WO2009138283A1 - Solenoid having a cooling device - Google Patents

Solenoid having a cooling device Download PDF

Info

Publication number
WO2009138283A1
WO2009138283A1 PCT/EP2009/053383 EP2009053383W WO2009138283A1 WO 2009138283 A1 WO2009138283 A1 WO 2009138283A1 EP 2009053383 W EP2009053383 W EP 2009053383W WO 2009138283 A1 WO2009138283 A1 WO 2009138283A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
current
hollow body
carrying
magnetic coil
Prior art date
Application number
PCT/EP2009/053383
Other languages
German (de)
French (fr)
Inventor
Johannes Reinschke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009138283A1 publication Critical patent/WO2009138283A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/732Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry

Definitions

  • the invention relates to a magnetic coil for generating a magnetic field, which is equipped with a cooling device for cooling the magnetic coil.
  • Minimally invasive diagnostic and therapeutic procedures have become increasingly important in modern medicine in recent years.
  • the procedures required in the procedures are typically performed using catheters or endoscopes.
  • a diagnostic agent such as a camera
  • the hand of the doctor there is usually a direct mechanical connection between a diagnostic agent, such as a camera, and the hand of the doctor.
  • Diagnostic examinations in particular those on internal hollow organs of the human body, e.g. the gastrointestinal tract can be performed by such methods. Typical diagnostic procedures are gastroscopy and colonoscopy. Within the scope of such examinations, photo and / or video sequences of the relevant hollow organ are typically recorded, tissue and / or fluid samples are taken or drugs are administered locally.
  • an endoscopy capsule that can be navigated in a magnetic field can be used for such diagnostic or therapeutic procedures or examinations.
  • Typical magnetic coil systems for navigating an endoscopy capsule are disclosed, for example, in DE 103 40 925 B3 or also in DE 10 2005 010 489 A1.
  • Such magnet coil systems typically comprise a system of 8 to 14 individually controllable navigation or magnetic coils.
  • an endoscopy capsule requires a magnetic field to control the endoscopy capsule.
  • a position determination of the endoscopy capsule by means of a location system needed.
  • the position measurement can possibly be dispensed with, since there are no appreciable disturbance forces in the water, ie location-dependent frictional or blocking forces.
  • a determination of position in this context means the determination of the spatial position of the endoscopy capsule, for example in a Cartesian coordinate system, as well as the determination of the orientation of the endoscopy capsule in the corresponding working volume. The orientation determination can be made for all three or fewer axes of the endoscopy capsule.
  • a magnet coil system which is used for wireless or non-contact movement of a magnetic body in one
  • the magnetic control of an endoscopy capsule typically requires magnetic field strengths of up to 100 mT and magnetic field gradients of up to 400 I / t / m.
  • the field gradient values are approximately a factor of 10 above the typical values for magnetic resonance imaging (MRI) systems.
  • MRI magnetic resonance imaging
  • the navigation magnet coil system has an increased need for cooling the magnet coils. While capsule navigation in water requires fewer fields, nonetheless effective cooling can not be dispensed with here as well.
  • cooling plates made of metal, preferably of copper, can be attached to the outer surfaces of the coils or between individual winding layers of the coils.
  • the position determination of the endoscopy capsule in the space enclosed by the navigation coils typically takes place by means arranged in this space transmitting coils, which are operated with alternating current.
  • the locating system, ie the transmitting coil is typically operated in a frequency range between 500 Hz and 100 kHz.
  • Another possibility for cooling a magnetic coil is to form the turns of the coil as a hollow body and to let flow through by a cooling medium, thus to cool the coil directly.
  • a special cooling medium is necessary for cooling a navigation coil of a Endoskopiekapsel- system, which is completely wound from hollow bodies.
  • a special cooling medium is necessary for this purpose.
  • deionized water can be used for this purpose.
  • the cooling of such a navigation coil also has the following technical problems: viewed in cross section, the cooling channel, which is located in the interior of the hollow body, occupies a considerable part of the cross-sectional area. For this reason, the filling level of the entire navigation coil deteriorates. Under the degree of filling is to be understood in this context, the quotient of the cross section of the current-carrying conductor and the total cross section of the navigation coil. In order to increase the degree of filling of the navigation coil, the diameter of the cooling channel can be chosen small.
  • Another way to cool a coil is to place from a non-conductive material, in particular made of a plastic cooling water pipes or tubes between the conductors or windings of a coil.
  • a non-conductive material in particular made of a plastic cooling water pipes or tubes between the conductors or windings of a coil.
  • this solution has the disadvantage that on the one hand, the heat transfer through the plastic tube is significantly worse than, for example, by a copper pipe and that on the other hand, the plastic hoses only up to max. about 70-75 0 C are temperature resistant.
  • the cooling medium in such a cooling system is pressed through the cooling lines at a pressure of several bars. Inside a navigation coil temperatures of over 100 0 C can be easily reached. In addition, occur in the generation of high magnetic fields between the individual conductors of the navigation coil windings not negligible Lorenz concept. These can result in individual conductors or winding layers being mechanically displaced against one another even if the navigation coil has a sufficiently mechanically stable construction. If such a mechanical displacement occurs at a location at which a cooling channel made of plastic is drawn into the winding, then the mechanical displacement typically takes place via the plastic component, which is thus subjected to enormous shearing forces. Obviously for reasons of reliability, both for mechanical reasons as well as with respect to the operating temperature occurring, the use of such a cooling system using commercially available, commercially available plastics in a navigation coil system for a capsule endoscopy installation is not advisable.
  • the magnetic coil according to the invention has a current-carrying winding made of electrically conductive material for generating the magnetic field.
  • at least one hollow body through which a cooling medium flows is provided for cooling the magnetic coil.
  • the current-carrying winding and the hollow body winding are arranged one behind the other as viewed parallel to one another and in the direction of the coil longitudinal axis N of the magnet coil.
  • the current-carrying winding is in the radial direction, i. in a direction perpendicular to the coil longitudinal axis seen flat band of electrically conductive material which is wound spirally.
  • This is preferably an aluminum strip.
  • the surface of the strip is electrically insulated, wherein the insulation is achieved, for example, by an anodized layer or by means of an interposed insulation film.
  • the current-carrying winding and the hollow body winding are wound in such a way that they have essentially the same winding eye and / or the same inner and / or outer dimensions seen in the radial direction.
  • Under the Winding eye of a winding is understood in the direction of the coil longitudinal axis seen open cross-section of the winding.
  • the hollow body winding may be a spirally curved, tubular hollow body, for example a copper pipe.
  • the hollow body is flowed through by a cooling medium and is preferably made of an electrically insulating material, bpsw. by a glass fiber tape, wrapped to avoid for the reasons mentioned above, that an extended electrically conductive surface is formed.
  • the current-carrying winding and the hollow body winding are electrically isolated from each other, for example. By an additional, placed between the current-carrying winding and the hollow body winding foil or by sheathing the entire hollow body winding with a glass fiber tape.
  • the current-carrying winding and the hollow body winding are connected to one another in such a way that they are in mechanical and thermal contact.
  • a current-carrying winding is located between two hollow body windings, so that a more effective cooling is achieved.
  • a plurality of current-carrying windings and / or a plurality of hollow body windings may be provided, which are arranged alternately one behind the other and are in thermal and mechanical contact with each other.
  • the magnet coil may have two hollow body windings and one current-carrying winding, wherein the current-carrying winding is arranged between the hollow body windings.
  • the current-carrying winding and the hollow body winding of the magnet coil advantageously one and the same winding tool can be used.
  • the current-carrying winding and the hollow body winding are wound up independently of one another.
  • the current-carrying winding is first wound and removed from the winding mandrel. Subsequently, on the same winding thorn wound the hollow body winding. By gluing, Umbandelung and / or similar measures, the two windings are then mechanically interconnected. The final mechanical and thermal contact is made by potting the entire coil.
  • Cooling water instead, because the hollow body winding is made on the one hand of copper and on the other hand is de-energized. As cooling water can therefore be used tap water.
  • the insulation of the hollow body winding causes no large area, electrically conductive area is present in which, for example, by external electromagnetic alternating fields eddy currents can be excited, which in turn can lead to EMC problems or additional heat coupling.
  • FIG. 1 shows a system for the capsule endoscopic examination or treatment of a patient
  • Figure 2 is a perspective view of a magnetic coil of
  • FIG. 1 shows a cross section of the magnetic coil and 4 shows a cross section of a further embodiment of the magnetic coil.
  • FIG. 1 shows in parts a system for capsule-endoscopic examination or treatment of a patient.
  • the system 1 comprises a magnet coil system 2 for wireless navigation of an endoscopy capsule (not shown), as described, for example, in DE 10 2005 010 489 A1.
  • the magnet coil system 2 includes a plurality of magnetic coils 10 (only one of the magnetic coils is explicitly marked in FIG. 1), which may optionally be dimensioned differently, but essentially have a shape, as illustrated by way of example in FIG.
  • FIG. 1 also shows a guide 3 for a patient couch on which the patient is examined or examined
  • a housing 4 which surrounds the magnet coil system 2 and possibly other equipment such as, for example, a location system.
  • FIG. 2 shows a magnetic coil 10 in perspective
  • the magnetic coil 10 has a rectangular shape in the illustrated embodiment and has a so-called. Winding eye 11 on.
  • the winding eye of a winding or a coil is understood as meaning the open cross-section of the winding as seen in the direction of the coil longitudinal axis N, which is oriented in the direction of the z-axis of the coordinate system indicated in FIG. 2, i. the opening of the coil surrounded by the actual winding.
  • the magnetic coil 10 may also have a circular, an elliptical or a square shape.
  • FIG. 3 shows the cross section, indicated in FIG. 2, of a section of the magnetic coil 10, which results in the direction of the arrows 12, 13.
  • a first hollow body winding 210, a current-carrying winding 310 and a second hollow body winding 220 are arranged in succession.
  • the hollow body Windings 210, 220 and the current-carrying winding 310 are each spirally wound and oriented parallel to each other, ie, the cross-sectional areas of the hollow body windings 210, 220 and the current-carrying winding 310 are parallel to each other.
  • 210, 220 are wound in such a way that they have substantially the same winding eye 11 and substantially the same inner and / or outer dimensions d x , d a in the radial direction (see FIG. 2).
  • the current-carrying winding 310 is an electrically conductive, flat aluminum strip 311 whose surface is electrically insulated, wherein the insulation 312 is achieved, for example, by an anodized layer or by means of an interposed insulation film.
  • the hollow body windings 210, 220 are ideally each made of a spirally curved, a coolant channel having hollow body 211, 221 or from a spirally curved, tubular hollow body 211, 221.
  • the hollow body 211, 221 as a copper waveguide or copper pipe with square or rectangular outside - formed cross-section.
  • Such a copper waveguide 211, 221 is usually uninsulated by the manufacturer, in particular without Lackiosltechnik delivered.
  • the copper waveguide 211, 221 can, before it is finally wound into the spiral shape, be coated with an electrically insulating material 212, 222, for example with a fiberglass tape, in order to avoid that an extended, electrically conductive surface is formed.
  • the hollow body windings 210, 220 can in principle be connected both in parallel and in series to the source of the cooling medium.
  • the temperature of the cooling medium is already increased, when it flows through the behind in the flow direction hollow body winding. The cooling effect is therefore reduced.
  • the line resistance of serially connected lines is increased.
  • the hollow body windings 210, 220 are therefore connected in parallel to the source, since then on the one hand a better cooling effect is achieved and on the other hand, the line resistance is lower.
  • the two hollow body windings 210, 220 are also electrically insulated from the current-carrying winding 310 by means of an insulation 213, 223. This is done, for example, by additional, between the current-carrying winding 310 and the hollow body windings 210, 220 laid films over a sheathing of the entire hollow body windings 210, 220 with glass fiber tape or, as shown in Figure 3, with the aid of a
  • the hollow body windings 210, 220 via a connection 313 with the current-carrying winding 310 in both mechanical and in thermal contact wherein the thermal contact in the current-carrying winding 310 resulting heat to the hollow body windings 210th , 220 is discharged.
  • connection 313 can be realized in different ways:
  • FIG. 4 shows an embodiment with two independent current-carrying windings 310, 320. Accordingly, three hollow body windings 210, 220, 230 are provided, wherein the current-carrying windings 310, 320 and the hollow body windings 210, 220, 230 arranged alternately in the direction of the coil longitudinal axis N. , The windings are in thermal and mechanical contact, but are electrically isolated from each other.
  • the structure of the magnetic coil 10 of FIG. 4 corresponds to the copper waveguides 211, 221, 231, the electrically insulating material 212, 222, 232, the insulation 213, 223, 233, the aluminum strip 311, 321, the insulation 312, 322 and the connection 313 to the structure described in connection with FIG.
  • one and the same winding tool can be used for producing the magnetic coil 10 or for winding the current-carrying winding (s) 310, 320 and the hollow body winding (s) 210, 220, 230.
  • the magnet coil 10 according to FIG. 3 is produced in the following way: First, the current-carrying winding 310 is wound up and taken from the winding mandrel of the winding machine.
  • the corresponding copper waveguide 211, 221, 231 to be wound should be however, if desired, sheathed with the electrically insulating tape 212, 222, 232.

Abstract

The invention relates to an actively cooled solenoid (10), having at least one current-conducting winding (310) for generating a magnetic field, and at least one copper pipe (211, 221) experiencing flow in the form of a winding (210, 220) as the cooling system. The current-conducting winding (310) and the copper pipe winding (210, 220) are disposed parallel to each other and behind each other as viewed in the direction of the longitudinal axis N of the solenoid. Both windings (210, 220, 310) have approximately the same winding eye and/or the same inner and/or outer dimensions. A helical flat aluminum strip (311) serves as the current-conducting winding (310). The current-conducting aluminum strip (311) and the copper pipe (211, 221) are in mechanical and thermal contact which each other, but are electrically isolated from each other.

Description

Beschreibungdescription
Magnetspule mit KühleinrichtungMagnetic coil with cooling device
Die Erfindung betrifft eine Magnetspule zur Erzeugung eines Magnetfeldes, die mit einer Kühleinrichtung zur Kühlung der Magnetspule ausgestattet ist.The invention relates to a magnetic coil for generating a magnetic field, which is equipped with a cooling device for cooling the magnetic coil.
Minimalinvasive diagnostische und therapeutische Verfahren haben in der modernen Medizin in den letzten Jahren zunehmend an Bedeutung gewonnen. Die bei den Verfahren notwendigen Eingriffe werden typischerweise mit Hilfe von Kathetern oder Endoskopen durchgeführt. Dabei besteht in der Regel eine direkte mechanische Verbindung zwischen einem Diagnosemittel, beispielsweise einer Kamera, und der Hand des Arztes.Minimally invasive diagnostic and therapeutic procedures have become increasingly important in modern medicine in recent years. The procedures required in the procedures are typically performed using catheters or endoscopes. In this case, there is usually a direct mechanical connection between a diagnostic agent, such as a camera, and the hand of the doctor.
Diagnostische Untersuchungen, insbesondere solche an inneren Hohlorganen des menschlichen Körpers, z.B. dem Gastro- intestinaltrakt , können mit derartigen Methoden durchgeführt werden. Typische Diagnoseverfahren sind die Gastroskopie und die Koloskopie. Im Rahmen solcher Untersuchungen werden typischerweise Foto- und/oder Videosequenzen des betreffenden Hohlorgans aufgenommen, Gewebs- und/oder Flüssigkeitsproben entnommen oder lokal Medikamente verabreicht.Diagnostic examinations, in particular those on internal hollow organs of the human body, e.g. the gastrointestinal tract can be performed by such methods. Typical diagnostic procedures are gastroscopy and colonoscopy. Within the scope of such examinations, photo and / or video sequences of the relevant hollow organ are typically recorded, tissue and / or fluid samples are taken or drugs are administered locally.
Für derartige diagnostische oder therapeutische Eingriffe bzw. Untersuchung kann insbesondere eine in einem magnetischen Feld navigierbare Endoskopiekapsel eingesetzt werden.In particular, an endoscopy capsule that can be navigated in a magnetic field can be used for such diagnostic or therapeutic procedures or examinations.
Typische Magnetspulensysteme zur Navigation einer Endos- kopiekapsel sind bspw. in der DE 103 40 925 B3 oder auch in der DE 10 2005 010 489 Al offenbart. Derartige Magnetspulensysteme umfassen typischerweise ein System aus 8 bis 14 einzeln ansteuerbaren Navigations- bzw. Magnetspulen.Typical magnetic coil systems for navigating an endoscopy capsule are disclosed, for example, in DE 103 40 925 B3 or also in DE 10 2005 010 489 A1. Such magnet coil systems typically comprise a system of 8 to 14 individually controllable navigation or magnetic coils.
Für den erfolgreichen Einsatz einer Endoskopiekapsel ist ein Magnetfeld zur Steuerung der Endoskopiekapsel notwendig. Darüber hinaus kann je nach Anwendung ggf. eine Positionsbestimmung der Endoskopiekapsel mittels eines Ortungssystems benötigt werden. Speziell für den Fall, dass die Endoskopiekapsel in Wasser navigiert werden soll, kann auf die Positionsmessung ggf. verzichtet werden, da in Wasser keine nennenswerten Störkräfte, d.h. ortsabhängige Reibungs- oder Blockierungskräfte, auftreten. Unter einer Positionsbestimmung ist in diesem Zusammenhang die Bestimmung der räumlichen Lage der Endoskopiekapsel, bspw. in einem kartesischen Koordinatensystem, sowie die Bestimmung der Orientierung der Endoskopiekapsel in dem entsprechenden Arbeitsvolumen zu verstehen. Die Orientierungsbestimmung kann für alle drei oder weniger Achsen der Endoskopiekapsel erfolgen .The successful use of an endoscopy capsule requires a magnetic field to control the endoscopy capsule. In addition, depending on the application, if necessary, a position determination of the endoscopy capsule by means of a location system needed. Especially in the event that the endoscopy capsule is to be navigated in water, the position measurement can possibly be dispensed with, since there are no appreciable disturbance forces in the water, ie location-dependent frictional or blocking forces. A determination of position in this context means the determination of the spatial position of the endoscopy capsule, for example in a Cartesian coordinate system, as well as the determination of the orientation of the endoscopy capsule in the corresponding working volume. The orientation determination can be made for all three or fewer axes of the endoscopy capsule.
Ein Magnetspulensystem, welches zur drahtlosen bzw. berüh- rungslosen Bewegung eines magnetischen Körpers in einemA magnet coil system, which is used for wireless or non-contact movement of a magnetic body in one
Arbeitsraum geeignet sein soll, muss in der Lage sein, hohe magnetische Feldstärken zu erzeugen. Zur magnetischen Steuerung einer Endoskopiekapsel sind typischerweise magnetische Feldstärken von bis zu 100 mT sowie Magnet- feldgradienten von bis zu 400 itιT/m notwendig. Die Werte der Feldgradienten liegen ungefähr um einen Faktor 10 über den typischen Werten für Magnetresonanztomographie (MRT) Anlagen. Im Vergleich zwischen einem Magnetspulensystem zur Navigation einer Endoskopiekapsel und einem Magnetspulensystem einer MRT-Anlage ergibt sich für das Navigations-Magnetspulensystem ein erhöhter Bedarf für die Kühlung der Magnetspulen. Bei der Kapselnavigation in Wasser werden zwar weniger starke Felder benötigt, nichtsdestotrotz kann auch hier auf eine effektive Kühlung nicht verzichtet werden.Working space should be able to produce high magnetic field strengths. The magnetic control of an endoscopy capsule typically requires magnetic field strengths of up to 100 mT and magnetic field gradients of up to 400 I / t / m. The field gradient values are approximately a factor of 10 above the typical values for magnetic resonance imaging (MRI) systems. In comparison between a magnet coil system for navigating an endoscopy capsule and a magnet coil system of an MRI system, the navigation magnet coil system has an increased need for cooling the magnet coils. While capsule navigation in water requires fewer fields, nonetheless effective cooling can not be dispensed with here as well.
Zur Kühlung von Spulen können bspw. Kühlplatten aus Metall, vorzugsweise aus Kupfer, an den Außenflächen der Spulen bzw. zwischen einzelnen Wicklungslagen der Spulen angebracht werden. Dies ist jedoch zumindest dann nachteilig, wenn das Endoskopiekapsel-System neben der Erzeugung hoher Feldstärken für die Navigation eine Positionsbestimmung durchführen soll: Die Positionsbestimmung der Endoskopiekapsel in dem von den Navigationsspulen umschlossenen Raum erfolgt typischerweise mittels in diesem Raum angeordneter Sendespulen, die mit Wechselstrom betrieben werden. Das Ortungssystem, d.h. die Sendespule wird dabei typischerweise in einem Frequenzbereich zwischen 500 Hz und 100 kHz betrieben. Werden für ein Kühl- System, wie zuvor erwähnt, großflächig an den Außenflächen der Navigationsspulen angebrachte Metall bzw. Kupferplatten verwendet, so werden in diesen Metallplatten durch die Sendespule Wirbelströme induziert. Die in den Metallplatten durch die Sendespule induzierten Wirbelstürme führen zu einer Verfälschung des von der Sendespule emittierten Feldes, und somit zu Übertragungsfehlern im Ortungssystem des Endoskopiekapsel-Systems .For cooling coils, for example, cooling plates made of metal, preferably of copper, can be attached to the outer surfaces of the coils or between individual winding layers of the coils. However, this is at least disadvantageous if the endoscopy capsule system is to carry out a position determination in addition to the generation of high field strengths for the navigation: The position determination of the endoscopy capsule in the space enclosed by the navigation coils typically takes place by means arranged in this space transmitting coils, which are operated with alternating current. The locating system, ie the transmitting coil is typically operated in a frequency range between 500 Hz and 100 kHz. If, for a cooling system, as mentioned above, large-area metal or copper plates are used on the outer surfaces of the navigation coils, eddy currents are induced in these metal plates by the transmitting coil. The hurricanes induced in the metal plates by the transmitting coil lead to a distortion of the field emitted by the transmitting coil, and thus to transmission errors in the locating system of the endoscopy capsule system.
Die Kühlung von Magnetspulen mittels großflächiger an diesen angebrachten Metallplatten ist daher für ein mit einem Navigationsspulensystem und einem Ortungssystem ausgestattetes Endoskopiekapsel-Systems ungeeignet .The cooling of magnetic coils by means of large-scale attached to these metal plates is therefore unsuitable for equipped with a navigation coil system and a tracking system endoscopy capsule system.
Eine weitere Möglichkeit zur Kühlung einer Magnetspule besteht darin, die Windungen der Spule als Hohlkörper auszubilden und von einem Kühlmedium durchströmen zu lassen, die Spule somit direkt zu kühlen.Another possibility for cooling a magnetic coil is to form the turns of the coil as a hollow body and to let flow through by a cooling medium, thus to cool the coil directly.
Zur Kühlung einer Navigationsspule eines Endoskopiekapsel- Systems, welche vollständig aus Hohlkörpern gewickelt ist, ist ein spezielles Kühlmedium notwendig. Typischerweise kann zu diesem Zweck deionisiertes Wasser verwendet werden. Die Kühlung einer derartigen Navigationsspule weist darüber hinaus die folgenden technischen Probleme auf: Im Querschnitt betrachtet nimmt der Kühlkanal, welcher sich im Inneren des Hohlkörpers befindet, einen erheblichen Teil der Querschnittsfläche ein. Aus diesem Grund verschlechtert sich der Füllgrad der gesamten Navigationsspule. Unter dem Füllgrad ist in diesem Zusammenhang der Quotient aus dem Querschnitt der stromtragenden Leiter und dem Gesamtquerschnitt der Navigationsspule zu verstehen. Um den Füllgrad der Navigationsspule zu erhöhen, kann der Durchmesser des Kühlkanals klein gewählt werden. Um eine gewünschte Amperewindungszahl zu erreichen, muss die Navigationsspule eine große Zahl von Windungen aufweisen. Für eine große Anzahl von Windungen ist wiederum ein entsprechend langer Hohlkörper notwendig. Über die Länge des Hohlkörpers findet wiederum ein erheblicher Druckabfall des Kühlmediums statt. Wird der Kühlkanal entsprechend vergrößert, führt dies zu einer Navigationsspule mit einem großen Volumen und schlechtem Füllgrad. Wird die Magnetspule mit einer geringen Windungsanzahl realisiert, so ist zur Erreichung einer gewünschten Amperewindungszahl ein entsprechend hoher Strom notwendig. Dies führt wiederum zu einem hohen technischen Aufwand zur Erzeugung dieser hohen Ströme .For cooling a navigation coil of a Endoskopiekapsel- system, which is completely wound from hollow bodies, a special cooling medium is necessary. Typically, deionized water can be used for this purpose. The cooling of such a navigation coil also has the following technical problems: viewed in cross section, the cooling channel, which is located in the interior of the hollow body, occupies a considerable part of the cross-sectional area. For this reason, the filling level of the entire navigation coil deteriorates. Under the degree of filling is to be understood in this context, the quotient of the cross section of the current-carrying conductor and the total cross section of the navigation coil. In order to increase the degree of filling of the navigation coil, the diameter of the cooling channel can be chosen small. To a desired Amperewindungszahl To achieve the navigation coil must have a large number of turns. For a large number of turns turn a correspondingly long hollow body is necessary. Over the length of the hollow body again takes place a considerable pressure drop of the cooling medium. If the cooling channel is increased accordingly, this leads to a navigation coil with a large volume and poor filling level. If the solenoid is realized with a small number of turns, a correspondingly high current is necessary to achieve a desired ampere-turn number. This in turn leads to a high technical effort to generate these high currents.
Eine weitere Möglichkeit zur Kühlung einer Spule besteht darin, aus einem nichtleitenden Material, insbesondere aus einem Kunststoff gefertigte Kühlwasserrohre bzw. -schlauche zwischen den Leitern oder Wicklungen einer Spule zu platzieren. Diese Lösung weist jedoch den Nachteil auf, dass zum Einen der Wärmeübergang durch den Kunststoffschlauch deutlich schlechter ist als bspw. durch ein Kupferrohr und dass zum Anderen die Kunststoffschlauche nur bis max . etwa 70-750C temperaturbeständig sind.Another way to cool a coil is to place from a non-conductive material, in particular made of a plastic cooling water pipes or tubes between the conductors or windings of a coil. However, this solution has the disadvantage that on the one hand, the heat transfer through the plastic tube is significantly worse than, for example, by a copper pipe and that on the other hand, the plastic hoses only up to max. about 70-75 0 C are temperature resistant.
Typischerweise wird das Kühlmedium in einer solchen Kühl- anläge mit einem Druck von mehreren Bar durch die Kühlleitungen gepresst. Im Inneren einer Navigationsspule können leicht Temperaturen von über 1000C erreicht werden. Außerdem treten bei der Erzeugung hoher magnetischer Felder zwischen den einzelnen Leitern der Navigationsspulenwicklungen nicht zu vernachlässigende Lorenzkräfte auf. Diese können dazu führen, dass selbst bei hinreichend mechanisch stabilem Aufbau der Navigationsspule einzelne Leiter oder Wicklungslagen gegeneinander mechanisch verschoben werden. Erfolgt eine solche mechanische Verschiebung an einem Ort, an dem ein aus Kunststoff hergestellter Kühlkanal in die Wicklung eingezogen ist, so erfolgt die mechanische Verschiebung typischerweise über das Kunststoffbauteil, welches somit enormen Scherkräften ausgesetzt ist. Offensichtlich ist sowohl aus mechanischen Gründen wie auch hinsichtlich der auftretenden Betriebstemperatur der Einsatz eines solchen Kühlsystems unter Verwendung derzeit verfügbarer, handelsüblicher Kunststoffe in einem Navigationsspulensystem für eine Kapselendoskopieanlage aus Gründen der Zuverlässigkeit nicht ratsam.Typically, the cooling medium in such a cooling system is pressed through the cooling lines at a pressure of several bars. Inside a navigation coil temperatures of over 100 0 C can be easily reached. In addition, occur in the generation of high magnetic fields between the individual conductors of the navigation coil windings not negligible Lorenzkräfte. These can result in individual conductors or winding layers being mechanically displaced against one another even if the navigation coil has a sufficiently mechanically stable construction. If such a mechanical displacement occurs at a location at which a cooling channel made of plastic is drawn into the winding, then the mechanical displacement typically takes place via the plastic component, which is thus subjected to enormous shearing forces. Obviously for reasons of reliability, both for mechanical reasons as well as with respect to the operating temperature occurring, the use of such a cooling system using commercially available, commercially available plastics in a navigation coil system for a capsule endoscopy installation is not advisable.
Es ist daher die Aufgabe der Erfindung, eine mit einem effektiven Kühlsystem ausgestattete und vergleichsweise einfach herzustellende Magnetspule anzugeben sowie ein Verfahren zur Herstellung einer derartigen Magnetspule.It is therefore the object of the invention to provide a equipped with an effective cooling system and comparatively easy to manufacture magnetic coil and a method for producing such a magnetic coil.
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.This object is achieved by the inventions specified in the independent claims. Advantageous embodiments emerge from the dependent claims.
Die erfindungsgemäße Magnetspule weist zur Erzeugung des Magnetfeldes eine stromführenden Wicklung aus elektrisch leitfähigem Material auf. Zusätzlich ist zur Kühlung der Magnetspule zumindest eine von einem Kühlmedium durchflossene Hohlkörperwicklung vorgesehen. Die stromführende Wicklung und die Hohlkörperwicklung sind parallel zueinander und in Richtung der Spulenlängsachse N der Magnetspule gesehen hintereinander angeordnet.The magnetic coil according to the invention has a current-carrying winding made of electrically conductive material for generating the magnetic field. In addition, at least one hollow body through which a cooling medium flows is provided for cooling the magnetic coil. The current-carrying winding and the hollow body winding are arranged one behind the other as viewed parallel to one another and in the direction of the coil longitudinal axis N of the magnet coil.
Die stromführende Wicklung ist dabei ein in radialer Richtung, d.h. in einer Richtung senkrecht zur Spulenlängsachse gesehen flaches Band aus elektrisch leitfähigem Material, das spiralförmig aufgewickelt ist. Vorzugsweise handelt es sich hierbei um ein Aluminium-Band. Die Oberfläche des Bandes ist elektrisch isoliert, wobei die Isolierung bspw. durch eine Eloxalschicht oder mit Hilfe einer zwischengelegten Isolationsfolie erreicht wird.The current-carrying winding is in the radial direction, i. in a direction perpendicular to the coil longitudinal axis seen flat band of electrically conductive material which is wound spirally. This is preferably an aluminum strip. The surface of the strip is electrically insulated, wherein the insulation is achieved, for example, by an anodized layer or by means of an interposed insulation film.
Die stromführende Wicklung und die Hohlkörperwicklung sind derart gewickelt, dass sie im Wesentlichen dasselbe Wicklungsauge und/oder in radialer Richtung gesehen dieselben Innen- und/oder Außenabmessungen aufweisen. Unter dem Wicklungsauge einer Wicklung wird dabei der in Richtung der Spulenlängsachse gesehene offene Querschnitt der Wicklung verstanden .The current-carrying winding and the hollow body winding are wound in such a way that they have essentially the same winding eye and / or the same inner and / or outer dimensions seen in the radial direction. Under the Winding eye of a winding is understood in the direction of the coil longitudinal axis seen open cross-section of the winding.
Die Hohlkörperwicklung kann ein spiralförmig gebogener, rohrförmiger Hohlkörper sein, bspw. ein Kupferrohr. Der Hohlkörper wird von einem Kühlmedium durchflössen und ist vorzugsweise von einem elektrisch isolierenden Material, bpsw. von einem Glasfaserband, umwickelt, um aus den oben genannten Gründen zu vermeiden, dass eine ausgedehnte elektrisch leitfähige Fläche entsteht. Darüber hinaus sind die stromführende Wicklung und die Hohlkörperwicklung elektrisch voneinander isoliert, bspw. durch eine zusätzliche, zwischen der stromführenden Wicklung und der Hohlkörperwicklung gelegte Folie oder durch eine Ummantelung der gesamten Hohlkörperwicklung mit einem Glasfaserband.The hollow body winding may be a spirally curved, tubular hollow body, for example a copper pipe. The hollow body is flowed through by a cooling medium and is preferably made of an electrically insulating material, bpsw. by a glass fiber tape, wrapped to avoid for the reasons mentioned above, that an extended electrically conductive surface is formed. In addition, the current-carrying winding and the hollow body winding are electrically isolated from each other, for example. By an additional, placed between the current-carrying winding and the hollow body winding foil or by sheathing the entire hollow body winding with a glass fiber tape.
Die stromführende Wicklung und die Hohlkörperwicklung sind derart miteinander verbunden, dass sie in mechanischem und thermischem Kontakt stehen.The current-carrying winding and the hollow body winding are connected to one another in such a way that they are in mechanical and thermal contact.
Vorteilhafterweise liegt eine stromführende Wicklung zwischen zwei Hohlkörperwicklungen, so dass eine effektivere Kühlung erreicht wird. Grundsätzlich können mehrere stromführende Wicklungen und/oder mehrere Hohlkörperwicklungen vorgesehen sein, die abwechselnd hintereinander angeordnet sind und in thermischem und mechanischem Kontakt miteinander stehen. Bspw. kann die Magnetspule zwei Hohlkörperwicklungen und eine stromführende Wicklung aufweisen, wobei die stromführende Wicklung zwischen den Hohlkörperwicklungen angeordnet ist.Advantageously, a current-carrying winding is located between two hollow body windings, so that a more effective cooling is achieved. In principle, a plurality of current-carrying windings and / or a plurality of hollow body windings may be provided, which are arranged alternately one behind the other and are in thermal and mechanical contact with each other. For example. For example, the magnet coil may have two hollow body windings and one current-carrying winding, wherein the current-carrying winding is arranged between the hollow body windings.
Zum Aufwickeln der stromführunden Wicklung und der Hohlkörperwicklung der Magnetspule kann vorteilhafterweise ein und dasselbe Wickelwerkzeug verwendet werden. Die strom- führende Wicklung und die Hohlkörperwicklung sind unabhängig voneinander aufgewickelt. Zur Herstellung der Magnetspule wird zunächst die stromführende Wicklung gewickelt und vom Wickeldorn genommen. Anschließend wird auf demselben Wickel- dorn die Hohlkörperwicklung gewickelt. Durch Verklebung, Umbandelung und/oder ähnliche Maßnahmen werden die beiden Wicklungen danach mechanisch miteinander verbunden. Der endgültige mechanische und thermische Kontakt erfolgt durch Verguss der gesamten Spule.For winding up the current-carrying winding and the hollow body winding of the magnet coil, advantageously one and the same winding tool can be used. The current-carrying winding and the hollow body winding are wound up independently of one another. To produce the magnetic coil, the current-carrying winding is first wound and removed from the winding mandrel. Subsequently, on the same winding thorn wound the hollow body winding. By gluing, Umbandelung and / or similar measures, the two windings are then mechanically interconnected. The final mechanical and thermal contact is made by potting the entire coil.
Die folgenden Vorteile ergeben sich mit der erfindungsgemäßen Magnetspule :The following advantages arise with the magnet coil according to the invention:
— Es finden keine elektrochmischen Reaktionen mit dem- There are no electrochemical reactions with the
Kühlwasser statt, da die Hohlkörperwicklung zum Einen aus Kupfer hergestellt und zum Anderen unbestromt ist. Als Kühlwasser kann daher Leitungswasser verwendet werden.Cooling water instead, because the hollow body winding is made on the one hand of copper and on the other hand is de-energized. As cooling water can therefore be used tap water.
- Die Isolation der Hohlkörperwicklung führt dazu, dass kein großflächiges, elektrisch leitendes Gebiet vorhanden ist, in dem bspw. durch äußere elektromagnetische Wechselfelder Wirbelströme angeregt werden können, die wiederum zu EMV- Problemen oder zu zusätzlicher Wärmeeinkopplung führen können.- The insulation of the hollow body winding causes no large area, electrically conductive area is present in which, for example, by external electromagnetic alternating fields eddy currents can be excited, which in turn can lead to EMC problems or additional heat coupling.
— Für den Fall, dass die stromführende Wicklung und die Hohlkörperwicklung unabhängig voneinander auf dem selben Wickelwerkzeug hergestellt werden, ist eine einfache und preiswerte Produktion der Magnetspule, insbesondere bei geringer Stückzahl, möglich.- In the event that the current-carrying winding and the hollow body winding are produced independently on the same winding tool, a simple and inexpensive production of the solenoid, especially in small quantities, is possible.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnungen.Further advantages, features and details of the invention will become apparent from the embodiment described below and with reference to the drawings.
Dabei zeigt:Showing:
Figur 1 ein System zur kapselendoskopischen Untersuchung oder Behandlung eines Patienten,FIG. 1 shows a system for the capsule endoscopic examination or treatment of a patient,
Figur 2 eine perspektivische Ansicht einer Magnetspule derFigure 2 is a perspective view of a magnetic coil of
Magnetspulenanordnung, Figur 3 einen Querschnitt der Magnetspule und Figur 4 einen Querschnitt einer weiteren Ausführungsform der Magnetspule.Magnet coil arrangement, Figure 3 shows a cross section of the magnetic coil and 4 shows a cross section of a further embodiment of the magnetic coil.
Die Figur 1 zeigt in Teilen ein System zur kapselendos- kopischen Untersuchung oder Behandlung eines Patienten. Das System 1 umfasst ein Magnetspulensystem 2 zur kabellosen Navigation einer Endoskopiekapsel (nicht dargestellt) , wie es beispielsweise in DE 10 2005 010 489 Al beschrieben wird. Das Magnetspulensystem 2 beinhaltet mehrere Magnetspulen 10 (in der Figur 1 ist nur eine der Magnetspulen explizit gekennzeichnet) , die ggf. unterschiedlich dimensioniert sein können, im Wesentlichen aber eine Form aufweisen, wie sie exemplarisch in der Figur 2 dargestellt ist. In der Figur 1 ist darüber hinaus eine Führung 3 für eine Patientenliege angedeutet, auf der sich der Patient zur Untersuchung oderFIG. 1 shows in parts a system for capsule-endoscopic examination or treatment of a patient. The system 1 comprises a magnet coil system 2 for wireless navigation of an endoscopy capsule (not shown), as described, for example, in DE 10 2005 010 489 A1. The magnet coil system 2 includes a plurality of magnetic coils 10 (only one of the magnetic coils is explicitly marked in FIG. 1), which may optionally be dimensioned differently, but essentially have a shape, as illustrated by way of example in FIG. FIG. 1 also shows a guide 3 for a patient couch on which the patient is examined or examined
Behandlung befindet. Ebenfalls nur angedeutet ist ein Gehäuse 4, welches das Magnetspulensystem 2 und ggf. andere Gerätschaften wie bspw. ein Ortungssystem umgibt.Treatment is located. Also only indicated is a housing 4, which surrounds the magnet coil system 2 and possibly other equipment such as, for example, a location system.
Die Figur 2 zeigt eine Magnetspule 10 in perspektivischerFIG. 2 shows a magnetic coil 10 in perspective
Ansicht. Die Magnetspule 10 hat im dargestellten Ausführungsbeispiel eine rechteckige Form und weist ein sog. Wicklungsauge 11 auf. Unter dem Wicklungsauge einer Wicklung bzw. einer Spule wird dabei der in Richtung der Spulenlängsachse N, welche in Richtung der z-Achse des in der Figur 2 angedeuteten Koordinatensystems, orientiert ist, gesehene offene Querschnitt der Wicklung verstanden, d.h. die von der eigentlichen Wicklung umgebene Öffnung der Spule. Die Magnetspule 10 kann aber davon abweichend grundsätzlich auch bspw. eine kreisrunde, eine elliptische oder eine quadratische Form aufweisen .View. The magnetic coil 10 has a rectangular shape in the illustrated embodiment and has a so-called. Winding eye 11 on. In this case, the winding eye of a winding or a coil is understood as meaning the open cross-section of the winding as seen in the direction of the coil longitudinal axis N, which is oriented in the direction of the z-axis of the coordinate system indicated in FIG. 2, i. the opening of the coil surrounded by the actual winding. However, the magnetic coil 10 may also have a circular, an elliptical or a square shape.
Die Figur 3 zeigt den in der Figur 2 angedeuteten Querschnitt durch einen Abschnitt der Magnetspule 10, der sich in Blick- richung der Pfeile 12, 13 ergibt. In Richtung der Spulenlängsachse N gesehen sind hintereinander eine erste Hohlkörperwicklung 210, eine stromführende Wicklung 310 und eine zweite Hohlkörperwicklung 220 angeordnet. Die Hohlkörper- Wicklungen 210, 220 und die stromführende Wicklung 310 sind jeweils spiralförmig aufgewickelt und parallel zueinander orientiert, d.h. die Querschnittsflächen der Hohlkörperwicklungen 210, 220 und der stromführenden Wicklung 310 liegen parallel zueinander.FIG. 3 shows the cross section, indicated in FIG. 2, of a section of the magnetic coil 10, which results in the direction of the arrows 12, 13. In the direction of the coil longitudinal axis N, a first hollow body winding 210, a current-carrying winding 310 and a second hollow body winding 220 are arranged in succession. The hollow body Windings 210, 220 and the current-carrying winding 310 are each spirally wound and oriented parallel to each other, ie, the cross-sectional areas of the hollow body windings 210, 220 and the current-carrying winding 310 are parallel to each other.
Die stromführende Wicklung 310 und die HohlkörperwicklungenThe current-carrying winding 310 and the hollow body windings
210, 220 sind derart gewickelt, dass sie im Wesentlichen dasselbe Wicklungsauge 11 und in radialer Richtung gesehen im Wesentlichen dieselben Innen- und/oder Außenabmessungen dx, da aufweisen (siehe Figur 2) .210, 220 are wound in such a way that they have substantially the same winding eye 11 and substantially the same inner and / or outer dimensions d x , d a in the radial direction (see FIG. 2).
Als stromführende Wicklung 310 dient ein elektrisch leitfähiges, flaches Aluminium-Band 311, dessen Oberfläche elektrisch isoliert ist, wobei die Isolierung 312 bspw. durch eine Eloxalschicht oder mit Hilfe einer zwischengelegten Isolationsfolie erreicht wird.The current-carrying winding 310 is an electrically conductive, flat aluminum strip 311 whose surface is electrically insulated, wherein the insulation 312 is achieved, for example, by an anodized layer or by means of an interposed insulation film.
Die Hohlkörperwicklungen 210, 220 bestehen idealerweise jeweils aus einem spiralförmig gebogenen, einen Kühlmittelkanal aufweisenden Hohlkörper 211, 221 bzw. aus einem spiralförmig gebogenen, rohrförmigen Hohlkörper 211, 221. Vorzugsweise ist der Hohlkörper 211, 221 als Kupferhohlleiter bzw. Kupferrohr mit quadratischem oder rechteckigem Außen- querschnitt ausgebildet. Ein derartiger Kupferhohlleiter 211, 221 wird vom Hersteller in der Regel unisoliert, insbesondere ohne Lackioslierung, geliefert. Der Kupferhohlleiter 211, 221 kann, bevor er endgültig in die Spiralform gewickelt wird, mit einem elektrisch isolierenden Material 212, 222, bspw. mit einem Glasfaserband, ummantelt werden, um zu vermeiden, dass eine ausgedehnte, elektrisch leitfähige Fläche entsteht.The hollow body windings 210, 220 are ideally each made of a spirally curved, a coolant channel having hollow body 211, 221 or from a spirally curved, tubular hollow body 211, 221. Preferably, the hollow body 211, 221 as a copper waveguide or copper pipe with square or rectangular outside - formed cross-section. Such a copper waveguide 211, 221 is usually uninsulated by the manufacturer, in particular without Lackioslierung delivered. The copper waveguide 211, 221 can, before it is finally wound into the spiral shape, be coated with an electrically insulating material 212, 222, for example with a fiberglass tape, in order to avoid that an extended, electrically conductive surface is formed.
Die Hohlkörperwicklungen 210, 220 bzw. die KupferhohlleiterThe hollow body windings 210, 220 and the copper waveguide
211, 221 werden zur Kühlung der Magnetspule 10 bzw. der stromführenden Wicklung 310 von einem Kühlmedium, bspw. von Leitungswasser, durchströmt. Dabei können die Hohlkörperwicklungen 210, 220 prinzipiell sowohl parallel als auch in Reihe an die Quelle des Kühlmediums angeschlossen sein. Für den Fall, dass die Hohlkörperwicklungen 210, 220 in Reihe an die Quelle angeschlossen sind, ist die Temperatur des Kühlmediums jedoch bereits erhöht, wenn es die in Strömungsrichtung gesehen hintere Hohlkörperwicklung durchströmt. Die Kühlwirkung ist daher herabgesetzt. Darüber hinaus ist der Leitungswiderstand von in Reihe geschalteten Leitungen erhöht. Vorzugsweise sind die Hohlkörperwicklungen 210, 220 daher parallel an die Quelle angeschlossen, da dann zum Einen eine bessere Kühlungwirkung erreicht wird und zum Anderen der Leitungswiderstand geringer ist.211, 221 flows through a cooling medium, for example. Of tap water for cooling the solenoid coil 10 and the current-carrying winding 310. In this case, the hollow body windings 210, 220 can in principle be connected both in parallel and in series to the source of the cooling medium. For However, in the case that the hollow body windings 210, 220 are connected in series to the source, the temperature of the cooling medium is already increased, when it flows through the behind in the flow direction hollow body winding. The cooling effect is therefore reduced. In addition, the line resistance of serially connected lines is increased. Preferably, the hollow body windings 210, 220 are therefore connected in parallel to the source, since then on the one hand a better cooling effect is achieved and on the other hand, the line resistance is lower.
Zusätzlich zur oben erwähnten Isolierung der Kupferhohlleiter 211, 221 mit einem elektrisch isolierenden Band 212, 222 sind die beiden Hohlkörperwicklungen 210, 220 mit Hilfe einer Isolierung 213, 223 auch von der stromführenden Wicklung 310 elektrisch isoliert. Dies erfolgt bspw. durch zusätzliche, zwischen der stromführenden Wicklung 310 und den Hohlkörperwicklungen 210, 220 gelegte Folien, über eine Ummantelung der gesamten Hohlkörperwicklungen 210, 220 mit Glasfaserband oder, wie in der Figur 3 dargestellt, mit Hilfe einesIn addition to the above-mentioned isolation of the copper waveguides 211, 221 with an electrically insulating strip 212, 222, the two hollow body windings 210, 220 are also electrically insulated from the current-carrying winding 310 by means of an insulation 213, 223. This is done, for example, by additional, between the current-carrying winding 310 and the hollow body windings 210, 220 laid films over a sheathing of the entire hollow body windings 210, 220 with glass fiber tape or, as shown in Figure 3, with the aid of a
Vakuumvergusses mit einem Epoxydharz 213, 223. Gleichzeitig stehen die Hohlkörperwicklungen 210, 220 über eine Verbindung 313 mit der stromführenden Wicklung 310 sowohl in mechanischem als auch in thermischem Kontakt, wobei über den thermischen Kontakt die in der stromführenden Wicklung 310 entstehende Wärme an die Hohlkörperwicklungen 210, 220 abgeführt wird.Vakuumvergusses with an epoxy 213, 223. At the same time are the hollow body windings 210, 220 via a connection 313 with the current-carrying winding 310 in both mechanical and in thermal contact, wherein the thermal contact in the current-carrying winding 310 resulting heat to the hollow body windings 210th , 220 is discharged.
Die Verbindung 313 kann dabei auf verschiedene Arten realisiert sein:The connection 313 can be realized in different ways:
— Mechanische Umwicklung des 3-Spulen-Systems bestehend aus den Hohlkörperwicklungen 210, 220 und der stromführenden Wicklung 310 mit Glasfaserband und anschließender Vakuumverguss .- Mechanical wrapping of the 3-coil system consisting of the hollow body windings 210, 220 and the current-carrying winding 310 with glass fiber tape and subsequent Vakuumverguss.
— Einlage von Prepreg-Matten zwischen den Hohlkörperwicklungen 210, 220 und der stromführenden Wicklung 310, Ummantelung des 3-Spulen-Systems mit Prepreg-Matten und anschließende thermische Verpressung und Aushärtung. - Kaltverklebung mit einem Epoxy-Kleber .Inserting prepreg mats between the hollow body windings 210, 220 and the current-carrying winding 310, Coating of the 3-coil system with prepreg mats followed by thermal compression and curing. - Cold gluing with an epoxy glue.
Die Figur 4 zeigt eine Ausführungsform mit zwei unabhängigen stromführenden Wicklungen 310, 320. Dementsprechend sind drei Hohlkörperwicklungen 210, 220, 230 vorgesehen, wobei die stromführenden Wicklungen 310, 320 und die Hohlkörperwicklungen 210, 220, 230 in Richtung der Spulenlängsachse N gesehen abwechselnd angeordnet sind. Die Wicklungen stehen dabei in thermischem und mechanischem Kontakt, sind aber elektrisch voneinander isoliert. Im Übrigen entspricht der Aufbau der Magnetspule 10 der Figur 4 mit den Kupferhohlleitern 211, 221, 231, dem elektrisch isolierenden Material 212, 222, 232, der Isolierung 213, 223, 233, dem Aluminium- Band 311, 321, der Isolierung 312, 322 und der Verbindung 313 dem im Zusammenhang mit der Figur 3 beschriebenen Aufbau.4 shows an embodiment with two independent current-carrying windings 310, 320. Accordingly, three hollow body windings 210, 220, 230 are provided, wherein the current-carrying windings 310, 320 and the hollow body windings 210, 220, 230 arranged alternately in the direction of the coil longitudinal axis N. , The windings are in thermal and mechanical contact, but are electrically isolated from each other. Incidentally, the structure of the magnetic coil 10 of FIG. 4 corresponds to the copper waveguides 211, 221, 231, the electrically insulating material 212, 222, 232, the insulation 213, 223, 233, the aluminum strip 311, 321, the insulation 312, 322 and the connection 313 to the structure described in connection with FIG.
Vorteilhafterweise kann zur Herstellung der Magnetspule 10 bzw. zum Wickeln der stromführenden Wicklung (en) 310, 320 und der Hohlkörperwicklung (en) 210, 220, 230 ein und dasselbe Wickelwerkzeug verwendet werden.Advantageously, one and the same winding tool can be used for producing the magnetic coil 10 or for winding the current-carrying winding (s) 310, 320 and the hollow body winding (s) 210, 220, 230.
Die Magnetspule 10 gemäß Figur 3 wird in folgender Weise hergestellt: Zunächst wird die stromführende Wicklung 310 aufgewickelt und vom Wickeldorn der Wickelmaschine genommen.The magnet coil 10 according to FIG. 3 is produced in the following way: First, the current-carrying winding 310 is wound up and taken from the winding mandrel of the winding machine.
Anschließend werden nacheinander auf demselben Wickeldorn dieSubsequently, successively on the same mandrel the
Hohlkörperwicklungen 210, 220 gewickelt. Durch Verklebung,Hollow body windings 210, 220 wound. By gluing,
Umbandelung und/oder ähnliche Maßnahmen werden die Wicklungen 210, 220, 310 danach mechanisch miteinander verbunden. Der endgültige mechanische und thermische Kontakt erfolgt durchUmbandelung and / or similar measures, the windings 210, 220, 310 are then mechanically interconnected. The final mechanical and thermal contact is made by
Verguss der gesamten Spule.Potting the entire coil.
Grundsätzlich kann die Reihenfolge natürlich auch umgekehrt werden.Basically, the order can of course be reversed.
Vor dem Wickeln der Hohlkörperwicklung 210, 220 sollte der entsprechende zu wickelnde Kupferhohlleiter 211, 221, 231 jedoch falls gewünscht mit dem elektrisch isolierenden Band 212, 222, 232 ummantelt werden. Before winding the hollow body winding 210, 220, the corresponding copper waveguide 211, 221, 231 to be wound should be however, if desired, sheathed with the electrically insulating tape 212, 222, 232.

Claims

Patentansprüche claims
1. Magnetspule mit zumindest einer stromführenden Wicklung (310, 320) aus elektrisch leitfähigem Material und zumindest einer von einem Kühlmedium durchflössen Hohlkörperwicklung (210, 220, 230), dadurch gekennzeichnet, dass die stromführende Wicklung (310, 320) und die Hohlkörperwicklung (210, 220, 230) parallel zueinander und in Richtung der Spulenlängsachse N der Magnetspule (10) gesehen hintereinander angeordnet sind.1. magnetic coil having at least one current-carrying winding (310, 320) of electrically conductive material and at least one of a cooling medium flow through the hollow body winding (210, 220, 230), characterized in that the current-carrying winding (310, 320) and the hollow body winding (210 , 220, 230) parallel to each other and in the direction of the coil longitudinal axis N of the magnetic coil (10) are arranged one behind the other.
2. Magnetspule nach Anspruch 1, dadurch gekennzeichnet, dass die stromführende Wicklung (310, 320) ein flaches Band (311) aus elektrisch leitfähigem Material ist, insbesondere ein Aluminium-Band, wobei das Band (311) spiralförmig aufgewickelt ist.2. Magnetic coil according to claim 1, characterized in that the current-carrying winding (310, 320) is a flat band (311) of electrically conductive material, in particular an aluminum strip, wherein the band (311) is wound spirally.
3. Magnetspule nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die stromführende Wicklung (310, 320) und die Hohlkörperwicklung (210, 220, 230) im Wesentlichen dasselbe Wicklungsauge (11) und/oder in einer Richtung senkrecht zur Spulenlängsachse im Wesentlichen dieselben Innen- und/oder Außenabmessungen (dx, da) aufweisen.3. Magnetic coil according to claim 1 or 2, characterized in that the current-carrying winding (310, 320) and the hollow body winding (210, 220, 230) substantially the same winding eye (11) and / or in a direction perpendicular to the coil longitudinal axis substantially the same Inner and / or outer dimensions (d x , d a ) have.
4. Magnetspule nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hohlkörperwicklung (210, 220, 230) einen Hohlkörper (211, 221, 231) aufweist, der von einem elektrisch isolierenden Material (212, 222, 232) ummantelt ist.4. Magnetic coil according to one of the preceding claims, characterized in that the hollow body winding (210, 220, 230) has a hollow body (211, 221, 231) which is encased by an electrically insulating material (212, 222, 232).
5. Magnetspule nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die stromführende Wicklung (310, 320) und die Hohlkörperwicklung (210, 220, 230) mit Hilfe einer Isolierung (213, 223, 233) voneinander elektrisch isoliert sind.5. Magnetic coil according to one of the preceding claims, characterized in that the current-carrying winding (310, 320) and the hollow body winding (210, 220, 230) by means of an insulation (213, 223, 233) are electrically isolated from each other.
6. Magnetspule nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die stromführende Wicklung (310, 320) und die Hohlkörperwicklung (210, 220, 230) über eine Verbindung (313) in mechanischem und in thermischem Kontakt miteinander stehen.6. Magnetic coil according to one of the preceding claims, characterized in that the current-carrying winding (310, 320) and the hollow body winding (210, 220, 230) via a connection (313) in mechanical and in thermal contact with each other.
7. Magnetspule nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die die stromführende Wicklung (310, 320) und/oder die Hohlkörperwicklung (210, 220, 230) spiralförmig aufgewickelt sind.7. Magnetic coil according to one of the preceding claims, characterized in that the current-carrying winding (310, 320) and / or the hollow body winding (210, 220, 230) are spirally wound.
8. Magnetspule nach einem der vorhergehenden Ansprüche, bestehend aus mehreren stromführenden Wicklungen (310, 320) und mehreren Hohlkörperwicklungen (210, 220, 230), wobei die stromführenden Wicklungen (310, 320) und die Hohlkörperwicklungen (210, 220, 230) in Richtung der Spulenlängsachse N gesehen abwechselnd aneinander gesetzt sind und über eine Verbindung (313) in mechanischem und thermischem Kontakt stehen.8. Magnetic coil according to one of the preceding claims, consisting of a plurality of current-carrying windings (310, 320) and a plurality of hollow body windings (210, 220, 230), wherein the current-carrying windings (310, 320) and the hollow body windings (210, 220, 230) in Direction of the coil longitudinal axis N are alternately set to each other and via a connection (313) in mechanical and thermal contact.
9. Verfahren zur Herstellung einer Magnetspule nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die stromführende Wicklung (310, 320) und die Hohlkörperwicklung (210, 220, 230) mit ein und demselben Wickelwerkzeug hergestellt werden.9. A method for producing a magnetic coil according to one of the preceding claims, characterized in that the current-carrying winding (310, 320) and the hollow body winding (210, 220, 230) are produced with one and the same winding tool.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Wickelwerkzeug einen Wickeldorn aufweist, wobei10. The method according to claim 9, characterized in that the winding tool has a winding mandrel, wherein
- auf dem Wickeldorn zunächst die stromführende Wicklung gewickelt wird,- on the mandrel first the current-carrying winding is wound,
- die fertige stromführende Wicklung vom Wickeldorn genommen wird,the finished current-carrying winding is taken from the mandrel,
- anschließend auf dem Wickeldorn die Hohlkörperwicklung gewickelt wird,- Then on the winding mandrel, the hollow body winding is wound,
- die fertige Hohlleitewicklung vom Wickeldorn genommen wird und - die stromführende Wicklung und die Hohlkörperwicklung mechanische miteinander verbunden werden. - The finished hollow conductor winding is taken from the winding mandrel and - the current-carrying winding and the hollow body winding are mechanically connected to each other.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Wickelwerkzeug einen Wickeldorn aufweist, wobei11. The method according to claim 9, characterized in that the winding tool has a winding mandrel, wherein
- auf dem Wickeldorn zunächst die Hohlkörperwicklung gewickelt wird, - die fertige Hohlkörperwicklung vom Wickeldorn genommen wird,- The hollow body winding is first wound on the mandrel, - The finished hollow body winding is taken from the winding mandrel,
- anschließend auf dem Wickeldorn die stromführende Wicklung gewickelt wird,- Then on the winding mandrel, the current-carrying winding is wound,
- die fertige stromführende Wicklung vom Wickeldorn genommen wird und- The finished current-carrying winding is taken from the winding mandrel and
- die stromführende Wicklung und die Hohlkörperwicklung mechanische miteinander verbunden werden. - The current-carrying winding and the hollow body winding are mechanically connected to each other.
PCT/EP2009/053383 2008-05-15 2009-03-23 Solenoid having a cooling device WO2009138283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008023610.1 2008-05-15
DE102008023610A DE102008023610A1 (en) 2008-05-15 2008-05-15 Magnetic coil with cooling device

Publications (1)

Publication Number Publication Date
WO2009138283A1 true WO2009138283A1 (en) 2009-11-19

Family

ID=41010551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053383 WO2009138283A1 (en) 2008-05-15 2009-03-23 Solenoid having a cooling device

Country Status (2)

Country Link
DE (1) DE102008023610A1 (en)
WO (1) WO2009138283A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717116A (en) * 1980-07-04 1982-01-28 Hitachi Ltd Resin molded coil
JPS607116A (en) * 1983-06-27 1985-01-14 Toshiba Corp Manufacture of foil winding
US4584551A (en) * 1984-09-24 1986-04-22 Marelco Power Systems Transformer having bow loop in tubular winding
JPS61128507A (en) * 1984-11-28 1986-06-16 Toshiba Corp Foil-wound transformer
US5119058A (en) * 1989-11-17 1992-06-02 General Dynamics Corporation, Space Systems Division Laminated conductor for high current coils
DE19835414A1 (en) * 1998-08-05 2000-02-24 Siemens Ag Gradient coil for magnetic resonance device
US6163241A (en) * 1999-08-31 2000-12-19 Stupak, Jr.; Joseph J. Coil and method for magnetizing an article
DE10018165A1 (en) * 2000-04-12 2001-10-25 Siemens Ag Gradient coil with direct cooling for magnetic resonance equipment
WO2006092421A1 (en) * 2005-03-04 2006-09-08 Siemens Aktiengesellschaft Coil system for a contactless magnetic navigation of a magnetic body in a working chamber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340925B3 (en) 2003-09-05 2005-06-30 Siemens Ag Magnetic coil system for non-contact movement of a magnetic body in a working space
DE102007007801B4 (en) 2007-02-16 2015-02-26 Siemens Aktiengesellschaft Magnetic coil system with a navigation coil system and a location system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717116A (en) * 1980-07-04 1982-01-28 Hitachi Ltd Resin molded coil
JPS607116A (en) * 1983-06-27 1985-01-14 Toshiba Corp Manufacture of foil winding
US4584551A (en) * 1984-09-24 1986-04-22 Marelco Power Systems Transformer having bow loop in tubular winding
JPS61128507A (en) * 1984-11-28 1986-06-16 Toshiba Corp Foil-wound transformer
US5119058A (en) * 1989-11-17 1992-06-02 General Dynamics Corporation, Space Systems Division Laminated conductor for high current coils
DE19835414A1 (en) * 1998-08-05 2000-02-24 Siemens Ag Gradient coil for magnetic resonance device
US6163241A (en) * 1999-08-31 2000-12-19 Stupak, Jr.; Joseph J. Coil and method for magnetizing an article
DE10018165A1 (en) * 2000-04-12 2001-10-25 Siemens Ag Gradient coil with direct cooling for magnetic resonance equipment
WO2006092421A1 (en) * 2005-03-04 2006-09-08 Siemens Aktiengesellschaft Coil system for a contactless magnetic navigation of a magnetic body in a working chamber

Also Published As

Publication number Publication date
DE102008023610A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
DE112010004615B4 (en) RADIO FREQUENCY ABLATION SYSTEM WITH TRACKING SENSOR
DE102005010489B4 (en) Coil system for non-contact magnetic navigation of a magnetic body in a patient located in a working space
DE69838876T2 (en) MAGNETICALLY ALIGNABLE REMOTE ASSEMBLY AND APPLICATION METHOD
DE10341092B4 (en) Installation for non-contact movement and / or fixation of a magnetic body in a working space using a magnetic coil system
EP2229118B1 (en) Coil arrangement for guiding a magnetic element in a working space
EP2451374B1 (en) Electrosurgical instrument and method for producing an electrosurgical instrument
WO2007054404A1 (en) Method and device for the wireless energy transmission from a magnet coil system to a working capsule
EP1988552A1 (en) Beam guidance magnet for guiding a beam of electrically charged particles along a curved particle pathway and beam assembly with such a magnet
EP0317853A1 (en) Magnet assembly for a nuclear spin tomography apparatus with superconducting main-field coils and normally conducting gradient coils
DE10130615A1 (en) Connector device for sensor or actuator for surface antennas in magnetic resonance systems has electric conductors formed as inductors for signal transmission by inductive coupling
EP2011127B1 (en) Curved beam-guiding magnet with saddle- and race-track-shaped superconducting coils and irradiation unit with such a magnet
EP2047481A1 (en) Super conducting beam guidance magnet, which can rotate and has a solid-state cryogenic thermal bus
EP0453454B1 (en) Superconducting magnet arrangement
DE102007007801B4 (en) Magnetic coil system with a navigation coil system and a location system
DE112010000844B4 (en) transmission line
WO2007110278A1 (en) Method and device for remote control of a work capsule of a magnetic coil system
WO2010105882A1 (en) Coil assembly for guiding a magnetic object in a workspace
WO2007110270A2 (en) Method and device for remote control of a working capsule having positioning coils
DE102007012360A1 (en) navigation device
WO2009138283A1 (en) Solenoid having a cooling device
DE102007036242A1 (en) Magnetic coil system for applying force to an endoscopy capsule
EP2238898A1 (en) Device for monitoring an organism during a magnetic resonance experiment
US20220218881A1 (en) Interventional Medical Devices Useful in Performing Treatment under Magnetic Resonance Imaging and Related Methods
US20170038442A1 (en) Omnidirectional MRI Catheter Resonator and Related Systems, Methods and Devices
EP3020442B1 (en) Wire-shaped medical instrument and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09745616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09745616

Country of ref document: EP

Kind code of ref document: A1