WO2009136504A1 - Precision positioning device - Google Patents

Precision positioning device Download PDF

Info

Publication number
WO2009136504A1
WO2009136504A1 PCT/JP2009/002012 JP2009002012W WO2009136504A1 WO 2009136504 A1 WO2009136504 A1 WO 2009136504A1 JP 2009002012 W JP2009002012 W JP 2009002012W WO 2009136504 A1 WO2009136504 A1 WO 2009136504A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
acceleration
speed
coil
driving force
Prior art date
Application number
PCT/JP2009/002012
Other languages
French (fr)
Japanese (ja)
Inventor
良知 塩手
高志 津村
豊 原田
Original Assignee
株式会社山武
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山武 filed Critical 株式会社山武
Publication of WO2009136504A1 publication Critical patent/WO2009136504A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/237Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with a combination of feedback covered by G05B19/232 - G05B19/235
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40578Impedance, mechanical impedance measurement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42168Measuring of needed force for servo

Definitions

  • the present invention relates to an apparatus for precisely positioning a component such as a semiconductor component or the like mounted by a robot, for example.
  • an arm that pressurizes a semiconductor element when mounted on a substrate is attached to an elastic guide constituted by a parallel leaf spring, and a pressure is applied by a voice coil motor.
  • a configuration is known in which the applied pressure is controlled by adjusting the current flowing through the coil of the voice coil motor with a current regulator (see Patent Document 1).
  • a signal from a force sensor attached to the wrist of the robot is fed back to the servo control system (see Patent Document 2).
  • the position of the part is recognized and the success of the work is confirmed by monitoring the force, while compliance control is realized by feeding back the force information to the control system.
  • JP-A-7-86317 Japanese Patent Laid-Open No. 7-24665
  • the conventional positioning control technology has the following problems.
  • Patent Document 1 it is possible to apply a precise pressing force when stationary, but it is difficult to control the contact force precisely by suppressing vibration during component transportation or moving while pressing. Moreover, in order to detect a contact, it is necessary to add another contact sensor.
  • Patent Document 2 it is difficult to perform work while maintaining a minute contact force due to the influence of the mass of the arm and the frictional force of the speed reducer.
  • An object of the present invention is to provide a precision positioning device that makes it possible to perform operations such as assembly while stably positioning even precise or minute parts.
  • the present invention is an apparatus for precisely positioning a component, A voice that supports a coil placed in a magnetic field so as to be displaceable in a predetermined direction by an elastic guide member, drives an actuator including the coil by passing an electric current through the coil, and positions the component by the displacement of the actuator A coil motor; A displacement sensor for detecting the displacement of the actuator; The velocity and acceleration are calculated from the displacement detected by the displacement sensor, and the driving force of the actuator is calculated from the position, velocity and acceleration of the actuator and an external force set arbitrarily based on the impedance of the mechanical system including the actuator. And a controller for outputting a current to be supplied to the coil in accordance with the calculated driving force.
  • the controller calculates the velocity and acceleration from the displacement of the actuator including the coil placed in the magnetic field detected by the displacement sensor, and the position, velocity and acceleration of the actuator based on the impedance of the mechanical system including the actuator. Then, the driving force of the actuator is calculated from the arbitrarily set external force, and a current supplied to the coil is output according to the calculated driving force. In response to this output, the voice coil motor drives an actuator including the coil to position the component.
  • the present invention by controlling the impedance from the position, velocity and acceleration, it is possible to execute precise positioning while maintaining a minute contact force. Further, more accurate positioning and load control can be realized by compensating for the effect of the deformation of the elastic guide member and the influence of the weight of the actuator including the robot hand and the jig.
  • the work can be performed while positioning the parts stably. Therefore, in addition to the assembly of smile parts and fragile parts, positioning can be performed accurately while observing the collision force and contact force in the pressing and bonding work of electronic parts, and the working time can be shortened and stable work can be realized.
  • the controller includes a speed calculation unit that calculates a speed from the displacement detected by the displacement sensor, an acceleration calculation unit that calculates an acceleration from the speed, and feedback gains for position, speed, and acceleration that determine the impedance.
  • An impedance control calculation unit that calculates the driving force from a value obtained by multiplying the position, speed, and acceleration of the actuator and an arbitrarily set external force value, and a current supplied to the coil in accordance with the driving force. It is preferable to include a drive current generation unit that generates the drive current.
  • the impedance control calculation unit performs calculation processing, the apparent mass and rigidity can be made smaller than actual, so that the impact at the time of collision can be reduced. If the rigidity is increased, positioning without contact can be performed accurately.
  • the controller includes an external force estimation calculation unit that estimates and calculates an external force from the position and acceleration of the actuator and the driving force.
  • the control according to the work state can be realized by estimating and calculating the external force by the external force estimation calculation unit.
  • the external force estimation calculation unit calculates an external force estimation value from a value obtained by multiplying each design value of the mass of the actuator and the elastic coefficient of the elastic guide member by the position and acceleration of the actuator and the value of the driving force. It is preferable.
  • the external view of the apparatus which provides the compliance attached between the arm and hand of a robot. It is a figure which shows the structure of a voice coil motor, (a) is a top view, (b) is sectional drawing. Explanatory drawing of the mechanical model of an apparatus.
  • the block diagram which shows the control system of 1st Embodiment.
  • the block diagram which shows the control system of 2nd Embodiment.
  • the block diagram which shows the control system of 3rd Embodiment.
  • the graph which shows the time change of a position deviation, an acceleration deviation, and an external force estimated value as an impedance control simulation result of 3rd Embodiment.
  • the graph which shows the response of an actual mechanical system The graph which shows the time change of a position deviation, an acceleration, and an external force estimated value as a position control simulation result of 3rd Embodiment.
  • FIG. 1 shows a precision positioning device 4 for providing compliance attached between an arm 2 and a hand 3 of a robot 1 as an embodiment of the present invention.
  • the device 4 includes a controller 6 (FIG. 4) in addition to the voice coil motor 5 (FIG. 4).
  • the voice coil motor 5 includes a cylindrical casing 11 having an open top surface, a magnet 13 fixed to the inner side surface of the casing 11 together with the side wall of the annular groove-shaped yoke 12, The coil 15 wound around the bobbin 14 disposed so as to face the magnet 13, the cylindrical frame 16 having an open bottom surface disposed inside the yoke 12, and the upper and lower ends of the frame 16 together with the bobbin 14 are encased.
  • An elastic guide member 17 made up of a plurality of arc-shaped flat springs supported in the body 11 and a displacement sensor 18 installed on the bottom surface of the housing 11 inside the gantry 16 are provided.
  • the proximity sensor, strain gauge, linear encoder, etc. are used for the displacement sensor 18.
  • the gantry 16 is driven in the vertical direction together with the coil 15 by passing a current through the coil 15 placed in the magnetic field by the magnet 13.
  • the displacement (position change) due to the vertical movement is measured by the displacement sensor 18.
  • the controller 6 calculates the speed from the change in the coil position indicated by the signal from the displacement sensor 18, calculates the acceleration from the change in the speed, and feeds back the position, speed, and acceleration, and the mechanical impedance corresponding to the work. And a motor drive current that flows through the coil 15 of the voice coil motor 5 is output according to the calculation result.
  • the external force estimation calculation unit 7 estimates and calculates an external force from the position measured by the displacement sensor 18 and the speed and acceleration calculated by the controller 6, as will be described later.
  • control system of the present embodiment is executed by arithmetic processing based on the following dynamic model, which will be described below.
  • FIG. 3 shows a dynamic model of the present embodiment.
  • the equation of motion is expressed as follows.
  • f a + f d m a x ′′ + k a x (1)
  • m a Mass of an actuator (including a hand) displaced by coil driving of the voice coil motor
  • k a Spring constant of the actuator support spring
  • f a Driving force generated by the actuator f d : External force (gravity, contact force, etc.)
  • a driving force represented by the following equation is applied to the actuator.
  • f a ⁇ m c x ′′ ⁇ d c x′ ⁇ k c x + f c (2)
  • x ", x ' is an actuator acceleration, respectively, represent the velocity
  • f c is the force to be generated due to gravity offset and work
  • m c, d c, k c is the respective parameters determined arbitrarily.
  • Each feedback gain of acceleration, speed, and position is represented.
  • k v 10 5 N / m
  • the displacement is 0.01 mm with respect to an external force of 100 g
  • the rigidity is sufficient for normal positioning control.
  • the acceleration and velocity feedback gains m c and d c are determined so that the operation becomes stable.
  • FIG. 4 is a block diagram showing the control system of the first embodiment of the present invention.
  • the controller 6 includes, as functional blocks, a speed calculation unit 21 that calculates a speed based on a signal from the displacement sensor 18, an acceleration calculation unit 22 that calculates an acceleration from a change in the speed, and a position indicated by a signal from the displacement sensor 18. x, calculated velocity x 'and the acceleration x ", the voice coil motor of the impedance control arithmetic unit 23 for calculating a driving force f a to be applied to the actuator based on the equation (2), an actuator from the calculated driving force And a drive current generator 24 that generates 5 coil drive currents and supplies them to the voice coil motor 5.
  • the impedance control calculation unit 23 the parameter m c, d c representing the force f c and the impedance necessary for the operation, and a k c, host controller (in this case, the robot controller) is provided from.
  • the speed calculation unit 21 may obtain the speed by measuring the back electromotive force of the voice coil instead of from the output of the displacement sensor 18.
  • acceleration may be detected by an acceleration sensor 25 instead of the acceleration calculation unit 22 of the control system of the first embodiment.
  • the speed calculation unit 21 may obtain the speed by integrating the signal (acceleration) of the acceleration sensor 25.
  • the speed x ′ is obtained by the speed calculator 21 from the change of the position x measured by the displacement sensor 18, and the acceleration x ′′ is obtained by the acceleration calculator 22 from the speed. Further, according to the feedback control system of FIG. 5, the speed x ′ is obtained by the speed calculation unit 21 from the change of the position x measured by the displacement sensor 18, the acceleration sensor 25 detects the acceleration, and the acceleration x ′′ is can get.
  • the impedance control calculation unit 23 sets the position, velocity, and acceleration feedback gains m c , d c , and k c to the above-described equations (2). position x of the actuator, the speed x ', and a value obtained by multiplying the acceleration x ", from the value of the force f c which is set arbitrarily, in. the driving current generating unit 24 to the driving force f a is calculated, A coil driving current is generated from the value of the driving force and supplied to the coil of the voice coil motor 5 as a control signal for the actuator.
  • FIG. 6 is a block diagram showing a control system of the third embodiment of the present invention.
  • the controller 6 includes an external force estimation calculation unit 7 that estimates and calculates an external force from the position and acceleration of the actuator and the driving force.
  • the external force calculated by the external force estimation calculation unit 7 becomes an estimated value ⁇ f d > and is sent to the host controller.
  • simulation results of the computer controlled by the control system of FIG. 6 are shown as examples of impedance control and position control.
  • Impedance control is intended to determine response characteristics (rigidity, damping, mass) in order to limit contact force, work force, etc. according to the work.
  • Position control is highly accurate by increasing the position feedback gain. This is intended for positioning.
  • changes in position deviation, speed, acceleration, estimated external force value, and driving force over time (seconds) are shown.
  • a virtual damper (velocity feedback gain) d c is determined so that the critical damping.
  • the input position x (command value) is kept constant, the external force (contact force, work force) gave step force of 1N as f c.
  • the estimated external force value ⁇ f d > is also a 1N step value, which indicates that the estimation function is good.
  • FIG. 9 shows changes in position deviation and time (in seconds) of acceleration as a response of a mechanical system having a mass of 0.2 kg and a spring constant of 2000 kg N / m. This indicates that the impedance control response is in good agreement with the actual mechanical response.
  • mass m a 1 kg
  • spring constant k a 1000 N / m
  • k c 20000 N / m
  • Virtual damper d c is defined so that the critical damping.
  • the input position x (command value) was fixed at a position at a constant speed of 5 mm / s until 0.2 seconds later and at a position of 1 mm after 0.2 seconds.
  • a step-like external force 1N was input at the start (0 second).
  • the speed is almost 5 mm / s, and when stopping, the position deviation is stable at 0.1 mm, and position control is performed. Position deviation can be reduced by raising the position feedback gain k c. Further, the estimated external force disturbance value ⁇ f d > is also a step value of 1N, indicating that the estimation function works well.
  • the robot picks up a designated one of the filters stacked in the component supply magazine by hand. That is, the hand picks up and conveys plate-like components (filters) stacked in the component supply magazine by suction pads.
  • the hand by moving the hand above the parts supply magazine and descending, by sucking the air in the suction pad using a vacuum pump etc. with the suction pad applied to the parts in the magazine, Adhere parts to the suction pad. Thereafter, the hand is raised and moved to the assembly position of the parts.
  • the target command position in the pickup direction with respect to the hand is always set at the bottom of the magazine, and the command position is held halfway when the height can be detected after the work starts.
  • the above operations are executed according to a program stored in the controller of the robot body.
  • the elastic guide member is not limited to a plate-like spring, and may be operated by rolling or air pressure.
  • the present invention is useful for positioning in operations such as picking up, precision mounting, joining (for example, soldering), or bonding of semiconductor parts, MEMS parts, and other electronic parts.

Abstract

A precision positioning device is provided with a voice coil motor (5) for supporting a coil, which is placed in a magnetic field, by an elastic guiding member such that the coil is displaceable in a predetermined direction, driving an actuator including the coil by causing an electric current to flow through the coil, and positioning a part by using a displacement of the actuator, a displacement sensor (18) for detecting a displacement of the actuator, and a controller (6) for calculating the speed and acceleration of the actuator from the displacement detected by the displacement sensor, calculating a driving force of the actuator from the position, speed, and acceleration of the actuator and from an arbitrarily set external force, and outputting an electric current to be supplied to the coil which electric current corresponds to the calculated driving force.

Description

精密位置決め装置Precision positioning device
 本発明は、例えば、ロボットにより半導体部品などの微小部品や精密部品を実装する作業において、それらの部品を精密に位置決めするための装置に関する。 The present invention relates to an apparatus for precisely positioning a component such as a semiconductor component or the like mounted by a robot, for example.
 半導体部品やMEMS(Micro Electro Mechanical Systems)技術によって製造される精密部品を組み立てる作業時には、部品に合わせて精密な位置決めが必要であると共に、部品の接触を正確に検知して、接触力が過大にならないように位置決めを制御することが必要である。 When assembling semiconductor parts and precision parts manufactured by MEMS (Micro Electro Mechanical Systems) technology, precise positioning is required according to the parts, and contact of parts is detected accurately, resulting in excessive contact force. It is necessary to control the positioning so that it does not become.
 このような高精度の制御を行う装置の一例としては、半導体素子を基板に実装するときに加圧するアームを、平行板ばねで構成した弾性案内に取り付け、ボイスコイルモータで加圧力を与えるように構成し、ボイスコイルモータのコイルに流す電流を電流調節器で調節することによって加圧力を制御するようにしたものが知られている(特許文献1参照)。 As an example of an apparatus that performs such high-precision control, an arm that pressurizes a semiconductor element when mounted on a substrate is attached to an elastic guide constituted by a parallel leaf spring, and a pressure is applied by a voice coil motor. A configuration is known in which the applied pressure is controlled by adjusting the current flowing through the coil of the voice coil motor with a current regulator (see Patent Document 1).
 また、別の例では、ロボットの手首に取り付けた力センサからの信号がサーボ制御系にフィードバックされる(特許文献2参照)。この例は、ロボットの作業中、力をモニタリングすることによって部品位置の認識と作業の成否確認が行われる一方、力情報を制御系にフィードバックすることによってコンプライアンス制御が実現されることによって、作業の信頼性を向上させる。
特開平7-86317号公報 特開平7-24665号公報
In another example, a signal from a force sensor attached to the wrist of the robot is fed back to the servo control system (see Patent Document 2). In this example, while the robot is working, the position of the part is recognized and the success of the work is confirmed by monitoring the force, while compliance control is realized by feeding back the force information to the control system. Improve reliability.
JP-A-7-86317 Japanese Patent Laid-Open No. 7-24665
 しかしながら、従来の位置決め制御の技術には、次のような問題点があった。 However, the conventional positioning control technology has the following problems.
 上記特許文献1の技術では、静止時には精密な加圧力を加えることができるが、部品搬送時の振動を抑えることや押し付けながら移動する作業で接触力を精密に制御することは難しい。また、接触を検知するためには、別に接触センサを付加する必要がある。 In the technique of the above-mentioned Patent Document 1, it is possible to apply a precise pressing force when stationary, but it is difficult to control the contact force precisely by suppressing vibration during component transportation or moving while pressing. Moreover, in order to detect a contact, it is necessary to add another contact sensor.
 上記特許文献2の技術では、アームの質量や減速器の摩擦力の影響により、微小な接触力を維持しながら作業を行うことは難しい。 In the technique of Patent Document 2, it is difficult to perform work while maintaining a minute contact force due to the influence of the mass of the arm and the frictional force of the speed reducer.
 また、特許文献1、2のいずれの技術においても、ロボットの先のハンドや冶具の質量の影響により、位置が変化したり接触力が過大になったりする。そのような過大な質量による衝突を回避するためには、作業速度を遅くして作業を慎重に行わなければならず、それだけ作業時間が増大してしまう。 Also, in any of the techniques of Patent Documents 1 and 2, the position changes or the contact force becomes excessive due to the influence of the mass of the robot's previous hand or jig. In order to avoid such collision due to excessive mass, the work speed must be reduced and the work must be performed carefully, and the work time increases accordingly.
 本発明の目的は、精密ないし微小な部品でも安定して位置決めしながら組立等の作業を行うことを可能にする精密位置決め装置を提供することである。 An object of the present invention is to provide a precision positioning device that makes it possible to perform operations such as assembly while stably positioning even precise or minute parts.
 本発明は、部品を精密に位置決めするための装置であって、
 磁界に置かれたコイルを弾性案内部材により所定の方向に変位可能に支持し、該コイルに電流を流すことによって該コイルを含むアクチュエータを駆動し、該アクチュエータの変位により前記部品の位置決めを行うボイスコイルモータと、
 前記アクチュエータの変位を検出する変位センサと、
 前記変位センサで検出された変位から速度及び加速度を算出し、前記アクチュエータを含む機械系のインピーダンスに基づき前記アクチュエータの位置、速度及び加速度と任意に設定した外力とから前記アクチュエータの駆動力を演算し、演算した駆動力に応じて前記コイルに供給する電流を出力するコントローラと
を備えたことを特徴とする。
The present invention is an apparatus for precisely positioning a component,
A voice that supports a coil placed in a magnetic field so as to be displaceable in a predetermined direction by an elastic guide member, drives an actuator including the coil by passing an electric current through the coil, and positions the component by the displacement of the actuator A coil motor;
A displacement sensor for detecting the displacement of the actuator;
The velocity and acceleration are calculated from the displacement detected by the displacement sensor, and the driving force of the actuator is calculated from the position, velocity and acceleration of the actuator and an external force set arbitrarily based on the impedance of the mechanical system including the actuator. And a controller for outputting a current to be supplied to the coil in accordance with the calculated driving force.
 本発明においては、コントローラが、変位センサで検出された磁界に置かれたコイルを含むアクチュエータの変位から速度及び加速度を算出し、アクチュエータを含む機械系のインピーダンスに基づき前記アクチュエータの位置、速度及び加速度と任意に設定した外力とから前記アクチュエータの駆動力を演算し、演算した駆動力に応じてコイルに供給する電流を出力する。この出力に応じて、ボイスコイルモータは、コイルを含むアクチュエータを駆動して部品の位置決めを行う。 In the present invention, the controller calculates the velocity and acceleration from the displacement of the actuator including the coil placed in the magnetic field detected by the displacement sensor, and the position, velocity and acceleration of the actuator based on the impedance of the mechanical system including the actuator. Then, the driving force of the actuator is calculated from the arbitrarily set external force, and a current supplied to the coil is output according to the calculated driving force. In response to this output, the voice coil motor drives an actuator including the coil to position the component.
 本発明によれば、位置、速度及び加速度からインピーダンスを制御することで、微小な接触力を維持しながら精密な位置決めを実行することが可能となる。また、弾性案内部材の変形による力や、ロボットハンド及び冶具を含むアクチュエータの重量による影響を補償して、より正確な位置決めと負荷制御を実現することができる。 According to the present invention, by controlling the impedance from the position, velocity and acceleration, it is possible to execute precise positioning while maintaining a minute contact force. Further, more accurate positioning and load control can be realized by compensating for the effect of the deformation of the elastic guide member and the influence of the weight of the actuator including the robot hand and the jig.
 これにより、精密もしくは微小な脆弱部品の組立作業であっても、部品を安定して位置決めしながら作業を行うことができる。従って、微笑部品や脆弱な部品の組立のほか、電子部品の押し付け・接着作業において衝突力や接触力をみながら位置決めを正確に行うことができ、作業時間の短縮と安定した作業を実現できる。 Therefore, even when assembling work of precision or minute fragile parts, the work can be performed while positioning the parts stably. Therefore, in addition to the assembly of smile parts and fragile parts, positioning can be performed accurately while observing the collision force and contact force in the pressing and bonding work of electronic parts, and the working time can be shortened and stable work can be realized.
 本発明において、コントローラは、前記変位センサで検出された変位から速度を算出する速度演算部と、該速度から加速度を算出する加速度演算部と、前記インピーダンスを決める位置、速度及び加速度の各フィードバックゲインに前記アクチュエータの位置、速度及び加速度を掛けて得られる値と任意に設定した外力の値とから前記駆動力を演算するインピーダンス制御演算部と、該駆動力に応じて前記コイルに供給する電流を生成する駆動電流生成部とを備えることが好ましい。 In the present invention, the controller includes a speed calculation unit that calculates a speed from the displacement detected by the displacement sensor, an acceleration calculation unit that calculates an acceleration from the speed, and feedback gains for position, speed, and acceleration that determine the impedance. An impedance control calculation unit that calculates the driving force from a value obtained by multiplying the position, speed, and acceleration of the actuator and an arbitrarily set external force value, and a current supplied to the coil in accordance with the driving force. It is preferable to include a drive current generation unit that generates the drive current.
 この構成によれば、インピーダンス制御演算部が演算処理を行うことで、見かけの質量、剛性を実際よりも小さくできるので、衝突時の衝撃を少なくすることができる。剛性を大きくすれば、非接触での位置決めを精密に行うことができる。 According to this configuration, since the impedance control calculation unit performs calculation processing, the apparent mass and rigidity can be made smaller than actual, so that the impact at the time of collision can be reduced. If the rigidity is increased, positioning without contact can be performed accurately.
 また、コントローラは、前記アクチュエータの位置及び加速度と前記駆動力とから外力を推定演算する外力推定演算部を備えることが好ましい。この態様によれば、外力推定演算部で外力を推定演算することで、作業状態に応じた制御を実現できる。 Further, it is preferable that the controller includes an external force estimation calculation unit that estimates and calculates an external force from the position and acceleration of the actuator and the driving force. According to this aspect, the control according to the work state can be realized by estimating and calculating the external force by the external force estimation calculation unit.
 前記外力推定演算部は、前記アクチュエータの質量及び前記弾性案内部材の弾性係数の各設計値に前記アクチュエータの位置及び加速度を掛けて得られる値と前記駆動力の値とから外力推定値を演算することが好ましい。 The external force estimation calculation unit calculates an external force estimation value from a value obtained by multiplying each design value of the mass of the actuator and the elastic coefficient of the elastic guide member by the position and acceleration of the actuator and the value of the driving force. It is preferable.
ロボットのアームとハンドの間に取り付けられたコンプライアンスを与える装置の外観図。The external view of the apparatus which provides the compliance attached between the arm and hand of a robot. ボイスコイルモータの構成を示す図で、(a)は平面図、(b)は断面図。It is a figure which shows the structure of a voice coil motor, (a) is a top view, (b) is sectional drawing. 装置の力学モデルの説明図。Explanatory drawing of the mechanical model of an apparatus. 第1実施形態の制御系を示すブロック図。The block diagram which shows the control system of 1st Embodiment. 第2実施形態の制御系を示すブロック図。The block diagram which shows the control system of 2nd Embodiment. 第3実施形態の制御系を示すブロック図。The block diagram which shows the control system of 3rd Embodiment. 第3実施形態のインピーダンス制御シミュレーション結果として、位置偏差、加速度偏差、及び外力推定値の時間変化を示すグラフ。The graph which shows the time change of a position deviation, an acceleration deviation, and an external force estimated value as an impedance control simulation result of 3rd Embodiment. 第3実施形態のインピーダンス制御シミュレーション結果として、速度及び駆動力の時間変化を示すグラフ。The graph which shows the time change of a speed and a driving force as an impedance control simulation result of 3rd Embodiment. 実際の機械系の応答を示すグラフ。The graph which shows the response of an actual mechanical system. 第3実施形態の位置制御シミュレーション結果として、位置偏差、加速度、及び外力推定値の時間変化を示すグラフ。The graph which shows the time change of a position deviation, an acceleration, and an external force estimated value as a position control simulation result of 3rd Embodiment. 第3実施形態の位置制御シミュレーション結果として、速度及び駆動力の時間変化を示すグラフ。The graph which shows the time change of a speed and a driving force as a position control simulation result of 3rd Embodiment.
 図1は、本発明の一実施形態として、ロボット1のアーム2とハンド3の間に取り付けられたコンプライアンスを与える精密位置決め装置4を示す。この装置4は、ボイスコイルモータ5(図4)のほか、コントローラ6(図4)を備えて構成される。 FIG. 1 shows a precision positioning device 4 for providing compliance attached between an arm 2 and a hand 3 of a robot 1 as an embodiment of the present invention. The device 4 includes a controller 6 (FIG. 4) in addition to the voice coil motor 5 (FIG. 4).
 ボイスコイルモータ5は、図2に示すように、上面が開口した円筒形の筐体11と、この筐体11の内側面に円環溝状のヨーク12の側壁と共に固定された磁石13と、この磁石13に対向するように配置されたボビン14に巻かれたコイル15と、ヨーク12の内側に配置される底面が開口した円筒形の架台16と、ボビン14と共に架台16の上下端を筐体11内に支持する複数の円弧状フラットスプリングからなる弾性案内部材17と、架台16の内部で筐体11の底面上に設置された変位センサ18とを備えている。 As shown in FIG. 2, the voice coil motor 5 includes a cylindrical casing 11 having an open top surface, a magnet 13 fixed to the inner side surface of the casing 11 together with the side wall of the annular groove-shaped yoke 12, The coil 15 wound around the bobbin 14 disposed so as to face the magnet 13, the cylindrical frame 16 having an open bottom surface disposed inside the yoke 12, and the upper and lower ends of the frame 16 together with the bobbin 14 are encased. An elastic guide member 17 made up of a plurality of arc-shaped flat springs supported in the body 11 and a displacement sensor 18 installed on the bottom surface of the housing 11 inside the gantry 16 are provided.
 変位センサ18には、近接センサ、ひずみゲージ、リニアエンコーダ等が用いられる。 The proximity sensor, strain gauge, linear encoder, etc. are used for the displacement sensor 18.
 上記構成のボイスコイルモータ5によれば、磁石13による磁界に置かれたコイル15に電流を流すことにより、コイル15と共に架台16が上下方向に駆動される。この上下動による変位(位置の変化)は、変位センサ18によって計測される。 According to the voice coil motor 5 having the above-described configuration, the gantry 16 is driven in the vertical direction together with the coil 15 by passing a current through the coil 15 placed in the magnetic field by the magnet 13. The displacement (position change) due to the vertical movement is measured by the displacement sensor 18.
 コントローラ6は、変位センサ18からの信号で示されるコイル位置の変化から速度を算出し、該速度の変化から加速度を算出し、その位置、速度及び加速度をフィードバックして作業に応じた機械的インピーダンスを演算し、その演算結果に応じてボイスコイルモータ5のコイル15に流すモータ駆動電流を出力する。 The controller 6 calculates the speed from the change in the coil position indicated by the signal from the displacement sensor 18, calculates the acceleration from the change in the speed, and feeds back the position, speed, and acceleration, and the mechanical impedance corresponding to the work. And a motor drive current that flows through the coil 15 of the voice coil motor 5 is output according to the calculation result.
 外力推定演算部7は、後述のように、変位センサ18で計測した位置と、コントローラ6で算出した速度及び加速度から外力を推定演算する。 The external force estimation calculation unit 7 estimates and calculates an external force from the position measured by the displacement sensor 18 and the speed and acceleration calculated by the controller 6, as will be described later.
 本実施形態の制御系の動作は、下記の力学モデルに基づく演算処理によって実行されるものであり、以下これについて説明する。 The operation of the control system of the present embodiment is executed by arithmetic processing based on the following dynamic model, which will be described below.
 図3は、本実施形態の力学モデルを示す。図において、アクチュエータの位置x座標の右方向を正(+)とすると、運動方程式は次のように表される。 FIG. 3 shows a dynamic model of the present embodiment. In the figure, when the right direction of the actuator position x coordinate is positive (+), the equation of motion is expressed as follows.
  f+f=mx”+kx      …(1)
  但し、
  m:ボイスコイルモータのコイル駆動によって変位するアクチュエータ(ハンドを含む)の質量
  k:アクチュエータ支持スプリングのバネ定数
  f:アクチュエータが発生する駆動力
  f:外力(重力、接触力など)
 このとき、アクチュエータには、次式で表される駆動力が加えられる。
f a + f d = m a x ″ + k a x (1)
However,
m a : Mass of an actuator (including a hand) displaced by coil driving of the voice coil motor k a : Spring constant of the actuator support spring f a : Driving force generated by the actuator f d : External force (gravity, contact force, etc.)
At this time, a driving force represented by the following equation is applied to the actuator.
  f=-mx”-dx’-kx+f     …(2)
 ここで、x”、x’はそれぞれアクチュエータの加速度、速度を表わし、fは重力相殺や作業のために発生させる力、m,d,kは、それぞれ任意に決められるパラメータで、加速度、速度、位置の各フィードバックゲインを表している。
f a = −m c x ″ −d c x′−k c x + f c (2)
Here, x ", x 'is an actuator acceleration, respectively, represent the velocity, f c is the force to be generated due to gravity offset and work, m c, d c, k c is the respective parameters determined arbitrarily, Each feedback gain of acceleration, speed, and position is represented.
 式(1)及び(2)から、
  f=mx”+dx’+kx-f      …(3)
  但し、m,d,kは、次式で表わされる力学モデルのインピーダンスを表している。
From equations (1) and (2)
f d = m v x ″ + d v x ′ + k v x−f c (3)
However, m v, d v, k v represents the impedance of the dynamic model is expressed by the following equation.
  m=m+m,d=d,k=ka+k   …(4)
 すなわち、パラメータm,d,kをそれぞれ適当に設定することにより、外力に対する機械系の応答を決めるインピーダンス(m,d,k)を自由に定めることができる。このとき、m,kを負にすれば正帰還になり、みかけの質量や剛性を実際より小さくすることができる。但し、系全体が安定になるようにインピーダンス(m,d,k)を決めることが必要である。
m v = m a + m c , d v = d c , k v = k a a + k c (4)
That is, by appropriately setting the parameters m c , d c , and k c , the impedance (m v , d v , k v ) that determines the response of the mechanical system to the external force can be freely determined. At this time, if m c and k c are made negative, positive feedback is obtained, and the apparent mass and rigidity can be made smaller than actual. However, it is necessary to determine the impedance (m v , d v , k v ) so that the entire system becomes stable.
 例えば、半田付け作業に適したコンプライアンス特性を求める場合、剛性k= 2500 N/m(100gの外力で0.25 mmの変位)、応答周波数ωc= 20 Hz (126 rad/s)とすると、m=k/ωc= 0.15 kgとなる。また、アクチュエータ質量m=1kg とすると、加速度フィードバックゲインm=0.85 kgとなる。速度フィードバックゲインdは、臨界制動付近になるように決められる。 For example, when obtaining a compliance characteristic suitable for soldering work, assuming that the stiffness k v = 2500 N / m (displacement of 0.25 mm with an external force of 100 g) and the response frequency ωc = 20 Hz (126 rad / s), m v = a k v / ωc 2 = 0.15 kg . If the actuator mass m a = 1 kg, the acceleration feedback gain m c = 0.85 kg. Speed feedback gain d c is determined to be near the critical damping.
 また、剛性kを外力に対して充分大きい値にすると、位置制御となる。例えば、k= 10 N/mとすると、100gの外力に対して0.01 mmの変位となり、通常の位置決め制御に対しては十分な剛性となる。加速度及び速度のフィードバックゲインm,dは、動作が安定になるように決められる。 Further, when a sufficiently large value stiffness k v relative to an external force, a position control. For example, when k v = 10 5 N / m, the displacement is 0.01 mm with respect to an external force of 100 g, and the rigidity is sufficient for normal positioning control. The acceleration and velocity feedback gains m c and d c are determined so that the operation becomes stable.
 図4は、本発明の第1実施形態の制御系を示すブロック図である。 FIG. 4 is a block diagram showing the control system of the first embodiment of the present invention.
 コントローラ6は、機能ブロックとして、変位センサ18からの信号により速度を算出する速度演算部21と、該速度の変化から加速度を算出する加速度演算部22と、変位センサ18からの信号で示される位置x、算出された速度x’及び加速度x”から、前記(2)式に基づいてアクチュエータに加える駆動力fを演算するインピーダンス制御演算部23と、演算した駆動力からアクチュエータとしてのボイスコイルモータ5のコイル駆動電流を生成してボイスコイルモータ5に供給する駆動電流生成部24とを備えている。 The controller 6 includes, as functional blocks, a speed calculation unit 21 that calculates a speed based on a signal from the displacement sensor 18, an acceleration calculation unit 22 that calculates an acceleration from a change in the speed, and a position indicated by a signal from the displacement sensor 18. x, calculated velocity x 'and the acceleration x ", the voice coil motor of the impedance control arithmetic unit 23 for calculating a driving force f a to be applied to the actuator based on the equation (2), an actuator from the calculated driving force And a drive current generator 24 that generates 5 coil drive currents and supplies them to the voice coil motor 5.
 ここで、インピーダンス制御演算部23には、上記演算に必要な力fとインピーダンスを表わすパラメータm,d,kとが、上位コントローラ(この場合、ロボットのコントローラ)から提供される。 Here, the impedance control calculation unit 23, the parameter m c, d c representing the force f c and the impedance necessary for the operation, and a k c, host controller (in this case, the robot controller) is provided from.
 なお、速度演算部21は、変位センサ18の出力からではなく、ボイスコイルの逆起電力を計測して速度を求めるようにしてもよい。 Note that the speed calculation unit 21 may obtain the speed by measuring the back electromotive force of the voice coil instead of from the output of the displacement sensor 18.
 また、図5に第2実施形態として示すように、第1実施形態の制御系の加速度演算部22に代えて加速度センサ25で加速度を検出してもよい。この場合、速度演算部21が、加速度センサ25の信号(加速度)を積分して速度を求めるようにしてもよい。 Further, as shown in FIG. 5 as the second embodiment, acceleration may be detected by an acceleration sensor 25 instead of the acceleration calculation unit 22 of the control system of the first embodiment. In this case, the speed calculation unit 21 may obtain the speed by integrating the signal (acceleration) of the acceleration sensor 25.
 図4のフィードバック制御系によれば、変位センサ18で計測された位置xの変化から、速度演算部21で速度x’が得られ、その速度から加速度演算部22で加速度x”が得られる。また、図5のフィードバック制御系によれば、変位センサ18で計測された位置xの変化から、速度演算部21で速度x’が得られ、加速度センサ25が加速度を検出し、加速度x”が得られる。 According to the feedback control system of FIG. 4, the speed x ′ is obtained by the speed calculator 21 from the change of the position x measured by the displacement sensor 18, and the acceleration x ″ is obtained by the acceleration calculator 22 from the speed. Further, according to the feedback control system of FIG. 5, the speed x ′ is obtained by the speed calculation unit 21 from the change of the position x measured by the displacement sensor 18, the acceleration sensor 25 detects the acceleration, and the acceleration x ″ is can get.
 そして、図4と図5のいずれのフィードバック制御系においても、インピーダンス制御演算部23で、前記(2)式に基づき、位置、速度及び加速度の各フィードバックゲインm,d,kに前記アクチュエータの位置x、速度x’、加速度x”を掛けて得られる値と、任意に設定された力fの値とから、前記駆動力fが演算される。駆動電流生成部24で、この駆動力の値からコイル駆動電流が生成され、アクチュエータに対する制御信号としてボイスコイルモータ5のコイルに供給される。 In any of the feedback control systems of FIGS. 4 and 5, the impedance control calculation unit 23 sets the position, velocity, and acceleration feedback gains m c , d c , and k c to the above-described equations (2). position x of the actuator, the speed x ', and a value obtained by multiplying the acceleration x ", from the value of the force f c which is set arbitrarily, in. the driving current generating unit 24 to the driving force f a is calculated, A coil driving current is generated from the value of the driving force and supplied to the coil of the voice coil motor 5 as a control signal for the actuator.
 図6は、本発明の第3実施形態の制御系を示すブロック図である。 FIG. 6 is a block diagram showing a control system of the third embodiment of the present invention.
 この第3実施形態では、コントローラ6は、アクチュエータの位置及び加速度と前記駆動力とから外力を推定演算する外力推定演算部7を備えている。この外力推定演算部7は、前記変位センサ18からの信号で示される位置x、加速度演算部22で算出された加速度x”、及びインピーダンス制御演算部23で算出された駆動力fから、外力fを演算する。 In the third embodiment, the controller 6 includes an external force estimation calculation unit 7 that estimates and calculates an external force from the position and acceleration of the actuator and the driving force. The external force estimation calculation unit 7, the position x represented by the signal from the displacement sensor 18, the acceleration x "calculated by the acceleration calculator 22, and the driving force f a calculated by the impedance control operation unit 23, the external force fd is calculated.
 この演算は、次式に基づいて行われる。すなわち、式(1)より
  f=mx”+kx-f      …(5)
であるから、位置xと加速度x”、及びアクチュエータの駆動力fがわかれば、外力fを計算できる。但し、mとkは、コンプライアンスの設計値とする。
This calculation is performed based on the following equation. That is, from the equation (1), f d = m a x ″ + k a x−f a (5)
Since it is, the position x and the acceleration x ", and knowing the driving force f a of the actuator, can be computed external force f d. However, m a and k a is the design value of compliance.
 従って、外力推定演算部7で算出される外力は推定値<f>となり、上位コントローラに送られる。 Therefore, the external force calculated by the external force estimation calculation unit 7 becomes an estimated value <f d > and is sent to the host controller.
 ここで、図6の制御系による制御のコンピュータでのシミュレーション結果が、インピーダンス制御と位置制御の例として示される。なお、インピーダンス制御は、作業に応じて接触力、作業力等を制限するために応答特性(剛性、ダンピング、質量)を決めることを目的とし、位置制御は、位置フィードバックゲインを高くして高精度の位置決めを目的としたものである。
・インピーダンス制御シミュレーション結果(図7、図8)
 図7及び図8は、質量m=1 kg、バネ定数k=1000 N/mの機械系について、仮想質量m=0.2 kg、仮想バネ定数k=2000 N/mとしたときの応答のシミュレーション結果として、位置偏差、速度、加速度、外力推定値、及び駆動力の時間(秒)変化を示す。
Here, simulation results of the computer controlled by the control system of FIG. 6 are shown as examples of impedance control and position control. Impedance control is intended to determine response characteristics (rigidity, damping, mass) in order to limit contact force, work force, etc. according to the work. Position control is highly accurate by increasing the position feedback gain. This is intended for positioning.
-Impedance control simulation results (Figs. 7 and 8)
7 and 8 show the case where the virtual mass m c = 0.2 kg and the virtual spring constant k c = 2000 N / m for the mechanical system with the mass m a = 1 kg and the spring constant k a = 1000 N / m. As a simulation result of the response, changes in position deviation, speed, acceleration, estimated external force value, and driving force over time (seconds) are shown.
 ここでは、仮想ダンパ(速度フィードバックゲイン)dは、臨界制動になるように定めた。入力となる位置x(指令値)は一定とし、外力(接触力、作業力)fとして1Nのステップ力を与えた。外力推定値<f>も1Nのステップ状の値となっており、推定機能が良好であることがわかる。 Here, a virtual damper (velocity feedback gain) d c is determined so that the critical damping. The input position x (command value) is kept constant, the external force (contact force, work force) gave step force of 1N as f c. The estimated external force value <f d > is also a 1N step value, which indicates that the estimation function is good.
 比較のため、図9に、質量0.2 kg、バネ定数2000 N/mの機械系の応答として、位置偏差及び加速度の時間(秒)変化が示される。これにより、インピーダンス制御の応答が実際の機械系の応答とよく一致していることがかわる。 For comparison, FIG. 9 shows changes in position deviation and time (in seconds) of acceleration as a response of a mechanical system having a mass of 0.2 kg and a spring constant of 2000 kg N / m. This indicates that the impedance control response is in good agreement with the actual mechanical response.
 ・位置制御シミュレーション結果(図10、図11)
 図10及び図11は、質量m=1 kg、バネ定数k=1000 N/mの機械系について、仮想バネ定数k=20000 N/m(位置フィードバックゲイン19000)としたときの応答のシミュレーション結果として、位置偏差、速度、加速度、外力推定値、及び駆動力の時間(秒)変化が示される。
-Position control simulation results (FIGS. 10 and 11)
10 and 11 show the response of the mechanical system with mass m a = 1 kg and spring constant k a = 1000 N / m when the virtual spring constant k c = 20000 N / m (position feedback gain 19000). As a simulation result, a positional deviation, speed, acceleration, estimated external force value, and time (second) change in driving force are shown.
 仮想ダンパdは、臨界制動になるように定められた。入力となる位置x(指令値)は、0.2秒後まで5 mm/sの一定速度での位置、0.2秒後から1mmの位置に固定された。併せて、開始(0秒)時にステップ状の外力1Nが入力された。 Virtual damper d c is defined so that the critical damping. The input position x (command value) was fixed at a position at a constant speed of 5 mm / s until 0.2 seconds later and at a position of 1 mm after 0.2 seconds. In addition, a step-like external force 1N was input at the start (0 second).
 一定速度での移動時には、速度がほぼ5 mm/sで、停止時には、位置偏差が0.1mmで安定しており、位置制御が行われている。位置偏差は、位置フィードバックゲインkを上げることによって小さくできる。また、外力乱推定値<f>も1Nのステップ状の値となっており、推定機能がよく働いていることがわかる。 When moving at a constant speed, the speed is almost 5 mm / s, and when stopping, the position deviation is stable at 0.1 mm, and position control is performed. Position deviation can be reduced by raising the position feedback gain k c. Further, the estimated external force disturbance value <f d > is also a step value of 1N, indicating that the estimation function works well.
 最後に、本発明の精密位置決め装置4の使用例である図1のロボットによる部品組立作業について説明する。例えば、フィルタのような板状部品を取り出す際には、ロボットは、部品供給マガジンに平積みされたフィルタのうち指定されたものをハンドでピックアップする。すなわち、ハンドは、部品供給マガジン内に積み重ねられた板状部品(フィルタ)を吸着パッドで吸着して取り出し搬送する。ロボットの動作としては、部品供給マガジンの上方にハンドを移動して下降し、吸着パッドをマガジン内の部品に当てた状態で、真空ポンプ等を用いて吸着パッド内の空気を吸引することにより、吸着パッドに部品を吸着させる。その後、ハンドを上昇させ、部品の組付け位置まで移動させる。このようにフィルタを取り出す場合、ハンドに対するピックアップ方向の目標指令位置は常にマガジンの底部に設定され、作業開始後、高さを検出できた時点で指令位置が途中で保持される。 Finally, a part assembling work by the robot of FIG. 1, which is an example of using the precision positioning device 4 of the present invention, will be described. For example, when taking out a plate-like component such as a filter, the robot picks up a designated one of the filters stacked in the component supply magazine by hand. That is, the hand picks up and conveys plate-like components (filters) stacked in the component supply magazine by suction pads. As the operation of the robot, by moving the hand above the parts supply magazine and descending, by sucking the air in the suction pad using a vacuum pump etc. with the suction pad applied to the parts in the magazine, Adhere parts to the suction pad. Thereafter, the hand is raised and moved to the assembly position of the parts. When the filter is taken out in this way, the target command position in the pickup direction with respect to the hand is always set at the bottom of the magazine, and the command position is held halfway when the height can be detected after the work starts.
 上記の動作は、ロボット本体のコントローラに格納されたプログラムに従って実行される。 The above operations are executed according to a program stored in the controller of the robot body.
 以上、実施形態について説明したが、本発明はこれに限定されない。例えば、弾性案内部材は、板状スプリングに限らず、転がりや空気圧によって作動するものでもよい。 As mentioned above, although embodiment was described, this invention is not limited to this. For example, the elastic guide member is not limited to a plate-like spring, and may be operated by rolling or air pressure.
 本発明は、半導体部品、MEMS部品、その他電子部品のピックアップや精密実装、接合(例えば、半田付け)、或いは接着等の作業における位置決めに有用である。 The present invention is useful for positioning in operations such as picking up, precision mounting, joining (for example, soldering), or bonding of semiconductor parts, MEMS parts, and other electronic parts.

Claims (4)

  1.  部品を精密に位置決めするための装置であって、
     磁界に置かれたコイルを弾性案内部材により所定の方向に変位可能に支持し、該コイルに電流を流すことによって該コイルを含むアクチュエータを駆動し、該アクチュエータの変位により前記部品の位置決めを行うボイスコイルモータと、
     前記アクチュエータの変位を検出する変位センサと、
     前記変位センサで検出された変位から速度及び加速度を算出し、前記アクチュエータを含む機械系のインピーダンスに基づいて前記アクチュエータの位置、速度及び加速度と任意に設定した力とから前記アクチュエータの駆動力を演算し、演算した駆動力に応じて前記コイルに供給する電流を出力するコントローラと
    を備えたことを特徴とする精密位置決め装置。
    An apparatus for precisely positioning a part,
    A voice that supports a coil placed in a magnetic field so as to be displaceable in a predetermined direction by an elastic guide member, drives an actuator including the coil by passing an electric current through the coil, and positions the component by the displacement of the actuator A coil motor;
    A displacement sensor for detecting the displacement of the actuator;
    The speed and acceleration are calculated from the displacement detected by the displacement sensor, and the driving force of the actuator is calculated from the position, speed and acceleration of the actuator and an arbitrarily set force based on the impedance of the mechanical system including the actuator. And a controller for outputting a current to be supplied to the coil in accordance with the calculated driving force.
  2.  請求項1記載の精密位置決め装置において、前記コントローラは、前記変位センサで検出された変位から速度を算出する速度演算部と、該速度から加速度を算出する加速度演算部と、前記インピーダンスを表わす位置、速度及び加速度の各フィードバックゲインに前記アクチュエータの位置、速度及び加速度を掛けて得られる値と任意に設定した外力の値とから前記駆動力を演算するインピーダンス制御演算部と、該駆動力に応じて前記コイルに供給する電流を生成する駆動電流生成部とを備えていることを特徴とする精密位置決め装置。 2. The precision positioning device according to claim 1, wherein the controller includes a speed calculator that calculates a speed from a displacement detected by the displacement sensor, an acceleration calculator that calculates an acceleration from the speed, and a position that represents the impedance. An impedance control calculation unit that calculates the driving force from a value obtained by multiplying each feedback gain of speed and acceleration by the position, speed, and acceleration of the actuator and a value of an external force that is arbitrarily set, and according to the driving force A precision positioning device comprising: a drive current generator for generating a current to be supplied to the coil.
  3.  請求項1又は2記載の精密位置決め装置において、前記コントローラは、前記アクチュエータの位置及び加速度と前記駆動力とから外力を推定演算する外力推定演算部を備えていることを特徴とする精密位置決め装置。 3. The precision positioning device according to claim 1, wherein the controller includes an external force estimation calculation unit that estimates and calculates an external force from the position and acceleration of the actuator and the driving force.
  4.  請求項3記載の精密位置決め装置において、前記外力推定演算部は、前記アクチュエータの質量及び前記弾性案内部材の弾性係数の各設計値に前記アクチュエータの位置及び加速度を掛けて得られる値と前記駆動力の値とから外力推定値を演算することを特徴とする精密位置決め装置。 4. The precision positioning device according to claim 3, wherein the external force estimation calculation unit calculates a value obtained by multiplying each design value of the mass of the actuator and an elastic coefficient of the elastic guide member by the position and acceleration of the actuator and the driving force. A precision positioning device that calculates an estimated external force value from the value of the above.
PCT/JP2009/002012 2008-05-08 2009-05-07 Precision positioning device WO2009136504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008122640A JP5284683B2 (en) 2008-05-08 2008-05-08 Precision positioning device
JP2008-122640 2008-05-08

Publications (1)

Publication Number Publication Date
WO2009136504A1 true WO2009136504A1 (en) 2009-11-12

Family

ID=41264561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002012 WO2009136504A1 (en) 2008-05-08 2009-05-07 Precision positioning device

Country Status (2)

Country Link
JP (1) JP5284683B2 (en)
WO (1) WO2009136504A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358897A (en) * 2020-03-04 2021-09-07 埃韦利克斯公司 Sensor system for an actuator, actuator and method for moving an actuator part

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500995B2 (en) * 2010-01-06 2014-05-21 アズビル株式会社 Force detection device
JP6711536B2 (en) * 2016-10-28 2020-06-17 アズビル株式会社 External force detection method
CN111478631B (en) * 2020-05-25 2021-08-17 南京工程学院 Voice coil motor control system and control method for chip mounter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234183A (en) * 1988-03-15 1989-09-19 Internatl Business Mach Corp <Ibm> Method of controlling compliance
JPH06175705A (en) * 1992-12-07 1994-06-24 Matsushita Electric Works Ltd Impedance control method
JPH0786317A (en) * 1993-09-10 1995-03-31 Nec Corp Semiconductor element mounting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724665A (en) * 1993-07-05 1995-01-27 Yamatake Honeywell Co Ltd Automatic assembly device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234183A (en) * 1988-03-15 1989-09-19 Internatl Business Mach Corp <Ibm> Method of controlling compliance
JPH06175705A (en) * 1992-12-07 1994-06-24 Matsushita Electric Works Ltd Impedance control method
JPH0786317A (en) * 1993-09-10 1995-03-31 Nec Corp Semiconductor element mounting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358897A (en) * 2020-03-04 2021-09-07 埃韦利克斯公司 Sensor system for an actuator, actuator and method for moving an actuator part

Also Published As

Publication number Publication date
JP2009271783A (en) 2009-11-19
JP5284683B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
EP1278232A2 (en) Apparatus and method for bond force control
JP5355122B2 (en) Parameter estimation device
JP5284683B2 (en) Precision positioning device
TW201115291A (en) Servo controller
WO2016098448A1 (en) Mounting device
US9791018B2 (en) Vibration isolation apparatus, method of isolating vibration, lithography apparatus, and method of producing device
JP6903485B2 (en) Vibration damping device and processing machine
JP2017010300A (en) Work device and control method of the same
JP2010067780A (en) Bonding method, bonding device, and manufacturing method
KR100541171B1 (en) Vibration control apparatus
JP5002359B2 (en) Pressurizing device
JP5457821B2 (en) Active vibration isolator
JP5438995B2 (en) Shape measuring machine and scanning probe device
US10603829B2 (en) Apparatus for taking out molded product
JP2013007460A (en) Active damper and control method of active damper
JP4890196B2 (en) Vibration removal device
JP2004164029A (en) Elastic vibration control device
JP4576875B2 (en) Linear actuator and chip mounter
JP6186053B2 (en) Mounting device
JP2007057308A (en) Contact type probe
JP4636034B2 (en) Control device for movable table and movable table device including the same
JP2007067162A (en) Xy stage
JP2004162745A (en) Controller for elastic vibration
JPH0555797A (en) Head device for mounting electronic component
JP2010084814A (en) Vibration eliminating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742629

Country of ref document: EP

Kind code of ref document: A1