pigment.
  3.  前記A液又はB液の一方が、カチオン性残基及び/又はカチオン性残基に誘導しうる基を2以上有し、他の一方が、有機酸残基及び/又は有機酸塩残基を2以上有する、請求項1又は2に記載の三次元造形物の製造方法。 One of the liquid A or the liquid B has two or more cationic residues and / or groups that can be induced to a cationic residue, and the other one has an organic acid residue and / or an organic acid salt residue. The manufacturing method of the three-dimensional structure according to claim 1 or 2, comprising two or more.
  4.  前記A液を付与する工程が、A液を滴下する工程であり、A液の滴下が、微小液滴を吐出可能なノズルにより行われる、請求項1~3いずれか1つに記載の三次元造形物の製造方法。 The three-dimensional according to any one of claims 1 to 3, wherein the step of applying the A liquid is a step of dripping the A liquid, and the dripping of the A liquid is performed by a nozzle capable of discharging a fine droplet. Manufacturing method of a model.
  5.  前記ノズルが、インクジェット記録ヘッド又はディスペンサである、請求項4に記載の三次元造形物の製造方法。 The method for producing a three-dimensional structure according to claim 4, wherein the nozzle is an ink jet recording head or a dispenser.
  6.  請求項1~5いずれか1つに記載の三次元造形物の製造方法に使用されるA液及びB液を含む三次元造形用材料。 A three-dimensional modeling material containing the liquid A and the liquid B used in the method for producing a three-dimensional structure according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1つに記載の製造方法にて製造した、三次元造形物。 A three-dimensional structure manufactured by the manufacturing method according to any one of claims 1 to 5.
PCT/JP2009/058863 2008-05-15 2009-05-12 Process for producing three-dimensional shaped object, material for three-dimensional shaping, and three-dimensional shaped object WO2009139395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008128615 2008-05-15
JP2008-128615 2008-05-15

Publications (1)

Publication Number Publication Date
WO2009139395A1 true WO2009139395A1 (en) 2009-11-19

Family

ID=41318762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058863 WO2009139395A1 (en) 2008-05-15 2009-05-12 Process for producing three-dimensional shaped object, material for three-dimensional shaping, and three-dimensional shaped object

Country Status (2)

Country Link
JP (1) JP5443826B2 (en)
WO (1) WO2009139395A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152511A1 (en) 2011-05-10 2012-11-15 Evonik Röhm Gmbh Multicoloured fused deposition modelling print
DE102011075540A1 (en) 2011-05-10 2012-11-15 Evonik Röhm Gmbh Multicolored fused deposition modeling printing
WO2014072148A1 (en) 2012-11-09 2014-05-15 Evonik Industries Ag Use and production of coated filaments for extrusion-based 3d printing processes
US9433969B2 (en) 2012-11-09 2016-09-06 Evonik Röhm Gmbh Multicolour extrusion-based 3D print process
WO2017082007A1 (en) * 2015-11-13 2017-05-18 株式会社リコー Three-dimensional modeling material set, method for producing three-dimensional model, and device for producing three-dimensional model
JP2017094714A (en) * 2015-11-13 2017-06-01 株式会社リコー Three-dimensional molding material set, method for manufacturing three-dimensionally molded article and apparatus for manufacturing three-dimensionally molded article
WO2017096263A1 (en) * 2015-12-04 2017-06-08 University Of Florida Research Foundation, Incorporated Crosslinkable or functionalizable polymers for 3d printing of soft materials
US9688022B2 (en) 2013-11-18 2017-06-27 San Draw, Inc. Color or multi-material three-dimensional (3D) printing
EP2654412A4 (en) * 2010-12-21 2017-11-29 Stratasys Ltd. Method and system for reuse of materials in additive manufacturing systems
CN108348311A (en) * 2015-11-13 2018-07-31 株式会社理光 The manufacturing device of three-dimensionally shaped material group, the manufacturing method and three-dimensionally shaped object of three-dimensionally shaped object
US10166726B2 (en) 2013-10-25 2019-01-01 Fripp Design Limited Method and apparatus for additive manufacturing
JP2019155848A (en) * 2018-03-16 2019-09-19 株式会社リコー Method and device for manufacturing three-dimensional molded product
WO2019185725A1 (en) * 2018-03-29 2019-10-03 Universität Rostock Device for producing 3d-printed active substance-releasing systems with active substance depots, and method for producing 3d-printed active substance-releasing systems
JP2019528805A (en) * 2016-06-30 2019-10-17 ディーダブリューエス エス.アール.エル. Method and system for creating a dental prosthesis
US11007705B2 (en) 2015-02-13 2021-05-18 University Of Florida Research Foundation, Inc. High speed 3D printing system for wound and tissue replacement
US11027483B2 (en) 2015-09-03 2021-06-08 University Of Florida Research Foundation, Inc. Valve incorporating temporary phase change material
EP3697593A4 (en) * 2017-10-16 2021-07-07 Voxel8, Inc. 3d-printing using reactive precursors
US11124644B2 (en) 2016-09-01 2021-09-21 University Of Florida Research Foundation, Inc. Organic microgel system for 3D printing of silicone structures
US11192292B2 (en) 2014-12-05 2021-12-07 University Of Florida Research Foundation, Inc. 3D printing using phase changing matertials as support
US11390835B2 (en) 2015-05-08 2022-07-19 University Of Florida Research Foundation, Inc. Growth media for three-dimensional cell culture

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461488B2 (en) * 2014-05-21 2019-01-30 株式会社ミマキエンジニアリング Forming device for forming three-dimensional structures
JP2016007736A (en) * 2014-06-23 2016-01-18 株式会社ミマキエンジニアリング Ink jet ink color matching device and use of the same
JP2016011331A (en) * 2014-06-27 2016-01-21 セイコーエプソン株式会社 Ink, ink set, three-dimensional molded article, and method for manufacturing three-dimensional molded article
JP6720476B2 (en) * 2014-10-16 2020-07-08 株式会社リコー Liquid set for three-dimensional modeling, method for manufacturing three-dimensional model, and three-dimensional model
JP6524684B2 (en) * 2015-02-09 2019-06-05 セイコーエプソン株式会社 Three-dimensional object formation apparatus, three-dimensional object formation method, and three-dimensional object formation program
JP6775760B2 (en) * 2015-07-06 2020-10-28 株式会社リコー Liquid set for 3D modeling, manufacturing method of 3D model, manufacturing device of 3D model, and hydrogel model
WO2017018525A1 (en) * 2015-07-29 2017-02-02 株式会社カネカ Method for manufacturing photocurable three-dimensional stereoscopic fabricated object
JP6524845B2 (en) * 2015-07-31 2019-06-05 株式会社リコー Three-dimensional modeling device
CN108712957A (en) 2016-04-28 2018-10-26 惠普发展公司,有限责任合伙企业 3 D-printing component
KR102142253B1 (en) * 2016-04-28 2020-08-07 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3-dimensional printing
WO2017188961A1 (en) 2016-04-28 2017-11-02 Hewlett-Packard Development Company, L.P. Photoluminescent material sets
JP2018126912A (en) * 2017-02-08 2018-08-16 株式会社リコー Method for molding three-dimensional molded article, apparatus for molding three-dimensional molded article, program therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820073A (en) * 1994-07-05 1996-01-23 Ricoh Co Ltd Method and apparatus for generating three-dimensional shape
JP2003506228A (en) * 1999-08-10 2003-02-18 バイエル アクチェンゲゼルシャフト Method for manufacturing three-dimensional structure or flat structure
JP2004525791A (en) * 2001-02-15 2004-08-26 バンティコ ゲーエムベーハー 3D printing
JP2005035299A (en) * 2003-07-18 2005-02-10 Hewlett-Packard Development Co Lp Reactive polymer system capable of being inkjet jetted for free formation of solid three-dimensional object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0112675D0 (en) * 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
JP2007106070A (en) * 2005-10-17 2007-04-26 Kokusai Kiban Zairyo Kenkyusho:Kk Three dimensional laminating and shaping method and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820073A (en) * 1994-07-05 1996-01-23 Ricoh Co Ltd Method and apparatus for generating three-dimensional shape
JP2003506228A (en) * 1999-08-10 2003-02-18 バイエル アクチェンゲゼルシャフト Method for manufacturing three-dimensional structure or flat structure
JP2004525791A (en) * 2001-02-15 2004-08-26 バンティコ ゲーエムベーハー 3D printing
JP2005035299A (en) * 2003-07-18 2005-02-10 Hewlett-Packard Development Co Lp Reactive polymer system capable of being inkjet jetted for free formation of solid three-dimensional object

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2654412A4 (en) * 2010-12-21 2017-11-29 Stratasys Ltd. Method and system for reuse of materials in additive manufacturing systems
US11001004B2 (en) 2010-12-21 2021-05-11 Stratasys Ltd. Method and system for disposal of waste materials in additive manufacturing systems
US10245784B2 (en) 2010-12-21 2019-04-02 Stratasys Ltd. Method and system for reuse of materials in additive manufacturing systems
WO2012152511A1 (en) 2011-05-10 2012-11-15 Evonik Röhm Gmbh Multicoloured fused deposition modelling print
DE102011075544A1 (en) 2011-05-10 2012-11-15 Evonik Röhm Gmbh Multicolored fused deposition modeling printing
DE102011075540A1 (en) 2011-05-10 2012-11-15 Evonik Röhm Gmbh Multicolored fused deposition modeling printing
WO2012152510A1 (en) 2011-05-10 2012-11-15 Evonik Röhm Gmbh Multicoloured fused deposition modelling print
US9433969B2 (en) 2012-11-09 2016-09-06 Evonik Röhm Gmbh Multicolour extrusion-based 3D print process
US9193110B2 (en) 2012-11-09 2015-11-24 Evonik Industries Ag Use and production of coated filaments for extrusion-based 3D printing processes
WO2014072148A1 (en) 2012-11-09 2014-05-15 Evonik Industries Ag Use and production of coated filaments for extrusion-based 3d printing processes
US10166726B2 (en) 2013-10-25 2019-01-01 Fripp Design Limited Method and apparatus for additive manufacturing
US10369743B2 (en) 2013-11-18 2019-08-06 San Draw Inc. Color or multi-material three-dimensional (3D) printing
US9688022B2 (en) 2013-11-18 2017-06-27 San Draw, Inc. Color or multi-material three-dimensional (3D) printing
US10286601B2 (en) 2013-11-18 2019-05-14 San Draw Inc. Color or multi-material three-dimensional (3D) printing
US11654612B2 (en) 2014-12-05 2023-05-23 University Of Florida Research Foundation, Inc. 3D printing using phase changing materials as support
US11192292B2 (en) 2014-12-05 2021-12-07 University Of Florida Research Foundation, Inc. 3D printing using phase changing matertials as support
US11766823B2 (en) 2015-02-13 2023-09-26 University Of Florida Research Foundation, Inc. High speed 3D printing system for wound and tissue replacement
US11007705B2 (en) 2015-02-13 2021-05-18 University Of Florida Research Foundation, Inc. High speed 3D printing system for wound and tissue replacement
US11390835B2 (en) 2015-05-08 2022-07-19 University Of Florida Research Foundation, Inc. Growth media for three-dimensional cell culture
US11027483B2 (en) 2015-09-03 2021-06-08 University Of Florida Research Foundation, Inc. Valve incorporating temporary phase change material
US11964422B2 (en) 2015-09-03 2024-04-23 University Of Florida Research Foundation, Inc. Valve incorporating temporary phase change material
JP2017094714A (en) * 2015-11-13 2017-06-01 株式会社リコー Three-dimensional molding material set, method for manufacturing three-dimensionally molded article and apparatus for manufacturing three-dimensionally molded article
US11008437B2 (en) 2015-11-13 2021-05-18 Ricoh Company, Ltd. Material set for forming three-dimensional object, three-dimensional object producing method, and three-dimensional object producing apparatus
CN108348311A (en) * 2015-11-13 2018-07-31 株式会社理光 The manufacturing device of three-dimensionally shaped material group, the manufacturing method and three-dimensionally shaped object of three-dimensionally shaped object
WO2017082007A1 (en) * 2015-11-13 2017-05-18 株式会社リコー Three-dimensional modeling material set, method for producing three-dimensional model, and device for producing three-dimensional model
WO2017096263A1 (en) * 2015-12-04 2017-06-08 University Of Florida Research Foundation, Incorporated Crosslinkable or functionalizable polymers for 3d printing of soft materials
US10814605B2 (en) 2015-12-04 2020-10-27 University Of Florida Research Foundation, Inc. Crosslinkable or functionalizable polymers for 3D printing of soft materials
JP2019528805A (en) * 2016-06-30 2019-10-17 ディーダブリューエス エス.アール.エル. Method and system for creating a dental prosthesis
US11124644B2 (en) 2016-09-01 2021-09-21 University Of Florida Research Foundation, Inc. Organic microgel system for 3D printing of silicone structures
EP3697593A4 (en) * 2017-10-16 2021-07-07 Voxel8, Inc. 3d-printing using reactive precursors
US11845217B2 (en) 2017-10-16 2023-12-19 Kornit Digital Technologies Ltd. 3D-printing using reactive precursors
JP2019155848A (en) * 2018-03-16 2019-09-19 株式会社リコー Method and device for manufacturing three-dimensional molded product
WO2019185725A1 (en) * 2018-03-29 2019-10-03 Universität Rostock Device for producing 3d-printed active substance-releasing systems with active substance depots, and method for producing 3d-printed active substance-releasing systems

Also Published As

Publication number Publication date
JP2009298146A (en) 2009-12-24
JP5443826B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5443826B2 (en) Manufacturing method of three-dimensional structure, three-dimensional structure material, and three-dimensional structure
US11926103B2 (en) Precision system for additive fabrication
CN110065230B (en) Three-dimensional object forming method and forming device
US20130026683A1 (en) Liquid inkjettable materials for three-dimensional printing
US20180056582A1 (en) Systems, devices, and methods for inkjet-based three-dimensional printing
CN102372946B (en) Ink composition and printed article
US7578958B2 (en) Three-dimensional structured printing
JP2005035299A (en) Reactive polymer system capable of being inkjet jetted for free formation of solid three-dimensional object
CN107020805B (en) Ink discharger and ink discharge method
WO2005021248A1 (en) Method of producing three-dimensional model
CN102256804A (en) Coating and the production thereof by means of ink jet printing methods
JP2016107406A (en) Image processing device, image processing system, image processing program, and method of producing three-dimensional object
EP1680712B1 (en) Photocurable composition for producing cured articles having high clarity and improved mechanical properties
CN105073419B (en) Coated article, folder and coating part
JP2016079316A (en) Composition for three-dimensional molding, method for manufacturing three-dimensional molded article, and three-dimensional molded article
CN104786496A (en) Inkjet type hot-melt extrusion full-color 3D (3-dimentional) printer
CN105538705A (en) Three-dimensional object manufacturing method, three-dimensional object manufacturing device, and three-dimensional object
JP2016055531A (en) Method for manufacturing three-dimensional molded article, composition for three-dimensional molding, and three-dimensional molded article
CN107263863A (en) DLP three-dimensional printers and its Method of printing
JP2005096199A (en) Manufacturing method of three-dimensional shaped article and manufacturing apparatus used therein
JP2009255479A (en) Three-dimensional shaping material and method for manufacturing the same
Rahmati et al. Piezo‐electric head application in a new 3D printing design
JP6413287B2 (en) Manufacturing method of three-dimensional structure
CN106363907A (en) Three-dimensional full color composite printing apparatus
CN108884344A (en) Drop is sprayed with ink, ink group, print cartridge, droplet ejection apparatus and record object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746601

Country of ref document: EP

Kind code of ref document: A1