WO2009139276A1 - Bearing for swing arm and method of manufacturing bearing for swing arm - Google Patents

Bearing for swing arm and method of manufacturing bearing for swing arm Download PDF

Info

Publication number
WO2009139276A1
WO2009139276A1 PCT/JP2009/057963 JP2009057963W WO2009139276A1 WO 2009139276 A1 WO2009139276 A1 WO 2009139276A1 JP 2009057963 W JP2009057963 W JP 2009057963W WO 2009139276 A1 WO2009139276 A1 WO 2009139276A1
Authority
WO
WIPO (PCT)
Prior art keywords
raceway surface
contact
swing arm
ball
bearing
Prior art date
Application number
PCT/JP2009/057963
Other languages
French (fr)
Japanese (ja)
Inventor
中関 嗣人
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008129634A external-priority patent/JP2009275871A/en
Priority claimed from JP2008268937A external-priority patent/JP2010096310A/en
Priority claimed from JP2008268830A external-priority patent/JP2010096306A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2009139276A1 publication Critical patent/WO2009139276A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4813Mounting or aligning of arm assemblies, e.g. actuator arm supported by bearings, multiple arm assemblies, arm stacks or multiple heads on single arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to a swing arm bearing (fulcrum bearing unit) used in a hard disk drive, and more specifically to a fulcrum bearing unit that stabilizes the torque of the swing arm.
  • the present invention also relates to a method for manufacturing the swing arm bearing.
  • a swing arm used for a hard disk used as an external storage device of a computer reads and writes information using a magnetic head on an aluminum or glass disk coated with a magnetic material.
  • This magnetic head is attached to one end of a driving body called a swing arm. Then, when the swing arm is driven to swing around the fulcrum bearing unit by the voice coil motor, the magnetic head attached to one end of the swing arm is moved to an arbitrary position on the hard disk, and information is stored in the hard disk. Enables reading and writing.
  • FIG. 30 is a schematic cross-sectional view showing the structure of a fulcrum bearing unit incorporated in a swing arm conventionally used.
  • the swing arm 1 shown in FIG. 30 has a magnetic head 2 attached to one end, a voice coil motor (not shown) at the other end, and a fulcrum bearing unit 500 incorporated at the center of gravity.
  • the swing arm 1 In order for the magnetic head 2 to accurately read and write information on the hard disk, the swing arm 1 must be driven to swing so that the magnetic head 2 can move to an accurate position. For this reason, the fulcrum bearing unit 500 that supports the swing arm 1 is required to have high rigidity. In order to ensure rigidity, the parts constituting the fulcrum bearing unit 500 shown in FIG. 30 need to be incorporated with an appropriate preload. Specifically, first, two outer rings 104 in FIG. 30 and a spacer 105 provided between the two outer rings 104 are directly connected to the swing arm 1 so that the two outer rings 104 do not contact each other. The sleeve 102 is fixed. Subsequently, one of the two inner rings 103 in FIG.
  • a preload F is applied in the axial direction, that is, the vertical direction of the paper surface, and the other inner ring 103 is fixed to the shaft 101.
  • a preload F is applied to each component constituting the fulcrum bearing unit 500, and fixing for ensuring rigidity is possible.
  • the magnetic head 2 is required to have higher positional accuracy.
  • the fulcrum bearing unit 500 is required to have higher rigidity.
  • the fulcrum bearing unit 500 is also required to be thin as the disk is thinned. Further, the fulcrum bearing unit 500 having a large number of components is required to reduce the cost by reducing the number of components.
  • FIG. 31 is a schematic cross-sectional view showing the structure of a conventional fulcrum bearing unit in which the number of parts is reduced.
  • the hatched portion represents a cross section.
  • a fulcrum bearing unit 600 shown in FIG. 31 does not have an equivalent to the outer ring 104 shown in the fulcrum bearing unit 500 shown in FIG. 30, and a ball 109 as a rolling element is formed on the surface of the sleeve 102 facing the inner ring 103.
  • a bearing groove 110 is formed as a raceway surface for rolling. Therefore, the number of parts is reduced by the amount that the outer ring 104 is not provided, and the cost can be reduced.
  • the rotational accuracy of the swing arm 1 can also be improved by eliminating the portion where the sleeve 102 and the outer ring 104 shown in FIG. 30 are fitted.
  • a hard disk swing arm having a structure in which a bearing groove as a raceway surface for rolling balls is formed directly on the outer peripheral surface of the shaft and on the sleeve of the swing arm without providing an outer ring or an inner ring. This is disclosed in Japanese Utility Model Laid-Open No. 7-6969 (Patent Document 1).
  • the inner ring is made thinner than the outer ring.
  • Patent Document 2 Japanese Patent Laid-Open No. 10-318255
  • the inner ring is made thinner than the outer ring.
  • the contact stress applied to the balls interposed between the outer ring and the inner ring is increased by increasing the preload as described above.
  • the rigidity of the entire fulcrum bearing unit can be increased.
  • the friction torque applied to the ball increases. Accordingly, there is a possibility that plastic deformation occurs in the region including the ball or the raceway surface in contact with the ball due to a large friction torque. For this reason, an idea has been made to increase the number of balls to be incorporated as a countermeasure.
  • the outer ring or the inner ring is divided into two in the axial direction, that is, the vertical direction, and each of the divided outer rings or inner rings is divided.
  • the member and the ball can be brought into contact with each other.
  • a fulcrum bearing unit designed to increase rigidity by increasing the number of contact points in this way has also been devised.
  • a fulcrum bearing unit for a hard disk is generally required to have a low torque during operation and a small fluctuation in torque, but if the fluctuation in rolling element load becomes large, it is difficult to stabilize the torque of the fulcrum bearing unit. Become.
  • the present invention has been made in view of the above-described problems.
  • the first object is to provide a fulcrum bearing unit that stabilizes the torque of the swing arm by reducing fluctuations in the rolling element load and facilitating the control thereof.
  • the second object is to provide a low-cost swing arm bearing and a manufacturing method thereof.
  • a swing arm bearing as a fulcrum bearing unit used for a swing arm in the present invention is an inner member in which an annular inner raceway surface is formed on the outer peripheral surface, and is disposed so as to surround the inner member. And an outer member to which a swing arm of a hard disk drive is to be connected, and a plurality of balls arranged in contact with the inner raceway surface and the outer raceway surface.
  • one of the inner raceway surface and the outer raceway surface has a first contact surface and a second contact surface that contact the ball, and the first contact surface and the second contact surface are Cross each other.
  • the other raceway surface has a third contact surface that contacts the ball. The ball is in contact with the inner raceway surface and the outer raceway surface with the first, second, and third contact surfaces at a total of three points.
  • any one of the inner raceway surface of the inner member and the outer raceway surface of the outer member has two contacts with the first contact surface and the second contact surface intersecting each other.
  • a structure having a surface (a surface in contact with the ball) is used.
  • the other raceway surface different from the one raceway surface has a structure having a third contact surface in contact with the ball. The balls are brought into contact with the inner raceway surface and the outer raceway surface at a total of three points. In this way, the contact angle of the ball is stabilized and the rolling element load can be easily controlled, so that torque fluctuations can be suppressed.
  • At least one of the first contact surface and the second contact surface has a conical surface shape. Further, it is more preferable that the third contact surface has a conical surface shape.
  • the first contact surface, the second contact surface, and the third contact surface may all have an arcuate surface shape in a cross section including the bearing groove of the R surface, that is, the rotation axis of the swing arm bearing. All of the three contact surfaces may have a conical shape, that is, a linear shape in a cross section including the rotation axis of the swing arm bearing.
  • both the first contact surface and the second contact surface may have a conical surface shape, and the third contact surface may be a R-side bearing groove.
  • the second contact surface may have a conical surface shape, and the first contact surface and the third contact surface may be R-side bearing grooves.
  • the second contact surface and the third contact surface may be conical, and the first contact surface may be a R-side bearing groove. Furthermore, both the first contact surface and the second contact surface are R-surface bearing grooves, and only the third contact surface can be conical.
  • the conical surface shape is used as described above, the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved. Further, since the conical surface shape is easier than the processing of the bearing groove, the processing cost may be reduced.
  • the surface roughness Ra centerline average roughness of the first region in contact with the ball on the inner raceway surface and the outer raceway surface is adjacent to the first region.
  • the surface roughness Ra of the area 2 may be smaller.
  • the torque fluctuation of the fulcrum bearing unit for hard disk drive can be suppressed by reducing the surface roughness Ra of the raceway surface so as to reduce the unevenness of the surface of the raceway surface.
  • the surface roughness Ra not the entire inner raceway surface and outer raceway surface, but only the first region in contact with the ball is processed to reduce the surface roughness Ra, and is adjacent to the first region, that is, not in contact with the ball.
  • the second region is not processed to reduce the surface roughness Ra.
  • the tact time of processing for reducing the surface roughness Ra can be shortened, and low-cost processing can be realized.
  • the ball is in contact with the inner raceway surface at one point and in contact with the outer raceway surface at two points.
  • the processing amount of the outer member tends to be larger than that of the inner member.
  • the ball contacts the inner raceway surface at one point and adopts a configuration in which the ball contacts the outer raceway surface at two points, thereby suppressing the hardness of the outer member having a large machining amount. It is possible to do. Therefore, it is possible to reduce manufacturing costs.
  • a low cost swing arm bearing can be provided.
  • the hardness of the inner raceway surface is preferably HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is preferably HRC25 or more and HRC35 or less.
  • the rolling element applies an impact load to the raceway surface.
  • indentations may occur on the raceway surface.
  • the inner raceway surface that contacts the rolling element at one point must have a hardness of HRC 40 or higher for the outer raceway surface that contacts at two points, and a hardness of HRC25 or higher.
  • the hardness of the inner raceway surface of the inner member is preferably HRC50 or less
  • the hardness of the outer raceway surface of the outer member is preferably HRC35 or less. From the above, it is preferable that the hardness of the inner raceway surface is HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is HRC25 or more and HRC35 or less.
  • the hardness of the inner raceway surface is HRC43 or more and HRC47 or less, and the hardness of the outer raceway surface is HRC28 or more and HRC32 or less.
  • a hole is formed in the inner member in a region including the central axis of the inner raceway surface, and the hardness of the inner raceway surface is HRC40 or more, and the surface layer portion of the hole The hardness is preferably HRC25 or less.
  • the rolling element gives an impact force to the inner raceway surface due to an impact load from the outside, and the hardness is increased in order to suppress the occurrence of indentation on the inner raceway surface.
  • HRC 40 or more is preferable.
  • a hole may be formed in the central portion of the inner member, that is, in a region including the central axis extending in the long axis direction of the inner member for the purpose of fixing the inner member to another member. is there. In this case, it is preferable that the hardness of the surface layer portion of the hole is HRC25 or less in order to suppress the processing cost of the hole.
  • the surface layer portion of the hole refers to a region having a depth of 0.1 mm or less from the surface of the hole, for example.
  • the hardness of the said surface layer part can be investigated, for example by cut
  • the region including the inner raceway surface is preferably induction hardened.
  • induction hardening as described above, the hardness of the outer peripheral portion of the inner member, that is, the region including the inner raceway surface is increased, while the center portion of the inner member, that is, the surface layer portion of the hole is suppressed.
  • the structure can be easily achieved.
  • the hardness of the first contact surface and the second contact surface is preferably lower than the hardness of the third contact surface.
  • a load is applied to the inner raceway surface and the outer raceway surface using a plurality of balls arranged in contact with the inner raceway surface and the outer raceway surface, and the pressure applied to the raceway surface at that time
  • a process called burnishing can be performed in which the surface of the raceway surface is plastically processed to reduce the surface roughness Ra.
  • the force applied to the track surface on the side where the two surfaces of the inner track surface and the outer track surface, the first contact surface and the second contact surface exist is applied to two locations by two contact points. Distributed. Since the contact surfaces need to be processed with a distributed force, the hardness of the first contact surface and the second contact surface is preferably smaller than the hardness of the third contact surface.
  • a plurality of balls are arranged in two rows, and the inner member and the outer member have a pair of inner raceway surface and outer raceway surface corresponding to the two rows described above. You may do it.
  • the straight line intersects on the radially outer side when viewed from the contact point between the ball and the third contact surface.
  • the inner member includes a first inner member having an inner raceway surface in contact with the ball, and a first inner member, which are included in one row. And a second inner member having an inner raceway surface that comes into contact with the ball and is included in the other row.
  • a preload is applied to the swing arm bearing in the present invention.
  • This facilitates maintaining the contact between the inner member and the outer member constituting the swing arm bearing and the ball during operation of the swing arm bearing.
  • the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved.
  • the application of the preload to the swing arm bearing is performed by, for example, fitting the second inner member into the first inner member in a state where the outer member, the first inner member and the ball are combined. Can be implemented. More specifically, the second inner member is fitted and fixed to the first inner member so that appropriate pressure is mutually applied between the outer member and the inner member and the ball.
  • the preload can be applied by pushing in and fixing along the axial direction.
  • the swing arm bearing according to the present invention has an annular shape, is disposed between the inner member and the outer member, and a plurality of balls are arranged on the annular track with a predetermined pitch. And a retainer that can be freely rolled.
  • the inner member functioning as a fixed shaft and the outer member to which the swing arm is to be connected are formed with raceway surfaces facing each other, and a cage between the raceway surfaces.
  • the ball is held so that it can roll freely.
  • the cage is preferably made of a resin molded body. As a result, steps such as caulking of the cage can be omitted as compared with the case where a metal cage is used, and the manufacturing cost of the swing arm bearing can be further reduced.
  • the cage includes a holding portion for holding a ball and a thick portion having a larger radial thickness than the holding portion.
  • the present inventor conducted a detailed study on cost reduction of the swing arm bearing from the following viewpoints and derived the above configuration. That is, as described above, in the conventional swing arm bearing unit described with reference to FIG. 30, a ball bearing is incorporated. A seal plate protruding toward the inner ring is fixed to the inner peripheral surface of the outer ring of the ball bearing by a clasp for the purpose of suppressing leakage of grease from the inside of the bearing and intrusion of solid foreign matters into the bearing. ing. As a result, the cost of the clasp and the seal plate parts and the cost for carrying out these attachment processes are required, which causes an increase in cost.
  • HDD assembly is usually performed in a clean room.
  • Rolling bearings ball bearings used in the conventional swing arm bearing unit unitize the finished bearing, and in the process until the bearing is transported to the clean room, solid foreign substances are present inside the bearing. There is a risk of intrusion.
  • the inner member functioning as a fixed shaft and the outer member to which the swing arm is to be connected are directly formed with the raceway surfaces facing each other, and the swing arm of the present invention does not need to carry out the process of incorporating the rolling bearing. In the bearing, it is not necessary that the finished bearing is transported in a state where there is a risk of intrusion of solid foreign matter, and the assembly of the swing arm bearing itself is performed in a clean room.
  • the thick portion is formed in the cage, and the distance between the thick portion and the inner member and the outer member is reduced, so that a conventional sealing plate can be obtained.
  • the present inventors have found that sufficient sealing performance can be obtained even if omitted. Therefore, according to the above configuration, it is possible to omit the seal plate while ensuring sufficient sealing performance, so that the manufacturing cost of the swing arm bearing can be further suppressed.
  • the said thick part is formed in the area
  • the plurality of balls may be arranged on a pair of annular tracks.
  • the ball arranged on one of the pair of tracks is held by the first cage, and the ball arranged on the other track of the pair of tracks is held second.
  • each of the first cage and the second cage has a thick portion formed in a region including an end surface opposite to the other cage as viewed from one cage. Preferably it is.
  • the distance between the thick part of the cage and the outer member and the inner member is preferably 0.05 mm or more and 0.2 mm or less.
  • the interval is preferably 0.05 mm or more and 0.2 mm or less.
  • the swing arm bearing manufacturing method includes an inner member having an annular inner raceway surface formed on an outer peripheral surface, an annular outer raceway surface, and a swing arm of a hard disk drive.
  • the manufacturing method includes a step of performing plastic working on a region in contact with the ball on the inner raceway surface and a region in contact with the ball on the outer raceway surface.
  • the swing arm bearing according to the present invention after assembling the inner member, the outer member, and the ball, by rotating the outer member with respect to the inner member, the region in contact with the ball on the inner raceway surface, And the plastic working (burnishing) of the area
  • sufficient durability can be obtained if the processing for reducing the surface roughness Ra is performed on the region of the inner raceway surface and the outer raceway surface that contacts the ball.
  • the inner race surface and the outer race surface in advance before assembling the inner member, outer member, ball and other members constituting the swing arm bearing as the swing arm bearing, the inner race surface and the outer race surface in advance.
  • the outer member and the inner member are rotated around the axis, whereby the outer member is moved with respect to the inner member. It is preferable that the axial force and the radial force are applied between the inner member and the outer member while rotating around the axis.
  • the ball applies a load only in the direction perpendicular to the inner raceway surface with respect to the inner raceway surface.
  • the inner raceway surface is plastically deformed into a shape along the shape of the surface of the ball.
  • the balls may protrude from the plastically deformed region of the inner raceway surface, and torque fluctuation may occur.
  • the ball also extends in the direction of expanding the width of the plastic deformation region on the inner raceway surface with respect to the inner raceway surface.
  • Apply load As a result, the inner raceway surface is plastically deformed so as to have a shape closer to a plane (a smaller curvature) than the shape (curvature) of the surface of the ball.
  • variation can be suppressed.
  • the outer member when the outer member is rotated relative to the inner member, for example, the outer member only rotates with respect to the central axis while the inner member does not rotate with respect to the central axis and remains stationary. If this is the case, plastic working proceeds favorably on the side of the inner raceway on which the outer member is pressed, but plastic working does not proceed sufficiently on the side opposite to the side on which the outer member is pressed. Therefore, it is preferable to rotate both the outer member and the inner member around the axis in order to plastically process the raceway surface over the entire circumference.
  • the inner raceway surface and the outer raceway surface having a surface roughness Ra of 0.3 or less are plastically processed. If the surface roughness Ra of the inner raceway surface and the outer raceway surface before plastic working is 0.3 or less, the surface roughness Ra of the inner raceway surface and the outer raceway surface is sufficiently reduced by using the method described above.
  • the swing arm bearing can be manufactured.
  • the surface roughness Ra is more preferably 0.14 or less.
  • a swing arm fulcrum bearing (swing arm bearing) according to another aspect of the present invention includes an inner member having an annular inner raceway surface formed on an outer peripheral surface, and an inner race that is disposed so as to surround the inner member.
  • An annular outer raceway surface facing the surface is formed, and includes an outer member to which a swing arm of a hard disk drive is to be connected, and a plurality of rolling elements arranged in contact with the inner raceway surface and the outer raceway surface. ing.
  • the rolling element is in contact with the inner raceway surface at one point and in contact with the outer raceway surface at two points.
  • the surface roughness Ra of the first region in contact with the rolling element is greater than the surface roughness Ra of the second region adjacent to the first region. It is a small swing arm fulcrum bearing.
  • the area where the rolling elements actually roll (contact) is a part of the raceway surface, and the rolling elements do not contact in other areas other than the area. And this inventor secures sufficient oil film parameter by making surface roughness Ra of the area
  • the first region that the rolling element contacts when using the swing arm fulcrum bearing is adjacent to the first region.
  • the surface roughness Ra is smaller than the second region where the rolling elements do not contact.
  • the processing amount of the outer member tends to be larger than that of the inner member.
  • the swing arm fulcrum bearing of the present invention by adopting a configuration in which the rolling element is in contact with the inner raceway surface at one point and is in contact with the outer raceway surface at two points, the hardness of the outer member having a large amount of processing is increased. It is possible to suppress. Therefore, it is possible to reduce manufacturing costs.
  • a low-cost swing arm fulcrum bearing can be provided.
  • the hardness of the inner raceway surface is preferably HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is preferably HRC25 or more and HRC35 or less.
  • the rolling element applies an impact load to the raceway surface.
  • indentations may occur on the raceway surface.
  • the inner raceway surface that contacts the rolling element at one point must have a hardness of HRC 40 or higher for the outer raceway surface that contacts at two points, and a hardness of HRC25 or higher.
  • the hardness of the inner raceway surface of the inner member is preferably HRC50 or less
  • the hardness of the outer raceway surface of the outer member is preferably HRC35 or less. From the above, it is preferable that the hardness of the inner raceway surface is HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is HRC25 or more and HRC35 or less.
  • the hardness of the inner raceway surface is HRC43 or more and HRC47 or less, and the hardness of the outer raceway surface is HRC28 or more and HRC32 or less.
  • the inner member has a hole formed in a region including the central axis of the inner raceway surface, and the hardness of the inner raceway surface is HRC40 or more, The hardness of the surface layer portion of the hole is preferably HRC25 or less.
  • the rolling element gives an impact force to the inner raceway surface due to an impact load from the outside, and the hardness is increased in order to suppress the occurrence of indentation on the inner raceway surface.
  • HRC 40 or more is preferable.
  • a hole may be formed in the central portion of the inner member, that is, in a region including the central axis extending in the long axis direction of the inner member for the purpose of fixing the inner member to another member. is there. In this case, it is preferable that the hardness of the surface layer portion of the hole is HRC25 or less in order to suppress the processing cost of the hole.
  • the surface layer portion of the hole refers to a region having a depth of 0.1 mm or less from the surface of the hole, for example.
  • the hardness of the said surface layer part can be investigated, for example by cut
  • the region including the inner raceway surface is preferably induction hardened.
  • induction hardening as described above, the hardness of the outer peripheral portion of the inner member, that is, the region including the inner raceway surface is increased, while the center portion of the inner member, that is, the surface layer portion of the hole is suppressed.
  • the structure can be easily achieved.
  • a method for manufacturing a swing arm fulcrum bearing includes an inner member having an annular inner raceway surface formed on an outer peripheral surface, an annular outer raceway surface, and a hard disk drive.
  • the outer member is rotated with respect to the inner member, thereby rolling on the inner raceway surface.
  • Plastic working burnishing
  • sufficient durability can be obtained if processing for reducing the surface roughness Ra is performed on the inner raceway surface and the outer raceway surface in the region in contact with the rolling elements.
  • the inner raceway surface and the outer raceway are preliminarily assembled.
  • Plastic processing for easily reducing the surface roughness Ra of a necessary region can be performed without performing processing such as grinding to reduce the surface roughness Ra of the surface.
  • the manufacturing cost of the swing arm fulcrum bearing can be reduced.
  • the outer member in the step of carrying out the plastic working, is moved inward by rotating the outer member and the inner member around the axis. It is preferable that the axial rotation and the radial force are applied between the inner member and the outer member while rotating relative to the member around the axis.
  • the rolling element applies a load only in the direction perpendicular to the inner raceway surface with respect to the inner raceway surface.
  • the inner raceway surface is plastically deformed into a shape along the shape of the surface of the rolling element.
  • the rolling element may protrude from the plastically deformed region of the inner raceway surface, and torque fluctuation may occur.
  • the rolling element expands the width of the plastic deformation region on the inner raceway surface with respect to the inner raceway surface. Also apply a load.
  • the inner raceway surface is plastically deformed so as to have a shape closer to a plane (a smaller curvature) than the shape (curvature) of the surface of the rolling element.
  • variation can be suppressed.
  • the outer member when the outer member is rotated relative to the inner member, for example, the outer member only rotates with respect to the central axis while the inner member does not rotate with respect to the central axis and remains stationary. If this is the case, plastic working proceeds favorably on the side of the inner raceway on which the outer member is pressed, but plastic working does not proceed sufficiently on the side opposite to the side on which the outer member is pressed. Therefore, it is preferable to rotate both the outer member and the inner member around the axis in order to plastically process the raceway surface over the entire circumference.
  • the inner raceway surface and the outer raceway surface having a surface roughness Ra of 0.3 or less are plastic worked. It is preferred that If the surface roughness Ra of the inner raceway surface and the outer raceway surface before plastic working is 0.3 or less, the surface roughness Ra of the inner raceway surface and the outer raceway surface is sufficiently reduced by using the method described above.
  • the swing arm fulcrum bearing thus manufactured can be manufactured.
  • the surface roughness Ra is more preferably 0.14 or less.
  • a swing arm fulcrum bearing (swing arm bearing) according to still another aspect of the present invention includes an inner member that has an annular inner raceway surface formed on an outer peripheral surface and functions as a fixed shaft of a swing arm of a hard disk drive.
  • An annular outer raceway surface is formed so as to surround the inner member and faces the inner raceway surface, and contacts the outer member to which the swing arm is to be connected, the inner raceway surface and the outer raceway surface.
  • a cage for holding it movably.
  • a raceway surface facing each other is formed on the inner member functioning as a fixed shaft and the outer member to which the swing arm is to be connected.
  • the rolling element is movably held by the cage.
  • the cage is preferably made of a resin molded body. As a result, steps such as caulking of the cage can be omitted as compared with the case where a metal cage is used, and the manufacturing cost of the swing arm fulcrum bearing can be further reduced.
  • the cage includes a holding portion for holding the rolling element and a thick portion having a larger radial thickness than the holding portion.
  • the present inventor conducted a detailed study on cost reduction of the swing arm fulcrum bearing from the following viewpoints and derived the above configuration. That is, as described above, in the conventional swing arm fulcrum bearing unit described with reference to FIG. 2, a ball bearing is incorporated. A seal plate protruding toward the inner ring is fixed to the inner peripheral surface of the outer ring of the ball bearing by a clasp for the purpose of suppressing leakage of grease from the inside of the bearing and intrusion of solid foreign matters into the bearing. ing. As a result, the cost of the clasp and the seal plate parts and the cost for carrying out these attachment processes are required, which causes an increase in cost.
  • HDD assembly is usually performed in a clean room. Since the rolling bearing (ball bearing) used in the conventional swing arm fulcrum bearing unit unitizes the finished bearing, in the process until the bearing is transported to the clean room, solid foreign substances are present inside the bearing. There is a risk of intrusion.
  • the inner surface that functions as a fixed shaft and the outer member to which the swing arm is to be connected are directly formed with mutually opposing raceway surfaces, and the swing arm fulcrum of the present invention that does not require the step of incorporating a rolling bearing.
  • the thick portion is formed in the cage, and the distance between the thick portion and the inner member and the outer member is reduced, so that a conventional sealing plate can be obtained.
  • the present inventors have found that sufficient sealing performance can be obtained even if omitted. Therefore, according to the above configuration, it is possible to omit the seal plate while ensuring sufficient sealing performance, so that the manufacturing cost of the swing arm fulcrum bearing can be further suppressed.
  • the said thick part is formed in the area
  • the plurality of rolling elements may be arranged on a pair of annular tracks.
  • the rolling elements disposed on one of the pair of tracks are held by the first cage, and the rolling elements disposed on the other track of the pair of tracks are the second.
  • each of the first cage and the second cage has a thick portion formed in a region including an end surface opposite to the other cage as viewed from one cage. Preferably it is.
  • the distance between the thick part of the cage and the outer member and the inner member is preferably 0.05 mm or more and 0.2 mm or less.
  • the interval is preferably 0.05 mm or more and 0.2 mm or less.
  • the fulcrum bearing unit of the present invention it becomes easy to control the rolling element load applied to the ball, and the torque of the fulcrum bearing unit can be stabilized.
  • FIG. 2 is an enlarged cross-sectional view of a region “20” surrounded by a round dotted line in FIG. 1. It is an expanded sectional view of the area
  • FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 1. It is a table
  • FIG. 8 is a schematic sectional view taken along line VIII-VIII in FIG.
  • (A) It is a schematic sectional drawing which shows the state which performed the process (S11) of induction hardening of FIG. 16 of the process which manufactures an inward member (shaft 101).
  • (B) It is a schematic sectional drawing which shows the state which performed the drilling process (S12) of FIG. 16 of the process which manufactures an inward member (axis
  • (C) It is a schematic sectional drawing which shows the state which performed the process (S13) of the tapping process of FIG. 16 in the process of manufacturing an inner member (shaft 101).
  • D It is a schematic sectional drawing which shows the state which performed the process (S14) of the turning process of FIG. 16 of the process which manufactures an inward member (shaft 101).
  • (E) It is a schematic sectional drawing which shows the state which performed the cutting process (S15) of FIG. 16 of the process which manufactures an inward member (shaft 101).
  • (F) It is a schematic sectional drawing which shows the completed state of an inward member (shaft 101).
  • (A) It is a schematic sectional drawing which shows the state which performed the process (S11) of induction hardening of FIG. 16 of the process which manufactures an inward member (adjustment ring 123).
  • (B) It is a schematic sectional drawing which shows the state which performed the process (S12) of drilling of FIG. 16 of the process which manufactures an inward member (adjustment ring 123).
  • (C) It is a schematic sectional drawing which shows the state which performed the process (S14) of the turning process of FIG. 16 of the process which manufactures an inward member (adjustment ring 123).
  • (D) It is a schematic sectional drawing which shows the completed state of the inward member (adjustment ring 123). It is a schematic sectional drawing which shows the deformation
  • FIG. 2 shows a fulcrum bearing unit “20” in FIG. 2 in which the inner member has two R-surface bearing grooves intersecting each other, the outer member has one bearing groove, and the ball contacts each bearing groove at a total of three points. It is an expanded sectional view of the area
  • the inner member has one R-plane bearing groove and one conical raceway surface, the outer member has one bearing groove, and the ball contacts each bearing groove and conical raceway surface at a total of three points.
  • FIG. 3 is an enlarged cross-sectional view of a fulcrum bearing unit in contact with a region “20” in FIG. 2.
  • FIG. 2 shows a fulcrum bearing unit in which the inner member has two R-surface bearing grooves intersecting each other, the outer member has one conical raceway surface, and the balls contact each of the bearing grooves at a total of three points. It is an expanded sectional view of the area of “20”.
  • FIG. 1 the hatched portion shows a cross section.
  • the swing arm 1 shown in FIG. 1 has a magnetic head 2 attached to one end, and a fulcrum bearing unit 100 as a swing arm bearing (swing arm fulcrum bearing) is incorporated at the center of gravity.
  • the fulcrum bearing unit 100 includes a shaft 101 as a first inward member at the center.
  • a sleeve 102 is provided as an outer member connected to the swing arm 1 of the hard disk drive and disposed so as to surround the shaft 101.
  • a plurality of balls 109 as rolling elements for rotating the swing arm 1 are arranged in two rows in the vertical direction in a region sandwiched between the shaft 101 and the sleeve 102.
  • the balls 109 arranged in a plurality are generally steel balls, but ceramic balls may be used instead of the steel balls for the purpose of reducing the weight of the balls.
  • a ring 123 is fixed.
  • the adjustment ring 123 is provided as a second inward member independent of the shaft 101 for convenience when assembling the fulcrum bearing unit 100 described later.
  • the adjustment ring 123 is in contact with the plurality of balls 109 at two locations as will be described later.
  • the conical surface shape, that is, the rotation shaft of the swing arm bearing is directly provided on the outer peripheral surface of the shaft 101.
  • a conical raceway surface 120 and a conical raceway surface 121 having a linear shape in a cross section including the same are provided.
  • the conical raceway surface 120 and the conical raceway surface 121 are in contact with the plurality of balls 109, respectively.
  • the sleeve 102 has a conical shape as a contact surface for contacting the ball 109 in the vicinity of the upper ball 109 and the vicinity of the lower ball 109 in two rows in the vertical direction.
  • a raceway surface 122 is provided.
  • the upper ball 109 is an annular inner raceway surface formed on an adjustment ring 123 fitted to the shaft 101, and is a cone that is a first contact surface having a conical shape.
  • Two contact points are provided on the conical raceway surface 141 and on the conical raceway surface 142, which is a second contact surface having a conical shape, which is an annular inner raceway surface that intersects the first contact surface.
  • the lower ball 109 has a conical raceway surface 120 as a first contact surface having a conical surface shape, and a second conical surface shape intersecting the first contact surface.
  • Two conical track surfaces 121 which are contact surfaces are provided with contact points.
  • the fulcrum bearing unit 100 does not include an inner ring and an outer ring that are used for ordinary bearings.
  • the fulcrum bearing unit 100 is an annular outer raceway surface facing the inner raceway surface on which a ball 109 rolls on a sleeve 102 that is an outer member.
  • the conical track surface 122 which is the third contact surface in contact with the ball, is directly provided. Accordingly, the balls 109 are arranged in contact with the inner raceway surface of the inner member (the shaft 101 and the adjustment ring 123) and the outer raceway surface of the outer member (sleeve 102).
  • one of the inner raceway surface and the outer raceway surface has the first contact surface and the second contact surface in contact with the ball 109. These contact surfaces intersect each other.
  • the other raceway surface of the inner raceway surface and the outer raceway surface has a structure that has a third contact surface that contacts the ball 109. Accordingly, the balls 109 are in contact with the inner raceway surface and the outer raceway surface at a total of three points. In this way, as will be described later, the contact angle of the ball 109 is stabilized and the control of the rolling element load is facilitated, so that fluctuations in torque can be suppressed.
  • the vertical thickness of the fulcrum bearing unit 100 can be reduced by the amount that the outer ring or the inner ring is not used. Further, since the outer ring and the inner ring are not provided, the spacer can be abolished, so that the thickness of the fulcrum bearing unit 100 in the vertical direction can be further reduced accordingly.
  • a seal 125 is provided on the sleeve 102 in order to prevent the lubricant such as grease enclosed in the bearing from leaking to the outside and to prevent the entry of foreign matter from the outside. Is provided.
  • the plurality of balls 109 are in contact with the member on the shaft 101 side as an inward member at two points. Further, the sleeve 102 as the outer member contacts at one point on the conical track surface 122. For this reason, the plurality of balls 109 come into contact with the raceway surface at a total of three points.
  • the upper ball 109 includes an adjustment ring 123 fitted to a shaft 101 as an inward member, and two on the conical raceway surface 141 and the conical raceway surface 142.
  • the contact angle is uniquely determined in the fulcrum bearing unit 100 in the present embodiment.
  • the rolling element load can be stabilized and torque fluctuations can be suppressed.
  • the fulcrum bearing unit 100 is required to have a small torque fluctuation.
  • the fulcrum bearing unit 100 capable of stabilizing the rolling element load and stabilizing the torque variation by stabilizing the contact angle has excellent characteristics as a swing arm bearing.
  • the processing of the conical surface shape is easier to process than the processing of the arc surface shape in the cross section including the bearing groove of the R surface as the raceway surface, that is, the rotating shaft of the swing arm bearing. Therefore, there is a possibility that the processing cost can be reduced.
  • a straight line connecting the contact point 145 on the conical track surface 122 as the third contact surface with the ball 109 and the center of the ball 109, and the contact with the ball 109 for example, shown in FIG. Attention is paid to a straight line connecting the point 155.
  • the straight line in FIG. 2 is a first straight line
  • the straight line in FIG. 3 is a second straight line.
  • the first straight line and the second straight line intersect each other in the radial direction as viewed from the contact point 145 and the contact point 155, that is, on the side where the sleeve 102 exists.
  • it is.
  • FIG. 4 is a development view of the surface of the conical track surface 120 as the first contact surface having a conical surface shape, which is directly provided on the outer peripheral surface of the shaft 101 as the inner member.
  • the surface roughness improving region 120A which is a part of the conical raceway surface 120, for example, a region sandwiched between two dotted lines in FIG. 4, is subjected to surface roughness improving processing.
  • This surface roughness improving processing region 120A is a first region in which the ball 109 is in contact with the swing arm 1 (see FIG. 1) during the rotation operation.
  • the ball 109 does not come into contact with the swing arm 1 (see FIG. 1) during rotation, so the surface roughness Ra is reduced. It is not necessary to perform processing to reduce the unevenness of the surface of the raceway surface.
  • the hardness of the ball 109 is a member having a raceway surface such as the adjusting ring 123 and the sleeve 102. It is preferable that the hardness is higher.
  • the processing for reducing the surface roughness Ra is performed by pressing the ball 109 against the surface region to be processed with a force equal to or greater than the yield stress of the surface to be processed and relatively with respect to the surface to be processed. By rotating the surface and plastically deforming the surface irregularities, the surface is smoothed and the surface roughness Ra is reduced (burnishing). For this reason, it is preferable that the hardness of the ball 109 is made higher than the surface desired to be processed by pressing, and the ball 109 is prevented from undergoing plastic deformation due to stress during the burnishing process.
  • FIG. 5 is a cross-sectional view of a portion where the upper ball 109 is arranged as shown in FIG.
  • the fulcrum bearing unit 100 includes an inner shaft 101 as an inner member, and an adjustment ring 123 is fixed to the shaft 101.
  • a plurality of balls 109 are arranged in contact with the adjustment ring 123 and the sleeve 102 as the outer member. How these are in contact is as described above.
  • a cage may be sandwiched between a plurality of balls 109 so that the balls 109 do not contact each other, but as shown in FIG. Spacer balls 149 may be sandwiched.
  • the plurality of spacer balls 149 described above are preferably arranged alternately with balls 109 as shown in FIG. However, in order to increase the rigidity of the fulcrum bearing unit 100, the number of balls 109 having a large diameter may be increased and the number of spacer balls 149 may be decreased.
  • FIG. 6 shows the production order and a table on the right side of the table that summarizes the members to be processed.
  • A indicates that the member is necessarily processed in the process
  • B indicates that the process may be processed in the member (some members may be processed). It shows that.
  • the fulcrum bearing unit 100 according to the present invention will be described with reference to the fulcrum bearing unit 100 shown in FIG.
  • a step of preparing a member (S10) is performed. Specifically, this is a step of preparing members such as a shaft 101, a sleeve 102, a plurality of balls 109, and an adjustment ring 123 that constitute the fulcrum bearing unit 100 shown in FIG.
  • a material that can be hardened by heat treatment for example, SUS420J2
  • general rolling material such as SUJ2 or SUS440C can also be used.
  • the adjustment ring 123, the shaft 101, and the sleeve 102, which are members of the fulcrum bearing unit 100, have raceway surfaces on which the balls 109 come into contact and roll. For this reason, as will be described later, in order to maintain the rigidity of the fulcrum bearing unit 100 and stabilize the torque, burnishing is performed on the raceway surface so that the surface roughness Ra of the raceway surface becomes small. Since the fulcrum bearing unit 100 is used for the swing arm 1 for a hard disk drive, the load from the outside is very small at about several grams in this application. Further, the contact stress generated when the balls 109 come into contact with the raceway surface during the rotation of the swing arm 1 is 1.5 GPa or less.
  • the hardness of the raceway surface may be HRC45 or less. If the hardness is lowered in this way, it is possible to easily perform a turning process for finishing to a predetermined dimension after adjusting the hardness, to reduce the processing cost and to shorten the processing tact. . In addition, the life of a tool for turning can be extended.
  • the shaft 101 and the ball 109 formed with the adjusting ring 123, the conical raceway surface 120, and the conical raceway surface 121 provided on the shaft 101 as the inner member.
  • the ball 109 when performing processing (burnishing) to reduce the surface roughness Ra of the raceway surface described later, the ball 109 is pressed against the surface region to be processed with a force equal to or higher than the yield stress of the surface to be processed. Rotate relative to the desired surface to plastically deform the surface irregularities.
  • the inner member side that comes into contact with the ball 109 at two points has two places where the ball 109 presses the raceway surface at the contact point as compared with the outer member side that comes into contact with the ball 109 at one point. To be distributed. For this reason, it is preferable that the hardness of the raceway surface on the two-point contact side is lower than the altitude of the raceway surface on the one-point contact side.
  • both the inner member side member and the outer member side member do not cause plastic deformation due to the pressure of the ball 109 during the normal swing arm rotation operation, and the respective raceway surfaces on the inner member side and the outer member side.
  • the processing burnishing processing
  • the hardness is set such that plastic deformation is caused by pressing of the balls 109.
  • the hardness of the ball 109 is such that it does not cause plastic deformation due to the pressure of the ball 109 not only during the normal swing arm rotation operation but also during the process of reducing the surface roughness Ra (burnishing process). It is preferable to keep it. As described above, when performing the burnishing process, it is necessary that the surface irregularities of the inner member side and the outer member side be plastically deformed by the pressing of the balls 109. It is preferable to make the hardness of the surface of the ball 109 higher than the hardness of each raceway surface on the member side and the outer member side.
  • a fulcrum bearing is provided in a partial region of the bonding surface 124 shown in FIG. 1 in which the adjustment ring 123 is arranged and bonded at a predetermined position on the axial surface of the shaft 101.
  • an adhesive pool 133 (see FIG. 9C described later). This is an area for temporarily storing the adhesive having a depth in the radial direction of the shaft 101.
  • the sleeve 102 is provided with a seal 125 for preventing the lubricant such as grease enclosed in the bearing from leaking to the outside and for preventing foreign matter from entering from the outside. It has been.
  • the sleeve 102 has a notch 135 (FIGS. 9A and 9B described later) at a position where the seal 125 shown in FIG. B) is preferably provided.
  • conical raceway surface 141, the conical raceway surface 142, and the outer member as the inner raceway surface of the inner member in the cross-sectional view of FIG. 2 (the upper ball 109 side of the two rows arranged) described above, for example.
  • a conical raceway surface 122 as the outer raceway surface is defined as a first raceway surface.
  • a conical raceway surface 122 as the outer member) is defined as a second raceway surface.
  • the first straight line and the second straight line intersect each other radially outside the contact point 145 and the contact point 155, that is, on the side where the sleeve 102 exists.
  • a conical track surface provided on each of the adjustment ring 123, the shaft 101 and the sleeve 102.
  • two straight lines connected to the center of the ball 109 are provided.
  • the bisectors of the upper ball 109 and the lower ball 109 intersect each other on the radially outer side (side where the sleeve 102 exists). It is preferable to become.
  • the step (S20) of performing taper processing is performed.
  • the adjustment ring 123 as an inward member is tapered on the surface facing the upper ball 109, and a conical surface as shown in FIG.
  • a conical track surface 141 which is a first contact surface having a shape and a conical track surface 142 which is a second contact surface having a conical shape intersecting the first contact surface are formed.
  • a region (member) in which the lower ball 109 contacts the inner member among the inner members is also tapered, so that the conical track surface 120 and the first contact surface 120 and the first contact surface as shown in FIG.
  • a conical raceway surface 121 which is the second contact surface is formed.
  • conical surface raceways are formed by subjecting predetermined portions of the member to forging or turning and taper processing by a combination of these and grinding.
  • the surface of the sleeve 102 as the outer member facing the upper and lower balls 109 is also tapered to form a conical track surface 122 as the third contact surface. This is for bringing the ball 109 into contact with the sleeve 102 at one point.
  • These conical surface raceways are formed by tapering a predetermined portion by forging or turning and a combination of these and grinding, as in the case of the inner member.
  • a step of temporarily assembling the members is performed. Specifically, this is a step of assembling the respective members previously prepared for the fulcrum bearing unit 100 into a predetermined arrangement.
  • the predetermined arrangement means that each member is installed so as to have the arrangement shown in FIG. 1 in order to constitute the fulcrum bearing unit 100 shown in FIG.
  • a jig that can arrange the plurality of balls 109 in a ring shape is used. Is preferred.
  • the jig 210 shown in FIG. 7 and FIG. 8 has a pipe-like shape inside the flange portion 203 at substantially constant angles (approximately 45 ° in FIG. 8) with respect to the center of the main body portion 204 connected to the vacuum pump.
  • the cavity 201 is formed.
  • the cavity 201 is connected to a cavity 202 inside the main body 204, and the cavity 202 is connected to a vacuum pump via an electromagnetic valve.
  • this electromagnetic valve is operated so as to connect the vacuum pump and the cavity portion 202, air is sucked from the cavity portion 202, so that the ball 109 is moved to the outer diameter surface of the flange portion 203 ( It can be adsorbed to the open end of the cavity 201. Then, as shown in FIG.
  • a plurality of balls 109 can be formed in a ring-like arrangement that is necessary for assembling as the fulcrum bearing unit 100 and that are installed at substantially constant intervals.
  • the size of the ring formed by the plurality of balls 109 can be adapted to the size of the system to be assembled.
  • FIGS. 9A to 9C are schematic diagrams showing a procedure for arranging the members in a system to be assembled.
  • the balls 109 are in contact with the conical raceway surface 122 of the sleeve 102 as shown in FIG. 109 is transported for placement. Then, when the ball 109 can be arranged at a predetermined position, the vacuum of the vacuum pump connected to the jig 210 is released, and the ball 109 is released from the jig 210.
  • the spacer ball 149 is also arranged at a predetermined position in the same manner as the ball 109. However, depending on the structure of the jig 210, the spacer ball 149 may be arranged after the ball 109 is arranged, or the ball 109 and the spacer 109 may be arranged. You may arrange
  • oil or the like used at the time of completion is applied to the conical raceway surface 122 of the sleeve 102 in advance. It is preferable to apply a paste such as grease for temporarily fixing the arranged balls 109.
  • the sleeve 102 and ball 109 (and spacer ball 149) of FIG. 9 (A) are fitted to the shaft 101 as the inner member from above, so that the sleeve as shown in FIG. 9 (B).
  • the shaft 101 can be disposed on the inner peripheral side of the ball 102 and the ball 109 (and the spacer ball 149).
  • an adjustment ring 123 provided with a conical raceway surface 141 and a conical raceway surface 142 as inner raceway surfaces is disposed at a predetermined location and temporarily adhered to the adhesion surface 124 of the shaft 101 shown in FIG.
  • the seal 125 shown in FIG. 1 is also arranged in a notch 135 shown in FIG.
  • the seal 125 may be fixed in the step of assembling a subsequent member (S50).
  • the adjustment ring is filled with the adhesive pool 133 shown in FIG. 9C, which is provided in a partial region of the bonding surface 124. It is preferable that 123 is disposed at a predetermined position and temporarily adhered to the shaft 101.
  • the adhesive pool 133 is preferably filled with an adhesive that does not cure until the assembly of the fulcrum bearing unit 100 is completed.
  • an epoxy adhesive is preferably used.
  • the notch 135 provided on the surface of the sleeve 102 facing the shaft 101 is the same adhesive as the adhesive filled in the adhesive pool 133 inside. It is preferable that the seal 125 is temporarily disposed after a part of is applied.
  • the step of burnishing the raceway surface (S40) is performed. Specifically, this is a step of reducing the surface roughness Ra to the inner raceway surface and the outer raceway surface having a conical shape.
  • the conical raceway surface 141 as the first contact surface that is the inner raceway surface
  • the conical raceway surface 142 that is the second contact surface having a conical surface shape intersecting the first contact surface.
  • Burnishing process is performed.
  • the ball 109 rotates with the relative rotation of the sleeve 102, the ball 109 is processed to reduce the surface roughness Ra of the entire first region in contact with the ball 109 while rotating. Do. Therefore, the ball 109 does not process the second region of the raceway surface that does not contact the ball 109. As a result, the surface roughness Ra of the first region can be made smaller than the surface roughness Ra of the second region.
  • the horizontal axis indicates the position coordinates of the raceway surface (position coordinates in the direction intersecting with the extending direction of the burnished region), and the vertical axis indicates the unevenness height of the surface. Is. In the region of the position coordinates described as “burnishing position” in FIG. 10, burnishing is performed, and the displacement of the vertical axis is small. In other words, it can be seen that the surface roughness Ra is reduced and the surface is smoothed at the burnished portion.
  • a surface having a 10-point average roughness Rz of 1 ⁇ m before burnishing has Rz of 0.02 ⁇ m due to burnishing.
  • FIG. 11 is a schematic cross-sectional view showing a mode of processing a raceway surface on which a ball rolls in the embodiment of the present invention.
  • the hatched portion represents a cross section.
  • the unit that has been temporarily assembled in the step (S ⁇ b> 30) is installed on the shaft end support 131. Then, a downward load is applied to the adjustment ring 123 using the holding jig 132. First, F1 which is several times to several tens of times the preload applied to incorporate the fulcrum bearing unit 100 is applied to this load. Then, as shown in FIG. 11, the pressing plate 184 in contact with the outer peripheral surface of the sleeve 102 applies a force to the sleeve 102 in the direction from the sleeve 102 toward the shaft 101 (the direction from right to left in FIG. 11). In addition, the sleeve 102 is driven to rotate along the outer peripheral surface of the sleeve 102 by a frictional force with the sleeve 102.
  • the sleeve 102 may be driven by a frictional force using a method other than the presser plate 184.
  • a method other than the presser plate 184 there is a method called a capstan drive or a belt drive.
  • a method of applying F1 that is several times to several tens of times the preload a method using a spring, a method using a dead weight, a method using hydraulic pressure or air pressure may be used.
  • the ball 109 Since the ball 109 performs a rotational movement with the relative rotation of the sleeve 102, the ball 109 is rotated and moved to reduce the surface roughness Ra of the entire first region in contact with the ball 109 in the raceway surface. Therefore, the ball 109 does not process the second region of the raceway surface that does not contact the ball 109. As a result, the surface roughness Ra of the first region can be made smaller than the surface roughness Ra of the second region. In this way, by performing processing for reducing the surface roughness Ra only on a part of the raceway surface, the processing tact time can be shortened and low-cost processing can be realized.
  • the ball 109 as a rolling element is pressed against a predetermined region, whereby both the upper and lower rows of balls 109 roll. All the processes for reducing the surface roughness Ra on both the surface and the outer raceway surface can be performed at once. Thus, the machining tact time can be further shortened and low-cost machining can be realized as compared with the case where the inner raceway surface and the outer raceway surface are burned separately.
  • the step (S40) may be performed after the temporary assembly in the step (S30) or before the assembly in the parts stage before the temporary assembly in the step (S30). And may be burned separately.
  • the positional deviation between the inner raceway surface and the outer raceway surface can be reduced by performing the burnishing process in step (S40) after the temporary assembly in step (S30). Further, the positional deviation between the first region where the surface roughness Ra is reduced by burnishing and the region where the balls 109 are in contact with the raceway surface when actually assembled as the fulcrum bearing unit 100 is used. Can be reduced.
  • the step of assembling the members (S50) is performed. Specifically, in the step (S30), each member is temporarily fixed to the unit that has been temporarily assembled, and each member is fixed by final fixing to complete the configuration of the fulcrum bearing unit 100.
  • the load applied by the pressing jig 132 is reduced from F1 to F, which is a preload for fixing the adjustment ring 123, for example.
  • the entire unit shown in FIG. 11 with the press plate 184 removed with the preload set to F is placed in a furnace and heated to the curing temperature of the adhesive.
  • the adhesive filled in the adhesive pool 133 in the previous step can be cured, and the adjustment ring 123 can be fixed to the shaft 101. Further, the seal 125 is also adhered to the sleeve 102 using the same adhesive while being fitted in the cut 135 shown in FIG. 9A or 9B.
  • the preload F is applied via an aligning seat.
  • the inner member (the shaft 101 and the adjusting ring 123) and the outer member (sleeve 102) constituting the fulcrum bearing unit 100 even when the fulcrum bearing unit 100 is in operation. It becomes easy to maintain contact between the ball 109 and the ball 109.
  • the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved.
  • the step (S40) may be performed after the temporary assembly in the step (S30), or before the assembly in the parts stage before the temporary assembly in the step (S30). And the outer raceway surface may be burned separately.
  • the burnishing process (S40) is performed before the process (S30) is performed, for example, a position shift between the inner raceway surface and the outer raceway surface or a process for reducing the surface roughness Ra by the burnishing process is performed. It is preferable to reduce the influence of the positional shift between the region 1 and the region where the balls 109 are in contact with the raceway surface in actual use on the product performance.
  • the burnishing process area is widened, the influence of the positional deviation on the product performance can be reduced.
  • the area where the burnishing process is performed can be widened.
  • the adjusting ring 123 and the shaft 101 constitute an inner member.
  • the adjustment ring 123 is provided as a second inward member independent of the shaft 101 for the convenience of assembling the fulcrum bearing unit 100.
  • the adjustment ring 123 is in contact with each of the balls 109 as a plurality of rolling elements at one point as will be described later.
  • the width in the direction intersecting the major axis direction of the shaft 101 is widened as shown in FIG. 12 near the lower portion of the shaft 101, that is, in the vicinity where the lower balls 109 are present in two rows in the vertical direction.
  • a conical track surface 120 having a conical surface shape, that is, a linear shape in a cross section including the rotation axis of the swing arm bearing is provided directly on the outer peripheral surface of the region.
  • the conical raceway surface 120 as the inner raceway surface is in contact with each of the plurality of balls 109 at one point.
  • the sleeve 102 has two conical raceway surfaces 122 which are outer raceway surfaces for contacting the balls 109 in the vicinity of the upper balls 109 out of the two rows arranged in the vertical direction, and the lower side. In the vicinity where the balls 109 exist, two conical track surfaces 122 which are outer track surfaces for contacting the balls 109 are provided so as to intersect with each other.
  • the fulcrum bearing unit 200 shown in FIG. 12 there are two contact points between the sleeve as the outer member and the plurality of balls 109.
  • the upper ball 109 is formed on the conical track surface 122 that is the first contact surface formed on the sleeve 102 and on the second contact surface that intersects the first contact surface.
  • Contact points are provided at two locations on a conical raceway surface 122.
  • the lower ball 109 is a conical track surface 122 as a first contact surface formed on the sleeve 102 and a second contact surface intersecting the first contact surface. Contact points are provided at two locations on the conical track surface 122.
  • the fulcrum bearing unit 200 does not include an inner ring and an outer ring that are used for ordinary bearings.
  • the adjustment ring 123 is directly provided with a conical track surface 141 which is a third contact surface in contact with the ball as the inner track surface. Therefore, the balls 109 are arranged in contact with the inner raceway surface of the inner member (the shaft 101, the adjustment ring 123) and the outer raceway surface of the outer member (sleeve 102). That is, the balls 109 are in contact with the inner raceway surface and the outer raceway surface at a total of three points.
  • the fulcrum bearing unit 200 is in contact with the outer raceway surface at two points and is in contact with the inner raceway surface at one point. Different from the unit 100. Further, the fulcrum bearing unit 200 of the second embodiment has the same aspect as the fulcrum bearing unit 100 of the first embodiment.
  • the upper ball 109 is in contact with the adjustment ring 123 fitted to the shaft 101 at one point (contact point 143) on the conical track surface 141, and outward.
  • the sleeve 102 as a member contacts the two conical track surfaces 122 at two points (contact point 144 and contact point 145, respectively).
  • the lower ball 109 is a conical shape having a conical shape directly provided on the outer peripheral surface of a region where the width in the direction intersecting the major axis direction of the shaft 101 is widened.
  • the fulcrum bearing unit 200 is a part of the surface of the conical raceway surface 120, which is a part of the conical raceway surface 120 and is sandwiched between two dotted lines in FIG. Only a certain surface roughness improving processing region 120A is subjected to processing for improving the surface roughness Ra (decreasing the surface roughness Ra).
  • the manufacturing cost of the fulcrum bearing unit 200 can be reduced by limiting the region to be processed to reduce the surface roughness Ra to only the surface roughness improving processing region 120A.
  • the balls 109 roll while the balls 109 are in contact with the outer raceway surface and the inner raceway surface.
  • the ball 109 applies an impact load to the raceway surface (outer raceway surface or inner raceway surface) with which the ball 109 is in contact. Therefore, there is a possibility that an indentation is generated on the raceway surface. In order to suppress such indentation during use, it is preferable to increase the hardness of the raceway surface to such an extent that the indentation does not occur.
  • the hardness of the inner raceway surface of the shaft 101 that is the inner member and the adjustment ring 123 is HRC40 or higher
  • the hardness of the outer raceway surface of the sleeve 102 that is the outer member is HRC25 or higher.
  • the ball 109 and the outer raceway surface are in contact at two points, and the ball 109 and the inner raceway surface are in contact at one point. Therefore, the outer raceway surface contacting at two points receives less stress when an impact load is applied from the ball 109, for example, than the inner raceway surface contacting at one point. Accordingly, the hardness of the outer raceway surface can be made lower than that of the inner raceway surface.
  • the hardness of the inner raceway surface and the outer raceway surface is increased, machining becomes difficult, and the cost required for machining increases.
  • the hardness of the inner raceway surface of the shaft 101 that is the inner member and the adjustment ring 123 is HRC50 or less
  • the hardness of the outer raceway surface of the sleeve 102 that is the outer member is HRC35. The following is preferable.
  • the hardness of the inner raceway surface (for example, the conical raceway surface 141 and the conical raceway surface 120) of the shaft 101 and the adjustment ring 123 is HRC40 or more and HRC50 or less, and the outer raceway surface (for example, the conical raceway surface 122) of the sleeve 102.
  • the hardness is preferably HRC25 or more and HRC35 or less.
  • the inner raceway surface hardness is more preferably HRC43 to HRC47
  • the outer raceway hardness is more preferably HRC28 to HRC32.
  • the outer raceway surface can be made harder than the inner raceway surface.
  • the inner raceway surface for example, the conical raceway surface 120 has a higher hardness than the outer raceway surface, for example, the conical raceway surface 122.
  • the fulcrum bearing unit 200 has a region in the vicinity of the central axis that extends in the major axis direction of the shaft 101 that is the inner member, that is, a region that includes the central axis of the inner raceway surface of the shaft 101. Are formed with holes 161 and screws 162 used for fixing the fulcrum bearing unit 200 to other members.
  • the shaft 101 as the inner member has a conical surface 120 as the inner raceway surface on the outer peripheral portion thereof, so that the hardness is high (preferably HRC 40 or more), but the hole 161 exists.
  • the hardness of the region of the central portion is lower than that of the outer peripheral portion such as the conical raceway surface 120.
  • the subsequent machining cost can be reduced by increasing the hardness only in the region of the outer peripheral portion forming the conical raceway surface 120 as the inner raceway surface.
  • the hardness of the surface layer portion of the hole 161 is preferably HRC25 or less. If the hardness of the central portion of the shaft 101 is lowered to such an extent that the hardness of the surface layer portion of the hole 161 is HRC25 or less, the process of forming the hole 161 and the screw 162 sufficiently reduces the cost of performing the process. It will be as easy as possible.
  • the outer peripheral portion (the region including the conical raceway surface 120 which is the inner raceway surface) of the shaft 101 which is the inner member is subjected to a treatment for increasing the hardness by induction hardening.
  • induction hardening the outer peripheral portion of the member such as the shaft 101 is positively heated to be hardened and hardened, and the central portion of the shaft 101 (for example, the region where the hole 161 is formed) is not hardened.
  • the desired hardness distribution can be easily imparted to the shaft 101.
  • FIG. 17 is a diagram for explaining a manufacturing process of the inner member (shaft 101).
  • FIG. 18 is a view for explaining a manufacturing process of the inner member (adjustment ring 123).
  • the hatched portion represents a cross section.
  • a method for manufacturing the fulcrum bearing unit according to the second embodiment will be described with reference to FIGS. 15 to 18 using the fulcrum bearing unit 200 shown in FIG. 12 as an example.
  • the step (S100) of preparing the member shown in FIG. 15 is performed.
  • This is an inner member in which, for example, an annular inner raceway surface is formed on the outer peripheral surface of the fulcrum bearing unit 200 shown in FIG.
  • This is a step of preparing a member such as a sleeve 102 as an outer member and an adjustment ring 123 as an inner member to be connected to a swing arm of a hard disk drive. .
  • the step of preparing the member (S100) is basically the same as the step of preparing the member (S10), but will be described in more detail with reference to FIGS.
  • the step of preparing the shaft 101 in the step of preparing the member (S100) first, the step of induction hardening (S11) shown in FIG. 16 is performed.
  • the step (S11) as shown in FIG. 17A, the upper side of the dotted line 171 corresponding to the outer peripheral portion of the steel material 99 such as a steel bar or steel wire made of SUS420J2, SUJ2, SUS440C, etc., which is the material of the shaft 101.
  • the region below the dotted line 172 is subjected to induction heating and then hardened by rapid cooling (induction hardening).
  • the length of the finished product shown in FIG. 17 (F) according to this embodiment (the length in the left-right direction in FIG. 17 (F)) is 6 to 7 mm, and the length of the steel material 99 is 1000 to 2000 mm.
  • HRC43 or more and HRC47 or less it is possible to suppress the occurrence of indentation on the conical track surface 120 (see FIG. 12) due to an unexpected impact load when using the swing arm 1 without increasing the processing cost.
  • the step of induction hardening (S11) shown in FIG. 16 is first performed.
  • this step (S11) as shown in FIG. 18A, in order to set the hardness of the conical track surface 141 (see FIG. 1) to HRC40 or more and HRC50 or less, the outer peripheral portion of the steel material 99, that is, FIG. Induction hardening and tempering are performed so that the hardness of the region above the dotted line 171 and below the dotted line 172 is HRC40 or higher and HRC50 or lower.
  • the central portion of the shaft 101 (the region including the central axis of the inner raceway surface) shown in FIG.
  • a hole 161 that is a cavity is formed in a direction extending in the central axis (long axis direction) with respect to the central portion (region including the central axis of the inner raceway surface) of the adjustment ring 123 shown in B).
  • the steel material 99 induction-hardened in the step (S11) is rotated around the central axis extending in the major axis direction, for example, by using a center cutting tool, the central portion region.
  • a hole 161 having a predetermined diameter is formed in the substrate.
  • the hardness of the central portion of the steel material 99 in which the hole 161 is formed is HRC 25 or less. Preferably there is.
  • the subsequent tapping process (S13) shown in FIG. 16 is a process of forming the screw 162 on the wall surface surrounding the hole 161 as shown in FIG. Specifically, a thread (screw 162) can be formed by machining a wall surface surrounding the hole 161 using a tapping tool. This step (S13) is omitted in the step of preparing the adjustment ring 123 that does not require the thread formation.
  • the surface layer portion of the wall surface surrounding the hole 161 The hardness is preferably HRC25 or less.
  • the turning process (S14) shown in FIG. 16 as shown in FIGS. 17D and 18C, the turning process for forming the outer shapes of the shaft 101 and the adjustment ring 123 is performed. Specifically, turning is performed along an outer shape line 163 showing the outer shape of the shaft 101 shown by a dotted line in FIG. 17D and an outer shape line 165 showing the outer shape of the adjustment ring 123 shown by a dotted line in FIG. Processing to remove the outside of the outline is performed. In this way, an outer shape including the conical track surface 120 of the shaft 101 is formed as shown in FIG. In addition, an outline 165 in FIG. 18C is a conical track surface 141 of the completed adjustment ring 123.
  • the turning process (S14) for forming these conical raceway surfaces is the same as the taper machining process (S20) in FIG.
  • a step (S15) that is a step of cutting is performed in the step of preparing shaft 101.
  • the steel material 99 is cut along the cutting line 164 in FIG.
  • the shaft 101 on which the conical track surface 120 is formed is completed.
  • a step (S15) that is a step of cutting is performed in the step of preparing adjustment ring 123.
  • the steel material 99 is cut to adjust the conical track surface 141 as shown in FIG. 18D.
  • the ring 123 is completed.
  • the shaft 101 and the adjustment ring 123 that constitute the inner member of the fulcrum bearing unit 200 are prepared.
  • the step of preparing the shaft 101 and the adjustment ring 123 constituting the inner member has been described.
  • the above steps (S11) to (S12) and (S14) also apply to the sleeve 102 which is the outer member. Preparation can be made by performing the same process as in (S15).
  • a temporary assembling step (S200) shown in FIG. 15 is performed. This can be explained using FIG. 7, FIG. 8, FIG. 9 (A) and FIG. 9 (B) described above, as in the step of temporarily assembling the members in FIG. 6 (S30).
  • a plurality of balls 109 are arranged on the inner raceway surface (conical raceway surface) of the shaft 101 and the adjustment ring 123. 141, 120) at one point and in contact with the outer raceway surface (conical raceway surface 122) of the sleeve at two points.
  • FIG. 9C a plurality of balls 109 are arranged on the inner raceway surface (conical raceway surface) of the shaft 101 and the adjustment ring 123. 141, 120) at one point and in contact with the outer raceway surface (conical raceway surface 122) of the sleeve at two points.
  • step S300 a step of plastic working the raceway surface (S300) is performed. This is basically the same mode as the step of burnishing the raceway surface in FIG. 6 (S40), and this will also be described in more detail than the above-described step of burnishing (S40).
  • the pressing plate 184 in contact with the outer peripheral surface of the sleeve 102 applies a force to the sleeve 102 in the direction from the sleeve 102 toward the shaft 101 (the direction from right to left in FIG. 13).
  • the sleeve 102 is rotated along the outer peripheral surface of the sleeve 102 by the frictional force with the sleeve 102. This will be described in more detail below.
  • the force in the direction applied from the upper side to the lower side with respect to the holding jig 132 shown in FIG. 11 is referred to as an axial force, and the force applied to the sleeve 102 by the pressing plate 184 is referred to as a radial force.
  • the presser disc 184 applies a radial force to the sleeve 102 while rotating (spinning) at a rotational speed ⁇ ⁇ b> 1 by a motor 181 connected thereto.
  • the aspect of the fulcrum bearing unit 100 is drawn, the fulcrum bearing unit 200 also takes the same aspect.
  • the sleeve 102 rotates around the shaft 101. This is because the unit shown in FIG. 11 including the sleeve 102 has already been temporarily assembled as the fulcrum bearing unit 200 (see FIG. 12). As described above, the sleeve 102 which is the outer member is relatively rotated around the shaft 101 which is the inner member. In this way, for example, plastic working can be performed by applying a force to the region where the conical raceway surface 141 contacts the ball 109 and the region where the conical raceway surface 122 contacts the ball 109.
  • the above processing method is burnishing processing according to Embodiment 2 of the present invention.
  • the burnishing can be performed in a temporarily assembled state as the fulcrum bearing unit 200 (see FIG. 12). Therefore, there is no need to perform a process of grinding the raceway surface with, for example, a grindstone before performing the temporary assembly step (S20). Further, in a state where provisional assembly has already been performed, the first region in which the balls 109 are in contact with each other by simply rotating the sleeve 102 which is the outer member around the shaft 101 which is the inner member.
  • the surface roughness Ra can be easily made smaller than the surface roughness Ra of the second region adjacent to the first region in the raceway surface. For this reason, by performing the burnishing process, it is possible to omit the process of previously grinding the raceway surface with, for example, a grindstone (the entire raceway surface). For this reason, the labor and cost required for processing can be greatly reduced.
  • the presser plate 184 rotates the sleeve 102 which is an outer member. Therefore, the conical raceway surface 122 which is the raceway surface of the sleeve 102 is plastically processed over the entire circumference.
  • the conical track surfaces 141 and 120 which are the track surfaces of the inner member, are partially in the circumferential direction (the shaft 101 in FIG. 11). Only the right side) of the rotating shaft is plastically processed, and there is a possibility that it is not fully processed over the entire circumference.
  • the conical track surface 141 follows the shape of the surface of the ball 109 (ball surface 109A). Plastically deforms so as to have a shape. In this case, when the fulcrum bearing unit 200 is operated, there is a possibility that the ball 109 is detached from the region plastically deformed by burnishing and climbs up to the point A in FIG. Such a phenomenon causes a fluctuation in torque of the fulcrum bearing unit 200 and is not preferable from the viewpoint of precise position control of the swing arm 1.
  • the conical track surface 141 is closer to a plane (along the cross section of the conical track surface 141), as shown in FIG. Plastically deformed into a shape that spreads in the opposite direction and the curvature becomes smaller. Thereby, the problem of torque fluctuation as described above can be suppressed.
  • the axial force (F1) and radial force (F2) applied to the temporarily assembled unit shown in FIG. This is the force applied to process the raceway surface. Therefore, for example, the above-described F1 is about 3 to 5 times the preload F applied when performing the following assembling step (S40) described below.
  • the surface roughness of the region in contact with the ball 109 is the centerline average roughness Ra. It is preferable that it is 0.02 ⁇ m or less. In order to set Ra to 0.02 ⁇ m or less after burnishing, the surface roughness Ra of the inner raceway surface and the outer raceway surface before the step of plastic working the raceway surface (S30) is 0.3 ⁇ m. The following is preferable. In addition, as for surface roughness Ra of each said track surface before performing the said process (S30), it is more preferable that Ra is 0.14 micrometer or less.
  • the surface roughness Ra in the region where the balls 109 are in contact with each other is reduced to 0, which is sufficient to suppress fluctuations in the torque of the swing arm bearing. It is easy to make the thickness 0.02 ⁇ m or less.
  • the main assembly step (S400) is performed. This is basically the same as the step of assembling the members in FIG. 6 (S50).
  • the radial force by the pressing plate 184 is changed from F2 to zero.
  • the entire unit excluding the press plate 184 and the motor 181 is placed in a furnace and heated to the curing temperature of the adhesive.
  • a fulcrum bearing unit 300 that is a swing arm bearing in the third embodiment includes an inner member that functions as a fixed shaft, a sleeve 102 that is disposed so as to surround the inner member, and an inner member.
  • a plurality of balls 109 as rolling elements arranged in a double row (two rows) between the side member and the sleeve 102 and an annular shape, and are arranged between the inner member and the sleeve 102.
  • a first cage 15A and a second cage 15D are provided that hold the balls 109 on an annular track so as to be freely rollable at a predetermined pitch.
  • the inner member includes a shaft 101 and an adjustment ring 123 having an annular shape that is fitted to the outer peripheral surface of the shaft 101.
  • a conical raceway surface 120 as an annular shaft raceway surface is formed on the outer peripheral surface of the shaft 101.
  • a conical track surface 141 as an annular ring track surface is formed on the outer peripheral surface of the adjustment ring 123.
  • a conical raceway surface 122 is formed on the inner peripheral surface of the sleeve 102 as a first annular raceway surface and a position facing the conical raceway surface 120 and a location facing the conical raceway surface 141, respectively.
  • a conical raceway surface 122 is formed as the second sleeve raceway surface.
  • the conical raceway surface 120, the conical raceway surface 141, and the two conical raceway surfaces 122 have a conical surface shape.
  • Some of the plurality of balls 109 are included in a first row arranged in contact with the conical raceway surface 120, the conical raceway surface 122, and the conical raceway surface 122.
  • the remainder of the plurality of balls 109 is included in a second row arranged in contact with the conical raceway surface 141, the conical raceway surface 122, and the conical raceway surface 122.
  • the first column and the second column are aligned in the axial direction.
  • the balls 109 included in the first row and the balls 109 included in the second row are held by the first holder 15A and the second holder 15D, respectively.
  • the balls 109 come into contact with the conical raceway surface 122 and the conical raceway surface 122 and one of the conical raceway surface 120 and the conical raceway surface 141, thereby serving as the inner member 21 and the outer member.
  • the sleeve 102 is in contact at three points. With the above configuration, the sleeve 102 is rotatable with respect to the inner member 21.
  • the swing arm 1 is connected to the outer peripheral surface of the sleeve 102, and the magnetic head 2 is attached to the end of the swing arm 1 opposite to the side connected to the sleeve 102. Then, the swing arm 1 is rotated by a driving device such as a motor (not shown), and the magnetic head 2 is moved to an arbitrary position on a disk (not shown) so that information can be read and written.
  • a driving device such as a motor (not shown)
  • the fulcrum bearing unit 300 in the present embodiment is formed with a conical raceway surface 120 and a conical raceway surface 141 as annular inner raceway surfaces on the outer peripheral surface, and functions as a fixed shaft of the swing arm 1 of the hard disk drive.
  • the inner member 21 and the conical raceway surface 120 are disposed so as to surround the inner member 21, and two conical raceway surfaces 122 are formed as an annular outer raceway surface facing the conical raceway surface 120 and the conical raceway surface 141.
  • a sleeve 102 as an outer member to which the swing arm 1 is to be connected.
  • the fulcrum bearing unit 300 includes a conical raceway surface 120 or a conical raceway surface 141, a conical raceway surface 122, and a plurality of balls 109 as rolling elements arranged in contact with the conical raceway surface 122,
  • a first retainer 15A that has an annular shape, is disposed between the inner member 21 and the sleeve 102, and holds a plurality of balls 109 on an annular track so as to be freely rollable at a predetermined pitch.
  • a second cage 15D is disposed between the inner member 21 and the sleeve 102, and holds a plurality of balls 109 on an annular track so as to be freely rollable at a predetermined pitch.
  • the inner member 21 functioning as a fixed shaft and the sleeve 102 to be connected to the swing arm 1 are formed with mutually opposing raceway surfaces, and between the raceway surfaces.
  • the ball 109 as a rolling element is rotatably held by the first cage 15A and the second cage 15D.
  • the first cage 15A and the second cage 15D are made of a resin molded body. As a result, steps such as caulking of the cage can be omitted as compared with the case where a metal cage is used, and the manufacturing cost is further reduced.
  • the first cage 15A and the second cage 15D have a holding portion 15B that holds the ball 109 and a thickness in the radial direction larger than that of the holding portion 15B. And a thick portion 15C. More specifically, each of the first retainer 15A and the second retainer 15D has a thick portion 15C in a region including an end surface opposite to the other retainer when viewed from one retainer. Is formed.
  • retainer 15D, the sleeve 102, and the inner member 21 (shaft 101 or the adjustment ring 123) is 0.05 mm or more and 0.2 mm or less. It has become.
  • retainer 15D, the inner member 21, and the sleeve 102 becomes an appropriate value which can acquire sufficient sealing performance, and is enough It is possible to omit the sealing plate while ensuring a good sealing performance.
  • the thick portions 15C that function as a seal are disposed on both sides in the axial direction inside the bearing, so that it is possible to satisfactorily prevent solid foreign matter from entering the bearing.
  • the seal plate is fixed to the outer ring, so that when the seal plate and the inner ring come into contact during the operation of the bearing unit, There is a possibility that the outer ring may not be completely rotatable with respect to the inner ring.
  • the first retainer 15A and the second retainer 15D are not fixed with respect to the sleeve 102 and the inner member 21, so Even when the thick portion 15C functioning as a seal and the sleeve 102 or the inner member 21 come into contact with each other, the sleeve 102 does not become completely unrotatable with respect to the inner member 21. Therefore, the interval ⁇ can be set to a small value, and excellent sealing performance can be imparted.
  • the sleeve 102 is formed with a bent portion 13C that bends along the thick portion 15C formed in the first retainer 15A and the second retainer 15D.
  • the thick portion 15C protrudes radially outward from the holding portion 15B, that is, toward the sleeve 102 that is the outer member, and the bent portion 13C is formed in the sleeve 102.
  • the configuration of the bent portion is not limited to this.
  • the thick portion 15C protrudes radially inward with respect to the holding portion 15B, that is, toward the inner member 21 (the shaft 101, the adjustment ring 123), and is bent along the thick portion 15C. May be formed on the inner member 21.
  • the sleeve 102 and the inner member, in which the thick portion 15C protrudes toward both the radially inner side and the outer side with respect to the holding portion 15B, and the bent portion that is bent along the thick portion 15C is the outer member. 21 may be formed on both. That is, the thick portion 15C protrudes toward at least one of the radially inner side and the radially outer side with respect to the holding portion 15B, and the bent portion that bends along the thick portion 15C is the outer member or the inner portion. What is necessary is just to be formed in at least one of the side from which the thick part 15C protrudes among members.
  • the hardness of the inner raceway surface is higher than the hardness of the outer raceway surface, for example, the conical raceway surface 122.
  • the hardness of the conical raceway surface 120 is preferably HRC40 or more and HRC50 or less
  • the hardness of the conical raceway surface 122 is more preferably HRC25 or more and HRC35 or less.
  • the shaft 101, the adjustment ring 123, and the sleeve 102 are combined with the ball 109, the first cage 15A, and the second cage 15D that are separately prepared, and the fulcrum bearing unit 300 is temporarily assembled.
  • the adjustment ring 123 is fitted into the outer peripheral surface of the shaft 101 in a state where the shaft 101, the sleeve 102, the ball 109, the first retainer 15A, and the second retainer 15D are combined.
  • the adjustment ring 123 is fitted on the shaft 101 in a state where a thermosetting adhesive is applied to the inner peripheral surface of the adjustment ring 123.
  • the first cage 15A and the second cage 15D made of a resin molded body can be produced by, for example, resin injection molding.
  • resin injection molding For example, 66 nylon reinforced with glass fiber or the like can be used as the resin used as the raw material for the first cage 15A and the second cage 15D.
  • plastic working is performed to reduce the surface roughness of the region in contact with the ball 109.
  • an axial force is applied to the fulcrum bearing unit 300 that is temporarily assembled by applying a force that pushes the adjustment ring 123 in the axial direction, and the sleeve 102 is applied to the inner member 21.
  • a radial force is applied by applying a pressing force.
  • the inner member 21 and the sleeve 102 are rotated in the circumferential direction, whereby the sleeve 102 is rotated relative to the inner member 21.
  • the region that can come into contact with the ball 109 is plastically processed, and the surface roughness is reduced (burnishing process).
  • the surface roughness Ra in the first region (surface roughness improving processing region 120A) of the conical raceway surface 120 is, for example, of the conical raceway surface 120. It is preferably smaller than the surface roughness Ra in the region adjacent to the surface roughness improving processing region 120A.
  • the temporarily assembled fulcrum bearing unit 300 is heated in a state where the adjustment ring 123 is pushed in the axial direction with a force corresponding to a desired preload to be applied to the fulcrum bearing unit 300.
  • the above-mentioned adhesive is hardened and the main assembly of the fulcrum bearing unit 300 is completed.
  • the swing arm support mechanism including the fulcrum bearing unit 300 in the present embodiment is completed by attaching the separately prepared swing arm 1 to the outer peripheral surface of the sleeve 102 of the fulcrum bearing unit 300.
  • the swing arm support mechanism including the fulcrum bearing unit 300 in the present embodiment can be easily manufactured.
  • steps such as fitting of a rolling bearing and attachment of a seal plate by a clasp can be omitted, so that the swing arm bearing and the swing arm support mechanism are manufactured at low cost. be able to.
  • the components of the fulcrum bearing units 100 and 200 may be arbitrarily combined.
  • FIG. 22 is a schematic cross-sectional view showing the structure of the fulcrum bearing unit in the fourth embodiment of the present invention.
  • the hatched portion represents a cross section.
  • a fulcrum bearing unit 400 in FIG. 22 uses an inner ring 103 as an inward member instead of the adjustment ring 123 and the conical raceway surfaces 120 and 121 in the fulcrum bearing units 100 and 200.
  • the inner ring 103 is formed with the bearing groove 110 as the above-described third contact surface, and the ball 109 contacts the curved surface of the bearing groove 110 at one point.
  • the sleeve 102 contacts the ball 109 at two points.
  • the sleeve 102 has a conical surface shape, a first contact surface that contacts the ball 109, and a conical surface shape that intersects the first contact surface, and a second contact surface that contacts the ball 109. (Both are conical raceway surfaces 122 in FIG. 22).
  • the inner raceway surface may be the R-side bearing groove 110.
  • the ball 109 comes into contact with the sleeve 102 at two points on the two contact surfaces (both of the conical raceway surfaces 122), and comes into contact with the bearing groove 110 at one point for a total of three points. If two contact points between the ball 109 and the sleeve 102 are determined, the contact point between the ball 109 and the bearing groove 110 is determined at almost one place even if the inner raceway surface is the R-side bearing groove 110.
  • the fulcrum bearing unit 300 in which the ball 109 is brought into contact at three points by making contact with the bearing groove 110 of the inner member at one point and contacting at two points with the sleeve 102 as the outer member is described in the first embodiment.
  • This is the same as the fulcrum bearing unit 100 in terms of function and effect.
  • the fourth embodiment of the present invention is different from the first embodiment of the present invention in the above points. That is, in the description of the fourth embodiment of the present invention, all configurations, conditions, processes, effects, and the like not described above are the same as those of the first embodiment of the present invention.
  • the contact angle is uniquely determined.
  • the rolling element load can be stabilized and torque fluctuations can be suppressed. Therefore, in order to make contact at a total of three points, for example, the inner ring of the adjustment ring 123 that is an inner member is provided with two R-plane bearing grooves that intersect each other, and the sleeve 102 that is of the outer member is provided with an outer track.
  • An effect similar to that described above can be obtained by providing one R-surface bearing groove as a surface, and the ball 109 is in contact with each bearing groove at one point, for a total of three points.
  • the inner raceway surface and the outer raceway surface are conical raceway surfaces, whereby the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved. Further, since the conical surface shape is easier than the R-surface shape processing for forming the bearing groove, the processing cost may be reduced.
  • at least one of the configuration in which the balls are in contact at a total of three points and the above-described first contact surface, second contact surface, and third contact surface has a conical surface shape.
  • the following various types of fulcrum bearing units, which are appropriately combined with the configuration described above, are preferable because, for example, the same effects as the fulcrum bearing units in the above-described embodiments can be obtained.
  • the configurations of the various types of fulcrum bearing units described above will be described while presenting only enlarged cross-sectional views of the region “20” surrounded by a dotted line in FIG.
  • the first contact surface among the three contact surfaces with which the balls 109 are in contact with the track surface is provided as an inner track surface on the adjustment ring 123 which is an inner member, Both contact surfaces intersect each other.
  • the third contact surface is provided as an outer raceway surface on the sleeve 102 which is an outer member.
  • These contact surfaces are all R-side bearing grooves 111 as raceway surfaces.
  • the first contact surface, the second contact surface, and the third contact surface described above are all R-side bearing grooves 111, but the balls 109 have a total of three bearing grooves. Since the contact is made at a point, the contact angle is uniquely determined, the rolling element load can be stabilized, and the fluctuation of the torque can be suppressed.
  • the lower ball 109 such as the region “30” in FIG. 2 may be configured to contact the bearing groove at three points.
  • the inner member, that is, the inner raceway surface is contacted at two points
  • the outer member, that is, the outer raceway surface is contacted at one point. It may be configured to contact at two points.
  • the first contact surface and the second contact surface intersecting each other has a conical shape. It is good also as a shape.
  • the first contact surface provided in the adjustment ring 123 which is an inward member is a bearing groove 111 and the second contact surface is a conical raceway surface 142.
  • the first contact surface is a conical shape.
  • the raceway surface 142 and the second contact surface may be the bearing groove 111.
  • the lower ball 109 such as the region “30” in FIG. In FIG. 24, the inner member is in contact at two points and the outer member at one point, but conversely, the inner member is in contact at one point and the outer member is in contact at two points.
  • One of the track surfaces may be a conical track surface.
  • the first contact surface is a bearing groove 111
  • the second contact surface is a conical raceway surface 142
  • the third contact surface is a conical raceway surface 122.
  • FIG. 25 shows that the third contact surface may be a conical track surface in addition to the configuration shown in FIG.
  • the first contact surface provided in the adjustment ring 123 which is an inward member is the bearing groove 111
  • the second contact surface is a conical raceway surface 142.
  • the first contact surface The conical raceway surface 142 and the second contact surface may be the bearing groove 111.
  • the second contact surface is also a conical track surface
  • the configuration in accordance with the configuration of the fulcrum bearing unit 100 shown in the first embodiment of the present invention described above is used.
  • the lower ball 109 such as the region “30” in FIG. In FIG. 25, the inner member is in contact at two points and the outer member at one point, but conversely, the inner member is in contact at one point and the outer member is in contact at two points.
  • One of the track surfaces may be a conical track surface.
  • the third contact surface may be a conical track surface, and the first and second contact surfaces may be bearing grooves 111.
  • the lower ball 109 such as the region “30” in FIG. 26 the inner member is in contact at two points and the outer member at one point, but conversely, the inner member is in contact at one point and the outer member is in contact at two points.
  • One of the track surfaces may be a conical track surface.
  • any one of the first contact surface, the second contact surface, and the third contact surface described above may be a bearing groove, and the other two may be conical track surfaces. Any two of the three contact surfaces may be bearing grooves, and the other one may be a conical track surface.
  • Example 1 an attempt was made to calculate the hardness required for the inner raceway surface and the outer raceway surface of the fulcrum bearing unit 200 according to Embodiment 2 of the present invention described above.
  • the horizontal axis indicates the hardness of a steel material such as SUS420J2 used as a material for the sleeve 102 and the shaft 101 of the fulcrum bearing unit 100, for example.
  • the vertical axis indicates the stress that causes indentation in the steel material when the steel ball having the hardness shown on the horizontal axis is brought into contact with the steel ball and stress is applied. It is.
  • an indentation is generated in a steel flat plate having a hardness of HRC60 by pressing a steel ball with a stress of 4 GPa.
  • the fulcrum bearing unit 200 can suppress the occurrence of indentation or the like on the raceway surface with which the ball 109 contacts due to, for example, an impact load that is an unexpected external force when used as a swing arm bearing. It is preferable to have a design. In general, it is preferable to have a design in which indentation does not occur even when an impact of 1000 G is applied.
  • the magnitude of the impact load that is an external force is the total mass of the swing arm 1 and the sleeve 102 in the portion to which the impact load is applied to the raceway surface, that is, the system of the fulcrum bearing unit 200 and the swing arm 1 (see FIG. 12). It is obtained by multiplying the acceleration of impact force. For example, for a 2.5 inch hard disk drive, the total mass is 3 grams. Therefore, in this case, a force of 30 N acts on an impact of 1000 G. That is, it is preferable to design so that no indentation is generated on the raceway surface even when a force of 30 N is applied.
  • the horizontal axis indicates external force, that is, the unexpected impact load described above in N units
  • the vertical axis indicates indentation on the raceway surface when the impact load indicated on the horizontal axis is generated on the raceway surface.
  • HRC Rockwell C scale
  • the white circle corresponds to the inner raceway surface that contacts the ball 109 at one point in the raceway surface, for example, in the case of the fulcrum bearing unit 100 in the case of one point contact.
  • the black circle corresponds to the outer raceway surface that contacts the ball 109 at two points in the raceway surface in the case of two-point contact, that is, for example, in the case of the fulcrum bearing unit 100.
  • the inner raceway surface of the fulcrum bearing unit 100 (cone in FIG. 1) It has been found that the HRC 40, the two-point contact side, that is, the outer race surface of the fulcrum bearing unit 200 (such as the conical race surface 122 in FIG. 1) requires a hardness of HRC 25 or higher. From the above, as described above, in the fulcrum bearing unit of the present invention, it can be said that the hardness of the inner raceway surface is preferably HRC40 or more and the hardness of the outer raceway surface is preferably HRC25 or more.
  • Example 2 an experiment was conducted to investigate the hardness distribution when induction hardening was performed on a steel material.
  • a round bar having a circular cross section having a diameter of 5 mm is formed using SUS420J2 which is the same material as the shaft 101 which is an inner member of the fulcrum bearing unit 200 according to Embodiment 2 of the present invention. Created.
  • a high frequency coil was arranged so as to surround the outer peripheral surface of the round bar, and induction hardening using induction heating was performed.
  • the horizontal axis indicates the depth from the surface of the round bar, that is, the distance from the outer peripheral surface of the round bar to the center of the cross section of the round bar in mm units, and the vertical axis indicates each distance from the surface of the round bar.
  • the hardness of the depth after induction hardening is indicated by Hv.
  • the region close to the surface layer portion was hardened by hardening and the hardness was high, while the hardness was low inside. And with reference to FIG. 29, it was confirmed that the area
  • the present invention is particularly excellent as a technology for stabilizing the torque of the swing arm by reducing fluctuations in the rolling element load of the fulcrum bearing unit and facilitating the control thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A support point bearing unit (100, 200, 300, 400) stabilizes torque of a swing arm by reducing a variation in a rolling body load to facilitate control of the load. Either an inner raceway surface (141, 142, 120, 121, 110, 111) or an outer raceway surface (122) with which balls (109) make contact is constructed from two contact surfaces (circular conical raceway surfaces (120, 121) (141, 142)) having a circular conical surface shape and crossing each other. A ball (109) is in contact with contact surfaces, which have a circular conical surface shape, at three points.

Description

スイングアーム用軸受およびスイングアーム用軸受の製造方法Swing arm bearing and manufacturing method of swing arm bearing
 本発明は、ハードディスクドライブに用いるスイングアーム用軸受(支点軸受ユニット)に関するものであり、より具体的には、スイングアームのトルクを安定させる支点軸受ユニットに関するものである。また、当該スイングアーム用軸受の製造方法に関するものである。 The present invention relates to a swing arm bearing (fulcrum bearing unit) used in a hard disk drive, and more specifically to a fulcrum bearing unit that stabilizes the torque of the swing arm. The present invention also relates to a method for manufacturing the swing arm bearing.
 コンピュータの外部記憶装置として使用されるハードディスクに用いるスイングアームは、磁性体を塗布したアルミニウム製やガラス製のディスクに、磁気ヘッドを用いて情報を読み書きする。この磁気ヘッドは、スイングアームと呼ばれる駆動体の一方の端部に取り付けられている。そして、ボイスコイルモータによりスイングアームが支点軸受ユニットを中心に揺動駆動することにより、スイングアームの一方の端部に取り付けられた磁気ヘッドをハードディスク上の任意の位置に移動させてハードディスクに情報を読み書きすることを可能とする。 A swing arm used for a hard disk used as an external storage device of a computer reads and writes information using a magnetic head on an aluminum or glass disk coated with a magnetic material. This magnetic head is attached to one end of a driving body called a swing arm. Then, when the swing arm is driven to swing around the fulcrum bearing unit by the voice coil motor, the magnetic head attached to one end of the swing arm is moved to an arbitrary position on the hard disk, and information is stored in the hard disk. Enables reading and writing.
 スイングアームを揺動駆動するために、スイングアームの重心部に組み込まれている、従来からの支点軸受ユニットは、次に述べる構成を備えている。図30は、従来から用いられているスイングアームに組み込まれた支点軸受ユニットの構造を示す、断面概略図である。図30に示すスイングアーム1は、一方の端部に磁気ヘッド2が取り付けられており、他方の端部には図示しないボイスコイルモータがあり、重心位置に支点軸受ユニット500が組み込まれている。 The conventional fulcrum bearing unit incorporated in the center of gravity of the swing arm for swinging the swing arm has the following configuration. FIG. 30 is a schematic cross-sectional view showing the structure of a fulcrum bearing unit incorporated in a swing arm conventionally used. The swing arm 1 shown in FIG. 30 has a magnetic head 2 attached to one end, a voice coil motor (not shown) at the other end, and a fulcrum bearing unit 500 incorporated at the center of gravity.
 磁気ヘッド2がハードディスクに情報を正確に読み書きするためには、磁気ヘッド2が正確な位置に移動できるよう、スイングアーム1を揺動駆動させる必要がある。このため、スイングアーム1を支える支点軸受ユニット500には高い剛性が要求されている。剛性を確保するために、図30に示す支点軸受ユニット500を構成する部品は適切な予圧を与えて組み込む必要がある。具体的には、まず図30において2台存在する外輪104および、2台の外輪104が互いに接触しないように2台の外輪104の間に設けた間座105を、スイングアーム1に直接接続されるスリーブ102に固着させる。続いて図30において2台存在する内輪103のうち1台を、支点軸受ユニット500の中心部分に存在する軸101に固着させる。これは図30において下側に設置された内輪103である。ここで、外輪104と内輪103との間には玉109を介在させる。そして図1に示すように軸方向、すなわち紙面の上下方向に予圧Fを加えて他方の内輪103を軸101に固定させる。このことにより、支点軸受ユニット500を構成する各部品に予圧Fが加わり、剛性を確保するための固着が可能になる。 In order for the magnetic head 2 to accurately read and write information on the hard disk, the swing arm 1 must be driven to swing so that the magnetic head 2 can move to an accurate position. For this reason, the fulcrum bearing unit 500 that supports the swing arm 1 is required to have high rigidity. In order to ensure rigidity, the parts constituting the fulcrum bearing unit 500 shown in FIG. 30 need to be incorporated with an appropriate preload. Specifically, first, two outer rings 104 in FIG. 30 and a spacer 105 provided between the two outer rings 104 are directly connected to the swing arm 1 so that the two outer rings 104 do not contact each other. The sleeve 102 is fixed. Subsequently, one of the two inner rings 103 in FIG. 30 is fixed to the shaft 101 existing in the center portion of the fulcrum bearing unit 500. This is the inner ring 103 installed on the lower side in FIG. Here, a ball 109 is interposed between the outer ring 104 and the inner ring 103. Then, as shown in FIG. 1, a preload F is applied in the axial direction, that is, the vertical direction of the paper surface, and the other inner ring 103 is fixed to the shaft 101. As a result, a preload F is applied to each component constituting the fulcrum bearing unit 500, and fixing for ensuring rigidity is possible.
 昨今のハードディスクの容量拡大に伴い、磁気ヘッド2にはより高い位置精度が要求されている。このため、支点軸受ユニット500にはより高い剛性が要求されている。また、1.8インチ以下のハードディスクドライブについては、ディスクが薄型化されていることに伴い、支点軸受ユニット500にも薄型化が要求される。さらに、構成する部品の点数が多い支点軸受ユニット500には、部品の点数を削減させることによる低コスト化も要求されている。 With the recent expansion of hard disk capacity, the magnetic head 2 is required to have higher positional accuracy. For this reason, the fulcrum bearing unit 500 is required to have higher rigidity. For hard disk drives of 1.8 inches or less, the fulcrum bearing unit 500 is also required to be thin as the disk is thinned. Further, the fulcrum bearing unit 500 having a large number of components is required to reduce the cost by reducing the number of components.
 図31は、従来から行なわれている、部品の点数を削減させた支点軸受ユニットの構造を示す、断面概略図である。なお、図31において、ハッチングを施した部分は断面を表している。図31に示す支点軸受ユニット600は、図30に示す支点軸受ユニット500に示した外輪104に相当するものを設けず、スリーブ102の、内輪103と対向する表面上に、転動体としての玉109を転動させるための軌道面としての軸受溝110を形成している。したがって、外輪104を設けない分だけ部品の点数が減少し、低コスト化を図ることができる。さらに、図30に示すスリーブ102と外輪104とを嵌合させる部分を廃止することにより、スイングアーム1の回転精度を向上させることもできる。同様に、外輪や内輪を設けず、軸の外周表面上およびスイングアームのスリーブに直接、玉を転動させるための軌道面としての軸受溝を形成させた構造を備えるハードディスク用スイングアームが、たとえば実開平7-6969号公報(特許文献1)に開示されている。 FIG. 31 is a schematic cross-sectional view showing the structure of a conventional fulcrum bearing unit in which the number of parts is reduced. In FIG. 31, the hatched portion represents a cross section. A fulcrum bearing unit 600 shown in FIG. 31 does not have an equivalent to the outer ring 104 shown in the fulcrum bearing unit 500 shown in FIG. 30, and a ball 109 as a rolling element is formed on the surface of the sleeve 102 facing the inner ring 103. A bearing groove 110 is formed as a raceway surface for rolling. Therefore, the number of parts is reduced by the amount that the outer ring 104 is not provided, and the cost can be reduced. Furthermore, the rotational accuracy of the swing arm 1 can also be improved by eliminating the portion where the sleeve 102 and the outer ring 104 shown in FIG. 30 are fitted. Similarly, a hard disk swing arm having a structure in which a bearing groove as a raceway surface for rolling balls is formed directly on the outer peripheral surface of the shaft and on the sleeve of the swing arm without providing an outer ring or an inner ring. This is disclosed in Japanese Utility Model Laid-Open No. 7-6969 (Patent Document 1).
 一方、支点軸受ユニットを薄型化させるための対応としては、たとえば特開平10-318255号公報(特許文献2)に開示されているように、内輪の厚みを外輪の厚みに比べて薄くなるように設計し、2台の外輪が互いに接触する構造とすることにより、2台の外輪の間に配置させる間座を廃止させる方法がある。このような方法を用いることにより、間座を廃止した分、すなわち間座の厚み分だけ、支点軸受ユニット全体の厚みを薄くすることができる。 On the other hand, as a measure for reducing the thickness of the fulcrum bearing unit, for example, as disclosed in Japanese Patent Laid-Open No. 10-318255 (Patent Document 2), the inner ring is made thinner than the outer ring. There is a method of eliminating the spacer that is designed and arranged between the two outer rings by making the two outer rings contact each other. By using such a method, the thickness of the entire fulcrum bearing unit can be reduced by an amount corresponding to the thickness of the spacer being eliminated.
 また、剛性を高くするためには上述したような予圧荷重を上げることにより、外輪と内輪との間に介在する玉に加わる接触応力が増加する。その結果、支点軸受ユニット全体の剛性を高くすることができる。しかし、接触応力が大きくなることにより玉に加わる摩擦トルクが大きくなる。したがって大きな摩擦トルクにより玉ないし、玉と接触する軌道面を含む領域が塑性変形を起こす可能性がある。このため、対策として組み込む玉の点数を増加させる考案がなされている。または、たとえば特開2006-316915号公報(特許文献3)に開示されている支点軸受ユニットは、外輪ないし内輪を軸方向、すなわち上下方向に2分割させて、分割させたそれぞれの外輪ないし内輪の部材と玉とを接触させることを可能にしている。このようにして接触点数を増加させることにより、剛性を増加させることを目論んだ支点軸受ユニットも考案されている。 Also, in order to increase the rigidity, the contact stress applied to the balls interposed between the outer ring and the inner ring is increased by increasing the preload as described above. As a result, the rigidity of the entire fulcrum bearing unit can be increased. However, as the contact stress increases, the friction torque applied to the ball increases. Accordingly, there is a possibility that plastic deformation occurs in the region including the ball or the raceway surface in contact with the ball due to a large friction torque. For this reason, an idea has been made to increase the number of balls to be incorporated as a countermeasure. Or, for example, in the fulcrum bearing unit disclosed in Japanese Patent Application Laid-Open No. 2006-316915 (Patent Document 3), the outer ring or the inner ring is divided into two in the axial direction, that is, the vertical direction, and each of the divided outer rings or inner rings is divided. The member and the ball can be brought into contact with each other. A fulcrum bearing unit designed to increase rigidity by increasing the number of contact points in this way has also been devised.
実開平7-6969号公報Japanese Utility Model Publication No. 7-6969 特開平10-318255号公報Japanese Patent Laid-Open No. 10-318255 特開2006-316915号公報JP 2006-316915 A
 しかし、特許文献1、特許文献2、および特許文献3に開示されているスイングアーム用軸受は、いずれも玉を転動させるための軌道面として、R面状に形成させた軸受溝を内輪側および外輪側の両側に用いている。しかし、このような構成では、玉の位置を1箇所に定めることはできるが、接触点が軸受溝表面の軌道面上を自由に移動できる。その結果、接触角は一定に定まらない。また、たとえば特許文献3においては、玉(転動体)と軸受溝(軌道溝)との接触点が4点になっている。特許文献3のように4点で接触した場合は加工が面倒になる。 However, all of the swing arm bearings disclosed in Patent Document 1, Patent Document 2, and Patent Document 3 have a bearing groove formed in an R-surface shape as a raceway surface for rolling the ball on the inner ring side. Used on both the outer ring side and the outer ring side. However, in such a configuration, the position of the ball can be determined at one place, but the contact point can freely move on the raceway surface of the bearing groove surface. As a result, the contact angle is not fixed. For example, in Patent Document 3, there are four contact points between balls (rolling elements) and bearing grooves (track grooves). When the contact is made at four points as in Patent Document 3, the processing becomes troublesome.
 接触角が一定に決まらない場合、玉に加わる力である転動体荷重がほぼ一定となるよう制御することが困難である。ハードディスク用の支点軸受ユニットは、一般的に動作時に低トルクでありトルクの変動が小さいことが要求されるが、転動体荷重の変動が大きくなると、支点軸受ユニットのトルクを安定させることが困難となる。 If the contact angle is not fixed, it is difficult to control the rolling element load, which is the force applied to the ball, to be substantially constant. A fulcrum bearing unit for a hard disk is generally required to have a low torque during operation and a small fluctuation in torque, but if the fluctuation in rolling element load becomes large, it is difficult to stabilize the torque of the fulcrum bearing unit. Become.
 また、近年のハードディスクドライブに対する低コスト化の要求に起因して、スイングアーム用軸受に対しても低コスト化の要求がある。そして、上記特許文献1~3に記載のスイングアーム用軸受を含めて、従来のスイングアーム用軸受は、この低コスト化の要求に十分対応できているとはいえない。 Also, due to the recent demand for cost reduction of hard disk drives, there is also a demand for cost reduction of swing arm bearings. In addition, the conventional swing arm bearings including the swing arm bearings described in Patent Documents 1 to 3 cannot be said to sufficiently meet the demand for cost reduction.
 本発明は、上述した各問題に鑑みなされたものである。その第1の目的は、転動体荷重の変動を小さくしてその制御を容易にすることにより、スイングアームのトルクを安定させる支点軸受ユニットを提供することである。第2の目的は、低コストなスイングアーム用軸受およびその製造方法を提供することである。 The present invention has been made in view of the above-described problems. The first object is to provide a fulcrum bearing unit that stabilizes the torque of the swing arm by reducing fluctuations in the rolling element load and facilitating the control thereof. The second object is to provide a low-cost swing arm bearing and a manufacturing method thereof.
 本発明における、スイングアームに用いる支点軸受ユニットとしてのスイングアーム用軸受は、外周面に円環状の内側軌道面が形成された内方部材と、内方部材を取り囲むように配置され、内側軌道面に対向する円環状の外側軌道面が形成され、ハードディスクドライブのスイングアームが接続されるべき外方部材と、内側軌道面および外側軌道面に接触して配置された複数個の玉とを備える。また、内側軌道面および外側軌道面のいずれか一方の軌道面は、玉と接触する第1の接触面および第2の接触面を有し、第1の接触面と第2の接触面とは互いに交差している。さらに、他方の軌道面は、玉と接触する第3の接触面を有する。そして玉は、内側軌道面および外側軌道面とは第1、第2、第3の接触面と合計3点において接触している。 A swing arm bearing as a fulcrum bearing unit used for a swing arm in the present invention is an inner member in which an annular inner raceway surface is formed on the outer peripheral surface, and is disposed so as to surround the inner member. And an outer member to which a swing arm of a hard disk drive is to be connected, and a plurality of balls arranged in contact with the inner raceway surface and the outer raceway surface. In addition, one of the inner raceway surface and the outer raceway surface has a first contact surface and a second contact surface that contact the ball, and the first contact surface and the second contact surface are Cross each other. Further, the other raceway surface has a third contact surface that contacts the ball. The ball is in contact with the inner raceway surface and the outer raceway surface with the first, second, and third contact surfaces at a total of three points.
 上述したように、内方部材の内側軌道面と、外方部材の外側軌道面とのいずれか一方の軌道面を、互いに交差する第1の接触面と第2の接触面との2つの接触面(玉と接触する面)を有する構造にしておく。また、一方の軌道面とは異なる他方の軌道面には、玉と接触する第3の接触面を有する構造にしておく。そして玉は、内側軌道面および外側軌道面と合計3点において接触させる。このようにすれば、玉の接触角が安定し、転動体荷重の制御が容易になるため、トルクの変動を抑制させることができる。 As described above, any one of the inner raceway surface of the inner member and the outer raceway surface of the outer member has two contacts with the first contact surface and the second contact surface intersecting each other. A structure having a surface (a surface in contact with the ball) is used. In addition, the other raceway surface different from the one raceway surface has a structure having a third contact surface in contact with the ball. The balls are brought into contact with the inner raceway surface and the outer raceway surface at a total of three points. In this way, the contact angle of the ball is stabilized and the rolling element load can be easily controlled, so that torque fluctuations can be suppressed.
 また、第1の接触面および第2の接触面の少なくともいずれか一方は円すい面形状を有していることがさらに好ましい。また、第3の接触面については、円すい面形状を有していることがさらに好ましい。 Further, it is more preferable that at least one of the first contact surface and the second contact surface has a conical surface shape. Further, it is more preferable that the third contact surface has a conical surface shape.
 したがって、第1の接触面、第2の接触面、第3の接触面がすべてR面の軸受溝、すなわちスイングアーム用軸受の回転軸を含む断面において円弧面形状であってもよいし、上述した3つの接触面すべてが円すい面形状、すなわちスイングアーム用軸受の回転軸を含む断面において直線形状を有していてもよい。しかし、たとえば第1の接触面および第2の接触面の両方が円すい面形状であり、第3の接触面はR面の軸受溝であってもよい。別の例として、たとえば第2の接触面が円すい面形状であり、第1の接触面および第3の接触面についてはR面の軸受溝であってもよい。さらに別の例としては、たとえば第2の接触面および第3の接触面が円すい面形状であり、第1の接触面はR面の軸受溝であってもよい。さらに、第1の接触面および第2の接触面がともにR面の軸受溝であって、第3の接触面のみ円すい面形状とすることもできる。 Therefore, the first contact surface, the second contact surface, and the third contact surface may all have an arcuate surface shape in a cross section including the bearing groove of the R surface, that is, the rotation axis of the swing arm bearing. All of the three contact surfaces may have a conical shape, that is, a linear shape in a cross section including the rotation axis of the swing arm bearing. However, for example, both the first contact surface and the second contact surface may have a conical surface shape, and the third contact surface may be a R-side bearing groove. As another example, for example, the second contact surface may have a conical surface shape, and the first contact surface and the third contact surface may be R-side bearing grooves. As yet another example, for example, the second contact surface and the third contact surface may be conical, and the first contact surface may be a R-side bearing groove. Furthermore, both the first contact surface and the second contact surface are R-surface bearing grooves, and only the third contact surface can be conical.
 以上のように円すい面形状を用いれば、スイングアーム用軸受の剛性が向上し、スイングアーム用軸受の回転精度および位置決め精度が向上する。また、円すい面形状は軸受溝の加工よりも容易であるため、加工のコストを低減できる可能性がある。 If the conical surface shape is used as described above, the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved. Further, since the conical surface shape is easier than the processing of the bearing groove, the processing cost may be reduced.
 また、本発明におけるスイングアーム用軸受は、内側軌道面および外側軌道面において、玉と接触する第1の領域の面粗度Ra(中心線平均粗さ)が、第1の領域に隣接する第2の領域の面粗度Raよりも小さくしてもよい。 In the swing arm bearing according to the present invention, the surface roughness Ra (centerline average roughness) of the first region in contact with the ball on the inner raceway surface and the outer raceway surface is adjacent to the first region. The surface roughness Ra of the area 2 may be smaller.
 軌道面の面粗度Raを小さくして軌道面の表面の凹凸が少なくなるよう加工することにより、ハードディスクドライブ用支点軸受ユニットのトルクの変動を抑制させることができる。このとき、内側軌道面および外側軌道面の全面ではなく、玉と接触する第1の領域のみ、その面粗度Raを小さくする加工を施し、第1の領域に隣接する、すなわち玉と接触しない第2の領域には、面粗度Raを小さくする加工を施さない。このことにより、面粗度Raを小さくする加工のタクトタイムを短縮させ、低コスト加工が実現できる。 The torque fluctuation of the fulcrum bearing unit for hard disk drive can be suppressed by reducing the surface roughness Ra of the raceway surface so as to reduce the unevenness of the surface of the raceway surface. At this time, not the entire inner raceway surface and outer raceway surface, but only the first region in contact with the ball is processed to reduce the surface roughness Ra, and is adjacent to the first region, that is, not in contact with the ball. The second region is not processed to reduce the surface roughness Ra. As a result, the tact time of processing for reducing the surface roughness Ra can be shortened, and low-cost processing can be realized.
 また、本発明に係るスイングアーム用軸受は、上記玉は、上記内側軌道面と1点において接触するとともに、上記外側軌道面と2点において接触していることが好ましい。 In the swing arm bearing according to the present invention, it is preferable that the ball is in contact with the inner raceway surface at one point and in contact with the outer raceway surface at two points.
 スイングアーム用軸受の製造プロセスにおいては、内方部材に比べて外方部材の加工量が大きくなる傾向にある。本発明のスイングアーム用軸受においては、玉が内側軌道面と1点において接触するとともに、外側軌道面と2点において接触する構成を採用することにより、加工量の多い外方部材の硬度を抑制することを可能としている。そのため、製造コストを低減することが可能となっている。以上のように、本発明のスイングアーム用軸受によれば、低コストなスイングアーム用軸受を提供することができる。 In the manufacturing process of the swing arm bearing, the processing amount of the outer member tends to be larger than that of the inner member. In the bearing for a swing arm of the present invention, the ball contacts the inner raceway surface at one point and adopts a configuration in which the ball contacts the outer raceway surface at two points, thereby suppressing the hardness of the outer member having a large machining amount. It is possible to do. Therefore, it is possible to reduce manufacturing costs. As described above, according to the swing arm bearing of the present invention, a low cost swing arm bearing can be provided.
 本発明に係るスイングアーム用軸受は、上記内側軌道面の硬度はHRC40以上HRC50以下であり、外側軌道面の硬度はHRC25以上HRC35以下であることが好ましい。 In the swing arm bearing according to the present invention, the hardness of the inner raceway surface is preferably HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is preferably HRC25 or more and HRC35 or less.
 スイングアーム用軸受が使用される際、たとえば予想外の外力として外部から衝撃荷重がスイングアーム用軸受に加われば、転動体は、軌道面に対して衝撃荷重を与える。その結果、軌道面に圧痕が発生する可能性がある。このような圧痕の発生を抑制するためには、軌道面の硬度を、当該圧痕が生じない程度に高くすることが好ましい。そして、当該圧痕の発生を十分に抑制するためには、転動体と1点において接触する内側軌道面についてはHRC40以上、2点において接触する外側軌道面についてはHRC25以上の硬度が必要であることが、本発明者の検討により明らかとなった。 When the swing arm bearing is used, for example, if an external impact load is applied to the swing arm bearing as an unexpected external force, the rolling element applies an impact load to the raceway surface. As a result, indentations may occur on the raceway surface. In order to suppress the generation of such indentations, it is preferable to increase the hardness of the raceway surface to such an extent that the indentations do not occur. In order to sufficiently suppress the occurrence of the indentation, the inner raceway surface that contacts the rolling element at one point must have a hardness of HRC 40 or higher for the outer raceway surface that contacts at two points, and a hardness of HRC25 or higher. However, it became clear by examination of this inventor.
 一方、上述した内側軌道面および外側軌道面の硬度を高くすれば、加工に要するコストが増大する。このことを抑制するためには、上述したようにたとえば内方部材の内側軌道面の硬度はHRC50以下、外方部材の外側軌道面の硬度はHRC35以下とすることが好ましい。以上より、内側軌道面の硬度はHRC40以上HRC50以下、外側軌道面の硬度はHRC25以上HRC35以下とすることが好ましい。なお、圧痕の発生の抑制と加工コストの低減とのバランスを考慮すると、内側軌道面の硬度はHRC43以上HRC47以下、外側軌道面の硬度はHRC28以上HRC32以下とすることがさらに好ましい。 On the other hand, if the hardness of the inner raceway surface and the outer raceway surface is increased, the cost required for processing increases. In order to suppress this, as described above, for example, the hardness of the inner raceway surface of the inner member is preferably HRC50 or less, and the hardness of the outer raceway surface of the outer member is preferably HRC35 or less. From the above, it is preferable that the hardness of the inner raceway surface is HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is HRC25 or more and HRC35 or less. In consideration of the balance between suppression of generation of indentation and reduction of processing cost, it is more preferable that the hardness of the inner raceway surface is HRC43 or more and HRC47 or less, and the hardness of the outer raceway surface is HRC28 or more and HRC32 or less.
 本発明に係るスイングアーム用軸受は、内方部材には、内側軌道面の中心軸を含む領域に穴が形成されており、内側軌道面の硬度はHRC40以上となっており、穴の表層部の硬度はHRC25以下となっていることが好ましい。 In the bearing for a swing arm according to the present invention, a hole is formed in the inner member in a region including the central axis of the inner raceway surface, and the hardness of the inner raceway surface is HRC40 or more, and the surface layer portion of the hole The hardness is preferably HRC25 or less.
 上述したように、内側軌道面については、たとえば外部からの衝撃荷重により転動体が内側軌道面に対して衝撃力を与え、内側軌道面に圧痕が発生することを抑制するために、硬度を高く(HRC40以上に)することが好ましい。一方、内方部材の中心部分、すなわち内方部材の長軸方向に延在する中心軸を含む領域には、内方部材を他の部材に固定する等の目的で穴が形成される場合がある。この場合、穴の加工コストを抑制するため、穴の表層部の硬度はHRC25以下とすることが好ましい。ここで、穴の表層部とは、たとえば穴の表面から深さ0.1mm以下の領域をいう。そして、当該表層部の硬度は、たとえば内方部材を穴の表面に垂直な断面で切断し、表面から0.1mm以下の領域の硬度を硬度計を用いて測定することにより調査することができる。 As described above, for the inner raceway surface, for example, the rolling element gives an impact force to the inner raceway surface due to an impact load from the outside, and the hardness is increased in order to suppress the occurrence of indentation on the inner raceway surface. (HRC 40 or more) is preferable. On the other hand, a hole may be formed in the central portion of the inner member, that is, in a region including the central axis extending in the long axis direction of the inner member for the purpose of fixing the inner member to another member. is there. In this case, it is preferable that the hardness of the surface layer portion of the hole is HRC25 or less in order to suppress the processing cost of the hole. Here, the surface layer portion of the hole refers to a region having a depth of 0.1 mm or less from the surface of the hole, for example. And the hardness of the said surface layer part can be investigated, for example by cut | disconnecting an inner member in a cross section perpendicular | vertical to the surface of a hole, and measuring the hardness of the area | region 0.1 mm or less from the surface using a hardness meter. .
 本発明に係るスイングアーム用軸受においては、内側軌道面を含む領域は高周波焼入れされていることが好ましい。高周波焼入れを用いることにより、上述したように、内方部材の外周部分、すなわち内側軌道面を含む領域の硬度を高くする一方、内方部材の中心部分、すなわち穴の表層部の硬化を抑制する構造を容易に達成することができる。 In the swing arm bearing according to the present invention, the region including the inner raceway surface is preferably induction hardened. By using induction hardening, as described above, the hardness of the outer peripheral portion of the inner member, that is, the region including the inner raceway surface is increased, while the center portion of the inner member, that is, the surface layer portion of the hole is suppressed. The structure can be easily achieved.
 また、本発明におけるスイングアーム用軸受は、第1の接触面および第2の接触面の硬度は、第3の接触面の硬度よりも低いことが好ましい。後述するように、内側軌道面および外側軌道面に接触して配置された複数個の玉を用いて、内側軌道面および外側軌道面に対して負荷を加え、そのとき軌道面に加えられた圧力により軌道面の表面を塑性加工して面粗さRaを小さくする、バニシングと呼ばれる加工を行なうことができる。このとき、内側軌道面と外側軌道面のいずれか、第1の接触面および第2の接触面との2つの面が存在する側の軌道面に加わる力は、2つの接触点により2箇所に分散される。分散された力で、それらの接触面を加工する必要があるため、第1の接触面および第2の接触面の硬度は、第3の接触面の硬度よりも小さいことが好ましい。 In the swing arm bearing according to the present invention, the hardness of the first contact surface and the second contact surface is preferably lower than the hardness of the third contact surface. As will be described later, a load is applied to the inner raceway surface and the outer raceway surface using a plurality of balls arranged in contact with the inner raceway surface and the outer raceway surface, and the pressure applied to the raceway surface at that time Thus, a process called burnishing can be performed in which the surface of the raceway surface is plastically processed to reduce the surface roughness Ra. At this time, the force applied to the track surface on the side where the two surfaces of the inner track surface and the outer track surface, the first contact surface and the second contact surface exist, is applied to two locations by two contact points. Distributed. Since the contact surfaces need to be processed with a distributed force, the hardness of the first contact surface and the second contact surface is preferably smaller than the hardness of the third contact surface.
 さらに、本発明におけるスイングアーム用軸受は、複数個の玉が2列に並んでおり、内方部材および外方部材は、上述した2列に対応する一対の内側軌道面および外側軌道面を有していてもよい。その場合、スイングアーム用軸受の回転軸を含む断面において、2列のうち一方の列に含まれる玉の中心と、当該一方の列に含まれる玉が上述した第3の接触面と接触する接触点とを結ぶ第1の直線と、2列のうち他方の列に含まれる玉の中心と、当該他方の列に含まれる玉が第3の接触面と接触する接触点とを結ぶ第2の直線とは、玉と第3の接触面との接触点から見て径方向外側において交差していることが好ましい。上述した条件を満たすように内方部材および外方部材の形状を決定することにより、支点軸受ユニットにモーメント力が作用した場合の剛性が向上する。 Further, in the swing arm bearing according to the present invention, a plurality of balls are arranged in two rows, and the inner member and the outer member have a pair of inner raceway surface and outer raceway surface corresponding to the two rows described above. You may do it. In that case, in the cross section including the rotation axis of the swing arm bearing, the center of the ball included in one of the two rows and the contact where the ball included in the one row contacts the above-described third contact surface. A second straight line connecting the first straight line connecting the points, the center of the ball included in the other of the two columns, and the contact point at which the ball included in the other column contacts the third contact surface. It is preferable that the straight line intersects on the radially outer side when viewed from the contact point between the ball and the third contact surface. By determining the shapes of the inner member and the outer member so as to satisfy the above-described conditions, the rigidity when a moment force acts on the fulcrum bearing unit is improved.
 上述した各構造を備えるスイングアーム用軸受を組み立てるために、内方部材は、一方の列に含まれる、玉に接触する内側軌道面を有する第1の内方部材と、第1の内方部材に嵌合され、他方の列に含まれる、玉に接触する内側軌道面を有する第2の内方部材とを備えていることが好ましい。 In order to assemble the swing arm bearing having the above-described structures, the inner member includes a first inner member having an inner raceway surface in contact with the ball, and a first inner member, which are included in one row. And a second inner member having an inner raceway surface that comes into contact with the ball and is included in the other row.
 また、本発明におけるスイングアーム用軸受は、予圧が付与されていることが好ましい。これにより、スイングアーム用軸受の運転時において、スイングアーム用軸受を構成する内方部材および外方部材と玉との接触を維持することが容易になる。その結果、スイングアーム用軸受の剛性が向上し、スイングアーム用軸受の回転精度および位置決め精度が向上する。なお、スイングアーム用軸受に対する予圧の付与は、たとえば外方部材、第1の内方部材および玉を組み合わせた状態で、第2の内方部材を第1の内方部材に嵌め込むことにより、実施することができる。より具体的には、外方部材および内方部材と玉との間に適切な圧力が相互に付与されるように、第2の内方部材を第1の内方部材に嵌め込んで固定する(軸方向に沿って押し込んで固定する)ことにより、上記予圧を付与することができる。 Further, it is preferable that a preload is applied to the swing arm bearing in the present invention. This facilitates maintaining the contact between the inner member and the outer member constituting the swing arm bearing and the ball during operation of the swing arm bearing. As a result, the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved. The application of the preload to the swing arm bearing is performed by, for example, fitting the second inner member into the first inner member in a state where the outer member, the first inner member and the ball are combined. Can be implemented. More specifically, the second inner member is fitted and fixed to the first inner member so that appropriate pressure is mutually applied between the outer member and the inner member and the ball. The preload can be applied by pushing in and fixing along the axial direction.
 また、本発明に従ったスイングアーム用軸受は、円環状の形状を有し、内方部材と外方部材との間に配置されるとともに、複数の玉を円環状の軌道上に所定のピッチで転動自在に保持する保持器をさらに備えている。 The swing arm bearing according to the present invention has an annular shape, is disposed between the inner member and the outer member, and a plurality of balls are arranged on the annular track with a predetermined pitch. And a retainer that can be freely rolled.
 本発明のスイングアーム用軸受においては、固定軸として機能する内方部材およびスイングアームが接続されるべき外方部材に、互いに対向する軌道面が形成されるとともに、当該軌道面の間に保持器により玉が転動自在に保持されている。これにより、外方部材と内方部材との間に内輪および外輪を有する転がり軸受を嵌め込む従来の構成に比べて組立工程を簡略化し、製造コストを低減することができる。その結果、本発明のスイングアーム用軸受によれば、低コストなスイングアーム用軸受を提供することができる。 In the swing arm bearing of the present invention, the inner member functioning as a fixed shaft and the outer member to which the swing arm is to be connected are formed with raceway surfaces facing each other, and a cage between the raceway surfaces. The ball is held so that it can roll freely. Thereby, the assembly process can be simplified and the manufacturing cost can be reduced as compared with the conventional configuration in which the rolling bearing having the inner ring and the outer ring is fitted between the outer member and the inner member. As a result, according to the swing arm bearing of the present invention, a low cost swing arm bearing can be provided.
 上記スイングアーム用軸受において好ましくは、保持器は樹脂成形体からなっている。これにより、金属製の保持器を用いる場合に比べて保持器の加締めなどの工程を省略することが可能となり、スイングアーム用軸受の製造コストを一層低減することができる。 In the above swing arm bearing, the cage is preferably made of a resin molded body. As a result, steps such as caulking of the cage can be omitted as compared with the case where a metal cage is used, and the manufacturing cost of the swing arm bearing can be further reduced.
 上記スイングアーム用軸受において好ましくは、保持器は、玉を保持する保持部と、当該保持部よりも径方向の厚みが大きい厚肉部とを含んでいる。 In the swing arm bearing, preferably, the cage includes a holding portion for holding a ball and a thick portion having a larger radial thickness than the holding portion.
 本発明者は、以下のような観点でスイングアーム用軸受の低コスト化について詳細な検討を行い、上記構成を導出した。すなわち、上述のように、図30に基づいて説明したような従来のスイングアーム用軸受ユニットにおいては、玉軸受が組み込まれている。そして、軸受内部からのグリースの漏出および軸受内部への固形異物の侵入を抑制する目的で、当該玉軸受の外輪の内周面には、内輪に向けて突出するシール板が留め金により固定されている。その結果、留め金およびシール板の部品の費用およびこれらの取り付け工程を実施するための費用が必要となり、コスト上昇の原因となっていた。 The present inventor conducted a detailed study on cost reduction of the swing arm bearing from the following viewpoints and derived the above configuration. That is, as described above, in the conventional swing arm bearing unit described with reference to FIG. 30, a ball bearing is incorporated. A seal plate protruding toward the inner ring is fixed to the inner peripheral surface of the outer ring of the ball bearing by a clasp for the purpose of suppressing leakage of grease from the inside of the bearing and intrusion of solid foreign matters into the bearing. ing. As a result, the cost of the clasp and the seal plate parts and the cost for carrying out these attachment processes are required, which causes an increase in cost.
 ここで、スイングアームを支持する軸受に対しては軸受トルクの低減が強く求められるため、軸受内部に封入されるグリースの量は、一般的な転がり軸受に比べて少なくなっている。そのため、スイングアームを支持する軸受においては、グリースの漏出が発生するおそれは一般的な転がり軸受に比べて小さい。 Here, since a reduction in bearing torque is strongly demanded for the bearing supporting the swing arm, the amount of grease enclosed in the bearing is smaller than that of a general rolling bearing. Therefore, in the bearing that supports the swing arm, the risk of grease leakage is smaller than that of a general rolling bearing.
 また、ハードディスクドライブ(HDD)は極端に発塵を嫌うため、通常、HDDの組立はクリーンルーム内において実施される。上記従来のスイングアーム用軸受ユニットに用いられる転がり軸受(玉軸受)は、完成品である軸受をユニット化するため、当該軸受がクリーンルームへと搬送されるまでの工程において、軸受内部に固形異物が侵入するおそれがある。しかし、固定軸として機能する内方部材およびスイングアームが接続されるべき外方部材に、互いに対向する軌道面が直接形成され、転がり軸受を組み込む工程を実施する必要のない本発明のスイングアーム用軸受においては、完成品である軸受が固形異物の侵入のおそれがある状態で搬送される必要はなく、スイングアーム用軸受の組立自体がクリーンルームにおいて実施される。したがって、上記本発明のスイングアーム用軸受においては、軸受内部に固形異物が侵入するおそれは小さいといえる。以上のように、本発明のスイングアーム用軸受においては、グリースの漏出や固形異物の侵入のおそれは必ずしも大きくなく、簡易的なシール機構で十分であると考えられる。 Also, since hard disk drives (HDD) are extremely reluctant to generate dust, HDD assembly is usually performed in a clean room. Rolling bearings (ball bearings) used in the conventional swing arm bearing unit unitize the finished bearing, and in the process until the bearing is transported to the clean room, solid foreign substances are present inside the bearing. There is a risk of intrusion. However, the inner member functioning as a fixed shaft and the outer member to which the swing arm is to be connected are directly formed with the raceway surfaces facing each other, and the swing arm of the present invention does not need to carry out the process of incorporating the rolling bearing. In the bearing, it is not necessary that the finished bearing is transported in a state where there is a risk of intrusion of solid foreign matter, and the assembly of the swing arm bearing itself is performed in a clean room. Therefore, in the swing arm bearing of the present invention, it can be said that there is little risk of solid foreign matter entering the bearing. As described above, in the swing arm bearing of the present invention, there is not necessarily a great risk of leakage of grease or intrusion of solid foreign matters, and it is considered that a simple sealing mechanism is sufficient.
 これに対し、上述のように、保持器に上記厚肉部を形成し、当該厚肉部と内方部材および外方部材との間隔を小さくしておくことにより、従来のようなシール板を省略しても十分なシール性能が得られることを本発明者は見出した。したがって、上記構成によれば、十分なシール性能を確保しつつ、シール板を省略することが可能となるため、スイングアーム用軸受の製造コストを一層抑制することができる。 On the other hand, as described above, the thick portion is formed in the cage, and the distance between the thick portion and the inner member and the outer member is reduced, so that a conventional sealing plate can be obtained. The present inventors have found that sufficient sealing performance can be obtained even if omitted. Therefore, according to the above configuration, it is possible to omit the seal plate while ensuring sufficient sealing performance, so that the manufacturing cost of the swing arm bearing can be further suppressed.
 なお、上記厚肉部は、保持器の一方の端面を含む領域に形成されていることが好ましい。これにより、より十分なシール性能が得られる。 In addition, it is preferable that the said thick part is formed in the area | region containing one end surface of a holder | retainer. Thereby, more sufficient sealing performance can be obtained.
 上記スイングアーム用軸受においては、複数の玉は1対の円環状の軌道上に配置されていてもよい。この場合、当該1対の軌道のうち一方の軌道上に配置された玉は第1の保持器により保持され、当該1対の軌道のうち他方の軌道上に配置された玉は第2の保持器により保持することができる。そして、この場合、第1の保持器および第2の保持器のそれぞれには、一方の保持器から見て他方の保持器とは反対側の端面を含む領域に、厚肉部が形成されていることが好ましい。 In the swing arm bearing, the plurality of balls may be arranged on a pair of annular tracks. In this case, the ball arranged on one of the pair of tracks is held by the first cage, and the ball arranged on the other track of the pair of tracks is held second. Can be held by a vessel. In this case, each of the first cage and the second cage has a thick portion formed in a region including an end surface opposite to the other cage as viewed from one cage. Preferably it is.
 このように、スイングアーム用軸受が複列軸受であり、各列に含まれる玉を保持する保持器が配置される場合、一方の保持器から見て他方の保持器とは反対側の端面を含む領域に厚肉部を形成することにより、軸受内部の軸方向の両側にシールの機能を果たす厚肉部が配置される。その結果、軸受内部への固形異物の侵入を良好に抑制することができる。 In this way, when the swing arm bearing is a double row bearing and the cages for holding the balls included in each row are arranged, the end surface on the side opposite to the other cage is viewed from one cage. By forming the thick portion in the region to include, the thick portion that functions as a seal is disposed on both sides in the axial direction inside the bearing. As a result, it is possible to satisfactorily suppress solid foreign matter from entering the bearing.
 上記スイングアーム用軸受において好ましくは、保持器の厚肉部と外方部材および内方部材との間隔は、0.05mm以上0.2mm以下となっている。 In the above-mentioned swing arm bearing, the distance between the thick part of the cage and the outer member and the inner member is preferably 0.05 mm or more and 0.2 mm or less.
 上記間隔が0.2mmを超えると、軸受内部への侵入により軸受の耐久性等に大きな影響を与える固形異物の侵入を十分に抑制できないおそれがある。一方、上記間隔を0.05mm未満となると、スイングアーム用軸受の運転中において保持器と内方部材または外方部材とが接触し、トルク変動の要因となるおそれがある。したがって、上記間隔は、0.05mm以上0.2mm以下とすることが好ましい。 If the distance exceeds 0.2 mm, the intrusion of solid foreign matters that have a great influence on the durability of the bearing due to intrusion into the bearing may not be sufficiently suppressed. On the other hand, if the distance is less than 0.05 mm, the cage and the inner member or the outer member may come into contact with each other during the operation of the swing arm bearing, which may cause torque fluctuation. Therefore, the interval is preferably 0.05 mm or more and 0.2 mm or less.
 次に、本発明に係るスイングアーム用軸受の製造方法は、外周面に円環状の内側軌道面が形成された内方部材と、円環状の外側軌道面が形成され、ハードディスクドライブのスイングアームが接続されるべき外方部材と、複数の玉とを準備する工程と、上記内側軌道面と上記外側軌道面とが対向し、かつ上記玉が上記内側軌道面と1点において接触するとともに、上記外側軌道面と2点において接触するように、上記内方部材、上記外方部材および上記玉を組み立てる工程と、上記外方部材を上記内方部材に対して軸周りに相対的に回転させることにより、上記内側軌道面において上記玉と接触する領域、および上記外側軌道面において上記玉と接触する領域の塑性加工を実施する工程とを備えた製造方法である。 Next, the swing arm bearing manufacturing method according to the present invention includes an inner member having an annular inner raceway surface formed on an outer peripheral surface, an annular outer raceway surface, and a swing arm of a hard disk drive. A step of preparing an outer member to be connected and a plurality of balls; the inner raceway surface and the outer raceway surface face each other; and the ball contacts the inner raceway surface at one point, and Assembling the inner member, the outer member and the ball so as to contact the outer raceway surface at two points, and rotating the outer member relative to the inner member relative to the axis. Thus, the manufacturing method includes a step of performing plastic working on a region in contact with the ball on the inner raceway surface and a region in contact with the ball on the outer raceway surface.
 本発明に係るスイングアーム用軸受においては、内方部材、外方部材および玉を組み立てた後、外方部材を内方部材に対して回転させることにより、内側軌道面において玉と接触する領域、および外側軌道面において玉と接触する領域の塑性加工(バニシング)が実施される。上述したように、内側軌道面および外側軌道面のうち、玉と接触する領域に関して面粗度Raを小さくする加工が実施されれば、十分な耐久性を得ることができる。そして、上述のようなプロセスを採用することにより、スイングアーム用軸受を構成する内方部材、外方部材、玉などの部材をスイングアーム用軸受として組み立てる前に、あらかじめ内側軌道面および外側軌道面の面粗度Raを小さくする研削加工などの加工を行なうことなく、容易に必要な領域の面粗度Raを小さくする塑性加工を行なうことができる。その結果、本発明のスイングアーム用軸受の製造方法によれば、スイングアーム用軸受の製造コストを低減することができる。 In the swing arm bearing according to the present invention, after assembling the inner member, the outer member, and the ball, by rotating the outer member with respect to the inner member, the region in contact with the ball on the inner raceway surface, And the plastic working (burnishing) of the area | region which contacts a ball in an outer raceway surface is implemented. As described above, sufficient durability can be obtained if the processing for reducing the surface roughness Ra is performed on the region of the inner raceway surface and the outer raceway surface that contacts the ball. Then, by adopting the process as described above, before assembling the inner member, outer member, ball and other members constituting the swing arm bearing as the swing arm bearing, the inner race surface and the outer race surface in advance. It is possible to easily perform plastic working to reduce the surface roughness Ra of a necessary region without performing processing such as grinding to reduce the surface roughness Ra. As a result, according to the swing arm bearing manufacturing method of the present invention, the manufacturing cost of the swing arm bearing can be reduced.
 また、本発明に係るスイングアーム用軸受の製造方法においては、塑性加工を実施する工程では、外方部材および内方部材を軸周りに回転させることにより、外方部材を内方部材に対して軸周りに相対的に回転させるとともに、内方部材と外方部材との間にアキシャル力およびラジアル力を作用させることが好ましい。 Further, in the swing arm bearing manufacturing method according to the present invention, in the step of carrying out the plastic working, the outer member and the inner member are rotated around the axis, whereby the outer member is moved with respect to the inner member. It is preferable that the axial force and the radial force are applied between the inner member and the outer member while rotating around the axis.
 アキシャル力のみを作用させながら外方部材を内方部材に対して回転させると、玉は内側軌道面に対して内側軌道面に垂直な方向にのみ荷重を加える。その結果、内側軌道面は玉の表面の形状に沿った形状に塑性変形する。この場合、当該スイングアーム用軸受が使用されると、玉が内側軌道面の塑性変形した領域からはみ出し、トルク変動が生じるおそれがある。 ¡When the outer member is rotated relative to the inner member while applying only the axial force, the ball applies a load only in the direction perpendicular to the inner raceway surface with respect to the inner raceway surface. As a result, the inner raceway surface is plastically deformed into a shape along the shape of the surface of the ball. In this case, when the swing arm bearing is used, the balls may protrude from the plastically deformed region of the inner raceway surface, and torque fluctuation may occur.
 これに対し、内方部材と外方部材とに対してアキシャル力およびラジアル力を作用させれば、玉は内側軌道面に対して、内側軌道面において塑性変形する領域の幅を広げる方向にも荷重を加える。その結果、内側軌道面は玉の表面の形状(曲率)よりも平面に近い(曲率が小さい)形状となるように塑性変形する。これにより、上記トルク変動を抑制することができる。なお、軌道面の面粗度Raを小さくする塑性加工を効率よく行なうためには、アキシャル力とラジアル力とを同時に作用させることが好ましい。 On the other hand, if an axial force and a radial force are applied to the inner member and the outer member, the ball also extends in the direction of expanding the width of the plastic deformation region on the inner raceway surface with respect to the inner raceway surface. Apply load. As a result, the inner raceway surface is plastically deformed so as to have a shape closer to a plane (a smaller curvature) than the shape (curvature) of the surface of the ball. Thereby, the said torque fluctuation | variation can be suppressed. In order to efficiently perform the plastic working to reduce the surface roughness Ra of the raceway surface, it is preferable to apply the axial force and the radial force simultaneously.
 また、外方部材を内方部材に対して相対的に回転させる際に、たとえば内方部材がその中心軸に対して回転せず静止した状態で、外方部材のみが中心軸に対して回転していれば、内側軌道面のうち外方部材が押し付けられる側においては塑性加工が良好に進行するものの、外方部材が押し付けられる側とは反対側においては塑性加工が十分に進行しない。したがって、軌道面を全周にわたって良好に塑性加工するためには、外方部材および内方部材の両方を軸周りに回転させることが好ましい。 Further, when the outer member is rotated relative to the inner member, for example, the outer member only rotates with respect to the central axis while the inner member does not rotate with respect to the central axis and remains stationary. If this is the case, plastic working proceeds favorably on the side of the inner raceway on which the outer member is pressed, but plastic working does not proceed sufficiently on the side opposite to the side on which the outer member is pressed. Therefore, it is preferable to rotate both the outer member and the inner member around the axis in order to plastically process the raceway surface over the entire circumference.
 本発明に係るスイングアーム用軸受の製造方法においては、玉と接触する領域を塑性加工する工程では、面粗度Ra0.3以下である内側軌道面および外側軌道面が塑性加工されることが好ましい。塑性加工を行なう前の内側軌道面および外側軌道面の面粗度Raが0.3以下であれば、上述した方法を用いて、十分に内側軌道面および外側軌道面の面粗度Raを小さくしたスイングアーム用軸受を製造することができる。なお、当該面粗度Raは0.14以下であることがさらに好ましい。 In the swing arm bearing manufacturing method according to the present invention, it is preferable that in the step of plastically processing the region in contact with the ball, the inner raceway surface and the outer raceway surface having a surface roughness Ra of 0.3 or less are plastically processed. . If the surface roughness Ra of the inner raceway surface and the outer raceway surface before plastic working is 0.3 or less, the surface roughness Ra of the inner raceway surface and the outer raceway surface is sufficiently reduced by using the method described above. The swing arm bearing can be manufactured. The surface roughness Ra is more preferably 0.14 or less.
 本発明の他の局面に係るスイングアーム支点軸受(スイングアーム用軸受)は、外周面に円環状の内側軌道面が形成された内方部材と、内方部材を取り囲むように配置され、内側軌道面に対向する円環状の外側軌道面が形成され、ハードディスクドライブのスイングアームが接続されるべき外方部材と、内側軌道面および外側軌道面に接触して配置された複数の転動体とを備えている。上記転動体は、上記内側軌道面と1点において接触するとともに、上記外側軌道面と2点において接触している。そして、上記内側軌道面および上記外側軌道面においては、上記転動体と接触する第1の領域の面粗度Raが、上記第1の領域に隣接する第2の領域の面粗度Raよりも小さい、スイングアーム支点軸受である。 A swing arm fulcrum bearing (swing arm bearing) according to another aspect of the present invention includes an inner member having an annular inner raceway surface formed on an outer peripheral surface, and an inner race that is disposed so as to surround the inner member. An annular outer raceway surface facing the surface is formed, and includes an outer member to which a swing arm of a hard disk drive is to be connected, and a plurality of rolling elements arranged in contact with the inner raceway surface and the outer raceway surface. ing. The rolling element is in contact with the inner raceway surface at one point and in contact with the outer raceway surface at two points. In the inner raceway surface and the outer raceway surface, the surface roughness Ra of the first region in contact with the rolling element is greater than the surface roughness Ra of the second region adjacent to the first region. It is a small swing arm fulcrum bearing.
 面粗度Raの大きい場合、油膜パラメータが低下し、軸受の耐久性が低下するおそれがある。そのため、軌道面の全面に対して、砥石などを用いて研削加工を施すことにより、軌道面の面粗度Raを小さくする表面仕上げ加工が実施されるのが一般的である。 When the surface roughness Ra is large, the oil film parameter is lowered, and the durability of the bearing may be lowered. For this reason, it is common to perform surface finishing to reduce the surface roughness Ra of the raceway surface by grinding the entire raceway surface using a grindstone or the like.
 しかし、軌道面のうち、実際に転動体が転動(接触)する領域は一部であり、当該領域以外の他の領域においては、転動体は接触しない。そして、本発明者は、軌道面のうち実際に転動体が接触する領域の面粗度Raを当該領域に隣接する他の領域の面粗度Raよりも小さくして、十分な油膜パラメータを確保しておくことにより、スイングアーム支点軸受に十分な耐久性を付与することが可能であることを見出した。 However, the area where the rolling elements actually roll (contact) is a part of the raceway surface, and the rolling elements do not contact in other areas other than the area. And this inventor secures sufficient oil film parameter by making surface roughness Ra of the area | region where a rolling element actually contacts among surface surfaces smaller than surface roughness Ra of the other area | region adjacent to the said area | region. Thus, it has been found that sufficient durability can be imparted to the swing arm fulcrum bearing.
 本発明の他の局面に係るスイングアーム支点軸受においては、軌道面のうち、スイングアーム支点軸受を使用する際に転動体が接触する第1の領域の方が、第1の領域に隣接する、具体的にはスイングアーム支点軸受を使用する際に転動体が接触しない第2の領域よりも、面粗度Raが小さくなっている。その結果、本発明のスイングアーム支点軸受によれば、軌道面の全面に対して面粗度Raを小さくする表面仕上げ加工を行なった従来のスイングアーム支点軸受よりも、当該加工を行なう領域を減少させ、製造コストを低減することが可能となっている。 In the swing arm fulcrum bearing according to another aspect of the present invention, of the raceway surface, the first region that the rolling element contacts when using the swing arm fulcrum bearing is adjacent to the first region. Specifically, when the swing arm fulcrum bearing is used, the surface roughness Ra is smaller than the second region where the rolling elements do not contact. As a result, according to the swing arm fulcrum bearing of the present invention, the area to be processed is reduced as compared with the conventional swing arm fulcrum bearing in which the surface finishing process is performed to reduce the surface roughness Ra with respect to the entire raceway surface. Manufacturing costs can be reduced.
 また、スイングアーム支点軸受の製造プロセスにおいては、内方部材に比べて外方部材の加工量が大きくなる傾向にある。本発明のスイングアーム支点軸受においては、転動体が内側軌道面と1点において接触するとともに、外側軌道面と2点において接触する構成を採用することにより、加工量の多い外方部材の硬度を抑制することを可能としている。そのため、製造コストを低減することが可能となっている。以上のように、本発明のスイングアーム支点軸受によれば、低コストなスイングアーム支点軸受を提供することができる。 In the manufacturing process of the swing arm fulcrum bearing, the processing amount of the outer member tends to be larger than that of the inner member. In the swing arm fulcrum bearing of the present invention, by adopting a configuration in which the rolling element is in contact with the inner raceway surface at one point and is in contact with the outer raceway surface at two points, the hardness of the outer member having a large amount of processing is increased. It is possible to suppress. Therefore, it is possible to reduce manufacturing costs. As described above, according to the swing arm fulcrum bearing of the present invention, a low-cost swing arm fulcrum bearing can be provided.
 本発明の他の局面に係るスイングアーム支点軸受は、上記内側軌道面の硬度はHRC40以上HRC50以下であり、外側軌道面の硬度はHRC25以上HRC35以下であることが好ましい。 In a swing arm fulcrum bearing according to another aspect of the present invention, the hardness of the inner raceway surface is preferably HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is preferably HRC25 or more and HRC35 or less.
 スイングアーム支点軸受が使用される際、たとえば予想外の外力として外部から衝撃荷重がスイングアーム支点軸受に加われば、転動体は、軌道面に対して衝撃荷重を与える。その結果、軌道面に圧痕が発生する可能性がある。このような圧痕の発生を抑制するためには、軌道面の硬度を、当該圧痕が生じない程度に高くすることが好ましい。そして、当該圧痕の発生を十分に抑制するためには、転動体と1点において接触する内側軌道面についてはHRC40以上、2点において接触する外側軌道面についてはHRC25以上の硬度が必要であることが、本発明者の検討により明らかとなった。 When the swing arm fulcrum bearing is used, for example, if an external impact load is applied to the swing arm fulcrum bearing as an unexpected external force, the rolling element applies an impact load to the raceway surface. As a result, indentations may occur on the raceway surface. In order to suppress the generation of such indentations, it is preferable to increase the hardness of the raceway surface to such an extent that the indentations do not occur. In order to sufficiently suppress the occurrence of the indentation, the inner raceway surface that contacts the rolling element at one point must have a hardness of HRC 40 or higher for the outer raceway surface that contacts at two points, and a hardness of HRC25 or higher. However, it became clear by examination of this inventor.
 一方、上述した内側軌道面および外側軌道面の硬度を高くすれば、加工に要するコストが増大する。このことを抑制するためには、上述したようにたとえば内方部材の内側軌道面の硬度はHRC50以下、外方部材の外側軌道面の硬度はHRC35以下とすることが好ましい。以上より、内側軌道面の硬度はHRC40以上HRC50以下、外側軌道面の硬度はHRC25以上HRC35以下とすることが好ましい。なお、圧痕の発生の抑制と加工コストの低減とのバランスを考慮すると、内側軌道面の硬度はHRC43以上HRC47以下、外側軌道面の硬度はHRC28以上HRC32以下とすることがさらに好ましい。 On the other hand, if the hardness of the inner raceway surface and the outer raceway surface is increased, the cost required for processing increases. In order to suppress this, as described above, for example, the hardness of the inner raceway surface of the inner member is preferably HRC50 or less, and the hardness of the outer raceway surface of the outer member is preferably HRC35 or less. From the above, it is preferable that the hardness of the inner raceway surface is HRC40 or more and HRC50 or less, and the hardness of the outer raceway surface is HRC25 or more and HRC35 or less. In consideration of the balance between suppression of generation of indentation and reduction of processing cost, it is more preferable that the hardness of the inner raceway surface is HRC43 or more and HRC47 or less, and the hardness of the outer raceway surface is HRC28 or more and HRC32 or less.
 本発明の他の局面に係るスイングアーム支点軸受は、内方部材には、内側軌道面の中心軸を含む領域に穴が形成されており、内側軌道面の硬度はHRC40以上となっており、穴の表層部の硬度はHRC25以下となっていることが好ましい。 In the swing arm fulcrum bearing according to another aspect of the present invention, the inner member has a hole formed in a region including the central axis of the inner raceway surface, and the hardness of the inner raceway surface is HRC40 or more, The hardness of the surface layer portion of the hole is preferably HRC25 or less.
 上述したように、内側軌道面については、たとえば外部からの衝撃荷重により転動体が内側軌道面に対して衝撃力を与え、内側軌道面に圧痕が発生することを抑制するために、硬度を高く(HRC40以上に)することが好ましい。一方、内方部材の中心部分、すなわち内方部材の長軸方向に延在する中心軸を含む領域には、内方部材を他の部材に固定する等の目的で穴が形成される場合がある。この場合、穴の加工コストを抑制するため、穴の表層部の硬度はHRC25以下とすることが好ましい。ここで、穴の表層部とは、たとえば穴の表面から深さ0.1mm以下の領域をいう。そして、当該表層部の硬度は、たとえば内方部材を穴の表面に垂直な断面で切断し、表面から0.1mm以下の領域の硬度を硬度計を用いて測定することにより調査することができる。 As described above, for the inner raceway surface, for example, the rolling element gives an impact force to the inner raceway surface due to an impact load from the outside, and the hardness is increased in order to suppress the occurrence of indentation on the inner raceway surface. (HRC 40 or more) is preferable. On the other hand, a hole may be formed in the central portion of the inner member, that is, in a region including the central axis extending in the long axis direction of the inner member for the purpose of fixing the inner member to another member. is there. In this case, it is preferable that the hardness of the surface layer portion of the hole is HRC25 or less in order to suppress the processing cost of the hole. Here, the surface layer portion of the hole refers to a region having a depth of 0.1 mm or less from the surface of the hole, for example. And the hardness of the said surface layer part can be investigated, for example by cut | disconnecting an inner member in a cross section perpendicular | vertical to the surface of a hole, and measuring the hardness of the area | region 0.1 mm or less from the surface using a hardness meter. .
 本発明の他の局面に係るスイングアーム支点軸受においては、内側軌道面を含む領域は高周波焼入れされていることが好ましい。高周波焼入れを用いることにより、上述したように、内方部材の外周部分、すなわち内側軌道面を含む領域の硬度を高くする一方、内方部材の中心部分、すなわち穴の表層部の硬化を抑制する構造を容易に達成することができる。 In the swing arm fulcrum bearing according to another aspect of the present invention, the region including the inner raceway surface is preferably induction hardened. By using induction hardening, as described above, the hardness of the outer peripheral portion of the inner member, that is, the region including the inner raceway surface is increased, while the center portion of the inner member, that is, the surface layer portion of the hole is suppressed. The structure can be easily achieved.
 次に、本発明の他の局面に係るスイングアーム支点軸受の製造方法は、外周面に円環状の内側軌道面が形成された内方部材と、円環状の外側軌道面が形成され、ハードディスクドライブのスイングアームが接続されるべき外方部材と、複数の転動体とを準備する工程と、上記内側軌道面と上記外側軌道面とが対向し、かつ上記転動体が上記内側軌道面と1点において接触するとともに、上記外側軌道面と2点において接触するように、上記内方部材、上記外方部材および上記転動体を組み立てる工程と、上記外方部材を上記内方部材に対して軸周りに相対的に回転させることにより、上記内側軌道面において上記転動体と接触する領域、および上記外側軌道面において上記転動体と接触する領域の塑性加工を実施する工程とを備えた製造方法である。 Next, a method for manufacturing a swing arm fulcrum bearing according to another aspect of the present invention includes an inner member having an annular inner raceway surface formed on an outer peripheral surface, an annular outer raceway surface, and a hard disk drive. A step of preparing an outer member to be connected to the swing arm and a plurality of rolling elements, the inner raceway surface and the outer raceway surface are opposed to each other, and the rolling element is at one point with the inner raceway surface. And assembling the inner member, the outer member, and the rolling element so as to make contact with the outer raceway surface at two points, and the outer member around the axis with respect to the inner member. And a step of performing plastic working on a region in contact with the rolling element on the inner raceway surface and a region in contact with the rolling element on the outer raceway surface. It is.
 本発明の他の局面に係るスイングアーム支点軸受においては、内方部材、外方部材および転動体を組み立てた後、外方部材を内方部材に対して回転させることにより、内側軌道面において転動体と接触する領域、および外側軌道面において転動体と接触する領域の塑性加工(バニシング)が実施される。上述したように、内側軌道面および外側軌道面のうち、転動体と接触する領域に関して面粗度Raを小さくする加工が実施されれば、十分な耐久性を得ることができる。そして、上述のようなプロセスを採用することにより、スイングアーム支点軸受を構成する内方部材、外方部材、転動体などの部材をスイングアーム支点軸受として組み立てる前に、あらかじめ内側軌道面および外側軌道面の面粗度Raを小さくする研削加工などの加工を行なうことなく、容易に必要な領域の面粗度Raを小さくする塑性加工を行なうことができる。その結果、本発明のスイングアーム支点軸受の製造方法によれば、スイングアーム支点軸受の製造コストを低減することができる。 In the swing arm fulcrum bearing according to another aspect of the present invention, after the inner member, the outer member, and the rolling element are assembled, the outer member is rotated with respect to the inner member, thereby rolling on the inner raceway surface. Plastic working (burnishing) is performed on the area that contacts the moving body and the area that contacts the rolling element on the outer raceway surface. As described above, sufficient durability can be obtained if processing for reducing the surface roughness Ra is performed on the inner raceway surface and the outer raceway surface in the region in contact with the rolling elements. By adopting the process as described above, before assembling the members such as the inner member, the outer member, and the rolling element constituting the swing arm fulcrum bearing as the swing arm fulcrum bearing, the inner raceway surface and the outer raceway are preliminarily assembled. Plastic processing for easily reducing the surface roughness Ra of a necessary region can be performed without performing processing such as grinding to reduce the surface roughness Ra of the surface. As a result, according to the method for manufacturing a swing arm fulcrum bearing of the present invention, the manufacturing cost of the swing arm fulcrum bearing can be reduced.
 また、本発明の他の局面に係るスイングアーム支点軸受の製造方法においては、塑性加工を実施する工程では、外方部材および内方部材を軸周りに回転させることにより、外方部材を内方部材に対して軸周りに相対的に回転させるとともに、内方部材と外方部材との間にアキシャル力およびラジアル力を作用させることが好ましい。 In the method of manufacturing a swing arm fulcrum bearing according to another aspect of the present invention, in the step of carrying out the plastic working, the outer member is moved inward by rotating the outer member and the inner member around the axis. It is preferable that the axial rotation and the radial force are applied between the inner member and the outer member while rotating relative to the member around the axis.
 アキシャル力のみを作用させながら外方部材を内方部材に対して回転させると、転動体は内側軌道面に対して内側軌道面に垂直な方向にのみ荷重を加える。その結果、内側軌道面は転動体の表面の形状に沿った形状に塑性変形する。この場合、当該スイングアーム支点軸受が使用されると、転動体が内側軌道面の塑性変形した領域からはみ出し、トルク変動が生じるおそれがある。 ¡When the outer member is rotated relative to the inner member while applying only the axial force, the rolling element applies a load only in the direction perpendicular to the inner raceway surface with respect to the inner raceway surface. As a result, the inner raceway surface is plastically deformed into a shape along the shape of the surface of the rolling element. In this case, when the swing arm fulcrum bearing is used, the rolling element may protrude from the plastically deformed region of the inner raceway surface, and torque fluctuation may occur.
 これに対し、内方部材と外方部材とに対してアキシャル力およびラジアル力を作用させれば、転動体は内側軌道面に対して、内側軌道面において塑性変形する領域の幅を広げる方向にも荷重を加える。その結果、内側軌道面は転動体の表面の形状(曲率)よりも平面に近い(曲率が小さい)形状となるように塑性変形する。これにより、上記トルク変動を抑制することができる。なお、軌道面の面粗度Raを小さくする塑性加工を効率よく行なうためには、アキシャル力とラジアル力とを同時に作用させることが好ましい。 On the other hand, if an axial force and a radial force are applied to the inner member and the outer member, the rolling element expands the width of the plastic deformation region on the inner raceway surface with respect to the inner raceway surface. Also apply a load. As a result, the inner raceway surface is plastically deformed so as to have a shape closer to a plane (a smaller curvature) than the shape (curvature) of the surface of the rolling element. Thereby, the said torque fluctuation | variation can be suppressed. In order to efficiently perform the plastic working to reduce the surface roughness Ra of the raceway surface, it is preferable to apply the axial force and the radial force simultaneously.
 また、外方部材を内方部材に対して相対的に回転させる際に、たとえば内方部材がその中心軸に対して回転せず静止した状態で、外方部材のみが中心軸に対して回転していれば、内側軌道面のうち外方部材が押し付けられる側においては塑性加工が良好に進行するものの、外方部材が押し付けられる側とは反対側においては塑性加工が十分に進行しない。したがって、軌道面を全周にわたって良好に塑性加工するためには、外方部材および内方部材の両方を軸周りに回転させることが好ましい。 Further, when the outer member is rotated relative to the inner member, for example, the outer member only rotates with respect to the central axis while the inner member does not rotate with respect to the central axis and remains stationary. If this is the case, plastic working proceeds favorably on the side of the inner raceway on which the outer member is pressed, but plastic working does not proceed sufficiently on the side opposite to the side on which the outer member is pressed. Therefore, it is preferable to rotate both the outer member and the inner member around the axis in order to plastically process the raceway surface over the entire circumference.
 本発明の他の局面に係るスイングアーム支点軸受の製造方法においては、転動体と接触する領域を塑性加工する工程では、面粗度Ra0.3以下である内側軌道面および外側軌道面が塑性加工されることが好ましい。塑性加工を行なう前の内側軌道面および外側軌道面の面粗度Raが0.3以下であれば、上述した方法を用いて、十分に内側軌道面および外側軌道面の面粗度Raを小さくしたスイングアーム支点軸受を製造することができる。なお、当該面粗度Raは0.14以下であることがさらに好ましい。 In the method for manufacturing a swing arm fulcrum bearing according to another aspect of the present invention, in the step of plastic working the region in contact with the rolling element, the inner raceway surface and the outer raceway surface having a surface roughness Ra of 0.3 or less are plastic worked. It is preferred that If the surface roughness Ra of the inner raceway surface and the outer raceway surface before plastic working is 0.3 or less, the surface roughness Ra of the inner raceway surface and the outer raceway surface is sufficiently reduced by using the method described above. The swing arm fulcrum bearing thus manufactured can be manufactured. The surface roughness Ra is more preferably 0.14 or less.
 本発明のさらに他の局面に従ったスイングアーム支点軸受(スイングアーム用軸受)は、外周面に円環状の内側軌道面が形成され、ハードディスクドライブのスイングアームの固定軸として機能する内方部材と、内方部材を取り囲むように配置され、内側軌道面に対向する円環状の外側軌道面が形成され、上記スイングアームが接続されるべき外方部材と、内側軌道面および外側軌道面に接触して配置された複数の転動体と、円環状の形状を有し、内方部材と外方部材との間に配置されるとともに、複数の転動体を円環状の軌道上に所定のピッチで転動自在に保持する保持器とを備えている。 A swing arm fulcrum bearing (swing arm bearing) according to still another aspect of the present invention includes an inner member that has an annular inner raceway surface formed on an outer peripheral surface and functions as a fixed shaft of a swing arm of a hard disk drive. An annular outer raceway surface is formed so as to surround the inner member and faces the inner raceway surface, and contacts the outer member to which the swing arm is to be connected, the inner raceway surface and the outer raceway surface. Are arranged between the inner member and the outer member, and the plurality of rolling elements are rolled on the annular raceway at a predetermined pitch. And a cage for holding it movably.
 本発明のさらに他の局面のスイングアーム支点軸受においては、固定軸として機能する内方部材およびスイングアームが接続されるべき外方部材に、互いに対向する軌道面が形成されるとともに、当該軌道面の間に保持器により転動体が転動自在に保持されている。これにより、外方部材と内方部材との間に内輪および外輪を有する転がり軸受を嵌め込む従来の構成に比べて組立工程を簡略化し、製造コストを低減することができる。その結果、本発明のスイングアーム支点軸受によれば、低コストなスイングアーム支点軸受を提供することができる。 In the swing arm fulcrum bearing according to still another aspect of the present invention, a raceway surface facing each other is formed on the inner member functioning as a fixed shaft and the outer member to which the swing arm is to be connected. In the meantime, the rolling element is movably held by the cage. Thereby, the assembly process can be simplified and the manufacturing cost can be reduced as compared with the conventional configuration in which the rolling bearing having the inner ring and the outer ring is fitted between the outer member and the inner member. As a result, according to the swing arm fulcrum bearing of the present invention, a low-cost swing arm fulcrum bearing can be provided.
 上記スイングアーム支点軸受において好ましくは、保持器は樹脂成形体からなっている。これにより、金属製の保持器を用いる場合に比べて保持器の加締めなどの工程を省略することが可能となり、スイングアーム支点軸受の製造コストを一層低減することができる。 In the above swing arm fulcrum bearing, the cage is preferably made of a resin molded body. As a result, steps such as caulking of the cage can be omitted as compared with the case where a metal cage is used, and the manufacturing cost of the swing arm fulcrum bearing can be further reduced.
 上記スイングアーム支点軸受において好ましくは、保持器は、転動体を保持する保持部と、当該保持部よりも径方向の厚みが大きい厚肉部とを含んでいる。 Preferably, in the above swing arm fulcrum bearing, the cage includes a holding portion for holding the rolling element and a thick portion having a larger radial thickness than the holding portion.
 本発明者は、以下のような観点でスイングアーム支点軸受の低コスト化について詳細な検討を行い、上記構成を導出した。すなわち、上述のように、図2に基づいて説明したような従来のスイングアーム支点軸受ユニットにおいては、玉軸受が組み込まれている。そして、軸受内部からのグリースの漏出および軸受内部への固形異物の侵入を抑制する目的で、当該玉軸受の外輪の内周面には、内輪に向けて突出するシール板が留め金により固定されている。その結果、留め金およびシール板の部品の費用およびこれらの取り付け工程を実施するための費用が必要となり、コスト上昇の原因となっていた。 The present inventor conducted a detailed study on cost reduction of the swing arm fulcrum bearing from the following viewpoints and derived the above configuration. That is, as described above, in the conventional swing arm fulcrum bearing unit described with reference to FIG. 2, a ball bearing is incorporated. A seal plate protruding toward the inner ring is fixed to the inner peripheral surface of the outer ring of the ball bearing by a clasp for the purpose of suppressing leakage of grease from the inside of the bearing and intrusion of solid foreign matters into the bearing. ing. As a result, the cost of the clasp and the seal plate parts and the cost for carrying out these attachment processes are required, which causes an increase in cost.
 ここで、スイングアームを支持する軸受に対しては軸受トルクの低減が強く求められるため、軸受内部に封入されるグリースの量は、一般的な転がり軸受に比べて少なくなっている。そのため、スイングアームを支持する軸受においては、グリースの漏出が発生するおそれは一般的な転がり軸受に比べて小さい。 Here, since a reduction in bearing torque is strongly demanded for the bearing supporting the swing arm, the amount of grease enclosed in the bearing is smaller than that of a general rolling bearing. Therefore, in the bearing that supports the swing arm, the risk of grease leakage is smaller than that of a general rolling bearing.
 また、ハードディスクドライブ(HDD)は極端に発塵を嫌うため、通常、HDDの組立はクリーンルーム内において実施される。上記従来のスイングアーム支点軸受ユニットに用いられる転がり軸受(玉軸受)は、完成品である軸受をユニット化するため、当該軸受がクリーンルームへと搬送されるまでの工程において、軸受内部に固形異物が侵入するおそれがある。しかし、固定軸として機能する内方部材およびスイングアームが接続されるべき外方部材に、互いに対向する軌道面が直接形成され、転がり軸受を組み込む工程を実施する必要のない本発明のスイングアーム支点軸受においては、完成品である軸受が固形異物の侵入のおそれがある状態で搬送される必要はなく、スイングアーム支点軸受の組立自体がクリーンルームにおいて実施される。したがって、上記本発明のスイングアーム支点軸受においては、軸受内部に固形異物が侵入するおそれは小さいといえる。以上のように、本発明のスイングアーム支点軸受においては、グリースの漏出や固形異物の侵入のおそれは必ずしも大きくなく、簡易的なシール機構で十分であると考えられる。 Also, since hard disk drives (HDD) are extremely reluctant to generate dust, HDD assembly is usually performed in a clean room. Since the rolling bearing (ball bearing) used in the conventional swing arm fulcrum bearing unit unitizes the finished bearing, in the process until the bearing is transported to the clean room, solid foreign substances are present inside the bearing. There is a risk of intrusion. However, the inner surface that functions as a fixed shaft and the outer member to which the swing arm is to be connected are directly formed with mutually opposing raceway surfaces, and the swing arm fulcrum of the present invention that does not require the step of incorporating a rolling bearing. In the bearing, it is not necessary that the completed bearing is transported in a state where there is a risk of intrusion of solid foreign matter, and the assembly of the swing arm fulcrum bearing itself is performed in a clean room. Therefore, in the swing arm fulcrum bearing of the present invention, it can be said that there is little risk of solid foreign matter entering the bearing. As described above, in the swing arm fulcrum bearing of the present invention, there is not necessarily a great risk of leakage of grease or intrusion of solid foreign matters, and it is considered that a simple sealing mechanism is sufficient.
 これに対し、上述のように、保持器に上記厚肉部を形成し、当該厚肉部と内方部材および外方部材との間隔を小さくしておくことにより、従来のようなシール板を省略しても十分なシール性能が得られることを本発明者は見出した。したがって、上記構成によれば、十分なシール性能を確保しつつ、シール板を省略することが可能となるため、スイングアーム支点軸受の製造コストを一層抑制することができる。 On the other hand, as described above, the thick portion is formed in the cage, and the distance between the thick portion and the inner member and the outer member is reduced, so that a conventional sealing plate can be obtained. The present inventors have found that sufficient sealing performance can be obtained even if omitted. Therefore, according to the above configuration, it is possible to omit the seal plate while ensuring sufficient sealing performance, so that the manufacturing cost of the swing arm fulcrum bearing can be further suppressed.
 なお、上記厚肉部は、保持器の一方の端面を含む領域に形成されていることが好ましい。これにより、より十分なシール性能が得られる。 In addition, it is preferable that the said thick part is formed in the area | region containing one end surface of a holder | retainer. Thereby, more sufficient sealing performance can be obtained.
 上記スイングアーム支点軸受においては、複数の転動体は1対の円環状の軌道上に配置されていてもよい。この場合、当該1対の軌道のうち一方の軌道上に配置された転動体は第1の保持器により保持され、当該1対の軌道のうち他方の軌道上に配置された転動体は第2の保持器により保持することができる。そして、この場合、第1の保持器および第2の保持器のそれぞれには、一方の保持器から見て他方の保持器とは反対側の端面を含む領域に、厚肉部が形成されていることが好ましい。 In the swing arm fulcrum bearing, the plurality of rolling elements may be arranged on a pair of annular tracks. In this case, the rolling elements disposed on one of the pair of tracks are held by the first cage, and the rolling elements disposed on the other track of the pair of tracks are the second. Can be held by a cage. In this case, each of the first cage and the second cage has a thick portion formed in a region including an end surface opposite to the other cage as viewed from one cage. Preferably it is.
 このように、スイングアーム支点軸受が複列軸受であり、各列に含まれる転動体を保持する保持器が配置される場合、一方の保持器から見て他方の保持器とは反対側の端面を含む領域に厚肉部を形成することにより、軸受内部の軸方向の両側にシールの機能を果たす厚肉部が配置される。その結果、軸受内部への固形異物の侵入を良好に抑制することができる。 In this way, when the swing arm fulcrum bearing is a double row bearing and the cage that holds the rolling elements included in each row is arranged, the end surface on the side opposite to the other cage when viewed from one cage By forming the thick part in the region including the thick part, the thick part that functions as a seal is arranged on both sides in the axial direction inside the bearing. As a result, it is possible to satisfactorily suppress solid foreign matter from entering the bearing.
 上記スイングアーム支点軸受において好ましくは、保持器の厚肉部と外方部材および内方部材との間隔は、0.05mm以上0.2mm以下となっている。 In the above swing arm fulcrum bearing, the distance between the thick part of the cage and the outer member and the inner member is preferably 0.05 mm or more and 0.2 mm or less.
 上記間隔が0.2mmを超えると、軸受内部への侵入により軸受の耐久性等に大きな影響を与える固形異物の侵入を十分に抑制できないおそれがある。一方、上記間隔を0.05mm未満となると、スイングアーム支点軸受の運転中において保持器と内方部材または外方部材とが接触し、トルク変動の要因となるおそれがある。したがって、上記間隔は、0.05mm以上0.2mm以下とすることが好ましい。 If the distance exceeds 0.2 mm, the intrusion of solid foreign matters that have a great influence on the durability of the bearing due to intrusion into the bearing may not be sufficiently suppressed. On the other hand, if the distance is less than 0.05 mm, the cage and the inner member or the outer member may come into contact with each other during the operation of the swing arm fulcrum bearing, which may cause torque fluctuation. Therefore, the interval is preferably 0.05 mm or more and 0.2 mm or less.
 本発明の支点軸受ユニットによれば、玉に加わる転動体荷重の制御が容易になり、支点軸受ユニットのトルクを安定させることができる。 According to the fulcrum bearing unit of the present invention, it becomes easy to control the rolling element load applied to the ball, and the torque of the fulcrum bearing unit can be stabilized.
本発明の実施の形態1における、スイングアームに組み込まれた支点軸受ユニットの構造を示す、断面概略図である。It is a cross-sectional schematic diagram which shows the structure of the fulcrum bearing unit integrated in the swing arm in Embodiment 1 of this invention. 図1中に丸点線で囲んだ「20」の領域の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a region “20” surrounded by a round dotted line in FIG. 1. 図1中に丸点線で囲んだ「30」の領域の拡大断面図である。It is an expanded sectional view of the area | region of "30" enclosed with the dotted line in FIG. 図3における円すい状軌道面120に対して面粗さ向上加工を施す領域を表わす概略図である。It is the schematic showing the area | region which performs a surface roughness improvement process with respect to the conical track surface 120 in FIG. 図1の線分V-Vにおける断面模式図である。FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 1. 本発明における支点軸受ユニットの製造工程の順序および対象となる部材を示す表である。It is a table | surface which shows the order of the manufacturing process of the fulcrum bearing unit in this invention, and the member used as object. 複数個の玉を輪状に配置させるための治具を示す概略図である。It is the schematic which shows the jig | tool for arrange | positioning a some ball in ring shape. 図7の線分VIII-VIIIにおける断面模式図である。FIG. 8 is a schematic sectional view taken along line VIII-VIII in FIG. (A)複数個の玉をスリーブの外側軌道面に接触するように配置させた状態を示す概略図である。(B)さらに軸を配置させた状態を示す概略図である。(C)さらに調整リングを配置させた状態を示す概略図である。(A) It is the schematic which shows the state arrange | positioned so that a some ball may contact the outer track surface of a sleeve. (B) It is the schematic which shows the state which has arrange | positioned the axis | shaft. (C) It is the schematic which shows the state which has arrange | positioned the adjustment ring further. バニシング加工を用いて、軌道面のうち転動体である玉と接触する領域のみの面粗度Raを小さくした状態を示すデータのグラフである。It is a graph of the data which shows the state which reduced surface roughness Ra of only the area | region which contacts the ball | bowl which is a rolling element among raceway surfaces using burnishing. 本発明の実施の形態における、玉の転動する軌道面を加工する態様を示す断面概略図である。It is a cross-sectional schematic diagram which shows the aspect which processes the track surface on which a ball rolls in embodiment of this invention. 本発明の実施の形態2に係る、スイングアームに組み込まれた支点軸受ユニットの構造を示す、断面概略図である。It is a cross-sectional schematic diagram which shows the structure of the fulcrum bearing unit integrated in the swing arm based on Embodiment 2 of this invention. 図12中に丸点線で囲んだ「20」の領域の拡大断面図である。It is an expanded sectional view of the area | region of "20" enclosed with the dotted line in FIG. 図12中に丸点線で囲んだ「30」の領域の拡大断面図である。It is an expanded sectional view of the area | region of "30" enclosed with the dotted line in FIG. 本発明の実施の形態2に係る、支点軸受ユニットの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the fulcrum bearing unit based on Embodiment 2 of this invention. 図15のフローチャートの部材を準備する工程(S10)のうち、内方部材の形成に係る詳細な工程を示すフローチャートである。It is a flowchart which shows the detailed process which concerns on formation of an inward member among the processes (S10) which prepare the member of the flowchart of FIG. (A)内方部材(軸101)を製造する過程の、図16の高周波焼入れする工程(S11)を行なった状態を示す概略断面図である。(B)内方部材(軸101)を製造する過程の、図16の穴あけ加工する工程(S12)を行なった状態を示す概略断面図である。(C)内方部材(軸101)を製造する過程の、図16のタッピング加工する工程(S13)を行なった状態を示す概略断面図である。(D)内方部材(軸101)を製造する過程の、図16の旋削加工する工程(S14)を行なった状態を示す概略断面図である。(E)内方部材(軸101)を製造する過程の、図16の切断加工する工程(S15)を行なった状態を示す概略断面図である。(F)内方部材(軸101)の完成した状態を示す概略断面図である。(A) It is a schematic sectional drawing which shows the state which performed the process (S11) of induction hardening of FIG. 16 of the process which manufactures an inward member (shaft 101). (B) It is a schematic sectional drawing which shows the state which performed the drilling process (S12) of FIG. 16 of the process which manufactures an inward member (axis | shaft 101). (C) It is a schematic sectional drawing which shows the state which performed the process (S13) of the tapping process of FIG. 16 in the process of manufacturing an inner member (shaft 101). (D) It is a schematic sectional drawing which shows the state which performed the process (S14) of the turning process of FIG. 16 of the process which manufactures an inward member (shaft 101). (E) It is a schematic sectional drawing which shows the state which performed the cutting process (S15) of FIG. 16 of the process which manufactures an inward member (shaft 101). (F) It is a schematic sectional drawing which shows the completed state of an inward member (shaft 101). (A)内方部材(調整リング123)を製造する過程の、図16の高周波焼入れする工程(S11)を行なった状態を示す概略断面図である。(B)内方部材(調整リング123)を製造する過程の、図16の穴あけ加工する工程(S12)を行なった状態を示す概略断面図である。(C)内方部材(調整リング123)を製造する過程の、図16の旋削加工する工程(S14)を行なった状態を示す概略断面図である。(D)内方部材(調整リング123)の完成した状態を示す概略断面図である。(A) It is a schematic sectional drawing which shows the state which performed the process (S11) of induction hardening of FIG. 16 of the process which manufactures an inward member (adjustment ring 123). (B) It is a schematic sectional drawing which shows the state which performed the process (S12) of drilling of FIG. 16 of the process which manufactures an inward member (adjustment ring 123). (C) It is a schematic sectional drawing which shows the state which performed the process (S14) of the turning process of FIG. 16 of the process which manufactures an inward member (adjustment ring 123). (D) It is a schematic sectional drawing which shows the completed state of the inward member (adjustment ring 123). アキシャル力のみを加えた状態でバニシング加工を行なった場合における、調整リングの内側軌道面の変形状態を示す概略断面図である。It is a schematic sectional drawing which shows the deformation | transformation state of the inner raceway surface of an adjustment ring when burnishing is performed in a state where only an axial force is applied. アキシャル力およびラジアル力を加えた状態でバニシング加工を行なった場合における、調整リングの内側軌道面の変形状態を示す概略断面図である。It is a schematic sectional drawing which shows the deformation | transformation state of the inner raceway surface of an adjustment ring when burnishing is performed in the state where an axial force and a radial force are applied. 本発明の実施の形態3におけるスイングアーム用軸受を含むスイングアーム支持機構の構成を示す概略図である。It is the schematic which shows the structure of the swing arm support mechanism containing the bearing for swing arms in Embodiment 3 of this invention. 本発明の実施の形態4における支点軸受ユニットの構造を示す、断面概略図である。It is a cross-sectional schematic diagram which shows the structure of the fulcrum bearing unit in Embodiment 4 of this invention. 内方部材に互いに交差する2つのR面の軸受溝を、外方部材に1つの軸受溝を備え、玉がそれぞれの軸受溝と合計3点で接触する支点軸受ユニットの、図2における「20」の領域の拡大断面図である。FIG. 2 shows a fulcrum bearing unit “20” in FIG. 2 in which the inner member has two R-surface bearing grooves intersecting each other, the outer member has one bearing groove, and the ball contacts each bearing groove at a total of three points. It is an expanded sectional view of the area | region. 内方部材に1つのR面の軸受溝と1つの円すい状軌道面とを備え、外方部材に1つの軸受溝を備え、玉がそれぞれの軸受溝および円すい状軌道面と合計3点で接触する支点軸受ユニットの、図2における「20」の領域の拡大断面図である。The inner member has one R-plane bearing groove and one conical raceway surface, the outer member has one bearing groove, and the ball contacts each bearing groove and conical raceway surface at a total of three points. It is an expanded sectional view of the area | region of "20" in FIG. 内方部材に1つのR面の軸受溝と1つの円すい状軌道面とを備え、外方部材に1つの円すい状軌道面を備え、玉がそれぞれの軸受溝および円すい状軌道面と合計3点で接触する支点軸受ユニットの、図2における「20」の領域の拡大断面図である。The inner member is provided with one R-side bearing groove and one conical raceway surface, the outer member is provided with one conical raceway surface, and the ball has three bearing points and a conical raceway surface in total. FIG. 3 is an enlarged cross-sectional view of a fulcrum bearing unit in contact with a region “20” in FIG. 2. 内方部材に互いに交差する2つのR面の軸受溝を、外方部材に1つの円すい状軌道面を備え、玉がそれぞれの軸受溝と合計3点で接触する支点軸受ユニットの、図2における「20」の領域の拡大断面図である。FIG. 2 shows a fulcrum bearing unit in which the inner member has two R-surface bearing grooves intersecting each other, the outer member has one conical raceway surface, and the balls contact each of the bearing grooves at a total of three points. It is an expanded sectional view of the area of “20”. 鋼材の硬度に対する、圧痕が発生する際の接触応力を示すグラフである。It is a graph which shows the contact stress at the time of indentation with respect to the hardness of steel materials. 外力の大きさと、外力に対して材料に圧痕を発生させないために必要な硬度との関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of external force, and hardness required in order not to generate an indentation with respect to external force. 断面が直径5mmの円形をなす丸棒を高周波焼入れを行なった際の硬度分布を示すグラフである。It is a graph which shows the hardness distribution at the time of performing induction hardening of the round bar which makes a cross section 5 mm in diameter circular. 従来から用いられているスイングアームに組み込まれた支点軸受ユニットの構造を示す、断面概略図である。It is a cross-sectional schematic diagram which shows the structure of the fulcrum bearing unit integrated in the swing arm used conventionally. 従来から行なわれている、部品の点数を削減させた支点軸受ユニットの構造を示す、断面概略図である。It is a cross-sectional schematic diagram which shows the structure of the fulcrum bearing unit which reduced the number of parts conventionally performed.
 以下、図面を参照しながら、本発明の実施の形態が説明される。なお、各実施の形態において、同一の機能を果たす部位には同一の参照符号が付されており、その説明は、特に必要がなければ、繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, portions having the same function are denoted by the same reference numerals, and the description thereof will not be repeated unless particularly necessary.
 (実施の形態1)
 図1において、ハッチングを施した部分は断面を示している。図1に示す、スイングアーム1は、一方の端部に磁気ヘッド2が取り付けられており、重心位置にスイングアーム用軸受(スイングアーム用支点軸受)としての支点軸受ユニット100が組み込まれている。
(Embodiment 1)
In FIG. 1, the hatched portion shows a cross section. The swing arm 1 shown in FIG. 1 has a magnetic head 2 attached to one end, and a fulcrum bearing unit 100 as a swing arm bearing (swing arm fulcrum bearing) is incorporated at the center of gravity.
 支点軸受ユニット100においては、中心部分に第1の内方部材としての軸101を備えている。また、ハードディスクドライブのスイングアーム1に接続され、軸101を取り囲むように配置された、外方部材としてのスリーブ102を備えている。スイングアーム1を回転動作させるための転動体としての玉109が、軸101とスリーブ102とに挟まれた領域に、上下方向に2列並んで複数個配置されている。なお、複数個配置された玉109は、一般には鋼球であるが、玉の軽量化を目的として、鋼球の代わりにセラミック球を用いてもよい。 The fulcrum bearing unit 100 includes a shaft 101 as a first inward member at the center. In addition, a sleeve 102 is provided as an outer member connected to the swing arm 1 of the hard disk drive and disposed so as to surround the shaft 101. A plurality of balls 109 as rolling elements for rotating the swing arm 1 are arranged in two rows in the vertical direction in a region sandwiched between the shaft 101 and the sleeve 102. The balls 109 arranged in a plurality are generally steel balls, but ceramic balls may be used instead of the steel balls for the purpose of reducing the weight of the balls.
 支点軸受ユニット100においては、軸101の上部、すなわち上下方向に2列並んだうち上側の玉109が存在する付近には、軸101に嵌合されるように第2の内方部材としての調整リング123が固着されている。調整リング123は後述する、支点軸受ユニット100を組み立てる際の便宜上、軸101とは独立した第2の内方部材として備えられている。この調整リング123が、複数個の玉109と後述するように2箇所で接触している。また、軸101の下部、すなわち上下方向に2列並んだうち下側の玉109が存在する付近には、軸101の外周面上に直接、円すい面形状、すなわちスイングアーム用軸受の回転軸を含む断面において直線形状を有する円すい状軌道面120および円すい状軌道面121が備えられている。この円すい状軌道面120および円すい状軌道面121が、複数個の玉109とそれぞれ接触している。また、スリーブ102にも、上下方向に2列並んだうち上側の玉109が存在する付近、および下側の玉109が存在する付近には、玉109と接触するための接触面である円すい状軌道面122が備えられている。 In the fulcrum bearing unit 100, the adjustment as the second inner member so as to be fitted to the shaft 101 in the upper part of the shaft 101, that is, in the vicinity where the upper balls 109 are present in two rows in the vertical direction. A ring 123 is fixed. The adjustment ring 123 is provided as a second inward member independent of the shaft 101 for convenience when assembling the fulcrum bearing unit 100 described later. The adjustment ring 123 is in contact with the plurality of balls 109 at two locations as will be described later. Further, in the lower part of the shaft 101, that is, in the vicinity where the lower balls 109 are present in two rows in the vertical direction, the conical surface shape, that is, the rotation shaft of the swing arm bearing is directly provided on the outer peripheral surface of the shaft 101. A conical raceway surface 120 and a conical raceway surface 121 having a linear shape in a cross section including the same are provided. The conical raceway surface 120 and the conical raceway surface 121 are in contact with the plurality of balls 109, respectively. Also, the sleeve 102 has a conical shape as a contact surface for contacting the ball 109 in the vicinity of the upper ball 109 and the vicinity of the lower ball 109 in two rows in the vertical direction. A raceway surface 122 is provided.
 図1に示す支点軸受ユニット100においては、内方部材としての軸101側の部材と、複数個の玉109との接触点は2つ存在する。たとえば、図2に示すように、上側の玉109は軸101に嵌合された調整リング123に形成された円環状の内側軌道面である、円すい面形状を有する第1の接触面である円すい状軌道面141上および、第1の接触面に交差する円環状の内側軌道面である、円すい面形状を有する第2の接触面である円すい状軌道面142上の2つに接触点を備える。また、下側の玉109は図3に示すように、円すい面形状を有する第1の接触面としての円すい状軌道面120および、第1の接触面に交差する円すい面形状を有する第2の接触面である円すい状軌道面121の2つに接触点を備える。 In the fulcrum bearing unit 100 shown in FIG. 1, there are two contact points between a member on the shaft 101 side as an inward member and a plurality of balls 109. For example, as shown in FIG. 2, the upper ball 109 is an annular inner raceway surface formed on an adjustment ring 123 fitted to the shaft 101, and is a cone that is a first contact surface having a conical shape. Two contact points are provided on the conical raceway surface 141 and on the conical raceway surface 142, which is a second contact surface having a conical shape, which is an annular inner raceway surface that intersects the first contact surface. . Further, as shown in FIG. 3, the lower ball 109 has a conical raceway surface 120 as a first contact surface having a conical surface shape, and a second conical surface shape intersecting the first contact surface. Two conical track surfaces 121 which are contact surfaces are provided with contact points.
 支点軸受ユニット100は、通常の軸受に用いられる内輪と外輪とを備えず、たとえば外方部材であるスリーブ102に、玉109の転動する、内側軌道面に対向する円環状の外側軌道面として、玉と接触する第3の接触面である円すい状軌道面122を直接設けている。したがって玉109は、内方部材(軸101、調整リング123)の内側軌道面と、外方部材(スリーブ102)の外側軌道面とに接触して配置されている。以上に述べたように、本発明の支点軸受ユニット100は、内側軌道面および外側軌道面のいずれか一方の軌道面は、玉109と接触する第1の接触面および第2の接触面を有し、それらの接触面は互いに交差している。また、内側軌道面および外側軌道面のいずれか他方の軌道面は、玉109と接触する第3の接触面を有する、という構造になっている。したがって玉109は、内側軌道面および外側軌道面と合計3点において接触している。このようにすれば、後述するように、玉109の接触角が安定し、転動体荷重の制御が容易になるため、トルクの変動を抑制させることができる。 The fulcrum bearing unit 100 does not include an inner ring and an outer ring that are used for ordinary bearings. For example, the fulcrum bearing unit 100 is an annular outer raceway surface facing the inner raceway surface on which a ball 109 rolls on a sleeve 102 that is an outer member. The conical track surface 122, which is the third contact surface in contact with the ball, is directly provided. Accordingly, the balls 109 are arranged in contact with the inner raceway surface of the inner member (the shaft 101 and the adjustment ring 123) and the outer raceway surface of the outer member (sleeve 102). As described above, in the fulcrum bearing unit 100 of the present invention, one of the inner raceway surface and the outer raceway surface has the first contact surface and the second contact surface in contact with the ball 109. These contact surfaces intersect each other. In addition, the other raceway surface of the inner raceway surface and the outer raceway surface has a structure that has a third contact surface that contacts the ball 109. Accordingly, the balls 109 are in contact with the inner raceway surface and the outer raceway surface at a total of three points. In this way, as will be described later, the contact angle of the ball 109 is stabilized and the control of the rolling element load is facilitated, so that fluctuations in torque can be suppressed.
 また、上述したように通常の軸受に用いられる内輪や外輪を備えない構造とすることにより、外輪や内輪を用いない分だけ、支点軸受ユニット100の上下方向の厚みを薄くさせることができる。また、外輪や内輪を設けないため間座を廃止することもできるので、その分だけさらに支点軸受ユニット100の上下方向の厚みを薄くさせることができる。 In addition, as described above, by adopting a structure that does not include an inner ring or an outer ring that is used for a normal bearing, the vertical thickness of the fulcrum bearing unit 100 can be reduced by the amount that the outer ring or the inner ring is not used. Further, since the outer ring and the inner ring are not provided, the spacer can be abolished, so that the thickness of the fulcrum bearing unit 100 in the vertical direction can be further reduced accordingly.
 また、図1に示すように、スリーブ102には、軸受内部に封入されるグリスなどの潤滑剤が外部に漏れ出すことを抑制するとともに、外部からの異物の侵入を抑制するため、シール125が設けられている。 Further, as shown in FIG. 1, a seal 125 is provided on the sleeve 102 in order to prevent the lubricant such as grease enclosed in the bearing from leaking to the outside and to prevent the entry of foreign matter from the outside. Is provided.
 上述したように、支点軸受ユニット100においては、複数個の玉109は、内方部材としての軸101側の部材と、2点で接触する。また、外方部材としてのスリーブ102とは、円すい状軌道面122上にて、1点で接触する。このため、複数個の玉109は、軌道面と合計3点で接触することになる。具体的には、図2に示すように、上側の玉109は、内方部材としての軸101に嵌合された調整リング123と、円すい状軌道面141上および円すい状軌道面142上の2点(接触点143、接触点144)で接触し、外方部材としてのスリーブ102と、円すい状軌道面122上の1点(接触点145)で接触する。また、図3に示すように、下側の玉109は、内方部材としての軸101の長軸方向の外周面上に直接備えられた、円すい面形状を有する円すい状軌道面120上および円すい状軌道面121上の2点(接触点153、接触点154)で接触し、外方部材としてのスリーブ102と、円すい状軌道面122上の1点(接触点155)で接触する。なお、複数個の玉109と軌道面との3つの接触点と、玉109の中心Oとのなす角は、図2または図3に示すような関係になる。 As described above, in the fulcrum bearing unit 100, the plurality of balls 109 are in contact with the member on the shaft 101 side as an inward member at two points. Further, the sleeve 102 as the outer member contacts at one point on the conical track surface 122. For this reason, the plurality of balls 109 come into contact with the raceway surface at a total of three points. Specifically, as shown in FIG. 2, the upper ball 109 includes an adjustment ring 123 fitted to a shaft 101 as an inward member, and two on the conical raceway surface 141 and the conical raceway surface 142. Contact is made at a point (contact point 143, contact point 144), and contact is made with the sleeve 102 as the outer member at one point (contact point 145) on the conical track surface 122. Further, as shown in FIG. 3, the lower balls 109 are provided on the conical raceway surface 120 having a conical shape and directly on the outer peripheral surface in the longitudinal direction of the shaft 101 as the inner member. Contact at two points (contact point 153, contact point 154) on the cylindrical raceway surface 121, and contact with the sleeve 102 as the outer member at one point (contact point 155) on the conical raceway surface 122. Note that the angles formed by the three contact points between the plurality of balls 109 and the raceway surface and the center O of the balls 109 have a relationship as shown in FIG. 2 or FIG.
 上記構成により、本実施の形態における支点軸受ユニット100においては、接触角が一意的に決定される。その結果、転動体荷重を安定させ、トルクの変動を抑制させることができる。ハードディスクに記録されたトラック上に磁気ヘッド2(図1参照)を正確に位置決めするためには、支点軸受ユニット100はトルクの変動が小さいことが求められる。このため、接触角を安定させることにより転動体荷重を安定させ、トルクの変動を抑制させることが可能な支点軸受ユニット100は、スイングアーム用軸受として優れた特性を有している。さらに、円すい面形状の加工は、たとえば軌道面としてのR面の軸受溝、すなわちスイングアーム用軸受の回転軸を含む断面において円弧面形状の加工よりも加工が容易であるため、支点軸受ユニット100によれば、加工のコストを低減できる可能性がある。 With the above configuration, the contact angle is uniquely determined in the fulcrum bearing unit 100 in the present embodiment. As a result, the rolling element load can be stabilized and torque fluctuations can be suppressed. In order to accurately position the magnetic head 2 (see FIG. 1) on the track recorded on the hard disk, the fulcrum bearing unit 100 is required to have a small torque fluctuation. For this reason, the fulcrum bearing unit 100 capable of stabilizing the rolling element load and stabilizing the torque variation by stabilizing the contact angle has excellent characteristics as a swing arm bearing. Further, the processing of the conical surface shape is easier to process than the processing of the arc surface shape in the cross section including the bearing groove of the R surface as the raceway surface, that is, the rotating shaft of the swing arm bearing. Therefore, there is a possibility that the processing cost can be reduced.
 また、たとえば図2に示す、玉109との第3の接触面としての円すい状軌道面122上の接触点145と玉109の中心とを結ぶ直線と、たとえば図3に示す、玉109と接触点155とを結ぶ直線とに着目する。ここで、図2における上記直線を第1の直線、図3における上記直線を第2の直線とする。このとき、第1の直線と第2の直線とは、図2および図3に示すように、接触点145および接触点155から見て径方向外側、すなわちスリーブ102の存在する側において交差していることが好ましい。上述した条件を満足するように内方部材および外方部材のそれぞれに含まれる各接触面を設計することにより、支点軸受ユニット100にモーメント力が作用した場合の剛性が向上する。 Further, for example, as shown in FIG. 2, a straight line connecting the contact point 145 on the conical track surface 122 as the third contact surface with the ball 109 and the center of the ball 109, and the contact with the ball 109, for example, shown in FIG. Attention is paid to a straight line connecting the point 155. Here, the straight line in FIG. 2 is a first straight line, and the straight line in FIG. 3 is a second straight line. At this time, as shown in FIGS. 2 and 3, the first straight line and the second straight line intersect each other in the radial direction as viewed from the contact point 145 and the contact point 155, that is, on the side where the sleeve 102 exists. Preferably it is. By designing each contact surface included in each of the inner member and the outer member so as to satisfy the above-described conditions, rigidity when a moment force acts on the fulcrum bearing unit 100 is improved.
 図4は、内方部材としての軸101の外周面上に直接備えられた、円すい面形状を有する第1の接触面としての円すい状軌道面120の表面の展開図である。円すい状軌道面120の一部分であるたとえば図4中にて2つの点線に挟まれた領域である面粗さ向上加工領域120Aのみに対して面粗さ向上加工を施している。この面粗さ向上加工領域120Aが、スイングアーム1(図1参照)の回転動作時に玉109が接触する第1の領域である。第1の領域である面粗さ向上加工領域120Aに隣接する第2の領域については、スイングアーム1(図1参照)の回転動作時に玉109が接触しないため、面粗度Raを小さくして軌道面の表面の凹凸を少なくする加工を施す必要はない。 FIG. 4 is a development view of the surface of the conical track surface 120 as the first contact surface having a conical surface shape, which is directly provided on the outer peripheral surface of the shaft 101 as the inner member. For example, only the surface roughness improving region 120A, which is a part of the conical raceway surface 120, for example, a region sandwiched between two dotted lines in FIG. 4, is subjected to surface roughness improving processing. This surface roughness improving processing region 120A is a first region in which the ball 109 is in contact with the swing arm 1 (see FIG. 1) during the rotation operation. In the second region adjacent to the surface roughness improving processing region 120A, which is the first region, the ball 109 does not come into contact with the swing arm 1 (see FIG. 1) during rotation, so the surface roughness Ra is reduced. It is not necessary to perform processing to reduce the unevenness of the surface of the raceway surface.
 上述したようにたとえば円すい状軌道面120の面粗度Raを小さくして軌道面の表面の凹凸が少なくなるよう加工することにより、ハードディスクドライブ用の支点軸受ユニット100のトルクの変動を抑制させることができる。このことは、ハードディスクに記録されたトラック上に磁気ヘッド2(図1参照)を正確に位置決めするのに好都合である。しかし、このとき、内側軌道面である円すい状軌道面120の全面ではなく、玉109と接触する面粗さ向上加工領域120A(第1の領域)のみにその面粗度Raを小さくする加工を施せば十分である。このことにより、面粗度Raを小さくする加工のタクトタイムを短縮させ、低コスト加工が実現できる。 As described above, for example, by reducing the surface roughness Ra of the conical raceway surface 120 and reducing the surface roughness of the raceway surface, fluctuations in torque of the fulcrum bearing unit 100 for a hard disk drive can be suppressed. Can do. This is convenient for accurately positioning the magnetic head 2 (see FIG. 1) on the track recorded on the hard disk. However, at this time, not the entire surface of the conical raceway surface 120 that is the inner raceway surface, but only the surface roughness improvement machining region 120A (first region) that comes into contact with the ball 109 is processed to reduce the surface roughness Ra. If applied, it is sufficient. As a result, the tact time of processing for reducing the surface roughness Ra can be shortened, and low-cost processing can be realized.
 上述したように軌道面のうち、玉109と接触する領域にのみ面粗度Raを小さくする加工を施す場合は、玉109の硬度は、軌道面を持つ部材であるたとえば調整リング123、スリーブ102の硬度よりも高いことが好ましい。後述するように、面粗度Raを小さくする加工は、加工したい表面の領域に対して玉109を、加工したい表面の降伏応力以上の力で押圧しながら、加工したい表面に対して相対的に回転運動させ、表面の凹凸を塑性変形させることにより、表面を滑らかにして面粗度Raを小さくする加工(バニシング加工)を行なう。このため、押圧により加工したい表面よりも玉109の硬度を高くし、当該バニシング加工時に玉109が応力を受けて塑性変形することを抑制することが好ましい。 As described above, when processing is performed to reduce the surface roughness Ra only in a region of the raceway surface that contacts the ball 109, the hardness of the ball 109 is a member having a raceway surface such as the adjusting ring 123 and the sleeve 102. It is preferable that the hardness is higher. As will be described later, the processing for reducing the surface roughness Ra is performed by pressing the ball 109 against the surface region to be processed with a force equal to or greater than the yield stress of the surface to be processed and relatively with respect to the surface to be processed. By rotating the surface and plastically deforming the surface irregularities, the surface is smoothed and the surface roughness Ra is reduced (burnishing). For this reason, it is preferable that the hardness of the ball 109 is made higher than the surface desired to be processed by pressing, and the ball 109 is prevented from undergoing plastic deformation due to stress during the burnishing process.
 図5は、図1に示すように、上側の玉109の配置されている部分における断面図である。図5に示すように、支点軸受ユニット100は、内側に内方部材としての軸101を備え、軸101には調整リング123が固着されている。調整リング123と、外方部材としてのスリーブ102とに接触しながら、複数個の玉109が配置されている。これらがどのように接触されているかについては上述したとおりである。 FIG. 5 is a cross-sectional view of a portion where the upper ball 109 is arranged as shown in FIG. As shown in FIG. 5, the fulcrum bearing unit 100 includes an inner shaft 101 as an inner member, and an adjustment ring 123 is fixed to the shaft 101. A plurality of balls 109 are arranged in contact with the adjustment ring 123 and the sleeve 102 as the outer member. How these are in contact is as described above.
 また、複数個の玉109同士の間には、玉109同士が接触しないように保持器を挟んでもよいが、図5に示すように、保持器の代わりに玉109より数十μm径の小さいスペーサボール149を挟んでもよい。 Further, a cage may be sandwiched between a plurality of balls 109 so that the balls 109 do not contact each other, but as shown in FIG. Spacer balls 149 may be sandwiched.
 上述した複数個のスペーサボール149は、図5に示すように、玉109と交互に配置することが好ましい。しかし、支点軸受ユニット100の剛性を上げるために、径の大きい玉109の個数を多くし、スペーサボール149の個数を少なくしてもよい。 The plurality of spacer balls 149 described above are preferably arranged alternately with balls 109 as shown in FIG. However, in order to increase the rigidity of the fulcrum bearing unit 100, the number of balls 109 having a large diameter may be increased and the number of spacer balls 149 may be decreased.
 図6には、製造順序および、その右側には、各工程の対象となる部材をまとめた表を掲載している。表中、A印はその工程においてその部材が必ず加工対象になることを示し、B印はその工程はその部材において加工対象になることもある(一部の部材において対象となることもある)ということを示す。以下、図1に示す支点軸受ユニット100を例に、本発明における支点軸受ユニットの製造方法を説明する。 FIG. 6 shows the production order and a table on the right side of the table that summarizes the members to be processed. In the table, A indicates that the member is necessarily processed in the process, and B indicates that the process may be processed in the member (some members may be processed). It shows that. Hereinafter, the fulcrum bearing unit 100 according to the present invention will be described with reference to the fulcrum bearing unit 100 shown in FIG.
 まず、部材を準備する工程(S10)を実施する。具体的には、たとえば図1に示す支点軸受ユニット100を構成する軸101、スリーブ102、複数個の玉109、調整リング123などの部材を準備する工程である。ここで、軸101、スリーブ102、調整リング123の材質としては、熱処理によって高硬度化が可能な材料、たとえばSUS420J2を用いるが、転がり軸受材料として一般的なSUJ2やSUS440Cを用いることもできる。 First, a step of preparing a member (S10) is performed. Specifically, this is a step of preparing members such as a shaft 101, a sleeve 102, a plurality of balls 109, and an adjustment ring 123 that constitute the fulcrum bearing unit 100 shown in FIG. Here, as the material of the shaft 101, the sleeve 102, and the adjusting ring 123, a material that can be hardened by heat treatment, for example, SUS420J2, is used, but general rolling material such as SUJ2 or SUS440C can also be used.
 支点軸受ユニット100の部材である調整リング123、軸101やスリーブ102は、玉109が接触して転動する軌道面を有する。このため、軌道面に対して、後述するように、支点軸受ユニット100の剛性を保ち、トルクを安定させるために、軌道面の面粗度Raが小さくなるようバニシング処理を行なう。支点軸受ユニット100は、ハードディスクドライブ用のスイングアーム1に用いるものなので、この用途では、外部からの負荷は数グラム程度と非常に小さい。また、スイングアーム1の回転動作時に、複数個の玉109が軌道面に接触することにより発生する接触応力は1.5GPa以下である。したがって、通常の軸受のように部材や軌道面の硬度を高くする必要はない。たとえば軌道面の硬度がHRC45以下であってもよい。このように硬度を低くしておけば、硬度の調整を行なった後で所定の寸法に仕上げるための旋削加工を容易に行なうことができ、加工コストを低減させ、加工タクトを短縮させることができる。また、旋削加工を行なう工具の寿命を延長させることもできる。 The adjustment ring 123, the shaft 101, and the sleeve 102, which are members of the fulcrum bearing unit 100, have raceway surfaces on which the balls 109 come into contact and roll. For this reason, as will be described later, in order to maintain the rigidity of the fulcrum bearing unit 100 and stabilize the torque, burnishing is performed on the raceway surface so that the surface roughness Ra of the raceway surface becomes small. Since the fulcrum bearing unit 100 is used for the swing arm 1 for a hard disk drive, the load from the outside is very small at about several grams in this application. Further, the contact stress generated when the balls 109 come into contact with the raceway surface during the rotation of the swing arm 1 is 1.5 GPa or less. Therefore, it is not necessary to increase the hardness of the members and the raceway surface unlike a normal bearing. For example, the hardness of the raceway surface may be HRC45 or less. If the hardness is lowered in this way, it is possible to easily perform a turning process for finishing to a predetermined dimension after adjusting the hardness, to reduce the processing cost and to shorten the processing tact. . In addition, the life of a tool for turning can be extended.
 また、特にたとえば図1に示す支点軸受ユニット100のように、内方部材としての軸101に備えられる調整リング123、円すい状軌道面120および円すい状軌道面121が形成された軸101と玉109とが2点接触し、外方部材としてのスリーブ102と玉109とが1点接触する場合は、2点接触する軌道面を有する調整リング123および軸101(特に内方部材のうち、下側の玉109が内方部材と接触する領域(部材)に形成された、上述した第1の接触面および第2の接触面としての円すい状軌道面120および円すい状軌道面121)の硬度を、1点接触する軌道面を有するスリーブ102(特に玉109がスリーブ102と接触する領域に形成された、上述した第3の接触面としての円すい状軌道面122)の硬度よりも低くしておくことが好ましい。これは以下のような理由による。すなわち、後述する軌道面の面粗度Raを小さくする加工(バニシング加工)を行なう際、玉109を加工したい表面の領域に対して、加工したい表面の降伏応力以上の力で押圧しながら、加工したい表面に対して相対的に回転運動させ、表面の凹凸を塑性変形させる。このとき、玉109に対して2点接触する内方部材側は、玉109に対して1点接触する外方部材側に比べて、接触点において玉109が軌道面を押圧する力が2箇所に分散される。このため、2点接触する側の軌道面の硬度を、1点接触する側の軌道面の高度よりも低くしておくことが好ましい。 Further, in particular, as in the fulcrum bearing unit 100 shown in FIG. 1, for example, the shaft 101 and the ball 109 formed with the adjusting ring 123, the conical raceway surface 120, and the conical raceway surface 121 provided on the shaft 101 as the inner member. Are contacted at two points, and the sleeve 102 as the outer member and the ball 109 are brought into one point contact, the adjusting ring 123 and the shaft 101 (particularly, the lower side of the inner member) The hardness of the conical raceway surface 120 and the conical raceway surface 121) as the first contact surface and the second contact surface described above formed in the region (member) in which the ball 109 is in contact with the inner member, Hardness of the sleeve 102 having a raceway surface that contacts one point (in particular, the above-described conical raceway surface 122 as the third contact surface formed in the region where the ball 109 contacts the sleeve 102). It is preferable to lower than. This is due to the following reasons. That is, when performing processing (burnishing) to reduce the surface roughness Ra of the raceway surface described later, the ball 109 is pressed against the surface region to be processed with a force equal to or higher than the yield stress of the surface to be processed. Rotate relative to the desired surface to plastically deform the surface irregularities. At this time, the inner member side that comes into contact with the ball 109 at two points has two places where the ball 109 presses the raceway surface at the contact point as compared with the outer member side that comes into contact with the ball 109 at one point. To be distributed. For this reason, it is preferable that the hardness of the raceway surface on the two-point contact side is lower than the altitude of the raceway surface on the one-point contact side.
 したがって、内方部材側の部材、外方部材側の部材ともに、通常のスイングアームの回転動作時には玉109の押圧により塑性変形を起こすことなく、内方部材側および外方部材側の各軌道面の面粗度Raを小さくする加工(バニシング加工)を行なう際には玉109の押圧により塑性変形を起こす硬度にしておくことが好ましい。 Therefore, both the inner member side member and the outer member side member do not cause plastic deformation due to the pressure of the ball 109 during the normal swing arm rotation operation, and the respective raceway surfaces on the inner member side and the outer member side. When the processing (burnishing processing) for reducing the surface roughness Ra is preferably performed, the hardness is set such that plastic deformation is caused by pressing of the balls 109.
 逆に、玉109の硬度は、通常のスイングアームの回転動作時はもとより、面粗度Raを小さくする加工(バニシング加工)を行なう際においても玉109の押圧により塑性変形を起こさない硬度にしておくことが好ましい。以上のように、バニシング加工を行なう際には玉109の押圧により、内方部材側および外方部材側の各軌道面については表面の凹凸が塑性変形されることが必要であるため、内方部材側および外方部材側の各軌道面の硬度よりも、玉109の表面の硬度を高くしておくことが好ましい。 Conversely, the hardness of the ball 109 is such that it does not cause plastic deformation due to the pressure of the ball 109 not only during the normal swing arm rotation operation but also during the process of reducing the surface roughness Ra (burnishing process). It is preferable to keep it. As described above, when performing the burnishing process, it is necessary that the surface irregularities of the inner member side and the outer member side be plastically deformed by the pressing of the balls 109. It is preferable to make the hardness of the surface of the ball 109 higher than the hardness of each raceway surface on the member side and the outer member side.
 ここで、調整リング123を軸101の軸方向の表面上の所定の箇所に配置させて接着させるための、図1に示す接着面124の一部の領域には、後述するように、支点軸受ユニット100を組み立てる工程における便宜上、接着剤たまり133(後述する図9(C)参照)を設けておくことが好ましい。これは、軸101の径方向にある深みを有する、接着剤を一時的に貯蓄させるための領域である。さらに、図1に示すように、スリーブ102には、軸受内部に封入されるグリスなどの潤滑剤が外部に漏れ出すことを抑制するとともに、外部からの異物の侵入を抑制するためシール125が設けられている。このシール125を安定に接着させるために、スリーブ102には、軸101に対向する面上の、図1に示すシール125を配置させる位置に切り込み135(後述する図9(A)、図9(B)参照)を設けることが好ましい。 Here, as will be described later, a fulcrum bearing is provided in a partial region of the bonding surface 124 shown in FIG. 1 in which the adjustment ring 123 is arranged and bonded at a predetermined position on the axial surface of the shaft 101. For convenience in the process of assembling the unit 100, it is preferable to provide an adhesive pool 133 (see FIG. 9C described later). This is an area for temporarily storing the adhesive having a depth in the radial direction of the shaft 101. Further, as shown in FIG. 1, the sleeve 102 is provided with a seal 125 for preventing the lubricant such as grease enclosed in the bearing from leaking to the outside and for preventing foreign matter from entering from the outside. It has been. In order to adhere this seal 125 stably, the sleeve 102 has a notch 135 (FIGS. 9A and 9B described later) at a position where the seal 125 shown in FIG. B) is preferably provided.
 また、先述した、たとえば図2の断面図(2列並んでいるうちの上側の玉109側)における内方部材の内側軌道面としての円すい状軌道面141、円すい状軌道面142および外方部材の外側軌道面としての円すい状軌道面122を第1の軌道面とする。さらに、たとえば図3の断面図(2列並んでいるうちの下側の玉109側)における内側軌道面(内方部材)としての円すい状軌道面120、円すい状軌道面121および外側軌道面(外方部材)としての円すい状軌道面122を第2の軌道面とする。そして、スイングアーム用軸受の回転軸を含む断面において、2列並んでいるうちの上側の玉109の中心と、その玉109が第1の軌道面の第3の接触面である円すい状軌道面122と接触する接触点とを結ぶ直線を第1の直線とする。また、2列並んでいるうちの下側の玉109の中心と、その玉109が第2の軌道面の第3の接触面である円すい状軌道面122と接触する接触点とを結ぶ直線を第2の直線とする。たとえば図2および図3中の直線は、上述した直線を示している。この場合、第1の直線と第2の直線とは、図2および図3に示すように、接触点145および接触点155から見て径方向外側、すなわちスリーブ102の存在する側において交差するように、調整リング123、軸101およびスリーブ102のそれぞれに設ける円すい面状軌道面を設計することが好ましい。また、たとえば図2および図3に示すように、内方部材側には2つの接触面が存在する場合、玉109の中心と結ばれる2つの直線が施されている。この場合、2つの直線の二等分線を考え、上側の玉109と下側の玉109のそれぞれの二等分線が、同様に径方向外側(スリーブ102の存在する側)において交差するようになることが好ましい。 Further, for example, the conical raceway surface 141, the conical raceway surface 142, and the outer member as the inner raceway surface of the inner member in the cross-sectional view of FIG. 2 (the upper ball 109 side of the two rows arranged) described above, for example. A conical raceway surface 122 as the outer raceway surface is defined as a first raceway surface. Further, for example, a conical raceway surface 120, a conical raceway surface 121 and an outer raceway surface (inner side members) as the inner raceway surface (inner member) in the cross-sectional view of FIG. A conical raceway surface 122 as the outer member) is defined as a second raceway surface. Then, in the cross section including the rotation axis of the swing arm bearing, the center of the upper ball 109 out of the two rows and the conical raceway surface in which the ball 109 is the third contact surface of the first raceway surface A straight line connecting a contact point that contacts 122 is defined as a first straight line. Further, a straight line connecting the center of the lower ball 109 out of the two rows and the contact point at which the ball 109 contacts the conical track surface 122 which is the third contact surface of the second track surface. Let it be the second straight line. For example, the straight lines in FIGS. 2 and 3 indicate the straight lines described above. In this case, as shown in FIGS. 2 and 3, the first straight line and the second straight line intersect each other radially outside the contact point 145 and the contact point 155, that is, on the side where the sleeve 102 exists. In addition, it is preferable to design a conical track surface provided on each of the adjustment ring 123, the shaft 101 and the sleeve 102. For example, as shown in FIGS. 2 and 3, when there are two contact surfaces on the inner member side, two straight lines connected to the center of the ball 109 are provided. In this case, considering the bisector of two straight lines, the bisectors of the upper ball 109 and the lower ball 109 intersect each other on the radially outer side (side where the sleeve 102 exists). It is preferable to become.
 各部材が上述した材質、硬度となるよう留意して部材を準備する工程(S10)を行なった後、テーパ加工を施す工程(S20)を行なう。具体的には、たとえば図1に示す支点軸受ユニット100の場合、内方部材としての調整リング123の、上側の玉109と対向する表面上にテーパ加工を施し、図2に示すように円すい面形状を有する第1の接触面である円すい状軌道面141および、第1の接触面に交差する円すい面形状を有する第2の接触面である円すい状軌道面142を形成する。また、内方部材のうち、下側の玉109が内方部材と接触する領域(部材)にもテーパ加工により、図3に示すように第1の接触面である円すい状軌道面120および第2の接触面である円すい状軌道面121を形成する。以上により、玉109を内方部材と2点接触させるための円すい面形状が形成される。これらの円すい面状軌道面の形成は、部材の所定の箇所に対して、鍛造または旋削およびこれらと研削との組み合わせによるテーパ加工を施すことにより実施する。 After performing the step (S10) of preparing the member while paying attention to the material and hardness described above, the step (S20) of performing taper processing is performed. Specifically, for example, in the case of the fulcrum bearing unit 100 shown in FIG. 1, the adjustment ring 123 as an inward member is tapered on the surface facing the upper ball 109, and a conical surface as shown in FIG. A conical track surface 141 which is a first contact surface having a shape and a conical track surface 142 which is a second contact surface having a conical shape intersecting the first contact surface are formed. Further, a region (member) in which the lower ball 109 contacts the inner member among the inner members is also tapered, so that the conical track surface 120 and the first contact surface 120 and the first contact surface as shown in FIG. A conical raceway surface 121 which is the second contact surface is formed. Thus, a conical surface shape for bringing the ball 109 into contact with the inner member at two points is formed. These conical surface raceways are formed by subjecting predetermined portions of the member to forging or turning and taper processing by a combination of these and grinding.
 さらに、外方部材としてのスリーブ102の、上側および下側の玉109と対向する表面上にもテーパ加工を施し、第3の接触面としての円すい状軌道面122を形成する。これは、玉109をスリーブ102と1点接触させるためのものである。これらの円すい面状軌道面の形成は、内方部材の場合と同様に、所定の箇所に対して、鍛造または旋削およびこれらと研削との組み合わせによりテーパ加工を施すことにより実施する。 Further, the surface of the sleeve 102 as the outer member facing the upper and lower balls 109 is also tapered to form a conical track surface 122 as the third contact surface. This is for bringing the ball 109 into contact with the sleeve 102 at one point. These conical surface raceways are formed by tapering a predetermined portion by forging or turning and a combination of these and grinding, as in the case of the inner member.
 次に、部材を仮組立する工程(S30)を行なう。具体的には、支点軸受ユニット100に関して先に準備した各部材を、所定の配置に組み立てる工程である。ここで、所定の配置とは、図1に示す支点軸受ユニット100を構成するために、図1に示す配置になるよう各部材を設置させることを意味する。 Next, a step of temporarily assembling the members (S30) is performed. Specifically, this is a step of assembling the respective members previously prepared for the fulcrum bearing unit 100 into a predetermined arrangement. Here, the predetermined arrangement means that each member is installed so as to have the arrangement shown in FIG. 1 in order to constitute the fulcrum bearing unit 100 shown in FIG.
 複数個の玉109を、図1に示す配置になるように、軸101とスリーブ102とに挟まれた領域に設置させるためには、複数個の玉109が輪状に配置できる治具を用いることが好ましい。 In order to install a plurality of balls 109 in an area sandwiched between the shaft 101 and the sleeve 102 so as to have the arrangement shown in FIG. 1, a jig that can arrange the plurality of balls 109 in a ring shape is used. Is preferred.
 図7および図8に示す治具210は、フランジ部203の内部に、真空ポンプに接続される本体部204の中心に対してほぼ一定角度ごと(図8ではほぼ45°ごと)に、パイプ状の空洞部201が形成されている。この空洞部201は本体部204の内部の空洞部202に接続されており、空洞部202は電磁弁を介して真空ポンプに接続されている。この電磁弁が真空ポンプと空洞部202とを連絡させるように作動すると、空洞部202から空気が吸引されることにより、この治具210を用いて、玉109をフランジ部203の外径面(空洞部201の開口端部)に吸着させることが可能となる。すると、図8に示すように、複数個の玉109を、支点軸受ユニット100として組み立てるために必要な、ほぼ一定の間隔を隔てて設置された輪状の配置とすることができる。なお、治具210を準備する段階で、フランジ部203のサイズを調整することにより、複数個の玉109が形成する輪の大きさを組み立てられる系のサイズに適合させることができる。フランジ部203の外径面に存在する全ての空洞部201の開口端部が玉109で塞がれると、空洞部202内部の真空度が上昇する。この真空度を検出すれば、全ての玉109が治具210に吸着されたことが確認できる。 The jig 210 shown in FIG. 7 and FIG. 8 has a pipe-like shape inside the flange portion 203 at substantially constant angles (approximately 45 ° in FIG. 8) with respect to the center of the main body portion 204 connected to the vacuum pump. The cavity 201 is formed. The cavity 201 is connected to a cavity 202 inside the main body 204, and the cavity 202 is connected to a vacuum pump via an electromagnetic valve. When this electromagnetic valve is operated so as to connect the vacuum pump and the cavity portion 202, air is sucked from the cavity portion 202, so that the ball 109 is moved to the outer diameter surface of the flange portion 203 ( It can be adsorbed to the open end of the cavity 201. Then, as shown in FIG. 8, a plurality of balls 109 can be formed in a ring-like arrangement that is necessary for assembling as the fulcrum bearing unit 100 and that are installed at substantially constant intervals. In addition, by adjusting the size of the flange portion 203 at the stage of preparing the jig 210, the size of the ring formed by the plurality of balls 109 can be adapted to the size of the system to be assembled. When the open ends of all the hollow portions 201 existing on the outer diameter surface of the flange portion 203 are closed by the balls 109, the degree of vacuum inside the hollow portion 202 increases. If this degree of vacuum is detected, it can be confirmed that all the balls 109 are attracted to the jig 210.
 なお、図5に示すように、玉109とスペーサボール149とが混在する場合は、まず玉109のみを治具210に吸着させ、後述する方法により組み立てられる系に配置し、玉109を治具210から解放させた後でスペーサボール149を治具210に吸着させる方法を用いてもよい。または、玉109を吸着させる空洞部201とは別の排気系に接続された他の空洞部をフランジ部203に設けた治具を用いて、他の空洞部の開口端部にスペーサボール149を吸着させることにより、玉109とスペーサボール149との両方を一度に組み立てられるユニットに配置する方法を用いてもよい。 As shown in FIG. 5, when the balls 109 and the spacer balls 149 are mixed, only the balls 109 are first adsorbed to the jig 210 and arranged in a system assembled by a method described later. A method in which the spacer ball 149 is attracted to the jig 210 after being released from 210 may be used. Alternatively, a spacer ball 149 is attached to the opening end of the other cavity using a jig in which another cavity connected to an exhaust system different from the cavity 201 that adsorbs the ball 109 is provided in the flange 203. You may use the method of arrange | positioning both the ball | bowl 109 and the spacer ball | bowl 149 to the unit assembled at once by making it adsorb | suck.
 以下の図9(A)~図9(C)は、部材が組み立てられる系に配置される手順を示す概略図である。 The following FIGS. 9A to 9C are schematic diagrams showing a procedure for arranging the members in a system to be assembled.
 先述した図7および図8に示すように複数個の玉109を治具210に吸着させた状態で、図9(A)に示すようにスリーブ102の円すい状軌道面122に接触するように玉109を配置させるよう運搬させる。そして所定の位置に玉109が配置できたところで治具210に接続された真空ポンプの真空を解除させ、玉109を治具210から解放させる。スペーサボール149についても玉109と同様に所定の位置に配置させるが、治具210の構造により、玉109の配置を行なった後でスペーサボール149の配置を行なってもよいし、玉109とスペーサボール149とを同時に配置させてもよい。また、スリーブ102の上下を反転させて、上述した方法と同様に他方の列の玉109(およびスペーサボール149)を配置させる。以上のようにして図9(A)に示す状態とさせる。 As shown in FIGS. 7 and 8, the balls 109 are in contact with the conical raceway surface 122 of the sleeve 102 as shown in FIG. 109 is transported for placement. Then, when the ball 109 can be arranged at a predetermined position, the vacuum of the vacuum pump connected to the jig 210 is released, and the ball 109 is released from the jig 210. The spacer ball 149 is also arranged at a predetermined position in the same manner as the ball 109. However, depending on the structure of the jig 210, the spacer ball 149 may be arranged after the ball 109 is arranged, or the ball 109 and the spacer 109 may be arranged. You may arrange | position the ball | bowl 149 simultaneously. Further, the sleeve 102 is turned upside down, and the balls 109 (and the spacer balls 149) in the other row are arranged in the same manner as described above. As described above, the state shown in FIG.
 ここで、配置させた玉109およびスペーサボール149がスリーブ102の円すい状軌道面122から離れて落下することを防止するため、スリーブ102の円すい状軌道面122にあらかじめ、たとえば完成時に使用する油やグリスなど、配置させた玉109を仮に固定させるためのペーストを塗布しておくことが好ましい。 Here, in order to prevent the arranged balls 109 and spacer balls 149 from falling off the conical raceway surface 122 of the sleeve 102, oil or the like used at the time of completion, for example, is applied to the conical raceway surface 122 of the sleeve 102 in advance. It is preferable to apply a paste such as grease for temporarily fixing the arranged balls 109.
 次に、内方部材としての軸101に、図9(A)のスリーブ102および玉109(およびスペーサボール149)の系を上方より嵌合させることにより、図9(B)に示すようにスリーブ102および玉109(およびスペーサボール149)の内周側に軸101を配置させることができる。また、内側軌道面としての円すい状軌道面141および円すい状軌道面142を備えた調整リング123を所定の箇所に配置させ、図1に示す軸101の接着面124に仮に接着させる。また、図1に示すシール125も、スリーブ102の軸101に対向する面上の所定の箇所である、図9(A)または図9(B)に示す切りこみ135に配置させ、嵌め込みや接着により固定させてもよいが、シール125については、後の部材を本組立する工程(S50)において固定させてもよい。 Next, the sleeve 102 and ball 109 (and spacer ball 149) of FIG. 9 (A) are fitted to the shaft 101 as the inner member from above, so that the sleeve as shown in FIG. 9 (B). The shaft 101 can be disposed on the inner peripheral side of the ball 102 and the ball 109 (and the spacer ball 149). Further, an adjustment ring 123 provided with a conical raceway surface 141 and a conical raceway surface 142 as inner raceway surfaces is disposed at a predetermined location and temporarily adhered to the adhesion surface 124 of the shaft 101 shown in FIG. Further, the seal 125 shown in FIG. 1 is also arranged in a notch 135 shown in FIG. 9A or 9B, which is a predetermined portion on the surface facing the shaft 101 of the sleeve 102, and is fitted or adhered. Although it may be fixed, the seal 125 may be fixed in the step of assembling a subsequent member (S50).
 ここで、先の軸101を準備する工程において、接着面124の一部の領域に設けておいた、図9(C)に示す接着剤たまり133を接着剤で充填させた上で、調整リング123を所定の箇所に配置させ、軸101に仮に接着させることが好ましい。また、接着剤たまり133の内部には、支点軸受ユニット100の組立が完了するまで硬化しない接着剤を充填させておくことが好ましく、たとえばエポキシ系の接着剤を用いることが好ましい。さらに、先のスリーブ102を準備する工程において、スリーブ102の、軸101に対向する面上に設けておいた、切り込み135についても、内部に接着剤たまり133に充填した接着剤と同様の接着剤を一部塗布させた上で、シール125を仮に配置させることが好ましい。 Here, in the step of preparing the shaft 101, the adjustment ring is filled with the adhesive pool 133 shown in FIG. 9C, which is provided in a partial region of the bonding surface 124. It is preferable that 123 is disposed at a predetermined position and temporarily adhered to the shaft 101. The adhesive pool 133 is preferably filled with an adhesive that does not cure until the assembly of the fulcrum bearing unit 100 is completed. For example, an epoxy adhesive is preferably used. Further, in the step of preparing the sleeve 102, the notch 135 provided on the surface of the sleeve 102 facing the shaft 101 is the same adhesive as the adhesive filled in the adhesive pool 133 inside. It is preferable that the seal 125 is temporarily disposed after a part of is applied.
 以上の手順により、図9(C)に示すように、支点軸受ユニット100の部材を仮組立する工程(S30)が終わったところで、軌道面をバニシング加工する工程(S40)を実施する。具体的には、円すい面形状を有する内側軌道面および外側軌道面に対して、面粗度Raを小さくする加工を施す工程である。 By the above procedure, as shown in FIG. 9C, when the step of temporarily assembling the members of the fulcrum bearing unit 100 (S30) is completed, the step of burnishing the raceway surface (S40) is performed. Specifically, this is a step of reducing the surface roughness Ra to the inner raceway surface and the outer raceway surface having a conical shape.
 先述したように、たとえば内側軌道面である第1の接触面としての円すい状軌道面141および、第1の接触面に交差する円すい面形状を有する第2の接触面である円すい状軌道面142、および外側軌道面である第3の接触面としての円すい状軌道面122の全面に対して面粗度Raを小さくする加工を施す必要はない。先述した図4に示すように、これらの接触面のうち、転動体である玉109が接触する領域のみに面粗度Raを小さくする加工を施せばよい。 As described above, for example, the conical raceway surface 141 as the first contact surface that is the inner raceway surface, and the conical raceway surface 142 that is the second contact surface having a conical surface shape intersecting the first contact surface. Further, it is not necessary to perform processing for reducing the surface roughness Ra on the entire surface of the conical raceway surface 122 as the third contact surface which is the outer raceway surface. As shown in FIG. 4 described above, it is only necessary to perform a process for reducing the surface roughness Ra only in a region where the balls 109 which are rolling elements contact, among these contact surfaces.
 そのためには、図9(C)に示すように仮組立を行なった後、支点軸受ユニット100に加える予圧荷重の数倍から数十倍の負荷を、玉109から玉109に接触する内側軌道面および外側軌道面に加える。そして上述した負荷を加えながら、軸101に対してスリーブ102が相対的に回転運動した状態となるように相対回転を数回転与える。すると、玉109と軌道面との接触応力が、軌道面の降伏応力を超える。そのため、軌道面は玉109の与える応力により、加工したい表面である軌道面の凹凸を塑性変形させることにより、軌道面において玉109が接触する表面部分を滑らかにして面粗度Raを小さくする加工であるバニシング加工を行なう。このとき玉109はスリーブ102の相対回転に伴い回転運動を行なうため、玉109は回転移動しながら、軌道面のうち玉109と接触する第1の領域全体の面粗度Raを小さくする加工を行なう。したがって、玉109は、軌道面のうち玉109と接触しない第2の領域に対しては加工を行なわない。この結果、第1の領域の面粗度Raを、第2の領域の面粗度Raよりも小さくすることができる。 For this purpose, after the temporary assembly as shown in FIG. 9C, an inner raceway surface that contacts the ball 109 from the ball 109 with a load several to several tens of times the preload applied to the fulcrum bearing unit 100. And add to the outer raceway. Then, while applying the above-described load, relative rotation is applied several times so that the sleeve 102 is in a state of rotational movement relative to the shaft 101. Then, the contact stress between the ball 109 and the raceway surface exceeds the yield stress of the raceway surface. Therefore, the surface of the raceway surface is plastically deformed by the stress applied by the ball 109, and the surface of the raceway surface in contact with the ball 109 is smoothed to reduce the surface roughness Ra. Burnishing process is performed. At this time, since the ball 109 rotates with the relative rotation of the sleeve 102, the ball 109 is processed to reduce the surface roughness Ra of the entire first region in contact with the ball 109 while rotating. Do. Therefore, the ball 109 does not process the second region of the raceway surface that does not contact the ball 109. As a result, the surface roughness Ra of the first region can be made smaller than the surface roughness Ra of the second region.
 図10において、横軸は軌道面の位置座標(バニシング加工が施された領域の延びる方向と交差する方向での位置座標)を示したものであり、縦軸は表面の凹凸高さを示したものである。図10において「バニシ位置」と記載されている位置座標の領域は、バニシング加工が施されており、縦軸の変位が小さくなっている。すなわち、バニシング加工を施された箇所については面粗度Raが小さくなって表面が滑らかになっていることがわかる。実測値としてはたとえば、バニシング前に十点平均粗さRzが1μmであった面が、バニシング加工を施すことによりRzが0.02μmになっている。 In FIG. 10, the horizontal axis indicates the position coordinates of the raceway surface (position coordinates in the direction intersecting with the extending direction of the burnished region), and the vertical axis indicates the unevenness height of the surface. Is. In the region of the position coordinates described as “burnishing position” in FIG. 10, burnishing is performed, and the displacement of the vertical axis is small. In other words, it can be seen that the surface roughness Ra is reduced and the surface is smoothed at the burnished portion. As an actual measurement value, for example, a surface having a 10-point average roughness Rz of 1 μm before burnishing has Rz of 0.02 μm due to burnishing.
 ところで本発明の実施の形態においては、軌道面をバニシング加工する工程(S40)を行なう前に、部材を仮組立する工程(S30)が完了している。すなわち、工程(S40)は、既に一通り支点軸受ユニット100としての構成に仕上がった状態で行なう。図11は本発明の実施の形態における、玉の転動する軌道面を加工する態様を示す断面概略図である。なお、図11において、ハッチングを施した部分は断面を表している。 By the way, in the embodiment of the present invention, the step of temporarily assembling the members (S30) is completed before the step of burnishing the raceway surface (S40). That is, the step (S40) is performed in a state where the configuration as the fulcrum bearing unit 100 has already been completed. FIG. 11 is a schematic cross-sectional view showing a mode of processing a raceway surface on which a ball rolls in the embodiment of the present invention. In FIG. 11, the hatched portion represents a cross section.
 図11に示すように、工程(S30)において仮組立を行なったユニットを、軸端支え131に設置する。そして、押さえ治具132を用いて調整リング123に下向きの荷重を加える。この荷重は、まず支点軸受ユニット100を組み込むために加える予圧荷重の数倍から数十倍の荷重であるF1を加える。そして、図11に示すようにスリーブ102の外周面に接している押さえ盤184は、スリーブ102に対して、スリーブ102から軸101に向かう方向(図11における右から左に向かう方向)に力を加えながらスリーブ102の外周面に沿って、スリーブ102との摩擦力によりスリーブ102を回転させるように駆動させる。 As shown in FIG. 11, the unit that has been temporarily assembled in the step (S <b> 30) is installed on the shaft end support 131. Then, a downward load is applied to the adjustment ring 123 using the holding jig 132. First, F1 which is several times to several tens of times the preload applied to incorporate the fulcrum bearing unit 100 is applied to this load. Then, as shown in FIG. 11, the pressing plate 184 in contact with the outer peripheral surface of the sleeve 102 applies a force to the sleeve 102 in the direction from the sleeve 102 toward the shaft 101 (the direction from right to left in FIG. 11). In addition, the sleeve 102 is driven to rotate along the outer peripheral surface of the sleeve 102 by a frictional force with the sleeve 102.
 なお、押さえ盤184以外の方法を用いた摩擦力によりスリーブ102を駆動させてもよく、たとえばキャプスタンドライブまたはベルトドライブという方法もある。また、予圧荷重の数倍から数十倍の荷重であるF1を加える方法については、バネを用いた方法、デッドウェイトによる方法、油圧や空気圧を用いた方法を用いてもよい。 Note that the sleeve 102 may be driven by a frictional force using a method other than the presser plate 184. For example, there is a method called a capstan drive or a belt drive. In addition, as a method of applying F1 that is several times to several tens of times the preload, a method using a spring, a method using a dead weight, a method using hydraulic pressure or air pressure may be used.
 玉109はスリーブ102の相対回転に伴い回転運動を行なうため、玉109は回転移動しながら、軌道面のうち玉109と接触する第1の領域全体の面粗度Raを小さくする加工を行なう。したがって、玉109は、軌道面のうち玉109と接触しない第2の領域に対しては加工を行なわない。この結果、第1の領域の面粗度Raは、第2の領域の面粗度Raよりも小さくすることができる。このように、軌道面のうち一部の領域のみに対して面粗度Raを小さくする加工を施すことにより、加工のタクトタイムを短縮させ、低コスト加工が実現できる。 Since the ball 109 performs a rotational movement with the relative rotation of the sleeve 102, the ball 109 is rotated and moved to reduce the surface roughness Ra of the entire first region in contact with the ball 109 in the raceway surface. Therefore, the ball 109 does not process the second region of the raceway surface that does not contact the ball 109. As a result, the surface roughness Ra of the first region can be made smaller than the surface roughness Ra of the second region. In this way, by performing processing for reducing the surface roughness Ra only on a part of the raceway surface, the processing tact time can be shortened and low-cost processing can be realized.
 また、上述したように、部材を全て仮組立した後、転動体としての玉109を用いて所定の領域に押圧することにより、上側および下側の2列両方の玉109が転動する内側軌道面および外側軌道面の両方に対して面粗さRaを小さくする加工を全て一時に実施することができる。このことにより、内側軌道面と外側軌道面とを別々にバニシング加工する場合に比べて加工のタクトタイムをさらに短縮させ、低コスト加工が実現できる。 Further, as described above, after all the members are temporarily assembled, the ball 109 as a rolling element is pressed against a predetermined region, whereby both the upper and lower rows of balls 109 roll. All the processes for reducing the surface roughness Ra on both the surface and the outer raceway surface can be performed at once. Thus, the machining tact time can be further shortened and low-cost machining can be realized as compared with the case where the inner raceway surface and the outer raceway surface are burned separately.
 工程(S40)に関しては、工程(S30)の仮組立を行なった後で行なってもよいし、工程(S30)の仮組立を行なう前に部品の段階で組み立てる前に内側軌道面と外側軌道面とを別々にバニシング加工してもよい。しかし、工程(S30)による仮組立を行なった後に工程(S40)によるバニシング加工を行なうことにより、内側軌道面と外側軌道面との位置のずれを小さくすることができる。また、バニシング加工により面粗度Raを小さくする処理を行なった第1の領域と、実際に支点軸受ユニット100として組立て、実使用する際に玉109が軌道面に接触する領域との位置のずれを小さくすることもできる。 The step (S40) may be performed after the temporary assembly in the step (S30) or before the assembly in the parts stage before the temporary assembly in the step (S30). And may be burned separately. However, the positional deviation between the inner raceway surface and the outer raceway surface can be reduced by performing the burnishing process in step (S40) after the temporary assembly in step (S30). Further, the positional deviation between the first region where the surface roughness Ra is reduced by burnishing and the region where the balls 109 are in contact with the raceway surface when actually assembled as the fulcrum bearing unit 100 is used. Can be reduced.
 以上の方法により、玉109の各軌道面に対して十分バニシング加工を行なった後、部材を本組立する工程(S50)を行なう。具体的には、工程(S30)にて仮止めにて仮組立されているユニットに対し、本止めによる各部材の固定を行ない、支点軸受ユニット100の構成を完成させる工程である。この工程(S50)では、押さえ治具132による荷重をF1から、たとえば調整リング123を固定させるための予圧であるFに低下させる。予圧をFにした状態で押さえ盤184を外した、図11に示すユニット全体を炉内に入れ、接着剤の硬化温度まで加熱する。このことにより、先の工程にて接着剤たまり133の内部に充填させている接着剤を硬化させ、調整リング123を軸101に対して固定させることができる。また、シール125についても、同様の接着剤を用いて、図9(A)または図9(B)に示す切りこみ135に嵌合させた状態でスリーブ102に接着させる。 After performing sufficient burnishing on each raceway surface of the balls 109 by the above method, the step of assembling the members (S50) is performed. Specifically, in the step (S30), each member is temporarily fixed to the unit that has been temporarily assembled, and each member is fixed by final fixing to complete the configuration of the fulcrum bearing unit 100. In this step (S50), the load applied by the pressing jig 132 is reduced from F1 to F, which is a preload for fixing the adjustment ring 123, for example. The entire unit shown in FIG. 11 with the press plate 184 removed with the preload set to F is placed in a furnace and heated to the curing temperature of the adhesive. Thus, the adhesive filled in the adhesive pool 133 in the previous step can be cured, and the adjustment ring 123 can be fixed to the shaft 101. Further, the seal 125 is also adhered to the sleeve 102 using the same adhesive while being fitted in the cut 135 shown in FIG. 9A or 9B.
 なお、調整リング123を高い剛性で固着させるために、調整リング123に対して荷重が偏らないように一様に予圧Fを負荷させるためには、たとえば調心座を介して予圧Fを加えることが好ましい。このように予圧Fを付与することにより、支点軸受ユニット100が運転されている状態においても、支点軸受ユニット100を構成する内方部材(軸101および調整リング123)および外方部材(スリーブ102)と玉109との接触を維持することが容易になる。その結果、スイングアーム用軸受の剛性が向上し、スイングアーム用軸受の回転精度および位置決め精度が向上する。 In order to fix the adjustment ring 123 with high rigidity, in order to uniformly apply the preload F so that the load is not biased with respect to the adjustment ring 123, for example, the preload F is applied via an aligning seat. Is preferred. By applying the preload F in this way, the inner member (the shaft 101 and the adjusting ring 123) and the outer member (sleeve 102) constituting the fulcrum bearing unit 100 even when the fulcrum bearing unit 100 is in operation. It becomes easy to maintain contact between the ball 109 and the ball 109. As a result, the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved.
 先述のとおり、工程(S40)に関しては、工程(S30)の仮組立を行なった後で行なってもよいし、工程(S30)の仮組立を行なう前に部品の段階で組み立てる前に内側軌道面と外側軌道面とを別々にバニシング加工してもよい。工程(S30)を行なう前に工程(S40)のバニシング加工を行なう場合は、たとえば内側軌道面と外側軌道面との位置のずれや、バニシング加工により面粗度Raを小さくする処理を行なった第1の領域と、実使用する際に玉109が軌道面に接触する領域との位置のずれが製品の性能に与える影響を小さくすることが好ましい。たとえばバニシング加工に用いる玉109の径を大きくすることにより、バニシング加工を行なう領域を広くすると、位置のずれが製品の性能に与える影響を小さくすることができる。あるいは、バニシング加工に用いる玉109の硬度を高くして、バニシング加工の際に加える接触応力を大きくすると、バニシング加工を行なう領域を広くすることができる。 As described above, the step (S40) may be performed after the temporary assembly in the step (S30), or before the assembly in the parts stage before the temporary assembly in the step (S30). And the outer raceway surface may be burned separately. When the burnishing process (S40) is performed before the process (S30) is performed, for example, a position shift between the inner raceway surface and the outer raceway surface or a process for reducing the surface roughness Ra by the burnishing process is performed. It is preferable to reduce the influence of the positional shift between the region 1 and the region where the balls 109 are in contact with the raceway surface in actual use on the product performance. For example, by increasing the diameter of the ball 109 used for the burnishing process, if the burnishing process area is widened, the influence of the positional deviation on the product performance can be reduced. Alternatively, by increasing the hardness of the balls 109 used for the burnishing process and increasing the contact stress applied during the burnishing process, the area where the burnishing process is performed can be widened.
 (実施の形態2)
 図12に示すスイングアーム1には、重心位置にスイングアーム用軸受としての支点軸受ユニット200が組み込まれている。
(Embodiment 2)
In the swing arm 1 shown in FIG. 12, a fulcrum bearing unit 200 as a swing arm bearing is incorporated at the center of gravity.
 調整リング123と軸101とは、内方部材を構成する。調整リング123は後述するように、支点軸受ユニット100を組み立てる際の便宜上、軸101とは独立した第2の内方部材として備えられている。この調整リング123が、複数個の転動体としての玉109のそれぞれと後述するように1点で接触している。また、軸101の下部、すなわち上下方向に2列並んだうち下側の玉109が存在する付近には、図12に示すように軸101の長軸方向に交差する方向の幅が広くなった領域の外周面上に直接、円すい面形状、すなわちスイングアーム用軸受の回転軸を含む断面において直線形状を有する円すい状軌道面120が備えられている。この内側軌道面としての円すい状軌道面120が、複数個の玉109とそれぞれ1点において接触している。また、スリーブ102にも、上下方向に2列並んだうち上側の玉109が存在する付近には玉109と接触するための外側軌道面である2つの円すい状軌道面122が、そして下側の玉109が存在する付近には玉109と接触するための外側軌道面である2つの円すい状軌道面122がそれぞれ交差するように備えられている。 The adjusting ring 123 and the shaft 101 constitute an inner member. As will be described later, the adjustment ring 123 is provided as a second inward member independent of the shaft 101 for the convenience of assembling the fulcrum bearing unit 100. The adjustment ring 123 is in contact with each of the balls 109 as a plurality of rolling elements at one point as will be described later. In addition, the width in the direction intersecting the major axis direction of the shaft 101 is widened as shown in FIG. 12 near the lower portion of the shaft 101, that is, in the vicinity where the lower balls 109 are present in two rows in the vertical direction. A conical track surface 120 having a conical surface shape, that is, a linear shape in a cross section including the rotation axis of the swing arm bearing is provided directly on the outer peripheral surface of the region. The conical raceway surface 120 as the inner raceway surface is in contact with each of the plurality of balls 109 at one point. Also, the sleeve 102 has two conical raceway surfaces 122 which are outer raceway surfaces for contacting the balls 109 in the vicinity of the upper balls 109 out of the two rows arranged in the vertical direction, and the lower side. In the vicinity where the balls 109 exist, two conical track surfaces 122 which are outer track surfaces for contacting the balls 109 are provided so as to intersect with each other.
 図12に示す支点軸受ユニット200においては、外方部材としてのスリーブと、複数個の玉109との接触点は2つ存在する。たとえば、図13に示すように、上側の玉109は、スリーブ102に形成された第1の接触面である円すい状軌道面122上および、第1の接触面に交差する第2の接触面である円すい状軌道面122上の2か所に接触点を備える。また、下側の玉109は図14に示すように、スリーブ102に形成された第1の接触面としての円すい状軌道面122および、第1の接触面に交差する第2の接触面である円すい状軌道面122の2か所に接触点を備える。 In the fulcrum bearing unit 200 shown in FIG. 12, there are two contact points between the sleeve as the outer member and the plurality of balls 109. For example, as shown in FIG. 13, the upper ball 109 is formed on the conical track surface 122 that is the first contact surface formed on the sleeve 102 and on the second contact surface that intersects the first contact surface. Contact points are provided at two locations on a conical raceway surface 122. Further, as shown in FIG. 14, the lower ball 109 is a conical track surface 122 as a first contact surface formed on the sleeve 102 and a second contact surface intersecting the first contact surface. Contact points are provided at two locations on the conical track surface 122.
 支点軸受ユニット200は、通常の軸受に用いられる内輪と外輪とを備えていない。そして、たとえば調整リング123には、内側軌道面として、玉と接触する第3の接触面である円すい状軌道面141が直接設けられている。したがって、玉109は、内方部材(軸101、調整リング123)の内側軌道面と、外方部材(スリーブ102)の外側軌道面とに接触して配置されている。つまり、玉109は、内側軌道面および外側軌道面と合計3点において接触している。このように支点軸受ユニット200においては外側軌道面と2点において接触し、内側軌道面と1点において接触している点において、実施の形態2の支点軸受ユニット200は実施の形態1の支点軸受ユニット100と異なる。また、実施の形態2の支点軸受ユニット200は実施の形態1の支点軸受ユニット100と同様の態様を備えている。 The fulcrum bearing unit 200 does not include an inner ring and an outer ring that are used for ordinary bearings. For example, the adjustment ring 123 is directly provided with a conical track surface 141 which is a third contact surface in contact with the ball as the inner track surface. Therefore, the balls 109 are arranged in contact with the inner raceway surface of the inner member (the shaft 101, the adjustment ring 123) and the outer raceway surface of the outer member (sleeve 102). That is, the balls 109 are in contact with the inner raceway surface and the outer raceway surface at a total of three points. Thus, in the fulcrum bearing unit 200, the fulcrum bearing unit 200 according to the second embodiment is in contact with the outer raceway surface at two points and is in contact with the inner raceway surface at one point. Different from the unit 100. Further, the fulcrum bearing unit 200 of the second embodiment has the same aspect as the fulcrum bearing unit 100 of the first embodiment.
 具体的には、図13に示すように、上側の玉109は、軸101に嵌合された調整リング123と、円すい状軌道面141上の1点(接触点143)で接触し、外方部材としてのスリーブ102と、2つの円すい状軌道面122上の2点(それぞれ接触点144、接触点145)で接触する。また、図14に示すように、下側の玉109は、軸101の長軸方向に交差する方向の幅が広くなった領域の外周面上に直接備えられた、円すい面形状を有する円すい状軌道面120上の1点(接触点153)で接触し、外方部材としてのスリーブ102と、2つの円すい状軌道面122上の2点(接触点154、接触点155)で接触する。なお、複数個の玉109と軌道面との3つの接触点と、玉109の中心Oとのなす角は、図13または図14に示すような関係になる。 Specifically, as shown in FIG. 13, the upper ball 109 is in contact with the adjustment ring 123 fitted to the shaft 101 at one point (contact point 143) on the conical track surface 141, and outward. The sleeve 102 as a member contacts the two conical track surfaces 122 at two points (contact point 144 and contact point 145, respectively). Further, as shown in FIG. 14, the lower ball 109 is a conical shape having a conical shape directly provided on the outer peripheral surface of a region where the width in the direction intersecting the major axis direction of the shaft 101 is widened. Contact is made at one point (contact point 153) on the raceway surface 120, and contact is made with the sleeve 102 as the outer member at two points (contact point 154, contact point 155) on the two conical raceway surfaces 122. Note that the angles formed by the three contact points between the plurality of balls 109 and the raceway surface and the center O of the balls 109 are as shown in FIG. 13 or FIG.
 支点軸受ユニット200においても、支点軸受ユニット100と同様に、円すい状軌道面120の表面のうち、円すい状軌道面120の一部分であって、図4中にて2つの点線に挟まれた領域である面粗さ向上加工領域120Aのみに対して面粗度Raを向上する(面粗度Raを小さくする)加工を施している。 Similarly to the fulcrum bearing unit 100, the fulcrum bearing unit 200 is a part of the surface of the conical raceway surface 120, which is a part of the conical raceway surface 120 and is sandwiched between two dotted lines in FIG. Only a certain surface roughness improving processing region 120A is subjected to processing for improving the surface roughness Ra (decreasing the surface roughness Ra).
 スイングアーム1の回転動作時においては、円すい状軌道面120の全面ではなくその中央部分の近傍の領域、すなわち図4に示す面粗さ向上加工領域120Aが玉109と接触する領域となる。玉109は円すい状軌道面120のうち面粗さ向上加工領域120Aと接触しながら転動することになる。したがって、面粗さ向上加工領域120Aの表面の凹凸が大きい場合、油膜パラメータが小さくなって軸受の耐久性が低下する可能性がある。このような現象を抑制するために、円すい状軌道面120のうち、面粗さ向上加工領域120Aの面粗度Raを小さくする加工を行なう。これにより、支点軸受ユニット200に十分な耐久性を付与することができる。さらに、このとき、図4に示すように、内側軌道面である円すい状軌道面120の全面ではなく、玉109と接触する面粗さ向上加工領域120A(第1の領域)のみにその面粗度Raを小さくする加工を施せば十分である。面粗度Raを小さくする加工を施す領域を面粗さ向上加工領域120Aのみに限定することにより、支点軸受ユニット200の製造コストを低減することができる。 During the rotation operation of the swing arm 1, not the entire surface of the conical track surface 120, but a region in the vicinity of the central portion thereof, that is, a surface roughness improving processing region 120 A shown in FIG. The ball 109 rolls in contact with the surface roughness improving processing region 120 </ b> A of the conical raceway surface 120. Therefore, when the surface roughness of the surface roughness improving processed region 120A is large, the oil film parameter may be small and the durability of the bearing may be reduced. In order to suppress such a phenomenon, the conical raceway surface 120 is processed to reduce the surface roughness Ra of the surface roughness improving processing region 120A. Thereby, sufficient durability can be imparted to the fulcrum bearing unit 200. Furthermore, at this time, as shown in FIG. 4, not the entire surface of the conical raceway surface 120 that is the inner raceway surface, but only the surface roughness enhancement processing region 120A (first region) that contacts the ball 109. It is sufficient to apply a process for reducing the degree Ra. The manufacturing cost of the fulcrum bearing unit 200 can be reduced by limiting the region to be processed to reduce the surface roughness Ra to only the surface roughness improving processing region 120A.
 また、支点軸受ユニット200を使用する際には、外側軌道面および内側軌道面に玉109が接触しながら玉109が転動する。ここでたとえば予想外の外力として外部から衝撃荷重が支点軸受ユニット200に加われば、玉109は、当該玉109が接触している軌道面(外側軌道面または内側軌道面)に対して衝撃荷重を与えるため、軌道面に圧痕を発生する可能性がある。使用中にこのような圧痕を生じることを抑制するために、軌道面の硬度を、当該圧痕が生じない程度に高くすることが好ましい。そのためには、上述したようにたとえば内方部材である軸101や調整リング123の内側軌道面の硬度はHRC40以上、外方部材であるスリーブ102の外側軌道面の硬度はHRC25以上とすることが好ましい。上述したように、玉109と外側軌道面とは2点において接触しており、玉109と内側軌道面とは1点において接触している。したがって、2点において接触する外側軌道面の方が、1点において接触している内側軌道面よりも、たとえば玉109から衝撃荷重が負荷された際に受ける応力は小さくなる。したがって、外側軌道面の方が内側軌道面よりも硬度を低くすることができる。 Further, when the fulcrum bearing unit 200 is used, the balls 109 roll while the balls 109 are in contact with the outer raceway surface and the inner raceway surface. Here, for example, if an external impact load is applied to the fulcrum bearing unit 200 as an unexpected external force, the ball 109 applies an impact load to the raceway surface (outer raceway surface or inner raceway surface) with which the ball 109 is in contact. Therefore, there is a possibility that an indentation is generated on the raceway surface. In order to suppress such indentation during use, it is preferable to increase the hardness of the raceway surface to such an extent that the indentation does not occur. For this purpose, as described above, for example, the hardness of the inner raceway surface of the shaft 101 that is the inner member and the adjustment ring 123 is HRC40 or higher, and the hardness of the outer raceway surface of the sleeve 102 that is the outer member is HRC25 or higher. preferable. As described above, the ball 109 and the outer raceway surface are in contact at two points, and the ball 109 and the inner raceway surface are in contact at one point. Therefore, the outer raceway surface contacting at two points receives less stress when an impact load is applied from the ball 109, for example, than the inner raceway surface contacting at one point. Accordingly, the hardness of the outer raceway surface can be made lower than that of the inner raceway surface.
 なお、上述した内側軌道面および外側軌道面の硬度を高くすれば、加工が困難になるため加工に要するコストが増大する。このことを抑制するためには、上述したようにたとえば内方部材である軸101や調整リング123の内側軌道面の硬度はHRC50以下、外方部材であるスリーブ102の外側軌道面の硬度はHRC35以下とすることが好ましい。以上より、軸101や調整リング123の内側軌道面(たとえば円すい状軌道面141、円すい状軌道面120)の硬度はHRC40以上HRC50以下、スリーブ102の外側軌道面(たとえば円すい状軌道面122)の硬度はHRC25以上HRC35以下とすることが好ましい。なお、このなかでも内側軌道面の硬度はHRC43以上HRC47以下、外側軌道面の硬度はHRC28以上HRC32以下とすることがさらに好ましい。このようにすれば、加工コストを増大させることなく、スイングアーム1を使用する際の予想外の衝撃荷重などによる圧痕の発生を抑制することが可能な支点軸受ユニット100を提供することができる。 Note that if the hardness of the inner raceway surface and the outer raceway surface is increased, machining becomes difficult, and the cost required for machining increases. In order to suppress this, as described above, for example, the hardness of the inner raceway surface of the shaft 101 that is the inner member and the adjustment ring 123 is HRC50 or less, and the hardness of the outer raceway surface of the sleeve 102 that is the outer member is HRC35. The following is preferable. From the above, the hardness of the inner raceway surface (for example, the conical raceway surface 141 and the conical raceway surface 120) of the shaft 101 and the adjustment ring 123 is HRC40 or more and HRC50 or less, and the outer raceway surface (for example, the conical raceway surface 122) of the sleeve 102. The hardness is preferably HRC25 or more and HRC35 or less. Of these, the inner raceway surface hardness is more preferably HRC43 to HRC47, and the outer raceway hardness is more preferably HRC28 to HRC32. In this way, it is possible to provide the fulcrum bearing unit 100 capable of suppressing the generation of indentation due to an unexpected impact load or the like when using the swing arm 1 without increasing the processing cost.
 上述したように、外側軌道面の方が内側軌道面よりも硬度を低くすることができる。逆に言えば、内側軌道面であるたとえば円すい状軌道面120は、外側軌道面であるたとえば円すい状軌道面122よりも硬度を高くすることが好ましい。しかし、支点軸受ユニット200は、図12に示すように、内方部材である軸101の長軸方向に延在する中心軸近傍の領域、すなわち軸101の内側軌道面の中心軸を含む領域には、支点軸受ユニット200を他の部材に固定するために用いる穴161やねじ162が形成されている。したがって、内方部材である軸101は、その外周部分には内側軌道面である円すい状軌道面120が存在するために硬度を高くすることが好ましいが(好ましくはHRC40以上)、穴161が存在する中心部分の領域は、穴161を形成する加工を容易に行なうために、円すい状軌道面120などの外周部分よりも硬度を低くすることが好ましい。 As described above, the outer raceway surface can be made harder than the inner raceway surface. In other words, it is preferable that the inner raceway surface, for example, the conical raceway surface 120 has a higher hardness than the outer raceway surface, for example, the conical raceway surface 122. However, as shown in FIG. 12, the fulcrum bearing unit 200 has a region in the vicinity of the central axis that extends in the major axis direction of the shaft 101 that is the inner member, that is, a region that includes the central axis of the inner raceway surface of the shaft 101. Are formed with holes 161 and screws 162 used for fixing the fulcrum bearing unit 200 to other members. Therefore, it is preferable that the shaft 101 as the inner member has a conical surface 120 as the inner raceway surface on the outer peripheral portion thereof, so that the hardness is high (preferably HRC 40 or more), but the hole 161 exists. In order to easily perform the process of forming the hole 161, it is preferable that the hardness of the region of the central portion is lower than that of the outer peripheral portion such as the conical raceway surface 120.
 すなわち、内側軌道面としての円すい状軌道面120を形成する外周部分の領域のみ硬度を高くしておくことにより、その後の加工コストを低減することができる。具体的には、穴161の表層部の硬度はHRC25以下となっていることが好ましい。穴161の表層部の硬度がHRC25以下となる程度に、軸101の中心部分の硬度を低くしておけば、穴161やねじ162を形成する加工は、当該加工を行なうコストを十分に低減することができる程度に容易となる。 That is, the subsequent machining cost can be reduced by increasing the hardness only in the region of the outer peripheral portion forming the conical raceway surface 120 as the inner raceway surface. Specifically, the hardness of the surface layer portion of the hole 161 is preferably HRC25 or less. If the hardness of the central portion of the shaft 101 is lowered to such an extent that the hardness of the surface layer portion of the hole 161 is HRC25 or less, the process of forming the hole 161 and the screw 162 sufficiently reduces the cost of performing the process. It will be as easy as possible.
 内方部材である軸101の、特に外周部分(内側軌道面である円すい状軌道面120などを含む領域)は、高周波焼入れにより硬度を高くする処理が施されていることが好ましい。高周波焼入れを行なえば、軸101のような部材の外周部分を積極的に加熱して焼入れ硬化し、軸101の中心部分(たとえば穴161が形成された領域)に対しては焼入れ硬化を実施しないことにより、軸101に対して上記所望の硬度分布を容易に付与することができる。 It is preferable that the outer peripheral portion (the region including the conical raceway surface 120 which is the inner raceway surface) of the shaft 101 which is the inner member is subjected to a treatment for increasing the hardness by induction hardening. When induction hardening is performed, the outer peripheral portion of the member such as the shaft 101 is positively heated to be hardened and hardened, and the central portion of the shaft 101 (for example, the region where the hole 161 is formed) is not hardened. Thus, the desired hardness distribution can be easily imparted to the shaft 101.
 次に、実施の形態2に係るスイングアーム用軸受(支点軸受ユニット200)の製造方法について説明する。図17は、内方部材(軸101)の製造プロセスを説明するための図である。さらに図18は、内方部材(調整リング123)の製造プロセスを説明するための図である。なお、図15~図18の各図において、ハッチングを施した部分は断面を表している。以下、図15~図18を用いて、図12に示す支点軸受ユニット200を例に、実施の形態2における支点軸受ユニットの製造方法を説明する。 Next, a manufacturing method of the swing arm bearing (fulcrum bearing unit 200) according to the second embodiment will be described. FIG. 17 is a diagram for explaining a manufacturing process of the inner member (shaft 101). Further, FIG. 18 is a view for explaining a manufacturing process of the inner member (adjustment ring 123). In each of FIGS. 15 to 18, the hatched portion represents a cross section. Hereinafter, a method for manufacturing the fulcrum bearing unit according to the second embodiment will be described with reference to FIGS. 15 to 18 using the fulcrum bearing unit 200 shown in FIG. 12 as an example.
 まず、図15に示す部材を準備する工程(S100)を実施する。これは上述した図6における部材を準備する工程(S10)と同様に、たとえば図12に示す支点軸受ユニット200を構成する、外周面にたとえば円環状の内側軌道面が形成された内方部材としての軸101、円環状の外側軌道面が形成され、ハードディスクドライブのスイングアームが接続されるべき、外方部材としてのスリーブ102、内方部材としての調整リング123などの部材を準備する工程である。 First, the step (S100) of preparing the member shown in FIG. 15 is performed. This is an inner member in which, for example, an annular inner raceway surface is formed on the outer peripheral surface of the fulcrum bearing unit 200 shown in FIG. This is a step of preparing a member such as a sleeve 102 as an outer member and an adjustment ring 123 as an inner member to be connected to a swing arm of a hard disk drive. .
 部材を準備する工程(S100)は部材を準備する工程(S10)と基本的に同様であるが、ここでは図16~図18を用いてより詳細に説明する。部材を準備する工程(S100)のうち軸101を準備する工程においては、まず図16に示す高周波焼入れする工程(S11)を行なう。この工程(S11)では、図17(A)に示すように軸101の素材であるSUS420J2、SUJ2、SUS440Cなどからなる棒鋼、鋼線などの鋼材99のうち、外周部分に該当する点線171の上側および点線172の下側の領域について誘導加熱を行ない、その後急冷することにより硬化させる(高周波焼入れ)。なお、この実施例による図17(F)に示される完成品の長さ(図17(F)における左右方向の長さ)は6~7mmであり、鋼材99の長さは1000~2000mmである。ここで、点線171の上側および点線172の下側の領域の硬度が、軸101に形成する円すい状軌道面120の好ましい硬度であるHRC40以上HRC50以下となるように高周波焼入れ処理を行なうことが好ましい。なお、HRC43以上HRC47以下とすることがさらに好ましい。このようにすれば、加工コストを増大させることなく、スイングアーム1を使用する際の予想外の衝撃荷重などにより、円すい状軌道面120(図12参照)に圧痕が発生することを抑制できる。 The step of preparing the member (S100) is basically the same as the step of preparing the member (S10), but will be described in more detail with reference to FIGS. In the step of preparing the shaft 101 in the step of preparing the member (S100), first, the step of induction hardening (S11) shown in FIG. 16 is performed. In this step (S11), as shown in FIG. 17A, the upper side of the dotted line 171 corresponding to the outer peripheral portion of the steel material 99 such as a steel bar or steel wire made of SUS420J2, SUJ2, SUS440C, etc., which is the material of the shaft 101. In addition, the region below the dotted line 172 is subjected to induction heating and then hardened by rapid cooling (induction hardening). The length of the finished product shown in FIG. 17 (F) according to this embodiment (the length in the left-right direction in FIG. 17 (F)) is 6 to 7 mm, and the length of the steel material 99 is 1000 to 2000 mm. . Here, it is preferable to perform induction hardening so that the hardness of the region above the dotted line 171 and below the dotted line 172 is HRC 40 or higher and HRC 50 or lower, which is the preferred hardness of the conical track surface 120 formed on the shaft 101. . In addition, it is more preferable to set it as HRC43 or more and HRC47 or less. In this way, it is possible to suppress the occurrence of indentation on the conical track surface 120 (see FIG. 12) due to an unexpected impact load when using the swing arm 1 without increasing the processing cost.
 また、部材を準備する工程(S100)のうち調整リング123を準備する工程においても、まず図16に示す高周波焼入れする工程(S11)を行なう。この工程(S11)では、図18(A)に示すように、円すい状軌道面141(図1参照)の硬度をHRC40以上HRC50以下とするために、鋼材99の外周部分すなわち図18(A)における点線171の上側および点線172の下側の領域の硬度がHRC40以上HRC50以下となるように高周波焼入れ処理および焼戻し処理を行なう。 Also, in the step of preparing the adjustment ring 123 in the step of preparing the member (S100), the step of induction hardening (S11) shown in FIG. 16 is first performed. In this step (S11), as shown in FIG. 18A, in order to set the hardness of the conical track surface 141 (see FIG. 1) to HRC40 or more and HRC50 or less, the outer peripheral portion of the steel material 99, that is, FIG. Induction hardening and tempering are performed so that the hardness of the region above the dotted line 171 and below the dotted line 172 is HRC40 or higher and HRC50 or lower.
 次に、図16における工程(S11)に続く穴あけ加工する工程(S12)においては、図17(B)に示す軸101の中心部分(内側軌道面の中心軸を含む領域)や、図18(B)に示す調整リング123の中心部分(内側軌道面の中心軸を含む領域)に対して、中心軸(長軸方向)に延在する方向に空洞である穴161を形成する。この工程(S12)においては、工程(S11)において高周波焼入れされた鋼材99を、それぞれの長軸方向に延在する中心軸を軸として回転させながら、たとえば中繰りバイトを用いて中心部分の領域に所定直径の穴161を形成する。この工程に要する負荷をより少なくし、容易に加工を行なえるようにして、加工のコストを増大させないようにするためには、穴161が形成される鋼材99の中心部分の硬度はHRC25以下であることが好ましい。 Next, in the step of drilling (S12) following the step (S11) in FIG. 16, the central portion of the shaft 101 (the region including the central axis of the inner raceway surface) shown in FIG. A hole 161 that is a cavity is formed in a direction extending in the central axis (long axis direction) with respect to the central portion (region including the central axis of the inner raceway surface) of the adjustment ring 123 shown in B). In this step (S12), the steel material 99 induction-hardened in the step (S11) is rotated around the central axis extending in the major axis direction, for example, by using a center cutting tool, the central portion region. A hole 161 having a predetermined diameter is formed in the substrate. In order to reduce the load required for this step, to facilitate processing, and not to increase the cost of processing, the hardness of the central portion of the steel material 99 in which the hole 161 is formed is HRC 25 or less. Preferably there is.
 続く、図16に示すタッピング加工する工程(S13)は、図17(C)に示すように、穴161を囲む壁面にねじ162を形成する工程である。具体的には、タッピング加工用の工具を用いて、穴161を囲む壁面を加工することにより、ねじ山(ねじ162)を形成することができる。ねじ山を形成する必要のない調整リング123を準備する工程においては、この工程(S13)は省略される。 The subsequent tapping process (S13) shown in FIG. 16 is a process of forming the screw 162 on the wall surface surrounding the hole 161 as shown in FIG. Specifically, a thread (screw 162) can be formed by machining a wall surface surrounding the hole 161 using a tapping tool. This step (S13) is omitted in the step of preparing the adjustment ring 123 that does not require the thread formation.
 なお、この工程に要する負荷をより少なくし、容易に加工を行なえるようにして、加工のコストを増大させないようにするためには、上述したように、特に穴161を囲む壁面の表層部の硬度はHRC25以下であることが好ましい。 In order to reduce the load required for this process, to enable easy processing, and not to increase the processing cost, as described above, in particular, the surface layer portion of the wall surface surrounding the hole 161 The hardness is preferably HRC25 or less.
 そして図16に示す旋削加工する工程(S14)において、図17(D)および図18(C)に示すように、軸101および調整リング123の外形を形成するための旋削加工を行なう。具体的には図17(D)に点線で示す軸101の外形を示す外形線163、および図18(C)に点線で示す調整リング123の外形を示す外形線165に沿って旋削を行ない、当該外形線の外側を除去する加工を行なう。このようにすれば、図17(E)に示すように軸101の円すい状軌道面120を含む外形の形状が形成される。また、図18(C)中の外形線165は、完成した調整リング123の円すい状軌道面141となる。これらの円すい状軌道面を形成する、旋削加工する工程(S14)は、図6におけるテーパ加工を施す工程(S20)と同様である。 Then, in the turning process (S14) shown in FIG. 16, as shown in FIGS. 17D and 18C, the turning process for forming the outer shapes of the shaft 101 and the adjustment ring 123 is performed. Specifically, turning is performed along an outer shape line 163 showing the outer shape of the shaft 101 shown by a dotted line in FIG. 17D and an outer shape line 165 showing the outer shape of the adjustment ring 123 shown by a dotted line in FIG. Processing to remove the outside of the outline is performed. In this way, an outer shape including the conical track surface 120 of the shaft 101 is formed as shown in FIG. In addition, an outline 165 in FIG. 18C is a conical track surface 141 of the completed adjustment ring 123. The turning process (S14) for forming these conical raceway surfaces is the same as the taper machining process (S20) in FIG.
 さらに図16を参照して、軸101を準備する工程においては、切断加工する工程である工程(S15)が実施される。この工程(S15)では、図17(E)における切断線164において鋼材99を切断する。これにより、図17(F)に示すように、円すい状軌道面120が形成された軸101が完成する。また、図16を参照して、調整リング123を準備する工程においても、切断加工する工程である工程(S15)が実施される。この工程(S15)では、図18(C)および(D)を参照して、鋼材99が切断されることにより、図18(D)に示すように、円すい状軌道面141が形成された調整リング123が完成する。以上の手順により、支点軸受ユニット200の内方部材を構成する軸101および調整リング123が準備される。なお、以上の説明では内方部材を構成する軸101および調整リング123を準備する工程について説明したが、外方部材であるスリーブ102についても、上記工程(S11)~(S12)および(S14)~(S15)と同様のプロセスを実施することにより、準備することができる。 Referring further to FIG. 16, in the step of preparing shaft 101, a step (S15) that is a step of cutting is performed. In this step (S15), the steel material 99 is cut along the cutting line 164 in FIG. Thereby, as shown in FIG. 17F, the shaft 101 on which the conical track surface 120 is formed is completed. In addition, referring to FIG. 16, also in the step of preparing adjustment ring 123, a step (S15) that is a step of cutting is performed. In this step (S15), referring to FIGS. 18C and 18D, the steel material 99 is cut to adjust the conical track surface 141 as shown in FIG. 18D. The ring 123 is completed. By the above procedure, the shaft 101 and the adjustment ring 123 that constitute the inner member of the fulcrum bearing unit 200 are prepared. In the above description, the step of preparing the shaft 101 and the adjustment ring 123 constituting the inner member has been described. However, the above steps (S11) to (S12) and (S14) also apply to the sleeve 102 which is the outer member. Preparation can be made by performing the same process as in (S15).
 支点軸受ユニット100を構成する各部材が準備できたところで、図15に示す仮組立する工程(S200)を行なう。これは図6における部材を仮組立する工程(S30)と同様に、上述した図7、図8、図9(A)および図9(B)を用いて説明できる。支点軸受ユニット100の部材を仮組立する工程(S200)が完了すれば、図9(C)に示すように、複数個の玉109が軸101や調整リング123の内側軌道面(円すい状軌道面141、120)と1点で接触し、またスリーブの外側軌道面(円すい状軌道面122)と2点で接触する状態となっている。次に、図15に示すように軌道面を塑性加工する工程(S300)を実施する。これは図6における軌道面をバニシング加工する工程(S40)と基本的に同様の態様であるが、これについても上述したバニシング加工する工程(S40)よりも詳細に説明する。 When each member constituting the fulcrum bearing unit 100 is prepared, a temporary assembling step (S200) shown in FIG. 15 is performed. This can be explained using FIG. 7, FIG. 8, FIG. 9 (A) and FIG. 9 (B) described above, as in the step of temporarily assembling the members in FIG. 6 (S30). When the step of temporarily assembling the members of the fulcrum bearing unit 100 (S200) is completed, as shown in FIG. 9C, a plurality of balls 109 are arranged on the inner raceway surface (conical raceway surface) of the shaft 101 and the adjustment ring 123. 141, 120) at one point and in contact with the outer raceway surface (conical raceway surface 122) of the sleeve at two points. Next, as shown in FIG. 15, a step of plastic working the raceway surface (S300) is performed. This is basically the same mode as the step of burnishing the raceway surface in FIG. 6 (S40), and this will also be described in more detail than the above-described step of burnishing (S40).
 図11に示すように、スリーブ102の外周面に接している押さえ盤184は、スリーブ102に対して、スリーブ102から軸101に向かう方向(図13における右から左に向かう方向)に力を加えながらスリーブ102の外周面に沿って、スリーブ102との摩擦力によりスリーブ102を回転させる。以下において、このことをより詳細に説明する。 As shown in FIG. 11, the pressing plate 184 in contact with the outer peripheral surface of the sleeve 102 applies a force to the sleeve 102 in the direction from the sleeve 102 toward the shaft 101 (the direction from right to left in FIG. 13). However, the sleeve 102 is rotated along the outer peripheral surface of the sleeve 102 by the frictional force with the sleeve 102. This will be described in more detail below.
 図11に示す、押さえ治具132に対して上方から下方へ加わる方向の力をアキシャル力、押さえ盤184がスリーブ102に対して与える方向の力をラジアル力と呼ぶことにする。図11に示すように、押さえ盤184は、これと接続されるモータ181により、回転数ω1で回転(自転)しながら、スリーブ102に対してラジアル力を加える。なお、図11においては支点軸受ユニット100の態様が描かれているが、支点軸受ユニット200においても同様の態様をとる。 The force in the direction applied from the upper side to the lower side with respect to the holding jig 132 shown in FIG. 11 is referred to as an axial force, and the force applied to the sleeve 102 by the pressing plate 184 is referred to as a radial force. As shown in FIG. 11, the presser disc 184 applies a radial force to the sleeve 102 while rotating (spinning) at a rotational speed ω <b> 1 by a motor 181 connected thereto. In addition, in FIG. 11, although the aspect of the fulcrum bearing unit 100 is drawn, the fulcrum bearing unit 200 also takes the same aspect.
 するとスリーブ102は、軸101周りに回転する。これはスリーブ102をはじめ、図11に示すユニットは既に支点軸受ユニット200(図12参照)として仮組立された状態となっているためである。以上のように、外方部材であるスリーブ102を内方部材である軸101周りに相対的に回転させる。このようにして、たとえば円すい状軌道面141が玉109と接触する領域、および円すい状軌道面122が玉109と接触する領域に対して力を加えることにより、塑性加工を実施することができる。以上の加工方法が、本発明の実施の形態2に係る、バニシング加工である。 Then, the sleeve 102 rotates around the shaft 101. This is because the unit shown in FIG. 11 including the sleeve 102 has already been temporarily assembled as the fulcrum bearing unit 200 (see FIG. 12). As described above, the sleeve 102 which is the outer member is relatively rotated around the shaft 101 which is the inner member. In this way, for example, plastic working can be performed by applying a force to the region where the conical raceway surface 141 contacts the ball 109 and the region where the conical raceway surface 122 contacts the ball 109. The above processing method is burnishing processing according to Embodiment 2 of the present invention.
 上述したように、バニシング加工は、支点軸受ユニット200(図12参照)として仮組立した状態で加工を行なうことができる。したがって、仮組立する工程(S20)を行なう前にあらかじめ軌道面をたとえば砥石で研削する加工を行なう必要はない。さらに、仮組立がすでにされた状態で、外方部材であるスリーブ102を内方部材である軸101周りに相対的に回転させるだけで、軌道面のうち、玉109が接触する第1の領域の面粗度Raを、軌道面のうち、第1の領域に隣接する第2の領域の面粗度Raよりも小さくする加工を容易に行なうことができる。このため、バニシング加工を行なうことにより、あらかじめ軌道面をたとえば砥石で(軌道面の全面を)研削する加工を行なう工程を省略することができる。このため、加工に要する労力やコストを大幅に削減することができる。 As described above, the burnishing can be performed in a temporarily assembled state as the fulcrum bearing unit 200 (see FIG. 12). Therefore, there is no need to perform a process of grinding the raceway surface with, for example, a grindstone before performing the temporary assembly step (S20). Further, in a state where provisional assembly has already been performed, the first region in which the balls 109 are in contact with each other by simply rotating the sleeve 102 which is the outer member around the shaft 101 which is the inner member. The surface roughness Ra can be easily made smaller than the surface roughness Ra of the second region adjacent to the first region in the raceway surface. For this reason, by performing the burnishing process, it is possible to omit the process of previously grinding the raceway surface with, for example, a grindstone (the entire raceway surface). For this reason, the labor and cost required for processing can be greatly reduced.
 ここでは上述したように、たとえば押さえ盤184をモータ181で回転させながら押さえ盤184が外方部材であるスリーブ102を回転させる。そのため、スリーブ102の軌道面である円すい状軌道面122は、全周にわたって塑性加工される。しかし、内方部材(軸101および調整リング123)が静止している状態では、内方部材の軌道面である円すい状軌道面141,120はその周方向における一部(図11における軸101の回転軸の右側)のみが塑性加工され、全周にわたって十分に加工されないおそれがある。この問題点を解消するためには、バニシング加工を実施する際に、内方部材も軸まわりに回転させることが好ましい。具体的には、図11に示すように、バニシング加工を行なう際には、たとえばモータ182を用いて軸101を回転数ω2で回転(自転)させることが好ましい。 Here, as described above, for example, while the presser plate 184 is rotated by the motor 181, the presser plate 184 rotates the sleeve 102 which is an outer member. Therefore, the conical raceway surface 122 which is the raceway surface of the sleeve 102 is plastically processed over the entire circumference. However, when the inner member (the shaft 101 and the adjustment ring 123) is stationary, the conical track surfaces 141 and 120, which are the track surfaces of the inner member, are partially in the circumferential direction (the shaft 101 in FIG. 11). Only the right side) of the rotating shaft is plastically processed, and there is a possibility that it is not fully processed over the entire circumference. In order to eliminate this problem, it is preferable to rotate the inner member around the axis when performing burnishing. Specifically, as shown in FIG. 11, when performing burnishing, it is preferable to rotate (spin) the shaft 101 at a rotational speed ω2 using, for example, a motor 182.
 また、上述した回転と同時に、バニシング加工を行なう際に、玉109が外方部材であるスリーブ102および内方部材である軸101や調整リング123に加える力について考える必要がある。玉109がスリーブ102の軌道面をバニシングするために加える力については上述したとおりである。以下、玉が内方部材(調整リング123)の軌道面をバニシングするために加える力について説明する。なお、軸101の軌道面をバニシングするために加える力については、調整リング123の軌道面と同様の考え方を採用することができるため説明を省略する。 Also, it is necessary to consider the force that the ball 109 applies to the sleeve 102 that is the outer member, the shaft 101 that is the inner member, and the adjustment ring 123 when performing the burnishing process simultaneously with the rotation described above. The force applied by the ball 109 for burnishing the raceway surface of the sleeve 102 is as described above. Hereinafter, the force that the ball applies to burnishing the raceway surface of the inner member (adjustment ring 123) will be described. In addition, about the force applied in order to burnishing the track surface of the axis | shaft 101, since the same view as the track surface of the adjustment ring 123 can be employ | adopted, description is abbreviate | omitted.
 アキシャル力のみが調整リング123に負荷された状態でバニシング加工を行なえば、たとえば図19の断面図に示すように、円すい状軌道面141は玉109の表面(玉表面109A)の形状に沿った形状となるように塑性変形する。この場合、支点軸受ユニット200を運転すると、バニシングにより塑性変形した領域から玉109が外れ、図19におけるA点に乗り上げる現象が発生する可能性がある。このような現象は、支点軸受ユニット200のトルクの変動の原因となり、スイングアーム1の精密な位置制御の観点から好ましくない。 If burnishing is performed with only the axial force applied to the adjustment ring 123, for example, as shown in the cross-sectional view of FIG. 19, the conical track surface 141 follows the shape of the surface of the ball 109 (ball surface 109A). Plastically deforms so as to have a shape. In this case, when the fulcrum bearing unit 200 is operated, there is a possibility that the ball 109 is detached from the region plastically deformed by burnishing and climbs up to the point A in FIG. Such a phenomenon causes a fluctuation in torque of the fulcrum bearing unit 200 and is not preferable from the viewpoint of precise position control of the swing arm 1.
 これに対し、アキシャル力だけでなくラジアル力を負荷した状態でバニシング加工を行なうことにより、図20に示すように、円すい状軌道面141はより平面に近い(円すい状軌道面141の断面に沿った方向に広がって曲率が小さくなった)形状に塑性変形する。これにより、上述のようなトルク変動の問題を抑制することができる。 On the other hand, by performing burnishing while applying not only the axial force but also the radial force, the conical track surface 141 is closer to a plane (along the cross section of the conical track surface 141), as shown in FIG. Plastically deformed into a shape that spreads in the opposite direction and the curvature becomes smaller. Thereby, the problem of torque fluctuation as described above can be suppressed.
 以上より、バニシング加工を行なう際には、仮組立を行なったユニットに対して、アキシャル力およびラジアル力の両方を加えることが好ましい。なお、これらのアキシャル力とラジアル力とは、同時に加えることがより好ましい。 From the above, when burnishing is performed, it is preferable to apply both axial force and radial force to the temporarily assembled unit. In addition, it is more preferable to apply these axial force and radial force simultaneously.
 以上に述べたバニシング加工の際に、仮組立を行なった図11に示すユニットに加えるアキシャル力(F1)やラジアル力(F2)は、玉109が接触する軌道面に力を加えることにより、当該軌道面の加工を行なうために加える力である。それゆえに、たとえば上述したF1は、以下に述べる本組立する工程(S40)を行なう際に加える予圧Fの3倍から5倍程度である。 In the burnishing process described above, the axial force (F1) and radial force (F2) applied to the temporarily assembled unit shown in FIG. This is the force applied to process the raceway surface. Therefore, for example, the above-described F1 is about 3 to 5 times the preload F applied when performing the following assembling step (S40) described below.
 なお、以上に述べたバニシング加工を行なった後における、支点軸受ユニット200(図12参照)の各軌道面のうち、玉109と接触する領域の面粗度は、中心線平均粗さRaにして0.02μm以下であることが好ましい。バニシング加工を行なった後においてRaを0.02μm以下とするためには、軌道面を塑性加工する工程(S30)を行なう前における当該内側軌道面および外側軌道面の面粗度Raは0.3μm以下であることが好ましい。なお、当該工程(S30)を行なう前における当該各軌道面の面粗度RaはRaは0.14μm以下であることがより好ましい。このようにすれば、上述したバニシング加工を行なうことにより、各軌道面のうち、玉109が接触する領域における面粗度Raを、スイングアーム用軸受のトルクの変動を抑制するために十分な0.02μm以下とすることが容易となる。 Of the raceway surfaces of the fulcrum bearing unit 200 (see FIG. 12) after the burnishing process described above, the surface roughness of the region in contact with the ball 109 is the centerline average roughness Ra. It is preferable that it is 0.02 μm or less. In order to set Ra to 0.02 μm or less after burnishing, the surface roughness Ra of the inner raceway surface and the outer raceway surface before the step of plastic working the raceway surface (S30) is 0.3 μm. The following is preferable. In addition, as for surface roughness Ra of each said track surface before performing the said process (S30), it is more preferable that Ra is 0.14 micrometer or less. In this way, by performing the above-described burnishing, the surface roughness Ra in the region where the balls 109 are in contact with each other is reduced to 0, which is sufficient to suppress fluctuations in the torque of the swing arm bearing. It is easy to make the thickness 0.02 μm or less.
 図15を参照して、軌道面を塑性加工する工程(S300)により各軌道面の面粗度Raを小さくした後、本組立する工程(S400)を行なう。これは図6における部材を本組立する工程(S50)と基本的に同様である。本組立する工程(S400)では、押さえ盤184によるラジアル力をF2から0にする。図11に示すユニットのうち、押さえ盤184およびモータ181を除く全体を炉内に入れ、接着剤の硬化温度まで加熱する。 Referring to FIG. 15, after the surface roughness Ra of each raceway surface is reduced by the step of plastically processing the raceway surface (S300), the main assembly step (S400) is performed. This is basically the same as the step of assembling the members in FIG. 6 (S50). In the assembling step (S400), the radial force by the pressing plate 184 is changed from F2 to zero. Among the units shown in FIG. 11, the entire unit excluding the press plate 184 and the motor 181 is placed in a furnace and heated to the curing temperature of the adhesive.
 (実施の形態3)
 図21を参照して、本実施の形態3におけるスイングアーム用軸受である支点軸受ユニット300は、固定軸として機能する内方部材と、内方部材を取り囲むように配置されたスリーブ102と、内方部材とスリーブ102との間に複列(2列)に配置された複数の転動体としての玉109と、円環状の形状を有し、内方部材とスリーブ102との間に配置されるとともに、玉109を円環状の軌道上に所定のピッチで転動自在に保持する第1の保持器15Aおよび第2の保持器15Dとを備えている。内方部材は、軸101と、軸101の外周面に嵌め込まれた円環状の形状を有する調整リング123とを含んでいる。
(Embodiment 3)
Referring to FIG. 21, a fulcrum bearing unit 300 that is a swing arm bearing in the third embodiment includes an inner member that functions as a fixed shaft, a sleeve 102 that is disposed so as to surround the inner member, and an inner member. A plurality of balls 109 as rolling elements arranged in a double row (two rows) between the side member and the sleeve 102 and an annular shape, and are arranged between the inner member and the sleeve 102. In addition, a first cage 15A and a second cage 15D are provided that hold the balls 109 on an annular track so as to be freely rollable at a predetermined pitch. The inner member includes a shaft 101 and an adjustment ring 123 having an annular shape that is fitted to the outer peripheral surface of the shaft 101.
 軸101の外周面には、円環状の軸軌道面としての円すい状軌道面120が形成されている。調整リング123の外周面には、円環状のリング軌道面としての円すい状軌道面141が形成されている。一方、スリーブ102の内周面において、円すい状軌道面120に対向する位置および円すい状軌道面141に対向する位置のそれぞれには、円環状の第1スリーブ軌道面としての円すい状軌道面122および第2スリーブ軌道面としての円すい状軌道面122が形成されている。円すい状軌道面120、円すい状軌道面141、2つの円すい状軌道面122は、いずれも円錐面形状を有している。 A conical raceway surface 120 as an annular shaft raceway surface is formed on the outer peripheral surface of the shaft 101. A conical track surface 141 as an annular ring track surface is formed on the outer peripheral surface of the adjustment ring 123. On the other hand, on the inner peripheral surface of the sleeve 102, a conical raceway surface 122 as a first annular raceway surface and a position facing the conical raceway surface 120 and a location facing the conical raceway surface 141, respectively. A conical raceway surface 122 is formed as the second sleeve raceway surface. The conical raceway surface 120, the conical raceway surface 141, and the two conical raceway surfaces 122 have a conical surface shape.
 複数の玉109のうち一部は、円すい状軌道面120と円すい状軌道面122および円すい状軌道面122とに接触して配置される第1の列に含まれる。複数の玉109のうち残部は、円すい状軌道面141と円すい状軌道面122および円すい状軌道面122とに接触して配置される第2の列に含まれる。第1の列と第2の列とは、軸方向に並んでいる。第1の列に含まれる玉109および第2の列に含まれる玉109は、それぞれ第1の保持器15Aおよび第2の保持器15Dにより保持されている。また、玉109は、円すい状軌道面122および円すい状軌道面122と、円すい状軌道面120および円すい状軌道面141のうち一方とに接触することにより、内方部材21および外方部材としてのスリーブ102に3点で接触している。以上の構成により、スリーブ102は、内方部材21に対して回転可能となっている。 Some of the plurality of balls 109 are included in a first row arranged in contact with the conical raceway surface 120, the conical raceway surface 122, and the conical raceway surface 122. The remainder of the plurality of balls 109 is included in a second row arranged in contact with the conical raceway surface 141, the conical raceway surface 122, and the conical raceway surface 122. The first column and the second column are aligned in the axial direction. The balls 109 included in the first row and the balls 109 included in the second row are held by the first holder 15A and the second holder 15D, respectively. Further, the balls 109 come into contact with the conical raceway surface 122 and the conical raceway surface 122 and one of the conical raceway surface 120 and the conical raceway surface 141, thereby serving as the inner member 21 and the outer member. The sleeve 102 is in contact at three points. With the above configuration, the sleeve 102 is rotatable with respect to the inner member 21.
 さらに、スリーブ102の外周面には、スイングアーム1が接続されており、スイングアーム1においてスリーブ102に接続される側とは反対側の端部には磁気ヘッド2が取り付けられている。そして、図示しないモータなどの駆動装置によりスイングアーム1が回動し、磁気ヘッド2がディスク(図示しない)上の任意の位置に移動して、情報の読み書きを行なうことができる。 Furthermore, the swing arm 1 is connected to the outer peripheral surface of the sleeve 102, and the magnetic head 2 is attached to the end of the swing arm 1 opposite to the side connected to the sleeve 102. Then, the swing arm 1 is rotated by a driving device such as a motor (not shown), and the magnetic head 2 is moved to an arbitrary position on a disk (not shown) so that information can be read and written.
 すなわち、本実施の形態における支点軸受ユニット300は、外周面に円環状の内側軌道面としての円すい状軌道面120および円すい状軌道面141が形成され、ハードディスクドライブのスイングアーム1の固定軸として機能する内方部材21と、内方部材21を取り囲むように配置され、円すい状軌道面120および円すい状軌道面141に対向する円環状の外側軌道面としての2つの円すい状軌道面122が形成され、スイングアーム1が接続されるべき外方部材としてのスリーブ102とを備えている。さらに、支点軸受ユニット300は、円すい状軌道面120または円すい状軌道面141と円すい状軌道面122および円すい状軌道面122とに接触して配置された複数の転動体としての玉109と、円環状の形状を有し、内方部材21とスリーブ102との間に配置されるとともに、複数の玉109を円環状の軌道上に所定のピッチで転動自在に保持する第1の保持器15Aおよび第2の保持器15Dとを備えている。 That is, the fulcrum bearing unit 300 in the present embodiment is formed with a conical raceway surface 120 and a conical raceway surface 141 as annular inner raceway surfaces on the outer peripheral surface, and functions as a fixed shaft of the swing arm 1 of the hard disk drive. The inner member 21 and the conical raceway surface 120 are disposed so as to surround the inner member 21, and two conical raceway surfaces 122 are formed as an annular outer raceway surface facing the conical raceway surface 120 and the conical raceway surface 141. And a sleeve 102 as an outer member to which the swing arm 1 is to be connected. Further, the fulcrum bearing unit 300 includes a conical raceway surface 120 or a conical raceway surface 141, a conical raceway surface 122, and a plurality of balls 109 as rolling elements arranged in contact with the conical raceway surface 122, A first retainer 15A that has an annular shape, is disposed between the inner member 21 and the sleeve 102, and holds a plurality of balls 109 on an annular track so as to be freely rollable at a predetermined pitch. And a second cage 15D.
 本実施の形態における支点軸受ユニット300においては、固定軸として機能する内方部材21およびスイングアーム1に接続されるべきスリーブ102に、互いに対向する軌道面が形成されるとともに、当該軌道面の間に第1の保持器15Aおよび第2の保持器15Dにより転動体としての玉109が転動自在に保持されている。これにより、スリーブ102と軸101との間に内輪および外輪を有する転がり軸受を嵌め込む従来の構成に比べて組立工程を簡略化し、製造コストを低減することができる。その結果、本実施の形態における支点軸受ユニット300は、低コストなスイングアーム用軸受となっている。 In the fulcrum bearing unit 300 in the present embodiment, the inner member 21 functioning as a fixed shaft and the sleeve 102 to be connected to the swing arm 1 are formed with mutually opposing raceway surfaces, and between the raceway surfaces. In addition, the ball 109 as a rolling element is rotatably held by the first cage 15A and the second cage 15D. As a result, the assembly process can be simplified and the manufacturing cost can be reduced as compared with a conventional configuration in which a rolling bearing having an inner ring and an outer ring is fitted between the sleeve 102 and the shaft 101. As a result, the fulcrum bearing unit 300 in the present embodiment is a low-cost swing arm bearing.
 ここで、本実施の形態における支点軸受ユニット300においては、第1の保持器15Aおよび第2の保持器15Dは樹脂成形体からなっている。これにより、金属製の保持器を用いる場合に比べて保持器の加締めなどの工程を省略することが可能となっており、製造コストが一層低減されている。 Here, in the fulcrum bearing unit 300 in the present embodiment, the first cage 15A and the second cage 15D are made of a resin molded body. As a result, steps such as caulking of the cage can be omitted as compared with the case where a metal cage is used, and the manufacturing cost is further reduced.
 また、本実施の形態における支点軸受ユニット300においては、第1の保持器15Aおよび第2の保持器15Dは、玉109を保持する保持部15Bと、保持部15Bよりも径方向の厚みが大きい厚肉部15Cとを含んでいる。より具体的には、第1の保持器15Aおよび第2の保持器15Dのそれぞれには、一方の保持器から見て他方の保持器とは反対側の端面を含む領域に、厚肉部15Cが形成されている。そして、第1の保持器15Aおよび第2の保持器15Dにおける厚肉部15Cとスリーブ102および内方部材21(軸101または調整リング123)との間隔αは、0.05mm以上0.2mm以下となっている。 Further, in the fulcrum bearing unit 300 in the present embodiment, the first cage 15A and the second cage 15D have a holding portion 15B that holds the ball 109 and a thickness in the radial direction larger than that of the holding portion 15B. And a thick portion 15C. More specifically, each of the first retainer 15A and the second retainer 15D has a thick portion 15C in a region including an end surface opposite to the other retainer when viewed from one retainer. Is formed. And the space | interval (alpha) of the thick part 15C in the 1st holder | retainer 15A and the 2nd holder | retainer 15D, the sleeve 102, and the inner member 21 (shaft 101 or the adjustment ring 123) is 0.05 mm or more and 0.2 mm or less. It has become.
 これにより、第1の保持器15Aおよび第2の保持器15Dの厚肉部15Cと内方部材21とスリーブ102との間隔が、十分なシール性能を得ることが可能な適切な値となり、十分なシール性能を確保しつつ、シール板を省略することが可能となる。その結果、本実施の形態における支点軸受ユニット300においては、製造コストを抑制することが可能となっている。また、上記構成により、軸受内部の軸方向の両側にシールの機能を果たす厚肉部15Cが配置されるため、軸受内部への固形異物の侵入を良好に抑制することが可能となっている。 Thereby, the space | interval of the thick part 15C of the 1st holder | retainer 15A and the 2nd holder | retainer 15D, the inner member 21, and the sleeve 102 becomes an appropriate value which can acquire sufficient sealing performance, and is enough It is possible to omit the sealing plate while ensuring a good sealing performance. As a result, in the fulcrum bearing unit 300 in the present embodiment, it is possible to suppress the manufacturing cost. Further, with the above-described configuration, the thick portions 15C that function as a seal are disposed on both sides in the axial direction inside the bearing, so that it is possible to satisfactorily prevent solid foreign matter from entering the bearing.
 また、図2に基づいて説明した従来のスイングアーム用軸受ユニットに含まれる軸受においては、シール板が外輪に固定されているため、当該軸受ユニットの運転中にシール板と内輪とが接触すると、外輪が内輪に対して完全に回転不能となるおそれがある。これに対し、本実施の形態における支点軸受ユニット300では、第1の保持器15Aおよび第2の保持器15Dは、スリーブ102や内方部材21に対して固定されているものではないため、運転中にシールとして機能する厚肉部15Cとスリーブ102または内方部材21とが接触した場合でも、スリーブ102が内方部材21に対して完全に回転不能となることはない。そのため、間隔αを小さい値に設定することが可能となっており、優れたシール性能を付与することが可能である。 Further, in the bearing included in the conventional swing arm bearing unit described with reference to FIG. 2, the seal plate is fixed to the outer ring, so that when the seal plate and the inner ring come into contact during the operation of the bearing unit, There is a possibility that the outer ring may not be completely rotatable with respect to the inner ring. On the other hand, in the fulcrum bearing unit 300 in the present embodiment, the first retainer 15A and the second retainer 15D are not fixed with respect to the sleeve 102 and the inner member 21, so Even when the thick portion 15C functioning as a seal and the sleeve 102 or the inner member 21 come into contact with each other, the sleeve 102 does not become completely unrotatable with respect to the inner member 21. Therefore, the interval α can be set to a small value, and excellent sealing performance can be imparted.
 さらに、スリーブ102には、第1の保持器15Aおよび第2の保持器15Dに形成された厚肉部15Cに沿って屈曲する屈曲部13Cが形成されている。これにより、外部から軸受内部への固形異物の侵入経路のうち、当該経路の幅が小さくなることにより固形異物の侵入を抑制する機能を果たす領域、すなわちシール領域が屈曲し、ラビリンス状となっている。そのため、固形異物の侵入が一層抑制されているとともに、軸受内部からのグリースなどの漏出も一層抑制されている。 Furthermore, the sleeve 102 is formed with a bent portion 13C that bends along the thick portion 15C formed in the first retainer 15A and the second retainer 15D. As a result, of the intrusion path of solid foreign matter from the outside to the inside of the bearing, the area that functions to suppress the intrusion of solid foreign matter by reducing the width of the path, that is, the seal area is bent and becomes a labyrinth shape. Yes. Therefore, intrusion of solid foreign matters is further suppressed, and leakage of grease and the like from the inside of the bearing is further suppressed.
 なお、本実施の形態においては、厚肉部15Cが保持部15Bに対して径方向外側、すなわち外方部材であるスリーブ102の側に向けて突出しており、屈曲部13Cがスリーブ102に形成される場合について説明したが、屈曲部の構成はこれに限られない。たとえば、厚肉部15Cが保持部15Bに対して径方向内側、すなわち内方部材21(軸101、調整リング123)の側に向けて突出しており、厚肉部15Cに沿って屈曲する屈曲部が内方部材21に形成されてもよい。また、厚肉部15Cが保持部15Bに対して径方向内側および外側の両側に向けて突出しており、厚肉部15Cに沿って屈曲する屈曲部が外方部材であるスリーブ102および内方部材21の両方に形成されてもよい。すなわち、厚肉部15Cが保持部15Bに対して径方向内側および径方向外側の少なくとも一方の側に向けて突出しており、厚肉部15Cに沿って屈曲する屈曲部が外方部材または内方部材のうち厚肉部15Cが突出する側の少なくとも一方に形成されていればよい。 In the present embodiment, the thick portion 15C protrudes radially outward from the holding portion 15B, that is, toward the sleeve 102 that is the outer member, and the bent portion 13C is formed in the sleeve 102. However, the configuration of the bent portion is not limited to this. For example, the thick portion 15C protrudes radially inward with respect to the holding portion 15B, that is, toward the inner member 21 (the shaft 101, the adjustment ring 123), and is bent along the thick portion 15C. May be formed on the inner member 21. Further, the sleeve 102 and the inner member, in which the thick portion 15C protrudes toward both the radially inner side and the outer side with respect to the holding portion 15B, and the bent portion that is bent along the thick portion 15C is the outer member. 21 may be formed on both. That is, the thick portion 15C protrudes toward at least one of the radially inner side and the radially outer side with respect to the holding portion 15B, and the bent portion that bends along the thick portion 15C is the outer member or the inner portion. What is necessary is just to be formed in at least one of the side from which the thick part 15C protrudes among members.
 次に、本実施の形態における支点軸受ユニット300を含むスイングアーム支持機構の製造方法の一例について簡単に説明する。まず、JIS規格SUS420J2、SUJ2、SUS440Cなどの焼入硬化可能な鋼材(棒鋼、鋼線など)が準備され、たとえば高周波焼入により外周面を含む領域が焼入硬化される。次に、当該鋼材に対して焼戻処理が実施された後、切削加工が実施されることにより、軸101、調整リング123、スリーブ102などの部品が作製される。このとき、円すい状軌道面120、円すい状軌道面141、2つの円すい状軌道面122は、焼入硬化された領域に含まれる。なお、上述した支点軸受ユニット200と同様に、外側軌道面であるたとえば円すい状軌道面122の硬度よりも、内側軌道面であるたとえば円すい状軌道面120の硬度の方が高い方が好ましい。ここで円すい状軌道面120の硬度はHRC40以上HRC50以下であり、円すい状軌道面122の硬度はHRC25以上HRC35以下であることがさらに好ましい。 Next, an example of a method for manufacturing a swing arm support mechanism including the fulcrum bearing unit 300 in the present embodiment will be briefly described. First, steel materials (bar steel, steel wire, etc.) that can be hardened by hardening such as JIS standards SUS420J2, SUJ2, and SUS440C are prepared, and the region including the outer peripheral surface is hardened by induction hardening, for example. Next, after the tempering process is performed on the steel material, a cutting process is performed, so that components such as the shaft 101, the adjustment ring 123, and the sleeve 102 are manufactured. At this time, the conical raceway surface 120, the conical raceway surface 141, and the two conical raceway surfaces 122 are included in the hardened and hardened region. As with the fulcrum bearing unit 200 described above, it is preferable that the hardness of the inner raceway surface, for example, the conical raceway surface 120, is higher than the hardness of the outer raceway surface, for example, the conical raceway surface 122. Here, the hardness of the conical raceway surface 120 is preferably HRC40 or more and HRC50 or less, and the hardness of the conical raceway surface 122 is more preferably HRC25 or more and HRC35 or less.
 次に、軸101、調整リング123およびスリーブ102と、別途準備された玉109、第1の保持器15Aおよび第2の保持器15Dとが組み合わされて、支点軸受ユニット300の仮組立が実施される。具体的には、軸101、スリーブ102、玉109、第1の保持器15Aおよび第2の保持器15Dが組み合わされた状態で、調整リング123が軸101の外周面に嵌めこまれる。このとき、調整リング123の内周面には、熱硬化性の接着剤が塗布された状態で、調整リング123が軸101に嵌め込まれる。 Next, the shaft 101, the adjustment ring 123, and the sleeve 102 are combined with the ball 109, the first cage 15A, and the second cage 15D that are separately prepared, and the fulcrum bearing unit 300 is temporarily assembled. The Specifically, the adjustment ring 123 is fitted into the outer peripheral surface of the shaft 101 in a state where the shaft 101, the sleeve 102, the ball 109, the first retainer 15A, and the second retainer 15D are combined. At this time, the adjustment ring 123 is fitted on the shaft 101 in a state where a thermosetting adhesive is applied to the inner peripheral surface of the adjustment ring 123.
 ここで、樹脂成形体からなる第1の保持器15Aおよび第2の保持器15Dは、たとえば樹脂の射出成形により作製することができる。第1の保持器15Aおよび第2の保持器15Dの原料となる樹脂としては、たとえばガラス繊維などで強化された66ナイロンなどを採用することができる。 Here, the first cage 15A and the second cage 15D made of a resin molded body can be produced by, for example, resin injection molding. For example, 66 nylon reinforced with glass fiber or the like can be used as the resin used as the raw material for the first cage 15A and the second cage 15D.
 次に、円すい状軌道面120、円すい状軌道面141、円すい状軌道面122および円すい状軌道面122において、玉109と接触する領域の面粗さを減少させる塑性加工が実施される。具体的には、仮組立された支点軸受ユニット300に対して、たとえば調整リング123が軸方向に押し込まれる力が加えられることによりアキシャル力が負荷されるとともに、スリーブ102が内方部材21に対して押し付けられる力が加えられることによりラジアル力が負荷される。そして、これと同時に内方部材21およびスリーブ102が周方向に回転されることにより、内方部材21に対してスリーブ102が相対的に回転する。その結果、円すい状軌道面120、円すい状軌道面141、円すい状軌道面122および円すい状軌道面122において、玉109と接触し得る領域が塑性加工され、面粗さが減少する(バニシング加工)。なお、ここでも上述した支点軸受ユニット100、200と同様に、たとえば円すい状軌道面120の第1の領域(面粗さ向上加工領域120A)における面粗度Raが、円すい状軌道面120のうち面粗さ向上加工領域120Aに隣接する領域における面粗度Raよりも小さいことが好ましい。 Next, on the conical raceway surface 120, the conical raceway surface 141, the conical raceway surface 122, and the conical raceway surface 122, plastic working is performed to reduce the surface roughness of the region in contact with the ball 109. Specifically, for example, an axial force is applied to the fulcrum bearing unit 300 that is temporarily assembled by applying a force that pushes the adjustment ring 123 in the axial direction, and the sleeve 102 is applied to the inner member 21. A radial force is applied by applying a pressing force. At the same time, the inner member 21 and the sleeve 102 are rotated in the circumferential direction, whereby the sleeve 102 is rotated relative to the inner member 21. As a result, in the conical raceway surface 120, the conical raceway surface 141, the conical raceway surface 122, and the conical raceway surface 122, the region that can come into contact with the ball 109 is plastically processed, and the surface roughness is reduced (burnishing process). . Here, similarly to the fulcrum bearing units 100 and 200 described above, the surface roughness Ra in the first region (surface roughness improving processing region 120A) of the conical raceway surface 120 is, for example, of the conical raceway surface 120. It is preferably smaller than the surface roughness Ra in the region adjacent to the surface roughness improving processing region 120A.
 その後、支点軸受ユニット300に付与すべき所望の予圧に対応する力で調整リング123が軸方向に押し込まれた状態で、仮組立された支点軸受ユニット300が加熱される。これにより、上述の接着剤が硬化し、支点軸受ユニット300の本組立が完了する。そして、当該支点軸受ユニット300のスリーブ102の外周面に、別途準備されたスイングアーム1が取り付けられることにより、本実施の形態における支点軸受ユニット300を含むスイングアーム支持機構が完成する。以上のプロセスにより、本実施の形態における支点軸受ユニット300を含むスイングアーム支持機構を容易に製造することができる。そして、このようなプロセスによれば、従来のような転がり軸受の嵌めこみや留め金によるシール板の取り付けなどの工程が省略できるため、スイングアーム用軸受およびスイングアーム支持機構を低コストで製造することができる。 Thereafter, the temporarily assembled fulcrum bearing unit 300 is heated in a state where the adjustment ring 123 is pushed in the axial direction with a force corresponding to a desired preload to be applied to the fulcrum bearing unit 300. Thereby, the above-mentioned adhesive is hardened and the main assembly of the fulcrum bearing unit 300 is completed. Then, the swing arm support mechanism including the fulcrum bearing unit 300 in the present embodiment is completed by attaching the separately prepared swing arm 1 to the outer peripheral surface of the sleeve 102 of the fulcrum bearing unit 300. Through the above process, the swing arm support mechanism including the fulcrum bearing unit 300 in the present embodiment can be easily manufactured. In addition, according to such a process, steps such as fitting of a rolling bearing and attachment of a seal plate by a clasp can be omitted, so that the swing arm bearing and the swing arm support mechanism are manufactured at low cost. be able to.
 その他、上述した支点軸受ユニット300において、支点軸受ユニット100、200の構成要素を任意に組み合わせてた構成としてもよい。 In addition, in the fulcrum bearing unit 300 described above, the components of the fulcrum bearing units 100 and 200 may be arbitrarily combined.
 (実施の形態4)
 図22は、本発明の実施の形態4における支点軸受ユニットの構造を示す、断面概略図である。なお、図22において、ハッチングを施した部分は断面を表している。図22における支点軸受ユニット400は、内方部材として、支点軸受ユニット100、200における調整リング123、円すい状軌道面120、121の代わりに、内輪103を用いている。内輪103には、先述した第3の接触面としての軸受溝110が形成されており、玉109は軸受溝110の曲面と1点接触する。また、スリーブ102は玉109と2点接触する。したがって、スリーブ102は、円すい面形状を有し、玉109と接触する第1の接触面と、第1の接触面に交差する円すい面形状を有し、玉109と接触する第2の接触面と(いずれも図22中では円すい状軌道面122)を含んでいる。
(Embodiment 4)
FIG. 22 is a schematic cross-sectional view showing the structure of the fulcrum bearing unit in the fourth embodiment of the present invention. In FIG. 22, the hatched portion represents a cross section. A fulcrum bearing unit 400 in FIG. 22 uses an inner ring 103 as an inward member instead of the adjustment ring 123 and the conical raceway surfaces 120 and 121 in the fulcrum bearing units 100 and 200. The inner ring 103 is formed with the bearing groove 110 as the above-described third contact surface, and the ball 109 contacts the curved surface of the bearing groove 110 at one point. In addition, the sleeve 102 contacts the ball 109 at two points. Therefore, the sleeve 102 has a conical surface shape, a first contact surface that contacts the ball 109, and a conical surface shape that intersects the first contact surface, and a second contact surface that contacts the ball 109. (Both are conical raceway surfaces 122 in FIG. 22).
 支点軸受ユニット400のように、スリーブ102が玉109と2点接触する構造であれば、内側軌道面はR面の軸受溝110であってもよい。玉109は、スリーブ102とは2つの接触面(いずれも円すい状軌道面122)にて2点接触、軸受溝110と1点接触することにより合計3点接触する。玉109とスリーブ102との2つの接触点が決まれば、内側軌道面がR面の軸受溝110であっても、玉109と軸受溝110との接触点はほぼ1箇所に決まる。したがって、このように玉109を、内方部材の軸受溝110と1点接触、外方部材であるスリーブ102と2点接触することにより3点接触させた支点軸受ユニット300は、実施の形態1における支点軸受ユニット100と、機能面、効果面において同様である。本発明の実施の形態4は、以上の各点で、本発明の実施の形態1と異なる。すなわち、本発明の実施の形態4の説明において、上述しなかった構成や条件、工程や効果などは、全て本発明の実施の形態1に準ずる。 As long as the sleeve 102 is in contact with the ball 109 at two points as in the fulcrum bearing unit 400, the inner raceway surface may be the R-side bearing groove 110. The ball 109 comes into contact with the sleeve 102 at two points on the two contact surfaces (both of the conical raceway surfaces 122), and comes into contact with the bearing groove 110 at one point for a total of three points. If two contact points between the ball 109 and the sleeve 102 are determined, the contact point between the ball 109 and the bearing groove 110 is determined at almost one place even if the inner raceway surface is the R-side bearing groove 110. Therefore, the fulcrum bearing unit 300 in which the ball 109 is brought into contact at three points by making contact with the bearing groove 110 of the inner member at one point and contacting at two points with the sleeve 102 as the outer member is described in the first embodiment. This is the same as the fulcrum bearing unit 100 in terms of function and effect. The fourth embodiment of the present invention is different from the first embodiment of the present invention in the above points. That is, in the description of the fourth embodiment of the present invention, all configurations, conditions, processes, effects, and the like not described above are the same as those of the first embodiment of the present invention.
 ところで、本発明の支点軸受ユニットにおいては、玉109が内側軌道面および外側軌道面と合計3点で接触していれば、接触角が一意的に決定される。その結果、転動体荷重を安定させ、トルクの変動を抑制させることができる。したがって、合計3点で接触させるために、たとえば、内方部材である調整リング123に内側軌道面として、互いに交差する2つのR面の軸受溝を設け、外方部材であるスリーブ102に外側軌道面として1つのR面の軸受溝を設け、玉109がそれぞれの軸受溝と1点ずつ、合計3点で接触する構成としても、上述と同様の効果を奏する。 By the way, in the fulcrum bearing unit of the present invention, if the balls 109 are in contact with the inner raceway surface and the outer raceway surface at a total of three points, the contact angle is uniquely determined. As a result, the rolling element load can be stabilized and torque fluctuations can be suppressed. Therefore, in order to make contact at a total of three points, for example, the inner ring of the adjustment ring 123 that is an inner member is provided with two R-plane bearing grooves that intersect each other, and the sleeve 102 that is of the outer member is provided with an outer track. An effect similar to that described above can be obtained by providing one R-surface bearing groove as a surface, and the ball 109 is in contact with each bearing groove at one point, for a total of three points.
 また、先述したように、内側軌道面および外側軌道面を円すい状軌道面とすることにより、スイングアーム用軸受の剛性が向上し、スイングアーム用軸受の回転精度および位置決め精度が向上する。また、円すい面形状は軸受溝を形成するR面形状の加工よりも容易であるため、加工のコストを低減できる可能性がある。以上のような効果を有するため、玉が合計3点で接触する構成と、上述した第1の接触面、第2の接触面、第3の接触面の少なくともいずれかは円すい面形状を有しているという構成とを適宜組み合わせた、以下のような様々な種類の支点軸受ユニットを形成しても、たとえば上述した各実施の形態における支点軸受ユニットと同様の効果を奏するため好ましい。 As described above, the inner raceway surface and the outer raceway surface are conical raceway surfaces, whereby the rigidity of the swing arm bearing is improved, and the rotation accuracy and positioning accuracy of the swing arm bearing are improved. Further, since the conical surface shape is easier than the R-surface shape processing for forming the bearing groove, the processing cost may be reduced. In order to have the effects as described above, at least one of the configuration in which the balls are in contact at a total of three points and the above-described first contact surface, second contact surface, and third contact surface has a conical surface shape. The following various types of fulcrum bearing units, which are appropriately combined with the configuration described above, are preferable because, for example, the same effects as the fulcrum bearing units in the above-described embodiments can be obtained.
 以下、上述した様々な種類の支点軸受ユニットの構成について、図1中に丸点線で囲んだ「20」の領域の拡大断面図のみを提示しながら説明する。図23に示すように、玉109が軌道面と接触する3つの接触面のうち第1の接触面、第2の接触面が内方部材である調整リング123に内側軌道面として備わっており、両接触面は互いに交差している。また、第3の接触面が外方部材であるスリーブ102に外側軌道面として備わっている。そしてそれらの接触面はすべて、軌道面としてのR面の軸受溝111となっている。この支点軸受ユニットは、上述した第1の接触面、第2の接触面、第3の接触面のすべてがR面の軸受溝111となっているが、玉109がそれぞれの軸受溝と合計3点で接触しているため、接触角が一意的に決定され、転動体荷重を安定させ、トルクの変動を抑制させることができるという効果を奏するため、好ましい事例と考えられる。なお、たとえば図2における「30」の領域など、下側の玉109においても同様に軸受溝と3点で接触する構成となっていてもよい。また、図23においては、内方部材すなわち内側軌道面と2点、外方部材すなわち外側軌道面と1点で接触する構成となっているが、逆に内方部材と1点、外方部材と2点で接触する構成となっていてもよい。 Hereinafter, the configurations of the various types of fulcrum bearing units described above will be described while presenting only enlarged cross-sectional views of the region “20” surrounded by a dotted line in FIG. As shown in FIG. 23, the first contact surface among the three contact surfaces with which the balls 109 are in contact with the track surface, the second contact surface is provided as an inner track surface on the adjustment ring 123 which is an inner member, Both contact surfaces intersect each other. The third contact surface is provided as an outer raceway surface on the sleeve 102 which is an outer member. These contact surfaces are all R-side bearing grooves 111 as raceway surfaces. In this fulcrum bearing unit, the first contact surface, the second contact surface, and the third contact surface described above are all R-side bearing grooves 111, but the balls 109 have a total of three bearing grooves. Since the contact is made at a point, the contact angle is uniquely determined, the rolling element load can be stabilized, and the fluctuation of the torque can be suppressed. For example, the lower ball 109 such as the region “30” in FIG. 2 may be configured to contact the bearing groove at three points. Further, in FIG. 23, the inner member, that is, the inner raceway surface is contacted at two points, and the outer member, that is, the outer raceway surface, is contacted at one point. It may be configured to contact at two points.
 図23に示す3つの接触面がすべて軸受溝である構成に対して、たとえば図24に示すように、互いに交差する第1の接触面および第2の接触面の少なくとも一方が円すい面形状を有する形状としてもよい。また、たとえば内方部材である調整リング123に備わっている第1の接触面が軸受溝111、第2の接触面が円すい状軌道面142となっているが、たとえば第1の接触面が円すい状軌道面142、第2の接触面が軸受溝111となっていてもよい。なお、たとえば図2における「30」の領域など、下側の玉109においても同様に3点で接触する構成となっていてもよい。図24においても、内方部材と2点、外方部材と1点で接触する構成となっているが、逆に内方部材と1点、外方部材と2点で接触し、外方部材の軌道面のうちいずれか一方が円すい状軌道面となった構成となっていてもよい。 23, in which all the three contact surfaces are bearing grooves, for example, as shown in FIG. 24, at least one of the first contact surface and the second contact surface intersecting each other has a conical shape. It is good also as a shape. Further, for example, the first contact surface provided in the adjustment ring 123 which is an inward member is a bearing groove 111 and the second contact surface is a conical raceway surface 142. For example, the first contact surface is a conical shape. The raceway surface 142 and the second contact surface may be the bearing groove 111. For example, the lower ball 109, such as the region “30” in FIG. In FIG. 24, the inner member is in contact at two points and the outer member at one point, but conversely, the inner member is in contact at one point and the outer member is in contact at two points. One of the track surfaces may be a conical track surface.
 図25においては、第1の接触面は軸受溝111、そして第2の接触面は円すい状軌道面142、第3の接触面は円すい状軌道面122となっている。図25は、図24に示す構成に対して、さらに第3の接触面が円すい状軌道面となってもよいことを示す。この場合も、たとえば内方部材である調整リング123に備わっている第1の接触面が軸受溝111、第2の接触面が円すい状軌道面142となっているが、たとえば第1の接触面が円すい状軌道面142、第2の接触面が軸受溝111となっていてもよい。なお、たとえば図16に示す構成に対して、さらに第2の接触面も円すい状軌道面とすれば、先述した本発明の実施の形態1に示す支点軸受ユニット100の構成に順じたものとなる。なお、たとえば図2における「30」の領域など、下側の玉109においても同様に3点で接触する構成となっていてもよい。図25においても、内方部材と2点、外方部材と1点で接触する構成となっているが、逆に内方部材と1点、外方部材と2点で接触し、外方部材の軌道面のうちいずれか一方が円すい状軌道面となった構成となっていてもよい。 25, the first contact surface is a bearing groove 111, the second contact surface is a conical raceway surface 142, and the third contact surface is a conical raceway surface 122. FIG. 25 shows that the third contact surface may be a conical track surface in addition to the configuration shown in FIG. Also in this case, for example, the first contact surface provided in the adjustment ring 123 which is an inward member is the bearing groove 111, and the second contact surface is a conical raceway surface 142. For example, the first contact surface The conical raceway surface 142 and the second contact surface may be the bearing groove 111. For example, in addition to the configuration shown in FIG. 16, if the second contact surface is also a conical track surface, the configuration in accordance with the configuration of the fulcrum bearing unit 100 shown in the first embodiment of the present invention described above is used. Become. For example, the lower ball 109, such as the region “30” in FIG. In FIG. 25, the inner member is in contact at two points and the outer member at one point, but conversely, the inner member is in contact at one point and the outer member is in contact at two points. One of the track surfaces may be a conical track surface.
 図26のように、第3の接触面が円すい状軌道面であって、第1および第2の接触面が軸受溝111であってもよい。なお、たとえば図2における「30」の領域など、下側の玉109においても同様に3点で接触する構成となっていてもよい。図26においても、内方部材と2点、外方部材と1点で接触する構成となっているが、逆に内方部材と1点、外方部材と2点で接触し、外方部材の軌道面のうちいずれか一方が円すい状軌道面となった構成となっていてもよい。 26, the third contact surface may be a conical track surface, and the first and second contact surfaces may be bearing grooves 111. For example, the lower ball 109, such as the region “30” in FIG. In FIG. 26, the inner member is in contact at two points and the outer member at one point, but conversely, the inner member is in contact at one point and the outer member is in contact at two points. One of the track surfaces may be a conical track surface.
 すなわち、以上に述べた、第1の接触面、第2の接触面、第3の接触面のうち、いずれか1つが軸受溝で、他の2つが円すい状軌道面であってもよいし、上記3つの接触面のうちいずれか2つが軸受溝で、他の1つが円すい状軌道面であってもよい。 That is, any one of the first contact surface, the second contact surface, and the third contact surface described above may be a bearing groove, and the other two may be conical track surfaces. Any two of the three contact surfaces may be bearing grooves, and the other one may be a conical track surface.
 実施例1において、上述した本発明の実施の形態2に係る支点軸受ユニット200の内側軌道面および外側軌道面に必要な硬度の算出を試みた。 In Example 1, an attempt was made to calculate the hardness required for the inner raceway surface and the outer raceway surface of the fulcrum bearing unit 200 according to Embodiment 2 of the present invention described above.
 図27のグラフにおいて、横軸はたとえば支点軸受ユニット100のスリーブ102や軸101の材料として用いる、SUS420J2などの鋼材の硬度を示している。また、図27のグラフにおいて、縦軸は横軸に示した硬度を有する鋼材に対して鋼製の球を接触させて応力を加えた際に、当該鋼材に圧痕が発生する応力を示したものである。たとえば図27に示すように、硬度がHRC60である鋼材の平板は、鋼製の球を4GPaの応力で押し付けることにより圧痕が発生する。 27, the horizontal axis indicates the hardness of a steel material such as SUS420J2 used as a material for the sleeve 102 and the shaft 101 of the fulcrum bearing unit 100, for example. In the graph of FIG. 27, the vertical axis indicates the stress that causes indentation in the steel material when the steel ball having the hardness shown on the horizontal axis is brought into contact with the steel ball and stress is applied. It is. For example, as shown in FIG. 27, an indentation is generated in a steel flat plate having a hardness of HRC60 by pressing a steel ball with a stress of 4 GPa.
 一方、本発明の実施の形態2に係る支点軸受ユニット200の内方部材である軸101と同様の材料であるSUS420J2を用いて、断面が直径5mmの円形をなす硬度HRC30の丸棒を作成した。この丸棒の外周面に対して、上記実施の形態2において支点軸受ユニット100に組み込まれる直径1mmの鋼球を押し付けながら転がした。その結果、丸棒の外周面には、曲率半径0.7mmの溝が形成された。つまりこのような条件でバニシングを行なえば、0.7mmの溝曲率半径の溝が加工されることとなる。 On the other hand, using SUS420J2 which is the same material as the shaft 101 which is the inner member of the fulcrum bearing unit 200 according to Embodiment 2 of the present invention, a round bar with a hardness of HRC30 having a circular shape with a cross section of 5 mm was prepared. . It rolled, pressing the steel ball of diameter 1mm integrated in the fulcrum bearing unit 100 in the said Embodiment 2 with respect to the outer peripheral surface of this round bar. As a result, a groove having a curvature radius of 0.7 mm was formed on the outer peripheral surface of the round bar. That is, if burnishing is performed under such conditions, a groove having a groove curvature radius of 0.7 mm is processed.
 ところで上述したように、支点軸受ユニット200は、スイングアーム用軸受として使用する際の不測の外力であるたとえば衝撃荷重により、玉109が接触する軌道面に対して圧痕などを発生することが抑制できる設計となっていることが好ましい。一般には、1000Gの衝撃が加わっても圧痕が発生しない設計とすることが好ましい。 By the way, as described above, the fulcrum bearing unit 200 can suppress the occurrence of indentation or the like on the raceway surface with which the ball 109 contacts due to, for example, an impact load that is an unexpected external force when used as a swing arm bearing. It is preferable to have a design. In general, it is preferable to have a design in which indentation does not occur even when an impact of 1000 G is applied.
 外力である衝撃荷重の大きさは、軌道面に対して衝撃荷重を加える部分、すなわち支点軸受ユニット200およびスイングアーム1の系(図12参照)のうちスイングアーム1とスリーブ102との合計質量に、衝撃力の加速度を乗ずることにより求められる。たとえば、2.5インチハードディスクドライブの場合、上記合計質量は3グラムである。したがって、この場合、1000Gの衝撃に対して、30Nの力が作用する。すなわち、30Nの力が加わったとしても軌道面に圧痕が発生しない設計とすることが好ましい。 The magnitude of the impact load that is an external force is the total mass of the swing arm 1 and the sleeve 102 in the portion to which the impact load is applied to the raceway surface, that is, the system of the fulcrum bearing unit 200 and the swing arm 1 (see FIG. 12). It is obtained by multiplying the acceleration of impact force. For example, for a 2.5 inch hard disk drive, the total mass is 3 grams. Therefore, in this case, a force of 30 N acts on an impact of 1000 G. That is, it is preferable to design so that no indentation is generated on the raceway surface even when a force of 30 N is applied.
 支点軸受ユニット200における軌道面の半径や、上述した溝曲率半径、玉109の半径を用いて、衝撃荷重が作用した際に鋼製の球(玉109)と軌道面との間の接触応力を計算し、その結果と図27のグラフが示す関係とを用いて算出した結果、軌道面に必要な硬度は次の図28に示すようになった。 Using the radius of the raceway surface in the fulcrum bearing unit 200, the groove radius of curvature, and the radius of the ball 109, the contact stress between the steel ball (the ball 109) and the raceway surface when an impact load is applied. As a result of calculation and using the relationship shown in the graph of FIG. 27, the hardness required for the raceway surface is as shown in FIG.
 図28において、横軸は外力、すなわち上述した不測の衝撃荷重をN単位で示したものであり、縦軸は、横軸に示す衝撃荷重が軌道面に発生した場合に、当該軌道面に圧痕を発生させないために、当該軌道面に要求される必要硬度をHRC(ロックウェルCスケール)にて示したものである。また、図28のグラフ中、白丸は1点接触の場合、すなわちたとえば支点軸受ユニット100の場合、軌道面のうち、玉109と1点で接触する内側軌道面に対応する。同様に図28のグラフ中、黒丸は2点接触の場合、すなわちたとえば支点軸受ユニット100の場合、軌道面のうち、玉109と2点で接触する外側軌道面に対応する。 In FIG. 28, the horizontal axis indicates external force, that is, the unexpected impact load described above in N units, and the vertical axis indicates indentation on the raceway surface when the impact load indicated on the horizontal axis is generated on the raceway surface. The required hardness required for the raceway surface in order to prevent the occurrence of this is shown in HRC (Rockwell C scale). In the graph of FIG. 28, the white circle corresponds to the inner raceway surface that contacts the ball 109 at one point in the raceway surface, for example, in the case of the fulcrum bearing unit 100 in the case of one point contact. Similarly, in the graph of FIG. 28, the black circle corresponds to the outer raceway surface that contacts the ball 109 at two points in the raceway surface in the case of two-point contact, that is, for example, in the case of the fulcrum bearing unit 100.
 図28のグラフより、たとえば上述したように30Nの衝撃荷重が発生した場合においても軌道面に圧痕を発生させないためには、1点接触側すなわち支点軸受ユニット100の内側軌道面(図1における円すい状軌道面141、120)はHRC40、2点接触側すなわち支点軸受ユニット200の外側軌道面(図1における円すい状軌道面122など)にはHRC25以上の硬度が必要であることがわかった。以上より、上述したように、本発明の支点軸受ユニットにおいては、内側軌道面の硬度がHRC40以上、外側軌道面の硬度がHRC25以上であることが好ましいといえる。 From the graph of FIG. 28, for example, in order to prevent indentation on the raceway surface even when an impact load of 30 N is generated as described above, the inner raceway surface of the fulcrum bearing unit 100 (cone in FIG. 1) It has been found that the HRC 40, the two-point contact side, that is, the outer race surface of the fulcrum bearing unit 200 (such as the conical race surface 122 in FIG. 1) requires a hardness of HRC 25 or higher. From the above, as described above, in the fulcrum bearing unit of the present invention, it can be said that the hardness of the inner raceway surface is preferably HRC40 or more and the hardness of the outer raceway surface is preferably HRC25 or more.
 実施例2において、鋼材に対して高周波焼入れを行なった場合の硬度分布を調査する実験を行なった。本実施例2においてはまず本発明の実施の形態2に係る支点軸受ユニット200の内方部材である軸101と同様の材料であるSUS420J2を用いて、断面が直径5mmの円形をなす丸棒を作成した。 In Example 2, an experiment was conducted to investigate the hardness distribution when induction hardening was performed on a steel material. In Example 2, first, a round bar having a circular cross section having a diameter of 5 mm is formed using SUS420J2 which is the same material as the shaft 101 which is an inner member of the fulcrum bearing unit 200 according to Embodiment 2 of the present invention. Created.
 そして当該丸棒の外周面を囲むように、高周波コイルを配置し、誘導加熱を利用した高周波焼入れを実施した。 Then, a high frequency coil was arranged so as to surround the outer peripheral surface of the round bar, and induction hardening using induction heating was performed.
 図29において、横軸は丸棒の表面からの深さ、すなわち丸棒の外周面から丸棒の断面の中心へ向かう距離をmm単位で示しており、縦軸は丸棒の表面からの各深さにおける、高周波焼入れを行なった後の硬度をHvで示している。 In FIG. 29, the horizontal axis indicates the depth from the surface of the round bar, that is, the distance from the outer peripheral surface of the round bar to the center of the cross section of the round bar in mm units, and the vertical axis indicates each distance from the surface of the round bar. The hardness of the depth after induction hardening is indicated by Hv.
 図29に示すように、丸棒は表層部に近い領域が焼入れ硬化されて硬度が高い一方、内部においては硬度が低くなっていた。そして、図29を参照して、表面から1mm以内の領域を高硬度化できることが確認された。このことから、支点軸受ユニット100の製造プロセスにおいて、棒鋼などの鋼材に対して高周波焼入れを実施することにより、たとえば軸101の円すい状軌道面120となるべき領域を十分に硬化する一方、穴161やねじ162を形成すべき領域の硬度上昇を抑制することが可能であることが確認された。 As shown in FIG. 29, in the round bar, the region close to the surface layer portion was hardened by hardening and the hardness was high, while the hardness was low inside. And with reference to FIG. 29, it was confirmed that the area | region within 1 mm from the surface can be hardened. Therefore, in the manufacturing process of the fulcrum bearing unit 100, by subjecting the steel material such as steel bar to induction hardening, for example, the region to be the conical raceway surface 120 of the shaft 101 is sufficiently hardened while the hole 161 is formed. It has been confirmed that it is possible to suppress an increase in hardness in the region where the screw 162 is to be formed.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、支点軸受ユニットの転動体荷重の変動を小さくしてその制御を容易にすることにより、スイングアームのトルクを安定させる技術として、特に優れている。 The present invention is particularly excellent as a technology for stabilizing the torque of the swing arm by reducing fluctuations in the rolling element load of the fulcrum bearing unit and facilitating the control thereof.
 1 スイングアーム、2 磁気ヘッド、13C 屈曲部、15A 第1の保持器、15B 保持部、15C 厚肉部、15D 第2の保持器、21 内方部材、99 鋼材、100,200,300,400,500,600 支点軸受ユニット、101 軸、102 スリーブ、103 内輪、104 外輪、105 間座、109 玉、109A 玉表面、110,111 軸受溝、120,121,122,141,142 円すい状軌道面、120A 面粗さ向上加工領域、123 調整リング、124 接着面、125 シール、131 軸端支え、132 押さえ治具、133 接着剤たまり、135 切り込み、143,144,145,153,154,155 接触点、149 スペーサボール、161 穴、162 ねじ、163,165 外形線、164 切断線、171,172 点線、181,182 モータ、184 押さえ盤、201,202 空洞部、203 フランジ部、204 本体部、210 治具。 1 swing arm, 2 magnetic head, 13C bent part, 15A first holder, 15B holder, 15C thick part, 15D second holder, 21 inner member, 99 steel, 100, 200, 300, 400 , 500, 600 fulcrum bearing unit, 101 shaft, 102 sleeve, 103 inner ring, 104 outer ring, 105 spacer, 109 ball, 109A ball surface, 110, 111 bearing groove, 120, 121, 122, 141, 142 conical raceway surface , 120A surface roughness improvement processing region, 123 adjustment ring, 124 adhesion surface, 125 seal, 131 shaft end support, 132 holding jig, 133 adhesive pool, 135 cut, 143, 144, 145, 153, 154, 155 contact Point, 149 Spacer ball, 161 hole, 162 Flip, 163 and 165 outline 164 cutting line 171 and 172 the dotted line, 181, 182 motor, 184 pressing machine, 201 cavity, 203 flanges, 204 main body, 210 a jig.

Claims (21)

  1.  外周面に円環状の内側軌道面(141,142,120,121,110,111)が形成された内方部材(101,103,123)と、
     前記内方部材(101,103,123)を取り囲むように配置され、前記内側軌道面(141,142,120,121,110,111)に対向する円環状の外側軌道面(122)が形成され、ハードディスクドライブのスイングアームが接続されるべき外方部材(102)と、
     前記内側軌道面(141,142,120,121,110,111)および前記外側軌道面(122)に接触して配置された複数個の玉(109)とを備え、
     前記内側軌道面(141,142,120,121,110,111)および前記外側軌道面(122)のいずれか一方の軌道面は、前記玉(109)と接触する第1の接触面(141,142,120,121,111,122)および第2の接触面(141,142,120,121,111,122)を有し、
     前記第1の接触面(141,142,120,121,111,122)と前記第2の接触面(141,142,120,121,111,122)とは互いに交差しており、
     他方の軌道面は、前記玉(109)と接触する第3の接触面(120,122,141,110)を有し、
     前記玉(109)は、前記内側軌道面(141,142,120,121,110,111)および前記外側軌道面(122)と合計3点において接触している、スイングアーム用軸受(100,200,300,400)。
    An inner member (101, 103, 123) having an annular inner raceway surface (141, 142, 120, 121, 110, 111) formed on the outer peripheral surface;
    An annular outer raceway surface (122) is formed so as to surround the inner members (101, 103, 123) and faces the inner raceway surfaces (141, 142, 120, 121, 110, 111). An outer member (102) to which a swing arm of a hard disk drive is to be connected;
    A plurality of balls (109) disposed in contact with the inner raceway surface (141, 142, 120, 121, 110, 111) and the outer raceway surface (122);
    One of the inner raceway surfaces (141, 142, 120, 121, 110, 111) and the outer raceway surface (122) has a first contact surface (141, 141) that contacts the ball (109). 142, 120, 121, 111, 122) and a second contact surface (141, 142, 120, 121, 111, 122),
    The first contact surface (141, 142, 120, 121, 111, 122) and the second contact surface (141, 142, 120, 121, 111, 122) intersect each other,
    The other raceway surface has a third contact surface (120, 122, 141, 110) that contacts the ball (109),
    The ball (109) is in contact with the inner raceway surface (141, 142, 120, 121, 110, 111) and the outer raceway surface (122) at a total of three points. , 300, 400).
  2.  前記第1の接触面(141,142,120,121,111,122)および前記第2の接触面(141,142,120,121,111,122)の少なくともいずれか一方は円すい面形状(141,142,120,121,122)を有している、請求の範囲第1項に記載のスイングアーム用軸受(100,200,300,400)。 At least one of the first contact surface (141, 142, 120, 121, 111, 122) and the second contact surface (141, 142, 120, 121, 111, 122) has a conical surface shape (141 , 142, 120, 121, 122), the swing arm bearing (100, 200, 300, 400) according to claim 1.
  3.  前記第3の接触面(120,122,141,110)は円すい面形状(120,122,141)を有している、請求の範囲第1項に記載のスイングアーム用軸受(100,200,300)。 The swing arm bearing (100, 200, 100) according to claim 1, wherein the third contact surface (120, 122, 141, 110) has a conical shape (120, 122, 141). 300).
  4.  前記内側軌道面(141,142,120,121,110,111)および前記外側軌道面(122)においては、前記玉(109)と接触する第1の領域の面粗度Ra(中心線平均粗さ)が、前記第1の領域に隣接する第2の領域の面粗度Raよりも小さい、請求の範囲第1項に記載のスイングアーム用軸受(100,200,300,400)。 In the inner raceway surface (141, 142, 120, 121, 110, 111) and the outer raceway surface (122), the surface roughness Ra (center line average roughness) of the first region in contact with the ball (109). 2. The swing arm bearing (100, 200, 300, 400) according to claim 1, wherein the surface roughness Ra is smaller than a surface roughness Ra of a second region adjacent to the first region.
  5.  前記玉(109)は、前記内側軌道面(141,120,110)と1点において接触するとともに、前記外側軌道面(122)と2点において接触する、請求の範囲第4項に記載のスイングアーム用軸受(200,300,400)。 The swing according to claim 4, wherein the ball (109) contacts the inner raceway surface (141, 120, 110) at one point and contacts the outer raceway surface (122) at two points. Arm bearings (200, 300, 400).
  6.  前記内側軌道面(141,120,110)の硬度はHRC40以上HRC50以下であり、
     前記外側軌道面(122)の硬度はHRC25以上HRC35以下である、請求の範囲第5項に記載のスイングアーム用軸受(200,300,400)。
    The inner raceway surface (141, 120, 110) has a hardness of HRC40 or more and HRC50 or less,
    The swing arm bearing (200, 300, 400) according to claim 5, wherein the outer raceway surface (122) has a hardness of HRC25 or more and HRC35 or less.
  7.  前記内方部材(101)には、前記内側軌道面(141,120,110)の中心軸を含む領域に穴(161)が形成されており、
     前記内側軌道面(141,120,110)の硬度はHRC40以上となっており、
     前記穴(161)の表層部の硬度はHRC25以下となっている、請求の範囲第5項に記載のスイングアーム用軸受(200,300,400)。
    The inner member (101) has a hole (161) formed in a region including the central axis of the inner raceway surface (141, 120, 110),
    The inner raceway surface (141, 120, 110) has a hardness of HRC40 or higher,
    The swing arm bearing (200, 300, 400) according to claim 5, wherein the hardness of the surface layer portion of the hole (161) is HRC25 or less.
  8.  前記内側軌道面(141,120,110)を含む領域は高周波焼入れされている、請求の範囲第5項に記載のスイングアーム用軸受(200,300,400)。 The bearing for a swing arm (200, 300, 400) according to claim 5, wherein the region including the inner raceway surface (141, 120, 110) is induction hardened.
  9.  前記第1の接触面(141,142,120,121,111,122)および前記第2の接触面(141,142,120,121,111,122)の硬度は、前記第3の接触面(120,122,141,110)の硬度よりも低い、請求の範囲第1項に記載のスイングアーム用軸受(200,300,400)。 The hardness of the first contact surface (141, 142, 120, 121, 111, 122) and the second contact surface (141, 142, 120, 121, 111, 122) is the same as that of the third contact surface ( The bearing for a swing arm (200, 300, 400) according to claim 1, which is lower than the hardness of 120, 122, 141, 110).
  10.  前記第1の接触面(141,142,120,121,111,122)、前記第2の接触面(141,142,120,121,111,122)および前記第3の接触面(120,122,141,110)は、バニシング加工されている、請求の範囲第1項に記載のスイングアーム用軸受(100,200,300,400)。 The first contact surface (141, 142, 120, 121, 111, 122), the second contact surface (141, 142, 120, 121, 111, 122) and the third contact surface (120, 122). , 141, 110) is a bearing for a swing arm (100, 200, 300, 400) according to claim 1, which is burnished.
  11.  前記複数個の玉(109)が2列に並んでおり、
     前記内方部材(101,103,123)および前記外方部材(102)は、それぞれ前記2列に対応する一対の前記内側軌道面(141,142,120,121,110,111)および前記外側軌道面(122)を有し、
     前記スイングアーム用軸受(100,200,300,400)の回転軸を含む断面において、前記2列のうち一方の列に含まれる前記玉(109)の中心と、前記一方の列に含まれる玉(109)が前記第3の接触面(120,122,141,110)と接触する接触点とを結ぶ第1の直線と、前記2列のうち他方の列に含まれる前記玉(109)の中心と、前記他方の列に含まれる玉(109)が前記第3の接触面(120,122,141,110)と接触する接触点とを結ぶ第2の直線とは、前記玉(109)と前記第3の接触面(120,122,141,110)との接触点から見て径方向外側において交差している、請求の範囲第1項に記載のスイングアーム用軸受(100,200,300,400)。
    The plurality of balls (109) are arranged in two rows,
    The inner member (101, 103, 123) and the outer member (102) are a pair of the inner raceway surfaces (141, 142, 120, 121, 110, 111) and the outer side corresponding to the two rows, respectively. A raceway surface (122),
    In the cross section including the rotation axis of the swing arm bearing (100, 200, 300, 400), the center of the ball (109) included in one of the two rows and the ball included in the one row (109) is connected to the third contact surface (120, 122, 141, 110) and the first straight line connecting the contact points, and the ball (109) included in the other of the two rows The second straight line connecting the center and the contact point at which the ball (109) included in the other row contacts the third contact surface (120, 122, 141, 110) is the ball (109). The bearing for a swing arm (100, 200, 100) according to claim 1, wherein the bearing (100, 200, 110, 110, 110, 110) intersects at a radially outer side when viewed from a contact point between the third contact surface (120, 122, 141, 110) and 300, 400).
  12.  前記内方部材(101,103,123)は、前記一方の列に含まれる、前記玉(109)に接触する前記内側軌道面(120,121,110,111)を有する第1の内方部材(101)と、
     前記第1の内方部材(101)に嵌合され、前記他方の列に含まれる、前記玉(109)に接触する前記内側軌道面(141,142)を有する第2の内方部材(123)とを備えている、請求の範囲第11項に記載のスイングアーム用軸受(100,200,300,400)。
    The inner member (101, 103, 123) is a first inner member having the inner raceway surface (120, 121, 110, 111) that contacts the ball (109) included in the one row. (101)
    The second inner member (123) having the inner raceway surface (141, 142) that is fitted to the first inner member (101) and contacts the ball (109) included in the other row. And a swing arm bearing (100, 200, 300, 400) according to claim 11.
  13.  予圧が付与されている、請求の範囲第12項に記載のスイングアーム用軸受(100,200,300,400)。 The swing arm bearing (100, 200, 300, 400) according to claim 12, to which preload is applied.
  14.  円環状の形状を有し、前記内方部材(101,123)と前記外方部材(102)との間に配置されるとともに、前記複数の玉(109)を円環状の軌道(141,142,120,121,110,111,122)上に所定のピッチで転動自在に保持する保持器(15A、15D)をさらに備えた、請求の範囲第1項に記載のスイングアーム用軸受(300)。 It has an annular shape and is disposed between the inner member (101, 123) and the outer member (102), and the plurality of balls (109) are arranged in an annular track (141, 142). , 120, 120, 110, 111, 122), further comprising a cage (15 </ b> A, 15 </ b> D) that can be freely rolled at a predetermined pitch. ).
  15.  前記保持器(15A、15D)は樹脂成形体からなっている、請求の範囲第14項に記載のスイングアーム用軸受(300)。 The bearing for a swing arm (300) according to claim 14, wherein the cage (15A, 15D) is made of a resin molded body.
  16.  前記保持器(15A、15D)は、
     前記玉(109)を保持する保持部(15B)と、
     前記保持部(15B)よりも径方向の厚みが大きい厚肉部(15C)とを含んでいる、請求の範囲第14項に記載のスイングアーム用軸受(300)。
    The cage (15A, 15D)
    A holding portion (15B) for holding the ball (109);
    The swing arm bearing (300) according to claim 14, including a thick part (15C) having a larger radial thickness than the holding part (15B).
  17.  前記複数の玉(109)は1対の円環状の軌道(141,142,120,121,110,111,122)上に配置され、
     前記1対の軌道(141,142,120,121,110,111,122)のうち一方の軌道(141,142,120,121,110,111,122)上に配置された玉(109)は第1の保持器(15A)により保持され、
     前記1対の軌道(141,142,120,121,110,111,122)のうち他方の軌道(141,142,120,121,110,111,122)上に配置された玉(109)は第2の保持器(15D)により保持され、
     前記第1の保持器(15A)および前記第2の保持器(15D)のそれぞれには、一方の保持器(15A,15D)から見て他方の保持器(15A,15D)とは反対側の端面を含む領域に、前記厚肉部(15C)が形成されている、請求の範囲第16項に記載のスイングアーム用軸受(300)。
    The plurality of balls (109) are arranged on a pair of annular tracks (141, 142, 120, 121, 110, 111, 122),
    The ball (109) arranged on one of the pair of tracks (141, 142, 120, 121, 110, 111, 122) on one track (141, 142, 120, 121, 110, 111, 122) is Held by the first cage (15A),
    The ball (109) disposed on the other track (141, 142, 120, 121, 110, 111, 122) of the pair of tracks (141, 142, 120, 121, 110, 111, 122) is Held by the second cage (15D),
    Each of the first cage (15A) and the second cage (15D) has a side opposite to the other cage (15A, 15D) when viewed from one cage (15A, 15D). The swing arm bearing (300) according to claim 16, wherein the thick part (15C) is formed in a region including the end face.
  18.  前記保持器(15A,15D)の前記厚肉部(15C)と前記外方部材(102)および前記内方部材(101,123)との間隔は、0.05mm以上0.2mm以下となっている、請求の範囲第16項に記載のスイングアーム用軸受(300)。 The distance between the thick part (15C) of the cage (15A, 15D) and the outer member (102) and the inner member (101, 123) is 0.05 mm or more and 0.2 mm or less. The swing arm bearing (300) according to claim 16, wherein the swing arm bearing (300) is provided.
  19.  外周面に円環状の内側軌道面(141,120,110)が形成された内方部材(101)と、円環状の外側軌道面(122)が形成され、ハードディスクドライブのスイングアーム(1)が接続されるべき外方部材(123)と、複数の玉(109)とを準備する工程と、
     前記内側軌道面(141,120,110)と前記外側軌道面(122)とが対向し、かつ前記玉(109)が前記内側軌道面(141,120,110)と1点において接触するとともに、前記外側軌道面(122)と2点において接触するように、前記内方部材(101)、前記外方部材(102)および前記玉(109)を組み立てる工程と、
     前記外方部材(102)を前記内方部材(101)に対して軸周りに相対的に回転させることにより、前記内側軌道面(141,120,110)において前記玉(109)と接触する領域、および前記外側軌道面(122)において前記玉(109)と接触する領域の塑性加工を実施する工程とを備えた、スイングアーム用軸受(200,300,400)の製造方法。
    An inner member (101) having an annular inner raceway surface (141, 120, 110) formed on the outer peripheral surface and an annular outer raceway surface (122) are formed, and the swing arm (1) of the hard disk drive is provided. Preparing an outer member (123) to be connected and a plurality of balls (109);
    The inner raceway surface (141, 120, 110) and the outer raceway surface (122) face each other, and the ball (109) contacts the inner raceway surface (141, 120, 110) at one point, Assembling the inner member (101), the outer member (102) and the ball (109) so as to contact the outer raceway surface (122) at two points;
    A region in contact with the ball (109) on the inner raceway surface (141, 120, 110) by rotating the outer member (102) relative to the inner member (101) about an axis. And a step of performing plastic working on a region in contact with the ball (109) on the outer raceway surface (122), and a manufacturing method of the swing arm bearing (200, 300, 400).
  20.  前記塑性加工を実施する工程では、前記外方部材(102)および前記内方部材(101)を軸周りに回転させることにより、前記外方部材(102)を前記内方部材(101)に対して軸周りに相対的に回転させるとともに、前記内方部材(101)と前記外方部材(102)との間にアキシャル力およびラジアル力を作用させる、請求の範囲第19項に記載のスイングアーム用軸受(200,300,400)の製造方法。 In the step of carrying out the plastic working, the outer member (102) and the inner member (101) are rotated around the axis, whereby the outer member (102) is moved relative to the inner member (101). The swing arm according to claim 19, wherein the swing arm is relatively rotated about an axis and an axial force and a radial force are applied between the inner member (101) and the outer member (102). Of manufacturing bearings (200, 300, 400) for automobiles.
  21.  前記玉(109)と接触する領域を塑性加工する工程では、面粗度Ra0.3以下である前記内側軌道面(141,120,110)および前記外側軌道面(122)が塑性加工される、請求の範囲第19項に記載のスイングアーム用軸受(200,300,400)の製造方法。 In the step of plastic working the region in contact with the ball (109), the inner raceway surface (141, 120, 110) and the outer raceway surface (122) having a surface roughness Ra of 0.3 or less are plastically processed. A method for manufacturing a swing arm bearing (200, 300, 400) according to claim 19.
PCT/JP2009/057963 2008-05-16 2009-04-22 Bearing for swing arm and method of manufacturing bearing for swing arm WO2009139276A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008129634A JP2009275871A (en) 2008-05-16 2008-05-16 Bearing for swing arm
JP2008-129634 2008-05-16
JP2008268937A JP2010096310A (en) 2008-10-17 2008-10-17 Swing arm fulcrum bearing and manufacturing method for the swing arm fulcrum bearing
JP2008-268937 2008-10-17
JP2008268830A JP2010096306A (en) 2008-10-17 2008-10-17 Swing arm fulcrum bearing
JP2008-268830 2008-10-17

Publications (1)

Publication Number Publication Date
WO2009139276A1 true WO2009139276A1 (en) 2009-11-19

Family

ID=41318649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057963 WO2009139276A1 (en) 2008-05-16 2009-04-22 Bearing for swing arm and method of manufacturing bearing for swing arm

Country Status (1)

Country Link
WO (1) WO2009139276A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098479A (en) * 2012-10-15 2014-05-29 Seiko Instruments Inc Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP2014098481A (en) * 2012-10-15 2014-05-29 Seiko Instruments Inc Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP2014098480A (en) * 2012-10-15 2014-05-29 Seiko Instruments Inc Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP2015014332A (en) * 2013-07-05 2015-01-22 セイコーインスツル株式会社 Bearing device, method for manufacturing bearing device, and information recording regenerative apparatus
JP2015014327A (en) * 2013-07-05 2015-01-22 セイコーインスツル株式会社 Bearing device, method for manufacturing bearing device, and information recording regenerative apparatus
US20160076590A1 (en) * 2015-11-24 2016-03-17 Schaeffler Technologies AG & Co. KG Ball bearing with slanted or angled flat raceways
CN106065899A (en) * 2015-04-23 2016-11-02 斯凯孚公司 Rolling bearing, high-speed bearing device and compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116016U (en) * 1991-03-28 1992-10-15 光洋精工株式会社 bearing device
JP2001086694A (en) * 1999-09-16 2001-03-30 Tokyo Parts Ind Co Ltd Compact motor with ball bearing
JP2002039192A (en) * 2000-07-19 2002-02-06 Nsk Ltd Bearing device for swing arm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116016U (en) * 1991-03-28 1992-10-15 光洋精工株式会社 bearing device
JP2001086694A (en) * 1999-09-16 2001-03-30 Tokyo Parts Ind Co Ltd Compact motor with ball bearing
JP2002039192A (en) * 2000-07-19 2002-02-06 Nsk Ltd Bearing device for swing arm

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098479A (en) * 2012-10-15 2014-05-29 Seiko Instruments Inc Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP2014098481A (en) * 2012-10-15 2014-05-29 Seiko Instruments Inc Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP2014098480A (en) * 2012-10-15 2014-05-29 Seiko Instruments Inc Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP2015014332A (en) * 2013-07-05 2015-01-22 セイコーインスツル株式会社 Bearing device, method for manufacturing bearing device, and information recording regenerative apparatus
JP2015014327A (en) * 2013-07-05 2015-01-22 セイコーインスツル株式会社 Bearing device, method for manufacturing bearing device, and information recording regenerative apparatus
CN106065899A (en) * 2015-04-23 2016-11-02 斯凯孚公司 Rolling bearing, high-speed bearing device and compressor
US20160076590A1 (en) * 2015-11-24 2016-03-17 Schaeffler Technologies AG & Co. KG Ball bearing with slanted or angled flat raceways

Similar Documents

Publication Publication Date Title
WO2009139276A1 (en) Bearing for swing arm and method of manufacturing bearing for swing arm
US5547291A (en) Preloaded rolling bearing units
JP4692900B2 (en) Manufacturing method of shaft with flange and shaft insertion device
US5539597A (en) Press-fit glueless bearing pivot assembly for a rotary actuator
US6971801B2 (en) Bearing unit
US6560856B1 (en) Self-aligning fixture for pre-loading and aligning pivot bearing assemblies
JP3658994B2 (en) Method for manufacturing pre-loaded double row rolling bearing device
US6715923B2 (en) Double row bearing device
US8622621B2 (en) Rolling bearing apparatus, manufacture method thereof, and hard disk apparatus
US9091299B2 (en) Bearing device, method of manufacturing bearing device, and information recording/reproducing apparatus
CN103362963B (en) Trunnion bearing device and use the magnetic recording system of this device
US6599022B2 (en) Bearing apparatus
JP2010096310A (en) Swing arm fulcrum bearing and manufacturing method for the swing arm fulcrum bearing
JP2009275871A (en) Bearing for swing arm
US6554479B2 (en) Bell bearing and method of producing the same
US8786981B2 (en) Bearing device, method of manufacturing bearing device, and information recording/reproducing apparatus
CN115206348A (en) Bearing device
JP4940969B2 (en) Bearing unit
JP5018538B2 (en) Bearing unit for swing arm of magnetic disk device, and method for manufacturing swing arm bearing unit of magnetic disk device
JP6529211B2 (en) Bearing device, manufacturing method of bearing device, and information recording and reproducing apparatus
JP6209374B2 (en) Bearing device, bearing device manufacturing method, and information recording / reproducing device
JP6210623B2 (en) Bearing device, bearing device manufacturing method, and information recording / reproducing device
JP2566504Y2 (en) Double row angular contact ball bearing and hard disk drive using the same
JP4039040B2 (en) Method for manufacturing rolling bearing device
JP6493936B2 (en) Manufacturing method of bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746483

Country of ref document: EP

Kind code of ref document: A1