WO2009136601A1 - Α-1,4-glucan-grafted cellulose - Google Patents

Α-1,4-glucan-grafted cellulose Download PDF

Info

Publication number
WO2009136601A1
WO2009136601A1 PCT/JP2009/058563 JP2009058563W WO2009136601A1 WO 2009136601 A1 WO2009136601 A1 WO 2009136601A1 JP 2009058563 W JP2009058563 W JP 2009058563W WO 2009136601 A1 WO2009136601 A1 WO 2009136601A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
glucan
primer
graft polymer
chain
Prior art date
Application number
PCT/JP2009/058563
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 門川
武史 鷹羽
佳代 細谷
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Publication of WO2009136601A1 publication Critical patent/WO2009136601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates

Definitions

  • the present invention relates to cellulose combined with ⁇ -1,4 glucan and a method for producing the same.
  • polymers having different structures and / or functions are combined to develop polymers having different functions and / or physical properties.
  • a polymer obtained by grafting acrylic acid to starch is used as a superabsorbent polymer in the daily necessities field.
  • branched complex polysaccharides are known to play an important role in nature. These materials have a branched structure composed of different sugar units, and it is considered that such a structure affects the function of the material.
  • natural polysaccharides such as starch, amylose, cellulose, and chitin are abundant in nature and are expected to be used as low environmental impact materials because they are biodegradable and recyclable carbon resources.
  • Cellulose is a polysaccharide in which many glucose residues are linked by ⁇ -1,4-linkages. Cellulose is insoluble in water, has high crystallinity, and has high mechanical strength, and is used for structural materials, films, fibers, and the like.
  • amylose is a polysaccharide in which many glucoses are bonded with ⁇ -1,4-bonds, and dissolves or swells in water to form an aqueous solution or hydrogel.
  • Amylose has a characteristic function of forming a clathrate compound by taking a guest substance into a hollow portion of the amylose and forming an inclusion compound. It has been reported that the inclusion compound forming ability of amylose is greatly influenced by the polymerization degree of amylose, and is stronger as the polymerization degree of amylose is higher (Non-patent Document 1).
  • amylose is preferably a completely linear ⁇ -1,4 glucan containing no branched structure, and the longer the degree of polymerization, the more preferable.
  • amylose is also characterized by being easily degraded in the environment and in vivo.
  • Patent Document 1 discloses a fiber made of a polymer inclusion compound in which a cyclic oligosaccharide is bound to a linear amino polysaccharide (for example, chitosan fiber). Furthermore, the synthesis of amylose-grafted chitin and amylose-grafted chitosan by a chemical-enzymatic method is reported in Non-Patent Document 2.
  • Non-Patent Document 2 discloses that a graft polymer is produced by bonding a side chain to an NH 2 group present in the structure of chitin.
  • hydroxyl groups must be used to produce the graft polymer.
  • a very large number of hydroxyl groups are present in cellulose and cannot be selectively reacted like chitin. If an attempt is made to graft all the hydroxyl groups in cellulose, structural failure occurs and the reaction does not proceed.
  • amylose having a high degree of polymerization such as a degree of polymerization of 25 or more has low reactivity and cannot be grafted by chemical synthesis. For this reason, there is no report on a graft polymer in which an amylose side chain is grafted to a cellulose main chain.
  • the present invention is intended to solve the above-mentioned problems, and graft polymers having ⁇ -1,4 glucan having a polymerization degree of 25 or more grafted to cellulose and having an inclusion function of ⁇ -1,4 glucan (that is, a graft polymer) , ⁇ -1,4 glucan grafted cellulose).
  • the present inventors have carried out polymerization by covalently bonding a primer to cellulose and then extending the primer enzymatically to ⁇ -1,4 glucan.
  • the inventors have found that ⁇ -1,4 glucan side chains having a degree of 25 or more can be covalently bonded to the cellulose main chain, and based on this, the present invention has been completed.
  • maltooligosaccharides or short chain amylose are introduced by a reductive amination reaction. That is, a part of the hydroxyl group at the 6-position in the glucose residue in the cellulose main chain is converted to an amino group, and a malto-oligosaccharide or short-chain amylose is introduced by performing a reductive amination reaction on this amino group. To do.
  • amylose-forming polymerization is performed from the maltooligosaccharide site or the short-chain amylose site to synthesize amylose-grafted cellulose.
  • Other embodiments will be described in detail in the “Description of Embodiments” of this specification.
  • FIG. 1 An example of a method for producing a graft polymer according to the present invention is shown in FIG.
  • maltoheptaose is used as a primer and ⁇ -glucan phosphorylase is used as an enzyme.
  • an amino group is first introduced into cellulose by a chemical reaction to obtain an amino group-containing cellulose (cellulose having amino group).
  • maltoheptaose is introduced into the amino group-containing cellulose by a chemical reaction to obtain maltoheptaose-grafted cellulose.
  • a maltoheptaose chain is bonded via an amino group introduced into the cellulose.
  • the maltoheptaose chain is elongated by an enzymatic reaction using ⁇ -glucan phosphorylase to form an amylose chain, thereby producing an amylose grafted cellulose (amylose).
  • amylose grafted cellulose amylose grafted cellulose (amylose).
  • -Crafted cellulose is obtained.
  • the present invention provides, for example: (Item 1) a graft polymer in which ⁇ -1,4 glucan side chains are bonded to a cellulose main chain, The first carbon at the end of the ⁇ -1,4 glucan side chain is covalently bonded via the —NH— group to the 6th carbon of at least one glucose residue in the cellulose backbone; Two hydrogen groups are bonded to the first carbon atom, or one oxygen atom is bonded; The degree of polymerization of the cellulose main chain is 25 or more; The degree of polymerization of the ⁇ -1,4 glucan side chain is 25 or more. Graft polymer.
  • (Item 2) Item 2. The graft polymer according to Item 1, wherein the ⁇ -1,4 glucan side chain is completely linear.
  • the graft polymer has the following structure (I):
  • each R is —OH, —NH 2 and the following structure (II) or (III):
  • n is an integer from 25 to 20,000
  • m is an integer from 24 to 1000
  • glucose residues in the cellulose main chain are ⁇ -1,4 bonded 3.
  • (Item 4) Item 4.
  • (Item 6) Item 6.
  • Item 7 The item 1-6, wherein the number of ⁇ -1,4 glucan side chains bonded to the cellulose main chain is 1 to 50 per 100 glucose residues in the cellulose main chain. Graft polymer.
  • primer-bound cellulose By extending the primer by contacting the primer-bound cellulose, a substrate, and an ⁇ -1,4 glucan chain extender, an ⁇ -1,4 glucan side chain having a polymerization degree of 25 or more is formed, Including the step of obtaining the graft polymer according to any one of 1 to 7,
  • the primer is an ⁇ -1,4 glucan having a degree of polymerization of 3 to 20, or a reducing end oxide or lactonized product thereof
  • the substrate is a substance that provides a glucose residue to the primer by the action of the enzyme;
  • the degree of polymerization of the ⁇ -1,4 glucan side chain is 25 or more;
  • a method in which two hydrogen groups are bonded to the 1-position carbon or one oxygen atom is bonded.
  • Item 9 The method according to Item 8, wherein the degree of polymerization of the ⁇ -1,4 glucan side chain is 40 or more.
  • Item 10 (Item 10) Item 10. The method according to Item 8 or 9, wherein the degree of polymerization of the ⁇ -1,4 glucan side chain is 50 or more.
  • Obtaining the aminated cellulose comprises Reacting cellulose with p-toluenesulfonyl chloride in the presence of triethylamine, lithium chloride and N, N-dimethylacetamide to obtain tosylated cellulose; Reacting the tosylated cellulose with sodium azide in the presence of tetra-n-butylammonium iodide and dimethyl sulfoxide to give 6-azido-6-deoxycellulose; and the 6-azido-6 in dimethyl sulfoxide
  • the method according to any one of items 8 to 13, which is carried out by reacting deoxycellulose with sodium borohydride to obtain an aminated cellulose.
  • Item 15 The method according to any one of Items 8 to 14, wherein the ⁇ -1,4 glucan chain extender is ⁇ -glucan phosphorylase and the substrate is glucose-1-phosphate.
  • ⁇ -1,4 glucan grafted cellulose (also referred to as amylose grafted cellulose) can be obtained.
  • cellulose or a cellulose product to which amylose function is imparted can be obtained.
  • the amylose-grafted cellulose of the present invention is a material having both the performance of cellulose (for example, physical properties such as mechanical strength) and the performance of amylose (for example, inclusion function), and can be used for various applications.
  • FIG. 1 is a schematic view showing an example of a method for producing a graft polymer according to the present invention.
  • Cellulose refers to a molecule in which a large number (for example, 25 or more) of D-glucopyranose are linked by ⁇ 1 ⁇ 4 glucoside bonds. Each binding unit in cellulose is also referred to as a glucose residue.
  • Cellulose may be represented by (C 6 H 10 O 5 ) n .
  • Cellulose is the main polysaccharide of the plant that forms the framework of the plant cell wall, and is a substance that the plant photosynthesizes, accounting for about one-third of the plant. Cellulose is the most abundant carbohydrate on earth. Cellulose is usually a white, odorless solid and highly hygroscopic.
  • Cellulose has a strong affinity for highly polar solvents and is soluble in sulfuric acid, copper ammonium solution, zinc chloride solution, and hydrochloric acid. Cellulose is insoluble in water, alcohol, ether and methanol. Cellulose has 40-50 molecules arranged in parallel to form microfibrils, which run through interspersed amorphous molecules to form a full-like micelle. It is hydrolyzed to glucose by acid and cellulase, and its intermediate products include cellobiose, cellotriose, cellototeraose and the like.
  • the number of glucose residues in one molecule of cellulose used in the present invention is preferably about 25 or more, more preferably about 30 or more, still more preferably about 35 or more, and particularly preferably about 40 or more. And most preferably about 50 or greater.
  • the number of glucose residues in one molecule of cellulose used in the present invention is, for example, about 100 or more, about 200 or more, about 300 or more, about 400 or more, about 500 or more, about 600 or more, about 700 or more, about 800. More than about 900, about 1,000, about 2,000, about 2,500, about 3,000, about 4,000, about 5,000, etc. may be sufficient.
  • the number of glucose residues in one molecule of cellulose used in the present invention is preferably about 30,000 or less, more preferably about 25,000 or less, still more preferably about 20,000 or less, Particularly preferred is about 15,000 or less, and most preferred is about 10,000 or less.
  • the number of glucose residues in one molecule of cellulose used in the present invention is, for example, about 9,000 or less, about 8,000 or less, about 7,000 or less, about 6,000 or less, about 5,000 or less, about 4,000 or less, about 3,000 or less, about 2,000 or less, about 1,000 or less, about 900 or less, about 800 or less, about 700 or less, about 600 or less, about 500 or less, about 400 or less, etc. May be.
  • cellulose is a natural product, and is a mixture of cellulose having various molecular weights.
  • the method for producing a graft polymer of the present invention comprises a step of substituting an NH 2 group for an OH group bonded to the 6-position carbon of at least one glucose residue in cellulose to obtain an aminated cellulose; And a primer, and the 6-position carbon of at least one glucose residue in the aminated cellulose and the 1-position carbon of the terminal of the primer are covalently bonded via a —NH— group, A step of obtaining bound cellulose; an ⁇ -1,4 glucan side chain having a polymerization degree of 25 or more by extending the primer by bringing the primer bound cellulose into contact with a substrate and an ⁇ -1,4 glucan chain extending enzyme.
  • a method for producing an aminated cellulose will be described below.
  • aminated cellulose can be produced by methods known in the art. See, for example, Carbohydrate Research, 340 (2005) 1403-1406 and Carbohydrate Research, 208 (1990) 83-191.
  • amino group-containing cellulose (Chemical Formula 3 in Scheme 1) is synthesized according to Scheme 1 above.
  • cellulose is tosylate using tosyl chloride (p-toluenesulfonyl chloride) to obtain a p-toluenesulfonyl group-containing cellulose (cellulose having p-toluenesulfonyl group) 1.
  • cellulose is tosylated to obtain a p-toluenesulfonyl group-containing cellulose (Chemical Formula 1 in Scheme 1).
  • Typical conditions for tosylation are 24 hours at 10 ° C. with tosyl chloride in N, N-dimethylacetamide containing triethylamine and lithium chloride (LiCl).
  • LiCl lithium chloride
  • Cellulose, tosyl chloride, N, N-dimethylacetamide, triethylamine, and lithium chloride may be mixed at a time, but it is preferable to add tosyl chloride after preparing a cellulose solution in advance. Before tosylation, it is preferable to dissolve cellulose sufficiently in N, N-dimethylacetamide, then add lithium chloride to dissolve, add triethylamine and mix well, and then add tosyl chloride.
  • the amount of tosyl chloride may be increased, the reaction temperature may be increased, or the reaction time may be lengthened.
  • the amount of tosyl chloride may be reduced, the reaction temperature may be lowered, or the reaction time may be shortened. Adjustment of the number or proportion of p-toluenesulfonyl groups introduced into cellulose can be easily performed by those skilled in the art.
  • an azide group-containing cellulose (Chemical Formula 2 in Scheme 1) is reduced to synthesize an amino group-containing cellulose (Chemical Formula 3 in Scheme 1).
  • a typical condition for the reduction of the azide group-containing cellulose is 72 hours at 60 ° C. in DMSO containing sodium borohydride (NaBH 4 ).
  • the azide group-containing cellulose (Chemical Formula 2 in Scheme 1), sodium borohydride, and DMSO may be mixed at once.
  • the primer used in the present invention refers to a molecule that acts as a starting material in the synthesis of ⁇ -1,4 glucan chains.
  • sugar units are sequentially bound to the primer by ⁇ -1,4-glucoside bonds, and an ⁇ -1,4 glucan chain having a length of about 25 residues or more is synthesized.
  • primers include any saccharide to which a saccharide unit can be added by ⁇ -glucan phosphorylase.
  • the primer may be an ⁇ -1,4-glucan containing only an ⁇ -1,4-glucoside bond or may partially have an ⁇ -1,6-glucoside bond.
  • One skilled in the art can readily select appropriate primers depending on the desired glucan. In the present invention, since it is preferable to synthesize cellulose grafted with linear amylose, ⁇ -1,4 glucan containing only ⁇ -1,4-glucoside bond, or a reducing end oxide or lactonized product thereof Is preferably used as a primer.
  • a primer that is ⁇ -1,4 glucan may be referred to as an ⁇ -1,4 glucan primer, and a primer that is a reducing end oxide of ⁇ -1,4 glucan may be referred to as an oxidation primer.
  • a primer that is a lactonized product of a glucose residue at the reducing end of ⁇ -1,4 glucan is sometimes referred to as a lactonized primer.
  • ⁇ -1,4 glucan primers examples include maltooligosaccharides and short chain amylose.
  • the reducing end of ⁇ -1,4 glucan is neither oxidized nor lactonized and maintains an equilibrium state between the aldehyde state and the cyclic structure in an aqueous solution.
  • the ⁇ -1,4 glucan primer contributes to reductive amination in the aldehyde state.
  • maltooligosaccharide refers to a substance produced by dehydration condensation of 2 to 10 glucoses and linked by ⁇ -1,4 bonds.
  • the maltooligosaccharide preferably has 4 or more saccharide units, more preferably 5 or more saccharide units, and still more preferably 7 or more saccharide units.
  • the number of sugar units is also called the degree of polymerization.
  • the maltooligosaccharide preferably has 10 or fewer sugar units.
  • the number of saccharide units of maltooligosaccharide may be, for example, 9 or less, 8 or less, 7 or less. The smaller the number of sugar units of maltooligosaccharide, the easier the adjustment, the lower the cost, and the easier the subsequent handling.
  • malto-oligosaccharides include malto-oligosaccharides such as maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, maltononaose, maltodekaose.
  • the maltooligosaccharide is preferably maltotetraose, maltopentaose, maltohexaose or maltoheptaose.
  • the maltooligosaccharide used in the present invention may be a pure single compound or a mixture of a plurality of maltooligosaccharides.
  • the maltooligosaccharide may be a linear oligosaccharide or a branched oligosaccharide.
  • Maltooligosaccharides can have a cyclic moiety in the molecule.
  • a linear maltooligosaccharide is preferred.
  • short-chain amylose is a linear molecule composed of glucose units linked by ⁇ -1,4 bonds having a degree of polymerization of 11 or more and 20 or less. Short-chain amylose is obtained by completely decomposing amylopectin contained in natural starch with a branching enzyme (for example, isoamylase).
  • a branching enzyme for example, isoamylase
  • the number of sugar units of short-chain amylose can be, for example, about 11 or more, about 12 or more, about 13 or more, and the like.
  • the number of sugar units of short-chain amylose is, for example, about 20 or less, about 19 or less, about 18 or less, about 17 or less, about 16 or less, about 15 or less, about 14 or less, about 13 or less. , About 12 or less.
  • the “oxidation primer” refers to an aldehyde group at the reducing end of the primer that is oxidized to a carboxyl group. In the oxidation primer, it is preferable that portions other than the aldehyde group are not oxidized.
  • An oxidation primer can be produced by oxidizing the aldehyde group at the reducing end of the maltooligosaccharide and short-chain amylose described in 4.1 above.
  • the oxidation of the aldehyde group at the reducing end of maltooligosaccharide (or short-chain amylose) can be carried out, for example, enzymatically or chemically.
  • oligosaccharide oxidase can be used for the enzymatic oxidation.
  • bromine water or iodine can be used.
  • oligosaccharide oxidase examples include oligosaccharide oxidase derived from Acremonium genus described in JP-A-5-84074.
  • oligosaccharide oxidase When oligosaccharide oxidase is allowed to act, the reducing terminal glucose residue of the raw maltooligosaccharide (or short-chain amylose) is oxidized into a gluconic acid type.
  • the concentration of malto-oligosaccharide serving as a substrate is 1 to 20% (w / v), pH is 6 to 8, and this oxidase is added at 0.1 to 0.5 units at a temperature of 30 to 50 ° C. By performing the reaction for 10 hours, maltooligosaccharide can be converted to maltooligosaccharide acid.
  • the chemical oxidation of the aldehyde group at the reducing end of the raw maltooligosaccharide (or short-chain amylose) with bromine water or iodine can be performed, for example, as follows.
  • iodine 1-10 wt% maltooligosaccharide aqueous solution and, for example, 5 wt% iodine-methanol solution are mixed in equal amounts, and 30% to 50 ° C. is added 4% potassium hydroxide to 1/5 to 1 / of the total volume.
  • the raw maltooligosaccharide can be converted into maltooligosaccharide acid.
  • lactonized primer refers to a lactonized glucose residue at the reducing end of the primer. In the lactonization primer, it is preferable that portions other than the glucose residue at the reducing end are not lactonized.
  • the lactonization primer can be obtained by removing counter ions from the solution containing the oxidation primer described in 4.2 above using an ion exchange resin, and collecting and drying the fractions containing the oxidation primer.
  • Preparation method of primer-grafted aminated cellulose Any of the following methods can be selected as a method for making a primer-grafted cellulose by binding a primer to aminated cellulose.
  • Reductive amination method A method in which a Schiff base is formed from an amino group bonded to cellulose and the reducing end of a primer, and then this Schiff base is reductively aminated using a reducing agent. When this method is used, the primer is covalently bonded (grafted) to cellulose with the structure of the following structural formula (III).
  • Carbodiimide coupling method A method in which an amide bond is formed using carbodiimide between a carboxyl group of an oxidized primer obtained by oxidizing the reducing end of a primer and an amino group bonded to cellulose. When this method is used, the primer is covalently bonded (grafted) to cellulose with the structure of the following structural formula (II).
  • Lactonization primer method The lactonization primer obtained by dehydrating the oxidized primer obtained by oxidizing the reducing end of the primer and the aminated cellulose are heated in an anhydrous environment, and the lactonization primer -CO-O A method of forming an amide bond between the moiety and the amino group attached to the cellulose. In this case, the primer is covalently bonded (grafted) to cellulose with the structure of the following structural formula (II).
  • maltoheptaose is shown as an example of a primer and maltoheptaose grafted cellulose (Chemical formula 5 in Scheme 2) is shown as an example of a primer grafted cellulose.
  • a primer for example, maltoheptaose (Chemical Formula 4 in Scheme 2)
  • an amino group-containing cellulose is carried out using cyano.
  • Typical conditions for reductive amination are 3 days at room temperature (rt) in a methanolic acetic acid mixed solution (1: 1 mixed solution) containing sodium cyanotrihydroborate and a primer.
  • Amino group-containing cellulose, sodium cyanotrihydroborate, triethylamine, primer, acetic acid, and methanol may be mixed at once, and after preparing an acetic acid ethanol mixed solution in advance, add others. May be. Any other mixing order may be used.
  • Carbodiimide coupling Typical conditions for carbodiimide coupling include: an aqueous solution containing an amino group-containing cellulose, an oxidizing primer, carbodiimide (eg, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide chloride) and N-hydroxysuccinimide.
  • carbodiimide eg, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide chloride
  • N-hydroxysuccinimide e.g, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide chloride
  • the amino group-containing cellulose, the oxidation primer, and the N-hydroxysuccinimide may be mixed at once, or other substances may be added after preparing the oxidation primer solution in advance. Any other mixing order may be used.
  • a typical condition of the lactonization primer method is heating of ethylene glycol containing an amino group-containing cellulose and a lactonization primer at 70 ° C. for 6 hours.
  • the amino group-containing cellulose, lactonized primer, and ethylene glycol may be mixed at once or in any other mixing order.
  • the term “substrate” refers to a substance that is changed by being catalyzed by an enzyme.
  • the substrate concept may not include a primer.
  • the substrate is a compound that is catalyzed by an enzyme to extend the ⁇ -1,4 glucan chain relative to the primer.
  • any substrate known in the art can be used as long as the ⁇ -1,4 glucan chain is elongated.
  • the substrate is selected to be appropriate for the ⁇ -1,4 glucan chain extender used.
  • ⁇ -1,4 glucan chain extender refers to an enzyme that extends an ⁇ -1,4 glucan chain relative to a primer and an enzyme involved in the enzyme.
  • Examples of ⁇ -1,4 glucan chain extension systems that can be used in the present invention include the following: (1) ⁇ -Glucan phosphorylase (GP) (eg, derived from potato) is used to convert the glucosyl group of ⁇ -glucose-1-phosphate (alpha-glucose-1-phosphate) into a primer such as maltoheptaose.
  • GP ⁇ -Glucan phosphorylase
  • a method of synthesizing ⁇ -1,4-glucan chains by transfer (2) Method of synthesizing ⁇ -1,4-glucan chain by simultaneously acting sucrose phosphorylase and glucan phosphorylase using primer, sucrose and inorganic phosphate or glucose-1-phosphate as a substrate (hereinafter referred to as SP-GP method) (Waldmann, H.
  • the ⁇ -1,4 glucan chain extender is ⁇ -glucan phosphorylase
  • the substrate is a primer and glucose-1-phosphate
  • the ⁇ -1,4 glucan chain extender is ⁇ -glucan phosphorylase and sucrose phosphorylase
  • the substrate is primer, sucrose and inorganic phosphate or glucose-1-phosphate.
  • the ⁇ -1,4 glucan chain extender is amylosucrase
  • the substrate is primer and sucrose.
  • inorganic phosphoric acid refers to a substance that can donate a phosphate substrate in the reaction of SP.
  • the phosphate substrate refers to a substance that is a raw material for the phosphate moiety of glucose-1-phosphate.
  • sucrose phosphorolysis catalyzed by sucrose phosphorylase inorganic phosphate is thought to act as a substrate in the form of phosphate ions. Since this substrate is conventionally referred to as inorganic phosphoric acid in this field, this substrate is also referred to as inorganic phosphoric acid in this specification.
  • Inorganic phosphoric acid includes phosphoric acid and inorganic salts of phosphoric acid.
  • inorganic phosphoric acid is used in water containing cations such as alkali metal ions.
  • cations such as alkali metal ions.
  • phosphoric acid, phosphate, and phosphate ions are in an equilibrium state, it is difficult to distinguish between phosphoric acid and phosphate. Therefore, for convenience, phosphoric acid and phosphate are collectively referred to as inorganic phosphoric acid.
  • the inorganic phosphoric acid is preferably any metal salt of phosphoric acid, more preferably an alkali metal salt of phosphoric acid.
  • inorganic phosphoric acid examples include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, phosphoric acid (H 3 PO 4 ), ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and the like.
  • Only one type of inorganic phosphoric acid may be used, or a plurality of types may be used.
  • Inorganic phosphoric acid reacts, for example, a phosphoric acid condensate such as polyphosphoric acid (for example, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid) or a salt thereof decomposed by physical, chemical or enzymatic reaction. It can be provided by adding to the solution.
  • a phosphoric acid condensate such as polyphosphoric acid (for example, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid) or a salt thereof decomposed by physical, chemical or enzymatic reaction. It can be provided by adding to the solution.
  • glucose-1-phosphate refers to glucose-1-phosphate (C 6 H 13 O 9 P) and salts thereof.
  • Glucose-1-phosphate is preferably any metal salt of glucose-1-phosphate (C 6 H 13 O 9 P) in the narrow sense, more preferably glucose-1-phosphate (C 6 H 13 O 9 P) any alkali metal salt.
  • Preferable specific examples of glucose-1-phosphate include glucose-1-phosphate disodium, glucose-1-dipotassium phosphate, glucose-1-phosphate (C 6 H 13 O 9 P), and the like. It is done.
  • glucose-1-phosphate not having a chemical formula in parentheses means glucose-1-phosphate in a broad sense, that is, glucose-1-phosphate in a narrow sense (C 6 H 13 O 9 P) and its Indicates salt.
  • Glucose-1-phosphate may be used alone or in the SP-GP reaction system at the start of the reaction.
  • the sum of the molar concentration of inorganic phosphoric acid and the molar concentration of glucose-1-phosphate contained in the system of the present invention is typically about 1 mM or more. Yes, preferably about 10 mM or more, more preferably about 20 mM or more.
  • the sum of the molar concentration of inorganic phosphoric acid and the molar concentration of glucose-1-phosphate contained in the system of the present invention is preferably about 1000 mM or less, Preferably it is about 500 mM or less, More preferably, it is about 250 mM or less. If the amount of inorganic phosphoric acid and glucose-1-phosphate is too large, the yield of glucan may decrease. If the amount used is too small, it may take time to synthesize glucan.
  • Sucrose is a disaccharide having a molecular weight of about 342, represented by C 12 H 22 O 11 . Sucrose is present in every plant that has photosynthetic ability. Sucrose may be isolated from plants or chemically synthesized. In view of cost, it is preferable to isolate sucrose from plants. Examples of plants containing a large amount of sucrose include sugar cane and sugar beet. Sugar cane contains about 20% sucrose in the juice. Sugar beet contains about 10-15% sucrose in the juice. Sucrose may be provided at any purification stage from plant juice containing sucrose to purified sugar.
  • Sucrose used in the method of the present invention is preferably pure. However, any other contaminants may be included as long as ⁇ -1,4 glucan chain elongation is not inhibited.
  • ⁇ -glucan phosphorylase is a general term for enzymes that catalyze the phosphorolysis of ⁇ -1,4-glucan, and is sometimes called glucan phosphorylase, phosphorylase, starch phosphorylase, glycogen phosphorylase, maltodextrin phosphorylase, and the like.
  • ⁇ -glucan phosphorylase can also catalyze an ⁇ -1,4-glucan synthesis reaction that is the reverse reaction of phosphorolysis. Which direction the reaction proceeds depends on the amount of substrate.
  • ⁇ -glucan phosphorylase is thought to be universally present in various plants, animals and microorganisms capable of storing starch or glycogen.
  • this ⁇ -glucan phosphorylase may be derived from a plant, an animal or a microorganism, or may be derived from these by genetic engineering.
  • ⁇ -glucan phosphorylase is algae, potato (also called potato), sweet potato (also called sweet potato), yam, taro, cassava and other vegetables, cabbage, spinach and other vegetables, corn, rice, wheat, barley, rye, It may be derived from a selected plant selected from the group consisting of cereals such as millet, beans such as peas, soybeans, red beans, quail beans and the like.
  • ⁇ -glucan phosphorylase may be derived from an animal selected from the group consisting of mammals such as humans, rabbits, rats, and pigs.
  • ⁇ - glucan phosphorylase Thermus aquaticus, Bacillus stearothermophilus, Deinococcus radiodurans, Thermococcus litoralis, Streptomyces coelicolor, Pyrococcus horikoshi, Mycobacterium tuberculosis, Thermotoga maritima, Aquifex aeolicus, Methanococcus Jannaschii, Pseudomonas aeruginosa, Chlamydia pneumoniae, Chlorella vulgaris, Agrobacterium tumefaciens, C ostridium pasteurianum, Klebsiella pneumoniae, Synecococcus sp. Synechocystis sp.
  • E.C. E. coli Neurospora crassa, Saccharomyces cerevisiae, Chlamydomonas sp. It may be derived from a microorganism selected from the group consisting of The organism producing glucan phosphorylase is not limited to these.
  • ⁇ -glucan phosphorylase is preferably derived from potato, Thermus aquaticus, or Bacillus stearothermophilus, and more preferably from potato.
  • ⁇ -glucan phosphorylase preferably has a high optimum reaction temperature.
  • ⁇ -glucan phosphorylase having a high optimal reaction temperature can be derived from, for example, a highly thermophilic bacterium.
  • ⁇ -glucan phosphorylase may be purified or unpurified.
  • sucrose phosphorylase refers to any enzyme that undergoes phosphorolysis by transferring the ⁇ -glycosyl group of sucrose to a phosphate group.
  • the reaction catalyzed by sucrose phosphorylase is shown by the following formula:
  • Sucrose phosphorylase is contained in various organisms in nature.
  • Sucrose phosphorylase is a bacterium belonging to the genus Streptococcus (eg, Streptococcus thermophilus, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus mitos. Clostridium sp. , Pullularia pullulans, Acetobacter xylinum, Agrobacterium sp. Synecoccus sp. , E.C.
  • coli Listeria monocytogenes, Bifidobacterium adolecentis, Aspergillus niger, Monilia sitophila, Sclerotinea estrotiorum, and Chlamydomonas sp. May be derived from a bacterium selected from the group consisting of The organism from which sucrose phosphorylase is derived is not limited to these.
  • the sucrose phosphorylase can be derived from any organism that produces sucrose phosphorylase.
  • Sucrose phosphorylase preferably has a certain degree of heat resistance.
  • Sucrose phosphorylase is preferred as it has higher heat resistance when present alone. For example, when sucrose phosphorylase is heated at 55 ° C. for 30 minutes in the presence of 4% sucrose, it preferably retains 50% or more of the activity of sucrose phosphorylase before heating.
  • the sucrose phosphorylase is preferably derived from a bacterium belonging to the genus Streptococcus, and more preferably from Streptococcus mutans, Streptococcus thermophilus, Streptococcus pneumoniae or Streptococcus mitis. Sucrose phosphorylase may be purified or unpurified.
  • the ⁇ -1,4 glucan chain extender of the present invention as described above can be derived from any organism.
  • the phrase “derived from” an organism does not mean that the enzyme is directly isolated from the organism, but that the enzyme is obtained by utilizing the organism in some form. Say. For example, when a gene encoding the enzyme obtained from the organism is introduced into E. coli and the enzyme is isolated from the E. coli, the enzyme is said to be “derived” from the organism.
  • the ⁇ -1,4 glucan chain extender used in the present invention can be directly isolated from animals, plants, and microorganisms that produce ⁇ -1,4 glucan chain extender that exist in nature as described above.
  • the ⁇ -1,4 glucan chain extender used in the present invention is a microorganism genetically modified using a gene encoding an ⁇ -1,4 glucan chain extender isolated from these animals, plants or microorganisms ( For example, it may be isolated from bacteria, fungi and the like.
  • the ⁇ -1,4 glucan chain extender can be obtained from a genetically modified microorganism.
  • a method for producing sucrose phosphorylase and ⁇ -glucan phosphorylase is disclosed in, for example, WO2002 / 097107.
  • Other ⁇ -1,4 glucan chain extenders can be similarly performed according to this description.
  • the product is soluble in 1 mol / L sodium hydroxide aqueous solution, and the structure of the product obtained by 1 H NMR spectrum, XRD measurement, and TG measurement is amylose-grafted cellulose (chemical formula 6 in Scheme 3). Is confirmed.
  • the enzyme reaction system is not limited to (1), any one of (1) to (3) can be used, and an enzyme and a substrate are appropriately selected according to the enzyme reaction system. Can be done.
  • ⁇ -1,4 glucan chain When (1) is used as the enzyme reaction system, typical conditions for the extension of the ⁇ -1,4 glucan chain are primer grafted cellulose (eg, maltoheptaose grafted cellulose (Chemical Formula 5 in Scheme 3)). In the presence of 100 equivalents of glucose-1-phosphate (G-1-P) to a primer unit (eg, maltoheptaose unit), ⁇ -1,4 glucan chain extender (eg, ⁇ -glucan phosphorylase) at about 42 ° C. for about 7 hours.
  • G-1-P glucose-1-phosphate
  • ⁇ -1,4 glucan chain extender eg, ⁇ -glucan phosphorylase
  • Primer-grafted cellulose, glucose-1-phosphate, ⁇ -1,4 glucan chain extender, and acetate buffer may be mixed at one time, or else after preparing a mixed ethanol / acetate solution in advance. May be added. Any other mixing order may be used.
  • the amount of primer-grafted cellulose in the solution at the start of the ⁇ -1,4 glucan chain elongation reaction is preferably about 0. 0.1% by weight or more, more preferably about 0.2% by weight or more, further preferably about 0.3% by weight or more, particularly preferably about 0.4% by weight or more, most preferably About 0.5% by weight or more.
  • the amount of primer-grafted cellulose in the solution at the start of the elongation reaction of ⁇ -1,4 glucan chain is preferably about 10% by weight or less, more preferably about 5% by weight or less, and still more preferably about It is 4% by weight or less, particularly preferably about 3% by weight or less, and most preferably about 2% by weight or less.
  • the concentration of glucose-1-phosphate in the system at the start of the extension reaction of ⁇ -1,4 glucan chain is preferably in the primer-grafted cellulose.
  • the concentration of inorganic phosphate or glucose-1-phosphate in the solution at the start of the elongation reaction of ⁇ -1,4 glucan chain is preferably about 1000 times or less of the primer molar concentration in the primer-grafted cellulose. More preferably, it is about 800 times or less, More preferably, it is about 600 times or less, Especially preferably, it is about 400 times or less, Most preferably, it is about 300 times or less.
  • the amount of ⁇ -glucan phosphorylase contained in the system at the start of the reaction is preferably relative to glucose-1-phosphate in the solution at the start of the reaction.
  • the amount of ⁇ -glucan phosphorylase contained in the system at the start of the reaction is preferably about 1,000 U / g glucose-1-phosphate or less with respect to glucose-1-phosphate in the solution at the start of the reaction.
  • the molar concentration of sucrose contained in the system at the start of the reaction is preferably about 40 times or more the primer molar concentration in the primer-grafted cellulose, Preferably it is about 50 times or more, more preferably about 60 times or more.
  • the concentration of sucrose is, for example, about 6 w / v% or more, about 7 w / v% or more, about 8 w / v% or more, about 9 w / v% or more, about 10 w / v% or more, about 15 w / v% or more, etc. There may be.
  • the concentration of sucrose contained in the system of the present invention is about 1000 times or less, more preferably about 800 times or less, more preferably about 600 times or less the primer molar concentration in the primer-grafted cellulose.
  • the concentration of sucrose is, for example, about 50 w / v% or less, about 40 w / v% or less, about 30 w / v% or less, about 20 w / v% or less, about 15 w / v% or less, about 10 w / v% or less, etc. There may be.
  • the sucrose concentration mentioned above is Weight / Volume, ie (Weight of sucrose) ⁇ 100 / (volume of solution) Calculate with If the weight of sucrose is too large, unreacted sucrose may precipitate during the reaction. If the amount of sucrose used is too small, the yield may decrease in a reaction at a high temperature.
  • the total amount of inorganic phosphate or glucose-1-phosphate in the system at the start of the ⁇ -1,4 glucan chain elongation reaction is preferably Is about 1/40 or more of the molar concentration of sucrose, more preferably about 1/30 or more, further preferably about 1/25 or more, particularly preferably about 1/20 or more, most preferably About 1/15% by weight or more.
  • the amount of inorganic phosphate or glucose-1-phosphate in the solution at the start of the elongation reaction of ⁇ -1,4 glucan chain is preferably about 1 ⁇ 2 or less of the molar concentration of sucrose as a total, More preferably, it is about 1/3 wt% or less, more preferably about 1/4 wt% or less, particularly preferably about 1/5 wt% or less, and most preferably about 1/6 wt% or less. is there.
  • the amount of ⁇ -glucan phosphorylase contained in the system at the start of the reaction is preferably about 0.05 U with respect to sucrose in the solution at the start of the reaction. / G sucrose or more, more preferably about 0.1 U / g sucrose or more, and still more preferably about 0.5 U / g sucrose or more.
  • the amount of ⁇ -glucan phosphorylase contained in the system at the start of the reaction is preferably about 1,000 U / g sucrose or less, more preferably about 500 U / g sucrose, relative to the sucrose in the solution at the start of the reaction. Or less, more preferably about 100 U / g sucrose or less. If the weight of ⁇ -glucan phosphorylase is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glucan may decrease.
  • the amount of sucrose phosphorylase contained in the system at the start of the reaction is preferably about 0.05 U / g with respect to sucrose in the solution at the start of the reaction. It is sucrose or more, more preferably about 0.1 U / g sucrose or more, and still more preferably about 0.5 U / g sucrose or more.
  • the amount of sucrose phosphorylase contained in the system at the start of the reaction is preferably about 1,000 U / g sucrose or less, more preferably about 500 U / g sucrose or less, relative to the sucrose in the solution at the start of the reaction. More preferably about 100 U / g sucrose or less. If the weight of sucrose phosphorylase is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glucan may decrease.
  • the amount of sucrose contained in the system at the start of the reaction is preferably about 1 w / v% or more, more preferably about 3 w / v% or more. More preferably about 5 w / v% or more.
  • the concentration of sucrose is, for example, about 6 w / v% or more, about 7 w / v% or more, about 8 w / v% or more, about 9 w / v% or more, about 10 w / v% or more, about 15 w / v% or more, etc. There may be.
  • the concentration of sucrose contained in the system of the present invention is preferably about 80 w / v% or less, more preferably about 70 w / v% or less, and still more preferably about 60 w / v% or less.
  • the concentration of sucrose is, for example, about 50 w / v% or less, about 40 w / v% or less, about 30 w / v% or less, about 20 w / v% or less, about 15 w / v% or less, about 10 w / v% or less, etc. There may be.
  • the amount of amylosucrase contained in the system at the start of the reaction is preferably about 0.05 U / g with respect to sucrose in the solution at the start of the reaction. It is sucrose or more, more preferably about 0.1 U / g sucrose or more, and still more preferably about 0.5 U / g sucrose or more.
  • the amount of amylosucrase contained in the system at the start of the reaction is preferably about 1,000 U / g sucrose or less, more preferably about 500 U / g sucrose or less, relative to the sucrose in the solution at the start of the reaction. More preferably about 100 U / g sucrose or less. If the weight of sucrose phosphorylase is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glucan may decrease.
  • the temperature conditions for the elongation of the ⁇ -1,4 glucan chain include the optimum reaction temperature and heat resistance of the enzyme used. It is set appropriately in consideration. In the case of a normal enzyme having an optimum reaction temperature of about 37 ° C., the reaction temperature is preferably about 10 ° C. or more, more preferably about 20 ° C. or more, further preferably about 25 ° C. or more, Especially preferably, it is about 30 degreeC or more.
  • the temperature condition during the extension of the ⁇ -1,4 glucan chain is preferably about 45 ° C. or less, more preferably about 42 ° C. or less, still more preferably about 40 ° C.
  • the reaction temperature is preferably about 30 ° C. or more, more preferably about 35 ° C. or more, and further preferably about 40 ° C. or more. Especially preferably, it is about 45 degreeC or more.
  • the temperature condition during the extension of the ⁇ -1,4 glucan chain is preferably about 65 ° C. or less, more preferably about 60 ° C. or less, still more preferably about 55 ° C. or less, and particularly preferably about 53 ° C. It is below °C.
  • the reaction temperature is preferably within ⁇ 10 ° C.
  • reaction temperature in this step is too high, the enzyme may be deactivated and the ⁇ -1,4 glucan chain may not be extended. If the reaction temperature in this step is too low, the enzyme reaction may not proceed and the ⁇ -1,4 glucan chain may not be extended.
  • the heating may be performed by any means, but it is preferable to perform the heating while stirring in, for example, an organic solvent phase so that the heat is uniformly transferred to the entire reaction system.
  • the solution is stirred in, for example, a stainless steel reaction tank equipped with a hot water jacket and a stirring device.
  • the reaction time is preferably about 0.5 hour or more, more preferably about 1 hour or more, further preferably about 3 hours or more, particularly preferably about 5 hours or more, and most preferably about 8 hours. It's over time.
  • the reaction time is preferably about 72 hours or less, more preferably about 48 hours or less, further preferably about 36 hours or less, particularly preferably about 24 hours or less, and most preferably about 20 hours or less. It is. If the reaction time in this step is too long, the risk of microbial contamination increases. If the reaction time in this step is too short, the amount of enzyme required increases and the cost increases.
  • reaction system After completion of the reaction, the reaction system can be deactivated, for example, by heating at 100 ° C. for 10 minutes as necessary. Or you may perform a next process, without performing the process which inactivates an enzyme.
  • the reaction system may be stored as is or may be processed to isolate the produced graft polymer.
  • Each ⁇ -1,4 glucan side chain is preferably extended until the degree of polymerization is about 25 or more.
  • the degree of polymerization of each ⁇ -1,4 glucan side chain is controlled by the amount of substrate contained in the reaction system, the amount of primer introduced into cellulose, the length of reaction time, and the like. Generally, the greater the amount of substrate, the higher the degree of polymerization, and the lower the amount of substrate, the lower the degree of polymerization. The greater the amount of primer introduced into the cellulose, the lower the degree of polymerization, and the smaller the amount of primer, the higher the degree of polymerization. The longer the reaction time, the lower the degree of polymerization, and the shorter the reaction time, the higher the degree of polymerization.
  • the product obtained by the method of the present invention can be purified by methods known to those skilled in the art.
  • Examples of the purification method include membrane fractionation using an ultrafiltration membrane, chromatography, filtration, and centrifugation.
  • the product obtained by the method of the present invention is obtained by conventional methods well known to those skilled in the art (for example, thin layer chromatography (TLC), NMR (nuclear magnetic resonance spectrum), HPLC (high performance liquid chromatography), melting point, mass spectrometry. (MS), elemental analysis, etc.) can be analyzed and / or checked for purity.
  • TLC thin layer chromatography
  • NMR nuclear magnetic resonance spectrum
  • HPLC high performance liquid chromatography
  • MS mass spectrometry.
  • elemental analysis etc.
  • the structure of the reaction product can be confirmed in detail by carrying out NMR (nuclear magnetic resonance spectrum) and MS after purifying the reaction product.
  • the graft polymer of the present invention is a graft polymer in which ⁇ -1,4 glucan side chains are bonded to a cellulose main chain, and ⁇ -1,4 glucan is attached to the 6-position carbon of at least one glucose residue in the cellulose main chain.
  • the terminal 1-position carbon of the side chain is covalently bonded via the —NH— group; the 2-position carbon has two hydrogen groups or one oxygen atom bonded;
  • the polymerization degree of the cellulose main chain is 25 or more; the polymerization degree of the ⁇ -1,4 glucan side chain is 25 or more.
  • the bonds between glucose residues in the ⁇ -1,4 glucan side chain are mainly ⁇ -1,4 bonds.
  • 90% or more are preferably ⁇ -1,4 bonds, more preferably 95% or more are ⁇ -1,4 bonds, more preferably 98%.
  • the above is more preferably an ⁇ -1,4 bond, more preferably 99% or more is an ⁇ -1,4 bond, and most preferably 99.5% or more is an ⁇ -1,4 bond.
  • the ⁇ -1,4 glucan side chain is preferably completely linear.
  • “fully linear” means that the bonds between glucose residues in the ⁇ -1,4 glucan side chain are all ⁇ -1,4 bonds, and ⁇ -1 , 6 means that no bond is included.
  • the graft polymer of the present invention is also called ⁇ -1,4 glucan grafted cellulose, amylose grafted cellulose or the like.
  • the graft polymer of the present invention preferably has the following structure (I):
  • each R is independently selected from the group consisting of —OH, —NH 2 and the following structure (II) or (III), wherein n is any integer from 25 to 20,000, m is an integer from 24 to 1000, and glucose residues in the cellulose main chain are linked by ⁇ -1,4 bonds:
  • an ⁇ -1,4 glucan primer that is, a primer whose reducing end is not oxidized or lactonized
  • it binds to the 6th carbon of cellulose via an —NH— group.
  • a graft polymer in which two hydrogen groups are bonded to the 1-position carbon at the terminal of ⁇ -1,4 glucan is obtained. That is, a graft polymer in which the ⁇ -1,4 glucan side chain having the above structure III is bonded to the cellulose skeleton is obtained.
  • a graft polymer to which oxygen atoms are bonded is obtained. That is, a graft polymer having an ⁇ -1,4 glucan side chain having the above structure II bonded to a cellulose skeleton is obtained.
  • the number (ie, n) of glucose residues in one molecule of the cellulose main chain in the graft polymer of the present invention is preferably about 25 or more, more preferably about 30 or more, and further preferably about 35 or more. Particularly preferably about 40 or more, most preferably about 50 or more.
  • the number of glucose residues in one molecule of the cellulose main chain used in the present invention is preferably about 30,000 or less, more preferably about 25,000 or less, and further preferably about 20,000 or less. Particularly preferably about 15,000 or less, and most preferably about 10,000 or less. For example, about 9,000 or less, about 8,000 or less, about 7,000 or less, about 6,000 or less, about 5,000 or less, about 4,000 or less, about 3,000 or less, about 2,000 or less, It may be about 1,000 or less, about 900 or less, about 800 or less, about 700 or less, about 600 or less, about 500 or less, about 400 or less, and the like.
  • the degree of polymerization of at least one ⁇ -1,4 glucan chain is preferably about 25 or more, more preferably about 30 or more, and further preferably about 40 or more. For example, it may be about 50 or more, about 60 or more, about 70 or more, about 80 or more, about 90 or more, about 100 or more.
  • the degree of polymerization of at least one ⁇ -1,4 glucan chain is preferably about 1,000 or less, more preferably about 800 or less, and further preferably about 500 or less. is there.
  • it may be about 400 or less, about 300 or less, about 200 or less, about 100 or less, about 90 or less, about 80 or less, about 70 or less, about 60 or less, about 50 or less. If the degree of polymerization of the ⁇ -1,4 glucan side chain is too large, steric hindrance may occur and the inclusion function may not be fully exhibited. If the degree of polymerization of the ⁇ -1,4 glucan side chain is too small, the desired inclusion function may not be obtained.
  • the number average degree of polymerization of ⁇ -1,4 glucan side chain bonded to the cellulose main chain is within the above-mentioned preferable range.
  • the proportion of ⁇ -1,4 glucan side chains satisfying the above preferred range among ⁇ -1,4 glucan side chains bonded to the cellulose main chain is preferably about 50. % Or more, more preferably about 60% or more, still more preferably about 70% or more, particularly preferably about 80% or more, and most preferably about 90% or more.
  • the number of ⁇ -1,4 glucan side chains bonded to one cellulose molecule is preferably about 1 or more per several hundred glucose residues in the cellulose main chain. More preferably, it is about 2 or more, more preferably about 3 or more, particularly preferably about 4 or more, and most preferably about 5 or more. In the graft polymer of the present invention, the number of ⁇ -1,4 glucan side chains bonded to one cellulose molecule is preferably about 50 or less per several hundred glucose residues in the cellulose main chain. More preferably, it is about 45 or less, more preferably about 40 or less, particularly preferably about 35 or less, and most preferably about 30 or less.
  • graft polymer of the present invention Conventionally, cellulose has been used for various applications, and its use is known.
  • the graft polymer of the present invention can be used in its various applications. That is, in a material in which cellulose is conventionally used, a part or all of the cellulose can be replaced with the graft polymer of the present invention.
  • the graft polymer of the present invention can be used for composite functional materials and devices such as filters having an environmental purification function, column fillers, and fragrance-containing fibers.
  • the graft polymer of the present invention can be processed into a fiber form, and the resulting fiber can be processed into a desired form to obtain a final product.
  • the graft polymer of the present invention is mixed into the raw material cellulose to produce graft polymer-containing fibers, and the fibers are processed into a desired form to obtain the desired product. You can also.
  • the fiber obtained from the graft polymer of the present invention can be mixed with cellulose fiber, and the resulting mixed fiber can be processed into a desired form to obtain a final product.
  • a mixed fiber is a fiber provided with an inclusion function of amylose, and can be used for a water treatment filter having a function of removing environmental hormones and surfactants.
  • a product having a desired shape can be obtained by molding the graft polymer of the present invention.
  • the graft polymer of the present invention can be molded into a film to obtain a film product.
  • the graft polymer of the present invention can be added to a desired product as an additive.
  • the reaction solution was cooled, the precipitate was filtered, dissolved in 45 ml of deionized water, and passed through Amberlite IR-120B (H + type).
  • the target product was collected by flowing deionized water until the eluate had a pH of 7.0, and then dried under reduced pressure several times by a rotary evaporator. Dissolved in 45 ml of deionized water, an aqueous solution of maltoheptaose oxide (19 mg / ml) was obtained.
  • the 1-position carbon of the terminal of the ⁇ -1,4-glucan side chain is covalently bonded to the 6-position carbon of the glucose residue in the cellulose main chain via the —NH— group.
  • Two hydrogen groups are bonded to the 1-position carbon, the number average degree of polymerization of the cellulose main chain is about 300, and amylose having a degree of polymerization of 49 per 28 glucose residues in the cellulose main chain.
  • Example 5 when the reaction solution of Example 5 was spread thinly on a glass plate and allowed to stand, an opaque and swollen film was obtained. Washing with water was performed to remove unreacted materials and the like. When this film was naturally dried, an opaque and somewhat flexible film was obtained. Further, when water was added to the dried film, it returned to an opaque and swollen film. When this film was naturally dried, an opaque and somewhat flexible film was obtained again. When 1N NaOH aqueous solution was added to the dried film, this film was dissolved.
  • ⁇ -1,4 glucan grafted cellulose unlike cellulose, exhibited unique physical properties that have both amylose solubility and flexibility.
  • Cellulose is used in a wide range of industrial fields such as fiber, paper, non-woven fabric, fabric and filter.
  • the function of amylose can be imparted to cellulose or cellulose products.
  • amylose can form inclusion complexes with various chemicals, and it can be used to design composite functional materials and devices such as filters and fragrance-containing fibers that have environmental purification functions. Become.

Abstract

A graft polymer in which an α-1,4-glucan side chain is bonded to the main chain of cellulose: wherein the terminal carbon atom at the 1-position of the α-1,4-glucan side chain is covalently bonded via an –NH- group to the carbon atom at the 6-position in at least one glucose residue of the cellulose main chain; two hydrogen groups are bonded to the preceding carbon atom at the 1-position or one oxygen atom is bonded thereto; the preceding cellulose main chain has a degree of polymerization of 25 or higher; and the preceding α-1,4-glucan side chain has a degree of polymerization of 25 or higher.

Description

α-1,4グルカングラフト化セルロースα-1,4 glucan grafted cellulose
 本発明は、α-1,4グルカンを結合させたセルロースおよびその製造方法に関する。 The present invention relates to cellulose combined with α-1,4 glucan and a method for producing the same.
 構造および/または機能が異なる2種類のポリマーを結合させ、機能および/または物性の異なるポリマーを開発することが、高分子材料分野では行われている。例えば、デンプンにアクリル酸をグラフト化させたポリマーは高吸水性ポリマーとして日用品分野で利用されている。 In the polymer material field, two types of polymers having different structures and / or functions are combined to develop polymers having different functions and / or physical properties. For example, a polymer obtained by grafting acrylic acid to starch is used as a superabsorbent polymer in the daily necessities field.
 また、枝分かれした複合多糖は、自然界において重要な役割を示すことが知られている。これらの材料は異なる糖ユニットから構成された分岐型構造を有しており、このような構造が材料の機能に影響していると考えられる。一方、でんぷん、アミロース、セルロース、キチンなどの天然多糖は自然界に豊富に存在し、生分解性を持つ循環型炭素資源であることから低環境負荷材料としての利用が期待される。 In addition, branched complex polysaccharides are known to play an important role in nature. These materials have a branched structure composed of different sugar units, and it is considered that such a structure affects the function of the material. On the other hand, natural polysaccharides such as starch, amylose, cellulose, and chitin are abundant in nature and are expected to be used as low environmental impact materials because they are biodegradable and recyclable carbon resources.
 セルロースはグルコース残基がβ-1,4-結合で多数結合した多糖である。セルロースは水に不溶性であり、結晶性が高く、高い力学強度を有することが特徴であり、構造材、フィルム、繊維などに利用されている。 Cellulose is a polysaccharide in which many glucose residues are linked by β-1,4-linkages. Cellulose is insoluble in water, has high crystallinity, and has high mechanical strength, and is used for structural materials, films, fibers, and the like.
 一方アミロースは、グルコースがα-1,4-結合で多数結合した多糖であり、水に溶解あるいは膨潤し、水溶液またはヒドロゲルになる。またアミロースはヘリックス構造をとり、その内部の空洞部分にゲスト物質を取り込んで包接化合物を形成するという、特徴的な機能を有する。アミロースの包接化合物形成能力は、アミロースの重合度によって大きく影響を受け、アミロースの重合度が高いほど強いことが報告されている(非特許文献1)。また、重合度10~20程度の短いα-1,4グルカンが、α-1,6結合により多数結合した分岐状多糖のアミロペクチンやグリコーゲンには、包接機能はないことが知られている。このように、包接機能を充分発揮させるためには、アミロースは分岐構造を含まない、完全直鎖状のα-1,4グルカンであることが好ましく、かつその重合度が長いほど好ましい。一方、アミロースは環境内および生体内で容易に分解されることも大きな特徴である。 On the other hand, amylose is a polysaccharide in which many glucoses are bonded with α-1,4-bonds, and dissolves or swells in water to form an aqueous solution or hydrogel. Amylose has a characteristic function of forming a clathrate compound by taking a guest substance into a hollow portion of the amylose and forming an inclusion compound. It has been reported that the inclusion compound forming ability of amylose is greatly influenced by the polymerization degree of amylose, and is stronger as the polymerization degree of amylose is higher (Non-patent Document 1). Further, it is known that the branched polysaccharides amylopectin and glycogen in which a short α-1,4 glucan having a degree of polymerization of about 10 to 20 is linked by α-1,6 bonds have no inclusion function. Thus, in order to fully exhibit the inclusion function, amylose is preferably a completely linear α-1,4 glucan containing no branched structure, and the longer the degree of polymerization, the more preferable. On the other hand, amylose is also characterized by being easily degraded in the environment and in vivo.
 当該分野においては、例えば、特許文献1は、直鎖状アミノ多糖類(例えば、キトサン繊維)に環状オリゴ糖類が結合した高分子包接性化合物からなる繊維を開示している。さらに、化学-酵素法によるアミロースグラフト化キチンおよびアミロースグラフト化キトサンの合成が非特許文献2に報告されている。非特許文献2においては、キチンの構造中に存在するNH基に側鎖を結合してグラフトポリマーを製造することが開示されている。 In this field, for example, Patent Document 1 discloses a fiber made of a polymer inclusion compound in which a cyclic oligosaccharide is bound to a linear amino polysaccharide (for example, chitosan fiber). Furthermore, the synthesis of amylose-grafted chitin and amylose-grafted chitosan by a chemical-enzymatic method is reported in Non-Patent Document 2. Non-Patent Document 2 discloses that a graft polymer is produced by bonding a side chain to an NH 2 group present in the structure of chitin.
 しかし、セルロースにはNH基が存在しないので、グラフトポリマーを製造するためには水酸基を使わなければならない。しかし、セルロース中には非常に多数の水酸基が存在し、キチンのように選択的に反応させることはできない。セルロース中の全ての水酸基をグラフト化しようとすると構造障害が発生して、反応が進まない。また、重合度25以上のような重合度の大きなアミロースは反応性が低く、化学合成によってグラフト化させることができない。このため、アミロース側鎖をセルロース主鎖にグラフト結合させたグラフトポリマーについては報告されていない。 However, since there are no NH 2 groups in cellulose, hydroxyl groups must be used to produce the graft polymer. However, a very large number of hydroxyl groups are present in cellulose and cannot be selectively reacted like chitin. If an attempt is made to graft all the hydroxyl groups in cellulose, structural failure occurs and the reaction does not proceed. Also, amylose having a high degree of polymerization such as a degree of polymerization of 25 or more has low reactivity and cannot be grafted by chemical synthesis. For this reason, there is no report on a graft polymer in which an amylose side chain is grafted to a cellulose main chain.
特開2002-327338号公報JP 2002-327338 A
 本発明は、上記問題点の解決を意図するものであり、セルロースに重合度25以上のα-1,4グルカンをグラフト化し、α-1,4グルカンの包接機能を付与したグラフトポリマー(すなわち、α-1,4グルカングラフト化セルロース)を提供することを目的とする。 The present invention is intended to solve the above-mentioned problems, and graft polymers having α-1,4 glucan having a polymerization degree of 25 or more grafted to cellulose and having an inclusion function of α-1,4 glucan (that is, a graft polymer) , Α-1,4 glucan grafted cellulose).
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、プライマーをセルロースに共有結合し、その後、酵素的にプライマーを伸長させてα-1,4グルカンとすることにより、重合度25以上のα-1,4グルカン側鎖をセルロース主鎖に共有結合することができることを見出し、これに基づいて本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have carried out polymerization by covalently bonding a primer to cellulose and then extending the primer enzymatically to α-1,4 glucan. The inventors have found that α-1,4 glucan side chains having a degree of 25 or more can be covalently bonded to the cellulose main chain, and based on this, the present invention has been completed.
 酵素触媒重合を用いてアミロース側鎖を有するセルロースを得るには、セルロースにマルトオリゴ糖または短鎖アミロースを導入する必要がある。本発明の1つの実施形態では、還元的アミノ化反応によってマルトオリゴ糖または短鎖アミロースを導入する。すなわち、セルロース主鎖中のグルコース残基中の6位のヒドロキシ基の一部をアミノ基に変換し、このアミノ基に対して還元的アミノ化反応を行うことによりマルトオリゴ糖または短鎖アミロースを導入する。その後、このマルトオリゴ糖部位または短鎖アミロース部位からのアミロース生成重合を行いアミロースグラフト化セルロースを合成する。他の実施形態については、本明細書の「発明を実施するための形態」中で詳細に説明する。 In order to obtain cellulose having amylose side chains using enzyme-catalyzed polymerization, it is necessary to introduce maltooligosaccharide or short chain amylose into cellulose. In one embodiment of the invention, maltooligosaccharides or short chain amylose are introduced by a reductive amination reaction. That is, a part of the hydroxyl group at the 6-position in the glucose residue in the cellulose main chain is converted to an amino group, and a malto-oligosaccharide or short-chain amylose is introduced by performing a reductive amination reaction on this amino group. To do. Thereafter, amylose-forming polymerization is performed from the maltooligosaccharide site or the short-chain amylose site to synthesize amylose-grafted cellulose. Other embodiments will be described in detail in the “Description of Embodiments” of this specification.
 本発明によるグラフトポリマーの製造方法の一例を図1に示す。この例では、プライマーとしてマルトヘプタオースを使用し、酵素としてα-グルカンホスホリラーゼを使用する。図1に示すように、本発明においては、まず、セルロース(cellulose)に化学反応によってアミノ基(amino group)を導入してアミノ基含有セルロース(cellulose having amino goup)を得る。次いで、化学反応によってこのアミノ基含有セルロースにマルトヘプタオース(maltoheptaose)を導入して、マルトヘプタオースグラフト化セルロース(maltoheptaose-grafted cellulose)を得る。マルトヘプタオースグラフト化セルロースにおいては、セルロースに導入されたアミノ基を介してマルトヘプタオース鎖(maltoheptaose-chain)が結合している。このマルトヘプタオースグラフト化セルロースを用いて、α-グルカンホスホリラーゼ(phosphorylase)を用いた酵素反応によってマルトヘプタオース鎖を伸長してアミロース鎖(amylose-chain)とすることにより、アミロースグラフト化セルロース(amylose-grafted cellulose)が得られる。 An example of a method for producing a graft polymer according to the present invention is shown in FIG. In this example, maltoheptaose is used as a primer and α-glucan phosphorylase is used as an enzyme. As shown in FIG. 1, in the present invention, an amino group is first introduced into cellulose by a chemical reaction to obtain an amino group-containing cellulose (cellulose having amino group). Subsequently, maltoheptaose is introduced into the amino group-containing cellulose by a chemical reaction to obtain maltoheptaose-grafted cellulose. In maltoheptaose grafted cellulose, a maltoheptaose chain is bonded via an amino group introduced into the cellulose. Using this maltoheptaose grafted cellulose, the maltoheptaose chain is elongated by an enzymatic reaction using α-glucan phosphorylase to form an amylose chain, thereby producing an amylose grafted cellulose (amylose). -Crafted cellulose) is obtained.
 本発明により、例えば、以下が提供される:
 (項目1)
 α-1,4グルカン側鎖がセルロース主鎖に結合したグラフトポリマーであって、
 セルロース主鎖中の少なくとも1つのグルコース残基の6位炭素にα-1,4グルカン側鎖の末端の1位炭素が、-NH-基を介して共有結合しており;
 該1位炭素に2つの水素基が結合しているか、または1つの酸素原子が結合しており;
 該セルロース主鎖の重合度が25以上であり;
 該α-1,4グルカン側鎖の重合度が25以上である、
グラフトポリマー。
The present invention provides, for example:
(Item 1)
a graft polymer in which α-1,4 glucan side chains are bonded to a cellulose main chain,
The first carbon at the end of the α-1,4 glucan side chain is covalently bonded via the —NH— group to the 6th carbon of at least one glucose residue in the cellulose backbone;
Two hydrogen groups are bonded to the first carbon atom, or one oxygen atom is bonded;
The degree of polymerization of the cellulose main chain is 25 or more;
The degree of polymerization of the α-1,4 glucan side chain is 25 or more.
Graft polymer.
 (項目2)
 前記α-1,4グルカン側鎖が完全に直鎖状である、項目1に記載のグラフトポリマー。
(Item 2)
Item 2. The graft polymer according to Item 1, wherein the α-1,4 glucan side chain is completely linear.
 (項目3)
 前記グラフトポリマーが、以下の構造(I):
(Item 3)
The graft polymer has the following structure (I):
Figure JPOXMLDOC01-appb-C000003
を有し、ここで、各Rは、-OH、-NHおよび以下の構造(II)もしくは(III):
Figure JPOXMLDOC01-appb-C000003
Where each R is —OH, —NH 2 and the following structure (II) or (III):
Figure JPOXMLDOC01-appb-C000004
からなる群より独立して選択され、該nが25~20,000の整数であり、該mが24~1000の整数であり、セルロース主鎖中のグルコース残基どうしがβ-1,4結合により結合している、項目1または2に記載のグラフトポリマー。
Figure JPOXMLDOC01-appb-C000004
Independently selected from the group consisting of: n is an integer from 25 to 20,000, m is an integer from 24 to 1000, and glucose residues in the cellulose main chain are β-1,4 bonded 3. The graft polymer according to item 1 or 2, which is bound by
 (項目4)
 前記α-1,4グルカン側鎖の重合度が40以上である、項目1~3のいずれか1項に記載のグラフトポリマー。
(Item 4)
Item 4. The graft polymer according to any one of Items 1 to 3, wherein the degree of polymerization of the α-1,4 glucan side chain is 40 or more.
 (項目5)
 前記α-1,4グルカン側鎖の重合度が50以上である、項目1~4のいずれか1項に記載のグラフトポリマー。
(Item 5)
Item 5. The graft polymer according to any one of Items 1 to 4, wherein the degree of polymerization of the α-1,4 glucan side chain is 50 or more.
 (項目6)
 前記セルロース主鎖に結合しているα-1,4グルカン側鎖の数が、1~10,000個である、項目1~5のいずれか1項に記載のグラフトポリマー。
(Item 6)
Item 6. The graft polymer according to any one of Items 1 to 5, wherein the number of α-1,4 glucan side chains bonded to the cellulose main chain is 1 to 10,000.
 (項目7)
 前記セルロース主鎖に結合しているα-1,4グルカン側鎖の数が、セルロース主鎖中のグルコース残基100個あたり1~50個である、項目1~6のいずれか1項に記載のグラフトポリマー。
(Item 7)
Item 7. The item 1-6, wherein the number of α-1,4 glucan side chains bonded to the cellulose main chain is 1 to 50 per 100 glucose residues in the cellulose main chain. Graft polymer.
 (項目8)
 項目1~7のいずれか1項に記載のグラフトポリマーの製造方法であって、
 セルロース中の少なくとも1つのグルコース残基の6位炭素に結合しているOH基をNH基に置換して、アミノ化セルロースを得る工程;
 該アミノ化セルロースとプライマーとを反応させて、該アミノ化セルロース中の少なくとも1つのグルコース残基の6位炭素と、該プライマーの末端の1位炭素とを、-NH-基を介して共有結合させて、プライマー結合セルロースを得る工程;
 該プライマー結合セルロースと、基質と、α-1,4グルカン鎖伸長酵素とを接触させることによってプライマーを伸長させることにより、重合度25以上のα-1,4グルカン側鎖を形成させて、項目1~7のいずれか1項に記載のグラフトポリマーを得る工程
を包含し、
 該プライマーは、重合度3~20のα-1,4グルカン、またはその還元末端酸化物もしくはラクトン化物であり、
 該基質は、該酵素の作用により該プライマーにグルコース残基を提供する物質であり、
 該α-1,4グルカン側鎖の重合度が25以上であり、
 α-1,4グルカン結合セルロースにおいては、該1位炭素に2つの水素基が結合しているか、または1つの酸素原子が結合している、方法。
(Item 8)
The method for producing a graft polymer according to any one of items 1 to 7,
Replacing the OH group bonded to the 6-position carbon of at least one glucose residue in cellulose with an NH 2 group to obtain an aminated cellulose;
By reacting the aminated cellulose with a primer, the 6-position carbon of at least one glucose residue in the aminated cellulose and the 1-position carbon of the end of the primer are covalently bonded via an —NH— group. Obtaining primer-bound cellulose;
By extending the primer by contacting the primer-bound cellulose, a substrate, and an α-1,4 glucan chain extender, an α-1,4 glucan side chain having a polymerization degree of 25 or more is formed, Including the step of obtaining the graft polymer according to any one of 1 to 7,
The primer is an α-1,4 glucan having a degree of polymerization of 3 to 20, or a reducing end oxide or lactonized product thereof,
The substrate is a substance that provides a glucose residue to the primer by the action of the enzyme;
The degree of polymerization of the α-1,4 glucan side chain is 25 or more;
In the α-1,4-glucan-bonded cellulose, a method in which two hydrogen groups are bonded to the 1-position carbon or one oxygen atom is bonded.
 (項目9)
 前記α-1,4グルカン側鎖の重合度が40以上である、項目8に記載の方法。
(Item 9)
Item 9. The method according to Item 8, wherein the degree of polymerization of the α-1,4 glucan side chain is 40 or more.
 (項目10)
 前記α-1,4グルカン側鎖の重合度が50以上である、項目8または9に記載の方法。
(Item 10)
Item 10. The method according to Item 8 or 9, wherein the degree of polymerization of the α-1,4 glucan side chain is 50 or more.
 (項目11)
 前記セルロースに結合しているα-1,4グルカンの数が、1~10,000個である、項目8~10のいずれか1項に記載の方法。
(Item 11)
Item 11. The method according to any one of Items 8 to 10, wherein the number of α-1,4 glucan bound to the cellulose is 1 to 10,000.
 (項目12)
 前記セルロース主鎖に結合しているα-1,4グルカン側鎖の数が、セルロース主鎖中のグルコース残基100個あたり1~50個である、項目8~11のいずれか1項に記載の方法。
(Item 12)
Item 12. The item 8 to 11, wherein the number of α-1,4 glucan side chains bonded to the cellulose main chain is 1 to 50 per 100 glucose residues in the cellulose main chain. the method of.
 (項目13)
 前記グラフトポリマーを精製する工程をさらに包含する、項目8~12のいずれか1項に記載の方法。
(Item 13)
Item 13. The method according to any one of Items 8 to 12, further comprising the step of purifying the graft polymer.
 (項目14)
 前記アミノ化セルロースを得る工程が、
 トリエチルアミン、塩化リチウムおよびN,N-ジメチルアセトアミドの存在下でセルロースと塩化-p-トルエンスルホニルとを反応させてトシル化セルロースを得ること;
 テトラ-n-ブチルアンモニウムヨージドおよびジメチルスルホキシドの存在下で該トシル化セルロースをアジ化ナトリウムと反応させて6-アジド-6-デオキシセルロースを得ること;ならびに
 ジメチルスルホキシド中で該6-アジド-6-デオキシセルロースを水素化ホウ素ナトリウムと反応させてアミノ化セルロースを得ること
によって行われる、項目8~13のいずれか1項に記載の方法。
(Item 14)
Obtaining the aminated cellulose comprises
Reacting cellulose with p-toluenesulfonyl chloride in the presence of triethylamine, lithium chloride and N, N-dimethylacetamide to obtain tosylated cellulose;
Reacting the tosylated cellulose with sodium azide in the presence of tetra-n-butylammonium iodide and dimethyl sulfoxide to give 6-azido-6-deoxycellulose; and the 6-azido-6 in dimethyl sulfoxide The method according to any one of items 8 to 13, which is carried out by reacting deoxycellulose with sodium borohydride to obtain an aminated cellulose.
 (項目15)
 前記α-1,4グルカン鎖伸長酵素がα-グルカンホスホリラーゼであり、前記基質がグルコース-1-リン酸である、項目8~14のいずれか1項に記載の方法。
(Item 15)
Item 15. The method according to any one of Items 8 to 14, wherein the α-1,4 glucan chain extender is α-glucan phosphorylase and the substrate is glucose-1-phosphate.
 (項目16)
 前記α-1,4グルカン鎖伸長酵素がα-グルカンホスホリラーゼおよびスクロースホスホリラーゼであり、前記基質がスクロースおよび無機リン酸またはグルコース-1-リン酸である、項目8~14のいずれか1項に記載の方法。
(Item 16)
Item 15. The item 8-14, wherein the α-1,4 glucan chain extender is α-glucan phosphorylase and sucrose phosphorylase, and the substrate is sucrose and inorganic phosphate or glucose-1-phosphate. the method of.
 (項目17)
 前記α-1,4グルカン鎖伸長酵素がアミロスクラーゼであり、前記基質がスクロースである、項目8~14のいずれか1項に記載の方法。
(Item 17)
Item 15. The method according to any one of Items 8 to 14, wherein the α-1,4 glucan chain extender is amylosucrase and the substrate is sucrose.
 本発明により、α-1,4グルカングラフト化セルロース(アミロースグラフト化セルロースともいう)が得られる。本発明により、アミロースの機能が付与された、セルロースまたはセルロース製品を得ることができる。本発明のアミロースグラフト化セルロースは、セルロースの性能(例えば、力学的強度などの物性)とアミロースの性能(例えば、包接機能)とを併せ持つ素材であり、種々の用途に利用され得る。 According to the present invention, α-1,4 glucan grafted cellulose (also referred to as amylose grafted cellulose) can be obtained. According to the present invention, cellulose or a cellulose product to which amylose function is imparted can be obtained. The amylose-grafted cellulose of the present invention is a material having both the performance of cellulose (for example, physical properties such as mechanical strength) and the performance of amylose (for example, inclusion function), and can be used for various applications.
図1は、本発明によるグラフトポリマーの製造方法の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a method for producing a graft polymer according to the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 (1.セルロース)
 本明細書中では、用語「セルロース」とは、多数(例えば、25個以上)のD-グルコピラノースがβ1→4グルコシド結合によって連結された分子をいう。セルロース中の各結合単位をグルコース残基ともいう。セルロースは、(C10によって表され得る。セルロースは、植物細胞壁の骨組を形成する、植物体のおもな多糖類であり、植物が光合成する物質であり、植物体の約3分の1を占める。セルロースは、地球上で最も多い炭水化物である。セルロースは通常、白色で無臭の固体で吸湿性が強い。セルロースは、極性の高い溶媒に強親和性であり、硫酸、銅アンモニウム液、塩化亜鉛溶液、および塩酸に可溶である。セルロースは、水、アルコール、エーテル、メタノールに不溶である。セルロースは、40~50本の分子が平行に並んでミクロフィブリルを形成し、それらが非結晶分子の散在する中を走って全体としてふさ状のミセルをつくっている。酸およびセルラーゼによって加水分解されてグルコースになるが、その中間体生成物としてセロビオース、セロトリオース、セロトテラオースなどができる。
(1. Cellulose)
As used herein, the term “cellulose” refers to a molecule in which a large number (for example, 25 or more) of D-glucopyranose are linked by β1 → 4 glucoside bonds. Each binding unit in cellulose is also referred to as a glucose residue. Cellulose may be represented by (C 6 H 10 O 5 ) n . Cellulose is the main polysaccharide of the plant that forms the framework of the plant cell wall, and is a substance that the plant photosynthesizes, accounting for about one-third of the plant. Cellulose is the most abundant carbohydrate on earth. Cellulose is usually a white, odorless solid and highly hygroscopic. Cellulose has a strong affinity for highly polar solvents and is soluble in sulfuric acid, copper ammonium solution, zinc chloride solution, and hydrochloric acid. Cellulose is insoluble in water, alcohol, ether and methanol. Cellulose has 40-50 molecules arranged in parallel to form microfibrils, which run through interspersed amorphous molecules to form a full-like micelle. It is hydrolyzed to glucose by acid and cellulase, and its intermediate products include cellobiose, cellotriose, cellototeraose and the like.
 本発明で使用されるセルロース1分子中のグルコース残基の数は、好ましくは約25以上であり、より好ましくは約30以上であり、さらに好ましくは約35以上であり、特に好ましくは約40以上であり、最も好ましくは約50以上である。本発明で使用されるセルロース1分子中のグルコース残基の数は、例えば、約100以上、約200以上、約300以上、約400以上、約500以上、約600以上、約700以上、約800以上、約900以上、約1,000以上、約2,000以上、約2,500以上、約3,000以上、約4,000以上、約5,000以上などであってもよい。本発明で使用されるセルロース1分子中のグルコース残基の数は、好ましくは約30,000以下であり、より好ましくは約25,000以下であり、さらに好ましくは約20,000以下であり、特に好ましくは約15,000以下であり、最も好ましくは約10,000以下である。本発明で使用されるセルロース1分子中のグルコース残基の数は、例えば、約9,000以下、約8,000以下、約7,000以下、約6,000以下、約5,000以下、約4,000以下、約3,000以下、約2,000以下、約1,000以下、約900以下、約800以下、約700以下、約600以下、約500以下、約400以下などであってもよい。 The number of glucose residues in one molecule of cellulose used in the present invention is preferably about 25 or more, more preferably about 30 or more, still more preferably about 35 or more, and particularly preferably about 40 or more. And most preferably about 50 or greater. The number of glucose residues in one molecule of cellulose used in the present invention is, for example, about 100 or more, about 200 or more, about 300 or more, about 400 or more, about 500 or more, about 600 or more, about 700 or more, about 800. More than about 900, about 1,000, about 2,000, about 2,500, about 3,000, about 4,000, about 5,000, etc. may be sufficient. The number of glucose residues in one molecule of cellulose used in the present invention is preferably about 30,000 or less, more preferably about 25,000 or less, still more preferably about 20,000 or less, Particularly preferred is about 15,000 or less, and most preferred is about 10,000 or less. The number of glucose residues in one molecule of cellulose used in the present invention is, for example, about 9,000 or less, about 8,000 or less, about 7,000 or less, about 6,000 or less, about 5,000 or less, About 4,000 or less, about 3,000 or less, about 2,000 or less, about 1,000 or less, about 900 or less, about 800 or less, about 700 or less, about 600 or less, about 500 or less, about 400 or less, etc. May be.
 一般に市販されるセルロースは天然物であり、種々の分子量を有するセルロースの混合物である。 Generally, commercially available cellulose is a natural product, and is a mixture of cellulose having various molecular weights.
 本発明では、市販のセルロースを使用し得る。 In the present invention, commercially available cellulose can be used.
 (2.アミノ化セルロース)
 本発明のグラフトポリマーの製造方法は、セルロース中の少なくとも1つのグルコース残基の6位炭素に結合しているOH基をNH基に置換して、アミノ化セルロースを得る工程;該アミノ化セルロースとプライマーとを反応させて、該アミノ化セルロース中の少なくとも1つのグルコース残基の6位炭素と、該プライマーの末端の1位炭素とを、-NH-基を介して共有結合させて、プライマー結合セルロースを得る工程;該プライマー結合セルロースと、基質と、α-1,4グルカン鎖伸長酵素とを接触させることによってプライマーを伸長させることにより、重合度25以上のα-1,4グルカン側鎖を形成させて、本発明のグラフトポリマーを得る工程を包含する。ここではまず、アミノ化セルロースの作製方法について以下に説明する。
(2. Aminated cellulose)
The method for producing a graft polymer of the present invention comprises a step of substituting an NH 2 group for an OH group bonded to the 6-position carbon of at least one glucose residue in cellulose to obtain an aminated cellulose; And a primer, and the 6-position carbon of at least one glucose residue in the aminated cellulose and the 1-position carbon of the terminal of the primer are covalently bonded via a —NH— group, A step of obtaining bound cellulose; an α-1,4 glucan side chain having a polymerization degree of 25 or more by extending the primer by bringing the primer bound cellulose into contact with a substrate and an α-1,4 glucan chain extending enzyme. To obtain the graft polymer of the present invention. Here, first, a method for producing an aminated cellulose will be described below.
 なお、アミノ化セルロースの製造方法については種々の経路を経るものが当該分野で公知であり、本明細書中に記載した経路以外の経路で製造することもできる。例えば、6-トシル化セルロース誘導体を経て製造する以外に、6-酸化セルロース誘導体を経て製造する方法が公知である。アミノ化セルロースは、当該分野で公知の方法によって製造され得る。例えば、Carbohydrate Research,340(2005)1403-1406およびCarbohydrate Research,208(1990)83-191を参照のこと。 In addition, about the manufacturing method of aminated cellulose, what passes through various paths is well-known in the said field | area, and can also manufacture by paths other than the path | route described in this specification. For example, in addition to producing via a 6-tosylated cellulose derivative, a method for producing via a 6-oxidized cellulose derivative is known. Aminated cellulose can be produced by methods known in the art. See, for example, Carbohydrate Research, 340 (2005) 1403-1406 and Carbohydrate Research, 208 (1990) 83-191.
 (3. スキーム1 セルロースからのアミノ基含有セルロースの合成)
 アミノ化セルロース(すなわち、アミノ基含有セルロース)を製造する方法の1つの実施態様のスキームを以下に示す。
(3. Scheme 1 Synthesis of amino group-containing cellulose from cellulose)
A scheme of one embodiment of a method for producing an aminated cellulose (ie, amino group-containing cellulose) is shown below.
Figure JPOXMLDOC01-appb-C000005
 本発明の1つの実施形態ではまず、上記スキーム1にしたがってアミノ基含有セルロース(スキーム1中の化学式3)の合成を行う。概略を述べると、塩化トシル(p-toluenesulphonyl chloride)を用いてセルロース(cellulose)をトシラート化してp-トルエンスルホニル基含有セルロース(cellulose having p-toluenesulphonyl group)1を得る。
Figure JPOXMLDOC01-appb-C000005
In one embodiment of the present invention, first, amino group-containing cellulose (Chemical Formula 3 in Scheme 1) is synthesized according to Scheme 1 above. In brief, cellulose is tosylate using tosyl chloride (p-toluenesulfonyl chloride) to obtain a p-toluenesulfonyl group-containing cellulose (cellulose having p-toluenesulfonyl group) 1.
 なお、本明細書中では、p-トルエンスルホニル基含有セルロース1についてスキーム1中に示したように、化学式の()内に/で区切られた2つの構造を示す場合がある。これは、ポリマーの構造単位が、/で区切られた2つの構造のいずれかであることを示す。この2つの構造の並び方、存在頻度などは、反応条件、反応物などによって変化するため、確定した化学式として示すことができない。 In the present specification, as shown in Scheme 1 for the p-toluenesulfonyl group-containing cellulose 1, there are cases where it shows two structures separated by / in () n of the chemical formula. This indicates that the structural unit of the polymer is one of two structures separated by /. The arrangement of these two structures, the frequency of existence, and the like vary depending on reaction conditions, reactants, etc., and thus cannot be expressed as a fixed chemical formula.
 各工程についてより詳細に説明する。 ) Each process will be described in more detail.
 (3.1 トシラート化)
 詳細には、まず、セルロースをトシラート化して、p-トルエンスルホニル基含有セルロース(スキーム1中の化学式1)を得る。トシラート化の代表的な条件は、トリエチルアミン(triethylamine)および塩化リチウム(LiCl)を含有するN,N-ジメチルアセトアミド中で、塩化トシルとともに10℃にて24時間である。この条件で反応を行うと、6位の水酸基が選択的にトシラート化され、他の水酸基はトシラート化されない。セルロースと、塩化トシルと、N,N-ジメチルアセトアミドと、トリエチルアミンと、塩化リチウムとは、一度に混合してもよいが、予めセルロース溶液を作製した後に塩化トシルを添加することが好ましい。トシラート化の前にセルロースをN,N-ジメチルアセトアミド中に充分に溶解させ、その後塩化リチウムを添加して溶解し、トリエチルアミンを添加してよく混合した後に塩化トシルを添加することが好ましい。
(3.1 Tosylate)
Specifically, first, cellulose is tosylated to obtain a p-toluenesulfonyl group-containing cellulose (Chemical Formula 1 in Scheme 1). Typical conditions for tosylation are 24 hours at 10 ° C. with tosyl chloride in N, N-dimethylacetamide containing triethylamine and lithium chloride (LiCl). When the reaction is carried out under these conditions, the hydroxyl group at the 6-position is selectively tosylate and other hydroxyl groups are not tosylate. Cellulose, tosyl chloride, N, N-dimethylacetamide, triethylamine, and lithium chloride may be mixed at a time, but it is preferable to add tosyl chloride after preparing a cellulose solution in advance. Before tosylation, it is preferable to dissolve cellulose sufficiently in N, N-dimethylacetamide, then add lithium chloride to dissolve, add triethylamine and mix well, and then add tosyl chloride.
 セルロースに対して導入されるp-トルエンスルホニル基の数または割合を増やすためには、塩化トシルの量を増やすか、反応温度を上げるか、または反応時間を長くすればよい。セルロースに対して導入されるp-トルエンスルホニル基の数または割合を減らすためには、塩化トシルの量を減らすか、反応温度を下げるか、または反応時間を短くすればよい。セルロースに対して導入されるp-トルエンスルホニル基の数または割合の調節は、当業者によって容易に行われ得る。 In order to increase the number or ratio of p-toluenesulfonyl groups introduced into cellulose, the amount of tosyl chloride may be increased, the reaction temperature may be increased, or the reaction time may be lengthened. In order to reduce the number or ratio of p-toluenesulfonyl groups introduced into cellulose, the amount of tosyl chloride may be reduced, the reaction temperature may be lowered, or the reaction time may be shortened. Adjustment of the number or proportion of p-toluenesulfonyl groups introduced into cellulose can be easily performed by those skilled in the art.
 (3.2 アジド化)
 次いで、上記で得られたp-トルエンスルホニル基含有セルロース(スキーム1中の化学式1)をアジド化することにより、アジド基含有セルロース(cellulose having azide groups)(スキーム1中の化学式2)を得る。p-トルエンスルホニル基含有セルロース1のアジド化の代表的な条件は、テトラ-n-ブチルアンモニウムヨージド((n-Bu)NI)およびアジ化ナトリウム(NaN)を含有するジメチルスルホキシド(DMSO)中、70℃にて72時間である。p-トルエンスルホニル基含有セルロースと、テトラ-n-ブチルアンモニウムヨージドと、アジ化ナトリウムと、ジメチルスルホキシドとは、一度に混合してよい。
(3.2 Azidation)
Next, the p-toluenesulfonyl group-containing cellulose (Chemical Formula 1 in Scheme 1) obtained above is azidated to obtain cellulose azide group-containing cellulose (Chemical Formula 2 in Scheme 1). Typical conditions for the azidation of p-toluenesulfonyl group-containing cellulose 1 are dimethyl sulfoxide (DMSO) containing tetra-n-butylammonium iodide ((n-Bu) 4 NI) and sodium azide (NaN 3 ). ) For 72 hours at 70 ° C. The p-toluenesulfonyl group-containing cellulose, tetra-n-butylammonium iodide, sodium azide, and dimethyl sulfoxide may be mixed at a time.
 (3.3 アジド基の還元)
 次いで、アジド基含有セルロース(スキーム1中の化学式2)を還元することによりアミノ基含有セルロース(cellulose having amino groups)(スキーム1中の化学式3)を合成する。アジド基含有セルロース(スキーム1中の化学式2)の還元の代表的な条件は、水素化ホウ素ナトリウム(NaBH)を含有するDMSO中、60℃にて72時間である。アジド基含有セルロース(スキーム1中の化学式2)と、水素化ホウ素ナトリウムと、DMSOとは、一度に混合してよい。
(3.3 Reduction of azide group)
Next, an azide group-containing cellulose (Chemical Formula 2 in Scheme 1) is reduced to synthesize an amino group-containing cellulose (Chemical Formula 3 in Scheme 1). A typical condition for the reduction of the azide group-containing cellulose (Chemical Formula 2 in Scheme 1) is 72 hours at 60 ° C. in DMSO containing sodium borohydride (NaBH 4 ). The azide group-containing cellulose (Chemical Formula 2 in Scheme 1), sodium borohydride, and DMSO may be mixed at once.
 (4.プライマー)
 本発明において使用されるプライマーは、α-1,4グルカン鎖の合成において出発物質として作用する分子をいう。本発明の方法では、プライマーに対して糖単位がα-1,4-グルコシド結合で順次結合されて、約25残基以上の長さのα-1,4グルカン鎖が合成される。プライマーの例としては、α-グルカンホスホリラーゼによって糖単位が付加され得る任意の糖が挙げられる。
(4. Primer)
The primer used in the present invention refers to a molecule that acts as a starting material in the synthesis of α-1,4 glucan chains. In the method of the present invention, sugar units are sequentially bound to the primer by α-1,4-glucoside bonds, and an α-1,4 glucan chain having a length of about 25 residues or more is synthesized. Examples of primers include any saccharide to which a saccharide unit can be added by α-glucan phosphorylase.
 プライマーは、α-1,4-グルコシド結合のみを含むα-1,4グルカンであっても、α-1,6-グルコシド結合を部分的に有してもよい。当業者は、所望のグルカンに応じて、適切なプライマーを容易に選択し得る。本発明では、直鎖状のアミロースをグラフト化させたセルロースを合成することが好ましいので、α-1,4-グルコシド結合のみを含むα-1,4グルカン、またはその還元末端酸化物もしくはラクトン化物をプライマーとして用いることが好ましい。本明細書中では、α-1,4グルカンであるプライマーをα-1,4グルカンプライマーということがあり、α-1,4グルカンの還元末端酸化物であるプライマーを酸化プライマーということがあり、α-1,4グルカンの還元末端のグルコース残基のラクトン化物であるプライマーをラクトン化プライマーということがある。 The primer may be an α-1,4-glucan containing only an α-1,4-glucoside bond or may partially have an α-1,6-glucoside bond. One skilled in the art can readily select appropriate primers depending on the desired glucan. In the present invention, since it is preferable to synthesize cellulose grafted with linear amylose, α-1,4 glucan containing only α-1,4-glucoside bond, or a reducing end oxide or lactonized product thereof Is preferably used as a primer. In the present specification, a primer that is α-1,4 glucan may be referred to as an α-1,4 glucan primer, and a primer that is a reducing end oxide of α-1,4 glucan may be referred to as an oxidation primer. A primer that is a lactonized product of a glucose residue at the reducing end of α-1,4 glucan is sometimes referred to as a lactonized primer.
 (4.1 α-1,4グルカンプライマー)
 α-1,4グルカンプライマーの例としては、マルトオリゴ糖および短鎖アミロースが挙げられる。α-1,4グルカンの還元末端は、酸化もラクトン化もされておらず、水溶液中では、アルデヒドの状態と環状構造になった状態との平衡状態を保っている。α-1,4グルカンプライマーは、アルデヒドの状態で還元的アミノ化に寄与する。
(4.1 α-1,4 glucan primer)
Examples of α-1,4 glucan primers include maltooligosaccharides and short chain amylose. The reducing end of α-1,4 glucan is neither oxidized nor lactonized and maintains an equilibrium state between the aldehyde state and the cyclic structure in an aqueous solution. The α-1,4 glucan primer contributes to reductive amination in the aldehyde state.
 マルトオリゴ糖は、本明細書中では、2~10個のグルコースが脱水縮合して生じた物質であって、α-1,4結合によって連結された物質をいう。マルトオリゴ糖は、好ましくは4個以上の糖単位、より好ましくは5個以上の糖単位、さらに好ましくは7個以上の糖単位を有する。なお、この糖単位の数を、重合度ともいう。マルトオリゴ糖は、好ましくは10個以下の糖単位を有する。マルトオリゴ糖の糖単位数は、例えば、9個以下、8個以下、7個以下などであってもよい。マルトオリゴ糖の糖単位数が小さいほど、調整が容易であり、コストも安く、その後の取り扱いも容易である。マルトオリゴ糖が短すぎると、酵素が効率的に作用できず、よって糖鎖を伸長させることができない。マルトオリゴ糖の例としては、マルトース、マルトトリオース、マルトテトラオース、マルトペンタオース、マルトヘキサオース、マルトヘプタオース、マルトオクタオース、マルトノナオース、マルトデカオースなどのマルトオリゴ糖が挙げられる。マルトオリゴ糖は、好ましくはマルトテトラオース、マルトペンタオース、マルトヘキサオースまたはマルトヘプタオースである。本発明で使用するマルトオリゴ糖は、純粋な単一の化合物であってもよいし、複数のマルトオリゴ糖の混合物であってもよい。マルトオリゴ糖は、直鎖状のオリゴ糖であってもよいし、分枝状のオリゴ糖であってもよい。マルトオリゴ糖は、その分子内に、環状部分を有し得る。本発明では、直鎖状のマルトオリゴ糖が好ましい。 In the present specification, maltooligosaccharide refers to a substance produced by dehydration condensation of 2 to 10 glucoses and linked by α-1,4 bonds. The maltooligosaccharide preferably has 4 or more saccharide units, more preferably 5 or more saccharide units, and still more preferably 7 or more saccharide units. The number of sugar units is also called the degree of polymerization. The maltooligosaccharide preferably has 10 or fewer sugar units. The number of saccharide units of maltooligosaccharide may be, for example, 9 or less, 8 or less, 7 or less. The smaller the number of sugar units of maltooligosaccharide, the easier the adjustment, the lower the cost, and the easier the subsequent handling. If the maltooligosaccharide is too short, the enzyme cannot act efficiently, and therefore the sugar chain cannot be extended. Examples of malto-oligosaccharides include malto-oligosaccharides such as maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, maltononaose, maltodekaose. The maltooligosaccharide is preferably maltotetraose, maltopentaose, maltohexaose or maltoheptaose. The maltooligosaccharide used in the present invention may be a pure single compound or a mixture of a plurality of maltooligosaccharides. The maltooligosaccharide may be a linear oligosaccharide or a branched oligosaccharide. Maltooligosaccharides can have a cyclic moiety in the molecule. In the present invention, a linear maltooligosaccharide is preferred.
 本明細書中では、短鎖アミロースとは、重合度が11以上20以下である、α-1,4結合によって連結されたグルコース単位から構成される直鎖状分子である。短鎖アミロースは、天然の澱粉中に含まれるアミロペクチンを枝きり酵素(例えばイソアミラーゼ)により完全分解することによって得られる。本発明においてプライマーとして用いる場合、短鎖アミロースの糖単位数は、例えば、約11以上、約12以上、約13以上などであり得る。本発明においてプライマーとして用いる場合、短鎖アミロースの糖単位数は、例えば、約20以下、約19以下、約18以下、約17以下、約16以下、約15以下、約14以下、約13以下、約12以下などであり得る。 In the present specification, short-chain amylose is a linear molecule composed of glucose units linked by α-1,4 bonds having a degree of polymerization of 11 or more and 20 or less. Short-chain amylose is obtained by completely decomposing amylopectin contained in natural starch with a branching enzyme (for example, isoamylase). When used as a primer in the present invention, the number of sugar units of short-chain amylose can be, for example, about 11 or more, about 12 or more, about 13 or more, and the like. When used as a primer in the present invention, the number of sugar units of short-chain amylose is, for example, about 20 or less, about 19 or less, about 18 or less, about 17 or less, about 16 or less, about 15 or less, about 14 or less, about 13 or less. , About 12 or less.
 (4.2 酸化プライマー)
 本明細書中では、「酸化プライマー」とは、プライマーの還元末端にあるアルデヒド基が酸化されてカルボキシル基になっているものをいう。酸化プライマーにおいては、アルデヒド基以外の部分は酸化されていないことが好ましい。
(4.2 Oxidation primer)
In the present specification, the “oxidation primer” refers to an aldehyde group at the reducing end of the primer that is oxidized to a carboxyl group. In the oxidation primer, it is preferable that portions other than the aldehyde group are not oxidized.
 上記4.1に記載されるマルトオリゴ糖および短鎖アミロースの還元末端にあるアルデヒド基を酸化することにより、酸化プライマーを製造することができる。マルトオリゴ糖(または短鎖アミロース)の還元末端のアルデヒド基の酸化は、例えば酵素的または化学的に行うことができる。酵素的酸化には、例えばオリゴ糖酸化酵素を用いることができる。また、化学的酸化には、例えば臭素水やヨウ素を用いることができる。 An oxidation primer can be produced by oxidizing the aldehyde group at the reducing end of the maltooligosaccharide and short-chain amylose described in 4.1 above. The oxidation of the aldehyde group at the reducing end of maltooligosaccharide (or short-chain amylose) can be carried out, for example, enzymatically or chemically. For example, oligosaccharide oxidase can be used for the enzymatic oxidation. For chemical oxidation, for example, bromine water or iodine can be used.
 オリゴ糖酸化酵素の例としては、特開平5-84074号公報に記載されているアクレモニウム属起源のオリゴ糖酸化酵素を挙げることができる。オリゴ糖酸化酵素を作用させた場合、原料のマルトオリゴ糖(または短鎖アミロース)の還元末端グルコース残基が酸化されグルコン酸型になる。例えば、基質となるマルトオリゴ糖の濃度を1~20%(w/v)とし、pHを6~8とし、温度30~50℃でこの酸化酵素を0.1~0.5単位加えて5~10時間反応を行なうことにより、マルトオリゴ糖がマルトオリゴ糖酸に変換され得る。 Examples of oligosaccharide oxidase include oligosaccharide oxidase derived from Acremonium genus described in JP-A-5-84074. When oligosaccharide oxidase is allowed to act, the reducing terminal glucose residue of the raw maltooligosaccharide (or short-chain amylose) is oxidized into a gluconic acid type. For example, the concentration of malto-oligosaccharide serving as a substrate is 1 to 20% (w / v), pH is 6 to 8, and this oxidase is added at 0.1 to 0.5 units at a temperature of 30 to 50 ° C. By performing the reaction for 10 hours, maltooligosaccharide can be converted to maltooligosaccharide acid.
 臭素水またはヨウ素による原料のマルトオリゴ糖(または短鎖アミロース)の還元末端のアルデヒド基の化学的酸化は、例えば、以下のとおりに行われ得る。ヨウ素を用いる場合、1~10重量%マルトオリゴ糖水溶液と例えば5重量%ヨウ素-メタノール溶液とを等量混合し、30~50℃で4%水酸化カリウムを全液量の1/5~1/3滴下することにより、原料のマルトオリゴ糖をマルトオリゴ糖酸に変換し得る。 The chemical oxidation of the aldehyde group at the reducing end of the raw maltooligosaccharide (or short-chain amylose) with bromine water or iodine can be performed, for example, as follows. When iodine is used, 1-10 wt% maltooligosaccharide aqueous solution and, for example, 5 wt% iodine-methanol solution are mixed in equal amounts, and 30% to 50 ° C. is added 4% potassium hydroxide to 1/5 to 1 / of the total volume. By dropping 3 drops, the raw maltooligosaccharide can be converted into maltooligosaccharide acid.
 (4.3 ラクトン化プライマー)
 本明細書中では、「ラクトン化プライマー」とは、プライマーの還元末端にあるグルコース残基がラクトン化されたものをいう。ラクトン化プライマーにおいては、還元末端のグルコース残基以外の部分はラクトン化されていないことが好ましい。
(4.3 Lactonization primer)
In the present specification, the “lactonized primer” refers to a lactonized glucose residue at the reducing end of the primer. In the lactonization primer, it is preferable that portions other than the glucose residue at the reducing end are not lactonized.
 上記4.2に記載される酸化プライマーを含む溶液からイオン交換樹脂を用いてカウンターイオンを除去した後、酸化プライマーを含む画分を集めて乾燥することによりラクトン化プライマーを得ることができる。 The lactonization primer can be obtained by removing counter ions from the solution containing the oxidation primer described in 4.2 above using an ion exchange resin, and collecting and drying the fractions containing the oxidation primer.
 (5.プライマーグラフト化アミノ化セルロースの作製方法)
 アミノ化セルロースにプライマーを結合させ、プライマーグラフトセルロースを作る方法としては、以下のいずれかの方法を選択しうる。
(1)還元的アミノ化法:セルロースに結合したアミノ基とプライマーの還元性末端とからシッフ塩基を形成させ、その後還元剤を用いてこのシッフ塩基を還元的にアミノ化する方法。この方法を用いた場合、プライマーは以下の構造式(III)の構造でセルロースに共有結合(グラフト)される。
(2)カルボジイミドカップリング法:プライマーの還元性末端を酸化した酸化プライマーのカルボキシル基と、セルロースに結合したアミノ基との間に、カルボジイミドを用いてアミド結合を形成させる方法。この方法を用いた場合、プライマーは以下の構造式(II)の構造でセルロースに共有結合(グラフト)される。
(3)ラクトン化プライマー法:プライマーの還元性末端を酸化した酸化プライマーを脱水することにより得られたラクトン化プライマーおよびアミノ化セルロースを無水環境下で加熱して、ラクトン化プライマーの-CO-O-部分とセルロースに結合したアミノ基との間にアミド結合を形成させる方法。この場合、プライマーは以下の構造式(II)の構造でセルロースに共有結合(グラフト)される。
(5. Preparation method of primer-grafted aminated cellulose)
Any of the following methods can be selected as a method for making a primer-grafted cellulose by binding a primer to aminated cellulose.
(1) Reductive amination method: A method in which a Schiff base is formed from an amino group bonded to cellulose and the reducing end of a primer, and then this Schiff base is reductively aminated using a reducing agent. When this method is used, the primer is covalently bonded (grafted) to cellulose with the structure of the following structural formula (III).
(2) Carbodiimide coupling method: A method in which an amide bond is formed using carbodiimide between a carboxyl group of an oxidized primer obtained by oxidizing the reducing end of a primer and an amino group bonded to cellulose. When this method is used, the primer is covalently bonded (grafted) to cellulose with the structure of the following structural formula (II).
(3) Lactonization primer method: The lactonization primer obtained by dehydrating the oxidized primer obtained by oxidizing the reducing end of the primer and the aminated cellulose are heated in an anhydrous environment, and the lactonization primer -CO-O A method of forming an amide bond between the moiety and the amino group attached to the cellulose. In this case, the primer is covalently bonded (grafted) to cellulose with the structure of the following structural formula (II).
Figure JPOXMLDOC01-appb-C000006
 (5.1 スキーム2 プライマーグラフト化セルロースの合成)
 プライマーグラフト化セルロースを合成する方法の1つの実施態様を以下のスキームに示す。
Figure JPOXMLDOC01-appb-C000006
(5.1 Scheme 2 Synthesis of primer-grafted cellulose)
One embodiment of a method for synthesizing primer-grafted cellulose is shown in the following scheme.
Figure JPOXMLDOC01-appb-C000007
 上記スキーム2では、プライマーの例としてマルトヘプタオースを示し、プライマーグラフト化セルロースの例として、マルトヘプタオースグラフト化セルロース(スキーム2中の化学式5)を示す。概略を述べると、アミノ基含有セルロース(cellulose having amino groups)(スキーム2中の化学式3)へのプライマー(例えば、マルトヘプタオース(maltoheptaose)(スキーム2中の化学式4))の導入反応を、シアノトリヒドロホウ酸ナトリウム(NaBHCN)を用いる還元的アミノ化反応により行う。得られた生成物をH NMRスペクトルにより分析すると、マルトヘプタオース(スキーム2中の化学式4)の良溶媒であるDMSOで十分洗浄したとしても、主鎖であるセルロースのアノマー位由来のピークとマルトヘプタオース(スキーム2中の化学式4)のアノマー位由来のピークが観察される。それゆえ、生成物の構造がマルトヘプタオースグラフト化セルロース(maltoheptaose-grafted cellulose)(スキーム2中の化学式5)であることが確認される。
Figure JPOXMLDOC01-appb-C000007
In the said scheme 2, maltoheptaose is shown as an example of a primer and maltoheptaose grafted cellulose (Chemical formula 5 in Scheme 2) is shown as an example of a primer grafted cellulose. In brief, the introduction reaction of a primer (for example, maltoheptaose (Chemical Formula 4 in Scheme 2)) to an amino group-containing cellulose (Chemical Formula 3 in Scheme 2) is carried out using cyano. Performed by a reductive amination reaction using sodium trihydroborate (NaBH 3 CN). When the obtained product was analyzed by 1 H NMR spectrum, it was found that even if it was sufficiently washed with DMSO, which is a good solvent for maltoheptaose (Chemical Formula 4 in Scheme 2), a peak derived from the anomeric position of cellulose as the main chain A peak derived from the anomeric position of maltoheptaose (Chemical Formula 4 in Scheme 2) is observed. Therefore, it is confirmed that the structure of the product is maltoheptaose-grafted cellulose (Chemical Formula 5 in Scheme 2).
 (5.2 還元的アミノ化)
 還元的アミノ化の代表的な条件は、シアノトリヒドロホウ酸ナトリウムおよびプライマーを含有する酢酸メタノール混合溶液(1:1混合溶液)中で室温(r.t.)にて3日間である。アミノ基含有セルロースと、シアノトリヒドロホウ酸ナトリウムと、トリエチルアミンと、プライマーと、酢酸と、メタノールとは、一度に混合してもよく、予め酢酸エタノール混合溶液を作製した後に他のものを添加してもよい。他の任意の混合順序であってもよい。
(5.2 Reductive amination)
Typical conditions for reductive amination are 3 days at room temperature (rt) in a methanolic acetic acid mixed solution (1: 1 mixed solution) containing sodium cyanotrihydroborate and a primer. Amino group-containing cellulose, sodium cyanotrihydroborate, triethylamine, primer, acetic acid, and methanol may be mixed at once, and after preparing an acetic acid ethanol mixed solution in advance, add others. May be. Any other mixing order may be used.
 (5.3 カルボジイミドカップリング)
 カルボジイミドカップリングの代表的な条件は、アミノ基含有セルロース、酸化プライマー、カルボジイミド(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩化物)およびN-ヒドロキシコハク酸イミドを含有する水溶液中で室温にて1日間である。アミノ基含有セルロースと、酸化プライマーと、N-ヒドロキシコハク酸イミドとは、一度に混合してもよく、予め酸化プライマー溶液を作製した後に他のものを添加してもよい。他の任意の混合順序であってもよい。
(5.3 Carbodiimide coupling)
Typical conditions for carbodiimide coupling include: an aqueous solution containing an amino group-containing cellulose, an oxidizing primer, carbodiimide (eg, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide chloride) and N-hydroxysuccinimide. In one day at room temperature. The amino group-containing cellulose, the oxidation primer, and the N-hydroxysuccinimide may be mixed at once, or other substances may be added after preparing the oxidation primer solution in advance. Any other mixing order may be used.
 (5.4 ラクトン化プライマー法)
 ラクトン化プライマー法の代表的な条件は、アミノ基含有セルロースおよびラクトン化プライマーを含むエチレングリコールの70℃で6時間の加熱である。アミノ基含有セルロースと、ラクトン化プライマーと、エチレングリコールとは、一度に混合してもよく、または他の任意の混合順序であってもよい。
(5.4 Lactonization primer method)
A typical condition of the lactonization primer method is heating of ethylene glycol containing an amino group-containing cellulose and a lactonization primer at 70 ° C. for 6 hours. The amino group-containing cellulose, lactonized primer, and ethylene glycol may be mixed at once or in any other mixing order.
 (6.基質およびα-1,4グルカン鎖伸長酵素)
 本明細書中では、用語「基質」とは、酵素によって触媒作用を受けて変化する物質をいう。本明細書では場合によって、基質の概念にプライマーを含まない場合がある。好ましくは、基質は、酵素によって触媒作用を受けて、プライマーに対してα-1,4グルカン鎖を伸長させる化合物である。
(6. Substrate and α-1,4 glucan chain extender)
In the present specification, the term “substrate” refers to a substance that is changed by being catalyzed by an enzyme. In the present specification, in some cases, the substrate concept may not include a primer. Preferably, the substrate is a compound that is catalyzed by an enzyme to extend the α-1,4 glucan chain relative to the primer.
 当該分野では、水溶液中で行われる、種々のα-1,4グルカン鎖伸長反応が公知である。本発明においては、α-1,4グルカン鎖が伸長される限り、当該分野で公知の任意の基質が使用され得る。基質は、使用されるα-1,4グルカン鎖伸長酵素に適切であるように選択される。 In this field, various α-1,4 glucan chain elongation reactions performed in an aqueous solution are known. In the present invention, any substrate known in the art can be used as long as the α-1,4 glucan chain is elongated. The substrate is selected to be appropriate for the α-1,4 glucan chain extender used.
 本明細書中では、用語「α-1,4グルカン鎖伸長酵素」とは、プライマーに対してα-1,4グルカン鎖を伸長させる酵素およびそれに関与する酵素をいう。 In this specification, the term “α-1,4 glucan chain extender” refers to an enzyme that extends an α-1,4 glucan chain relative to a primer and an enzyme involved in the enzyme.
 本発明で使用され得るα-1,4グルカン鎖伸長系の例としては、以下が挙げられる:
 (1)α-グルカンホスホリラーゼ(Glucan phosphorylase:GP)(例えば、馬鈴薯由来)により、α-グルコース-1-リン酸(alpha-glucose-1-phosphate)のグルコシル基をプライマーであるマルトヘプタオースなどに転移することによりα-1,4-グルカン鎖を合成する方法;
 (2)プライマー、スクロースおよび無機リン酸またはグルコース-1-リン酸を基質として、スクロースホスホリラーゼおよびグルカンホスホリラーゼを同時に作用させてα-1,4-グルカン鎖を合成する方法(以下、SP-GP法という)(Waldmann,H.ら,Carbohydrate Research,157(1986)c4-c7;WO2002/097107)。この方法は、他の方法よりも安価に直鎖状グルカンを合成し得るという利点を有する;
 (3)プライマーおよびスクロースを基質として使用して、アミロスクラーゼを作用させることによりα-1,4-グルカン鎖を合成する方法。
Examples of α-1,4 glucan chain extension systems that can be used in the present invention include the following:
(1) α-Glucan phosphorylase (GP) (eg, derived from potato) is used to convert the glucosyl group of α-glucose-1-phosphate (alpha-glucose-1-phosphate) into a primer such as maltoheptaose. A method of synthesizing α-1,4-glucan chains by transfer;
(2) Method of synthesizing α-1,4-glucan chain by simultaneously acting sucrose phosphorylase and glucan phosphorylase using primer, sucrose and inorganic phosphate or glucose-1-phosphate as a substrate (hereinafter referred to as SP-GP method) (Waldmann, H. et al., Carbohydrate Research, 157 (1986) c4-c7; WO2002 / 097107). This method has the advantage that a linear glucan can be synthesized at a lower cost than other methods;
(3) A method of synthesizing an α-1,4-glucan chain by reacting amylosucrase using a primer and sucrose as a substrate.
 従って、(1)の反応系を使用する場合、α-1,4グルカン鎖伸長酵素はα-グルカンホスホリラーゼであり、基質はプライマーおよびグルコース-1-リン酸である。 Therefore, when the reaction system (1) is used, the α-1,4 glucan chain extender is α-glucan phosphorylase, and the substrate is a primer and glucose-1-phosphate.
 (2)の反応系を使用する場合、α-1,4グルカン鎖伸長酵素はα-グルカンホスホリラーゼおよびスクロースホスホリラーゼであり、基質はプライマー、スクロースおよび無機リン酸またはグルコース-1-リン酸である。 When the reaction system (2) is used, the α-1,4 glucan chain extender is α-glucan phosphorylase and sucrose phosphorylase, and the substrate is primer, sucrose and inorganic phosphate or glucose-1-phosphate.
 (3)の反応系を使用する場合、α-1,4グルカン鎖伸長酵素はアミロスクラーゼであり、基質はプライマーおよびスクロースである。 When the reaction system (3) is used, the α-1,4 glucan chain extender is amylosucrase, and the substrate is primer and sucrose.
 (6.1 無機リン酸)
 本明細書中において、無機リン酸とは、SPの反応においてリン酸基質を供与し得る物質をいう。ここでリン酸基質とは、グルコース-1-リン酸のリン酸部分(moiety)の原料となる物質をいう。スクロースホスホリラーゼによって触媒されるスクロース加リン酸分解において、無機リン酸はリン酸イオンの形態で基質として作用していると考えられる。当該分野ではこの基質を慣習的に無機リン酸というので、本明細書中でも、この基質を無機リン酸という。無機リン酸には、リン酸およびリン酸の無機塩が含まれる。通常、無機リン酸は、アルカリ金属イオンなどの陽イオンを含む水中で使用される。この場合、リン酸とリン酸塩とリン酸イオンとは平衡状態になるので、リン酸とリン酸塩とは区別をしにくい。従って、便宜上、リン酸とリン酸塩とを合わせて無機リン酸という。本発明において、無機リン酸は好ましくは、リン酸の任意の金属塩であり、より好ましくはリン酸のアルカリ金属塩である。無機リン酸の好ましい具体例としては、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、リン酸(HPO)、リン酸二水素アンモニウム、リン酸水素二アンモニウムなどが挙げられる。
(6.1 Inorganic phosphoric acid)
In this specification, inorganic phosphoric acid refers to a substance that can donate a phosphate substrate in the reaction of SP. Here, the phosphate substrate refers to a substance that is a raw material for the phosphate moiety of glucose-1-phosphate. In sucrose phosphorolysis catalyzed by sucrose phosphorylase, inorganic phosphate is thought to act as a substrate in the form of phosphate ions. Since this substrate is conventionally referred to as inorganic phosphoric acid in this field, this substrate is also referred to as inorganic phosphoric acid in this specification. Inorganic phosphoric acid includes phosphoric acid and inorganic salts of phosphoric acid. Usually, inorganic phosphoric acid is used in water containing cations such as alkali metal ions. In this case, since phosphoric acid, phosphate, and phosphate ions are in an equilibrium state, it is difficult to distinguish between phosphoric acid and phosphate. Therefore, for convenience, phosphoric acid and phosphate are collectively referred to as inorganic phosphoric acid. In the present invention, the inorganic phosphoric acid is preferably any metal salt of phosphoric acid, more preferably an alkali metal salt of phosphoric acid. Preferable specific examples of inorganic phosphoric acid include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, phosphoric acid (H 3 PO 4 ), ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and the like.
 無機リン酸は、1種類のみ使用してもよく、複数種類使用してもよい。 Only one type of inorganic phosphoric acid may be used, or a plurality of types may be used.
 無機リン酸は、例えば、ポリリン酸(例えば、ピロリン酸、三リン酸および四リン酸)のようなリン酸縮合体またはその塩を、物理的、化学的または酵素反応などによって分解したものを反応溶液に添加することによって提供され得る。 Inorganic phosphoric acid reacts, for example, a phosphoric acid condensate such as polyphosphoric acid (for example, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid) or a salt thereof decomposed by physical, chemical or enzymatic reaction. It can be provided by adding to the solution.
 本明細書において、グルコース-1-リン酸とは、グルコース-1-リン酸(C13P)およびその塩をいう。グルコース-1-リン酸は好ましくは、狭義のグルコース-1-リン酸(C13P)の任意の金属塩であり、より好ましくはグルコース-1-リン酸(C13P)の任意のアルカリ金属塩である。グルコース-1-リン酸の好ましい具体例としては、グルコース-1-リン酸二ナトリウム、グルコース-1-リン酸二カリウム、グルコース-1-リン酸(C13P)、などが挙げられる。本明細書において、括弧書きで化学式を書いていないグルコース-1-リン酸は、広義のグルコース-1-リン酸、すなわち狭義のグルコース-1-リン酸(C13P)およびその塩を示す。 In this specification, glucose-1-phosphate refers to glucose-1-phosphate (C 6 H 13 O 9 P) and salts thereof. Glucose-1-phosphate is preferably any metal salt of glucose-1-phosphate (C 6 H 13 O 9 P) in the narrow sense, more preferably glucose-1-phosphate (C 6 H 13 O 9 P) any alkali metal salt. Preferable specific examples of glucose-1-phosphate include glucose-1-phosphate disodium, glucose-1-dipotassium phosphate, glucose-1-phosphate (C 6 H 13 O 9 P), and the like. It is done. In the present specification, glucose-1-phosphate not having a chemical formula in parentheses means glucose-1-phosphate in a broad sense, that is, glucose-1-phosphate in a narrow sense (C 6 H 13 O 9 P) and its Indicates salt.
 グルコース-1-リン酸は反応開始時のSP-GP反応系において、1種類のみ使用してもよく、複数種類使用してもよい。 Glucose-1-phosphate may be used alone or in the SP-GP reaction system at the start of the reaction.
 本発明の系(好ましくは、水を主成分とする水系溶媒相)に含まれる無機リン酸のモル濃度とグルコース-1-リン酸のモル濃度との合計は、代表的には約1mM以上であり、好ましくは約10mM以上であり、より好ましくは約20mM以上である。本発明の系(好ましくは、水を主成分とする水系溶媒相)に含まれる無機リン酸のモル濃度とグルコース-1-リン酸のモル濃度との合計は、好ましくは約1000mM以下であり、好ましくは約500mM以下であり、より好ましくは約250mM以下である。無機リン酸およびグルコース-1-リン酸の量が多すぎると、グルカンの収率が低下する場合がある。使用量が少なすぎると、グルカンの合成に時間がかかる場合がある。 The sum of the molar concentration of inorganic phosphoric acid and the molar concentration of glucose-1-phosphate contained in the system of the present invention (preferably, an aqueous solvent phase mainly composed of water) is typically about 1 mM or more. Yes, preferably about 10 mM or more, more preferably about 20 mM or more. The sum of the molar concentration of inorganic phosphoric acid and the molar concentration of glucose-1-phosphate contained in the system of the present invention (preferably, an aqueous solvent phase containing water as a main component) is preferably about 1000 mM or less, Preferably it is about 500 mM or less, More preferably, it is about 250 mM or less. If the amount of inorganic phosphoric acid and glucose-1-phosphate is too large, the yield of glucan may decrease. If the amount used is too small, it may take time to synthesize glucan.
 (6.2 スクロース)
 スクロースは、C122211で示される、分子量約342の二糖である。スクロースは、光合成能を有するあらゆる植物中に存在する。スクロースは、植物から単離されてもよいし、化学的に合成されてもよい。コストの面からみて、スクロースを植物から単離することが好ましい。スクロースを多量に含む植物の例としては、サトウキビ、サトウダイコンなどが挙げられる。サトウキビは、汁液中に約20%のスクロースを含む。サトウダイコンは、汁液中に約10~15%のスクロースを含む。スクロースは、スクロースを含む植物の汁液から精製糖に至るいずれの精製段階のものとして提供されてもよい。
(6.2 Sucrose)
Sucrose is a disaccharide having a molecular weight of about 342, represented by C 12 H 22 O 11 . Sucrose is present in every plant that has photosynthetic ability. Sucrose may be isolated from plants or chemically synthesized. In view of cost, it is preferable to isolate sucrose from plants. Examples of plants containing a large amount of sucrose include sugar cane and sugar beet. Sugar cane contains about 20% sucrose in the juice. Sugar beet contains about 10-15% sucrose in the juice. Sucrose may be provided at any purification stage from plant juice containing sucrose to purified sugar.
 本発明の方法で使用されるスクロースは、純粋なものであることが好ましい。しかし、α-1,4グルカン鎖伸長を阻害しない限り、任意の他の夾雑物を含んでいてもよい。 Sucrose used in the method of the present invention is preferably pure. However, any other contaminants may be included as long as α-1,4 glucan chain elongation is not inhibited.
 (6.3 α-グルカンホスホリラーゼ(EC.2.4.1.1):
 α-グルカンホスホリラーゼとは、α-1,4-グルカンの加リン酸分解を触媒する酵素の総称であり、グルカンホスホリラーゼ、ホスホリラーゼ、スターチホスホリラーゼ、グリコーゲンホスホリラーゼ、マルトデキストリンホスホリラーゼなどと呼ばれる場合もある。α-グルカンホスホリラーゼは、加リン酸分解の逆反応であるα-1,4-グルカン合成反応をも触媒し得る。反応がどちらの方向に進むかは、基質の量に依存する。生体内では、無機リン酸の量が多いので、α-グルカンホスホリラーゼは加リン酸分解の方向に反応が進む。本発明の方法においてSP-GP法を用いる場合、無機リン酸は、スクロースの加リン酸分解に使われ、反応溶液中に含まれる無機リン酸の量が少ないので、α-1,4-グルカンの合成の方向に反応が進む。他の系を用いる場合も、α-1,4-グルカンの合成の方向に反応が進むように基質の量が調整される。
(6.3 α-glucan phosphorylase (EC.2.4.1.1):
α-glucan phosphorylase is a general term for enzymes that catalyze the phosphorolysis of α-1,4-glucan, and is sometimes called glucan phosphorylase, phosphorylase, starch phosphorylase, glycogen phosphorylase, maltodextrin phosphorylase, and the like. α-glucan phosphorylase can also catalyze an α-1,4-glucan synthesis reaction that is the reverse reaction of phosphorolysis. Which direction the reaction proceeds depends on the amount of substrate. In vivo, since the amount of inorganic phosphate is large, α-glucan phosphorylase reacts in the direction of phosphorolysis. When the SP-GP method is used in the method of the present invention, inorganic phosphoric acid is used for phosphorolysis of sucrose, and since the amount of inorganic phosphoric acid contained in the reaction solution is small, α-1,4-glucan is used. The reaction proceeds in the direction of synthesis. Even when other systems are used, the amount of the substrate is adjusted so that the reaction proceeds in the direction of the synthesis of α-1,4-glucan.
 α-グルカンホスホリラーゼは、デンプンまたはグリコーゲンを貯蔵し得る種々の植物、動物および微生物中に普遍的に存在すると考えられる。本発明においてα-グルカンホスホリラーゼを用いる場合、このα-グルカンホスホリラーゼは、植物、動物または微生物由来であってもよく、またはこれらに由来するものを遺伝子工学によって生産したものであってもよい。 Α-glucan phosphorylase is thought to be universally present in various plants, animals and microorganisms capable of storing starch or glycogen. When α-glucan phosphorylase is used in the present invention, this α-glucan phosphorylase may be derived from a plant, an animal or a microorganism, or may be derived from these by genetic engineering.
 α-グルカンホスホリラーゼは、藻類、ジャガイモ(馬鈴薯ともいう)、サツマイモ(甘藷ともいう)、ヤマイモ、サトイモ、キャッサバなどの芋類、キャベツ、ホウレンソウなどの野菜類、トウモロコシ、イネ、コムギ、オオムギ、ライムギ、アワなどの穀類、えんどう豆、大豆、小豆、うずら豆などの豆類などからなる群より選択される選択される植物由来であり得る。 α-glucan phosphorylase is algae, potato (also called potato), sweet potato (also called sweet potato), yam, taro, cassava and other vegetables, cabbage, spinach and other vegetables, corn, rice, wheat, barley, rye, It may be derived from a selected plant selected from the group consisting of cereals such as millet, beans such as peas, soybeans, red beans, quail beans and the like.
 α-グルカンホスホリラーゼは、ヒト、ウサギ、ラット、ブタなどの哺乳類などからなる群より選択される動物由来であり得る。 Α-glucan phosphorylase may be derived from an animal selected from the group consisting of mammals such as humans, rabbits, rats, and pigs.
 α-グルカンホスホリラーゼは、Thermus aquaticus、Bacillus stearothermophilus、Deinococcus radiodurans、Thermococcus litoralis、Streptomyces coelicolor、Pyrococcus horikoshi、Mycobacterium tuberculosis、Thermotoga maritima、Aquifex aeolicus、Methanococcus Jannaschii、Pseudomonas aeruginosa、Chlamydia pneumoniae、Chlorella vulgaris、Agrobacterium tumefaciens、Clostridium pasteurianum、Klebsiella pneumoniae、Synecococcus sp.、Synechocystis sp.、E.coli、Neurospora crassa、Saccharomyces cerevisiae、Chlamydomonas sp.などからなる群より選択される微生物由来であり得る。グルカンホスホリラーゼを産生する生物はこれらに限定されない。 α- glucan phosphorylase, Thermus aquaticus, Bacillus stearothermophilus, Deinococcus radiodurans, Thermococcus litoralis, Streptomyces coelicolor, Pyrococcus horikoshi, Mycobacterium tuberculosis, Thermotoga maritima, Aquifex aeolicus, Methanococcus Jannaschii, Pseudomonas aeruginosa, Chlamydia pneumoniae, Chlorella vulgaris, Agrobacterium tumefaciens, C ostridium pasteurianum, Klebsiella pneumoniae, Synecococcus sp. Synechocystis sp. , E.C. E. coli, Neurospora crassa, Saccharomyces cerevisiae, Chlamydomonas sp. It may be derived from a microorganism selected from the group consisting of The organism producing glucan phosphorylase is not limited to these.
 α-グルカンホスホリラーゼは、ジャガイモ、Thermus aquaticus、またはBacillus stearothermophilusに由来することが好ましく、ジャガイモに由来することがより好ましい。α-グルカンホスホリラーゼは、反応至適温度が高いことが好ましい。反応至適温度が高いα-グルカンホスホリラーゼは、例えば、高度好熱細菌に由来し得る。α-グルカンホスホリラーゼは、精製されていても未精製であってもよい。 Α-glucan phosphorylase is preferably derived from potato, Thermus aquaticus, or Bacillus stearothermophilus, and more preferably from potato. α-glucan phosphorylase preferably has a high optimum reaction temperature. Α-glucan phosphorylase having a high optimal reaction temperature can be derived from, for example, a highly thermophilic bacterium. α-glucan phosphorylase may be purified or unpurified.
 (6.4 スクロースホスホリラーゼ(EC.2.4.1.7))
 本明細書中では、「スクロースホスホリラーゼ」とは、スクロースのα-グリコシル基をリン酸基に転移して加リン酸分解を行う任意の酵素をいう。スクロースホスホリラーゼによって触媒される反応は、次式により示される:
(6.4 Sucrose phosphorylase (EC 2.4.4.1.7))
As used herein, “sucrose phosphorylase” refers to any enzyme that undergoes phosphorolysis by transferring the α-glycosyl group of sucrose to a phosphate group. The reaction catalyzed by sucrose phosphorylase is shown by the following formula:
Figure JPOXMLDOC01-appb-C000008
 スクロースホスホリラーゼは、自然界では種々の生物に含まれる。スクロースホスホリラーゼは、Streptococcus属に属する細菌(例えば、Streptococcus thermophilus、Streptococcus mutans、Streptococcus pneumoniae、およびStreptococcus mitis)、Leuconostoc mesenteroides、Pseudomonas sp.、Clostridium sp.、Pullularia pullulans、Acetobacter xylinum、Agrobacterium sp.、Synecococcus sp.、E.coli、Listeria monocytogenes、Bifidobacterium adolescentis、Aspergillus niger、Monilia sitophila、Sclerotinea escerotiorum、およびChlamydomonas sp.からなる群より選択される細菌に由来し得る。スクロースホスホリラーゼが由来する生物は、これらに限定されない。
Figure JPOXMLDOC01-appb-C000008
Sucrose phosphorylase is contained in various organisms in nature. Sucrose phosphorylase is a bacterium belonging to the genus Streptococcus (eg, Streptococcus thermophilus, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus mitos. Clostridium sp. , Pullularia pullulans, Acetobacter xylinum, Agrobacterium sp. Synecoccus sp. , E.C. coli, Listeria monocytogenes, Bifidobacterium adolecentis, Aspergillus niger, Monilia sitophila, Sclerotinea estrotiorum, and Chlamydomonas sp. May be derived from a bacterium selected from the group consisting of The organism from which sucrose phosphorylase is derived is not limited to these.
 スクロースホスホリラーゼは、スクロースホスホリラーゼを産生する任意の生物由来であり得る。スクロースホスホリラーゼは、ある程度の耐熱性を有することが好ましい。スクロースホスホリラーゼは、単独で存在する場合の耐熱性が高ければ高いほど好ましい。例えば、スクロースホスホリラーゼを4%のスクロース存在下で55℃にて30分間加熱した場合に加熱前のスクロースホスホリラーゼの活性の50%以上の活性を保持するものであることが好ましい。スクロースホスホリラーゼは、好ましくはStreptococcus属の細菌由来であり、さらに好ましくはStreptococcus mutans、Streptococcus thermophilus、Streptococcus pneumoniaeまたはStreptococcus mitis由来である。スクロースホスホリラーゼは、精製されていても未精製であってもよい。 The sucrose phosphorylase can be derived from any organism that produces sucrose phosphorylase. Sucrose phosphorylase preferably has a certain degree of heat resistance. Sucrose phosphorylase is preferred as it has higher heat resistance when present alone. For example, when sucrose phosphorylase is heated at 55 ° C. for 30 minutes in the presence of 4% sucrose, it preferably retains 50% or more of the activity of sucrose phosphorylase before heating. The sucrose phosphorylase is preferably derived from a bacterium belonging to the genus Streptococcus, and more preferably from Streptococcus mutans, Streptococcus thermophilus, Streptococcus pneumoniae or Streptococcus mitis. Sucrose phosphorylase may be purified or unpurified.
 (6.5 α-1,4グルカン鎖伸長酵素についての一般的説明)
 上記のような本発明のα-1,4グルカン鎖伸長酵素は、任意の生物に由来し得る。本明細書中では、酵素がある生物に「由来する」とは、その生物から直接単離したことのみを意味するのではなく、その生物を何らかの形で利用することによりその酵素が得られることをいう。例えば、その生物から入手したその酵素をコードする遺伝子を大腸菌に導入して、その大腸菌から酵素を単離する場合も、その酵素はその生物に「由来する」という。
(6.5 General description of α-1,4 glucan chain extender)
The α-1,4 glucan chain extender of the present invention as described above can be derived from any organism. In this specification, the phrase “derived from” an organism does not mean that the enzyme is directly isolated from the organism, but that the enzyme is obtained by utilizing the organism in some form. Say. For example, when a gene encoding the enzyme obtained from the organism is introduced into E. coli and the enzyme is isolated from the E. coli, the enzyme is said to be “derived” from the organism.
 本発明で用いられるα-1,4グルカン鎖伸長酵素は、上記のような自然界に存在する、α-1,4グルカン鎖伸長酵素を産生する動物、植物、および微生物から直接単離され得る。 The α-1,4 glucan chain extender used in the present invention can be directly isolated from animals, plants, and microorganisms that produce α-1,4 glucan chain extender that exist in nature as described above.
 本発明で用いられるα-1,4グルカン鎖伸長酵素は、これらの動物、植物または微生物から単離したα-1,4グルカン鎖伸長酵素をコードする遺伝子を用いて遺伝子組換えされた微生物(例えば、細菌、真菌など)から単離してもよい。α-1,4グルカン鎖伸長酵素は、遺伝子組換えされた微生物から得られ得る。スクロースホスホリラーゼおよびα-グルカンホスホリラーゼの生産方法は、例えば、WO2002/097107に開示されている。他のα-1,4グルカン鎖伸長酵素についても、この記載に従って同様に行われ得る。 The α-1,4 glucan chain extender used in the present invention is a microorganism genetically modified using a gene encoding an α-1,4 glucan chain extender isolated from these animals, plants or microorganisms ( For example, it may be isolated from bacteria, fungi and the like. The α-1,4 glucan chain extender can be obtained from a genetically modified microorganism. A method for producing sucrose phosphorylase and α-glucan phosphorylase is disclosed in, for example, WO2002 / 097107. Other α-1,4 glucan chain extenders can be similarly performed according to this description.
 (7.プライマーグラフト化セルロースからのα-1,4グルカングラフト化セルロースの作製方法)
 以下では、プライマーグラフト化セルロース(プライマー結合セルロースともいう)と、基質と、α-1,4グルカン鎖伸長酵素とを接触させることによってプライマーを伸長させることにより、重合度25以上のα-1,4グルカン側鎖を形成させて、本発明のアミロースグラフト化セルロース(グラフトポリマーともいう)を得る工程について説明する。
(7. Preparation method of α-1,4 glucan grafted cellulose from primer grafted cellulose)
In the following, by extending a primer by contacting primer-grafted cellulose (also referred to as primer-bound cellulose), a substrate and an α-1,4-glucan chain extender, α-1, A process of forming a 4-glucan side chain to obtain the amylose-grafted cellulose of the present invention (also referred to as a graft polymer) will be described.
 (7.1 スキーム3 アミロースグラフト化セルロースの合成) (7.1 Scheme 3 Synthesis of amylose-grafted cellulose)
Figure JPOXMLDOC01-appb-C000009
 次に、アミロースグラフト化セルロース(スキーム3中の化学式6)の合成をスキーム3に示す。このスキーム3では、酵素反応系として(1)の反応系を使用する場合を示す。概略を述べると、マルトヘプタオースグラフト化セルロース(スキーム3中の化学式5)のマルトヘプタオースユニットに対して100当量のグルコース-1-リン酸塩(G-1-P)存在下、酢酸緩衝液中でα-1,4グルカン鎖伸長酵素(例えば、α-グルカンホスホリラーゼ)による酵素触媒重合を行い、アミロースグラフト化セルロース(スキーム3中の化学式6)の合成を行う。生成物は1mol/L水酸化ナトリウム水溶液に可溶であり、H NMRスペクトル、XRD測定、TG測定により得られた生成物の構造がアミロースグラフト化セルロース(スキーム3中の化学式6)であることが確認される。
Figure JPOXMLDOC01-appb-C000009
Next, the synthesis of amylose grafted cellulose (Chemical Formula 6 in Scheme 3) is shown in Scheme 3. In this scheme 3, the case where the reaction system (1) is used as the enzyme reaction system is shown. Briefly, acetate buffer in the presence of 100 equivalents of glucose-1-phosphate (G-1-P) per maltoheptaose unit of maltoheptaose grafted cellulose (Chemical Formula 5 in Scheme 3) Among them, enzyme-catalyzed polymerization with α-1,4 glucan chain extender (eg, α-glucan phosphorylase) is performed to synthesize amylose-grafted cellulose (Chemical Formula 6 in Scheme 3). The product is soluble in 1 mol / L sodium hydroxide aqueous solution, and the structure of the product obtained by 1 H NMR spectrum, XRD measurement, and TG measurement is amylose-grafted cellulose (chemical formula 6 in Scheme 3). Is confirmed.
 上述のように、酵素反応系としては、(1)に限定されず、(1)~(3)の任意のものが使用され得、そしてその酵素反応系に合わせて酵素および基質が適切に選択され得る。 As described above, the enzyme reaction system is not limited to (1), any one of (1) to (3) can be used, and an enzyme and a substrate are appropriately selected according to the enzyme reaction system. Can be done.
 (7.2 α-1,4グルカン鎖の伸長)
 酵素反応系として(1)を用いる場合、α-1,4グルカン鎖の伸長の代表的な条件は、プライマーグラフト化セルロース(例えば、マルトヘプタオースグラフト化セルロース(スキーム3中の化学式5))のプライマーユニット(例えば、マルトヘプタオースユニット)に対して100当量のグルコース-1-リン酸塩(G-1-P)存在下、酢酸緩衝液中でα-1,4グルカン鎖伸長酵素(例えば、α-グルカンホスホリラーゼ)によって約42℃にて約7時間である。プライマーグラフト化セルロースと、グルコース-1-リン酸塩と、α-1,4グルカン鎖伸長酵素と、酢酸緩衝液とは、一度に混合してもよく、予め酢酸エタノール混合溶液を作製した後に他のものを添加してもよい。他の任意の混合順序であってもよい。
(7.2 Extension of α-1,4 glucan chain)
When (1) is used as the enzyme reaction system, typical conditions for the extension of the α-1,4 glucan chain are primer grafted cellulose (eg, maltoheptaose grafted cellulose (Chemical Formula 5 in Scheme 3)). In the presence of 100 equivalents of glucose-1-phosphate (G-1-P) to a primer unit (eg, maltoheptaose unit), α-1,4 glucan chain extender (eg, α-glucan phosphorylase) at about 42 ° C. for about 7 hours. Primer-grafted cellulose, glucose-1-phosphate, α-1,4 glucan chain extender, and acetate buffer may be mixed at one time, or else after preparing a mixed ethanol / acetate solution in advance. May be added. Any other mixing order may be used.
 酵素反応系として(1)~(3)のいずれの反応系を用いる場合も、α-1,4グルカン鎖の伸長反応開始時の溶液中でのプライマーグラフト化セルロースの量は、好ましくは約0.1重量%以上であり、より好ましくは約0.2重量%以上であり、さらに好ましくは約0.3重量%以上であり、特に好ましくは約0.4重量%以上であり、最も好ましくは約0.5重量%以上である。α-1,4グルカン鎖の伸長反応開始時の溶液中でのプライマーグラフト化セルロースの量は、好ましくは約10重量%以下であり、より好ましくは約5重量%以下であり、さらに好ましくは約4重量%以下であり、特に好ましくは約3重量%以下であり、最も好ましくは約2重量%以下である。 When any of the reaction systems (1) to (3) is used as the enzyme reaction system, the amount of primer-grafted cellulose in the solution at the start of the α-1,4 glucan chain elongation reaction is preferably about 0. 0.1% by weight or more, more preferably about 0.2% by weight or more, further preferably about 0.3% by weight or more, particularly preferably about 0.4% by weight or more, most preferably About 0.5% by weight or more. The amount of primer-grafted cellulose in the solution at the start of the elongation reaction of α-1,4 glucan chain is preferably about 10% by weight or less, more preferably about 5% by weight or less, and still more preferably about It is 4% by weight or less, particularly preferably about 3% by weight or less, and most preferably about 2% by weight or less.
 酵素反応系として(1)の反応系を用いる場合、α-1,4グルカン鎖の伸長反応開始時の系中でのグルコース-1-リン酸塩の濃度は、好ましくはプライマーグラフト化セルロース中のプライマーモル濃度の約40倍以上であり、より好ましくは約50倍以上であり、さらに好ましくは約60倍以上であり、特に好ましくは約70倍以上であり、最も好ましくは約80倍以上である。α-1,4グルカン鎖の伸長反応開始時の溶液中での無機リン酸またはグルコース-1-リン酸塩の濃度は、好ましくはプライマーグラフト化セルロース中のプライマーモル濃度の約1000倍以下であり、より好ましくは約800倍以下であり、さらに好ましくは約600倍以下であり、特に好ましくは約400倍以下であり、最も好ましくは約300倍以下である。 When the reaction system (1) is used as the enzyme reaction system, the concentration of glucose-1-phosphate in the system at the start of the extension reaction of α-1,4 glucan chain is preferably in the primer-grafted cellulose. About 40 times or more of the primer molar concentration, more preferably about 50 times or more, further preferably about 60 times or more, particularly preferably about 70 times or more, and most preferably about 80 times or more. . The concentration of inorganic phosphate or glucose-1-phosphate in the solution at the start of the elongation reaction of α-1,4 glucan chain is preferably about 1000 times or less of the primer molar concentration in the primer-grafted cellulose. More preferably, it is about 800 times or less, More preferably, it is about 600 times or less, Especially preferably, it is about 400 times or less, Most preferably, it is about 300 times or less.
 酵素反応系として(1)の反応系を用いる場合、反応開始時の系中に含まれるα-グルカンホスホリラーゼの量は、反応開始時の溶液中のグルコース-1-リン酸に対して、好ましくは約0.05U/gグルコース-1-リン酸以上であり、より好ましくは約0.1U/gグルコース-1-リン酸以上であり、さらに好ましくは約0.5U/gグルコース-1-リン酸以上である。反応開始時の系中に含まれるα-グルカンホスホリラーゼの量は、反応開始時の溶液中のグルコース-1-リン酸に対して、好ましくは約1,000U/gグルコース-1-リン酸以下であり、より好ましくは約500U/gグルコース-1-リン酸以下であり、さらに好ましくは約100U/gグルコース-1-リン酸以下である。α-グルカンホスホリラーゼの重量が多すぎると、反応中に変性した酵素が凝集しやすくなる場合がある。使用量が少なすぎると、グルカンの収率が低下する場合がある。 When the reaction system of (1) is used as the enzyme reaction system, the amount of α-glucan phosphorylase contained in the system at the start of the reaction is preferably relative to glucose-1-phosphate in the solution at the start of the reaction. About 0.05 U / g glucose-1-phosphate or more, more preferably about 0.1 U / g glucose-1-phosphate or more, and more preferably about 0.5 U / g glucose-1-phosphate. That's it. The amount of α-glucan phosphorylase contained in the system at the start of the reaction is preferably about 1,000 U / g glucose-1-phosphate or less with respect to glucose-1-phosphate in the solution at the start of the reaction. More preferably about 500 U / g glucose-1-phosphate or less, still more preferably about 100 U / g glucose-1-phosphate or less. If the weight of α-glucan phosphorylase is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glucan may decrease.
 酵素反応系として(2)の反応系を使用する場合、反応開始時の系中に含まれるスクロースのモル濃度は、好ましくはプライマーグラフト化セルロース中のプライマーモル濃度の約40倍以上であり、より好ましくは約50倍以上であり、さらに好ましくは約60倍以上である。スクロースの濃度は、例えば、約6w/v%以上、約7w/v%以上、約8w/v%以上、約9w/v%以上、約10w/v%以上、約15w/v%以上などであってもよい。本発明の系中に含まれるスクロースの濃度は、プライマーグラフト化セルロース中のプライマーモル濃度の約1000倍以下であり、より好ましくは約800倍以下であり、さらに好ましくは約600倍以下である。スクロースの濃度は、例えば、約50w/v%以下、約40w/v%以下、約30w/v%以下、約20w/v%以下、約15w/v%以下、約10w/v%以下などであってもよい。 When the reaction system of (2) is used as the enzyme reaction system, the molar concentration of sucrose contained in the system at the start of the reaction is preferably about 40 times or more the primer molar concentration in the primer-grafted cellulose, Preferably it is about 50 times or more, more preferably about 60 times or more. The concentration of sucrose is, for example, about 6 w / v% or more, about 7 w / v% or more, about 8 w / v% or more, about 9 w / v% or more, about 10 w / v% or more, about 15 w / v% or more, etc. There may be. The concentration of sucrose contained in the system of the present invention is about 1000 times or less, more preferably about 800 times or less, more preferably about 600 times or less the primer molar concentration in the primer-grafted cellulose. The concentration of sucrose is, for example, about 50 w / v% or less, about 40 w / v% or less, about 30 w / v% or less, about 20 w / v% or less, about 15 w / v% or less, about 10 w / v% or less, etc. There may be.
 上述のスクロースの濃度は、Weight/Volumeで、すなわち、
 (スクロースの重量)×100/(溶液の容量)
で計算する。スクロースの重量が多すぎると、反応中に未反応のスクロースが析出する場合がある。スクロースの使用量が少なすぎると、高温での反応において収率が低下する場合がある。
The sucrose concentration mentioned above is Weight / Volume, ie
(Weight of sucrose) × 100 / (volume of solution)
Calculate with If the weight of sucrose is too large, unreacted sucrose may precipitate during the reaction. If the amount of sucrose used is too small, the yield may decrease in a reaction at a high temperature.
 酵素反応系として(2)の反応系を用いる場合、α-1,4グルカン鎖の伸長反応開始時の系中での無機リン酸またはグルコース-1-リン酸塩の量は、合計として、好ましくはスクロースのモル濃度の約1/40以上であり、より好ましくは約1/30以上であり、さらに好ましくは約1/25以上であり、特に好ましくは約1/20以上であり、最も好ましくは約1/15重量%以上である。α-1,4グルカン鎖の伸長反応開始時の溶液中での無機リン酸またはグルコース-1-リン酸塩の量は、合計として、好ましくはスクロースのモル濃度の約1/2以下であり、より好ましくは約1/3重量%以下であり、さらに好ましくは約1/4重量%以下であり、特に好ましくは約1/5重量%以下であり、最も好ましくは約1/6重量%以下である。 When the reaction system of (2) is used as the enzyme reaction system, the total amount of inorganic phosphate or glucose-1-phosphate in the system at the start of the α-1,4 glucan chain elongation reaction is preferably Is about 1/40 or more of the molar concentration of sucrose, more preferably about 1/30 or more, further preferably about 1/25 or more, particularly preferably about 1/20 or more, most preferably About 1/15% by weight or more. The amount of inorganic phosphate or glucose-1-phosphate in the solution at the start of the elongation reaction of α-1,4 glucan chain is preferably about ½ or less of the molar concentration of sucrose as a total, More preferably, it is about 1/3 wt% or less, more preferably about 1/4 wt% or less, particularly preferably about 1/5 wt% or less, and most preferably about 1/6 wt% or less. is there.
 酵素反応系として(2)の反応系を使用する場合、反応開始時の系中に含まれるα-グルカンホスホリラーゼの量は、反応開始時の溶液中のスクロースに対して、好ましくは約0.05U/gスクロース以上であり、より好ましくは約0.1U/gスクロース以上であり、さらに好ましくは約0.5U/gスクロース以上である。反応開始時の系中に含まれるα-グルカンホスホリラーゼの量は、反応開始時の溶液中のスクロースに対して、好ましくは約1,000U/gスクロース以下であり、より好ましくは約500U/gスクロース以下であり、さらに好ましくは約100U/gスクロース以下である。α-グルカンホスホリラーゼの重量が多すぎると、反応中に変性した酵素が凝集しやすくなる場合がある。使用量が少なすぎると、グルカンの収率が低下する場合がある。 When the reaction system (2) is used as the enzyme reaction system, the amount of α-glucan phosphorylase contained in the system at the start of the reaction is preferably about 0.05 U with respect to sucrose in the solution at the start of the reaction. / G sucrose or more, more preferably about 0.1 U / g sucrose or more, and still more preferably about 0.5 U / g sucrose or more. The amount of α-glucan phosphorylase contained in the system at the start of the reaction is preferably about 1,000 U / g sucrose or less, more preferably about 500 U / g sucrose, relative to the sucrose in the solution at the start of the reaction. Or less, more preferably about 100 U / g sucrose or less. If the weight of α-glucan phosphorylase is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glucan may decrease.
 酵素反応系として(2)の反応系を使用する場合、反応開始時の系中に含まれるスクロースホスホリラーゼの量は、反応開始時の溶液中のスクロースに対して、好ましくは約0.05U/gスクロース以上であり、より好ましくは約0.1U/gスクロース以上であり、さらに好ましくは約0.5U/gスクロース以上である。反応開始時の系中に含まれるスクロースホスホリラーゼの量は、反応開始時の溶液中のスクロースに対して、好ましくは約1,000U/gスクロース以下であり、より好ましくは約500U/gスクロース以下であり、さらに好ましくは約100U/gスクロース以下である。スクロースホスホリラーゼの重量が多すぎると、反応中に変性した酵素が凝集しやすくなる場合がある。使用量が少なすぎると、グルカンの収率が低下する場合がある。 When the reaction system of (2) is used as the enzyme reaction system, the amount of sucrose phosphorylase contained in the system at the start of the reaction is preferably about 0.05 U / g with respect to sucrose in the solution at the start of the reaction. It is sucrose or more, more preferably about 0.1 U / g sucrose or more, and still more preferably about 0.5 U / g sucrose or more. The amount of sucrose phosphorylase contained in the system at the start of the reaction is preferably about 1,000 U / g sucrose or less, more preferably about 500 U / g sucrose or less, relative to the sucrose in the solution at the start of the reaction. More preferably about 100 U / g sucrose or less. If the weight of sucrose phosphorylase is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glucan may decrease.
 酵素反応系として(3)の反応系を使用する場合、反応開始時の系中に含まれるスクロースの量は、好ましくは約1w/v%以上であり、より好ましくは約3w/v%以上であり、さらに好ましくは約5w/v%以上である。スクロースの濃度は、例えば、約6w/v%以上、約7w/v%以上、約8w/v%以上、約9w/v%以上、約10w/v%以上、約15w/v%以上などであってもよい。本発明の系中に含まれるスクロースの濃度は、好ましくは約80w/v%以下であり、より好ましくは約70w/v%以下であり、さらに好ましくは約60w/v%以下である。スクロースの濃度は、例えば、約50w/v%以下、約40w/v%以下、約30w/v%以下、約20w/v%以下、約15w/v%以下、約10w/v%以下などであってもよい。 When the reaction system of (3) is used as the enzyme reaction system, the amount of sucrose contained in the system at the start of the reaction is preferably about 1 w / v% or more, more preferably about 3 w / v% or more. More preferably about 5 w / v% or more. The concentration of sucrose is, for example, about 6 w / v% or more, about 7 w / v% or more, about 8 w / v% or more, about 9 w / v% or more, about 10 w / v% or more, about 15 w / v% or more, etc. There may be. The concentration of sucrose contained in the system of the present invention is preferably about 80 w / v% or less, more preferably about 70 w / v% or less, and still more preferably about 60 w / v% or less. The concentration of sucrose is, for example, about 50 w / v% or less, about 40 w / v% or less, about 30 w / v% or less, about 20 w / v% or less, about 15 w / v% or less, about 10 w / v% or less, etc. There may be.
 酵素反応系として(3)の反応系を使用する場合、反応開始時の系中に含まれるアミロスクラーゼの量は、反応開始時の溶液中のスクロースに対して、好ましくは約0.05U/gスクロース以上であり、より好ましくは約0.1U/gスクロース以上であり、さらに好ましくは約0.5U/gスクロース以上である。反応開始時の系中に含まれるアミロスクラーゼの量は、反応開始時の溶液中のスクロースに対して、好ましくは約1,000U/gスクロース以下であり、より好ましくは約500U/gスクロース以下であり、さらに好ましくは約100U/gスクロース以下である。スクロースホスホリラーゼの重量が多すぎると、反応中に変性した酵素が凝集しやすくなる場合がある。使用量が少なすぎると、グルカンの収率が低下する場合がある。 When the reaction system (3) is used as the enzyme reaction system, the amount of amylosucrase contained in the system at the start of the reaction is preferably about 0.05 U / g with respect to sucrose in the solution at the start of the reaction. It is sucrose or more, more preferably about 0.1 U / g sucrose or more, and still more preferably about 0.5 U / g sucrose or more. The amount of amylosucrase contained in the system at the start of the reaction is preferably about 1,000 U / g sucrose or less, more preferably about 500 U / g sucrose or less, relative to the sucrose in the solution at the start of the reaction. More preferably about 100 U / g sucrose or less. If the weight of sucrose phosphorylase is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glucan may decrease.
 酵素反応系として(1)~(3)のいずれの反応系を用いる場合も、α-1,4グルカン鎖の伸長の際の温度条件は、使用する酵素の反応至適温度、耐熱性などを考慮して適切に設定される。反応至適温度が約37℃付近にある通常の酵素の場合、反応温度は、好ましくは約10℃以上であり、より好ましくは約20℃以上であり、さらに好ましくは約25℃以上であり、特に好ましくは約30℃以上である。α-1,4グルカン鎖の伸長の際の温度条件は、好ましくは約45℃以下であり、より好ましくは約42℃以下であり、さらに好ましくは約40℃以下であり、特に好ましくは約38℃以下である。例えば、反応至適温度が約50℃の耐熱性酵素の場合、反応温度は、好ましくは約30℃以上であり、より好ましくは約35℃以上であり、さらに好ましくは約40℃以上であり、特に好ましくは約45℃以上である。α-1,4グルカン鎖の伸長の際の温度条件は、好ましくは約65℃以下であり、より好ましくは約60℃以下であり、さらに好ましくは約55℃以下であり、特に好ましくは約53℃以下である。反応温度は、使用される酵素の反応至適温度の±10℃以内であることが好ましく、±5℃以内であることがより好ましい。この工程での反応温度が高すぎると、酵素が失活しα-1,4グルカン鎖の伸長が行われない場合がある。この工程での反応温度が低すぎると、酵素反応が進まずα-1,4グルカン鎖の伸長が行われない場合がある。 When any of the reaction systems (1) to (3) is used as the enzyme reaction system, the temperature conditions for the elongation of the α-1,4 glucan chain include the optimum reaction temperature and heat resistance of the enzyme used. It is set appropriately in consideration. In the case of a normal enzyme having an optimum reaction temperature of about 37 ° C., the reaction temperature is preferably about 10 ° C. or more, more preferably about 20 ° C. or more, further preferably about 25 ° C. or more, Especially preferably, it is about 30 degreeC or more. The temperature condition during the extension of the α-1,4 glucan chain is preferably about 45 ° C. or less, more preferably about 42 ° C. or less, still more preferably about 40 ° C. or less, and particularly preferably about 38 ° C. It is below ℃. For example, in the case of a thermostable enzyme having an optimum reaction temperature of about 50 ° C., the reaction temperature is preferably about 30 ° C. or more, more preferably about 35 ° C. or more, and further preferably about 40 ° C. or more. Especially preferably, it is about 45 degreeC or more. The temperature condition during the extension of the α-1,4 glucan chain is preferably about 65 ° C. or less, more preferably about 60 ° C. or less, still more preferably about 55 ° C. or less, and particularly preferably about 53 ° C. It is below ℃. The reaction temperature is preferably within ± 10 ° C. of the optimum reaction temperature of the enzyme used, and more preferably within ± 5 ° C. If the reaction temperature in this step is too high, the enzyme may be deactivated and the α-1,4 glucan chain may not be extended. If the reaction temperature in this step is too low, the enzyme reaction may not proceed and the α-1,4 glucan chain may not be extended.
 加熱は、どのような手段を用いて行ってもよいが、反応系全体に均質に熱が伝わるように、例えば有機系溶媒相中で攪拌を行いながら加熱することが好ましい。溶液は、例えば、温水ジャケットと攪拌装置を備えたステンレス製反応タンクの中に入れられて攪拌される。 The heating may be performed by any means, but it is preferable to perform the heating while stirring in, for example, an organic solvent phase so that the heat is uniformly transferred to the entire reaction system. The solution is stirred in, for example, a stainless steel reaction tank equipped with a hot water jacket and a stirring device.
 反応時間は、好ましくは約0.5時間以上であり、より好ましくは約1時間以上であり、さらに好ましくは約3時間以上であり、特に好ましくは約5時間以上であり、最も好ましくは約8時間以上である。反応時間は、好ましくは約72時間以下であり、より好ましくは約48時間以下であり、さらに好ましくは約36時間以下であり、特に好ましくは約24時間以下であり、最も好ましくは約20時間以下である。この工程での反応時間が長すぎると、微生物汚染などのリスクが高くなる。この工程での反応時間が短すぎると、必要酵素量が多くなり、コストアップになる。 The reaction time is preferably about 0.5 hour or more, more preferably about 1 hour or more, further preferably about 3 hours or more, particularly preferably about 5 hours or more, and most preferably about 8 hours. It's over time. The reaction time is preferably about 72 hours or less, more preferably about 48 hours or less, further preferably about 36 hours or less, particularly preferably about 24 hours or less, and most preferably about 20 hours or less. It is. If the reaction time in this step is too long, the risk of microbial contamination increases. If the reaction time in this step is too short, the amount of enzyme required increases and the cost increases.
 反応終了後、反応系は、必要に応じて例えば、100℃にて10分間加熱することによって反応系中の酵素が失活され得る。あるいは、酵素を失活させる処理を行うことなく後の工程を行ってもよい。反応系は、そのまま保存されてもよいし、生産されたグラフトポリマーを単離するために処理されてもよい。 After completion of the reaction, the reaction system can be deactivated, for example, by heating at 100 ° C. for 10 minutes as necessary. Or you may perform a next process, without performing the process which inactivates an enzyme. The reaction system may be stored as is or may be processed to isolate the produced graft polymer.
 各α-1,4グルカン側鎖は、好ましくは、重合度が約25以上になるまで伸長される。各α-1,4グルカン側鎖の重合度は、反応系に含まれる基質の量、セルロース中に導入されたプライマーの量、反応時間の長さなどによって調節される。一般的には、基質の量が多いほど重合度は高くなり、基質の量が少ないほど重合度は低くなる。セルロース中に導入されたプライマーの量が多いほど重合度は低くなり、プライマーの量が少ないほど重合度は高くなる。反応時間が長いほど重合度は低くなり、反応時間が短いほど重合度は高くなる。 Each α-1,4 glucan side chain is preferably extended until the degree of polymerization is about 25 or more. The degree of polymerization of each α-1,4 glucan side chain is controlled by the amount of substrate contained in the reaction system, the amount of primer introduced into cellulose, the length of reaction time, and the like. Generally, the greater the amount of substrate, the higher the degree of polymerization, and the lower the amount of substrate, the lower the degree of polymerization. The greater the amount of primer introduced into the cellulose, the lower the degree of polymerization, and the smaller the amount of primer, the higher the degree of polymerization. The longer the reaction time, the lower the degree of polymerization, and the shorter the reaction time, the higher the degree of polymerization.
 本発明の方法によって得られる生成物は、当業者に公知の方法によって精製され得る。精製方法の例としては、限外ろ過膜を用いた膜分画、クロマトグラフィー、濾過、遠心分離が挙げられる。 The product obtained by the method of the present invention can be purified by methods known to those skilled in the art. Examples of the purification method include membrane fractionation using an ultrafiltration membrane, chromatography, filtration, and centrifugation.
 本発明の方法によって得られる生成物は、当業者に周知の従来の方法(例えば、薄層クロマトグラフィー(TLC)、NMR(核磁気共鳴スペクトル)、HPLC(高速液体クロマトグラフィー)、融点、質量分析(MS)、元素分析など)により、純度について分析および/または検査され得る。反応生成物の構造は、反応生成物を精製した後、NMR(核磁気共鳴スペクトル)およびMSを行うことにより、詳細に確認され得る。 The product obtained by the method of the present invention is obtained by conventional methods well known to those skilled in the art (for example, thin layer chromatography (TLC), NMR (nuclear magnetic resonance spectrum), HPLC (high performance liquid chromatography), melting point, mass spectrometry. (MS), elemental analysis, etc.) can be analyzed and / or checked for purity. The structure of the reaction product can be confirmed in detail by carrying out NMR (nuclear magnetic resonance spectrum) and MS after purifying the reaction product.
 (8.本発明のグラフトポリマー)
 本発明のグラフトポリマーは、α-1,4グルカン側鎖がセルロース主鎖に結合したグラフトポリマーであって、セルロース主鎖中の少なくとも1つのグルコース残基の6位炭素にα-1,4グルカン側鎖の末端の1位炭素が、-NH-基を介して共有結合しており;該1位炭素に2つの水素基が結合しているか、または1つの酸素原子が結合しており;該セルロース主鎖の重合度が25以上であり;該α-1,4グルカン側鎖の重合度が25以上である。
(8. Graft polymer of the present invention)
The graft polymer of the present invention is a graft polymer in which α-1,4 glucan side chains are bonded to a cellulose main chain, and α-1,4 glucan is attached to the 6-position carbon of at least one glucose residue in the cellulose main chain. The terminal 1-position carbon of the side chain is covalently bonded via the —NH— group; the 2-position carbon has two hydrogen groups or one oxygen atom bonded; The polymerization degree of the cellulose main chain is 25 or more; the polymerization degree of the α-1,4 glucan side chain is 25 or more.
 ここで、α-1,4グルカン側鎖中のグルコース残基とグルコース残基との間の結合は、主にα-1,4結合である。グルコース残基とグルコース残基との間の結合のうち、90%以上がα-1,4結合であることが好ましく、95%以上がα-1,4結合であることがより好ましく、98%以上がα-1,4結合であることがさらに好ましく、99%以上がα-1,4結合であることが特に好ましく、99.5%以上がα-1,4結合であることが最も好ましい。 Here, the bonds between glucose residues in the α-1,4 glucan side chain are mainly α-1,4 bonds. Of the bonds between glucose residues, 90% or more are preferably α-1,4 bonds, more preferably 95% or more are α-1,4 bonds, more preferably 98%. The above is more preferably an α-1,4 bond, more preferably 99% or more is an α-1,4 bond, and most preferably 99.5% or more is an α-1,4 bond. .
 該α-1,4グルカン側鎖は完全に直鎖状であることが好ましい。ここで、「完全に直鎖状」とは、α-1,4グルカン側鎖中のグルコース残基とグルコース残基との間の結合が、すべてα-1,4結合であり、α-1,6結合を含まないことをいう。 The α-1,4 glucan side chain is preferably completely linear. Here, “fully linear” means that the bonds between glucose residues in the α-1,4 glucan side chain are all α-1,4 bonds, and α-1 , 6 means that no bond is included.
 本発明のグラフトポリマーはまた、α-1,4グルカングラフト化セルロース、アミロースグラフト化セルロースなどとも呼ばれる。 The graft polymer of the present invention is also called α-1,4 glucan grafted cellulose, amylose grafted cellulose or the like.
 本発明のグラフトポリマーは、好ましくは以下の構造(I)を有する: The graft polymer of the present invention preferably has the following structure (I):
Figure JPOXMLDOC01-appb-C000010
ここで、各Rは、-OH、-NHおよび以下の構造(II)もしくは(III)からなる群より独立して選択され、該nが25~20,000の任意の整数であり、該mが24~1000の整数であり、セルロース主鎖中のグルコース残基どうしがβ-1,4結合により結合している:
Figure JPOXMLDOC01-appb-C000010
Wherein each R is independently selected from the group consisting of —OH, —NH 2 and the following structure (II) or (III), wherein n is any integer from 25 to 20,000, m is an integer from 24 to 1000, and glucose residues in the cellulose main chain are linked by β-1,4 bonds:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
.
 本発明の製造方法においてプライマーとしてα-1,4グルカンプライマー(すなわち、還元末端が酸化もラクトン化もされていないプライマー)を用いると、セルロースの6位炭素と-NH-基を介して結合しているα-1,4グルカンの末端の1位炭素に2つの水素基が結合したグラフトポリマーが得られる。すなわち、上記IIIの構造を有するα-1,4グルカン側鎖がセルロース骨格に結合しているグラフトポリマーが得られる。 When an α-1,4 glucan primer (that is, a primer whose reducing end is not oxidized or lactonized) is used as a primer in the production method of the present invention, it binds to the 6th carbon of cellulose via an —NH— group. A graft polymer in which two hydrogen groups are bonded to the 1-position carbon at the terminal of α-1,4 glucan is obtained. That is, a graft polymer in which the α-1,4 glucan side chain having the above structure III is bonded to the cellulose skeleton is obtained.
 本発明の製造方法においてプライマーとして酸化プライマーまたはラクトン化プライマーを用いると、セルロースの6位炭素と-NH-基を介して結合しているα-1,4グルカンの末端の1位炭素に1つの酸素原子が結合したグラフトポリマーが得られる。すなわち、上記IIの構造を有するα-1,4グルカン側鎖がセルロース骨格に結合しているグラフトポリマーが得られる。 When an oxidation primer or a lactonization primer is used as a primer in the production method of the present invention, one per 1-position carbon of α-1,4 glucan bonded to 6-position carbon of cellulose via —NH— group. A graft polymer to which oxygen atoms are bonded is obtained. That is, a graft polymer having an α-1,4 glucan side chain having the above structure II bonded to a cellulose skeleton is obtained.
 本発明のグラフトポリマー中のセルロース主鎖1分子中のグルコース残基の数(すなわち、n)は、好ましくは約25以上であり、より好ましくは約30以上であり、さらに好ましくは約35以上であり、特に好ましくは約40以上であり、最も好ましくは約50以上である。例えば、約100以上、約200以上、約300以上、約400以上、約500以上、約600以上、約700以上、約800以上、約900以上、約1,000以上、約2,000以上、約2,500以上、約3,000以上、約4,000以上、約5,000以上などであってもよい。本発明で使用されるセルロース主鎖1分子中のグルコース残基の数は、好ましくは約30,000以下であり、より好ましくは約25,000以下であり、さらに好ましくは約20,000以下であり、特に好ましくは約15,000以下であり、最も好ましくは約10,000以下である。例えば、約9,000以下、約8,000以下、約7,000以下、約6,000以下、約5,000以下、約4,000以下、約3,000以下、約2,000以下、約1,000以下、約900以下、約800以下、約700以下、約600以下、約500以下、約400以下などであってもよい。 The number (ie, n) of glucose residues in one molecule of the cellulose main chain in the graft polymer of the present invention is preferably about 25 or more, more preferably about 30 or more, and further preferably about 35 or more. Particularly preferably about 40 or more, most preferably about 50 or more. For example, about 100 or more, about 200 or more, about 300 or more, about 400 or more, about 500 or more, about 600 or more, about 700 or more, about 800 or more, about 900 or more, about 1,000 or more, about 2,000 or more, It may be about 2,500 or more, about 3,000 or more, about 4,000 or more, about 5,000 or more, and the like. The number of glucose residues in one molecule of the cellulose main chain used in the present invention is preferably about 30,000 or less, more preferably about 25,000 or less, and further preferably about 20,000 or less. Particularly preferably about 15,000 or less, and most preferably about 10,000 or less. For example, about 9,000 or less, about 8,000 or less, about 7,000 or less, about 6,000 or less, about 5,000 or less, about 4,000 or less, about 3,000 or less, about 2,000 or less, It may be about 1,000 or less, about 900 or less, about 800 or less, about 700 or less, about 600 or less, about 500 or less, about 400 or less, and the like.
 本発明のグラフトポリマーにおいては、少なくとも1個のα-1,4グルカン鎖の重合度は、好ましくは約25以上であり、より好ましくは約30以上であり、さらに好ましくは約40以上である。例えば、約50以上、約60以上、約70以上、約80以上、約90以上、約100以上などであってもよい。本発明のグラフトポリマーにおいては、少なくとも1個のα-1,4グルカン鎖の重合度は、好ましくは約1,000以下であり、より好ましくは約800以下であり、さらに好ましくは約500以下である。例えば、約400以下、約300以下、約200以下、約100以下、約90以下、約80以下、約70以下、約60以下、約50以下などであってもよい。α-1,4グルカン側鎖の重合度が大きすぎると、立体障害が生じて包接機能を充分に発揮できない場合がある。α-1,4グルカン側鎖の重合度が小さすぎると、所望の包接機能を得られない場合がある。 In the graft polymer of the present invention, the degree of polymerization of at least one α-1,4 glucan chain is preferably about 25 or more, more preferably about 30 or more, and further preferably about 40 or more. For example, it may be about 50 or more, about 60 or more, about 70 or more, about 80 or more, about 90 or more, about 100 or more. In the graft polymer of the present invention, the degree of polymerization of at least one α-1,4 glucan chain is preferably about 1,000 or less, more preferably about 800 or less, and further preferably about 500 or less. is there. For example, it may be about 400 or less, about 300 or less, about 200 or less, about 100 or less, about 90 or less, about 80 or less, about 70 or less, about 60 or less, about 50 or less. If the degree of polymerization of the α-1,4 glucan side chain is too large, steric hindrance may occur and the inclusion function may not be fully exhibited. If the degree of polymerization of the α-1,4 glucan side chain is too small, the desired inclusion function may not be obtained.
 本発明のグラフトポリマーにおいては、セルロース主鎖に結合したα-1,4グルカン側鎖の数平均重合度が上記の好適な範囲内にあることが特に好ましい。また、本発明のグラフトポリマーにおいては、セルロース主鎖に結合したα-1,4グルカン側鎖のうち、上記の好適な範囲を満たすα-1,4グルカン側鎖の割合は、好ましくは約50%以上であり、より好ましくは約60%以上であり、さらに好ましくは約70%以上であり、特に好ましくは約80%以上であり、最も好ましくは約90%以上である。 In the graft polymer of the present invention, it is particularly preferable that the number average degree of polymerization of α-1,4 glucan side chain bonded to the cellulose main chain is within the above-mentioned preferable range. In the graft polymer of the present invention, the proportion of α-1,4 glucan side chains satisfying the above preferred range among α-1,4 glucan side chains bonded to the cellulose main chain is preferably about 50. % Or more, more preferably about 60% or more, still more preferably about 70% or more, particularly preferably about 80% or more, and most preferably about 90% or more.
 本発明のグラフトポリマーにおいては、セルロース1分子に結合しているα-1,4グルカン側鎖の数は、セルロース主鎖中のグルコース残基の数100個あたり、好ましくは約1個以上であり、より好ましくは約2個以上であり、さらに好ましくは約3個以上であり、特に好ましくは約4個以上であり、最も好ましくは約5個以上である。本発明のグラフトポリマーにおいては、セルロース1分子に結合しているα-1,4グルカン側鎖の数は、セルロース主鎖中のグルコース残基の数100個あたり、好ましくは約50個以下であり、より好ましくは約45個以下であり、さらに好ましくは約40個以下であり、特に好ましくは約35個以下であり、最も好ましくは約30個以下である。 In the graft polymer of the present invention, the number of α-1,4 glucan side chains bonded to one cellulose molecule is preferably about 1 or more per several hundred glucose residues in the cellulose main chain. More preferably, it is about 2 or more, more preferably about 3 or more, particularly preferably about 4 or more, and most preferably about 5 or more. In the graft polymer of the present invention, the number of α-1,4 glucan side chains bonded to one cellulose molecule is preferably about 50 or less per several hundred glucose residues in the cellulose main chain. More preferably, it is about 45 or less, more preferably about 40 or less, particularly preferably about 35 or less, and most preferably about 30 or less.
 (9.本発明のグラフトポリマーの用途)
 従来からセルロースは、さまざまな用途に利用されており、その利用方法は公知である。その様々な用途において、本発明のグラフトポリマーを使用することが可能である。すなわち、従来からセルロースが使用される材料において、そのセルロースの一部またはすべてを本発明のグラフトポリマーに置き換えて使用することができる。
(9. Use of graft polymer of the present invention)
Conventionally, cellulose has been used for various applications, and its use is known. The graft polymer of the present invention can be used in its various applications. That is, in a material in which cellulose is conventionally used, a part or all of the cellulose can be replaced with the graft polymer of the present invention.
 より具体的には、例えば、本発明のグラフトポリマーは、環境浄化機能を有するフィルター、カラム充填材、香料含有繊維などの、複合機能性素材およびデバイスなどに利用され得る。 More specifically, for example, the graft polymer of the present invention can be used for composite functional materials and devices such as filters having an environmental purification function, column fillers, and fragrance-containing fibers.
 例えば、本発明のグラフトポリマーを繊維の形態に加工して、得られた繊維を所望の形態に加工して最終的な製品とすることができる。 For example, the graft polymer of the present invention can be processed into a fiber form, and the resulting fiber can be processed into a desired form to obtain a final product.
 また、例えば、セルロース繊維を製造する際に、原料のセルロース中に本発明のグラフトポリマーを混入させて、グラフトポリマー含有繊維を製造し、その繊維を所望の形態に加工して目的の製品を得ることもできる。 Also, for example, when producing cellulose fibers, the graft polymer of the present invention is mixed into the raw material cellulose to produce graft polymer-containing fibers, and the fibers are processed into a desired form to obtain the desired product. You can also.
 また、例えば、本発明のグラフトポリマーから得られた繊維をセルロース繊維と混合して、得られた混合繊維を所望の形態に加工して最終的な製品とすることができる。このような混合繊維はアミロースの包接機能を付与された繊維であり、環境ホルモンや界面活性剤の除去機能を有する水処理用フィルターなどに利用できる。 Also, for example, the fiber obtained from the graft polymer of the present invention can be mixed with cellulose fiber, and the resulting mixed fiber can be processed into a desired form to obtain a final product. Such a mixed fiber is a fiber provided with an inclusion function of amylose, and can be used for a water treatment filter having a function of removing environmental hormones and surfactants.
 また、例えば、本発明のグラフトポリマーを成型して所望の形状の製品を得ることができる。例えば、本発明のグラフトポリマーをフィルム状に成型してフィルム状の製品を得ることができる。 Also, for example, a product having a desired shape can be obtained by molding the graft polymer of the present invention. For example, the graft polymer of the present invention can be molded into a film to obtain a film product.
 さらに、例えば、本発明のグラフトポリマーを添加剤として所望の製品に添加することもできる。 Furthermore, for example, the graft polymer of the present invention can be added to a desired product as an additive.
 (実施例)
 以下の実施例により本発明をさらに詳細に説明する。本発明は以下の実施例のみに限定されない。
(Example)
The following examples illustrate the invention in more detail. The present invention is not limited only to the following examples.
 (アミノ基含有セルロースの合成)
 (1)トシル化セルロースの合成
 N,N-ジメチルアセトアミド50ml、セルロース(試薬等級;微結晶セルロース;数平均重合度約300)0.5gをナス型フラスコに加え、130℃で1時間撹拌し、さらに、塩化リチウム4.2gを加え、100℃で30分間撹拌後、室温になるまで放置し溶解させた。これにトリエチルアミン0.5mlを加え、10℃に冷却後、塩化-p-トルエンスルホニル0.0412g(グルコースユニットに対して0.4当量)を加え、10℃で24時間反応させた。反応液を水中に再沈殿し、吸引ろ過後、減圧下で乾燥してトシル化セルロース0.56gを得た。
(Synthesis of amino group-containing cellulose)
(1) Synthesis of tosylated cellulose 50 ml of N, N-dimethylacetamide and 0.5 g of cellulose (reagent grade; microcrystalline cellulose; number average degree of polymerization of about 300) were added to an eggplant type flask and stirred at 130 ° C. for 1 hour. Further, 4.2 g of lithium chloride was added, stirred for 30 minutes at 100 ° C., and allowed to stand until room temperature to dissolve. To this was added 0.5 ml of triethylamine, and after cooling to 10 ° C., 0.0412 g (0.4 equivalents with respect to glucose unit) of -p-toluenesulfonyl chloride was added and reacted at 10 ° C. for 24 hours. The reaction solution was reprecipitated in water, suction filtered, and dried under reduced pressure to obtain 0.56 g of tosylated cellulose.
 (2)アジド化セルロースの合成
 ジメチルスルホキシド25ml、トシル化セルロース0.5g、テトラ-n-ブチルアンモニウムヨージド0.027g、アジ化ナトリウム0.468gをナス型フラスコに加え、70℃で72時間反応させた。反応液を水中に再沈澱し、吸引ろ過後、減圧下で乾燥し、6-アジド-6-デオキシセルロース0.463gを得た。
(2) Synthesis of azido cellulose 25 ml of dimethyl sulfoxide, 0.5 g of tosylated cellulose, 0.027 g of tetra-n-butylammonium iodide and 0.468 g of sodium azide were added to an eggplant type flask and reacted at 70 ° C for 72 hours. I let you. The reaction solution was reprecipitated in water, filtered with suction, and dried under reduced pressure to obtain 0.463 g of 6-azido-6-deoxycellulose.
 (3)アミノ化セルロースの合成
 ジメチルスルホキシド45ml、6-アジド-6-デオキシセルロース0.450g、水素化ホウ素ナトリウム0.603gをナス型フラスコに加え、60℃で72時間反応させた。反応液を0℃に冷却し、未反応の水素化ホウ素ナトリウムを除去するため、1N塩酸をガスが発生しなくなるまでゆっくり滴下した後、飽和炭酸水素ナトリウム水溶液で中和した。これを吸引ろ過によって単離し、凍結乾燥して6-アミノ-6-デオキシセルロース0.444gを得た。
(3) Synthesis of Aminated Cellulose 45 ml of dimethyl sulfoxide, 0.450 g of 6-azido-6-deoxycellulose and 0.603 g of sodium borohydride were added to an eggplant type flask and reacted at 60 ° C. for 72 hours. The reaction solution was cooled to 0 ° C., and 1N hydrochloric acid was slowly added dropwise until no gas was generated in order to remove unreacted sodium borohydride, and then neutralized with a saturated aqueous sodium hydrogen carbonate solution. This was isolated by suction filtration and freeze-dried to obtain 0.444 g of 6-amino-6-deoxycellulose.
 (還元アミノ化法によるマルトヘプタオースグラフト化セルロースの合成)
 実施例1で得られた6-アミノ-6-デオキシセルロース0.444g、酢酸-メタノール混合溶液20ml、マルトヘプタオース0.784g、シアノトリヒドロホウ酸ナトリウム0.237gをサンプル管に加え、室温で3日間反応させた。これをメタノール中に投入し、吸引ろ過を行ない、未反応のマルトヘプタオースを除去するため、ジメチルスルホキシドで洗浄後単離した。減圧下で乾燥し、マルトヘプタオースグラフト化セルロースを0.478g得た。
(Synthesis of maltoheptaose grafted cellulose by reductive amination method)
0.444 g of 6-amino-6-deoxycellulose obtained in Example 1, 20 ml of a mixed solution of acetic acid-methanol, 0.784 g of maltoheptaose and 0.237 g of sodium cyanotrihydroborate were added to the sample tube, and at room temperature. The reaction was performed for 3 days. This was put into methanol, subjected to suction filtration, and washed and washed with dimethyl sulfoxide in order to remove unreacted maltoheptaose. It dried under reduced pressure and obtained 0.478g of maltoheptaose grafted cellulose.
 得られた生成物をH NMRスペクトルにより分析すると、主鎖であるセルロースのアノマー位由来のピークとマルトヘプタオースのアノマー位由来のピークが観察された。生成物の構造がマルトヘプタオースグラフト化セルロースであることが確認された。 When the obtained product was analyzed by 1 H NMR spectrum, a peak derived from the anomeric position of cellulose as the main chain and a peak derived from the anomeric position of maltoheptaose were observed. The product structure was confirmed to be maltoheptaose grafted cellulose.
 (カルボジイミドカップリング法によるマルトヘプタオースグラフト化セルロースの合成)
 (酸化マルトヘプタオースの合成)
 マルトヘプタオース1gを水20mlに溶解し、5%(w/v)ヨウ素-メタノール溶液25mlを添加し、40℃で撹拌しながら4%(w/v)水酸化カリウム-メタノール溶液10mlを1滴ずつ滴下した。1時間撹拌後、ヨウ素の色が消えるまで4%(w/v)水酸化カリウム-メタノール溶液をさらに滴下し、30分撹拌後反応を終了した。反応液を冷却し、沈殿物をろ過後、45mlの脱イオン水に溶解し、アンバーライトIR-120B(H+型)に通液した。溶出液がpH7.0になるまで脱イオン水を流して目的物を回収し、ロータリーエバポレーターにより数回減圧乾固した。45mlの脱イオン水に溶解し、酸化マルトヘプタオースの水溶液(19mg/ml)を得た。
(Synthesis of maltoheptaose grafted cellulose by carbodiimide coupling method)
(Synthesis of oxidized maltoheptaose)
Dissolve 1 g of maltoheptaose in 20 ml of water, add 25 ml of 5% (w / v) iodine-methanol solution, and drop 1 drop of 10 ml of 4% (w / v) potassium hydroxide-methanol solution while stirring at 40 ° C. Added dropwise. After stirring for 1 hour, 4% (w / v) potassium hydroxide-methanol solution was further added dropwise until the iodine color disappeared, and the reaction was terminated after stirring for 30 minutes. The reaction solution was cooled, the precipitate was filtered, dissolved in 45 ml of deionized water, and passed through Amberlite IR-120B (H + type). The target product was collected by flowing deionized water until the eluate had a pH of 7.0, and then dried under reduced pressure several times by a rotary evaporator. Dissolved in 45 ml of deionized water, an aqueous solution of maltoheptaose oxide (19 mg / ml) was obtained.
 (マルトヘプタオースグラフト化セルロースの合成)
 実施例1で得られた6-アミノ-6-デオキシセルロース0.42g、酸化マルトヘプタオース(19mg/ml)の水溶液40ml、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩化物0.13g、N-ヒドロキシコハク酸イミド0.08gをサンプル管に加え、室温で1日間反応させた。これをゲルろ過カラムに通液し、未反応の酸化マルトヘプタオース、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩化物およびN-ヒドロキシスクシンイミドを除去した。減圧下で乾燥し、マルトヘプタオースグラフト化セルロースを0.41g得た。
(Synthesis of maltoheptaose grafted cellulose)
0.42 g of 6-amino-6-deoxycellulose obtained in Example 1, 40 ml of an aqueous solution of oxidized maltoheptaose (19 mg / ml), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide chloride 13 g and N-hydroxysuccinimide 0.08 g were added to the sample tube and allowed to react at room temperature for 1 day. This was passed through a gel filtration column to remove unreacted maltoheptaose oxide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide chloride and N-hydroxysuccinimide. It dried under reduced pressure and obtained 0.41g of maltoheptaose grafted cellulose.
 (ラクトン化プライマー法によるマルトヘプタオースグラフト化セルロースの合成)
 (ラクトン化マルトヘプタオースの合成)
 マルトヘプタオース2.0gを水3.0mlに溶解し、そこへヨウ素1.33gをメタノール10ml中に溶解した液を加え、40℃、2時間撹拌した。続いて、水酸化カリウム1.21gをメタノール35ml中に溶解し、1滴ずつ滴下後、1時間撹拌した。反応後、
冷却し、得られた沈殿物をデカンテーションにより単離した。未反応のヨウ素、生成したヨウ化カリウムを除去するため水10mlを加え溶解液とし、メタノール100mlを加え沈殿物を得た。再度、デカンテーションし、水で溶解し、メタノールで沈殿を形成させた。デカンテーション後、この沈澱を9mlの水で溶解し、イオン交換カラムに通液し、生成物の回収を行った。減圧下で乾燥し、ラクトン化マルトヘプタオースを1.2g得た。生成物のH NMRにおいて、ラクトン環の2位(4.47ppm)および3位(4.25ppm)のピークが観察されたことから、生成物がラクトン化マルトヘプタオースであることを確認した。
(Synthesis of maltoheptaose grafted cellulose by lactonization primer method)
(Synthesis of lactonized maltoheptaose)
2.0 g of maltoheptaose was dissolved in 3.0 ml of water, and a solution obtained by dissolving 1.33 g of iodine in 10 ml of methanol was added thereto, followed by stirring at 40 ° C. for 2 hours. Subsequently, 1.21 g of potassium hydroxide was dissolved in 35 ml of methanol, dropped dropwise and then stirred for 1 hour. After the reaction
Upon cooling, the resulting precipitate was isolated by decantation. In order to remove unreacted iodine and produced potassium iodide, 10 ml of water was added to obtain a solution, and 100 ml of methanol was added to obtain a precipitate. Decanted again, dissolved in water, and formed a precipitate with methanol. After decantation, the precipitate was dissolved in 9 ml of water and passed through an ion exchange column to recover the product. It dried under reduced pressure and obtained 1.2g of lactonized maltoheptaose. In 1 H NMR of the product, peaks at the 2-position (4.47 ppm) and the 3-position (4.25 ppm) of the lactone ring were observed, confirming that the product was lactonized maltoheptaose.
 (マルトヘプタオースグラフト化セルロースの合成)
 実施例1で得られた6-アミノ-6-デオキシセルロース0.7g、ラクトン化マルトヘプタオース1.2gおよびエチレングリコール10mlをサンプル管に加え、70℃で6時間反応させた。反応終了後、室温まで冷却し、窒素雰囲気下でアセトンを加えた。沈殿物をろ過し、アセトンおよびヘキサンで洗浄しながら吸引ろ過し、エチレングリコールおよび未反応のラクトン化マルトヘプタオースを除去した。減圧下で乾燥し、マルトヘプタオースグラフト化セルロース1.25gを得た。
(Synthesis of maltoheptaose grafted cellulose)
0.7 g of 6-amino-6-deoxycellulose obtained in Example 1, 1.2 g of lactonized maltoheptaose and 10 ml of ethylene glycol were added to a sample tube and reacted at 70 ° C. for 6 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and acetone was added under a nitrogen atmosphere. The precipitate was filtered and suction filtered while washing with acetone and hexane to remove ethylene glycol and unreacted lactonized maltoheptaose. Drying under reduced pressure gave 1.25 g of maltoheptaose grafted cellulose.
 (アミロースグラフト化セルロースの合成)
 実施例2で得られたマルトヘプタオースグラフト化セルロース0.14g、酢酸緩衝液12.5ml、グルコース-1-リン酸ナトリウム0.38g(マルトヘプタオース基に対して100当量)、馬鈴薯由来α-グルカンホスホリラーゼ42単位をサンプル管に加え、pH6.2、42℃で7時間反応させた。不純物を除去するために1N水酸化ナトリウム水溶液で透析後、メタノール中に投入し、吸引ろ過によって単離した。減圧下で乾燥し、アミロースグラフト化セルロース0.19gを得た。
(Synthesis of amylose-grafted cellulose)
0.14 g of maltoheptaose grafted cellulose obtained in Example 2, acetate buffer 12.5 ml, glucose-1-sodium phosphate 0.38 g (100 equivalents with respect to maltoheptaose group), potato-derived α- 42 units of glucan phosphorylase was added to the sample tube and reacted at pH 6.2 and 42 ° C. for 7 hours. In order to remove impurities, the mixture was dialyzed with 1N aqueous sodium hydroxide solution, poured into methanol, and isolated by suction filtration. Drying under reduced pressure gave 0.19 g of amylose grafted cellulose.
 生成物のH NMRからセルロースのアノマー位由来のピークとアミロースのアノマー位由来のピークが観察されたことから、この生成物は、セルロースに重合度49のアミロースがグラフト化したものであることが確認された。また、元素分析により、セルロース主鎖中のグルコース残基28個あたり1個の割合でアミロースがセルロースに結合していることが確認された。また生成物はセルロースとは異なり、1mol/L水酸化ナトリウム水溶液に可溶であった。これらの結果から、生成物の構造がアミロースグラフト化セルロースであることが確認された。それゆえ、この生成物は、セルロース主鎖中のグルコース残基の6位炭素にα-1,4グルカン側鎖の末端の1位炭素が-NH-基を介して共有結合しており、この1位炭素に2つの水素基が結合しており、セルロース主鎖の数平均重合度が約300であって、セルロース主鎖のグルコース残基28個あたり1個の割合で重合度49のアミロースがグラフト化された構造を有するグラフトポリマーである。 From the 1 H NMR of the product, a peak derived from the anomeric position of cellulose and a peak derived from the anomeric position of amylose were observed, and this product was obtained by grafting amylose having a polymerization degree of 49 to cellulose. confirmed. Elemental analysis confirmed that amylose was bound to cellulose at a rate of 1 per 28 glucose residues in the cellulose main chain. Unlike cellulose, the product was soluble in 1 mol / L sodium hydroxide aqueous solution. From these results, it was confirmed that the structure of the product was amylose grafted cellulose. Therefore, in this product, the 1-position carbon of the terminal of the α-1,4-glucan side chain is covalently bonded to the 6-position carbon of the glucose residue in the cellulose main chain via the —NH— group. Two hydrogen groups are bonded to the 1-position carbon, the number average degree of polymerization of the cellulose main chain is about 300, and amylose having a degree of polymerization of 49 per 28 glucose residues in the cellulose main chain. A graft polymer having a grafted structure.
 (α-1,4グルカングラフト化セルロースからのフィルムの製造)
 実施例5の反応液をガラス容器に入れ静置したところ不透明で膨潤したゲルが得られた。未反応物等を除去するために水で洗浄した。セルロースは同じ条件でこのようなゲルを形成することはできなかった。次にこのゲルを自然乾燥させたところ、不透明な固形物が得られた。さらに、この乾燥した固形物に水を加えると、不透明で浸潤したゲルに戻った。また、このゲルを自然乾燥させると、再度、不透明な固形物が得られた。
(Production of film from α-1,4 glucan grafted cellulose)
When the reaction solution of Example 5 was placed in a glass container and allowed to stand, an opaque and swollen gel was obtained. Washing with water was performed to remove unreacted materials and the like. Cellulose could not form such a gel under the same conditions. The gel was then air dried to obtain an opaque solid. Furthermore, when water was added to the dried solid, it returned to an opaque and infiltrated gel. Moreover, when this gel was air-dried, an opaque solid substance was obtained again.
 また実施例5の反応液をガラスプレートに薄く広げ静置したところ不透明で膨潤したフィルムを得た。未反応物等を除去するために水で洗浄した。このフィルムを自然乾燥したところ不透明である程度柔軟なフィルムが得られた。さらに乾燥したフィルムに水を加えると不透明で膨潤したフィルムに戻った。このフィルムを自然乾燥すると再度不透明である程度柔軟なフィルムが得られた。乾燥したフィルムに1N NaOH水溶液を加えたところ、このフィルムは溶解した。このようにα-1,4グルカングラフト化セルロースは、セルロースと異なり、アミロースの溶解性や柔軟性を併せ持つ独特の物性を示した。 Further, when the reaction solution of Example 5 was spread thinly on a glass plate and allowed to stand, an opaque and swollen film was obtained. Washing with water was performed to remove unreacted materials and the like. When this film was naturally dried, an opaque and somewhat flexible film was obtained. Further, when water was added to the dried film, it returned to an opaque and swollen film. When this film was naturally dried, an opaque and somewhat flexible film was obtained again. When 1N NaOH aqueous solution was added to the dried film, this film was dissolved. Thus, α-1,4 glucan grafted cellulose, unlike cellulose, exhibited unique physical properties that have both amylose solubility and flexibility.
 さらに得られたゲルおよびフィルムをそれぞれ5mMのヨウ素溶液(KI・I:0.024M/0.010M)10mlに添加したところ、いずれも青色に染色された。従って、α-1,4グルカングラフト化セルロースには、アミロースの物性だけでなく、アミロースの包接機能が付与されていることを確認した。 Furthermore, when the obtained gel and film were each added to 10 ml of a 5 mM iodine solution (KI · I 2 : 0.024 M / 0.010 M), both were stained blue. Therefore, it was confirmed that the α-1,4 glucan grafted cellulose was provided with not only the physical properties of amylose but also the inclusion function of amylose.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.
 セルロースは、繊維、紙、不織布、織物、フィルターなど、幅広い産業分野で利用されている。本発明を利用することにより、セルロースまたはセルロース製品にアミロースの機能を付与することができる。たとえばアミロースは様々な化学物質と包接錯体を形成することができるが、これを利用して環境浄化機能を有するフィルター、香料含有繊維などの、複合機能性素材およびデバイスを設計することが可能となる。 Cellulose is used in a wide range of industrial fields such as fiber, paper, non-woven fabric, fabric and filter. By utilizing the present invention, the function of amylose can be imparted to cellulose or cellulose products. For example, amylose can form inclusion complexes with various chemicals, and it can be used to design composite functional materials and devices such as filters and fragrance-containing fibers that have environmental purification functions. Become.

Claims (17)

  1.  α-1,4グルカン側鎖がセルロース主鎖に結合したグラフトポリマーであって、
     セルロース主鎖中の少なくとも1つのグルコース残基の6位炭素にα-1,4グルカン側鎖の末端の1位炭素が、-NH-基を介して共有結合しており;
     該1位炭素に2つの水素基が結合しているか、または1つの酸素原子が結合しており;
     該セルロース主鎖の重合度が25以上であり;
     該α-1,4グルカン側鎖の重合度が25以上である、
    グラフトポリマー。
    a graft polymer in which α-1,4 glucan side chains are bonded to a cellulose main chain,
    The first carbon at the end of the α-1,4 glucan side chain is covalently bonded via the —NH— group to the 6th carbon of at least one glucose residue in the cellulose backbone;
    Two hydrogen groups are bonded to the first carbon atom, or one oxygen atom is bonded;
    The degree of polymerization of the cellulose main chain is 25 or more;
    The degree of polymerization of the α-1,4 glucan side chain is 25 or more.
    Graft polymer.
  2.  前記α-1,4グルカン側鎖が完全に直鎖状である、請求項1に記載のグラフトポリマー。 The graft polymer according to claim 1, wherein the α-1,4 glucan side chain is completely linear.
  3.  前記グラフトポリマーが、以下の構造(I):
    Figure JPOXMLDOC01-appb-C000001
    を有し、ここで、各Rは、-OH、-NHおよび以下の構造(II)もしくは(III):
    Figure JPOXMLDOC01-appb-C000002
    からなる群より独立して選択され、該nが25~20,000の整数であり、該mが24~1000の整数であり、セルロース主鎖中のグルコース残基どうしがβ-1,4結合により結合している、請求項1に記載のグラフトポリマー。
    The graft polymer has the following structure (I):
    Figure JPOXMLDOC01-appb-C000001
    Where each R is —OH, —NH 2 and the following structure (II) or (III):
    Figure JPOXMLDOC01-appb-C000002
    Independently selected from the group consisting of: n is an integer from 25 to 20,000, m is an integer from 24 to 1000, and glucose residues in the cellulose main chain are β-1,4 bonded The graft polymer according to claim 1, which is bound by:
  4.  前記α-1,4グルカン側鎖の重合度が40以上である、請求項1に記載のグラフトポリマー。 The graft polymer according to claim 1, wherein the polymerization degree of the α-1,4 glucan side chain is 40 or more.
  5.  前記α-1,4グルカン側鎖の重合度が50以上である、請求項1に記載のグラフトポリマー。 The graft polymer according to claim 1, wherein the polymerization degree of the α-1,4 glucan side chain is 50 or more.
  6.  前記セルロース主鎖に結合しているα-1,4グルカン側鎖の数が、1~10,000個である、請求項1に記載のグラフトポリマー。 The graft polymer according to claim 1, wherein the number of α-1,4 glucan side chains bonded to the cellulose main chain is 1 to 10,000.
  7.  前記セルロース主鎖に結合しているα-1,4グルカン側鎖の数が、セルロース主鎖中のグルコース残基100個あたり1~50個である、請求項1に記載のグラフトポリマー。 The graft polymer according to claim 1, wherein the number of α-1,4 glucan side chains bonded to the cellulose main chain is 1 to 50 per 100 glucose residues in the cellulose main chain.
  8.  請求項1に記載のグラフトポリマーの製造方法であって、
     セルロース中の少なくとも1つのグルコース残基の6位炭素に結合しているOH基をNH基に置換して、アミノ化セルロースを得る工程;
     該アミノ化セルロースとプライマーとを反応させて、該アミノ化セルロース中の少なくとも1つのグルコース残基の6位炭素と、該プライマーの末端の1位炭素とを、-NH-基を介して共有結合させて、プライマー結合セルロースを得る工程;
     該プライマー結合セルロースと、基質と、α-1,4グルカン鎖伸長酵素とを接触させることによってプライマーを伸長させることにより、重合度25以上のα-1,4グルカン側鎖を形成させて、請求項1に記載のグラフトポリマーを得る工程を包含し、
     該プライマーは、重合度3~20のα-1,4グルカン、またはその還元末端酸化物もしくはラクトン化物であり、
     該基質は、該酵素の作用により該プライマーにグルコース残基を提供する物質であり、
     該α-1,4グルカン側鎖の重合度が25以上であり、
     α-1,4グルカン結合セルロースにおいては、該1位炭素に2つの水素基が結合しているか、または1つの酸素原子が結合している、方法。
    A method for producing the graft polymer according to claim 1,
    Replacing the OH group bonded to the 6-position carbon of at least one glucose residue in cellulose with an NH 2 group to obtain an aminated cellulose;
    By reacting the aminated cellulose with a primer, the 6-position carbon of at least one glucose residue in the aminated cellulose and the 1-position carbon of the end of the primer are covalently bonded via an —NH— group. Obtaining primer-bound cellulose;
    By extending the primer by contacting the primer-bound cellulose, a substrate, and an α-1,4 glucan chain extender, an α-1,4 glucan side chain having a degree of polymerization of 25 or more is formed. Including the step of obtaining the graft polymer according to Item 1,
    The primer is an α-1,4 glucan having a degree of polymerization of 3 to 20, or a reducing end oxide or lactonized product thereof,
    The substrate is a substance that provides a glucose residue to the primer by the action of the enzyme;
    The degree of polymerization of the α-1,4 glucan side chain is 25 or more;
    In the α-1,4-glucan-bonded cellulose, a method in which two hydrogen groups are bonded to the 1-position carbon or one oxygen atom is bonded.
  9.  前記α-1,4グルカン側鎖の重合度が40以上である、請求項8に記載の方法。 The method according to claim 8, wherein the polymerization degree of the α-1,4 glucan side chain is 40 or more.
  10.  前記α-1,4グルカン側鎖の重合度が50以上である、請求項8に記載の方法。 The method according to claim 8, wherein the degree of polymerization of the α-1,4 glucan side chain is 50 or more.
  11.  前記セルロースに結合しているα-1,4グルカンの数が、1~10,000個である、請求項8に記載の方法。 The method according to claim 8, wherein the number of α-1,4 glucan bound to the cellulose is 1 to 10,000.
  12.  前記セルロース主鎖に結合しているα-1,4グルカン側鎖の数が、セルロース主鎖中のグルコース残基100個あたり1~50個である、請求項8に記載の方法。 The method according to claim 8, wherein the number of α-1,4 glucan side chains bonded to the cellulose main chain is 1 to 50 per 100 glucose residues in the cellulose main chain.
  13.  前記グラフトポリマーを精製する工程をさらに包含する、請求項8に記載の方法。 The method according to claim 8, further comprising the step of purifying the graft polymer.
  14.  前記アミノ化セルロースを得る工程が、
     トリエチルアミン、塩化リチウムおよびN,N-ジメチルアセトアミドの存在下でセルロースと塩化-p-トルエンスルホニルとを反応させてトシル化セルロースを得ること;
     テトラ-n-ブチルアンモニウムヨージドおよびジメチルスルホキシドの存在下で該トシル化セルロースをアジ化ナトリウムと反応させて6-アジド-6-デオキシセルロースを得ること;ならびに
     ジメチルスルホキシド中で該6-アジド-6-デオキシセルロースを水素化ホウ素ナトリウムと反応させてアミノ化セルロースを得ること
    によって行われる、請求項8に記載の方法。
    Obtaining the aminated cellulose comprises
    Reacting cellulose with p-toluenesulfonyl chloride in the presence of triethylamine, lithium chloride and N, N-dimethylacetamide to obtain tosylated cellulose;
    Reacting the tosylated cellulose with sodium azide in the presence of tetra-n-butylammonium iodide and dimethyl sulfoxide to give 6-azido-6-deoxycellulose; and the 6-azido-6 in dimethyl sulfoxide The process according to claim 8, which is carried out by reacting deoxycellulose with sodium borohydride to obtain aminated cellulose.
  15.  前記α-1,4グルカン鎖伸長酵素がα-グルカンホスホリラーゼであり、前記基質がグルコース-1-リン酸である、請求項8に記載の方法。 The method according to claim 8, wherein the α-1,4 glucan chain extender is α-glucan phosphorylase and the substrate is glucose-1-phosphate.
  16.  前記α-1,4グルカン鎖伸長酵素がα-グルカンホスホリラーゼおよびスクロースホスホリラーゼであり、前記基質がスクロースおよび無機リン酸またはグルコース-1-リン酸である、請求項8に記載の方法。 The method according to claim 8, wherein the α-1,4 glucan chain extender is α-glucan phosphorylase and sucrose phosphorylase, and the substrate is sucrose and inorganic phosphate or glucose-1-phosphate.
  17.  前記α-1,4グルカン鎖伸長酵素がアミロスクラーゼであり、前記基質がスクロースである、請求項8に記載の方法。 The method according to claim 8, wherein the α-1,4 glucan chain extender is amylosucrase and the substrate is sucrose.
PCT/JP2009/058563 2008-05-07 2009-05-01 Α-1,4-glucan-grafted cellulose WO2009136601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008121693 2008-05-07
JP2008-121693 2008-05-07

Publications (1)

Publication Number Publication Date
WO2009136601A1 true WO2009136601A1 (en) 2009-11-12

Family

ID=41264657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058563 WO2009136601A1 (en) 2008-05-07 2009-05-01 Α-1,4-glucan-grafted cellulose

Country Status (2)

Country Link
JP (1) JP2009293017A (en)
WO (1) WO2009136601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568550A (en) * 2017-11-21 2019-05-22 Univ Cape Town Method of synthesising 6-deoxy-6-amino-ß-d-glucopyranoside-containing polymers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284764A (en) * 2001-03-27 2002-10-03 Mitsubishi Pharma Corp 2-(alkoxybenzyloxy)-3-nitropyridine and method of producing alkoxybenzyl ether using the same
JP2004526463A (en) * 2001-05-28 2004-09-02 江崎グリコ株式会社 Glucan production method and its preparation method
JP2007508832A (en) * 2003-10-24 2007-04-12 バイエル クロップサイエンス ゲーエムベーハー Use of linear poly-α-1,4-glucan as resistant starch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284764A (en) * 2001-03-27 2002-10-03 Mitsubishi Pharma Corp 2-(alkoxybenzyloxy)-3-nitropyridine and method of producing alkoxybenzyl ether using the same
JP2004526463A (en) * 2001-05-28 2004-09-02 江崎グリコ株式会社 Glucan production method and its preparation method
JP2007508832A (en) * 2003-10-24 2007-04-12 バイエル クロップサイエンス ゲーエムベーハー Use of linear poly-α-1,4-glucan as resistant starch

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
KANEKO Y. ET AL.: "Amylose Graft-ka Fukugo Tato no Kagaku -Koso Gosei", POLYMER PREPRINTS, vol. 57, no. 2, 9 September 2008 (2008-09-09), pages 4868 - 4869 *
KANEKO Y. ET AL.: "Chemoenzymatic Syntheses of Amylose-Grafted Chitin and Chitosan", BIOMACROMOLECULES, vol. 8, 2007, pages 3959 - 3964 *
KANEKO Y. ET AL.: "Yuki Shigen to shite no Seitai Ko Bunshi", JOURNAL OF THE SOCIETY OF RUBBER INDUSTRY, vol. 81, no. 3, 5 March 2008 (2008-03-05), pages 112 - 117 *
LIU C. ET AL.: "Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups", CARBOHYDRATE RESEARCH, vol. 337, 2002, pages 1297 - 1307 *
MATSUI Y. ET AL.: "Facile synthesis of 6-amino-6-deoxycellulose", CARBOHYDRATE RESEARCH, vol. 340, 2005, pages 1403 - 1406 *
MATUSDA S. ET AL.: "Chemoenzymatic Synthesis of Amylose-Grafted Chitosan", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 28, 2007, pages 863 - 867 *
MCCORMICK C. L. ET AL.: "Competitive formation of cellulose p-toluenesulfonate and chlorodeoxycellulose during homogeneous reaction of p-toluenesulfonyl chloride with cellulose in N,N-dimethylacetamide-lithium chloride", CARBOHYDRATE RESEARCH, vol. 208, 1990, pages 183 - 191 *
OMAGARI Y. ET AL.: "Amylose Graft-ka Cellulose no Kagaku -Koso Gosei", POLYMER PREPRINTS, vol. 57, no. 1, 8 May 2008 (2008-05-08), pages 1740 *
WALDMANN H. ET AL.: "The enzymic utilization of sucrose in the synthesis of amylose and derivatives of amylose, using phosphorylases", CARBOHYDRATE RESEARCH, vol. 157, 1986, pages C4 - C7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568550A (en) * 2017-11-21 2019-05-22 Univ Cape Town Method of synthesising 6-deoxy-6-amino-ß-d-glucopyranoside-containing polymers
US11021547B2 (en) 2017-11-21 2021-06-01 University Of Cape Town Method of synthesising 6-deoxy-6-amino-β-D-glucopyranoside-containing polymers and their precursors
GB2568550B (en) * 2017-11-21 2021-06-30 Univ Cape Town Method of synthesising 6-deoxy-6-amino-ß-d-glucopyranoside-containing polymers

Also Published As

Publication number Publication date
JP2009293017A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US7229801B2 (en) Production method and preparation method of glucans
Kobayashi et al. In vitro synthesis of cellulose and related polysaccharides
JP6817972B2 (en) Preparation of poly α-1,3-glucan ester using cyclic organic anhydride
US9139718B2 (en) Preparation of poly alpha-1,3-glucan ethers
AU2002307701A1 (en) Production method and preparation method of glucans
AU2832800A (en) Process for selective oxidation of primary alcohols and novel carbohydrate aldehydes
Han et al. The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane
Nawaji et al. Enzymatic α-glucosaminylation of maltooligosaccharides catalyzed by phosphorylase
JP4318315B2 (en) Method for converting β-1,4-glucan to α-glucan
WO2009136601A1 (en) Α-1,4-glucan-grafted cellulose
Planas et al. Glycosidases and glycosynthases in enzymatic synthesis of oligosaccharides: an overview
Kloosterman et al. Biocatalytic Synthesis of Maltodextrin‐Based Acrylates from Starch and α‐Cyclodextrin
Quan et al. Effect of cross linking on functional properties of cationic corn starch
JPH0121959B2 (en)
AU738188B2 (en) Galactosylated hydroxyalkyl polysaccharides and their derivatives
JP5418870B2 (en) Process for producing 1-O-α-glucopyranosyl D-psicose
Watts et al. Glycosynthase-catalysed formation of modified polysaccharide microstructures
JP4011102B2 (en) Glucan production method and preparation method thereof
JP2021122193A (en) Ultrafiltration device for carbohydrate synthesis
JP4105872B2 (en) N-acetyllactosaminyl-cellooligosaccharide derivative and method for producing the same
渡邊光 et al. A Novel Glucanotransferase that Produces a Cyclomaltopentaose Cyclized by an. ALPHA.-1, 6-Linkage
van der Vlist Polymerization of hyperbrached polysaccharides by combined biocatalysis
JPH062072B2 (en) Process for producing oligosaccharides containing N-acetylglucosamine, glucosamine, mannose or allose at the end
Tahir Alkynyl ethers of dextrans as Intermediates for new Functional Biopolymers
JP2009270012A (en) Amylose synthesis in dimethyl sulfoxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742725

Country of ref document: EP

Kind code of ref document: A1