WO2009136487A1 - Power generation control device and transportation equipment - Google Patents

Power generation control device and transportation equipment Download PDF

Info

Publication number
WO2009136487A1
WO2009136487A1 PCT/JP2009/001966 JP2009001966W WO2009136487A1 WO 2009136487 A1 WO2009136487 A1 WO 2009136487A1 JP 2009001966 W JP2009001966 W JP 2009001966W WO 2009136487 A1 WO2009136487 A1 WO 2009136487A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
rectifier circuit
output current
phase angle
output
Prior art date
Application number
PCT/JP2009/001966
Other languages
French (fr)
Japanese (ja)
Inventor
高野行康
Original Assignee
ヤマハモーターエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハモーターエレクトロニクス株式会社 filed Critical ヤマハモーターエレクトロニクス株式会社
Priority to JP2010511014A priority Critical patent/JPWO2009136487A1/en
Priority to CN2009801165189A priority patent/CN102017394A/en
Publication of WO2009136487A1 publication Critical patent/WO2009136487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/10Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for automatic control superimposed on human control to limit the acceleration of the vehicle, e.g. to prevent excessive motor current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power generation control device that controls an output current of a generator and a transport device including the power generation control device.
  • a power generation system used for a vehicle such as an automobile has an AC generator and a regulator (see, for example, Patent Document 1).
  • the alternator is driven by the engine and generates an alternating current.
  • the regulator converts an alternating current generated by the alternating current generator into a direct current and outputs the direct current.
  • the output current of the power generation system is supplied to an electric load such as a lamp and a battery. Thereby, power is consumed by the electric load and the battery is charged.
  • the output current value cannot be changed according to the load current value or the state of charge / discharge of the battery.
  • the output current can be controlled by controlling the field current of the field winding of the three-phase AC generator.
  • a flywheel magneto generator which is a magnetic three-phase AC generator, is used.
  • a permanent magnet is used for the flywheel magneto generator. Therefore, the output current cannot be controlled by controlling the field current.
  • An object of the present invention is to provide a power generation control device capable of controlling an output current of an alternator driven by an engine to an appropriate and sufficient value, and a transport device including the power generation control device.
  • a power generation control device is a power generation control device that controls an output current of an AC generator driven by an engine, and converts an AC current output from the AC generator into a DC current.
  • a rectifier circuit and a control unit that controls the rectifier circuit, and the control unit outputs an output current value of the rectifier circuit when the target output current value is equal to or less than a maximum current value that can be output from the rectifier circuit by phase angle control.
  • the phase angle control of the rectifier circuit is performed so that becomes equal to the target output current value.
  • the phase angle control of the rectifier circuit is controlled to output a maximum current value without performing the above.
  • the control unit causes the phase angle of the rectifier circuit to be equal to the target output current value. Control is performed. As a result, a current equal to the target output current value is output from the rectifier circuit. Therefore, a current having an appropriate value can be supplied to the load.
  • the control unit When the target output current value is larger than the maximum current value that can be output from the rectifier circuit by phase angle control, the control unit does not perform phase angle control of the rectifier circuit and the rectifier circuit outputs the maximum current value Controlled. As a result, a current having a value larger than the maximum current value that can be output from the rectifier circuit by the phase angle control is output. Therefore, a sufficient current can be supplied to the load.
  • the value of the output current supplied to the load can be arbitrarily changed by arbitrarily changing the target output current value.
  • the control unit may determine the maximum current value that can be output from the rectifier circuit by phase angle control based on the rotational speed of the AC generator.
  • the maximum current value that can be output from the rectifier circuit by phase angle control varies depending on the rotational speed of the AC generator. In this case, since the maximum current value that can be output from the rectifier circuit by the phase angle control is determined based on the rotational speed of the AC generator, it is appropriately determined whether or not the phase angle control of the rectifier circuit should be performed. be able to.
  • the control unit may detect the rotational speed of the AC generator based on the AC voltage output from the AC generator.
  • the control unit calculates the cycle of the AC voltage based on the rising start time of each half-wave waveform of the AC voltage output from the AC generator, and calculates the rotation speed of the AC generator from the calculated cycle. May be.
  • the rotation speed of the AC generator can be calculated easily and accurately by detecting the rising start time of each half-wave waveform of the AC voltage output from the AC generator.
  • the control unit may determine that the time when the AC voltage output from the AC generator has reached a predetermined threshold is the rising start time of each half-wave waveform.
  • the maximum current value that can be output from the rectifier circuit can be sufficiently secured by the phase angle control.
  • the AC generator may be a magnet type AC generator having a permanent magnet. Even in this case, a sufficient and appropriate current can be supplied to the load.
  • the rectifier circuit includes a bridge circuit including a plurality of switching elements, and the control unit determines whether the target output current value is equal to or less than a maximum current value that can be output from the rectifier circuit by phase angle control.
  • the phase angle control of multiple switching elements is performed so that the output current value becomes equal to the target output current value, and the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, multiple These switching elements may be kept on.
  • the output current value of the rectifier circuit is controlled by controlling the phase angle of the plurality of switching elements. Further, the maximum current is output from the rectifier circuit by maintaining the plurality of switching elements in the on state.
  • a transport device includes a main body, an engine provided in the main body, a drive unit that moves the main body by rotation of the engine, and an AC generator that is driven by rotation of the engine.
  • a generator control device that controls the output current of the AC generator driven by the engine, and the generator control device controls the rectifier circuit that converts the AC current output from the AC generator into a DC current, and the rectifier circuit
  • a control unit that controls the output current value of the rectifier circuit to be equal to the target output current value when the target output current value is less than or equal to the maximum current value that can be output from the rectifier circuit by phase angle control. If the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, the rectifier circuit is controlled without performing the phase angle control of the rectifier circuit. And it controls the state of the current value of the atmospheric is output.
  • the drive unit moves the main unit by the rotation of the engine.
  • the power generation control device when the AC generator is driven by the engine, an AC current is output from the AC generator, and the AC current is converted into a DC current by the rectifier circuit.
  • the control unit causes the phase angle of the rectifier circuit to be equal to the target output current value. Control is performed. As a result, a current equal to the target output current value is output from the rectifier circuit. Therefore, a current having an appropriate value can be supplied to the load.
  • the control unit When the target output current value is larger than the maximum current value that can be output from the rectifier circuit by phase angle control, the control unit does not perform phase angle control of the rectifier circuit and the rectifier circuit outputs the maximum current value Controlled. As a result, a current having a value larger than the maximum current value that can be output from the rectifier circuit by the phase angle control is output. Therefore, a sufficient current can be supplied to the load.
  • the value of the output current supplied to the load can be arbitrarily changed by arbitrarily changing the target output current value.
  • FIG. 1 is a side view of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of an electric system of the motorcycle including the power generation control device according to the embodiment of the present invention.
  • FIG. 3 is a waveform diagram showing the voltage at one node of the three-phase mixed bridge circuit.
  • FIG. 4 is a waveform diagram of the trigger signal, the voltage for one phase of the three-phase mixed bridge circuit, and the current for one phase when the phase angle control of the thyristor is performed.
  • FIG. 5 is a waveform diagram of the trigger signal, the voltage for one phase of the three-phase mixed bridge circuit, and the current for one phase when the phase angle control of the thyristor is not performed.
  • FIG. 6 is a diagram showing the relationship between the rotational speed of the magneto generator and the output current from the three-phase mixed bridge circuit.
  • FIG. 7 is a flowchart showing an output current control process of the power generation control device by the CPU of the microcomputer.
  • FIG. 1 is a side view of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of an electric system of the motorcycle including the power generation control device according to the embodiment of the present invention.
  • a head pipe 32 is provided at the front end of the main body frame 31.
  • a handle 33 is provided at the upper end of the head pipe 32.
  • a front fork 34 is attached to the lower end of the head pipe 32. In this state, the front fork 34 is rotatable within a predetermined angle range around the axis of the head pipe 32.
  • a front wheel 35 is rotatably supported at the lower end of the front fork 34.
  • the engine 30 is provided at the center of the main body frame 31.
  • the engine 30 is provided with a flywheel magneto generator (hereinafter abbreviated as magneto generator) 1, and a power generation control device 2 is provided in the vicinity of the magneto generator 1.
  • the battery 3 is provided in the lower part of the main body sheet 36 or in the side cover.
  • the rear arm 37 is connected to the main body frame 31 so as to extend to the rear of the engine 30.
  • the rear arm 37 rotatably holds the rear wheel 38 and the rear wheel driven sprocket 39.
  • a chain 40 is attached to the rear wheel driven sprocket 39.
  • the headlight 4a is attached to the front of the head pipe 32, and the taillight 4b is attached to the rear of the main body sheet 36.
  • the 2 includes a magneto generator 1, a power generation control device 2, a battery 3 and an electric load 4.
  • the electric load 4 includes, for example, the headlight 4a, the taillight 4b, the brake lamp, and the blinker shown in FIG.
  • the magneto generator 1 is a magnet type three-phase AC generator, and has a rotor and a stator. A permanent magnet is attached to the rotor, and stator coils 1a, 1b, and 1c are provided on the stator. The magneto generator 1 generates power with the stator coils 1a to 1c and generates an alternating current when the rotor rotates together with the crankshaft of the engine 30 (FIG. 1).
  • the power generation control device 2 includes a microcomputer 5, a voltage dividing circuit 6, and a three-phase mixed bridge circuit 7.
  • the stator coils 1a, 1b, 1c of the magneto generator 1 are connected to the nodes Na, Nb, Nc.
  • the three-phase mixed bridge circuit 7 includes three diodes 7a and three thyristors 7b. Three diodes 7a are connected between the negative power supply line L2 and the nodes Na, Nb, and Nc, respectively, and three thyristors 7b are connected between the positive power supply line L1 and the nodes Na, Nb, and Nc, respectively. Is done.
  • the three-phase mixed bridge circuit 7 converts the alternating current generated by the magneto generator 1 into a direct current.
  • the voltage dividing circuit 6 divides the alternating voltages of the nodes Na, Nb, and Nc, respectively, and outputs the divided voltages to the microcomputer 5.
  • the microcomputer 5 includes an I / O (input / output) port 51, a CPU (central processing unit) 52, an A / D (analog / digital) converter 53, and a memory 54.
  • the A / D converter 53 converts the output voltage of the voltage dividing circuit 6 into a digital voltage value.
  • the memory 54 is composed of, for example, a non-volatile memory, and stores a control program described later, a target output current value, and the like.
  • the CPU 52 detects the rotational speed of the engine 10 and its fluctuation based on the voltage value obtained by the A / D converter 53. Further, the CPU 52 executes an output current control process, which will be described later, according to a control program stored in the memory 54, and gives a trigger signal TR to the gate of the thyristor 7b via the I / O port 51, thereby controlling the phase angle of the thyristor 7b. I do.
  • the current output from the three-phase mixed bridge circuit 7 is controlled by controlling the timing of the trigger signal TR.
  • a battery 3 and an electric load 4 are connected between the positive power line L1 and the negative power line L2.
  • the current output from the three-phase mixed bridge circuit 7 is supplied to the battery 3 and the electric load 4. Thereby, the battery 3 is charged and the electric load 4 consumes power.
  • FIG. 3 is a waveform diagram showing a voltage at one node of the three-phase mixed bridge circuit 7.
  • FIG. 3 shows the voltage between the node Na and the negative power supply line L2. Note that the phases of the voltages between the nodes Na, Nb, and Nc of the three-phase mixed bridge circuit 7 and the negative power supply line L2 are shifted from each other by 120 °.
  • a voltage having a half-wave waveform appears at the node Na during the period from the time point t0 to the time point t3. Even during the period before the rising of the half-wave waveform, a voltage due to noise appears. Therefore, if the time when the voltage exceeds 0 is determined as the rising start time of the half-wave waveform, there is a possibility that the rising start time of the half-wave waveform is erroneously determined.
  • the time point t1 when the voltage of the node Na reaches a predetermined threshold value TH is determined as the rising start time of the half-wave waveform.
  • the threshold value TH is set to the lowest voltage value that the noise voltage value cannot reach. This prevents erroneous determination of the rising start time of the half-wave waveform.
  • the CPU 52 of the microcomputer 5 detects the time from the rise time t1 of one half-wave waveform to the rise time t1 of the next half-wave waveform as an AC voltage cycle. Further, the CPU 52 calculates the rotational speed of the rotor of the magneto generator 1 based on the detected period. Since the rotor of the magneto generator 1 rotates with the crankshaft of the engine 30, the rotational speed of the engine 30 is equal to the rotational speed of the rotor.
  • FIG. 4 is a waveform diagram of the trigger signal TR, the voltage for one phase of the three-phase mixed bridge circuit 7 and the current for one phase when the phase angle control of the thyristor 7b is performed.
  • FIG. 5 is a waveform diagram of the trigger signal TR, the voltage for one phase of the three-phase mixed bridge circuit 7, and the current for one phase when the phase angle control of the thyristor 7b is not performed.
  • phase of the voltages between the nodes Na, Nb, and Nc of the three-phase mixed bridge circuit 7 and the negative power supply line L2 are shifted from each other by 120 °.
  • the phases of the currents flowing through the nodes Na, Nb, and Nc of the three-phase mixed bridge circuit 7 are shifted from each other by 120 °.
  • the CPU 52 of the microcomputer 5 detects the rising start time t1 of the half-wave waveform of the AC voltage. Thereby, the CPU 52 calculates a timing at which the trigger signal TR should be raised based on a target output current value described later and the rotational speed of the engine 30. Thereafter, the CPU 52 raises the pulse of the trigger signal TR at the calculated timing. Thereby, the thyristor 7b is turned on, and a current flows through the diode 7a and the thyristor 7b. The thyristor 7b is turned off at the end point t3 of the half-wave waveform.
  • a certain time TA is required to calculate the timing at which the trigger signal TR should be raised. Therefore, the CPU 52 cannot raise the trigger signal TR before the time t2 when the fixed time TA has elapsed from the rising start time t0 of the actual half-wave waveform.
  • the CPU 52 can control the current flowing through the node Na by raising the trigger signal TR at an arbitrary time in the period from the time t2 to the end point t3 of the half-wave waveform. Thereby, a current of an arbitrary value can be supplied from the three-phase mixed bridge circuit 7 to the battery 3 and the electric load 4.
  • the current output from the three-phase mixed bridge circuit 7 becomes maximum.
  • the maximum value of the current output from the three-phase mixed bridge circuit 7 is referred to as the maximum output current value by the phase angle control.
  • the CPU 52 of the microcomputer 5 maintains the trigger signal TR at a high level.
  • the thyristor 7b maintains the on state for a period from the rising start time t0 to the falling end time t3 of the half-wave waveform.
  • a current flows through the diode 7a and the thyristor 7b during the half-wave waveform period.
  • the thyristor 7b is turned off at the end point t3 of the half-wave waveform.
  • the value of the current output from the three-phase mixed bridge circuit 7 when the phase angle control of the thyristor 7b is not performed is referred to as the maximum output current value of the power generation control device 2.
  • the maximum output current value of the power generation control device 2 is larger than the maximum output current value obtained by the phase angle control.
  • FIG. 6 is a diagram showing the relationship between the rotational speed of the magneto generator 1 and the output current from the three-phase mixed bridge circuit 7.
  • a solid line A indicates a change in the maximum output current value of the power generation control device 2
  • a dotted line B indicates a change in the maximum output current value by the phase angle control.
  • the output current from the three-phase mixed bridge circuit 7 increases as the rotational speed of the magneto generator 1 increases. Further, the maximum output current value by the phase angle control is smaller than the maximum output current value of the power generation control device 2. In particular, when the rotational speed of the magneto generator 1 is low, the maximum output current value by the phase angle control is significantly reduced.
  • the phase angle control of the thyristor 7b is performed according to the target output current value.
  • the phase angle control of the thyristor 7b is not performed. In that case, the maximum output current value of the power generation control device 2 is obtained from the three-phase mixed bridge circuit 7.
  • FIG. 7 is a flowchart showing an output current control process of the power generation control device 2 by the CPU 52 of the microcomputer 5.
  • performing the phase angle control of the thyristor 7b is referred to as turning on the phase angle control, and not performing the phase angle control of the thyristor 7b is referred to as turning off the phase angle control.
  • the target output current value is stored in the memory 54 in advance.
  • the target output current value is changed based on the state of the motorcycle 100, for example.
  • a plurality of target output current values are set corresponding to the state of the motorcycle 100.
  • the state of the motorcycle 100 is, for example, an idling state, an acceleration state, a deceleration state, and a constant speed state of the engine 30.
  • the state of the motorcycle 100 is not limited to these states.
  • the target output current value may be changed based on the charge state and the discharge state of the battery 3. For example, when the battery 3 is not sufficiently charged, when the battery 3 is deteriorated, or when the remaining power of the battery 3 is 0, the target output current value is changed to a high value.
  • These target output current values are set to current values required at least by the electric load 4. When the battery 3 is sufficiently charged, the target output current value is changed to a low value.
  • the CPU 52 of the microcomputer 5 acquires a target output current value from the memory 54 (step S1).
  • the CPU 52 of the microcomputer 5 detects the rotational speed of the magneto generator 1 based on the output voltage of the voltage dividing circuit 6 (step S2).
  • the CPU 52 detects the time from the rise start time t1 of one half-wave waveform to the rise start time t1 of the next half-wave waveform as the cycle of the AC voltage, and detects The rotational speed of the rotor of the magneto generator 1 is calculated based on the cycle.
  • the rotational speed of the magneto generator 1 is equal to the rotational speed of the engine 30.
  • the CPU 52 acquires the maximum output current value by the phase angle control based on the detected rotation speed of the magneto generator 1 (step S3).
  • the relationship between the rotation speed of the magneto generator 1 and the maximum output current value by phase angle control is stored in the memory 54 in advance.
  • the CPU 52 reads the maximum output current value corresponding to the detected rotation speed from the memory 54.
  • CPU52 may acquire the maximum output current value by phase angle control by substituting the detected rotational speed for the preset formula.
  • the CPU 52 determines whether or not the acquired target output current value is larger than the maximum output current value by the phase angle control (step S4).
  • the CPU 52 turns on phase angle control (step S5).
  • the CPU 52 calculates the timing to raise the trigger signal TR so that the value of the output current from the three-phase mixed bridge circuit 7 becomes equal to the target output current value. . Thereafter, the CPU 52 raises the trigger signal TR at the calculated timing within the period of each half-wave waveform.
  • the relationship between the rotational speed of the magneto generator 1 and the maximum output current value by phase angle control is stored in the memory 54 in advance.
  • the CPU 52 reads the maximum output current value by the phase angle control from the memory 54 based on the rotation speed, and calculates the timing for starting the trigger signal TR based on the ratio between the target output current value and the maximum output current value.
  • the timing at which the trigger signal TR is raised may be calculated by substituting the rotation speed of the magneto generator 1 and the target output current value into a preset calculation formula.
  • a current having a value equal to the target output current value is supplied from the three-phase mixed bridge circuit 7 to the battery 3 and the electric load 4.
  • the CPU 52 turns off the phase angle control (step S6). In this case, the CPU 52 maintains the trigger signal TR at a high level. Alternatively, the CPU 52 raises the trigger signal TR at the rising start time t1 of each half-wave waveform. As a result, a current equal to the maximum output current value of the power generation control device 2 is supplied from the three-phase mixed bridge circuit 7 to the battery 3 and the electric load 4.
  • the rotational speed of the engine 30 is high, a large output current can be obtained from the three-phase mixed bridge circuit 7.
  • the fuel consumption of the engine 30 can be improved by supplying an appropriate value of current from the three-phase mixed bridge circuit 7 to the battery 3 and the electrical load 4 by phase angle control, and the amount of carbon dioxide emitted Can be reduced.
  • the phase angle control of the thyristor 7b is not performed.
  • a current equal to the maximum output current value of the power generation control device 2 is output from the three-phase mixed bridge circuit 7. Therefore, the battery 3 and the electric load 4 can be supplied with a current equal to or close to the target output current value.
  • the maximum output current value by the phase angle control becomes remarkably small.
  • the battery 3 and the electric load 4 have a sufficient value as close to the target output current value as possible. A current can be supplied.
  • the value of the electric load and the current supplied to the battery 3 can be arbitrarily changed.
  • the output voltage of the magneto generator 1 is used to detect the rotational speed of the magneto generator 1, it is not necessary to add new parts. Therefore, an increase in manufacturing cost due to an increase in the number of parts can be avoided.
  • the flywheel magneto generator 1 is used as an example of an AC generator.
  • the present invention is not limited to this, and other magneto generators may be used.
  • an AC generator having a field winding may be used as the AC generator.
  • the three-phase mixed bridge circuit 7 including the diode 7a and the thyristor 7b is used as the rectifier circuit.
  • the present invention is not limited to this, and other rectifier circuits may be used.
  • various half-wave rectifier circuits and various full-wave rectifier circuits can be used as the rectifier circuit.
  • a transistor may be used as the switching element instead of the thyristor 7b.
  • control part is comprised by the microcomputer 5 and a control program, it is not limited to this, You may comprise a control part by a logic circuit.
  • a current sensor for detecting the output current value of the three-phase mixed bridge circuit 7 is provided so that the output current value of the three-phase mixed bridge circuit 7 becomes equal to the target output current value based on the current value detected by the current sensor.
  • the timing at which the trigger signal TR is raised may be feedback controlled.
  • the power generation control device 2 is applied to the scooter type motorcycle 100 as an example of transportation equipment, but is not limited to this.
  • the power generation control device 2 may be applied to a motorcycle other than the scooter type (for example, a saddle riding type motorcycle).
  • the power generation control device 2 can be applied to various transportation equipment such as an automatic tricycle, an automatic four-wheel vehicle, and a ship.
  • the power generation control device 2 can be applied to transportation equipment that does not have a battery. In this case, since the value of the load current largely fluctuates, it is effective to apply the power generation control device 2 described above.
  • the magneto generator 1 is an example of an AC generator or a magnet type AC generator
  • the three-phase mixed bridge circuit 7 is an example of a rectifier circuit or a bridge circuit
  • the microcomputer 5 is an example of a control unit.
  • the thyristor 7b is an example of a switching element.
  • the part of the motorcycle 100 excluding the power generation control device 2 and the rear wheel 39 is an example of the main body, and the rear wheel 39 is an example of the drive unit.
  • the present invention can be widely applied to power generation systems in various transportation equipment such as motorcycles, motor tricycles, motor four-wheeled vehicles, and ships.

Abstract

In microcomputers, the rotational speed of a magneto generator is calculated by detecting the starting time of the onset of the half waveform of the alternating voltage which is output from the magneto generator, and the maximum output current value of a hybrid bridge circuit with three phases produced by phase angle control is obtained on the basis of the calculated rotational speed. Furthermore, if the target output current value in microcomputers is at or below the maximum output current value of the hybrid bridge circuit with three phases produced by phase angle control, thyristor phase angle control is carried out in such a way that the output current value of the three-phase hybrid bridge circuit becomes equal to the target output current value. In addition, if the target output current value in microcomputers is greater than the maximum output current value of the hybrid bridge circuit with three phases produced by phase angle control, the thyristor is kept in the on state such that the output current value of the three-phase hybrid bridge circuit reaches a maximum.

Description

発電制御装置および輸送機器Power generation control device and transportation equipment
 本発明は、発電機の出力電流を制御する発電制御装置およびそれを備えた輸送機器に関する。 The present invention relates to a power generation control device that controls an output current of a generator and a transport device including the power generation control device.
 自動車等の車両に用いられる発電システムは、交流発電機およびレギュレータを有する(例えば特許文献1参照)。交流発電機は、エンジンにより駆動され、交流電流を発生する。レギュレータは、交流発電機により発生された交流電流を直流電流に変換して出力する。発電システムの出力電流は、ランプ等の電気負荷およびバッテリに供給される。それにより、電気負荷で電力が消費されるとともに、バッテリが充電される。 A power generation system used for a vehicle such as an automobile has an AC generator and a regulator (see, for example, Patent Document 1). The alternator is driven by the engine and generates an alternating current. The regulator converts an alternating current generated by the alternating current generator into a direct current and outputs the direct current. The output current of the power generation system is supplied to an electric load such as a lamp and a battery. Thereby, power is consumed by the electric load and the battery is charged.
 上記の発電システムでは、負荷電流の値またはバッテリの充放電の状態に応じて出力電流の値を変化させることができない。 In the above power generation system, the output current value cannot be changed according to the load current value or the state of charge / discharge of the battery.
 一方、特許文献2に記載された車両用の発電制御装置では、三相交流発電機の界磁巻線の界磁電流を制御することにより出力電流を制御することができる。
特開平6-86476号公報 特開2002-125329号公報
On the other hand, in the vehicle power generation control device described in Patent Document 2, the output current can be controlled by controlling the field current of the field winding of the three-phase AC generator.
JP-A-6-86476 JP 2002-125329 A
 一般に、自動二輪車のエンジンにより駆動される発電システムでは、磁石式三相交流発電機であるフライホイールマグネトウジェネレータが用いられる。フライホイールマグネトウジェネレータには、永久磁石が用いられる。そのため、界磁電流を制御することにより出力電流を制御することはできない。 Generally, in a power generation system driven by a motorcycle engine, a flywheel magneto generator, which is a magnetic three-phase AC generator, is used. A permanent magnet is used for the flywheel magneto generator. Therefore, the output current cannot be controlled by controlling the field current.
 本発明の目的は、エンジンにより駆動される交流発電機の出力電流を適切でかつ十分な値に制御することが可能な発電制御装置およびそれを備えた輸送機器を提供することである。 An object of the present invention is to provide a power generation control device capable of controlling an output current of an alternator driven by an engine to an appropriate and sufficient value, and a transport device including the power generation control device.
 (1)本発明の一局面に従う発電制御装置は、エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置であって、交流発電機から出力される交流電流を直流電流に変換する整流回路と、整流回路を制御する制御部とを備え、制御部は、目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値以下である場合に、整流回路の出力電流値が目標出力電流値に等しくなるように整流回路の位相角制御を行い、目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値よりも大きい場合に、整流回路の位相角制御を行わずに整流回路を最大の電流値が出力される状態に制御するものである。 (1) A power generation control device according to one aspect of the present invention is a power generation control device that controls an output current of an AC generator driven by an engine, and converts an AC current output from the AC generator into a DC current. A rectifier circuit and a control unit that controls the rectifier circuit, and the control unit outputs an output current value of the rectifier circuit when the target output current value is equal to or less than a maximum current value that can be output from the rectifier circuit by phase angle control. The phase angle control of the rectifier circuit is performed so that becomes equal to the target output current value. When the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, the phase angle control of the rectifier circuit The rectifier circuit is controlled to output a maximum current value without performing the above.
 その発電制御装置においては、エンジンにより交流発電機が駆動されることにより、交流発電機から交流電流が出力され、整流回路により交流電流が直流電流に変換される。 In the power generation control device, when the AC generator is driven by the engine, an AC current is output from the AC generator, and the AC current is converted into a DC current by the rectifier circuit.
 目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値以下である場合には、整流回路の出力電流値が目標出力電流値に等しくなるように制御部により整流回路の位相角制御が行われる。それにより、整流回路から目標出力電流値に等しい値の電流が出力される。したがって、負荷に適切な値の電流を供給することができる。 When the target output current value is equal to or less than the maximum current value that can be output from the rectifier circuit by phase angle control, the control unit causes the phase angle of the rectifier circuit to be equal to the target output current value. Control is performed. As a result, a current equal to the target output current value is output from the rectifier circuit. Therefore, a current having an appropriate value can be supplied to the load.
 目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値よりも大きい場合には、制御部により整流回路の位相角制御が行われずに整流回路が最大の電流値を出力する状態に制御される。それにより、位相角制御により整流回路から出力可能な最大の電流値よりも大きい値の電流が出力される。したがって、負荷に十分な値の電流を供給することができる。 When the target output current value is larger than the maximum current value that can be output from the rectifier circuit by phase angle control, the control unit does not perform phase angle control of the rectifier circuit and the rectifier circuit outputs the maximum current value Controlled. As a result, a current having a value larger than the maximum current value that can be output from the rectifier circuit by the phase angle control is output. Therefore, a sufficient current can be supplied to the load.
 さらに、目標出力電流値を任意に変更することにより、負荷に供給される出力電流の値を任意に変更することができる。 Furthermore, the value of the output current supplied to the load can be arbitrarily changed by arbitrarily changing the target output current value.
 (2)制御部は、交流発電機の回転速度に基づいて位相角制御により整流回路から出力可能な最大の電流値を決定してもよい。 (2) The control unit may determine the maximum current value that can be output from the rectifier circuit by phase angle control based on the rotational speed of the AC generator.
 位相角制御により整流回路から出力可能な最大の電流値は、交流発電機の回転速度に依存して変化する。この場合、位相角制御により整流回路から出力可能な最大の電流値が交流発電機の回転速度に基づいて決定されるので、整流回路の位相角制御が行われるべきか否かを適切に判定することができる。 The maximum current value that can be output from the rectifier circuit by phase angle control varies depending on the rotational speed of the AC generator. In this case, since the maximum current value that can be output from the rectifier circuit by the phase angle control is determined based on the rotational speed of the AC generator, it is appropriately determined whether or not the phase angle control of the rectifier circuit should be performed. be able to.
 (3)制御部は、交流発電機から出力される交流電圧に基づいて交流発電機の回転速度を検出してもよい。 (3) The control unit may detect the rotational speed of the AC generator based on the AC voltage output from the AC generator.
 この場合、交流発電機の回転速度を検出するために交流発電機から出力される交流電圧が用いられるので、新たな部品を追加する必要がない。そのため、部品点数の増加による製造コストの上昇を回避することができる。 In this case, since the AC voltage output from the AC generator is used to detect the rotational speed of the AC generator, it is not necessary to add new parts. Therefore, an increase in manufacturing cost due to an increase in the number of parts can be avoided.
 (4)制御部は、交流発電機から出力される交流電圧の各半波波形の立ち上がり開始時点に基づいて交流電圧の周期を算出し、算出された周期から交流発電機の回転速度を算出してもよい。 (4) The control unit calculates the cycle of the AC voltage based on the rising start time of each half-wave waveform of the AC voltage output from the AC generator, and calculates the rotation speed of the AC generator from the calculated cycle. May be.
 この場合、交流発電機から出力される交流電圧の各半波波形の立ち上がり開始時点を検出することにより交流発電機の回転速度を容易かつ正確に算出することができる。 In this case, the rotation speed of the AC generator can be calculated easily and accurately by detecting the rising start time of each half-wave waveform of the AC voltage output from the AC generator.
 (5)制御部は、交流発電機から出力される交流電圧が予め定められたしきい値に達した時点を各半波波形の立ち上がり開始時点と判定してもよい。 (5) The control unit may determine that the time when the AC voltage output from the AC generator has reached a predetermined threshold is the rising start time of each half-wave waveform.
 この場合、ノイズにより各半波波形の立ち上がり開始時点の判定誤差が生じることが防止される。したがって、交流発電機の回転速度を正確に算出することができる。 In this case, it is possible to prevent a determination error from occurring at the rising start time of each half-wave waveform due to noise. Therefore, the rotational speed of the AC generator can be accurately calculated.
 (6)制御部は、目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値以下である場合に、交流発電機から出力される交流電圧の各半波波形の立ち上がり開始時点で位相角制御における位相角の算出を開始してもよい。 (6) When the target output current value is equal to or less than the maximum current value that can be output from the rectifier circuit by phase angle control, the control unit starts rising of each half-wave waveform of the AC voltage output from the AC generator Thus, calculation of the phase angle in the phase angle control may be started.
 この場合、位相角制御により整流回路から出力可能な最大の電流値を十分に確保することができる。 In this case, the maximum current value that can be output from the rectifier circuit can be sufficiently secured by the phase angle control.
 (7)交流発電機は、永久磁石を有する磁石式交流発電機であってもよい。この場合においても、負荷に十分でかつ適切な電流を供給することが可能となる。 (7) The AC generator may be a magnet type AC generator having a permanent magnet. Even in this case, a sufficient and appropriate current can be supplied to the load.
 (8)整流回路は、複数のスイッチング素子を含むブリッジ回路を含み、制御部は、目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値以下である場合に、整流回路の出力電流値が目標出力電流値に等しくなるように複数のスイッチング素子の位相角制御を行い、目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値よりも大きい場合に、複数のスイッチング素子をオン状態に保ってもよい。 (8) The rectifier circuit includes a bridge circuit including a plurality of switching elements, and the control unit determines whether the target output current value is equal to or less than a maximum current value that can be output from the rectifier circuit by phase angle control. When the phase angle control of multiple switching elements is performed so that the output current value becomes equal to the target output current value, and the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, multiple These switching elements may be kept on.
 この場合、複数のスイッチング素子の位相角制御により整流回路の出力電流値が制御される。また、複数のスイッチング素子がオン状態に保たれることにより整流回路から最大の電流が出力される。 In this case, the output current value of the rectifier circuit is controlled by controlling the phase angle of the plurality of switching elements. Further, the maximum current is output from the rectifier circuit by maintaining the plurality of switching elements in the on state.
 (9)本発明の他の局面に従う輸送機器は、本体部と、本体部に設けられるエンジンと、エンジンの回転により本体部を移動させる駆動部と、エンジンの回転により駆動される交流発電機と、エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置とを備え、発電制御装置は、交流発電機から出力される交流電流を直流電流に変換する整流回路と、整流回路を制御する制御部とを備え、制御部は、目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値以下である場合に、整流回路の出力電流値が目標出力電流値に等しくなるように整流回路の位相角制御を行い、目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値よりも大きい場合に、整流回路の位相角制御を行わずに整流回路を最大の電流値が出力される状態に制御するものである。 (9) A transport device according to another aspect of the present invention includes a main body, an engine provided in the main body, a drive unit that moves the main body by rotation of the engine, and an AC generator that is driven by rotation of the engine. A generator control device that controls the output current of the AC generator driven by the engine, and the generator control device controls the rectifier circuit that converts the AC current output from the AC generator into a DC current, and the rectifier circuit A control unit that controls the output current value of the rectifier circuit to be equal to the target output current value when the target output current value is less than or equal to the maximum current value that can be output from the rectifier circuit by phase angle control. If the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, the rectifier circuit is controlled without performing the phase angle control of the rectifier circuit. And it controls the state of the current value of the atmospheric is output.
 その輸送機器においては、エンジンの回転により駆動部が本体部を移動させる。この場合、発電制御装置においては、エンジンにより交流発電機が駆動されることにより、交流発電機から交流電流が出力され、整流回路により交流電流が直流電流に変換される。 In the transport equipment, the drive unit moves the main unit by the rotation of the engine. In this case, in the power generation control device, when the AC generator is driven by the engine, an AC current is output from the AC generator, and the AC current is converted into a DC current by the rectifier circuit.
 目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値以下である場合には、整流回路の出力電流値が目標出力電流値に等しくなるように制御部により整流回路の位相角制御が行われる。それにより、整流回路から目標出力電流値に等しい値の電流が出力される。したがって、負荷に適切な値の電流を供給することができる。 When the target output current value is equal to or less than the maximum current value that can be output from the rectifier circuit by phase angle control, the control unit causes the phase angle of the rectifier circuit to be equal to the target output current value. Control is performed. As a result, a current equal to the target output current value is output from the rectifier circuit. Therefore, a current having an appropriate value can be supplied to the load.
 目標出力電流値が位相角制御により整流回路から出力可能な最大の電流値よりも大きい場合には、制御部により整流回路の位相角制御が行われずに整流回路が最大の電流値を出力する状態に制御される。それにより、位相角制御により整流回路から出力可能な最大の電流値よりも大きい値の電流が出力される。したがって、負荷に十分な値の電流を供給することができる。 When the target output current value is larger than the maximum current value that can be output from the rectifier circuit by phase angle control, the control unit does not perform phase angle control of the rectifier circuit and the rectifier circuit outputs the maximum current value Controlled. As a result, a current having a value larger than the maximum current value that can be output from the rectifier circuit by the phase angle control is output. Therefore, a sufficient current can be supplied to the load.
 さらに、目標出力電流値を任意に変更することにより、負荷に供給される出力電流の値を任意に変更することができる。 Furthermore, the value of the output current supplied to the load can be arbitrarily changed by arbitrarily changing the target output current value.
 本発明によれば、エンジンにより駆動される交流発電機の出力電流を適切でかつ十分な値に制御することが可能となる。 According to the present invention, it is possible to control the output current of the AC generator driven by the engine to an appropriate and sufficient value.
図1は本発明の一実施の形態に係る自動二輪車の側面図である。FIG. 1 is a side view of a motorcycle according to an embodiment of the present invention. 図2は本発明の一実施の形態に係る発電制御装置を備えた自動二輪車の電気系統の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of an electric system of the motorcycle including the power generation control device according to the embodiment of the present invention. 図3は三相混合ブリッジ回路の1つのノードの電圧を示す波形図である。FIG. 3 is a waveform diagram showing the voltage at one node of the three-phase mixed bridge circuit. 図4はサイリスタの位相角制御が行われる場合のトリガー信号、三相混合ブリッジ回路の1相分の電圧および1相分の電流の波形図である。FIG. 4 is a waveform diagram of the trigger signal, the voltage for one phase of the three-phase mixed bridge circuit, and the current for one phase when the phase angle control of the thyristor is performed. 図5はサイリスタの位相角制御が行われない場合のトリガー信号、三相混合ブリッジ回路の1相分の電圧および1相分の電流の波形図である。FIG. 5 is a waveform diagram of the trigger signal, the voltage for one phase of the three-phase mixed bridge circuit, and the current for one phase when the phase angle control of the thyristor is not performed. 図6はマグネトウジェネレータの回転速度と三相混合ブリッジ回路からの出力電流との関係を示す図である。FIG. 6 is a diagram showing the relationship between the rotational speed of the magneto generator and the output current from the three-phase mixed bridge circuit. 図7はマイクロコンピュータのCPUによる発電制御装置の出力電流制御処理を示すフローチャートである。FIG. 7 is a flowchart showing an output current control process of the power generation control device by the CPU of the microcomputer.
 以下、図面を参照しながら本発明の実施の形態について説明する。以下の実施の形態では、本発明に係る発電制御装置を輸送機器の一例としてスクータ型の自動二輪車に適用した場合について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a case where the power generation control device according to the present invention is applied to a scooter type motorcycle as an example of transportation equipment will be described.
 (1)実施の形態
 (1-1)発電制御装置および自動二輪車の構成
 図1は本発明の一実施の形態に係る自動二輪車の側面図である。図2は本発明の一実施の形態に係る発電制御装置を備えた自動二輪車の電気系統の構成を示すブロック図である。
(1) Embodiment (1-1) Configuration of Power Generation Control Device and Motorcycle FIG. 1 is a side view of a motorcycle according to an embodiment of the present invention. FIG. 2 is a block diagram showing a configuration of an electric system of the motorcycle including the power generation control device according to the embodiment of the present invention.
 図1に示す自動二輪車100においては、本体フレーム31の前端にヘッドパイプ32が設けられる。ヘッドパイプ32の上端にはハンドル33が設けられる。ヘッドパイプ32の下端にフロントフォーク34が取り付けられる。この状態で、フロントフォーク34は、ヘッドパイプ32の軸心を中心として所定の角度範囲内で回転可能となっている。フロントフォーク34の下端に前輪35が回転可能に支持される。 In the motorcycle 100 shown in FIG. 1, a head pipe 32 is provided at the front end of the main body frame 31. A handle 33 is provided at the upper end of the head pipe 32. A front fork 34 is attached to the lower end of the head pipe 32. In this state, the front fork 34 is rotatable within a predetermined angle range around the axis of the head pipe 32. A front wheel 35 is rotatably supported at the lower end of the front fork 34.
 本体フレーム31の中央部には、エンジン30が設けられる。エンジン30には、フライホイールマグネトウジェネレータ(以下、マグネトウジェネレータと略記する)1が取り付けられ、マグネトウジェネレータ1の近傍に発電制御装置2が設けられる。バッテリ3は、本体シート36の下部またはサイドカバー内に設けられる。 The engine 30 is provided at the center of the main body frame 31. The engine 30 is provided with a flywheel magneto generator (hereinafter abbreviated as magneto generator) 1, and a power generation control device 2 is provided in the vicinity of the magneto generator 1. The battery 3 is provided in the lower part of the main body sheet 36 or in the side cover.
 エンジン30の後方に延びるように、本体フレーム31にリアアーム37が接続される。リアアーム37は、後輪38および後輪ドリブンスプロケット39を回転可能に保持する。後輪ドリブンスプロケット39には、チェーン40が取り付けられる。 The rear arm 37 is connected to the main body frame 31 so as to extend to the rear of the engine 30. The rear arm 37 rotatably holds the rear wheel 38 and the rear wheel driven sprocket 39. A chain 40 is attached to the rear wheel driven sprocket 39.
 また、ヘッドパイプ32の前方にヘッドライト4aが取り付けられ、本体シート36の後方にテールライト4bが取り付けられる。 Further, the headlight 4a is attached to the front of the head pipe 32, and the taillight 4b is attached to the rear of the main body sheet 36.
 図2の電気系統は、マグネトウジェネレータ1、発電制御装置2、バッテリ3および電気負荷4を含む。電気負荷4は、例えば、図1のヘッドライト4a、テールライト4b、ブレーキランプ、およびウインカー等を含む。 2 includes a magneto generator 1, a power generation control device 2, a battery 3 and an electric load 4. The electric load 4 includes, for example, the headlight 4a, the taillight 4b, the brake lamp, and the blinker shown in FIG.
 マグネトウジェネレータ1は、磁石式三相交流発電機であり、ロータおよびステータを有する。ロータには永久磁石が取り付けられ、ステータにはステータコイル1a,1b,1cが設けられている。マグネトウジェネレータ1は、エンジン30(図1)のクランク軸とともにロータが回転することにより、ステータコイル1a~1cで発電を行い、交流電流を発生する。 The magneto generator 1 is a magnet type three-phase AC generator, and has a rotor and a stator. A permanent magnet is attached to the rotor, and stator coils 1a, 1b, and 1c are provided on the stator. The magneto generator 1 generates power with the stator coils 1a to 1c and generates an alternating current when the rotor rotates together with the crankshaft of the engine 30 (FIG. 1).
 発電制御装置2は、マイクロコンピュータ5、分圧回路6および三相混合ブリッジ回路7を含む。 The power generation control device 2 includes a microcomputer 5, a voltage dividing circuit 6, and a three-phase mixed bridge circuit 7.
 マグネトウジェネレータ1のステータコイル1a,1b,1cはノードNa,Nb,Ncに接続される。三相混合ブリッジ回路7は、3個のダイオード7aおよび3個のサイリスタ7bにより構成される。3個のダイオード7aは負側電源ラインL2とノードNa,Nb,Ncとの間にそれぞれ接続され、3個のサイリスタ7bは正側電源ラインL1とノードNa,Nb,Ncとの間にそれぞれ接続される。三相混合ブリッジ回路7は、マグネトウジェネレータ1により発生された交流電流を直流電流に変換する。分圧回路6は、ノードNa,Nb,Ncの交流電圧をそれぞれ分圧し、分圧された電圧をマイクロコンピュータ5に出力する。 The stator coils 1a, 1b, 1c of the magneto generator 1 are connected to the nodes Na, Nb, Nc. The three-phase mixed bridge circuit 7 includes three diodes 7a and three thyristors 7b. Three diodes 7a are connected between the negative power supply line L2 and the nodes Na, Nb, and Nc, respectively, and three thyristors 7b are connected between the positive power supply line L1 and the nodes Na, Nb, and Nc, respectively. Is done. The three-phase mixed bridge circuit 7 converts the alternating current generated by the magneto generator 1 into a direct current. The voltage dividing circuit 6 divides the alternating voltages of the nodes Na, Nb, and Nc, respectively, and outputs the divided voltages to the microcomputer 5.
 マイクロコンピュータ5は、I/O(入出力)ポート51、CPU(中央演算処理装置)52、A/D(アナログ/デジタル)変換器53およびメモリ54を含む。A/D変換器53は、分圧回路6の出力電圧をデジタルの電圧値に変換する。メモリ54は、例えば不揮発性メモリからなり、後述する制御プログラム、および目標出力電流値等を記憶する。 The microcomputer 5 includes an I / O (input / output) port 51, a CPU (central processing unit) 52, an A / D (analog / digital) converter 53, and a memory 54. The A / D converter 53 converts the output voltage of the voltage dividing circuit 6 into a digital voltage value. The memory 54 is composed of, for example, a non-volatile memory, and stores a control program described later, a target output current value, and the like.
 CPU52は、A/D変換器53により得られた電圧値に基づいてエンジン10の回転速度およびその変動を検出する。また、CPU52は、メモリ54に記憶される制御プログラムに従って後述する出力電流制御処理を実行し、I/Oポート51を介してサイリスタ7bのゲートにトリガー信号TRを与えることによりサイリスタ7bの位相角制御を行う。トリガー信号TRのタイミングが制御されることにより三相混合ブリッジ回路7から出力される電流が制御される。 The CPU 52 detects the rotational speed of the engine 10 and its fluctuation based on the voltage value obtained by the A / D converter 53. Further, the CPU 52 executes an output current control process, which will be described later, according to a control program stored in the memory 54, and gives a trigger signal TR to the gate of the thyristor 7b via the I / O port 51, thereby controlling the phase angle of the thyristor 7b. I do. The current output from the three-phase mixed bridge circuit 7 is controlled by controlling the timing of the trigger signal TR.
 正側電源ラインL1と負側電源ラインL2との間にはバッテリ3および電気負荷4が接続される。三相混合ブリッジ回路7から出力される電流は、バッテリ3および電気負荷4に供給される。それにより、バッテリ3が充電されるとともに、電気負荷4で電力が消費される。 A battery 3 and an electric load 4 are connected between the positive power line L1 and the negative power line L2. The current output from the three-phase mixed bridge circuit 7 is supplied to the battery 3 and the electric load 4. Thereby, the battery 3 is charged and the electric load 4 consumes power.
 (1-2)発電制御装置2の動作
 次に、本実施の形態に係る発電制御装置2の動作について説明する。図3は三相混合ブリッジ回路7の1つのノードの電圧を示す波形図である。図3には、ノードNaと負側電源ラインL2との間の電圧が示される。なお、三相混合ブリッジ回路7のノードNa,Nb,Ncと負側電源ラインL2との間の電圧の位相は互いに120°ずれている。
(1-2) Operation of Power Generation Control Device 2 Next, the operation of the power generation control device 2 according to the present embodiment will be described. FIG. 3 is a waveform diagram showing a voltage at one node of the three-phase mixed bridge circuit 7. FIG. 3 shows the voltage between the node Na and the negative power supply line L2. Note that the phases of the voltages between the nodes Na, Nb, and Nc of the three-phase mixed bridge circuit 7 and the negative power supply line L2 are shifted from each other by 120 °.
 図3に示すように、時点t0から時点t3までの期間にノードNaに半波波形の電圧が現れる。半波波形の立ち上がり前の期間においても、ノイズによる電圧が現れる。そのため、電圧が0を超えた時点を半波波形の立ち上がり開始時点と判定すると、半波波形の立ち上がり開始時点を誤判定する可能性がある。 As shown in FIG. 3, a voltage having a half-wave waveform appears at the node Na during the period from the time point t0 to the time point t3. Even during the period before the rising of the half-wave waveform, a voltage due to noise appears. Therefore, if the time when the voltage exceeds 0 is determined as the rising start time of the half-wave waveform, there is a possibility that the rising start time of the half-wave waveform is erroneously determined.
 そこで、ノードNaの電圧が予め定められたしきい値THに達した時点t1を半波波形の立ち上がり開始時点と判定する。ここで、しきい値THは、ノイズの電圧値が達し得ない最低の電圧値に設定される。これにより、半波波形の立ち上がり開始時点を誤判定することが防止される。 Therefore, the time point t1 when the voltage of the node Na reaches a predetermined threshold value TH is determined as the rising start time of the half-wave waveform. Here, the threshold value TH is set to the lowest voltage value that the noise voltage value cannot reach. This prevents erroneous determination of the rising start time of the half-wave waveform.
 マイクロコンピュータ5のCPU52は、1つの半波波形の立ち上がり時点t1から次の半波波形の立ち上がり時点t1までの時間を交流電圧の周期として検出する。さらに、CPU52は、検出された周期に基づいてマグネトウジェネレータ1のロータの回転速度を算出する。マグネトウジェネレータ1のロータはエンジン30のクランク軸とともに回転するので、エンジン30の回転速度はロータの回転速度に等しい。 The CPU 52 of the microcomputer 5 detects the time from the rise time t1 of one half-wave waveform to the rise time t1 of the next half-wave waveform as an AC voltage cycle. Further, the CPU 52 calculates the rotational speed of the rotor of the magneto generator 1 based on the detected period. Since the rotor of the magneto generator 1 rotates with the crankshaft of the engine 30, the rotational speed of the engine 30 is equal to the rotational speed of the rotor.
 図4はサイリスタ7bの位相角制御が行われる場合のトリガー信号TR、三相混合ブリッジ回路7の1相分の電圧および1相分の電流の波形図である。図5はサイリスタ7bの位相角制御が行われない場合のトリガー信号TR、三相混合ブリッジ回路7の1相分の電圧および1相分の電流の波形図である。 FIG. 4 is a waveform diagram of the trigger signal TR, the voltage for one phase of the three-phase mixed bridge circuit 7 and the current for one phase when the phase angle control of the thyristor 7b is performed. FIG. 5 is a waveform diagram of the trigger signal TR, the voltage for one phase of the three-phase mixed bridge circuit 7, and the current for one phase when the phase angle control of the thyristor 7b is not performed.
 図4および図5には、1つのサイリスタ7bに与えられるトリガー信号TR、三相混合ブリッジ回路7の1つのノードNaと負側電源ラインL2との間の電圧、および三相混合ブリッジ回路7の1つのノードNaに流れる電流が示される。 4 and 5, the trigger signal TR applied to one thyristor 7b, the voltage between one node Na of the three-phase mixed bridge circuit 7 and the negative power supply line L2, and the three-phase mixed bridge circuit 7 A current flowing through one node Na is shown.
 なお、三相混合ブリッジ回路7のノードNa,Nb,Ncと負側電源ラインL2との間の電圧の位相は互いに120°ずれている。また、三相混合ブリッジ回路7のノードNa,Nb,Ncに流れる電流の位相は互いに120°ずれている。 Note that the phases of the voltages between the nodes Na, Nb, and Nc of the three-phase mixed bridge circuit 7 and the negative power supply line L2 are shifted from each other by 120 °. The phases of the currents flowing through the nodes Na, Nb, and Nc of the three-phase mixed bridge circuit 7 are shifted from each other by 120 °.
 図4に示すように、サイリスタ7bの位相角制御が行われる場合、マイクロコンピュータ5のCPU52は、交流電圧の半波波形の立ち上がり開始時点t1を検出する。それにより、CPU52は、後述する目標出力電流値およびエンジン30の回転速度に基づいてトリガー信号TRを立ち上げるべきタイミングを算出する。その後、CPU52は、算出されたタイミングでトリガー信号TRのパルスを立ち上げる。それにより、サイリスタ7bがオンし、ダイオード7aおよびサイリスタ7bに電流が流れる。半波波形の立ち下がり終了時点t3でサイリスタ7bがオフする。 As shown in FIG. 4, when the phase angle control of the thyristor 7b is performed, the CPU 52 of the microcomputer 5 detects the rising start time t1 of the half-wave waveform of the AC voltage. Thereby, the CPU 52 calculates a timing at which the trigger signal TR should be raised based on a target output current value described later and the rotational speed of the engine 30. Thereafter, the CPU 52 raises the pulse of the trigger signal TR at the calculated timing. Thereby, the thyristor 7b is turned on, and a current flows through the diode 7a and the thyristor 7b. The thyristor 7b is turned off at the end point t3 of the half-wave waveform.
 この場合、トリガー信号TRを立ち上げるべきタイミングを算出するために一定時間TAを要する。したがって、CPU52は、実際の半波波形の立ち上がり開始時点t0から一定時間TAを経過した時点t2よりも前にトリガー信号TRを立ち上げることができない。CPU52は、時点t2から半波波形の立ち下がり終了時点t3までの期間において任意の時点でトリガー信号TRを立ち上げることにより、ノードNaに流れる電流を制御することができる。それにより、三相混合ブリッジ回路7からバッテリ3および電気負荷4に任意の値の電流を供給することができる。 In this case, a certain time TA is required to calculate the timing at which the trigger signal TR should be raised. Therefore, the CPU 52 cannot raise the trigger signal TR before the time t2 when the fixed time TA has elapsed from the rising start time t0 of the actual half-wave waveform. The CPU 52 can control the current flowing through the node Na by raising the trigger signal TR at an arbitrary time in the period from the time t2 to the end point t3 of the half-wave waveform. Thereby, a current of an arbitrary value can be supplied from the three-phase mixed bridge circuit 7 to the battery 3 and the electric load 4.
 図4に示すように、トリガー信号TRが時点t2で立ち上がる場合に、三相混合ブリッジ回路7から出力される電流が最大となる。サイリスタ7bの位相角制御が行われる場合において三相混合ブリッジ回路7から出力される電流の最大値を位相角制御による最大出力電流値と呼ぶ。 As shown in FIG. 4, when the trigger signal TR rises at time t2, the current output from the three-phase mixed bridge circuit 7 becomes maximum. When the phase angle control of the thyristor 7b is performed, the maximum value of the current output from the three-phase mixed bridge circuit 7 is referred to as the maximum output current value by the phase angle control.
 一方、図5に示すように、サイリスタ7bの位相角制御が行われない場合、マイクロコンピュータ5のCPU52は、トリガー信号TRをハイレベルに維持する。この場合、サイリスタ7bは半波波形の立ち上がりの開始時点t0から立ち下がり終了時点t3までの期間オン状態を維持する。それにより、半波波形の期間、ダイオード7aおよびサイリスタ7bに電流が流れる。半波波形の立ち下がり終了時点t3でサイリスタ7bはオフする。 On the other hand, as shown in FIG. 5, when the phase angle control of the thyristor 7b is not performed, the CPU 52 of the microcomputer 5 maintains the trigger signal TR at a high level. In this case, the thyristor 7b maintains the on state for a period from the rising start time t0 to the falling end time t3 of the half-wave waveform. Thereby, a current flows through the diode 7a and the thyristor 7b during the half-wave waveform period. The thyristor 7b is turned off at the end point t3 of the half-wave waveform.
 サイリスタ7bの位相角制御が行われない場合において三相混合ブリッジ回路7から出力される電流の値を発電制御装置2の最大出力電流値と呼ぶ。発電制御装置2の最大出力電流値は、位相角制御による最大出力電流値よりも大きい。 The value of the current output from the three-phase mixed bridge circuit 7 when the phase angle control of the thyristor 7b is not performed is referred to as the maximum output current value of the power generation control device 2. The maximum output current value of the power generation control device 2 is larger than the maximum output current value obtained by the phase angle control.
 図6はマグネトウジェネレータ1の回転速度と三相混合ブリッジ回路7からの出力電流との関係を示す図である。図6において、実線Aは発電制御装置2の最大出力電流値の変化を示し、点線Bは位相角制御による最大出力電流値の変化を示す。 FIG. 6 is a diagram showing the relationship between the rotational speed of the magneto generator 1 and the output current from the three-phase mixed bridge circuit 7. In FIG. 6, a solid line A indicates a change in the maximum output current value of the power generation control device 2, and a dotted line B indicates a change in the maximum output current value by the phase angle control.
 図6に示すように、三相混合ブリッジ回路7からの出力電流は、マグネトウジェネレータ1の回転速度の増加に従って増加する。また、位相角制御による最大出力電流値は、発電制御装置2の最大出力電流値よりも小さい。特に、マグネトウジェネレータ1の回転速度が低い場合には、位相角制御による最大出力電流値が顕著に低下する。 As shown in FIG. 6, the output current from the three-phase mixed bridge circuit 7 increases as the rotational speed of the magneto generator 1 increases. Further, the maximum output current value by the phase angle control is smaller than the maximum output current value of the power generation control device 2. In particular, when the rotational speed of the magneto generator 1 is low, the maximum output current value by the phase angle control is significantly reduced.
 本実施の形態では、目標出力電流値が位相角制御による最大出力電流値以下である場合には、目標出力電流値に従ってサイリスタ7bの位相角制御が行われる。一方、目標出力電流値が位相角制御による最大出力電流値よりも大きい場合には、サイリスタ7bの位相角制御が行われない。その場合、三相混合ブリッジ回路7からは発電制御装置2の最大出力電流値が得られる。 In this embodiment, when the target output current value is equal to or less than the maximum output current value by the phase angle control, the phase angle control of the thyristor 7b is performed according to the target output current value. On the other hand, when the target output current value is larger than the maximum output current value by the phase angle control, the phase angle control of the thyristor 7b is not performed. In that case, the maximum output current value of the power generation control device 2 is obtained from the three-phase mixed bridge circuit 7.
 図7はマイクロコンピュータ5のCPU52による発電制御装置2の出力電流制御処理を示すフローチャートである。 FIG. 7 is a flowchart showing an output current control process of the power generation control device 2 by the CPU 52 of the microcomputer 5.
 以下の説明では、サイリスタ7bの位相角制御を行うことを位相角制御をオンすると称し、サイリスタ7bの位相角制御を行わないことを位相角制御をオフすると称する。 In the following description, performing the phase angle control of the thyristor 7b is referred to as turning on the phase angle control, and not performing the phase angle control of the thyristor 7b is referred to as turning off the phase angle control.
 ここで、目標出力電流値は、メモリ54に予め記憶されている。目標出力電流値は、例えば自動二輪車100の状態に基づいて変更される。この場合、複数の目標出力電流値が自動二輪車100の状態に対応して設定される。自動二輪車100の状態とは、例えばエンジン30のアイドリング状態、加速状態、減速状態および定速状態である。自動二輪車100の状態はこれらの状態に限定されない。あるいは、目標出力電流値がバッテリ3の充電状態および放電状態に基づいて変更されてもよい。例えば、バッテリ3が十分に充電されていない場合、バッテリ3が劣化している場合、またはバッテリ3の電力残量が0の場合には、目標出力電流値が高い値に変更される。これらの目標出力電流値は、少なくとも電気負荷4で必要な電流値に設定される。バッテリ3が十分に充電されている場合には、目標出力電流値が低い値に変更される。 Here, the target output current value is stored in the memory 54 in advance. The target output current value is changed based on the state of the motorcycle 100, for example. In this case, a plurality of target output current values are set corresponding to the state of the motorcycle 100. The state of the motorcycle 100 is, for example, an idling state, an acceleration state, a deceleration state, and a constant speed state of the engine 30. The state of the motorcycle 100 is not limited to these states. Alternatively, the target output current value may be changed based on the charge state and the discharge state of the battery 3. For example, when the battery 3 is not sufficiently charged, when the battery 3 is deteriorated, or when the remaining power of the battery 3 is 0, the target output current value is changed to a high value. These target output current values are set to current values required at least by the electric load 4. When the battery 3 is sufficiently charged, the target output current value is changed to a low value.
 まず、マイクロコンピュータ5のCPU52は、メモリ54から目標出力電流値を取得する(ステップS1)。 First, the CPU 52 of the microcomputer 5 acquires a target output current value from the memory 54 (step S1).
 次に、マイクロコンピュータ5のCPU52は、分圧回路6の出力電圧に基づいてマグネトウジェネレータ1の回転速度を検出する(ステップS2)。この場合、CPU52は、図3を用いて説明したように、1つの半波波形の立ち上がり開始時点t1から次の半波波形の立ち上がり開始時点t1までの時間を交流電圧の周期として検出し、検出された周期に基づいてマグネトウジェネレータ1のロータの回転速度を算出する。マグネトウジェネレータ1の回転速度はエンジン30の回転速度に等しい。 Next, the CPU 52 of the microcomputer 5 detects the rotational speed of the magneto generator 1 based on the output voltage of the voltage dividing circuit 6 (step S2). In this case, as described with reference to FIG. 3, the CPU 52 detects the time from the rise start time t1 of one half-wave waveform to the rise start time t1 of the next half-wave waveform as the cycle of the AC voltage, and detects The rotational speed of the rotor of the magneto generator 1 is calculated based on the cycle. The rotational speed of the magneto generator 1 is equal to the rotational speed of the engine 30.
 さらに、CPU52は、検出されたマグネトウジェネレータ1の回転速度に基づいて位相角制御による最大出力電流値を取得する(ステップS3)。マグネトウジェネレータ1の回転速度と位相角制御による最大出力電流値との関係は、予めメモリ54に記憶される。この場合、CPU52は、検出された回転速度に対応する最大出力電流値をメモリ54から読み出す。あるいは、CPU52は、検出された回転速度を予め設定された計算式に代入することにより、位相角制御による最大出力電流値を取得してもよい。 Further, the CPU 52 acquires the maximum output current value by the phase angle control based on the detected rotation speed of the magneto generator 1 (step S3). The relationship between the rotation speed of the magneto generator 1 and the maximum output current value by phase angle control is stored in the memory 54 in advance. In this case, the CPU 52 reads the maximum output current value corresponding to the detected rotation speed from the memory 54. Or CPU52 may acquire the maximum output current value by phase angle control by substituting the detected rotational speed for the preset formula.
 次に、CPU52は、取得した目標出力電流値が位相角制御による最大出力電流値よりも大きいか否かを判定する(ステップS4)。 Next, the CPU 52 determines whether or not the acquired target output current value is larger than the maximum output current value by the phase angle control (step S4).
 目標出力電流値が位相角制御による最大出力電流値以下である場合には、CPU52は位相角制御をオンにする(ステップS5)。この場合、CPU52は、半波波形の立ち上がり開始時点t1を検出すると、三相混合ブリッジ回路7からの出力電流の値が目標出力電流値に等しくなるようにトリガー信号TRを立ち上げるタイミングを算出する。その後、CPU52は、各半波波形の期間内で、算出されたタイミングでトリガー信号TRを立ち上げる。 When the target output current value is less than or equal to the maximum output current value by phase angle control, the CPU 52 turns on phase angle control (step S5). In this case, when detecting the rising start time t1 of the half-wave waveform, the CPU 52 calculates the timing to raise the trigger signal TR so that the value of the output current from the three-phase mixed bridge circuit 7 becomes equal to the target output current value. . Thereafter, the CPU 52 raises the trigger signal TR at the calculated timing within the period of each half-wave waveform.
 例えば、マグネトウジェネレータ1の回転速度と位相角制御による最大出力電流値との関係が予めメモリ54に記憶される。この場合、CPU52は、回転速度に基づいてメモリ54から位相角制御による最大出力電流値を読み出し、目標出力電流値と最大出力電流値との比に基づいてトリガー信号TRを立ち上げるタイミングを算出する。あるいは、マグネトウジェネレータ1の回転速度および目標出力電流値を予め設定された計算式に代入することによりトリガー信号TRを立ち上げるタイミングを算出してもよい。 For example, the relationship between the rotational speed of the magneto generator 1 and the maximum output current value by phase angle control is stored in the memory 54 in advance. In this case, the CPU 52 reads the maximum output current value by the phase angle control from the memory 54 based on the rotation speed, and calculates the timing for starting the trigger signal TR based on the ratio between the target output current value and the maximum output current value. . Alternatively, the timing at which the trigger signal TR is raised may be calculated by substituting the rotation speed of the magneto generator 1 and the target output current value into a preset calculation formula.
 これにより、三相混合ブリッジ回路7からバッテリ3および電気負荷4に目標出力電流値に等しい値の電流が供給される。 Thus, a current having a value equal to the target output current value is supplied from the three-phase mixed bridge circuit 7 to the battery 3 and the electric load 4.
 ステップS4で目標出力電流値が位相角制御による最大出力電流値よりも大きい場合には、CPU52は位相角制御をオフにする(ステップS6)。この場合、CPU52は、トリガー信号TRをハイレベルに維持する。あるいは、CPU52は、各半波波形の立ち上がり開始時点t1でトリガー信号TRを立ち上げる。それにより、三相混合ブリッジ回路7からバッテリ3および電気負荷4に発電制御装置2の最大出力電流値に等しい電流が供給される。 When the target output current value is larger than the maximum output current value by the phase angle control in step S4, the CPU 52 turns off the phase angle control (step S6). In this case, the CPU 52 maintains the trigger signal TR at a high level. Alternatively, the CPU 52 raises the trigger signal TR at the rising start time t1 of each half-wave waveform. As a result, a current equal to the maximum output current value of the power generation control device 2 is supplied from the three-phase mixed bridge circuit 7 to the battery 3 and the electric load 4.
 (1-3)発電制御装置2の効果
 本実施の形態に係る発電制御装置2によれば、目標出力電流値が位相角制御による最大出力電流値以下である場合にはサイリスタ7bの位相角制御が行われる。それにより、三相混合ブリッジ回路7から目標出力電流値に等しい値の電流が出力される。したがって、バッテリ3および電気負荷4に目標出力電流値に等しい値の電流を供給することができる。
(1-3) Effects of the power generation control device 2 According to the power generation control device 2 according to the present embodiment, when the target output current value is equal to or smaller than the maximum output current value by the phase angle control, the phase angle control of the thyristor 7b. Is done. As a result, a current having a value equal to the target output current value is output from the three-phase mixed bridge circuit 7. Therefore, a current equal to the target output current value can be supplied to the battery 3 and the electric load 4.
 特に、エンジン30の回転速度が高い場合には、三相混合ブリッジ回路7から大きな出力電流を得ることができる。この場合には、位相角制御により三相混合ブリッジ回路7からバッテリ3および電気負荷4に適切な値の電流を供給することによりエンジン30の燃費を向上させることができるとともに、二酸化炭素の排出量を低減することができる。 Particularly, when the rotational speed of the engine 30 is high, a large output current can be obtained from the three-phase mixed bridge circuit 7. In this case, the fuel consumption of the engine 30 can be improved by supplying an appropriate value of current from the three-phase mixed bridge circuit 7 to the battery 3 and the electrical load 4 by phase angle control, and the amount of carbon dioxide emitted Can be reduced.
 また、目標出力電流値が位相角制御による最大出力電流値よりも大きい場合にはサイリスタ7bの位相角制御が行われない。それにより、三相混合ブリッジ回路7から発電制御装置2の最大出力電流値に等しい値の電流が出力される。したがって、バッテリ3および電気負荷4に目標出力電流値に等しいかまたは近い値の電流を供給することができる。 Further, when the target output current value is larger than the maximum output current value by the phase angle control, the phase angle control of the thyristor 7b is not performed. As a result, a current equal to the maximum output current value of the power generation control device 2 is output from the three-phase mixed bridge circuit 7. Therefore, the battery 3 and the electric load 4 can be supplied with a current equal to or close to the target output current value.
 特に、エンジン30の回転速度が低い場合には、位相角制御による最大出力電流値が著しく小さくなる。この場合、三相混合ブリッジ回路7から発電制御装置2の最大出力電流値に等しい値の電流が出力されるので、バッテリ3および電気負荷4に可能な限り目標出力電流値に近い十分な値の電流を供給することができる。 Especially, when the rotational speed of the engine 30 is low, the maximum output current value by the phase angle control becomes remarkably small. In this case, since a current having a value equal to the maximum output current value of the power generation control device 2 is output from the three-phase mixed bridge circuit 7, the battery 3 and the electric load 4 have a sufficient value as close to the target output current value as possible. A current can be supplied.
 さらに、自動二輪車100の状態またはバッテリ3の状態等に基づいて目標出力電流値を任意に変更することにより、電気負荷およびバッテリ3に供給される電流の値を任意に変更することができる。 Further, by arbitrarily changing the target output current value based on the state of the motorcycle 100 or the state of the battery 3, the value of the electric load and the current supplied to the battery 3 can be arbitrarily changed.
 また、マグネトウジェネレータ1の回転速度を検出するために、マグネトウジェネレータ1の出力電圧を用いているので、新たな部品を追加する必要がない。そのため、部品点数の増加による製造コストの上昇を回避することが可能となる。 Moreover, since the output voltage of the magneto generator 1 is used to detect the rotational speed of the magneto generator 1, it is not necessary to add new parts. Therefore, an increase in manufacturing cost due to an increase in the number of parts can be avoided.
 (2)他の実施の形態
 上記実施の形態では、交流発電機の一例としてフライホイールマグネトウジェネレータ1が用いられるが、これに限定されず、他のマグネトウジェネレータを用いてもよい。例えば、交流発電機として界磁巻線を有する交流発電機を用いてもよい。
(2) Other Embodiments In the above embodiment, the flywheel magneto generator 1 is used as an example of an AC generator. However, the present invention is not limited to this, and other magneto generators may be used. For example, an AC generator having a field winding may be used as the AC generator.
 また、上記実施の形態では、整流回路としてダイオード7aおよびサイリスタ7bにより構成される三相混合ブリッジ回路7が用いられているが、これに限定されず、他の整流回路を用いてもよい。例えば、整流回路としては種々の半波整流回路および種々の全波整流回路を用いることができる。また、スイッチング素子としてサイリスタ7bの代わりにトランジスタを用いることもできる。 In the above embodiment, the three-phase mixed bridge circuit 7 including the diode 7a and the thyristor 7b is used as the rectifier circuit. However, the present invention is not limited to this, and other rectifier circuits may be used. For example, various half-wave rectifier circuits and various full-wave rectifier circuits can be used as the rectifier circuit. A transistor may be used as the switching element instead of the thyristor 7b.
 さらに、上記実施の形態では、制御部がマイクロコンピュータ5および制御プログラムにより構成されるが、これに限定されず、制御部を論理回路により構成してもよい。 Furthermore, in the said embodiment, although a control part is comprised by the microcomputer 5 and a control program, it is not limited to this, You may comprise a control part by a logic circuit.
 また、三相混合ブリッジ回路7の出力電流値を検出する電流センサを設け、電流センサにより検出される電流値に基づいて三相混合ブリッジ回路7の出力電流値が目標出力電流値に等しくなるようにトリガー信号TRを立ち上げるタイミングをフィードバック制御してもよい。 Also, a current sensor for detecting the output current value of the three-phase mixed bridge circuit 7 is provided so that the output current value of the three-phase mixed bridge circuit 7 becomes equal to the target output current value based on the current value detected by the current sensor. The timing at which the trigger signal TR is raised may be feedback controlled.
 上記の実施の形態では、発電制御装置2を輸送機器の一例としてスクータ型の自動二輪車100に適用しているが、これに限定されない。発電制御装置2をスクータ型以外の形式の自動二輪車(例えば、鞍乗型自動二輪車)に適用してもよい。 In the above-described embodiment, the power generation control device 2 is applied to the scooter type motorcycle 100 as an example of transportation equipment, but is not limited to this. The power generation control device 2 may be applied to a motorcycle other than the scooter type (for example, a saddle riding type motorcycle).
 また、発電制御装置2は自動三輪車、自動四輪車、および船舶等の種々の輸送機器に適用することも可能である。 Also, the power generation control device 2 can be applied to various transportation equipment such as an automatic tricycle, an automatic four-wheel vehicle, and a ship.
 さらに、発電制御装置2はバッテリを有しない輸送機器に適用することも可能である。この場合には、負荷電流の値が大きく変動するため、上記の発電制御装置2を適用することは有効である。 Furthermore, the power generation control device 2 can be applied to transportation equipment that does not have a battery. In this case, since the value of the load current largely fluctuates, it is effective to apply the power generation control device 2 described above.
 (3)請求項の各構成要素と実施の形態の各構成要素との対応の対応
 以下、請求項の各構成要素と実施の形態の各構成要素との対応の例について説明するが、本発明は下記の例に限定されない。
(3) Correspondence Correspondence between Each Component in Claim and Each Component in Embodiment The following describes an example of correspondence between each component in the claim and each component in the embodiment. Is not limited to the following examples.
 上記実施の形態では、マグネトウジェネレータ1が交流発電機または磁石式交流発電機の例であり、三相混合ブリッジ回路7が整流回路またはブリッジ回路の例であり、マイクロコンピュータ5が制御部の例であり、サイリスタ7bがスイッチング素子の例である。 In the above embodiment, the magneto generator 1 is an example of an AC generator or a magnet type AC generator, the three-phase mixed bridge circuit 7 is an example of a rectifier circuit or a bridge circuit, and the microcomputer 5 is an example of a control unit. The thyristor 7b is an example of a switching element.
 さらに、発電制御装置2および後輪39を除く自動二輪車100の部分が本体部の例であり、後輪39が駆動部の例である。 Further, the part of the motorcycle 100 excluding the power generation control device 2 and the rear wheel 39 is an example of the main body, and the rear wheel 39 is an example of the drive unit.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の構成要素を用いることもできる。 As each constituent element in the claims, various other constituent elements having configurations or functions described in the claims can be used.
 本発明は、自動二輪車、自動三輪車、自動四輪車、または船舶等の種々の輸送機器における発電システムに広く適用することができる。 The present invention can be widely applied to power generation systems in various transportation equipment such as motorcycles, motor tricycles, motor four-wheeled vehicles, and ships.

Claims (9)

  1. エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置であって、
     前記交流発電機から出力される交流電流を直流電流に変換する整流回路と、
     前記整流回路を制御する制御部とを備え、
     前記制御部は、前記目標出力電流値が前記位相角制御により前記整流回路から出力可能な最大の電流値以下である場合に、前記整流回路の出力電流値が前記目標出力電流値に等しくなるように前記整流回路の位相角制御を行い、前記目標出力電流値が前記位相角制御により前記整流回路から出力可能な最大の電流値よりも大きい場合に、前記整流回路の位相角制御を行わずに前記整流回路を最大の電流値が出力される状態に制御する、発電制御装置。
    A power generation control device for controlling an output current of an AC generator driven by an engine,
    A rectifier circuit for converting alternating current output from the alternating current generator into direct current;
    A control unit for controlling the rectifier circuit,
    The control unit is configured to make the output current value of the rectifier circuit equal to the target output current value when the target output current value is equal to or less than a maximum current value that can be output from the rectifier circuit by the phase angle control. When the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, the phase angle control of the rectifier circuit is not performed. A power generation control device that controls the rectifier circuit to a state in which a maximum current value is output.
  2. 前記制御部は、前記交流発電機の回転速度に基づいて前記位相角制御により前記整流回路から出力可能な最大の電流値を決定する、請求項1記載の発電制御装置。 The power generation control device according to claim 1, wherein the control unit determines a maximum current value that can be output from the rectifier circuit by the phase angle control based on a rotation speed of the AC generator.
  3. 前記制御部は、前記交流発電機から出力される交流電圧に基づいて前記交流発電機の回転速度を検出する、請求項2記載の発電制御装置。 The power generation control device according to claim 2, wherein the control unit detects a rotation speed of the AC generator based on an AC voltage output from the AC generator.
  4. 前記制御部は、前記交流発電機から出力される交流電圧の各半波波形の立ち上がり開始時点に基づいて交流電圧の周期を算出し、算出された周期から前記交流発電機の回転速度を算出する、請求項3記載の発電制御装置。 The control unit calculates a cycle of the AC voltage based on a rising start time of each half-wave waveform of the AC voltage output from the AC generator, and calculates a rotation speed of the AC generator from the calculated cycle. The power generation control device according to claim 3.
  5. 前記制御部は、前記交流発電機から出力される交流電圧が予め定められたしきい値に達した時点を各半波波形の立ち上がり開始時点と判定する、請求項4記載の発電制御装置。 5. The power generation control device according to claim 4, wherein the control unit determines that a time point at which an AC voltage output from the AC generator has reached a predetermined threshold is a rising start time of each half-wave waveform.
  6. 前記制御部は、前記目標出力電流値が前記位相角制御により前記整流回路から出力可能な最大の電流値以下である場合に、前記交流発電機から出力される交流電圧の各半波波形の立ち上がり開始時点で位相角制御における位相角の算出を開始する、請求項5記載の発電制御装置。 The control unit, when the target output current value is equal to or less than the maximum current value that can be output from the rectifier circuit by the phase angle control, rise of each half-wave waveform of the AC voltage output from the AC generator The power generation control device according to claim 5, wherein calculation of the phase angle in the phase angle control is started at the start time.
  7. 前記交流発電機は、永久磁石を有する磁石式交流発電機である、請求項1記載の発電制御装置。 The power generation control device according to claim 1, wherein the AC generator is a magnet type AC generator having a permanent magnet.
  8. 前記整流回路は、複数のスイッチング素子を含むブリッジ回路を含み、
     前記制御部は、前記目標出力電流値が前記位相角制御により前記整流回路から出力可能な最大の電流値以下である場合に、前記整流回路の出力電流値が前記目標出力電流値に等しくなるように前記複数のスイッチング素子の位相角制御を行い、前記目標出力電流値が前記位相角制御により前記整流回路から出力可能な最大の電流値よりも大きい場合に、前記複数のスイッチング素子をオン状態に保つ、請求項1記載の発電制御装置。
    The rectifier circuit includes a bridge circuit including a plurality of switching elements,
    The control unit is configured to make the output current value of the rectifier circuit equal to the target output current value when the target output current value is equal to or less than a maximum current value that can be output from the rectifier circuit by the phase angle control. Phase angle control of the plurality of switching elements, and when the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, the plurality of switching elements are turned on. The power generation control device according to claim 1, wherein the power generation control device is maintained.
  9. 本体部と、
     前記本体部に設けられるエンジンと、
     前記エンジンの回転により前記本体部を移動させる駆動部と、
     前記エンジンの回転により駆動される交流発電機と、
     前記エンジンにより駆動される交流発電機の出力電流を制御する発電制御装置とを備え、
     前記発電制御装置は、
     前記交流発電機から出力される交流電流を直流電流に変換する整流回路と、
     前記整流回路を制御する制御部とを備え、
     前記制御部は、前記目標出力電流値が前記位相角制御により前記整流回路から出力可能な最大の電流値以下である場合に、前記整流回路の出力電流値が前記目標出力電流値に等しくなるように前記整流回路の位相角制御を行い、前記目標出力電流値が前記位相角制御により前記整流回路から出力可能な最大の電流値よりも大きい場合に、前記整流回路の位相角制御を行わずに前記整流回路を最大の電流値が出力される状態に制御する、輸送機器。
    The main body,
    An engine provided in the main body,
    A drive unit that moves the main body by rotation of the engine;
    An alternator driven by rotation of the engine;
    A power generation control device for controlling an output current of an AC generator driven by the engine,
    The power generation control device
    A rectifier circuit for converting alternating current output from the alternating current generator into direct current;
    A control unit for controlling the rectifier circuit,
    The control unit is configured to make the output current value of the rectifier circuit equal to the target output current value when the target output current value is equal to or less than a maximum current value that can be output from the rectifier circuit by the phase angle control. When the target output current value is larger than the maximum current value that can be output from the rectifier circuit by the phase angle control, the phase angle control of the rectifier circuit is not performed. A transportation device that controls the rectifier circuit so that the maximum current value is output.
PCT/JP2009/001966 2008-05-08 2009-04-30 Power generation control device and transportation equipment WO2009136487A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010511014A JPWO2009136487A1 (en) 2008-05-08 2009-04-30 Power generation control device and transportation equipment
CN2009801165189A CN102017394A (en) 2008-05-08 2009-04-30 Power generation control device and transportation equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008121975 2008-05-08
JP2008-121975 2008-05-08

Publications (1)

Publication Number Publication Date
WO2009136487A1 true WO2009136487A1 (en) 2009-11-12

Family

ID=41264544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001966 WO2009136487A1 (en) 2008-05-08 2009-04-30 Power generation control device and transportation equipment

Country Status (4)

Country Link
JP (1) JPWO2009136487A1 (en)
CN (1) CN102017394A (en)
TW (1) TW201010266A (en)
WO (1) WO2009136487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446133B2 (en) 2020-03-19 2024-03-08 新電元工業株式会社 Battery charging device and current control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347088A (en) * 2017-01-22 2018-07-31 西安中车永电捷通电气有限公司 Charger control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167641A (en) * 1986-12-26 1988-07-11 株式会社デンソー Generator controller of vehicle
JPH03207225A (en) * 1990-01-08 1991-09-10 Hitachi Ltd Power converter
JPH0488900A (en) * 1990-07-27 1992-03-23 Nippondenso Co Ltd Series/parallel switching rotary electric machine
JP2003230299A (en) * 1997-07-25 2003-08-15 Kokusan Denki Co Ltd Power generating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167641A (en) * 1986-12-26 1988-07-11 株式会社デンソー Generator controller of vehicle
JPH03207225A (en) * 1990-01-08 1991-09-10 Hitachi Ltd Power converter
JPH0488900A (en) * 1990-07-27 1992-03-23 Nippondenso Co Ltd Series/parallel switching rotary electric machine
JP2003230299A (en) * 1997-07-25 2003-08-15 Kokusan Denki Co Ltd Power generating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446133B2 (en) 2020-03-19 2024-03-08 新電元工業株式会社 Battery charging device and current control device

Also Published As

Publication number Publication date
TW201010266A (en) 2010-03-01
CN102017394A (en) 2011-04-13
JPWO2009136487A1 (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5164428B2 (en) Power generation control device and saddle riding type vehicle
JP5595447B2 (en) Control device and control method for vehicle alternator
JP2011166910A (en) Apparatus for control of power converter
JP6408171B2 (en) Control device and control method for hybrid vehicle
JP2015035942A (en) Power generation device, moving body, and power generation control method
JP2009284564A (en) Power conversion device for vehicle
WO2009136487A1 (en) Power generation control device and transportation equipment
JP2017204953A (en) Dynamo-electric machine unit
JP5306642B2 (en) Power generation control device
JP6677176B2 (en) Power conversion circuit control device, rotating electric machine unit
JP4949153B2 (en) Power generation control device and saddle riding type vehicle
JP2008193755A (en) Battery-less power generation control system and straddle-type vehicle
JP6367498B2 (en) Control device and control method for hybrid vehicle
JP6379306B2 (en) Control device and control method for hybrid vehicle
WO2009130898A1 (en) Electric power generation control device and transport apparatus
JP6665773B2 (en) Rotary electric machine rotation rise abnormality detection device, rotating electric machine unit
JP5418287B2 (en) Engine power generation system
JP2009159699A (en) Power generation control device
JP4961252B2 (en) Power generation control device and saddle riding type vehicle
JP5155604B2 (en) Power generation control device and saddle riding type vehicle
JP2017005777A (en) Power supply system for vehicle
JP6948844B2 (en) Engine starter
JP5269437B2 (en) Power generation control device
JP6269336B2 (en) Vehicle power supply system
JP2017202778A (en) Control device for rotary electric machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116518.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511014

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742612

Country of ref document: EP

Kind code of ref document: A1