WO2009138609A2 - Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive - Google Patents

Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive Download PDF

Info

Publication number
WO2009138609A2
WO2009138609A2 PCT/FR2009/050684 FR2009050684W WO2009138609A2 WO 2009138609 A2 WO2009138609 A2 WO 2009138609A2 FR 2009050684 W FR2009050684 W FR 2009050684W WO 2009138609 A2 WO2009138609 A2 WO 2009138609A2
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
base
sea
rigid
riser
Prior art date
Application number
PCT/FR2009/050684
Other languages
English (en)
Other versions
WO2009138609A3 (fr
Inventor
François-Régis PIONETTI
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A. filed Critical Saipem S.A.
Priority to US12/988,775 priority Critical patent/US8430170B2/en
Priority to BRPI0911162A priority patent/BRPI0911162B1/pt
Priority to EP09745928A priority patent/EP2286056B1/fr
Publication of WO2009138609A2 publication Critical patent/WO2009138609A2/fr
Publication of WO2009138609A3 publication Critical patent/WO2009138609A3/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/015Non-vertical risers, e.g. articulated or catenary-type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/017Bend restrictors for limiting stress on risers

Definitions

  • the present invention relates to a bottom-surface connection installation between a submarine pipe resting at the bottom of the sea and a floating support surface, comprising a hybrid tower consisting of a flexible pipe connected to a rigid pipe rising, or vertical riser , whose lower end comprises an inertial transition piece allowing it to be embedded in an anchoring device comprising a base resting at the bottom of the sea.
  • the technical field of the invention is more particularly the field of the manufacture and installation of production risers for the underwater extraction of oil, gas or other soluble or fusible material or a suspension of mineral material from wellhead immersed to a floating support, for the development of production fields installed offshore at sea.
  • the main and immediate application of the invention being in the field of oil production.
  • the floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves. It also generally comprises oil storage and processing means as well as means of unloading to removal tankers, the latter being present at regular intervals to carry out the removal of the production.
  • the common name of these floating supports is the Anglo-Saxon term “Floating Production Storage Offloading” (meaning “floating medium of storage, production and unloading") which one uses the abbreviated term "FPSO" in the whole of the following description.
  • a tour-hybrid link comprising: a vertical riser whose lower end is anchored to the bottom of the sea; the sea through a flexible joint, and connected to a said pipe resting at the bottom of the sea, and the upper end is stretched by a submerged submerged float to which it is connected, and
  • a connecting pipe generally a flexible connecting pipe, between the upper end of said riser and a floating support on the surface, said flexible connecting pipe taking, if appropriate, by its own weight in the form of a curve in plunging chain, that is to say, descending widely below the float to then go up to this floating support.
  • Such a catenary duct can go up to the floating support surface or only to a sub-surface float that tensions its upper end, which upper end is then connected to a floating support by a plunging flexible connecting pipe.
  • WO 00/49267 it has been proposed as connecting pipe between the riser whose top is tensioned by a float immersed surface and the floating support, rigid pipes SCR type and installs the float at the head of the riser at a distance larger of the surface especially at least 300 m from the surface, preferably at least 500 m.
  • WO 00/49267 of the applicant there has been described a multiple hybrid tower comprising an anchoring system with a vertical tendon consisting of either a cable or a metal bar, or a pipe stretched at its end superior by a float. The lower end of the tendon is attached to a base resting at the bottom. Said tendon comprises guiding means distributed over its entire length through which passes a plurality of said risers vertical.
  • Said base can be placed simply on the seabed and stay in place by its own weight, or remain anchored by means of batteries or any other device to keep it in place.
  • the lower end of the vertical riser is adapted to be connected to the end of a bent sleeve, movable, between a high position and a low position, with respect to said base, to which this cuff is suspended and associated with a return means bringing it up in the absence of the riser.
  • This mobility of the bent sleeve makes it possible to absorb the length variations of the riser under the effects of temperature and pressure.
  • a stop device integral with it, comes to rest on the support guide installed at the head of the float and thus maintains the entire riser in suspension.
  • connection with the submarine pipe resting on the seabed is generally effected by a pig-shaped or S-shaped pipe portion, said S being then made in a vertical or horizontal plane, the connection with said underwater pipe being generally carried out via an automatic connector.
  • This embodiment comprising a plurality of risers held by a central structure comprising guide means is relatively expensive and complex to install.
  • the installation must be prefabricated on the ground before being towed at sea, then once on site, cabane to be put in place.
  • its maintenance also requires relatively high operating costs.
  • crude oil travels a great distance over several kilometers, it must be provided with an extremely costly level of insulation to, on the one hand, minimize the increase in viscosity which would lead to a reduction in the hourly production of the wells. and on the other hand to avoid the blockage of the flow by paraffin deposition, or formation of hydrates when the temperature drops to around 30-
  • bottom-surface links are of short lengths and thus for the bulk of the different links connected to the same floating support to be limited.
  • the vertical riser is tensioned by a sub-surface float and the connection between the vertical riser and the floating support is made by a flexible pipe in a chain configuration.
  • plunger whose end is connected to the upper end of said vertical riser by a gooseneck device.
  • a vertical riser connected to a flexible pipe in a plunging chain configuration is described, the end of the flexible pipe connected to said riser has a curvature imposed by a vertically-shaped gutter of circular shape resting at the top. a toric-shaped float, said gutter serving gooseneck and avoiding too small radii of curvature that can lead to crushing of said flexible pipe.
  • This embodiment does not prevent wear of the flexible pipe at its interaction with said channel, which affects the intrinsic reliability of the connection between the vertical riser and the flexible pipe in terms of mechanical strength over time .
  • An object of the present invention is therefore to provide a bottom-surface link installation with hybrid towers, compact, simple to install and can be manufactured at sea from a pipe laying ship, but the system of anchoring is of great strength and low cost, and whose manufacturing processes and implementation of the various constituent elements are simplified and also low cost, and can be carried out at sea, also, from a ship deposit.
  • Another purpose is to provide an installation that does not require the implementation of flexible joints, especially at the base of the vertical riser.
  • Another object of the present invention is to provide a bottom-surface connection installation as described above, which requires the implementation of a single connecting element, in particular a single automatic connector, between the end bottom of the vertical riser and the end of the pipe resting at the bottom of the sea.
  • the present invention provides a bottom-surface connection installation, particularly at a greater depth of more than 1000 m, comprising: a- at least one upright rigid pipe, substantially vertical, called vertical riser, attached to its lower end to an anchoring device on the seabed, and b- at least one flexible connecting pipe connecting a floating support and the upper end of said vertical riser, c- one end of said flexible pipe is directly connected, preferably by a system of flanges, at the upper end of said vertical riser, and d- the lower end of said vertical riser comprises a terminal pipe element forming an inertial transition piece whose variation of inertia is such that the inertia of said end pipe element at its upper end is substantially identical to that of the pipe element of the running part of the riser v ertical which it is connected, said inertia of the terminal pipe element gradually increasing to the lower end of said inertial transition piece, comprising a first fastening flange for embedding the lower end of said riser.
  • vertical riser is used here to account for the theoretical position of the riser when the riser is at rest, provided that the riser axis can know angular movements with respect to the vertical and move in a cone. angle ⁇ whose apex corresponds to the point of attachment of the lower end of the riser on said base.
  • the upper end of said vertical riser may be slightly curved.
  • the term “flexible pipe end portion is therefore substantially in alignment with the axis Z 1 Z ' ! said upper riser "that the end of the inverted chain curve of said flexible pipe is substantially tangent to the end of said vertical riser. In any case, in continuity of variation of curvature, that is to say without singular point, in the mathematical sense.
  • inertia is meant here the moment of inertia of said inertial transition line element with respect to an axis perpendicular to the axis of said inertial transition conductor element, which reflects the bending stiffness in each planes perpendicular to the XX 'axis of symmetry of said driving element, this moment of inertia being proportional to the product of the section of material by the square of its distance from said axis of the driving element.
  • the slope of the curve formed by the flexible pipe is such that the inclination of its tangent relative to the axis Z 1 T 1 of the upper part of said vertical riser increases continuously and progressively from the connection point between the upper end of the vertical riser and the end of said end portion of flexible pipe positive buoyancy, no inflection point and no inversion point of curvature.
  • the installation according to the present invention therefore makes it possible to prevent the tensioning of the vertical riser by a surface or subsurface float, at which its upper end would be suspended, on the one hand, and, on the other hand, to avoid the connection to said plunging flexible pipe via a gooseneck device, as implemented in the prior art.
  • This not only results in greater intrinsic reliability in terms of mechanical strength over time of the connection between the vertical riser and the flexible pipe, because the gooseneck devices are fragile.
  • this type of installation confers increased stability in terms of angular variation (y) of the angle of excursion of the upper end of the vertical riser relative to a theoretical position of vertical rest, because this angular variation is reduced in practice to a maximum angle not exceeding 5 °, in practice of the order of 1 to 4 ° with the installation according to the invention, whereas, in the embodiments of the prior art, the angular excursion could reach 5 to 10 ° or more.
  • Another advantage of the present invention is that, due to this small angular variation of the upper end of the vertical riser, it is possible to implement, at its lower end, a rigid recess on a base resting at the bottom of the sea, without having recourse to a part of transition of inertia of dimension too important and thus too expensive. It is therefore possible to avoid the implementation of a flexible joint, in particular of the spherical flexible ball type, provided that the junction between the lower end of the riser and said recess comprises an inertia transition piece.
  • the positive buoyancy of the riser and the flexible pipe can be made in known manner by coaxial peripheral floats surrounding said pipes, or, preferably, as regards the rigid pipe of the vertical riser, a positive buoyancy material coating. , preferably also constituting an insulating material, such as syntactic foam, in the form of a shell enclosing said pipe.
  • Such buoyancy elements resistant to very high pressures that is to say at pressures of about 10M Pa per 1000m of water, are known to those skilled in the art and are available from the BALMORAL Company (UK).
  • the positive buoyancy will be distributed regularly and uniformly over the entire length of said end portion 10a of the flexible pipe and at least said upper portion 9b of said rigid pipe.
  • said end portion of the flexible pipe having a positive buoyancy extends over a length of 30 to 60% of the total length of the flexible pipe. preferably about half of the total length of said flexible pipe. More particularly, said flexible pipe has a positive buoyancy over a length corresponding to 30 to 60%, of its total length, preferably about half of its total length.
  • the portion of plunging flexible pipe, that is to say, negative buoyancy may be even shorter than the anchoring of the floating support surface is steep.
  • said positive buoyancy must allow to obtain a vertical resultant thrust of 50 to 150 kg / m, that is, said required buoyancy should correspond to the apparent weight of said rigid pipe and said flexible pipe end portion plus additional buoyancy of 50 to 150 kg / m.
  • a bottom-surface connection plant comprises the following features, according to which:
  • said vertical riser is connected at its lower end to at least one pipe resting at the bottom of the sea, and
  • said anchoring device comprises a support and connection device fixed on a base placed and anchored at the bottom of the sea, and said pipe lying at the bottom of the sea comprises a first terminal rigid pipe element integral with said base resting at the bottom of the sea and said first terminal pipe element is and fixedly held relative to said base, with at its end a first connecting element part, preferably a male or female element of an automatic connector, and
  • said first fastening flange at the lower end of said inertial transition piece is fixed to a second fastening flange at the end of a second rigid elbow pipe element secured to said fixed support and connection device; on said base and rigidly and rigidly supporting said second bent rigid pipe element, the other end of which comprises a second connecting element part complementary to and connected to said first connecting element part; when said support and connection member is attached to said base.
  • the bottom-surface bonding plant has the characteristics that:
  • said base is anchored to the bottom of the sea by a first tubular pile passing through a through orifice of said base, said first pile being driven into the ground at the bottom of the sea, and its upper part cooperating with the base so that to allow the anchoring of said base, and said support and connection device supporting said second bent rigid pipe element comprises a second tubular pile, called a tubular anchoring insert, inserted inside said first tubular anchoring pile of said base, said base comprising a locking device retaining said tubular anchoring insert within said first tubular pile in case of pulling said second tubular pile upwards.
  • said first and second piles are assemblies of standard unitary elements of rigid pipes or unitary unit portions of rigid pipes, said second pile being shorter than said first pile.
  • This anchoring system of the base and fixing said support device and connection, at the lower end of said inertial transition piece on said base, is particularly advantageous for the following reasons.
  • the combination of the first pile and the tubular anchoring insert constitutes a guide system, which makes it possible to make said first connecting element parts and the second end connecting element part coincide with each other.
  • the terminal pipe element of the sea-bottom pipe which is fixedly positioned with respect to said base, and, on the other hand, the end of said rigid pipe element fixedly positioned relative to said support device.
  • tubular anchoring insert is positioned in the axis of said inertia transition piece and said second rigid pipe member supported by said support and connecting device is curved or bent so that said first automatic connector-type connection member portion is laterally disengaged from the remainder of said support and connection device, and said second connector-type connector element automatically at the end of said first rigid terminal conduit element of said pipe resting at the bottom of the sea, integral with said base, is also disengaged with respect to the orifice of said base and with respect to said support device and connection of which said anchoring insert is inserted inside said first anchor pile.
  • said first end pipe member of said bottom-lying pipe may preferably also be bent to coincide with the end of said second bent rigid pipe member and allow easy connection by a underwater automaton type ROV at the bottom of the sea.
  • said inertia transition duct element has a cylindro-conical shape of which: the thinner upper end of the transition piece has an inside diameter and a thickness substantially equal to the inside diameter and thickness of the lower end of said vertical riser, to which it is attached, and
  • the lower end of the transition piece, on the side of said first fastening flange has an inside diameter substantially equal to that of the lower end of said vertical riser, but a thickness greater than, preferably equal to 3 to 10 times, that of the lower end of said vertical riser.
  • Such inertial transition pipe members may be 15 to 50 m in length. More particularly, the cylindrical portion extending over a length of 3 to 5 m and the conical portion over a length of 10 to 47 m.
  • These parts are very expensive to manufacture because they must be made using very thick pipes, but of varying thickness, assembled together, and then machined on a very large lathe to obtain the conical shape.
  • Such parts are very expensive to achieve, because to obtain a good result, it is necessary that the pipe assembled by welding before machining is perfectly rectilinear, and moreover the turns capable of precisely machining parts of 20 to 30m in length are difficult to find and at a very high operational cost.
  • the cylindro-conical transition pieces can not be made of steel, and require the use of titanium, which further increases the cost and complexity.
  • said inertial transition terminal pipe element comprises a main rigid pipe element and at least one, preferably a plurality, of coaxial reinforcing pipe elements disposed coaxially with said element.
  • said annular space is completely filled with the same solid filler material, preferably comprising an elastomer material, more preferably based on polyurethane, having a Shore hardness greater than or equal to A50, more preferably A50. at D70, and said inertial transition element is covered with a corrosion-resistant elastomeric cover material, preferably of polyurethane type, said inertia transition end-conductor element having a substantially cylindrical-conical shape through its coating by said covering material.
  • the annular space is completely filled with the same filling material and the covering material imparts a cylindro-conical shape to the transition piece, a continuous variation of the cross-sectional diameter of the same is obtained.
  • the piece and with the same filling material over the entire height of the transition piece which results in a gradual and continuous variation of inertia, that is to say without discontinuity of inertia.
  • the implementation of an elastomeric cover material provides a corrosion protection guaranteeing greater longevity to said transition piece, which is subjected to a high mechanical stress and without this protection would have reduced longevity.
  • said solid filler material must have a compressive strength so as to transfer the shear forces to the higher order reinforcing pipe member "i + 1" in a manner proportional to the deformation of a said element. coaxial it contains order "i” under the effect of a bending effort.
  • the solid filler In practice the solid filler must have a Poisson's ratio of 0.3 to 0.49, preferably 0.4 to 0.45.
  • This filler material may be an elastomer such as rubber or polyurethane alone or in combination with sand.
  • said cover material and said filler material comprise the same elastomeric material, preferably based on polyurethane.
  • said solid filler material comprises a polyurethane of Shore A90 or A95 hardness.
  • the solid filler material comprises an elastomer loaded with particulate material, preferably sand.
  • the solid filler material is in the form of a hydraulic binder such as cement, optionally filled with particulate material, preferably sand.
  • said solid filler material is in the form of a particulate material, preferably sand and / or a hydraulic binder such as cement:
  • the annular space between two of said pipe elements is greater than or equal to the thickness of said pipe element of smaller thickness and less than or equal to twice the thickness of said pipe element of greater thickness delimiting said annular space;
  • the length of said main pipe element is 10 to 50 m, preferably 20 to 30 m, and it comprises 2 or 3 of said coaxial reinforcing elements,
  • said main pipe element and coaxial reinforcing pipe elements each consist of all or part of a standard unitary pipe element, in particular a standard underwater pipe made of steel, or each consisting of a plurality of standard pipe elements assembled end-to-end. end and preferably held coaxially by centering wedges evenly distributed along their longitudinal direction and on the circular section in their annular spaces.
  • An important advantage of the bottom-surface connection plant of the present invention also lies in the simplicity of its installation at the bottom of the sea.
  • the present invention therefore also provides a process for placing at the bottom of the sea a bottom-surface connection installation according to the invention, comprising the following successive steps in which:
  • a method of setting up a bottom-surface connection installation comprises the following successive steps in which:
  • said anchoring insert is locked inside said first tubular pile with the aid of a locking device
  • This process according to the invention is particularly simple and therefore advantageous to set up.
  • This simplicity results from the fact that the anchoring function on said base is filled by said anchoring insert, on the underside of said support and connection device, and that the bending moments experienced by the inertia transition piece are taken by the first anchoring pile driven to the bottom of the sea and not by said base, so that it is possible to implement a relatively low base weight and low volume.
  • FIG. 1 is a side view of a bottom-surface connection installation 1 according to the invention comprising a rigid pipe 9 of the Riser type recessed at the bottom in a first pile 6 passing through a base 4 and connected to its upper end. 9b to a flexible pipe 10 floating on an end portion 10a of its length, the other end of the pipe being connected to a FPSO (Floating Production Storage Offloading) 12,
  • FPSO Floating Production Storage Offloading
  • FIG. 2A is a side view of the installation of the bottom-surface connection in its base being put in place from a work vessel 20,
  • FIG. 2B is a side view of the installation of a said first anchoring pile 6 in a base supporting the end of an underwater pipe resting on the bottom of the sea
  • FIG. 2C is a side view of the lower end of the riser 9 with an inertia transition piece 8 at its connection with a support and connection device 5 comprising a tubular anchoring insert 5e to the inside said anchoring pile 6,
  • FIG. 3 is a side view of the installation of the bottom-surface connection, in the course of implementation, after engagement of the anchoring insert 5e in the anchoring pile 6,
  • FIG. 3A and 3B show in side view and in section two base variants of the connection to a pipe resting at the bottom of the sea of a bottom-surface connection installation according to the invention
  • FIG. 4 is a view in section and in side view of a massive conical steel transition piece 8 installed at the lower end of the riser 9,
  • FIGS. 5A-5B-5C are cross-sectional side views of a preferred embodiment of a transition piece consisting of stacks of coaxial steel pipes, the interstices being filled with plastic materials on the FIGS. 5B and 5C,
  • FIG. 6 is a diagram illustrating the variation of the inertia of the transition pieces according to FIG. 5C.
  • FIG. 1 there is shown a bottom-surface connection facility 1 connecting an underwater line 2 resting on the seabed 3 to a floating support type FPSO 12 surface moored by anchor lines 12a.
  • An installation according to the invention comprises from the support 12 on the surface to a base 4 at the bottom of the sea, the following elements: a) a flexible pipe 10 comprising a first concave portion 10b extending from the end 10e flexible pipe attached to the floating support 12 up to about half of the flexible pipe in the form of a plunging chain configuration by its negative buoyancy to a point of inflection in 1Od substantially half the length of the flexible pipe, the end portion 10a extending from the central point of inflection 1Od to the end 10c of the flexible pipe having a positive buoyancy by a plurality of floats 10f preferably regularly spaced along and around said end portion 10a of flexible pipe, and b) a rigid steel riser pipe 9 or "riser vertical" equipped with buoyancy means, not shown, such half-shells syntactic foam preferably distributed uniformly over all or part of the length of said rigid pipe, and comprising at its lower end an inertia transition piece 8 equipped with a first fastening flange 9a to
  • the first fastening flange 9a is fixed on a second fastening flange 5a constituting the upper part of a support and connection device 5, itself anchored on the first pile 6 integral with the base 4 resting at the bottom of the sea, said support device and connection 5 for connecting the lower end of the riser 9 to a pipe 2 resting at the bottom of the sea, as explained below.
  • the flexible pipe has a variation of continuous curvature, first concave in the part of a plunging chain configuration
  • - x represents the distance in the horizontal direction between the point of horizontal tangency and a point M of the curve
  • - y represents the altitude of the point M (x and y are therefore the abscissa and ordinate of a point M of the curve relative to an orthonormal coordinate system whose origin is at the point of tangency)
  • R 0 represents the radius of curvature at said point of horizontal tangency.
  • R represents the radius of curvature at the point M (x, y)
  • the curvature varies along the chain from the surface (for a plunging chain) or from its end portion to the upper end of the riser (for an inverted chain) where its radius has a maximum value R max , up to point of horizontal tangency (which is the low point of the plunging chain 10b and the high point of the inverted chain 10a), where its radius has a minimum value R mn (or R 0 in the formula above).
  • This flexible pipe is to allow its initial portion 10b plunging to dampen the excursions of the floating supports 12 so as to stabilize the end 10c of the flexible pipe connected to a rigid riser pipe of the vertical riser 1.
  • the end of the portion of the floating end portion 10c of the flexible pipe carries a first fastening flange member 11 with the upper end of a rigid pipe extending from the seabed recessed at a base 4 resting at the bottom of the sea.
  • the vertical riser 9 is "tensioned" on the one hand by the buoyancy of the end portion 10a of the flexible pipe, but on the other hand and above all by floats regularly distributed at least on the upper part 9b, preferably all along the rigid pipe, especially in the form of syntactic foam advantageously acting as both an insulation and buoyancy system.
  • floats and this syntactic foam can be distributed along and around the rigid pipe over its entire length or, preferably, only on a portion of its upper part.
  • the base 4 can be limited to coating the rigid pipe 1 of syntactic foam over a length of 1000 m from its upper end, which allows to implement a syntactic foam that must withstand less pressure than if it had to withstand pressures up to 2500 m, and therefore a radically reduced cost compared to a syntactic foam to withstand said depth of 2500 m.
  • the rigid pipe 1 according to the invention is therefore “tensioned” without implementation of a float surface or sub-surface as in the prior art, which limits the effects of current and swell, and thus drastically reduces the excursion of the upper part of the vertical riser and therefore the efforts in the foot of riser at the level of the embedding.
  • buoys 10f spaced from each other and regularly distributed over the portion 10a, each representing the equivalent of a few meters of the required thrust, for example for a spacing of 5 to 10 m the resulting thrust required for each float will be
  • the overall buoyancy corresponds to what is commonly called the "Archimedes thrust” or “Apparent Weight” on each of the parts of the bottom-surface connection: corresponding on the one hand to the buoyancy required for counterbalance the respective apparent weight of the rigid pipe and the flexible pipe, and secondly to the additional buoyancy necessary for tensioning which thus provides a resultant vertical thrust of 50 to 150 kg / m as previously described.
  • the fastening flange system 11 between the upper end of the vertical riser 9 and the flexible pipe 10, and the connection of the fastening flanges 9a, 5a between the lower end to the inertia transition piece 8 and the device of FIG. connection support 5, provide sealed connections between the relevant conduits.
  • the base 4 resting at the bottom of the sea supports a first curved or curved terminal pipe element 2a of said pipe resting at the bottom of the sea 2.
  • This first curved or curved end pipe element 2a comprises at its end a first male or female part of an automatic connector 7b, which is released laterally. relative to a through hole 4a of said base, but positioned fixedly and determined with respect to the axis ZZ 'of said orifice.
  • the support and connection device 5 supports a second rigid elbow pipe element 5b having at its upper end said second attachment flange 5a and at its lower end a second female or male part of an automatic connector 7a, complementary to Part 7b.
  • a first tubular anchoring pile 6 is lowered from an installation vessel 20 on the surface, then depressed, preferably beaten in known manner, through an orifice 4a vertically traversing from one end to the base 4 until a peripheral protuberance 6a at the upper end of said first pile 6 comes to cooperate with a complementary shape 4c in the upper part of said orifice 4a of the base.
  • the orifice 4a is slightly larger than the first pile 6 to let it slide freely. And when the threshing of said first pile is completed, the base 4 is thus nailed to the ground without being able to move laterally or pivot around any horizontal axis.
  • a plurality of orifices and said first piles 6 are provided.
  • the first step consists in descending to the bottom of the sea from the surface, said base equipped with said first terminal pipe element 2a of the resting pipe. at the bottom of the sea.
  • anchoring of the transition piece 8 is carried out at the lower end of the vertical riser by fixing on the support and connection device 5, itself anchored on said base, thus forming a rigid recess of the lower end of the vertical riser.
  • the support and connection device 5 consists of elements of rigid structure and stiffener 5c supporting said second fastening flange 5a and said second curved rigid pipe element 5b, said rigid structure elements 5c also ensuring the connection between said second flange fixing 5a and a lower plate 5d supporting on the underside a second tubular pile 5e called tubular anchoring insert.
  • the various bottom-surface connection elements including the assembly of the trains consist of a plurality of standard pipe elements, which are gradually lowered.
  • said device 5 is connected in a sealed manner to the lower end of the vertical riser 9 via the conical transition piece 8, then the entire vertical riser equipped with its buoyancy elements, and finally the flexible connecting pipe equipped with its buoyancy elements fixed in direct continuity with the upper end of the vertical riser 9.
  • the assembly and the laying of the rigid pipe 9 are conventionally made from the ship 20 by assembling unit pipe elements or reams of unitary elements stored on the surface vessel 20, and descended as and when a technique known to those skilled in the art and described in particular in previous patent applications in the name of the applicant, from a laying ship in J.
  • the rigid steel pipe 9 may be in known manner a Pipe-in-Pipe type pipe comprising an insulation system in the annular space between the two coaxial pipes constituting the riser 9 and furthermore a pipe system. insulation such as syntactic foam acting as a buoyancy system as described above.
  • tubular anchoring insert 5e When the lower end of the tubular anchoring insert 5e, preferably having a slightly conical shape 5f is positioned close to and in line with the orifice 4a of the base 4, it is advantageous to direct said tubular insert anchoring 5th, more precisely thanks to an automatic submarine or "ROV" 20a piloted from the surface. Said tubular insert 5e of length 10 to 15 m then returns naturally by its own weight in said first tubular anchoring pile driven to the bottom of the sea to a depth of 30 to 70 m.
  • ROV automatic submarine or
  • the external diameter of the tubular anchoring insert 5e may be slightly smaller than the internal diameter of the first pile 6, for example less than 5 cm, which facilitates guiding the tubular insert 5 inside said first pile 6 while preventing transverse movements in a horizontal plane once the tubular insert 5 is fully inserted as shown in FIG. 3.
  • a latch 4b shown in the retracted position in FIG. 2A is moved in the engaged position as in FIGS. 1 and 3 so as to block the upper plate 5d of the tubular insert 5e, inside said first pile. 6, thus preventing any upward movement of the bottom-surface connection assembly 1 which is recessed via the connection support device 5 in the first pile 6 integral with said base 4.
  • the untightening of the flexible pipe is completed as shown in FIG. 3 and the upper end of the flexible pipe is connected to a temporary sub-surface buoy 21, itself connected to a dead body 21b resting at the bottom of the sea by a cable 21a.
  • the floating support 12 is positioned on the surface, the end 10e of the flexible pipe 10 is recovered, which is then connected to said floating support FPSO 12 as shown in FIG. 1, and the temporary buoy 21 is recovered. as well as its dead body 21b and its anchoring cable 21a.
  • the tubular insert 5e transmits to said first tubular pile 6, the bending moments due to the cutting and transverse forces experienced at the recess of the part 8 on the device 5.
  • the fixing system of the upper end of the rigid pipe 9 with the flexible pipe 10 and the tensioning of said pipes gives greater stability to the upper end of the rigid pipe 9 with an angular variation Y not exceeding in operation the 5 ° C.
  • the lower end pipe element of the rigid pipe 9 comprises a conical transition piece 8 whose inertia in cross section increases progressively from a value substantially identical to the inertia of the pipe element of the riser 9 to which it is connected, in the tapered upper part of the transition piece 8, to a value 3 to 10 times greater than the level of its lower part connected to said first attachment flange 9a.
  • inertia The coefficient of variation of inertia essentially depends on the bending moment that the vertical riser must bear at said transition piece, said moment being a function of the maximum excursion of the upper part of the rigid steel pipe 9, therefore of the angle Y.
  • transition piece 8 To achieve this transition piece 8 is used high tensile steels and in extreme cases of stress, it may be necessary to manufacture titanium transition parts 8.
  • FIG. 4 shows a cylindro-conical transition piece 8 having a variable thickness gradually increasing from the tapered upper part 81 to the thicker lower part 82 with a constant internal diameter corresponding to the internal diameter of a pipe standard rigid and in any event, the internal diameter of said second rigid pipe element 6.
  • the transition piece 8 consists of a main steel pipe element 8a, preferably of internal diameter di identical to that of the current part of the pipe 9, and preferably of thickness equal to or slightly greater than that of said running portion of said pipe 9, and preferably of thickness equal to that of said second pipe element bent 5b.
  • transition piece 8 comprising a first internal pipe element 8a and three element 8b-8c-8d coaxial reinforcement pipe of increasing diameter d 2 -d 3 -d 4 and lengths h 2 -h 3 -h 4 decreasing, each of said coaxial pipe elements being integral with its lower end of the same said first flange 9a.
  • an elastomeric material 8e preferably such as a polyurethane, whose shore hardness is adjusted to obtain the desired stiffness variation, in particular a shore hardness of A50 to D70.
  • the lower end of the first main pipe element 8a of greater length is welded to the flange 9a, and
  • a coaxial first reinforcing pipe element 8b is inserted around said first main pipe element 8a, the lower end of which is welded to the same flange 9a, and
  • a third reinforcing pipe element 8d of smaller height is inserted around the second reinforcing pipe element 8c, and its lower end is welded to the flange 9a, and
  • thermoplastic or thermosetting material is injected between the various pipe elements, and, if necessary, their external surface is coated with a cylindro-conical mold to obtain rigidity and variation of inertia and protection against corrosion; sought.
  • FIG. 6 shows the variation diagram of the inertia I on the ordinate between the flange 9 and the upper end of the transition piece 8 of FIGS. 5B and 5C.
  • the dashed staircase 30 represents the variation of the steel section in the absence of roofing and filling material at each of the reinforcing pipe members.
  • the curves 31-32-33 represent the variation of the inertia ( ⁇ EI) of the transition piece 8 of FIGS. 4 and 5C as a function of its length, according to the type of filling material.
  • Curve 33, of parabolic shape is obtained with a polyurethane filling material of shore hardness A90 or A95, and is a preferred version of the invention.
  • the curve 31 is obtained with a much stiffer material, such as a cement with very high performance, alone or in combination with a powdery load, such as sand.
  • Intermediate curve 32 corresponds to the steel transition piece of FIG. 4.
  • the space between the first pipe 8a and the first reinforcement 8b is 53.98mm, and the space between the second reinforcement and the first reinforcement is 70.2mm.
  • FIG. 3A the invention is described with a base 4 placed at the same time as the underwater pipe resting on the bottom, said base being stabilized by a first pile 6 passing therethrough.
  • a base 4 constituted by a suction anchor, having an orifice, preferably circular integrated in said suction anchor and playing the role of pile 6 and capable to receive the anchoring insert 5e.
  • the support and connecting device 5 at the lower end of the bottom-surface connection is directly embedded in the suction anchor whose weight reaches 25 to 50 tons for a diameter of 3 to 5 m and a height of 20-25m.
  • the sub driving Marine 2 is placed independently and therefore requires a connecting pipe 7 manufactured on demand after installation of the bottom-surface connection and the underwater pipe 2.
  • Said connecting pipe 7 then requires two automatic connectors 7- 7ai, 7bi-7b, one at each of its ends, while the version described with reference to Figure 3A requires only one automatic connector 7a-7b.
  • the invention has been described in a preferred version manufactured and simultaneously installed on site from a laying ship 20, but it remains in the spirit of the invention with a prefabrication of the complete set on a shipyard on land , the assembly then being towed substantially horizontally to the site, then finally cabin for the insertion of the anchoring insert 5e in the first tubular pile 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Sewage (AREA)

Abstract

Installation de liaisons fond - surface (figl) comprenant: -une conduite rigide montante "riser" (9), fixée à son extrémité inférieure à un dispositif d'ancrage (4,5,6) au fond de mer, -une conduite de liaisons flexible (10) assurant la liaison entre un support flottant (12) et l'extrémité supérieure dudit riser vertical (9) -une extrémité de ladite conduite flexible (10) directement raccordée, de préférence par un système de brides (11), à l'extrémité supérieure dudit riser (11), -un élément de conduite terminal (8) a l'extrémité inférieure du riser (9) formant une pièce de transition d'inertie dudit riser. -une partie terminale de la conduit flexible (10), du coté de sa jonction à l'extrémité supérieure dudit riser, présentant une flottabilité positive -ladite partie terminale de conduit flexible (10) présentant une flottabilité positive, s'étend sur une partie de la longueur totale de la conduit flexible, tel que la conduite flexible présente une configuration en S.

Description

INSTALLATION DE LIAISON FOND-SURFACE D'UNE CONDUITE RIGIDE AVEC UNE CONDUITE FLEXIBLE A FLOTTABILITE POSITIVE
La présente invention concerne une installation de liaison fond- surface entre une conduite sous-marine reposant au fond de la mer et un support flottant en surface, comprenant une tour hybride constituée d'une conduite flexible reliée à une conduite rigide montante, ou riser vertical, dont l'extrémité inférieure comprend une pièce de transition d'inertie permettant son encastrement sur un dispositif d'ancrage comprenant une embase reposant au fond de la mer.
Le secteur technique de l'invention est plus particulièrement le domaine de la fabrication et de l'installation de colonnes montantes (« riser ») de production pour l'extraction sous-marine de pétrole, de gaz ou autre matériau soluble ou fusible ou d'une suspension de matière minérale à partir de tête de puits immergé jusqu'à un support flottant, pour le développement de champs de production installés en pleine mer au large des côtes. L'application principale et immédiate de l'invention étant dans le domaine de la production pétrolière.
Le support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des courants, des vents et de la houle. Il comporte aussi en général des moyens de stockage et de traitement du pétrole ainsi que des moyens de déchargement vers des pétroliers enleveurs, ces derniers se présentant à intervalle régulier pour effectuer l'enlèvement de la production. L'appellation courante de ces supports flottants est le terme anglo-saxon "Floating Production Storage Offloading" (signifiant "moyen flottant de stockage, de production et de déchargement") dont on utilise le terme abrégé "FPSO" dans l'ensemble de la description suivante.
On connaît des liaisons fond-surface d'une conduite sous-marine reposant au fond de la mer, liaison du type tour-hybride comprenant : - un riser vertical dont l'extrémité inférieure est ancrée au fond de la mer par le biais d'une articulation flexible, et relié à une dite conduite reposant au fond de la mer, et l'extrémité supérieure est tendue par un flotteur immergé en sub-surface auquel elle est reliée, et
- une conduite de liaison, en général une conduite de liaison flexible, entre l'extrémité supérieure dudit riser et un support flottant en surface, ladite conduite de liaison flexible prenant, le cas échéant, de par son propre poids la forme d'une courbe en chaînette plongeante, c'est-à-dire descendant largement en dessous du flotteur pour remonter ensuite jusqu'audit support flottant.
On connaît également des liaisons fond-surface réalisées en remontant de manière continue jusqu'en sub-surface des conduites résistantes et rigides constituées d'éléments tubulaires en acier de forte épaisseur soudés ou vissés entre eux, en configuration de chaînette avec une courbure continûment variable dans toute leur longueur en suspension, communément appelés « Steel Catenary Riser » (SCRs) signifiant « riser en acier en forme de chaînette » et aussi communément appelés « conduite rigide du type caténaire » ou « riser du type SCR ».
Une telle conduite caténaire peut remonter jusqu'au support flottant en surface ou seulement jusqu'à un flotteur en sub-surface qui tensionne son extrémité supérieure, laquelle extrémité supérieure est alors reliée à un support flottant par une conduite de liaison flexible plongeante.
Des risers caténaires à configuration renforcée sont décrits dans WO 03/102350 de la demanderesse.
Dans WO 00/49267, on a proposé comme conduite de liaison entre le riser dont le sommet est tensionne par un flotteur immergé en surface et le support flottant, des conduites rigides de type SCR et on installe le flotteur en tête du riser à une distance plus grande de la surface notamment à au moins 300 m de la surface, de préférence au moins 500 m. Dans WO 00/49267 de la demanderesse, on a décrit une tour hybride multiple comportant un système d'ancrage avec un tendon vertical constitué soit d'un câble, soit d'une barre métallique, soit encore d'une conduite tendue à son extrémité supérieure par un flotteur. L'extrémité inférieure du tendon est fixée à une embase reposant au fond . Ledit tendon comporte des moyens de guidage répartis sur toute sa longueur à travers lesquels passe une pluralité de dits risers verticaux. Ladite embase peut être posée simplement sur le fond de la mer et rester en place par son propre poids, ou rester ancrée au moyen de piles ou tout autre dispositif propre à la maintenir en place. Dans WO 00/49267, l'extrémité inférieure du riser vertical est apte à être connectée à l'extrémité d'une manchette coudée, mobile, entre une position haute et une position basse, par rapport à ladite embase, à laquelle cette manchette est suspendue et associée à un moyen de rappel la ramenant en position haute en l'absence du riser. Cette mobilité de la manchette coudée permet d'absorber les variations de longueur du riser sous les effets de la température et de la pression. En tête du riser vertical, un dispositif de butée, solidaire de celui-ci, vient s'appuyer sur le guide support installé en tête du flotteur et maintient ainsi la totalité du riser en suspension.
La liaison avec la conduite sous-marine reposant sur le fond de la mer est en général effectuée par une portion de conduite en forme de queue de cochon ou en forme de S, ledit S étant alors réalisé dans un plan soit vertical soit horizontal, la liaison avec ladite conduite sous- marine étant en général réalisée par l'intermédiaire d'un connecteur automatique.
Ce mode de réalisation comprenant une multiplicité de risers maintenus par une structure centrale comportant des moyens de guidage est relativement coûteux et complexe à installer. D'autre part, l'installation doit être préfabriquée à terre avant d'être remorquée en mer, puis une fois sur site, cabanée en vue d'être mise en place. En outre, sa maintenance requiert également des coûts d'exploitation relativement élevés. De plus, le pétrole brut cheminant sur de très grandes distances, plusieurs kilomètres, on doit leur fournir un niveau d'isolation extrême coûteux pour, d'une part minimiser l'augmentation de viscosité qui conduirait à une réduction de la production horaire des puits, et d'autre part d'éviter le blocage du flot par dépôt de paraffine, ou formation d'hydrates dès lors que la température descend aux alentours de 30-
400C. Ces derniers phénomènes sont d'autant plus critiques, particulièrement en Afrique de l'Ouest, que la température du fond de la mer est de l'ordre de 4°C et que les pétroles bruts sont de type paraffiniques.
Il est donc souhaitable que les liaisons fond-surface soient de longueurs réduites et donc que l'encombrement des différentes liaisons reliées à un même support flottant soient limités.
C'est pourquoi on cherche à fournir des installations aptes à exploiter depuis un même support flottant une pluralité de liaisons fond- surface de type tour-hybride d'encombrement réduit et plus simple à poser et pouvant être fabriquée en mer depuis un navire de pose de conduite.
Dans WO 02/066786 et WO 2003/095788, on a décrit des installations de tours hybrides nécessitant la mise en œuvre d'articulations flexibles entre le riser vertical et l'embase car les variations angulaires, engendrées par les mouvements du FPSO et par l'action de la houle et du courant sur les conduites et sur le flotteur tensionnant la portion verticale de conduite, sont importantes, atteignant 5 à 10° et ces variations empêchent l'utilisation de liaison rigide encastrée dans ladite embase. De telles articulations flexibles sont très délicates et coûteuses à fabriquer car elles sont constituées d'empilements de couches d'élastomère et de renforts acier et doivent résister à la fatigue pendant toute la durée de vie des installations qui dépasse 20-25 ans voire plus. De plus, la présence du flotteur crée une discontinuité de tension au niveau de pièce en col de cygne, à l'interface entre la conduite rigide sensiblement verticale et la conduite flexible en configuration de chaînette, ce qui nuit à la stabilité d'ensemble au niveau dudit interface et affecte la résistance mécanique de l'installation.
Dans WO 02/103153, on a cherché à fournir une installation qui puisse être fabriquée intégralement à terre, notamment en ce qui concerne l'assemblage des conduites rigides reposant au fond de la mer et les risers verticaux assurant la liaison fond-surface. D'autre part, dans WO 02/103153, on a cherché à mettre en œuvre une installation dont la mise en place au fond de la mer ne requiert aucun joint flexible à rotule dans la partie inférieure de la tour. Pour ce faire, la conduite sous- marine reposant au fond de la mer est reliée audit riser vertical par un élément de conduite flexible maintenu par une embase reposant au fond de la mer. L'assemblage de l'extrémité inférieure du riser vertical et l'extrémité de la conduite reposant au fond de la mer, par l'intermédiaire dudit élément de conduite flexible solidaire et maintenu par ladite embase, est préassemblé à terre avant d'être remorqué en mer et déposé au fond de la mer où ladite embase est, ensuite, ancrée. Toutefois, ce mode de réalisation présente certains inconvénients car ce système d'ancrage nécessite, pour la phase de remorquage et de cabanage des éléments de flottabilité considérables pour équilibrer le poids déjaugé de ladite structure embase, et les éléments de liaison flexibles sont soumis à une fatigue importante pendant toute la durée de vie des installations qui atteint et dépasse 25-30 ans.
En outre, dans toutes les installations décrites dans la technique antérieure mentionnée ci-dessus, le riser vertical est tensionné par un flotteur en sub-surface et la liaison entre le riser vertical et le support flottant se fait par une conduite flexible en configuration de chaînette plongeante, dont l'extrémité est reliée à l'extrémité supérieure dudit riser vertical par un dispositif en col de cygne. Ce mode de liaison de l'extrémité supérieure du riser vertical avec le support flottant présente certains inconvénients en termes de résistance mécanique, au niveau de la discontinuité de tension crée par la pièce de liaison en col de cygne, et du fait du tensionnement du riser vertical par un flotteur de très gros volume, ce dernier est soumis à l'action des courants et de la houle, ce qui engendre, pour ce type de liaison des variations angulaires du sommet du riser, très importantes, ces dernières se répercutant en pied de riser, au niveau de l'articulation flexible ainsi fortement sollicitée.
Dans GB-2 024 766, on décrit un riser vertical relié à une conduite flexible en configuration de chaînette plongeante, l'extrémité de la conduite flexible reliée au dit riser présente une courbure imposée par une gouttière à section verticale de forme circulaire reposant au sommet d'un flotteur de forme torique, ladite gouttière faisant office de col de cygne et évitant des rayons de courbure trop faibles pouvant conduire à un écrasement de ladite conduite flexible. Ce mode de réalisation ne permet pas d'éviter une usure de la conduite flexible au niveau de son interaction avec ladite gouttière, ce qui affecte la fiabilité intrinsèque de la liaison entre le riser vertical et la conduite flexible en termes de résistance mécanique dans le temps.
Un but de la présente invention est donc de fournir une installation de liaisons fond-surface avec des tours hybrides, d'encombrement réduit, simple à poser et pouvant être fabriqué en mer depuis un navire de pose de conduite, mais dont le système d'ancrage est d'une grande résistance et d'un faible coût, et dont les procédés de fabrication et mise en place des différents éléments constitutifs sont simplifiés et également d'un faible coût, et peuvent être réalisés en mer, également, depuis un navire de pose.
Un autre but est de fournir une installation qui ne requiert pas la mise en œuvre d'articulations flexibles, notamment à la base du riser vertical .
Un autre but de la présente invention est de fournir une installation de liaison fond-surface telle que décrit ci-dessus, qui requiert la mise en œuvre d'un unique élément de raccordement, notamment d'un unique connecteur automatique, entre l'extrémité inférieure du riser vertical et l'extrémité de la conduite reposant au fond de la mer.
Pour ce faire, la présente invention fournit une installation de liaison fond-surface, notamment à grande profondeur de plus de 1 000 m, comprenant : a- au moins une conduite rigide montante, sensiblement verticale, dénommée riser vertical, fixée à son extrémité inférieure à un dispositif d'ancrage au fond de mer, et b- au moins une conduite de liaison flexible assurant la liaison entre un support flottant et l'extrémité supérieure dudit riser vertical, c- une extrémité de ladite conduite flexible est directement raccordée, de préférence par un système de brides, à l'extrémité supérieure dudit riser vertical, et d- l'extrémité inférieure dudit riser vertical comprend un élément de conduite terminal formant une pièce de transition d'inertie dont la variation de l'inertie est telle que l'inertie dudit élément de conduite terminal, à son extrémité supérieure, soit sensiblement identique à celle de l'élément de conduite de la partie courante du riser vertical auquel elle est reliée, ladite inertie de l'élément de conduite terminal augmentant progressivement jusqu'à l'extrémité inférieure de ladite pièce de transition d'inertie, comprenant une première bride de fixation permettant l'encastrement de l'extrémité inférieure dudit riser vertical au niveau dudit dispositif d'ancrage au fond de la mer, caractérisée en ce que :
- une partie terminale de la conduite flexible, du coté de sa jonction à l'extrémité supérieure dudit riser, présente une flottabilité positive, et au moins la partie supérieure dudit riser vertical présente également une flottabilité positive, de sorte que les flottabilités positives de ladite partie terminale de la conduite flexible et de ladite partie supérieure dudit riser vertical permettent le tensionnement dudit riser en position sensiblement verticale et l'alignement ou la continuité de courbure entre l'extrémité de ladite partie terminale de la conduite flexible et la partie supérieure dudit riser vertical au niveau de leur raccordement, ladite flottabilité positive étant apportée par une pluralité de flotteurs périphériques coaxiaux, régulièrement espacés et/ou un revêtement continu en matériau de flottabilité positive, et - ladite partie terminale de conduite flexible présentant une flottabilité positive, s'étend sur une partie de la longueur totale de la conduite flexible, telle que la conduite flexible présente une configuration en S, avec une première portion de conduite flexible du coté dudit support flottant présentant une courbure concave en forme de chaînette à configuration de chaînette plongeante et ladite partie terminale restante de ladite conduite flexible présentant une courbure convexe en forme de chaînette inversée de par sa flottabilité positive, l'extrémité de ladite partie terminale de conduite flexible, au niveau de l'extrémité supérieure dudit riser, étant située de préférence au dessus et sensiblement dans l'alignement de l'axe Z1Z1 ! dudit riser à son extrémité supérieure.
On utilise ici le terme "riser vertical" pour rendre compte de la position théorique du riser lorsque celui-ci est au repos étant entendu que l'axe du riser peut connaître des mouvements angulaires par rapport à la verticale et se mouvoir dans un cône d'angle α dont le sommet correspond au point de fixation de l'extrémité inférieure du riser sur ladite embase. L'extrémité supérieure dudit riser vertical peut être légèrement incurvée. On entend donc par « partie terminale de conduite flexible sensiblement dans l'alignement de l'axe Z1Z'! dudit riser supérieur » que l'extrémité de la courbe de chaînette inversée de ladite conduite flexible est sensiblement tangente à l'extrémité dudit riser vertical . En tout état de cause, en continuité de variation de courbure, c'est-à-dire sans point singulier, au sens mathématique.
On entend ici par "inertie", le moment d'inertie dudit élément de conduite de transition d'inertie par rapport à un axe perpendiculaire à l'axe dudit élément de conduite de transition d'inertie, lequel reflète la raideur en flexion dans chacun des plans perpendiculaires à l'axe XX' de symétrie dudit élément de conduite, ce moment d'inertie étant proportionnel au produit de la section de matière par le carré de son éloignement par rapport au dit axe de l'élément de conduite.
On entend par "continuité de courbure" entre l'extrémité supérieure du riser vertical et la partie du flexible présentant une flottabilité positive, que ladite variation de courbure ne présente pas de point singulier, tel une variation brusque de l'angle d'inclinaison de sa tangente ou un point d'inflexion.
De préférence, la pente de la courbe formée par la conduite flexible est telle que l'inclinaison de sa tangente par rapport à l'axe Z1T1 de la partie supérieure dudit riser vertical augmente continûment et progressivement depuis le point de raccordement entre l'extrémité supérieure du riser vertical et l'extrémité de ladite partie terminale de conduite flexible de flottabilité positive, sans point d'inflexion et sans point d'inversion de courbure.
L'installation selon la présente invention permet donc d'éviter le tensionnement du riser vertical par un flotteur en surface ou subsurface, auquel son extrémité supérieure serait suspendue, d'une part, et, d'autre part, d'éviter la liaison à ladite conduite flexible plongeante par l'intermédiaire d'un dispositif de col de cygne, tel que mis en œuvre dans la technique antérieure. Il en résulte non seulement une plus grande fiabilité intrinsèque en termes de résistance mécanique dans le temps de la liaison entre le riser vertical et la conduite flexible, car les dispositifs de type col de cygne sont fragiles. Mais surtout, ce type d'installation confère une stabilité accrue en termes de variation angulaire (y) de l'angle d'excursion de l'extrémité supérieure du riser vertical par rapport à une position théorique de repos vertical, car cette variation angulaire est réduite en pratique à un angle maximal ne dépassant pas 5°, en pratique de l'ordre de 1 à 4° avec l'installation selon l'invention, alors que, dans les modes de réalisation de la technique antérieure, l'excursion angulaire pouvait atteindre 5 à 10°, voire plus. Un autre avantage de la présente invention tient en ce que, du fait de cette faible variation angulaire de l'extrémité supérieure du riser vertical, il est possible de mettre en œuvre, au niveau de son extrémité inférieure, un encastrement rigide sur une embase reposant au fond de la mer, sans avoir recours à une pièce de transition d'inertie de dimension trop importante et donc trop coûteuse. Il est donc possible d'éviter la mise en œuvre d'une articulation flexible, notamment du type rotule sphérique flexible, pour autant que la jonction entre l'extrémité inférieure du riser et ledit encastrement comprenne une pièce de transition d'inertie.
Les flottabilités positives du riser et de la conduite flexible peuvent être apportées de façon connue par des flotteurs périphériques coaxiaux entourant lesdites conduites, ou, de préférence, s'agissant de la conduite rigide du riser vertical, d'un revêtement en matériau de flottabilité positive, de préférence constituant également un matériau isolant, tel que de la mousse syntactique, sous forme de coquille enveloppant ladite conduite. De tels éléments de flottabilité résistant à de très fortes pressions, c'est-à-dire à des pressions d'environ 10M Pa par tranche de 1000m d'eau, sont connus de l'homme de l'art et sont disponibles auprès de la Société BALMORAL (UK).
Plus particulièrement, la flottabilité positive sera répartie régulièrement et uniformément sur l'ensemble de la longueur de ladite partie terminale 10a de la conduite flexible et d'au moins ladite partie supérieure 9b de ladite conduite rigide.
De préférence, pour donner le maximum de flexibilité à l'ensemble de la liaison fond-surface, ladite partie terminale de la conduite flexible présentant une flottabilité positive s'étend sur une longueur de 30 à 60% de la longueur totale de la conduite flexible, de préférence environ la moitié de la longueur totale de ladite conduite flexible. Plus particulièrement, ladite conduite flexible présente une flottabilité positive sur une longueur correspondant à 30 à 60%, de sa longueur totale, de préférence environ la moitié de sa longueur totale.
La partie de conduite flexible plongeante, c'est-à-dire de flottabilité négative pourra être d'autant plus courte que l'ancrage du support flottant en surface sera raide.
Plus particulièrement, pour donner à l'ensemble de la liaison fond- surface la souplesse appropriée, ladite flottabilité positive exercée sur la partie terminale de la conduite flexible et au moins la partie supérieure dudit riser, doit exercer une tension verticale sur la fondation à l'extrémité inférieure de ladite conduite rigide en fonction de la profondeur d'eau selon la formulation suivante : F = kH, F étant ladite tension verticale exprimée en tonnes, H étant ladite profondeur exprimée en mètres, et k étant un facteur compris entre 0.15 et 0.05, de préférence égal à environ 0.1.
Si la flottabilité positive globale est répartie uniformément et régulièrement sur toute la longueur de la conduite rigide et sur une dite partie terminale de conduite flexible, ladite flottabilité positive devant permettre d'obtenir une poussée résultante verticale de 50 à 150 kg/m, c'est-à-dire que ladite flottabilité requise devra correspondre au poids apparent de ladite conduite rigide et ladite partie terminale de conduite flexible additionnée d'une flottabilité additionnelle de 50 à 150 kg/m.
Dans un mode préféré de réalisation d'une installation de liaison fond-surface, celle-ci comprend les caractéristiques suivantes, selon lesquelles :
- ledit riser vertical est relié à son extrémité inférieure à au moins une conduite reposant au fond de la mer, et
- ledit dispositif d'ancrage comprend un dispositif de support et de raccordement fixé sur une embase posée et ancrée au fond de la mer, et - ladite conduite reposant au fond de la mer comprend un premier élément de conduite rigide terminal solidaire de ladite embase reposant au fond de la mer et ledit premier élément de conduite terminal est et maintenu fixement par rapport à ladite embase, avec, à son extrémité, une première partie d'élément de raccordement, de préférence un élément mâle ou femelle d'un connecteur automatique, et
- ladite première bride de fixation à l'extrémité inférieure de ladite pièce de transition d'inertie est fixée à une deuxième bride de fixation à l'extrémité d'un deuxième élément de conduite rigide coudé, solidaire dudit dispositif de support et de raccordement fixé sur ladite embase et supportant, de façon fixe et rigide, ledit deuxième élément de conduite rigide coudé, dont l'autre extrémité comprend une deuxième partie d'élément de raccordement complémentaire de ladite première partie d'élément de raccordement et raccordée à celle-ci lorsque ledit élément de support et de raccordement est fixé à ladite embase.
On comprend que la géométrie statique dudit premier élément de conduite rigide en terminaison de ladite conduite reposant au fond de la mer, par rapport à ladite embase, et la géométrie statique dudit deuxième élément de conduite rigide coudé, par rapport audit dispositif de support et raccordement fixé à ladite embase, permettent de positionner les extrémités respectives desdits premier et deuxième éléments de conduites rigides, de manière à faciliter le raccordement des parties complémentaires de connecteurs automatiques une fois que le dispositif de support est raccordement est fixé à ladite embase.
De préférence encore, l'installation de liaison fond-surface présente les caractéristiques selon lesquelles :
- ladite embase est ancrée au fond de la mer par un premier pieu tubulaire passant à travers un orifice traversant de ladite embase, ledit premier pieu étant enfoncé dans le sol au fond de la mer, et sa partie supérieure coopérant avec l'embase de manière à permettre l'ancrage de ladite embase, et - ledit dispositif de support et raccordement supportant ledit deuxième d'élément de conduite rigide coudé comporte un deuxième pieu tubulaire, dénommé insert tubulaire d'ancrage, inséré à l'intérieur dudit premier pieu tubulaire d'ancrage de ladite embase, ladite embase comprenant un dispositif de blocage retenant ledit insert— tubulaire d'ancrage à l'intérieur dudit premier pieu tubulaire en cas de traction dudit deuxième pieu tubulaire vers le haut.
De préférence, lesdits premier et deuxième pieux sont des assemblages d'éléments unitaires standards de conduites rigides ou des portions d'élément unitaire de conduites rigides, ledit deuxième pieu étant plus court que ledit premier pieu.
Ce système d'ancrage de l'embase et de fixation dudit dispositif de support et de raccordement, à l'extrémité inférieure de ladite pièce de transition d'inertie sur ladite embase, est particulièrement avantageux pour les raisons suivantes.
Tout d'abord, la combinaison du premier pieu et de l'insert tubulaire d'ancrage constitue un système de guidage, qui permet de faire coïncider lesdites premières parties d'élément de raccordement et deuxième partie d'élément de raccordement aux extrémités, d'une part, de l'élément de conduite terminal de la conduite reposant au fond de la mer qui est positionné fixement par rapport à ladite embase, et, d'autre part, de l'extrémité dudit élément de conduite rigide positionné fixement par rapport audit dispositif support.
Les efforts transversaux ou efforts tranchants résultant du moment de flexion se produisant au niveau du fond de la mer, au niveau de l'encastrement de l'extrémité inférieure du riser vertical au niveau de ladite embase, résultant des variations angulaires du riser à son extrémité supérieure, ne sont pas transmis à ladite embase mais audit premier pieu d'ancrage, lequel s'étend profondément au fond de la mer sur une longueur de 30 à 70 m. Ainsi il est possible de mettre en œuvre une dite embase de volume et de poids relativement réduits, ce qui permet de pouvoir la descendre relativement aisément depuis la surface, solidaire dudit premier élément de conduite terminal de la conduite reposant au fond de la mer.
Plus particulièrement, ledit insert tubulaire d'ancrage est positionné dans l'axe de ladite pièce de transition d'inertie et ledit deuxième élément de conduite rigide supporté par ledit dispositif de support et de raccordement est incurvé ou coudé de manière à ce que ladite première partie d'élément de raccordement du type connecteur automatique soit dégagée latéralement par rapport au reste dudit dispositif de support et de raccordement, et ladite deuxième partie d'élément de raccordement du type connecteur automatique, à l'extrémité dudit premier élément de conduite rigide terminal de ladite conduite reposant au fond de la mer, solidaire de ladite embase, soit également dégagée par rapport à l'orifice de ladite embase et par rapport audit dispositif de support et raccordement dont ledit insert d'ancrage est inséré à l'intérieur dudit premier pieu d'ancrage.
Dans ce mode de réalisation, ledit premier élément de conduite terminal de ladite conduite reposant au fond de la mer peut, de préférence, être également coudé pour bien coïncider avec l'extrémité dudit deuxième élément de conduite rigide coudé et permettre un raccordement aisé par un automate sous-marin de type ROV au fond de la mer.
Plus particulièrement encore, ledit élément de conduite de transition d'inertie présente une forme cylindro-conique dont : - l'extrémité supérieure la plus mince de la pièce de transition présente un diamètre intérieur et une épaisseur sensiblement égaux aux diamètre intérieur et épaisseur de l'extrémité inférieure dudit riser vertical, auquel elle est fixée, et
- l'extrémité inférieure de la pièce de transition, du coté de ladite première bride de fixation, présente un diamètre intérieur sensiblement égal à celui de l'extrémité inférieure dudit riser vertical, mais une épaisseur supérieure à, de préférence égale à 3 à 10 fois, celle de l'extrémité inférieure dudit riser vertical.
De tels éléments de conduite de transition d'inertie peuvent mesurer de 15 à 50 m de longueur. Plus particulièrement, la partie cylindrique s'étendant sur une longueur de 3 à 5 m et la partie conique sur une longueur de 10 à 47 m. Ces pièces sont très coûteuses à fabriquer, car elles doivent être réalisées à l'aide de conduites très épaisses, mais d'épaisseurs variables, assemblées entre elles, puis usinées sur un tour de très grandes dimensions pour obtenir la forme conique. De telles pièces sont très coûteuses à réaliser, car pour obtenir un bon résultat, il faut que la conduite assemblée par soudage avant usinage soit parfaitement rectiligne, et de plus les tours capables d'usiner avec précision des pièces de 20 à 30m de longueur sont difficiles à trouver et d'un coût opérationnel très élevé.
Dans certains cas extrêmes, les pièces de transition cylindro- coniques ne peuvent pas être réalisées en acier, et nécessitent l'utilisation de titane, ce qui augmente encore le coût et la complexité.
Selon une autre caractéristique originale de la présente invention, ledit élément de conduite terminal de transition d'inertie comprend un élément de conduite rigide principale et au moins une, de préférence une pluralité n d'éléments de conduite de renfort coaxiaux disposés coaxialement au dit élément de conduite principale, chaque dit élément de conduite de renfort présentant un diamètre interne supérieur au diamètre externe de l'élément de conduite principal et le cas échéant au(x) autre(s) élément(s) de conduite de renfort qu'il contient, les différents éléments de conduite principale et élément(s) de conduite de renfort étant positionné(s) avec une de leur extrémités située au même niveau selon la direction de l'axe de symétrie ZiZ'i desdits éléments de conduite, et chaque dit élément de conduite de renfort présentant une longueur (h,, avec i = 2 à n) inférieure à celle de hi de l'élément de conduite principale et le cas échéant celle des autres éléments de conduite de renfort (h,-i) qu'il contient, l'espace annulaire (D -dl+i) entre les différents éléments de conduite étant remplis d'un matériau de remplissage solide, et les différents éléments de conduite principale et conduite de renfort coaxiaux (8b-8d) sont fixés à une même platine inférieure constituée d'une dite première bride de fixation.
Avantageusement, selon l'invention, ledit espace annulaire est entièrement rempli par un même matériau solide de remplissage comprenant de préférence un matériau élastomère, de préférence encore à base de polyuréthanne, présentant une dureté shore supérieure ou égale à A50, de préférence encore de A50 à D70, et ledit élément de transition d'inertie est recouvert d'un matériau de couverture élastomère résistant à la corrosion, de préférence de type polyuréthane, ledit élément de conduite terminale de transition d'inertie présentant une forme sensiblement cylindro-conique de par son revêtement par ledit matériau de couverture.
Selon la présente invention, du fait l'espace annulaire est entièrement rempli d'un même matériau de remplissage et que le matériau de couverture confère une forme cylindro-conique à la pièce de transition, on obtient une variation continue du diamètre en section transversale de la pièce et avec un même matériau de remplissage sur toute la hauteur de la pièce de transition, d'où il résulte une variation d'inertie progressive et continue, c'est-à-dire sans discontinuité d'inertie. En outre, la mise en œuvre d'un matériau de couverture élastomère apporte une protection à la corrosion garantissant une plus grande longévité à ladite pièce de transition, laquelle est soumise à une importante contrainte mécanique et présenterait sans cette protection une longévité réduite.
On comprend que ledit matériau de remplissage solide doit présenter une résistance à la compression de manière à transférer les efforts tranchants vers l'élément de conduite de renfort d'ordre supérieur « i + 1 » de manière proportionnelle à la déformation d'un dit élément coaxial qu'il contient d'ordre « i » sous l'effet d'un effort de flexion subi. En pratique le matériau de remplissage solide doit présenter un coefficient de Poisson de 0.3 à 0.49, de préférence de 0.4 à 0.45.
Ce matériau de remplissage peut être un élastomère tel un caoutchouc ou un polyuréthane seul ou en combinaison avec du sable.
On comprend que ce type d'élément de conduite de transition d'inertie est avantageux de par sa simplicité de fabrication et donc beaucoup moins coûteux que les éléments de conduite présentant une pièce de transition cylindro-conique à paroi d'épaisseur variable de la technique antérieure.
Selon d'autres caractéristiques particulières dudit élément de conduite terminal de transition d'inertie de la présente invention :
- pour des raisons pratiques de fabrication et de coût et aussi pour augmenter la flexibilité et donc la longévité de la pièce de transition, ledit matériau de couverture et ledit matériau de remplissage comprennent un même matériau élastomère, de préférence à base de polyuréthanne.
- ledit matériau solide de remplissage comprend un polyuréthanne de dureté shore A90 ou A95.
- le matériau solide de remplissage comprend un élastomère chargé en matériau particulaire, de préférence du sable.
Dans une variante de réalisation, le matériau solide de remplissage se présente sous forme d'un liant hydraulique tel que du ciment, éventuellement chargé en matériau particulaire, de préférence du sable.
Dans un autre mode de réalisation, ledit matériau solide de remplissage se présente sous forme de matériau particulaire de préférence du sable et/ou un liant hydraulique tel que du ciment :
- la différence entre le diamètre interne dudit élément de conduite principal et le diamètre externe dudit élément de conduite de renfort de plus grand diamètre est égale à 3 à 10 fois, l'épaisseur dudit élément de conduite principale, et le nombre desdits éléments de renfort coaxiaux est n = 2 à 4,
- la différence de longueur entre les différents éléments de conduite de renfort coaxiaux (h, — hl+1) est sensiblement constante et
égale à (H1 x — ) , n
- l'espace annulaire entre deux desdits éléments de conduite est supérieur ou égal à l'épaisseur dudit élément de conduite de plus petite épaisseur et inférieur ou égal à deux fois l'épaisseur dudit élément de conduite de plus grande épaisseur délimitant ledit espace annulaire, - la longueur dudit élément de conduite principale est de 10 à 50 m de préférence de 20 à 30 m et il comprend 2 ou 3 desdits éléments de renfort coaxiaux,
- lesdits élément de conduite principale et éléments de conduite de renforts coaxiaux sont constitués chacun de tout ou partie d'un élément unitaire de conduite standard, notamment conduite sous-marine standard en acier, ou constitué chacun de plusieurs éléments unitaires de conduite standard assemblés bout à bout et de préférence maintenus coaxialement par, des cales de centrage réparties régulièrement le long de leur direction longitudinale et sur la section circulaire dans leurs espaces annulaires.
Un avantage important de l'installation de liaison fond-surface de la présente invention réside également dans la simplicité de sa mise en place au fond de la mer.
La présente invention fournit donc également un procédé de mise en place au fond de la mer d'une installation de liaison fond-surface selon l'invention, comprenant les étapes successives suivantes dans lesquelles :
1/ on descend, au fond de la mer, un dit dispositif d'ancrage, et
2/- on descend une conduite rigide formant un riser vertical, directement fixée, à son extrémité supérieure, à une extrémité de ladite conduite flexible présentant une portion terminale de flottabilité positive, l'autre extrémité de ladite conduite flexible étant suspendue à un flotteur en sub-surface, et
3/- on fixe l'extrémité inférieure de ladite pièce de transition par encastrement au niveau dudit dispositif d'ancrage, et
4/- on déplace l'extrémité de ladite conduite flexible suspendue audit flotteur et on la fixe ou relie à un dit support flottant.
De préférence, un procédé de mise en place d'une installation de liaison fond-surface selon l'invention, comprend les étapes successives suivantes dans lesquelles :
1/- on descend, au fond de la mer, une dite embase solidaire d'un dit premier élément de conduite rigide, ladite embase comprenant un orifice traversant, et
2/- on descend au fond de la mer un dit premier pieu tubulaire d'ancrage que l'on enfonce au fond de la mer à travers ledit orifice de l'embase, pour ancrer ladite embase au fond de la mer, et
3/- on descend au fond de la mer, depuis un navire de surface, ladite conduite rigide constituant ledit riser vertical, directement fixée à son extrémité supérieure à une dite conduite flexible, ladite pièce de transition à l'extrémité inférieure dudit riser étant fixée à un dit dispositif de support et de raccordement, supportant un dit deuxième élément de conduite rigide coudé ainsi qu'un dit insert d'ancrage, et
4/- on fixe ledit dispositif de support et de raccordement sur ladite embase en insérant ledit insert d'ancrage à l'intérieur dudit premier pieu tubulaire, et
5/- de préférence, on verrouille ledit insert d'ancrage à l'intérieur dudit premier pieu tubulaire à l'aide d'un dispositif de blocage, et
6/- on réalise le raccordement desdits premier élément de conduite rigide coudé et deuxième élément de conduite rigide coudé, et 7/- on finit de descendre ladite conduite flexible présentant une portion terminale de flottabilité positive, avec l'autre extrémité de ladite conduite flexible suspendue à un flotteur en sub-surface, et
8/- on déplace puis on fixe ou relie l'autre extrémité de ladite conduite flexible à un dit support flottant.
Ce procédé selon l'invention est particulièrement simple et donc avantageux à mettre en place. Cette simplicité résulte du fait que la fonction d'ancrage sur ladite embase est remplie par ledit insert d'ancrage, en sous face dudit dispositif de support et de raccordement, et que les moments de flexion subis par la pièce de transition d'inertie sont repris par le premier pieu d'ancrage enfoncé au fond de la mer et non par ladite embase, de sorte qu'il est possible de mettre en œuvre une embase relativement de faible poids et faible volume.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lumière de la description détaillée qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins sur lesquels :
- la figure 1 est une vue de côté d'une installation de liaison fond- surface 1 selon l'invention comportant une conduite rigide 9 de type Riser encastrée en partie basse dans un premier pieu 6 traversant une embase 4 et reliée à son extrémité supérieure 9b à une conduite flexible 10 flottante sur une partie terminale 10a de sa longueur, l'autre extrémité de la conduite étant reliée à un FPSO ("Floating Production Storage Offloading") 12,
- la figure 2A est une vue de côté de l'installation de la liaison fond-surface dans son embase en cours de mise en place à partir d'un navire de travail 20,
la figure 2B est une vue de côté de la mise en place d'un dit premier pieu d'ancrage 6 dans une embase supportant l'extrémité d'un conduite sous-marine reposant sur le fond de la mer, - la figure 2C est une vue de côté de l'extrémité inférieure du riser 9 avec une pièce de transition d'inertie 8 au niveau de son raccordement avec un dispositif de support et de raccordement 5 comprenant un insert tubulaire d'ancrage 5e à l'intérieur dudit pieu d'ancrage 6,
- la figure 3 est une vue de côté de l'installation de la liaison fond-surface, en cours de mise en place, après engagement de l'insert d'ancrage 5e dans le pieu d'ancrage 6,
- les figures 3A et 3B représentent en vue de côté et en coupe deux variantes d'embase du raccordement à une conduite reposant au fond de la mer d'une installation de liaison fond-surface selon l'invention,
- la figure 4 est une vue en coupe et en vue de côté d'une pièce de transition 8 massive en acier, de forme conique, installée à l'extrémité inférieure du riser 9,
- les figures 5A-5B-5C sont des vues en coupe et en vue de côté, d'une version préférée de réalisation d'une pièce de transition constituée d'empilements de conduites acier coaxiales, les interstices étant remplis de matériaux plastiques sur les figures 5B et 5C,
- la figure 6 est un diagramme illustrant la variation de l'inertie des pièces de transition selon la figure 5C.
Dans la figure 1 on a représenté une installation de liaison fond- surface 1 reliant une conduite sous-marine 2 reposant sur le fond de la mer 3 à un support flottant de type FPSO 12 en surface amarré par des lignes d'ancre 12a.
Une installation selon l'invention comprend depuis le support 12 en surface jusqu'à une embase 4 au fond de la mer, les éléments suivants : a) une conduite flexible 10 comprenant une première partie 10b concave qui s'étend depuis l'extrémité 10e de la conduite flexible fixée au support flottant 12 jusqu'à environ la moitié de la conduite flexible sous forme d'une configuration en chaînette plongeante de par sa flottabilité négative jusqu'à un point d'inflexion en 1Od sensiblement à la moitié de longueur de la conduite flexible, la partie terminale 10a s'étendant depuis le point central d'inflexion 1Od jusqu'à l'extrémité 10c de la conduite flexible présentant une flottabilité positive de par une pluralité de flotteurs 1Of de préférence régulièrement espacés le long et autour de ladite portion terminale 10a de conduite flexible, et b) une conduite rigide montante en acier 9 ou « riser vertical » équipée de moyens de flottabilité, non représentés, tels des demi- coquilles de mousse syntactique réparties de préférence de manière uniforme sur tout ou partie de la longueur de ladite conduite rigide, et comprenant à son extrémité inférieure une pièce de transition d'inertie 8 équipé d'une première bride de fixation 9a à son extrémité inférieure. La première bride de fixation 9a est fixée sur une deuxième bride de fixation 5a constituant la partie supérieure d'un dispositif de support et de raccordement 5, lui-même ancré sur le premier pieu 6 solidaire de l'embase 4 reposant au fond de la mer, ledit dispositif de support et raccordement 5 permettant le raccordement de l'extrémité inférieure du riser 9 à une conduite 2 reposant au fond de la mer, comme explicité ci- après.
La conduite flexible présente une variation de courbure continue, d'abord concave dans la partie configuration de chaînette plongeante
10b, puis convexe dans la portion terminale de flottabilité positive 10a avec un point d'inflexion 1Od entre les deux, formant ainsi un S disposé dans un plan sensiblement vertical .
La courbe géométrique formée par une conduite de poids uniforme en suspension soumise à la gravité, appelée "chaînette" est une fonction mathématique de type cosinus hyperbolique (Coshx = (ex + e"x)/2, reliant l'abscisse et l'ordonnée d'un point quelconque de la courbe selon les formules suivantes : y = R0(cosh(x/R0) - 1) R = Ro.(Y/Ro + I)2 dans lesquelles :
- x représente la distance dans la direction horizontale entre le point de tangence horizontale et un point M de la courbe, - y représente l'altitude du point M (x et y sont donc les abscisses et ordonnées d'un point M de la courbe par rapport à un repère orthonormé dont l'origine est audit point de tangence)
- R0 représente le rayon de courbure au dit point de tangence horizontale. - R représente le rayon de courbure au point M (x, y)
Ainsi, la courbure varie le long de la chaînette depuis la surface (pour une chaînette plongeante) ou depuis sa partie terminale à l'extrémité supérieure du riser (pour une chaînette inversée) où son rayon a une valeur maximale Rmax, jusqu'au point de tangence horizontale (qui est le point bas de la chaînette plongeante 10b et le point haut de la chaînette inversée 10a), où son rayon a une valeur minimale Rmιn (ou R0 dans la formule ci-dessus).
En opération, tel que représenté sur la figure 1, lorsque la partie supérieure de la conduite rigide 9 est inclinée selon une inclinaison y par rapport à la verticale ZZ', l'extrémité 10c de la portion terminale de la flottabilité positive 10a de la conduite flexible reste sensiblement dans l'alignement axial Z'iZ' de l'extrémité supérieure 9b de la conduite rigide 9, et en tout état de cause en continuité de variation de courbure avec l'extrémité supérieure 9b de la conduite rigide, laquelle peut être également légèrement courbée. On entend ici par « variation continue de courbure » qu'il n'y a pas de point singulier au sens mathématique dans cette variation de courbure. Ceci confère une meilleure résistance mécanique à la fixation étanche 11 entre les deux conduites et permet d'éviter la mise en œuvre d'un dispositif col de cygne tel que mis en œuvre dans la technique antérieure.
L'intérêt de cette conduite flexible est de permettre de par sa portion initiale 10b plongeante d'amortir les excursions des supports flottants 12 de façon à stabiliser l'extrémité 10c de la conduite flexible reliée à une conduite rigide montante du riser vertical 1.
L'extrémité de la portion de la partie terminale flottante 10c de la conduite flexible porte un premier élément de bride de fixation 11 avec l'extrémité supérieure d'une conduite rigide s'étendant depuis le fond de la mer encastrée au niveau d'une embase 4 reposant au fond de la mer.
Le riser vertical 9 est « tensionné » d'une part par la flottabilité de la partie terminale 10a de la conduite flexible, mais d'autre part et surtout, par des flotteurs régulièrement répartis au moins sur la partie supérieure 9b, de préférence, tout le long de la conduite rigide, notamment sous forme de mousse syntactique faisant avantageusement fonction à la fois de système d'isolation et de flottabilité. Ces flotteurs et cette mousse syntactique peuvent être répartis le long et autour de la conduite rigide sur toute sa longueur ou, de préférence, seulement sur une portion de sa partie supérieure.
Ainsi, si l'embase 4 se trouve à une profondeur de 2500 mètres, on peut se borner à revêtir la conduite rigide 1 de mousse syntactique sur une longueur de 1000 m à partir de son extrémité supérieure, ce qui permet de mettre en œuvre une mousse syntactique qui doit résister à une pression moindre que si elle devait résister à des pressions allant jusqu'à 2500 m, et donc d'un coût radicalement réduit par rapport à une mousse syntactique devant résister à ladite profondeur de 2500 m.
La conduite rigide 1 selon l'invention est donc « tensionnée » sans mise en œuvre d'un flotteur en surface ou en sub-surface comme dans la technique antérieure, ce qui limite les effets du courant et de la houle, et de ce fait réduit radicalement l'excursion de la partie haute du riser vertical et donc les efforts en pied de riser au niveau de l'encastrement.
Pour donner à l'ensemble de la liaison fond-surface une grande souplesse, on exerce avantageusement une tension verticale sur la fondation fonction de la hauteur d'eau selon la formulation suivante : F = kH, F étant exprimé en tonnes, H étant exprimé en mètres, k étant tel que 0.15 > k > 0.05, de préférence k ≈ 0.1. Si la flottabilité positive est répartie sur toute la longueur de la conduite rigide, elle représente ainsi de 50 à 150 kg de poussée résultante par mètre de conduite.
Elle est répartie, de préférence de manière continue, le long de la conduite rigide, ainsi que le long de la partie terminale 10a de la conduite flexible. Sur cette dernière, la répartition se fait généralement au moyen de bouées 1Of espacées les unes des autres et distribuées régulièrement sur la portion 10a, chacune représentant l'équivalent de quelques mètres de la poussée requise, par exemple pour un espacement de 5 à 10 m, la poussée résultante requise pour chaque flotteur sera de
250 à 1500 kg par flotteur.
Il est bien entendu que la flottabilité globale correspond à ce qu'il est communément appelé la "Poussée d'Archimède" ou "Poids Apparent" sur chacune des parties de la liaison fond-surface : correspondant d'une part à la flottabilité requise pour contrebalancer le poids apparent respectif de la conduite rigide et de la conduite flexible, et d'autre part à la flottabilité additionnelle nécessaire au tensionnement qui permet d'obtenir ainsi une poussée résultante verticale de 50 à 150kg/m comme précédemment décrit.
En procédant ainsi, la flottabilité globale au niveau de la transition entre conduite rigide et conduite flexible étant sensiblement constante, il en résulte une continuité de variation de courbure entre l'extrémité supérieure de ladite conduite rigide et l'extrémité de ladite conduite flexible qui lui est reliée, sans point singulier, au sens mathématique du terme.
Le système bride de fixation 11 entre l'extrémité supérieure du riser vertical 9 et de la conduite flexible 10, et la connexion des brides de fixation 9a, 5a entre l'extrémité inférieure à la pièce de transition d'inertie 8 et du dispositif de support à raccordement 5, réalisent des connexions étanches entre les conduites concernées.
L'embase 4 reposant au fond de la mer supporte un premier élément de conduite terminal 2a coudé ou incurvé de ladite conduite reposant au fond de la mer 2. Ce premier élément de conduite terminal coudé ou incurvé 2a comporte à son extrémité une première partie mâle ou femelle d'un connecteur automatique 7b, qui est dégagé latéralement par rapport à un orifice traversant 4a de ladite embase, mais positionné de manière fixe et déterminée par rapport à l'axe ZZ' dudit orifice.
Le dispositif de support et de raccordement 5, supporte un deuxième élément de conduite rigide coudé 5b comportant à son extrémité supérieure ladite deuxième bride de fixation 5a et à son extrémité inférieure, une deuxième partie femelle ou mâle d'un connecteur automatique 7a, complémentaire de la partie 7b.
Un premier pieu tubulaire d'ancrage 6 est descendu depuis un navire d'installation 20 en surface, puis enfoncé, de préférence battu de manière connue, à travers un orifice 4a traversant verticalement de part en part l'embase 4 jusqu'à ce qu'une excroissance périphérique 6a à l'extrémité supérieure dudit premier pieu 6 vienne coopérer avec une forme complémentaire 4c en partie supérieure dudit orifice 4a de l'embase. L'orifice 4a est légèrement plus grand que le premier pieu 6 pour le laisser librement coulisser. Et lorsque le battage dudit premier pieu est terminé, l'embase 4 se trouve ainsi clouée au sol sans pouvoir se déplacer latéralement ni pivoter autour d'un quelconque axe horizontal .
Eventuellement, on prévoit une pluralité d'orifices et de dits premiers pieux 6.
Dans le procédé de mise en place d'une installation de liaison fond-surface selon l'invention, la première étape consiste à descendre au fond de la mer depuis la surface, ladite embase équipée dudit premier élément de conduite terminal 2a de la conduite reposant au fond de la mer. Après ancrage de ladite embase par un dit premier pieu 6, on réalise l'ancrage de la pièce de transition 8 à l'extrémité inférieure du riser vertical par fixation sur le dispositif de support et raccordement 5, lui-même ancré sur ladite embase, formant ainsi un encastrement rigide de l'extrémité inférieure du riser vertical.
Le dispositif de support et de raccordement 5 est constitué d'éléments de structure rigide et raidisseur 5c supportant ladite deuxième bride de fixation 5a et ledit deuxième élément de conduite rigide coudée 5b, lesdits éléments de structure rigide 5c assurant également la liaison entre ladite deuxième bride de fixation 5a et une platine inférieure 5d supportant en sous-face un deuxième pieu tubulaire 5e dénommé insert tubulaire d'ancrage.
Lorsque l'embase 4 est ancrée au fond de la mer 3 comme représenté sur la figure 2A, on fabrique à bord du navire de surface 20 les divers éléments de liaison fond-surface, notamment l'assemblage des rames constituées d'une pluralité d'éléments de conduites standard, que l'on descend progressivement. On descend tout d'abord ledit dispositif 5 connecté de manière étanche à l'extrémité inférieure du riser vertical 9 par l'intermédiaire de la pièce de transition conique 8, puis l'intégralité du riser vertical équipé de ses éléments de flottabilité, et enfin la conduite de liaison flexible équipé de ses éléments de flottabilité fixée en continuité directe de l'extrémité supérieure du riser vertical 9.
L'assemblage et la pose de la conduite rigide 9 se font de façon classique depuis le navire 20 par assemblage d'éléments de conduites unitaires ou rames d'éléments unitaires stockés sur le navire de surface 20, et descendus au fur et à mesure selon une technique connue de l'homme de l'art et décrite notamment dans des demandes de brevets antérieures au nom de la demanderesse, à partir d'un navire de pose en J.
Lorsque l'intégralité de la conduite rigide 9 a été fabriquée et descendue au fond de la mer, on connecte de manière connue, par exemple au moyen de brides 11 l'extrémité supérieure de la conduite 9 à l'extrémité d'une conduite flexible 10, laquelle au fur et à mesure de son dévirage depuis le navire de pose 20 se présente tout d'abord sous forme verticale comme représenté sur la figure 2A de par le fait qu'elle est rendue flottante au moins dans sa partie terminale 10a par les éléments de flottabilité 1Of régulièrement répartis sur la portion terminale 10a.
On notera également que la conduite rigide en acier 9 peut être de manière connue une conduite de type Pipe-in-Pipe comportant un système d'isolation dans l'espace annulaire entre les deux conduites coaxiales constituant le riser 9 et en outre un système d'isolation tel que de la mousse syntactique faisant office de système de flottabilité comme décrit ci-dessus.
Lorsque l'extrémité inférieure de l'insert tubulaire d'ancrage 5e, de préférence présentant une forme légèrement conique 5f est positionnée à proximité et à l'aplomb de l'orifice 4a de l'embase 4, on dirige avantageusement ledit insert tubulaire d'ancrage 5e, plus précisément grâce à un sous-marin automatique ou « ROV » 20a piloté depuis la surface. Ledit insert tubulaire 5e de longueur de 10 à 15 m rentre alors naturellement de par son propre poids dans ledit premier pieu tubulaire d'ancrage enfoncé au fond de la mer sur une profondeur de 30 à 70 m.
Le diamètre externe de l'insert tubulaire d'ancrage 5e peut être légèrement inférieur au diamètre interne du premier pieu 6, par exemple inférieur de 5 cm, ce qui facilite le guidage de l'insert tubulaire 5 à l'intérieur dudit premier pieu 6, tout en empêchant les mouvements transversaux dans un plan horizontal une fois que l'insert tubulaire 5 est complètement inséré comme représenté sur la figure 3.
A ce moment, un verrou 4b représenté en position rétractée sur la figure 2A est déplacé en position engagée comme sur les figures 1 et 3 de manière à venir bloquer la platine supérieure 5d de l'insert tubulaire 5e, à l'intérieur dudit premier pieu 6, empêchant ainsi tout déplacement vers le haut de l'ensemble de liaison fond-surface 1 qui se trouve encastré par l'intermédiaire du dispositif de support de raccordement 5 dans le premier pieu 6 solidaire de ladite embase 4. Après avoir engagé le verrou 4b, on termine le dévirage de la conduite flexible comme représenté sur la figure 3 et l'on connecte l'extrémité supérieure de la conduite flexible à une bouée provisoire de sub-surface 21, elle-même reliée à un corps mort 21 b reposant au fond de la mer par un câble 21a.
En procédant ainsi, on pré-installe avantageusement l'intégralité de la liaison fond-surface 1 avant la mise en place du FPSO 12, ce qui facilite grandement les opérations.
Une fois le support flottant 12 positionné en surface, on récupère l'extrémité 10e de la conduite flexible 10 que l'on vient alors connecter au dit support flottant FPSO 12 comme représenté sur la figure 1, et l'on récupère la bouée provisoire 21 ainsi que son corps mort 21b et son câble d'ancrage 21a.
L'insert tubulaire 5e transmet au dit premier pieu tubulaire 6, les moments de flexion dus aux efforts tranchants et transversaux subis au niveau de l'encastrement de la pièce 8 sur le dispositif 5.
Le système de fixation de l'extrémité supérieure de la conduite rigide 9 avec la conduite flexible 10 et le tensionnement desdites conduites confère une plus grande stabilité à l'extrémité supérieure de la conduite rigide 9 avec une variation angulaire Y ne dépassant pas en opération les 5°C.
Ainsi, il a été possible selon la présente invention de réaliser un encastrement rigide de l'extrémité inférieure de la conduite rigide en acier 9 sur l'embase 4 à l'aide du dispositif de support de raccordement 5. Pour ce faire, l'élément de conduite terminal inférieur de la conduite rigide 9 comprend une pièce de transition conique 8 dont l'inertie en section transversale augmente progressivement depuis une valeur sensiblement identique à l'inertie de l'élément de conduite du riser 9 auquel il est relié, dans la partie haute effilée de la pièce de transition 8, jusqu'à une valeur de 3 à 10 fois supérieure au niveau de sa partie basse reliée à ladite première bride de fixation 9a. Le coefficient de variation d'inertie dépend essentiellement du moment de flexion que doit supporter le riser vertical au niveau de ladite pièce de transition, ledit moment étant fonction de l'excursion maximale de la partie supérieure de la conduite rigide en acier 9, donc de l'angle Y. Pour réaliser cette pièce de transition 8 on utilise des aciers à haute limite élastique et dans les cas extrêmes de contrainte, on peut être amené à fabriquer des pièces de transition 8 en titane.
Sur la figure 4, on a représenté une pièce de transition cylindro- conique 8 présentant une épaisseur variable augmentant progressivement depuis la partie haute effilée 81 jusqu'à la partie basse plus épaisse 82 avec un diamètre interne constant correspondant au diamètre interne d'une conduite rigide standard et en tout état de cause, au diamètre interne dudit deuxième élément de conduite rigide 6.
Dans une version préférée de l'invention, représentée en coupe et en vue de côté sur les figures 5A-5B-5C, la pièce de transition 8 est constituée d'un élément de conduite principal en acier 8a, de préférence de diamètre interne di identique à celui de la partie courante de la conduite 9, et de préférence d'épaisseur égale ou légèrement supérieure à celle de ladite partie courante de ladite conduite 9, et de préférence d'épaisseur égale à celle dudit deuxième élément de conduite coudé 5b. Pour obtenir une augmentation de l'inertie au fur et à mesure que l'on se rapproche de la bride d'encastrement 9a, on dispose d'une succession d'éléments de conduites coaxiaux (8b-8d) de hauteurs (h2,h3,h4) décroissantes, chacun des desdits éléments de conduites coaxiaux ayant un diamètre interne (d2-d4) supérieur au diamètre externe Di-D3 de l'élément de conduite coaxial précédent qu'il contient et une longueur ou hauteur inférieure à la longueur de l'élément de conduite précédent, c'est-à-dire l'élément de conduite qu'il contient ou qu'il recouvre, et une épaisseur fonction de l'augmentation de raideur recherchée.
Ainsi, sur la figure 5A, on a représenté une pièce de transition 8 comportant un premier élément de conduite interne 8a et trois élément de conduite de renfort coaxiaux 8b-8c-8d de diamètres d2-d3-d4 croissants et de longueurs h2-h3-h4 décroissantes, chacun desdits éléments de conduite coaxiaux étant solidaire à son extrémité inférieure de la même dite première bride 9a. Pour assurer une variation sensiblement continue de l'inertie entre la partie haute de faible inertie de la pièce de transition 8, et la partie basse de forte inertie située au raccordement avec la bride 9a, on injecte avantageusement dans les espaces annulaires entre lesdits éléments de conduites coaxiaux, un matériau 8e élastomère, de préférence tel un polyuréthanne, dont on ajuste la dureté shore pour obtenir la variation de raideur recherchée, notamment une dureté shore de A50 à D70.
On peut se contenter d'injecter ledit matériau rigide 8e seulement dans les interstices annulaires entre les éléments de conduite coaxiaux, comme représenté sur la figure 5C. Mais, selon l'invention on installe un moule de manière à obtenir une pièce cylindro-conique telle que représentée sur la figure 5B, ce qui permet d'effectuer en une seule opération le renforcement de la pièce de transition et sa protection vis- à-vis de l'agression du milieu extérieur par un revêtement externe lui conférant ainsi une forme cylindro-conique avec une transition d'inertie régulière et continue. On aura pris soin de ne pas recouvrir de résine thermodurcissable la partie supérieure de la pièce de transition sur une longueur de 20 à 50cm de manière à pouvoir l'assembler à bord du navire d'installation 20, par soudage à l'extrémité inférieure de la conduite rigide 9.
On comprend que pour fabriquer la pièce de transition 8 selon l'invention, on procède comme suit :
- on soude l'extrémité inférieure du premier élément de conduite principale 8a de plus grande longueur sur la bride 9a, et
- on insère autour dudit premier élément de conduite principal 8a un premier élément de conduite de renfort 8b coaxial dont on soude l'extrémité inférieure sur la même bride 9a, et
- on insère la deuxième conduite de renfort 8c autour du premier élément de conduite de renfort 8b, et on soude son extrémité inférieure sur la bride 9a, et
- on insère un troisième élément de conduite de renfort 8d de plus petite hauteur autour du deuxième élément de conduite de renfort 8c, et on soude son extrémité inférieure sur la bride 9a, et
- on injecte un matériau thermoplastique ou thermodurcissable entre les divers éléments de conduites, et le cas échéant on revêt leur surface externe à l'aide d'un un moule cylindro-conique pour obtenir la rigidité et variation d'inertie et protection contre la corrosion recherchées.
Sur la figure 6, on a représenté le diagramme de variation de l'inertie I en ordonnée entre la bride 9 et l'extrémité supérieure de la pièce de transition 8 des figures 5B et 5C. L'escalier 30 en pointillé représente la variation de la section d'acier en l'absence de matériau de couverture et remplissage au niveau de chacun des éléments de conduites de renfort. Les courbes 31-32-33 représentent la variation de l'inertie (ΣEI) de la pièce de transition 8 des figures 4 et 5C en fonction de sa longueur, selon le type de matériau de remplissage. La courbe 33, de forme parabolique est obtenue avec un matériau de remplissage de type polyuréthane de dureté shore A90 ou A95, et constitue une version préférée de l'invention. La courbe 31 est obtenue avec un matériau beaucoup plus raide, tel un ciment à très hautes performances, seul ou en combinaison avec une charge pulvérulente, tel un sable.
La courbe intermédiaire 32 correspond à la pièce de transition en acier de la figure 4.
La mise en œuvre d'un même matériau de remplissage et matériau de couverture selon le profil cylindro-conique de la figure 5B de type polyuréthanne, tel que décrit précédemment, de préférence de dureté A90 ou A95 se rapproche davantage de la courbe 32 que des courbes 31 et 33 et constitue donc la version préférée de l'invention en termes de variation d'inertie. A titre d'exemple, une pièce de transition de 18m de longueur hi est réalisée à l'aide d'une bride 9a de 200 mm d'épaisseur sur laquelle on soude un élément de conduite principale 8a de diamètre externe di = 323.85mm, d'épaisseur 20.6mm et de longueur hu = 18m, d'un premier renfort coaxial 8b de diamètre externe d2 =457.20mm, d'épaisseur 12.7mm et de longueur U2 = 12m, d'un second renfort coaxial 8c de diamètre externe d3 =609.6mm, d'épaisseur 6mm et de longueur h3 = 6m . Puis on surmoule le tout, soit en position verticale, soit en position oblique avec une pente de 5 à 30% pour faciliter le remplissage et éviter les vides, à l'aide d'une résine polyuréthanne 8e de dureté shore A90 ou A95. L'espace entre la première conduite 8a et le premier renfort 8b est de 53.98mm, et l'espace entre le second renfort et le premier renfort est de 70.2mm. L'augmentation de l'inertie est sensiblement d'un facteur k=3 au niveau du premier renfort 8b, et d'un facteur k= 5 au niveau du second renfort 8c. Lors de la coulée, on effectue avantageusement des cycles de dépression dans le moule en cours de remplissage de manière à éliminer au maximum les bulles d'air indésirables. En effet, du fait que la pièce de transition a pour vocation d'être installée à très grande profondeur, la pression hydrostatique peut avoir des effets préjudiciables sur le fonctionnement mécanique d'ensemble suite à un effondrement sur elle-même desdites bulles due à ladite pression qui est sensiblement de 10M Pa par tranche de 1000m d'eau.
Sur la figure 3A, on a décrit l'invention avec une embase 4 posée en même temps que la conduite sous-marine reposant sur le fond, ladite embase étant stabilisée par un premier pieu 6 la traversant. Mais on reste dans l'esprit de l'invention en considérant comme sur la figure 3B une embase 4 constituée par une ancre à succion, présentant un orifice, de préférence circulaire intégré à ladite ancre à succion et jouant le rôle de pieu 6 et capable de recevoir l'insert d'ancrage 5e. Ainsi, le dispositif de support et de raccordement 5 à l'extrémité inférieure de la liaison fond-surface se trouve encastré directement dans l'ancre à succion dont le poids atteint 25 à 50 tonnes pour un diamètre de 3 à 5m et une hauteur de 20-25m . Dans cette configuration, la conduite sous- marine 2 est posée de manière indépendante et nécessite de ce fait une conduite de jonction 7 fabriquée à la demande après installation de la liaison fond-surface et de la conduite sous-marine 2. Ladite conduite de jonction 7 nécessite alors deux connecteurs automatiques 7a-7ai,7bi-7b, un à chacune de ses extrémités, alors que la version décrite en référence à la figure 3A ne nécessite qu'un seul connecteur automatique 7a-7b.
L'invention a été décrite dans une version préférée fabriquée et simultanément installée sur site à partir d'un navire de pose 20, mais on reste dans l'esprit de l'invention avec une préfabrication de l'ensemble complet sur un chantier à terre, l'ensemble étant ensuite remorqué sensiblement à l'horizontale jusqu'au site, puis enfin cabane en vue de l'insertion de l'insert d'ancrage 5e dans le premier pieu tubulaire 6.

Claims

REVENDICATIONS
1. Installation de liaison fond-surface, notamment à grande profondeur de plus de 1 000 m, comprenant : a- au moins une conduite rigide montante, sensiblement verticale, dénommée riser vertical (9), fixée à son extrémité inférieure à un dispositif d'ancrage (4, 5, 6) au fond de mer (3), et b- au moins une conduite de liaison flexible (10) assurant la liaison entre un support flottant (12) et l'extrémité supérieure dudit riser vertical (9), c/ une extrémité de ladite conduite flexible est directement raccordée, de préférence par un système de brides (11), à l'extrémité supérieure dudit riser vertical (9), et d/ l'extrémité inférieure dudit riser vertical comprend un élément de conduite terminal formant une pièce de transition d'inertie (8) dont la variation de l'inertie est telle que l'inertie dudit élément de conduite terminal , à son extrémité supérieure, soit sensiblement identique à celle de l'élément de conduite de la partie courante du riser vertical auquel elle est reliée, ladite inertie de l'élément de conduite terminal (8) augmentant progressivement jusqu'à l'extrémité inférieure de ladite pièce de transition d'inertie, comprenant une première bride de fixation (9a) permettant l'encastrement (5a-5e) de l'extrémité inférieure dudit riser vertical au niveau dudit dispositif d'ancrage (4, 5, 6) au fond de la mer,
caractérisée en ce que :
- une partie terminale (10a) de la conduite flexible, du coté de sa jonction à l'extrémité supérieure dudit riser, présente une flottabilité positive, et au moins la partie supérieure (9b) dudit riser vertical présente également une flottabilité positive, de sorte que les flottabilités positives de ladite partie terminale (10a) de la conduite flexible et de ladite partie supérieure (9a) dudit riser vertical (9) permettent le tensionnement dudit riser en position sensiblement verticale et l'alignement ou la continuité de courbure entre l'extrémité de ladite partie terminale (10a) de la conduite flexible et la partie supérieure (9b) dudit riser vertical au niveau de leur raccordement, ladite flottabilité positive étant apportée par une pluralité de flotteurs périphériques coaxiaux (1Of), régulièrement espacés et/ou un revêtement continu en matériau de flottabilité positive, et - ladite partie terminale (10a) de conduite flexible (10) présentant une flottabilité positive, s'étend sur une partie de la longueur totale de la conduite flexible, tel que la conduite flexible présente une configuration en S, avec une première portion (10b) de conduite flexible du coté dudit support flottant (12) présentant une courbure concave en forme de chaînette à configuration de chaînette plongeante et ladite partie terminale restante de ladite conduite flexible (10a) présentant une courbure convexe en forme de chaînette inversée de par sa flottabilité positive, l'extrémité (10c) de ladite partie terminale de conduite flexible (10b), au niveau de l'extrémité supérieure dudit riser, étant située au dessus et de préférence sensiblement dans l'alignement de l'axe (Z1Z1O dudit riser à son extrémité supérieure (9b).
2. Installation de liaison fond-surface selon la revendication 1, caractérisée en ce que : - ladite flottabilité positive est régulièrement et uniformément répartie sur l'ensemble de la longueur de ladite partie terminale (10a) de conduite flexible et au moins ladite partie supérieure (9b) de conduite rigide, de préférence sur toute la longueur de ladite conduite rigide, de façon à obtenir une poussée résultante verticale de 50 à 150 Kg/mètre sur l'ensemble de la longueur de ladite conduite rigide et la longueur de ladite partie terminale de conduite flexible, et - ladite conduite flexible (10) présente une flottabilité positive (10a) sur une longueur correspondant à 30 à 60%, de sa longueur totale, de préférence environ la moitié de sa longueur totale.
3. Installation de liaison fond-surface selon la revendication lou 2, caractérisée en ce que : ledit riser vertical (9) est relié à son extrémité inférieure à au moins une conduite reposant au fond de la mer (2), et ledit dispositif d'ancrage (4, 5, 6) comprend un dispositif de support et de raccordement (5) fixé sur une embase (4) posée et ancrée (6) au fond de la mer, et ladite conduite reposant au fond de la mer (2) comprend un premier élément de conduite rigide terminal (2a) solidaire de ladite embase (4) reposant au fond de la mer (3) et ledit premier élément de conduite terminal est maintenu fixement par rapport à ladite embase, avec, à son extrémité, une première partie d'élément de raccordement (7b), de préférence un élément mâle ou femelle d'un connecteur automatique, et ladite première bride de fixation (9a) à l'extrémité inférieure de ladite pièce de transition d'inertie (8) est fixée à une deuxième bride de fixation (5a) à l'extrémité d'un deuxième élément de conduite rigide coudé (5b), solidaire dudit dispositif de support et de raccordement (5a-5e) fixé sur ladite embase (4) et supportant, de façon fixe et rigide, ledit deuxième élément de conduite rigide coudé (5b), dont l'autre extrémité comprend une deuxième partie d'élément de raccordement (7a) complémentaire de ladite première partie d'élément de raccordement (7b) et raccordée à celle-ci lorsque ledit élément de support et de raccordement (5a-5e) est fixé à ladite embase.
4. Installation de liaison fond-surface selon la revendication 3, caractérisée en ce que : - ladite embase (4) est ancrée au fond de la mer par un premier pieu tubulaire (6) passant à travers un orifice traversant (4a) de ladite embase, ledit premier pieu (6) étant enfoncé dans le sol au fond de la mer, et sa partie supérieure (60) coopérant avec l'embase de manière à permettre l'ancrage de ladite embase, et
- ledit dispositif de support et raccordement (5a-5e) supportant ledit deuxième d'élément de conduite rigide coudé (5b) comporte un deuxième pieu tubulaire, dénommé insert tubulaire d'ancrage (5e), inséré à l'intérieur dudit premier pieu tubulaire d'ancrage de ladite embase, ladite embase comprenant un dispositif de blocage (4a) retenant ledit insert-tubulaire d'ancrage (5e) à l'intérieur dudit premier pieu tubulaire (2b) en cas de traction dudit deuxième pieu tubulaire (5e) vers le haut.
5. Installation de liaison fond-surface selon la revendication 4, caractérisée en ce que lesdits premier et deuxième pieux sont des assemblages d'éléments unitaires standards de conduites rigides ou des portions d'élément unitaire de conduites rigides, ledit deuxième pieu étant plus court que ledit premier pieu.
6. Installation de liaison fond-surface selon la revendication 4 ou 5, caractérisée en ce que ledit insert tubulaire d'ancrage (5e) est positionné dans l'axe de ladite pièce de transition d'inertie (8) et ledit deuxième élément de conduite rigide (6) supporté par ledit dispositif de support et de raccordement (5a-5e) est incurvé ou coudé de manière à ce que ladite première partie d'élément de raccordement (7a) du type connecteur automatique soit également dégagée latéralement par rapport au reste dudit dispositif de support et de raccordement (5), et ladite deuxième partie d'élément de raccordement (7b) du type connecteur automatique, à l'extrémité dudit premier élément de conduite rigide terminal (2a) de ladite conduite reposant au fond de la mer (2), solidaire de ladite embase (4), soit également dégagée par rapport à l'orifice (4a) de ladite embase et par rapport audit dispositif de support et raccordement (5) dont ledit insert d'ancrage est inséré à l'intérieur dudit premier pieu d'ancrage (6).
7. Installation de liaison fond-surface selon l'une des revendications 1 à 6, caractérisée en ce que ledit élément de conduite terminal de transition d'inertie (8) présente une forme cylindro-conique dont :
- l'extrémité supérieure la plus mince de la pièce de transition présente un diamètre intérieur (di) et une épaisseur sensiblement égaux aux diamètre intérieur et épaisseur de l'extrémité inférieure dudit riser vertical, auquel elle est fixée, et
- l'extrémité inférieure de la pièce de transition, du coté de ladite première bride de fixation (9a), présente un diamètre intérieur (di) sensiblement égal à celui de l'extrémité inférieure dudit riser vertical, mais une épaisseur (D4-di) supérieure, de préférence égale à 3 à 10 fois, celle de l'extrémité inférieure dudit riser vertical .
8. Installation de liaison fond-surface selon la revendication 6 ou 7, caractérisée en ce que ledit élément de conduite terminal de transition d'inertie (8) comprend un élément de conduite rigide principale (8a) et au moins une, de préférence une pluralité (n) d'éléments de conduite de renfort coaxiaux (8b-8d) disposés coaxialement au dit élément de conduite principale (8a), chaque dit élément de conduite de renfort (8b-8d) présentant un diamètre interne (d,+i) supérieur au diamètre externe (D1 (D,) de l'élément de conduite principal et le cas échéant au(x) autre(s) élément(s) de conduite de renfort qu'il contient, les différents élément de conduite principale (8a) et élément(s) de conduite de renfort (8b-8d) étant positionné(s) avec une de leur extrémités située au même niveau selon la direction de l'axe de symétrie (ZiZ'i) desdits éléments de conduite, et chaque dit élément de conduite de renfort (8b-8d) présentant une longueur (Iv1, avec i = 2 à n) inférieure à celle de hi de l'élément de conduite principale et le cas échéant celle des autres éléments de conduite de renfort (hl+ 1) qu'il contient, l'espace annulaire (D1 - d,+i) entre les différents éléments de conduite étant remplis d'un matériau de remplissage solide (8e), et les différents éléments de conduite principale (8a) et conduite de renfort coaxiaux (8b-8d) sont fixés à une même platine inférieure (9a) constituée d'une dite première bride de fixation (9a).
9. Installation de liaison fond-surface selon la revendication 8, caractérisée en ce que : ledit espace annulaire est entièrement rempli par un même matériau solide de remplissage comprenant de préférence un matériau élastomère, de préférence encore à base de polyuréthanne, présentant une dureté shore supérieure ou égale à A50, de préférence encore de A50 à D70, et ledit élément de transition d'inertie est recouvert d'un matériau de couverture élastomère résistant à la corrosion, de préférence de type polyuréthane, ledit élément de conduite terminale de transition d'inertie présentant une forme sensiblement cylindro-conique de par son revêtement par ledit matériau de couverture.
10. Installation de liaison fond-surface selon l'une des revendications 8 ou 9, caractérisée en ce que ledit matériau de couverture et ledit matériau de remplissage comprennent un même matériau élastomère de préférence à base de polyuréthanne, de préférence ledit matériau solide de remplissage comprend un polyuréthanne de dureté shore A90 ou A95.
11. Installation de liaison fond-surface selon l'une des revendications 8 ou 10, caractérisée en ce que ledit matériau de remplissage comprend un élastomère chargé de matériau particulaire, de préférence du sable.
12. Installation de liaison fond-surface selon l'une des revendications 8 à 11, caractérisée en ce que la longueur dudit élément de conduite principale (8a) est de 10 à 50 m de préférence de 20 à 30 m et il comprend 2 ou 3 desdits éléments de renfort coaxiaux (8b-8d).
13. Installation de liaison fond-surface selon l'une des revendications 8 à 12, caractérisée en ce que lesdits éléments de conduite principale (8a) et éléments de conduite de renforts coaxiaux (8b-8d) sont constitués chacun de tout ou partie d'un élément unitaire de conduite standard, notamment conduite sous-marine standard en acier, ou constitué chacun de plusieurs éléments unitaires de conduite standard assemblés bout à bout et de préférence maintenus coaxialement par, des cales de centrage réparties régulièrement le long de leur direction longitudinale et sur la section circulaire dans leurs espaces annulaires.
14. Procédé de mise en place au fond de la mer (3) d'une installation de liaison fond-surface selon l'une des revendications 1 à 13, caractérisé en ce qu'elle comprend les étapes successives suivants dans lesquelles :
1/ on descend, au fond de la mer, un dit dispositif d'ancrage (5), et
2/- on descend une conduite rigide (9) formant un riser vertical, directement fixée, à son extrémité supérieure, à une extrémité (10c) de ladite conduite flexible (10) présentant une portion terminale (10a) de flottabilité positive, l'autre extrémité (10e) de ladite conduite flexible
(10) étant suspendue à un flotteur en sub-surface (21), et
3/- on fixe l'extrémité inférieure de ladite pièce de transition (8) par encastrement au niveau dudit dispositif d'ancrage (5), et 4/- on déplace l'extrémité (10e) de ladite conduite flexible suspendue audit flotteur et on la fixe ou relie à un dit support flottant (12).
15. Procédé selon la revendication 15, pour mettre en place une installation de liaison fond-surface selon l'une des revendications 3 à 14, caractérisé en ce que l'on réalise les étapes successives suivants dans lesquelles :
1/- on descend, au fond de la mer, une dite embase (4) solidaire d'un dit premier élément de conduite rigide (2a), ladite embase (4) comprenant un orifice traversant (4a), et
2/- on descend au fond de la mer un dit premier pieu tubulaire d'ancrage (6) que l'on enfonce au fond de la mer à travers ledit orifice (4a) de l'embase, pour ancrer ladite embase au fond de la mer, et
3/- on descend au fond de la mer, depuis un navire de surface (20), ladite conduite rigide (9) constituant ledit riser vertical, directement fixée à son extrémité supérieure à une dite conduite flexible, ladite pièce de transition (8) à l'extrémité inférieure dudit riser étant fixée à un dit dispositif de support et de raccordement (5), supportant un dit deuxième élément de conduite rigide coudé (5b) ainsi qu'un dit insert d'ancrage (5e), et
4/- on fixe ledit dispositif de support et de raccordement (5) sur ladite embase en insérant ledit insert d'ancrage (5e) à l'intérieur dudit premier pieu tubulaire (6), et
5/- de préférence, on verrouille ledit insert d'ancrage (5e) à l'intérieur dudit premier pieu tubulaire (6) à l'aide d'un dispositif de blocage (4b), et
6/- on réalise le raccordement desdits premier élément de conduite rigide coudé (5b) et deuxième élément de conduite rigide coudé (2a), et
7/- on finit de descendre ladite conduite flexible présentant une portion terminale de flottabilité positive, avec l'autre extrémité (10e) de ladite conduite flexible suspendue à un flotteur en sub-surface (21), et
8/- on déplace puis on fixe ou relie l'autre extrémité (10e) de ladite conduite flexible à un dit support flottant (12).
PCT/FR2009/050684 2008-04-24 2009-04-14 Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive WO2009138609A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/988,775 US8430170B2 (en) 2008-04-24 2009-04-14 Bottom-to-surface connection installation of a rigid pipe with a flexible pipe having positive buoyancy
BRPI0911162A BRPI0911162B1 (pt) 2008-04-24 2009-04-14 instalação de ligação fundo-superfície de um tubo rígido com um tubo flexível de flutuabilidade positiva e método de colocação da mesma
EP09745928A EP2286056B1 (fr) 2008-04-24 2009-04-14 Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852771 2008-04-24
FR0852771A FR2930587A1 (fr) 2008-04-24 2008-04-24 Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive et une piece de transition d'inertie

Publications (2)

Publication Number Publication Date
WO2009138609A2 true WO2009138609A2 (fr) 2009-11-19
WO2009138609A3 WO2009138609A3 (fr) 2010-05-20

Family

ID=39926529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050684 WO2009138609A2 (fr) 2008-04-24 2009-04-14 Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive

Country Status (5)

Country Link
US (1) US8430170B2 (fr)
EP (1) EP2286056B1 (fr)
BR (1) BRPI0911162B1 (fr)
FR (1) FR2930587A1 (fr)
WO (1) WO2009138609A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104518A1 (fr) 2011-02-03 2012-08-09 Saipem S.A. Limiteur de courbure de ligne flexible sous-marine et installation de liaison fond-surface en comprenant
US20120230770A1 (en) * 2009-11-17 2012-09-13 Saipem S.A. Facility having fanned seabed-to-surface connections
WO2012131214A2 (fr) 2011-03-29 2012-10-04 Saipem S.A. Materiau d'isolation thermique et/ou de flottabilite rigide pour conduite sous-marine
WO2013140090A1 (fr) 2012-03-21 2013-09-26 Saipem S.A. Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
CN104329044A (zh) * 2014-10-09 2015-02-04 中国海洋石油总公司 自由站立式立管底部连接结构

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108672A1 (fr) * 2006-03-22 2007-09-27 Itrec B.V. Pré-assemblage d'une base sous-marine et d'un pipeline
US20110017463A1 (en) * 2009-07-23 2011-01-27 Schlumberger Technology Corporation Use of a spoolable compliant guide and coiled tubing to clean up a well
GB0920640D0 (en) * 2009-11-25 2010-01-13 Subsea 7 Ltd Riser configuration
US8657012B2 (en) * 2010-11-01 2014-02-25 Vetco Gray Inc. Efficient open water riser deployment
US9334695B2 (en) * 2011-04-18 2016-05-10 Magma Global Limited Hybrid riser system
WO2013036915A2 (fr) * 2011-09-09 2013-03-14 Horton Wison Deepwater, Inc. Limiteur de courbure d'un tube-conducteur
US8863682B2 (en) 2011-09-09 2014-10-21 Horton Wison Deepwater, Inc. Helical bend restrictor
US8919448B2 (en) * 2012-04-13 2014-12-30 Mitchell Z. Dziekonski Modular stress joint and methods for compensating for forces applied to a subsea riser
BR102013012413B1 (pt) * 2013-05-20 2021-09-08 Petróleo Brasileiro S.A. / Petrobras Sistema de transferência híbrido reverso
GB2563701A (en) * 2015-12-21 2018-12-26 Halliburton Energy Services Inc In situ length expansion of a bend stiffener
WO2017209914A1 (fr) * 2016-06-01 2017-12-07 Terves Inc. Caoutchouc soluble
US11313179B2 (en) 2018-03-26 2022-04-26 Odebrecht Oleo E Gas S.A. System for connecting between risers of composite material and flowlines, which can be used with a hybrid riser, and method for constructing same
US11009151B2 (en) * 2019-09-06 2021-05-18 Trinity Bay Equipment Holdings, LLC Vertical pipe deployment system and method
US11459067B2 (en) 2019-12-05 2022-10-04 Sofec, Inc. Systems and processes for recovering a condensate from a conduit
US10899602B1 (en) * 2019-12-05 2021-01-26 Sofec, Inc. Submarine hose configuration for transferring a gas from a buoy
US10794539B1 (en) 2019-12-05 2020-10-06 Sofec, Inc. Systems and processes for recovering a vapor from a vessel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2024766A (en) * 1978-07-10 1980-01-16 Mobil Oil Corp Marine production riser system and method of installing sae
WO1995020717A1 (fr) * 1994-01-31 1995-08-03 Shell Internationale Research Maatschappij B.V. Systeme de transport d'un fluide d'hydrocarbure
US5944448A (en) * 1996-12-18 1999-08-31 Brovig Offshore Asa Oil field installation with mooring and flowline system
WO1999066169A2 (fr) * 1998-06-12 1999-12-23 Den Norske Stats Oljeselskap A.S Dispositif pour colonnes montantes
WO2004033848A1 (fr) * 2002-10-10 2004-04-22 Rockwater Limited Tube prolongateur et son procede d'installation
US20060131027A1 (en) * 2003-03-18 2006-06-22 Giovanni Chiesa Device for heating and thermally insulating at least one undersea pipeline

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181612A (en) * 1961-07-07 1965-05-04 Dow Chemical Co Selective plugging of subterranean formations to inhibit intrusion of water into oil-producing strata
US3363683A (en) * 1965-12-23 1968-01-16 Exxon Production Research Co Offshore apparatus and method
US3602319A (en) * 1969-09-26 1971-08-31 Global Marine Inc Structure with varying cross-sectional moment of inertia
FR2397084A1 (fr) * 1977-07-06 1979-02-02 Inst Francais Du Petrole Embout de ligne flexible a raideur determinee variable
FR2616858B1 (fr) * 1987-06-18 1989-09-01 Inst Francais Du Petrole Element a raideur variable pour pied de colonne de transfert
FR2627542A1 (fr) * 1988-02-24 1989-08-25 Coflexip Dispositif de transfert de fluide entre le fond sous-marin et la surface
US5526846A (en) * 1990-12-26 1996-06-18 Coflexip Stiffener with reinforced structure
US5320175A (en) * 1993-01-29 1994-06-14 Shell Oil Company Subsea wellhead connections
US5520422A (en) * 1994-10-24 1996-05-28 Ameron, Inc. High-pressure fiber reinforced composite pipe joint
FR2741696B1 (fr) * 1995-11-29 1998-01-02 Coflexip Raidisseur pour une canalisation flexible a usage en milieu marin
US5873677A (en) * 1997-08-21 1999-02-23 Deep Oil Technology, Incorporated Stress relieving joint for riser
FR2768457B1 (fr) * 1997-09-12 2000-05-05 Stolt Comex Seaway Dispositif de transport sous-marin de produits petroliers a colonne montante
AU8950298A (en) * 1997-10-27 1999-05-13 Deep Oil Technology, Incorporated Stress relief joint for risers
GB9802421D0 (en) * 1998-02-06 1998-04-01 Head Philip A riser system for sub sea wells and method of operation
US7287598B2 (en) * 2000-06-02 2007-10-30 Allis-Chalmers Energy, Inc. Apparatus for, and method of, landing items at a well location
US6688930B2 (en) * 2001-05-22 2004-02-10 Fmc Technologies, Inc. Hybrid buoyant riser/tension mooring system
FR2826051B1 (fr) * 2001-06-15 2003-09-19 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par au moins un element de conduite flexible maintenu par une embase
FR2839542B1 (fr) * 2002-05-07 2004-11-19 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous- marine comprenant un element de conduite coude maintenu par une embase
US7096940B2 (en) * 2003-10-20 2006-08-29 Rti Energy Systems, Inc. Centralizer system for insulated pipe
US20070044972A1 (en) * 2005-09-01 2007-03-01 Roveri Francisco E Self-supported riser system and method of installing same
FR2911907B1 (fr) * 2007-01-26 2009-03-06 Technip France Sa Installation de conduite montante flexible de transport d'hydrocarbures.
US7628568B2 (en) * 2007-01-29 2009-12-08 Chevron U.S.A. Inc. Hinge-over riser assembly
WO2008144328A1 (fr) * 2007-05-17 2008-11-27 Chevron U.S.A. Inc. Ensemble de terminaison de pipeline avec tige de raccordement et articulation basculante

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2024766A (en) * 1978-07-10 1980-01-16 Mobil Oil Corp Marine production riser system and method of installing sae
WO1995020717A1 (fr) * 1994-01-31 1995-08-03 Shell Internationale Research Maatschappij B.V. Systeme de transport d'un fluide d'hydrocarbure
US5944448A (en) * 1996-12-18 1999-08-31 Brovig Offshore Asa Oil field installation with mooring and flowline system
WO1999066169A2 (fr) * 1998-06-12 1999-12-23 Den Norske Stats Oljeselskap A.S Dispositif pour colonnes montantes
WO2004033848A1 (fr) * 2002-10-10 2004-04-22 Rockwater Limited Tube prolongateur et son procede d'installation
US20060131027A1 (en) * 2003-03-18 2006-06-22 Giovanni Chiesa Device for heating and thermally insulating at least one undersea pipeline

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230770A1 (en) * 2009-11-17 2012-09-13 Saipem S.A. Facility having fanned seabed-to-surface connections
US8647019B2 (en) * 2009-11-17 2014-02-11 Saipem S.A. Facility having fanned seabed-to-surface connections
WO2012104518A1 (fr) 2011-02-03 2012-08-09 Saipem S.A. Limiteur de courbure de ligne flexible sous-marine et installation de liaison fond-surface en comprenant
US9377133B2 (en) 2011-02-03 2016-06-28 Saipem S.A. Curvature limiter for a flexible undersea line, and seabed-to-surface linking equipment including same
WO2012131214A2 (fr) 2011-03-29 2012-10-04 Saipem S.A. Materiau d'isolation thermique et/ou de flottabilite rigide pour conduite sous-marine
US9156967B2 (en) 2011-03-29 2015-10-13 Saipem S.A. Rigid material for heat-insulation and/or buoyancy for an underwater pipe
WO2013140090A1 (fr) 2012-03-21 2013-09-26 Saipem S.A. Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
US9115543B2 (en) 2012-03-21 2015-08-25 Saipem S.A. Installation comprising seabed-to-surface connections of the multi-riser hybrid tower type, including positive-buoyancy flexible pipes
CN104329044A (zh) * 2014-10-09 2015-02-04 中国海洋石油总公司 自由站立式立管底部连接结构

Also Published As

Publication number Publication date
BRPI0911162B1 (pt) 2019-08-27
US20110042094A1 (en) 2011-02-24
US8430170B2 (en) 2013-04-30
EP2286056A2 (fr) 2011-02-23
WO2009138609A3 (fr) 2010-05-20
BRPI0911162A2 (pt) 2015-10-06
EP2286056B1 (fr) 2012-07-25
FR2930587A1 (fr) 2009-10-30

Similar Documents

Publication Publication Date Title
EP2286056B1 (fr) Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive
EP2844820B1 (fr) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
EP1899219B1 (fr) Dispositif de transfert de fluide entre deux supports flottants
EP1501999B1 (fr) Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par un element de conduite soude maintenu par une embase
EP1917416B1 (fr) Installation comprenant au moins deux liaisons fond-surface d au moins deux conduites sous-marines reposant au fond de la mer.
EP1073823B1 (fr) Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
EP2401468B1 (fr) Installation de liaison fond-surface de type tour hybride multi-riser comprenant des modules de flottabilite coulissants
EP2501889B1 (fr) Installation de liaisons fond-surface disposees en eventail
OA10874A (fr) Dispositif de transport sous-marin de produits pétroliers à colonne montante
EP2268887B1 (fr) Element de conduite de transition d'inertie notamment pour encastrement d'une conduite rigide sous-marine
EP2785952B1 (fr) Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux
EP2571753B1 (fr) Installation de liaison fond-surface comprenant une structure de guidage de conduite flexible
FR2938001A1 (fr) Procede de montage d'une tour d'exploitation d'un fluide dans une etendue d'eau et tour d'exploitation associee.
FR3005484A1 (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
EP2640923B1 (fr) Tour d'exploitation de fluide dans une étendue d'eau et procédé d'installation associé.
OA17101A (en) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles à flottabilité positive.
FR3106644A1 (fr) Conduite pour l’alimentation d’une unité de production d’énergie hydrothermique.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009745928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12988775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09745928

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: PI0911162

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101019