WO2009136454A1 - Spin valve element and storage device - Google Patents

Spin valve element and storage device Download PDF

Info

Publication number
WO2009136454A1
WO2009136454A1 PCT/JP2008/065414 JP2008065414W WO2009136454A1 WO 2009136454 A1 WO2009136454 A1 WO 2009136454A1 JP 2008065414 W JP2008065414 W JP 2008065414W WO 2009136454 A1 WO2009136454 A1 WO 2009136454A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
valve element
spin valve
magnetization
ferromagnetic
Prior art date
Application number
PCT/JP2008/065414
Other languages
French (fr)
Japanese (ja)
Inventor
春雄 川上
泰史 荻本
Original Assignee
富士電機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機ホールディングス株式会社 filed Critical 富士電機ホールディングス株式会社
Publication of WO2009136454A1 publication Critical patent/WO2009136454A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a spin valve element using a tunnel magnetoresistive effect (TMR) or a giant magnetoresistive effect (GMR) and a memory device using the spin valve element.
  • TMR tunnel magnetoresistive effect
  • GMR giant magnetoresistive effect
  • tunnel magnetoresistance (TMR) effect that occurs in the laminated structure of a ferromagnetic layer, an insulating layer, and a ferromagnetic layer
  • TMR tunnel magnetoresistance
  • GMR giant magnetoresistance
  • FIG. 11 is a sectional view showing the basic components of a spin valve element using TMR.
  • This spin-valve element includes a single insulator layer 24 formed on a substrate 5, and a ferromagnetic layer 23 (fixed layer) and a ferromagnetic layer 25 (free layer) forming a pair sandwiching the insulator layer. Electrode layers 21 and 27, and an antiferromagnetic layer (pinned layer) 22, a capping layer 26, and the like are added as necessary.
  • the magnetization of the fixed layer 23 is fixed by magnetic coupling with the antiferromagnetic layer 22 or the like.
  • the magnetization of the free layer 25 is controlled by spin injection with a polarized current or by an external magnetic field.
  • FIG. 12 is a sectional view showing the basic components of a spin valve element using GMR.
  • the difference between the spin valve element using GMR and the spin valve element using TMR in FIG. 11 is that the insulator layer 24 is replaced with the nonmagnetic layer 51 in the spin valve element using TMR.
  • the configuration other than is basically the same.
  • Patent Document 1 discloses an example in which the relationship between the angle of the wiring and the direction of the easy axis is determined in a configuration using a spin valve element that controls magnetization by an external magnetic field (external magnetization reversal). JP 2005-142299 A
  • MRAM magnetic random access memory
  • SRAM SRAM
  • the MRAM potentially exhibits excellent technical characteristics such as high speed operation, low power consumption, low voltage operation, and high rewrite durability.
  • the MRAM can be increased in density.
  • One of the biggest technical problems related to the practical application of MRAM using a spin valve element is to reduce the magnetization reversal current.
  • an object of the present invention is to reduce a magnetization reversal current in a spin-injection magnetization reversal spin valve element or to speed up magnetization reversal.
  • the inventors of the present application have found that the magnetization reversal current can be reduced or the magnetization reversal can be performed at high speed by making the easy axis direction of the free layer different from the easy axis direction of the fixed layer. .
  • a spin valve element including an intermediate layer made of one insulating layer or a nonmagnetic layer, and a pair of ferromagnetic layers sandwiching the intermediate layer, wherein the pair of ferromagnetic layers.
  • a spin valve element in which the coercive forces of the ferromagnetic layers are different from each other, and the directions of the easy axes of the ferromagnetic layers of the pair of ferromagnetic layers are different from each other.
  • the easy axis of magnetization can be artificially set by the shape anisotropy, the influence of the adjacent antiferromagnetic layer, the orientation during film formation, and the like. Therefore, it is possible to intentionally change the direction of the easy magnetization axis between the free layer and the fixed layer.
  • the directions of the easy magnetization axes can be different from each other in the plane of the ferromagnetic layer.
  • the state in which the easy axes of the ferromagnetic layer are different from each other in the plane of the ferromagnetic layer typically means a state in which both the easy axes of the ferromagnetic layer are in the plane of the layer and the directions are different from each other.
  • the direction vector in the direction of the easy axis of each ferromagnetic layer is projected onto the surface of the ferromagnetic layer, the easy axis of the ferromagnetic layer is oriented so that the projected direction is different. Including those that are.
  • the angle ⁇ formed by the easy magnetization axes of the pair of ferromagnetic layers is a spin valve element satisfying the following expression (1).
  • Ku is the magnetic anisotropy constant
  • k is the Boltzmann constant
  • T is the operating temperature expressed in absolute temperature
  • V is the volume per element of the ferromagnetic layer with the smaller coercive force.
  • the value obtained by squaring the sine (SIN) component of the angle between the easy magnetization axes is larger than a constant value (formula (1), left side) determined by the physical property value such as magnetic anisotropy constant and coercive force and temperature, A stable angle can be maintained without being affected by thermal fluctuations.
  • the value also has a certain upper limit from the MR ratio, the convergence to a stable point, and the like. The present inventor has found that these technical requirements can be satisfied if the easy axis is set so as to satisfy the above-mentioned conditions.
  • the shape of the periphery of at least one of the pair of ferromagnetic layers has a first direction included in the surface of the ferromagnetic layer and a first direction included in the surface and orthogonal to the first direction. It is preferable that the ranges of the two directions are different from each other.
  • one direction (for example, the first direction) is perpendicular to the shape of the peripheral edge of either or both of the layer having a high coercive force (fixed layer) and the layer having a low coercive force (free layer).
  • the shape can be larger than the direction (second direction). Examples of this shape include a rectangle and an ellipse.
  • a storage device using a spin valve element having any of the above-described characteristics as a storage element is also provided.
  • the present invention has an effect that it is possible to achieve at least one of reducing the magnetization reversal current of the spin valve element and increasing the speed of magnetization reversal of the spin valve element.
  • the magnetization reversal current is reduced, for example, the reliability of the circuit element for driving the memory element when the spin valve element is used as the memory element of the memory device can be improved, and the size of the circuit element can be reduced. And power consumption during driving can be suppressed.
  • the magnetic reversal can be performed at high speed, data writing to the memory element when the spin valve element is used can be speeded up, and the operation speed of the memory device can be increased.
  • Explanatory drawing which shows the relative relationship of the easy axis of a free layer and a fixed layer in the spin valve element of this invention.
  • Explanatory drawing which shows the relative relationship of the magnetization easy axis
  • Explanatory drawing which shows the relative relationship of the magnetization easy axis
  • FIG. 3 is a schematic diagram illustrating a configuration of a memory element of a memory device of the present invention.
  • 1 is a block diagram illustrating a configuration of a storage device of the present invention. Sectional drawing which shows the basic composition part of the spin valve element using TMR. Sectional drawing which shows the basic composition part of the spin valve element using GMR.
  • Electrode layer 5 Substrate 21 Electrode layer 22 Antiferromagnetic layer (pinned layer) 23 Ferromagnetic layer (pinned layer) 24 Insulator layer 25 Ferromagnetic layer (free layer) 26 Capping Layer 27 Electrode Layer 30 Insulating Layer 31 Wiring 51 Nonmagnetic Layer 100 Nonvolatile Memory Device
  • the inventor of the present application examined the reduction of the magnetization reversal current.
  • the magnetization reversal current density J c is required to be at least 10 6 A / cm 2 or less from the viewpoint of ensuring the reliability of the MOS-FET.
  • the magnetization reversal current density J c is expressed by the following equation in spin injection magnetization reversal.
  • J c P ⁇ AP ⁇ e (VM s / ⁇ B ) ⁇ [+ H ext + (H U + M s / ⁇ 0 ) / 2] / g (0)
  • J c AP ⁇ P + e (VM s / ⁇ B ) ⁇ [ ⁇ H ext + (H U + M s / ⁇ 0 ) / 2] / g ( ⁇ ) (3)
  • J c P ⁇ AP and J c AP ⁇ P are used for reversing the magnetization of the free layer 25 and the fixed layer from the parallel state to the anti-parallel state, and from the anti-parallel state to the parallel state, respectively.
  • E is the elementary charge
  • V is the volume per element of the free layer
  • M s is the saturation magnetization of the free layer
  • ⁇ B is the Bohr magneton
  • is the Gilbert damping coefficient
  • ⁇ Is the magnetic gyro constant
  • H ext is the externally applied magnetic field
  • H U is the anisotropic magnetic field of the free layer
  • ⁇ 0 is the magnetic permeability.
  • g ( ⁇ ) is a coefficient representing the efficiency of spin transfer, and is expressed by the following equation, where ⁇ is an angle formed by the magnetization of the fixed layer and the free layer, and P is a function of the spin polarization.
  • J c is proportional to the volume V of the free layer, for example. Therefore, if the free layer is made thinner, J c can be reduced.
  • the stability of the memory i.e. the thermal stability of the free layer magnetization
  • the stability of is reduced. That is, the thickness of the free layer can be reduced only within the range of the restriction.
  • the other parameters are physical property values of the material. This material development to reduce the magnetization reversal current density J c by focusing on the physical property values is performed, sufficient characteristics are not obtained heretofore.
  • the main technical point of the present invention is that the direction of the easy axis of magnetization of the free layer and the fixed layer is made different to reduce J c P ⁇ AP expressed by the above equation (2) and to invert
  • the purpose is to ensure that the torque due to the injection spin at the start is a finite value and to increase the speed of magnetization reversal.
  • J c P ⁇ AP ⁇ e (VM s / ⁇ B ) ⁇ [+ H ext + (H U + M s / ⁇ 0 ) / 2] / g ( ⁇ ) (6)
  • J c ⁇ P ⁇ AP ⁇ e (VM s / ⁇ B ) ⁇ [+ H ext + (H U + M s / ⁇ 0 ) / 2] / g ( ⁇ ) (6)
  • FIG. 3 shows a relative relationship between the easy magnetization axis of the free layer and the injection spin torque in a conventional spin valve element.
  • the angle of the free layer magnetization is distributed in a certain range due to thermal fluctuation. Regardless of thermal fluctuation, in order for the angle of the free layer magnetization to have a finite angle value with respect to the angle of the fixed layer magnetization, it is desirable that the angle ⁇ is larger than the angle caused by the thermal fluctuation.
  • a Cu thin film (30 nm) is formed as an electrode layer 21 on a substrate 5 such as a silicon wafer with an oxide film, and then CoFeB (20 nm) as a ferromagnetic layer 23, MgO (0.6 nm) as an insulator layer 24, CoFeB (2 nm) is sequentially stacked as the ferromagnetic layer 25 and Cu (2 nm) is sequentially stacked as the capping layer 26.
  • a negative resist is applied, patterning is performed by electron beam irradiation, and an elliptical columnar spin valve element is formed by ion milling or dry etching. Further, an SiO 2 film is formed by CVD or the like to cover the side surfaces of the elliptical columnar spin valve element, and then the resist on the spin valve element is removed by lift-off to form an upper electrode. Thereafter, annealing is performed at 350 to 500 ° C. in a magnetic field of about several kOe (1 Oe ⁇ 79.6 A / m) to determine the easy axis of magnetization of the fixed layer.
  • a nonmagnetic layer 51 such as Cu is used instead of the insulator layer 24.
  • the substrate 5 can be a silicon substrate or a glass substrate, and a copper substrate having a high function as a heat sink is also possible. It is also possible to cool by the method.
  • the electrode layers 21, 29, 31 are Ta, Pt, Cu, Au, Ag, Al, Mo, the antiferromagnetic layer 22 is IrMn, PtMn, and the ferromagnetic layer 23 (fixed layer) is CoFe, CoFeB.
  • the insulating layer 24 is MgO, Al oxide
  • the nonmagnetic layer 51 is Cu
  • the ferromagnetic layer 25 (free layer) is commonly used CoFe, CoFeB
  • the perpendicular easy axis Anisotropy TbFe, TbFeCo, GdFe, GdFeCo, or the like that easily obtains anisotropy or NiFe having a small crystal anisotropy is suitable, but is not limited thereto.
  • Cu and Pd are typical examples of the capping layer 27, but the ferromagnetic layer that can be used in the present invention is not limited to this.
  • the holding force of the ferromagnetic layer 23 (fixed layer) is necessary to make the holding force of the ferromagnetic layer 23 (fixed layer) larger than that of the ferromagnetic layer 25 (free layer).
  • the material of the ferromagnetic layer 23 (fixed layer) and the ferromagnetic layer 25 (free layer) are made the same, and the former film thickness is made larger than the latter film thickness to give a difference in coercive force.
  • an antiferromagnetic layer (pinned layer) 22 is provided, and the retention of the ferromagnetic layer 23 (fixed layer) is increased by antiferromagnetic coupling therewith.
  • an antiferromagnetic coupling film such as CoFeB / Ru / CoFeB may be used.
  • the crystallinity and the easy axis direction of each layer including the fixed layer are controlled by annealing in a magnetic field after laminating them.
  • the in-plane shape of the free layer is an ellipse or a rectangle
  • the aspect ratio is increased to increase the anisotropic magnetic field due to the shape
  • the major axis direction is the easy axis of magnetization.
  • the magnetization easy axis of the fixed layer is determined by the magnetic field application direction in the annealing in the magnetic field, by making the magnetic field application direction different from the long axis direction of the free layer, the magnetization easy axis of the free layer and the fixed layer is determined. Can be different.
  • the in-plane shapes of the free layer and the pinned layer are different (that is, the shape anisotropy imparted to the free layer is not imparted to the pinned layer). Therefore, it can be formed so as not to coincide with the easy axis of magnetization of the free layer.
  • the in-plane shape of the free layer can be processed by normal dry etching using a halogen gas such as Cl 2 , BCl 2 , or SiCl 4 .
  • a halogen gas such as Cl 2 , BCl 2 , or SiCl 4 .
  • it is necessary to stop dry etching between the free layer and the fixed layer for this, for example, an etching end point monitor using plasma emission spectroscopy is used. This is possible.
  • dm / dt ⁇ m ⁇ H eff + ⁇ m ⁇ dm / dt + ⁇ ST ( ⁇ ) Im ⁇ (m ⁇ s) (8)
  • ⁇ ST ( ⁇ ) g ( ⁇ ) ⁇ B / (M s ⁇ V ⁇ e) (9)
  • ⁇ B a Bohr magneton
  • M s the saturation magnetization of the free layer
  • V the free layer volume
  • e the electronic charge.
  • m, s, and H eff are vectors, and therefore, the operation of the “x” symbol acting on the vectors represents an outer product (vector product).
  • a material for the free layer magnetization a CoFe-based material was assumed, and a specific calculation was performed assuming that the shape of the free layer is an ellipse having a major axis of 130 nm ⁇ minor axis of 70 nm and a thickness of 2 mm.
  • Table 1 shows the parameters used in the calculation and the values of the main physical constants.
  • the time t is normalized by ( ⁇ M s ) ⁇ 1 , and the unit standardization time based on the physical property values in Table 1 corresponds to about 17 psec.
  • the xy plane is in the free layer plane
  • the Z axis is the direction perpendicular to the film plane.
  • FIG. 4 to FIG. 4 Examples of calculation of the dynamic behavior of magnetization reversal under the above conditions are shown in FIG. 4 to FIG. 4 by the time change (left figure) of each coordinate of the magnetization unit vector m of the free layer and the three-dimensional display (right figure) of the locus of m. It is shown in FIG. 4 and 5 are calculation examples in the case where the easy axes of the free layer and the fixed layer are parallel in the conventional spin valve element. 4 shows a case where the initial magnetization of the free layer and the fixed layer is exactly parallel, and no magnetization reversal occurs even when a polarized spin current is injected so that the magnetization is antiparallel in this state.
  • FIG. 4 shows a case where the initial magnetization of the free layer and the fixed layer is exactly parallel, and no magnetization reversal occurs even when a polarized spin current is injected so that the magnetization is antiparallel in this state.
  • FIG. 6 shows the case where the initial magnetization of the free layer is exactly parallel to the magnetization easy axis (X axis) of the fixed layer, and shows that magnetization reversal occurs at the normalization time 179.
  • FIG. 7 shows a case where the initial magnetization of the free layer coincides with the easy axis of the free layer itself and forms an angle of 15 ° with respect to the easy axis (X axis) of the fixed layer.
  • FIG. 6 shows the case where the initial magnetization of the free layer is exactly parallel to the magnetization easy axis (X axis) of the fixed layer, and shows that magnetization reversal occurs at the normalization time 179.
  • FIG. 7 shows a case where the initial magnetization of the free layer coincides with the easy axis of the
  • the magnetization reversal time increases as the tilt angle ⁇ of the easy magnetization axis increases. There is a tendency to shorten. From FIG. 3, it can be easily estimated that the initial torque increases, and this tends to coincide with this.
  • FIG. 9 schematically shows magnetic memory elements constituting a cross-point type memory cell array, which is an embodiment of the nonvolatile memory device according to the present invention, by a variable resistor 8 symbol.
  • FIG. 10 is a block diagram showing a configuration of a memory array of the nonvolatile memory device 100 driven by word lines and bit lines.
  • the magnetic memory element of the present invention can be switched by spin transfer magnetization reversal. Therefore, the cross-point type memory is formed by forming the upper electrode and the lower electrode in an array and providing a magnetic memory element connected to both electrodes in the vicinity of the intersection.
  • each crosspoint is provided with an additional circuit having one or more transistors and a positive and negative power supply line.
  • the current of the output stage transistor of the word line decoder 110 or the bit line data element 120 or the transistor connected to the spin valve element is the same in the spin valve element having the features of the present invention. Reduced.
  • a current detection unit included in the bit line decoder 120 and provided corresponding to each bit line is selected by a word line decoder that operates in the same manner as in writing. A current flowing through each bit line is detected with respect to the word line to be accessed, and a voltage value corresponding to the resistance of the memory cell 8 corresponding to each bit line is detected in the word line with the word to be accessed. Read the status.
  • the magnetization reversal current in the spin injection magnetization reversal spin valve element is reduced.
  • the present invention is not limited to the above-described embodiments, and various modifications, changes and combinations are possible based on the technical idea of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

A spin valve element in which intermediate layers (24, 51) comprising one insulator layer or non magnetic layer and a pair of ferromagnetic layers (23, 25) between which the intermediate layer is sandwiched are provided so as to reduce current for magnetic reverse and speed up operation and the magnetic coercive forces of the pair of ferromagnetic layers are different from each other, or a storage device using the spin valve element. The directions of magnetization facilitating axes (10, 12) of the pair of ferromagnetic layers are set to be different. Further, an angle between the magnetization facilitating axes is desirably set to be in a fixed range.

Description

スピンバルブ素子および記憶装置Spin valve element and storage device
 本発明は、トンネル磁気抵抗効果(TMR)または巨大磁気抵抗効果(GMR)を用いるスピンバルブ素子およびスピンバルブ素子を用いる記憶装置に関する。 The present invention relates to a spin valve element using a tunnel magnetoresistive effect (TMR) or a giant magnetoresistive effect (GMR) and a memory device using the spin valve element.
 近年、ナノエレクトロニクスの進展に伴い、微小サイズの磁性材料固有の物理現象を応用する製品の開発が進められている。それらのうちでも、特に、磁性材料の自由電子が有するスピンの性質を利用する分野はスピンエレクトロニクス分野と呼ばれて精力的な技術開発が進められている。 In recent years, along with the progress of nanoelectronics, the development of products that apply physical phenomena unique to micro-sized magnetic materials has been promoted. Among them, in particular, a field using the spin property of free electrons of magnetic materials is called a spin electronics field, and energetic technological development is underway.
 このスピンエレクトロニクス分野の中で、現在最も実用可能性が高いと見られているものに、強磁性層、絶縁層、強磁性層の積層構造において生じるトンネル磁気抵抗(TMR:Tunnel Magnetic Resistance)効果、または、強磁性層、非磁性層(導電層)、強磁性層の積層構造において生じる巨大磁気抵抗(GMR:Giant Magnetic Resistance)効果を応用するスピンバルブ素子がある。従来および本発明におけるスピンバルブ素子の構成例を図11および12に示す。 In this spin electronics field, what is currently considered to have the highest practical applicability is the tunnel magnetoresistance (TMR) effect that occurs in the laminated structure of a ferromagnetic layer, an insulating layer, and a ferromagnetic layer, Alternatively, there is a spin valve element that applies a giant magnetoresistance (GMR) effect generated in a laminated structure of a ferromagnetic layer, a nonmagnetic layer (conductive layer), and a ferromagnetic layer. 11 and 12 show a configuration example of a conventional spin valve element in the present invention.
 図11はTMRを利用するスピンバルブ素子の基本構成部分を断面図により示す。このスピンバルブ素子は、基板5の上に構成された、1層の絶縁体層24と、該絶縁体層を挟む対をなす強磁性層23(固定層)および強磁性層25(フリー層)と、電極層21、27とからなっており、必要に応じて、反強磁性層(ピン止め層)22、キャッピング層26などが追加される。固定層23の磁化は反強磁性層22との磁気結合などにより固定されている。フリー層25の磁化は、偏極電流によるスピン注入により、または、外部磁界により制御される。 FIG. 11 is a sectional view showing the basic components of a spin valve element using TMR. This spin-valve element includes a single insulator layer 24 formed on a substrate 5, and a ferromagnetic layer 23 (fixed layer) and a ferromagnetic layer 25 (free layer) forming a pair sandwiching the insulator layer. Electrode layers 21 and 27, and an antiferromagnetic layer (pinned layer) 22, a capping layer 26, and the like are added as necessary. The magnetization of the fixed layer 23 is fixed by magnetic coupling with the antiferromagnetic layer 22 or the like. The magnetization of the free layer 25 is controlled by spin injection with a polarized current or by an external magnetic field.
 スピン注入による制御においては、この素子に固定層23から電子を流すと、フリー層25の磁化には固定層23の磁化と平行となろうとするようなトルクが働く。また、その逆にフリー層25から固定層23に向かって電子を流すとフリー層25の磁化には固定層23の磁化と反平行となろうとするようなトルクが働く。これらの作用により、フリー層25の磁化方向を電流の向きにより制御することが可能となる(スピン注入磁化反転)。 In the control by spin injection, when electrons are caused to flow from the fixed layer 23 to this element, torque that tends to be parallel to the magnetization of the fixed layer 23 acts on the magnetization of the free layer 25. Conversely, when electrons flow from the free layer 25 toward the fixed layer 23, a torque that tends to be antiparallel to the magnetization of the fixed layer 23 acts on the magnetization of the free layer 25. By these actions, the magnetization direction of the free layer 25 can be controlled by the direction of current (spin injection magnetization reversal).
 図12には、GMRを利用するスピンバルブ素子の基本構成部分を断面図により示す。GMRを利用するスピンバルブ素子と図11のTMRを利用するスピンバルブ素子との違いは、TMRを利用するスピンバルブ素子においては絶縁体層24が非磁性層51に置き換わっていることであり、それ以外の構成は基本的に同じである。 FIG. 12 is a sectional view showing the basic components of a spin valve element using GMR. The difference between the spin valve element using GMR and the spin valve element using TMR in FIG. 11 is that the insulator layer 24 is replaced with the nonmagnetic layer 51 in the spin valve element using TMR. The configuration other than is basically the same.
 また、外部磁界により磁化を制御するスピンバルブ素子を用いる構成(外部磁化反転)において、配線の角度と磁化容易軸方向との関係を定める例が特許文献1に開示されている。
特開2005-142299号公報
Further, Patent Document 1 discloses an example in which the relationship between the angle of the wiring and the direction of the easy axis is determined in a configuration using a spin valve element that controls magnetization by an external magnetic field (external magnetization reversal).
JP 2005-142299 A
 スピン注入磁化反転や外部磁化反転を用いるスピンバルブ素子の応用としては、磁気ランダムアクセスメモリ(MRAM: Magnetic Random Access Memory)が最も注目を浴びており、従来のDRAM(Dynamic Random Access Memory)やSRAM(Synchronous DRAM)の代替として期待されている。MRAMは、潜在的には、高速動作、低消費電力、低電圧動作、高書換え耐久性など、優れた技術的特性を示す。特に、前述のようにスピン注入磁化反転による書込みを行なうことによって、構造が簡素化されるため、MRAMは高密度化も可能となる。スピンバルブ素子を用いるMRAMの実用化に関する最も大きな技術課題の一つに、磁化反転電流を低減させることがある。 As an application of a spin valve element using spin injection magnetization reversal or external magnetization reversal, a magnetic random access memory (MRAM) has received the most attention, and a conventional DRAM (Dynamic Random Access Memory) or SRAM (SRAM) It is expected as an alternative to Synchronous DRAM. The MRAM potentially exhibits excellent technical characteristics such as high speed operation, low power consumption, low voltage operation, and high rewrite durability. In particular, since the structure is simplified by performing writing by spin injection magnetization reversal as described above, the MRAM can be increased in density. One of the biggest technical problems related to the practical application of MRAM using a spin valve element is to reduce the magnetization reversal current.
 また、磁化反転に関わるもうひとつの課題として、MRAMを高速動作させるために必要な書換え動作の高速化がある。一般に、フリー層の磁化が固定層の磁化に対して完全に平行、もしくは反平行であると、注入スピンによる反転方向(図2における円周方向)へのトルクはゼロとなり、反転が開始されない。実際には熱ゆらぎによりフリー層磁化は固定層磁化に対して有限の角度をもつので、多くの場合、反転は観測されるが、反転動作と反転時間には確率的な要素が本質的に残存している。また、幾何的配置から、初期の反転トルクは小さくなるので磁化の回転に時間が必要であるため、磁化反転を高速化することができない。 Also, as another problem related to the magnetization reversal, there is an increase in the speed of the rewriting operation necessary for operating the MRAM at a high speed. Generally, when the magnetization of the free layer is completely parallel or antiparallel to the magnetization of the fixed layer, the torque in the reversal direction (circumferential direction in FIG. 2) due to the injected spin becomes zero, and reversal is not started. In practice, the free layer magnetization has a finite angle with respect to the fixed layer magnetization due to thermal fluctuations, so inversion is observed in many cases, but there is essentially a stochastic element in the inversion operation and inversion time. is doing. In addition, since the initial reversal torque is small due to the geometric arrangement, it takes time to rotate the magnetization, and therefore the magnetization reversal cannot be accelerated.
 上記事情に鑑み、本発明は、スピン注入磁化反転スピンバルブ素子における磁化反転電流を低減すること、または、磁化反転を高速することを目的とする。 In view of the above circumstances, an object of the present invention is to reduce a magnetization reversal current in a spin-injection magnetization reversal spin valve element or to speed up magnetization reversal.
 本願の発明者は、フリー層の磁化容易軸方向を固定層の磁化容易軸方向と異なるようにすることによって磁化反転電流の低減または磁化反転が高速に行えることを見出し、本願の発明に至った。 The inventors of the present application have found that the magnetization reversal current can be reduced or the magnetization reversal can be performed at high speed by making the easy axis direction of the free layer different from the easy axis direction of the fixed layer. .
 すなわち、本願においては、1層の絶縁体層または非磁性層からなる中間層と、該中間層を挟む1対の強磁性層とを備えるスピンバルブ素子であって、前記1対の強磁性層の各強磁性層の保磁力が互いに異なっており、前記1対の強磁性層の各強磁性層の磁化容易軸の方向が互いに異なっているスピンバルブ素子が提供される。 That is, in the present application, there is provided a spin valve element including an intermediate layer made of one insulating layer or a nonmagnetic layer, and a pair of ferromagnetic layers sandwiching the intermediate layer, wherein the pair of ferromagnetic layers There is provided a spin valve element in which the coercive forces of the ferromagnetic layers are different from each other, and the directions of the easy axes of the ferromagnetic layers of the pair of ferromagnetic layers are different from each other.
 磁化容易軸は、形状異方性、隣接する反強磁性層の影響、成膜時の配向性などによって人為的に設定することができる。そのため、フリー層と固定層とで磁化容易軸の向きを意図的に異なるようにすることができる。 The easy axis of magnetization can be artificially set by the shape anisotropy, the influence of the adjacent antiferromagnetic layer, the orientation during film formation, and the like. Therefore, it is possible to intentionally change the direction of the easy magnetization axis between the free layer and the fixed layer.
 また、保持力が異なる強磁性層を実現するためには、強磁性層そのものの磁性を異ならせることによって保持力を変更した強磁性層の対とすること、他の層(例えばピン層となる反強磁性層)と組み合わせて一方のみの実効的な保持力を大きくした磁性層の対とすること、膜厚を異ならせて保持力の異なる強磁性層の対とすることなどを用いることができる。 In order to realize a ferromagnetic layer with different coercive force, a pair of ferromagnetic layers whose coercive force is changed by changing the magnetism of the ferromagnetic layer itself, or another layer (for example, a pinned layer). It is possible to use a pair of magnetic layers with a larger effective coercive force in combination with an antiferromagnetic layer, or a pair of ferromagnetic layers with different coercive forces by changing the film thickness. it can.
 本発明においては、好適には、磁化容易軸の方向が、強磁性層の面内において互いに異なるようにすることができる。強磁性層の面内において互いに磁化容易軸が異なる状態とは、典型的には、強磁性層の磁化容易軸がともにその層の面内にあり、互いに方向が異なっているような状態をいい、それ以外にも、各強磁性層の磁化容易軸の方向の方向ベクトルを強磁性層の面に射影したときに、その射影された方向が異なるように強磁性層の磁化容易軸が向いているものも含む。 In the present invention, preferably, the directions of the easy magnetization axes can be different from each other in the plane of the ferromagnetic layer. The state in which the easy axes of the ferromagnetic layer are different from each other in the plane of the ferromagnetic layer typically means a state in which both the easy axes of the ferromagnetic layer are in the plane of the layer and the directions are different from each other. In addition, when the direction vector in the direction of the easy axis of each ferromagnetic layer is projected onto the surface of the ferromagnetic layer, the easy axis of the ferromagnetic layer is oriented so that the projected direction is different. Including those that are.
 また、本発明においては、 前記1対の強磁性層それぞれの磁化容易軸のなす角度θが、下記(1)式を満たすスピンバルブ素子とすると好適である。
 (k×T)/(Ku×V)<sinθ<0.25 (1)
ここで、Kは磁気異方性定数、kはボルツマン定数、Tは絶対温度で表わした作動時の温度、Vは保磁力が小さい方の強磁性層の素子一つ当たりの体積である。磁化容易軸の間の角度の正弦(SIN)成分を二乗した値を、磁気異方性定数、保持力といった物性値と温度とによって定まる一定の値(式(1)、左辺)より大きくすると、熱揺らぎの影響を受けずに安定した角度を維持することができる。一方で、その値には、MR比、安定点への収束性などから一定の上限もある。本願発明者は、上記の条件を満たすように磁化容易軸が設定されていると、これらの技術的要求を満たしうることを見出した。
In the present invention, it is preferable that the angle θ formed by the easy magnetization axes of the pair of ferromagnetic layers is a spin valve element satisfying the following expression (1).
(K × T) / (K u × V) <sin 2 θ <0.25 (1)
Here, Ku is the magnetic anisotropy constant, k is the Boltzmann constant, T is the operating temperature expressed in absolute temperature, and V is the volume per element of the ferromagnetic layer with the smaller coercive force. When the value obtained by squaring the sine (SIN) component of the angle between the easy magnetization axes is larger than a constant value (formula (1), left side) determined by the physical property value such as magnetic anisotropy constant and coercive force and temperature, A stable angle can be maintained without being affected by thermal fluctuations. On the other hand, the value also has a certain upper limit from the MR ratio, the convergence to a stable point, and the like. The present inventor has found that these technical requirements can be satisfied if the easy axis is set so as to satisfy the above-mentioned conditions.
 また、磁化容易軸は形状の影響を受けるため、強磁性層の膜の形状を調整することも好適である。すなわち、前記一対の強磁性層の少なくともいずれかの強磁性層の周縁の形状が、当該強磁性層の面に含まれる第1の方向と該面に含まれ該第1の方向に直交する第2の方向との範囲が互いに異なっている形状であることが好適である。強磁性層のうち、保持力の大きい層(固定層)か保持力の小さい層(フリー層)のいずれかまたは両方の周縁の形状は、一方向(例えば第1の方向)が、それに直交する方向(第2の方向)より大きくなる形状とすることができる。この形状の例としては、長方形や楕円形を挙げることができる。 Also, since the easy axis of magnetization is affected by the shape, it is also preferable to adjust the shape of the ferromagnetic layer. That is, the shape of the periphery of at least one of the pair of ferromagnetic layers has a first direction included in the surface of the ferromagnetic layer and a first direction included in the surface and orthogonal to the first direction. It is preferable that the ranges of the two directions are different from each other. Among the ferromagnetic layers, one direction (for example, the first direction) is perpendicular to the shape of the peripheral edge of either or both of the layer having a high coercive force (fixed layer) and the layer having a low coercive force (free layer). The shape can be larger than the direction (second direction). Examples of this shape include a rectangle and an ellipse.
 本発明においては、上述のいずれかの特徴を有するスピンバルブ素子を記憶素子として用いる記憶装置も提供される。 In the present invention, a storage device using a spin valve element having any of the above-described characteristics as a storage element is also provided.
 本発明は、スピンバルブ素子の磁化反転電流を低減すること、またはスピンバルブ素子の磁化反転を高速にすることの少なくともいずれかを達成することができるとの効果を奏する。磁化反転電流が低減されると、例えば記憶装置の記憶素子として当該スピンバルブ素子を用いた場合の記憶素子を駆動するための回路素子の信頼性が向上し、回路素子のサイズを低減することができ、そして、駆動時の消費電力を抑制することができる。また、磁反転を高速にすることができると、当該スピンバルブ素子を用いた場合の記憶素子へのデータの書込みが高速化され、記憶装置の動作速度を高めることができる。 The present invention has an effect that it is possible to achieve at least one of reducing the magnetization reversal current of the spin valve element and increasing the speed of magnetization reversal of the spin valve element. When the magnetization reversal current is reduced, for example, the reliability of the circuit element for driving the memory element when the spin valve element is used as the memory element of the memory device can be improved, and the size of the circuit element can be reduced. And power consumption during driving can be suppressed. Further, if the magnetic reversal can be performed at high speed, data writing to the memory element when the spin valve element is used can be speeded up, and the operation speed of the memory device can be increased.
本発明のスピンバルブ素子における、フリー層と固定層の磁化容易軸の相対関係を示す説明図。Explanatory drawing which shows the relative relationship of the easy axis of a free layer and a fixed layer in the spin valve element of this invention. 従来のスピンバルブ素子における、フリー層の磁化容易軸と注入スピントルクの相対関係を示す説明図。Explanatory drawing which shows the relative relationship of the magnetization easy axis | shaft of a free layer, and injection | pouring spin torque in the conventional spin valve element. 本発明のスピンバルブ素子における、フリー層の磁化容易軸と注入スピントルクの相対関係を示す説明図。Explanatory drawing which shows the relative relationship of the magnetization easy axis | shaft of a free layer, and injection | pouring spin torque in the spin valve element of this invention. 従来のスピンバルブ素子における磁化反転挙動の計算例1。Calculation example 1 of magnetization reversal behavior in a conventional spin valve element. 従来のスピンバルブ素子における磁化反転挙動の計算例2。Calculation Example 2 of magnetization reversal behavior in a conventional spin valve element. 本発明のスピンバルブ素子における磁化反転挙動の計算例1。Calculation Example 1 of magnetization reversal behavior in the spin valve element of the present invention. 本発明のスピンバルブ素子における磁化反転挙動の計算例2。Calculation Example 2 of magnetization reversal behavior in the spin valve element of the present invention. 本発明のスピンバルブ素子における磁化反転挙動の計算例3。Calculation Example 3 of magnetization reversal behavior in the spin valve element of the present invention. 本発明の記憶装置のメモリー素子の構成を示す模式図。FIG. 3 is a schematic diagram illustrating a configuration of a memory element of a memory device of the present invention. 本発明の記憶装置の構成を示すブロック図。1 is a block diagram illustrating a configuration of a storage device of the present invention. TMRを利用するスピンバルブ素子の基本構成部分を示す断面図。Sectional drawing which shows the basic composition part of the spin valve element using TMR. GMRを利用するスピンバルブ素子の基本構成部分を示す断面図。Sectional drawing which shows the basic composition part of the spin valve element using GMR.
符号の説明Explanation of symbols
 5 基板
 21 電極層
 22 反強磁性層(ピン止め層)
 23 強磁性層(固定層)
 24 絶縁体層
 25 強磁性層(自由層)
 26 キャッピング層
 27 電極層
 30 絶縁層
 31 配線
 51 非磁性層
 100 不揮発性記憶装置
5 Substrate 21 Electrode layer 22 Antiferromagnetic layer (pinned layer)
23 Ferromagnetic layer (pinned layer)
24 Insulator layer 25 Ferromagnetic layer (free layer)
26 Capping Layer 27 Electrode Layer 30 Insulating Layer 31 Wiring 51 Nonmagnetic Layer 100 Nonvolatile Memory Device
 以下、本発明の実施の形態について説明する。まず、本願発明者は、磁化反転電流の低減について検討した。メモリー選択素子としてMOS-FETを用いる場合、MOS-FETの信頼性確保の観点から、磁化反転電流密度Jcは少なくとも10A/cm以下であることが求められている。一般に、スピン注入磁化反転において、磁化反転電流密度Jcは下式で表されることが知られている。
c P→AP=-e(VMsB)αγ[+Hext+(HU+Ms0)/2]/g(0) (2)
c AP→P=+e(VMsB)αγ[-Hext+(HU+Ms0)/2]/g(π) (3)
ここで、Jc P→AP、Jc AP→Pは、それぞれ、フリー層25と固定層の磁化が平行状態から反平行状態へ反転するための、および、反平行状態から平行状態へ反転するための閾値電流密度であり、eは電気素量、Vはフリー層の素子一つ当たりの体積、Msはフリー層の飽和磁化、μBはボーア磁子、αはギルバートのダンピング係数、γは磁気ジャイロ定数、Hextは外部印加磁界、HUはフリー層の異方性磁界、そして、μは透磁率である。また、g(θ)はスピントランスファーの効率を表す係数であり、θを固定層とフリー層の磁化がなす角度、Pをスピン偏極率の関数として次式で表される。
 g(θ)=[-4+(P1/2+P-1/2×(3+cosθ)/4]-1
                        for GMR (4)
 g(θ)=P/(1+Pcosθ)      for TMR (5)
スピン注入磁化反転の場合、外部印加磁界Hextは0である。また、(4)、(5)式から、一般にg(π)>g(0)であるので、Jc P→AP>Jc AP→Pである。
Embodiments of the present invention will be described below. First, the inventor of the present application examined the reduction of the magnetization reversal current. When a MOS-FET is used as the memory selection element, the magnetization reversal current density J c is required to be at least 10 6 A / cm 2 or less from the viewpoint of ensuring the reliability of the MOS-FET. In general, it is known that the magnetization reversal current density J c is expressed by the following equation in spin injection magnetization reversal.
J c P → AP = −e (VM s / μ B ) αγ [+ H ext + (H U + M s / μ 0 ) / 2] / g (0) (2)
J c AP → P = + e (VM s / μ B ) αγ [−H ext + (H U + M s / μ 0 ) / 2] / g (π) (3)
Here, J c P → AP and J c AP → P are used for reversing the magnetization of the free layer 25 and the fixed layer from the parallel state to the anti-parallel state, and from the anti-parallel state to the parallel state, respectively. E is the elementary charge, V is the volume per element of the free layer, M s is the saturation magnetization of the free layer, μ B is the Bohr magneton, α is the Gilbert damping coefficient, γ Is the magnetic gyro constant, H ext is the externally applied magnetic field, H U is the anisotropic magnetic field of the free layer, and μ 0 is the magnetic permeability. Further, g (θ) is a coefficient representing the efficiency of spin transfer, and is expressed by the following equation, where θ is an angle formed by the magnetization of the fixed layer and the free layer, and P is a function of the spin polarization.
g (θ) = [− 4+ (P 1/2 + P −1/2 ) 3 × (3 + cos θ) / 4] −1
for GMR (4)
g (θ) = P / (1 + P 2 cos θ) for TMR (5)
In the case of spin injection magnetization reversal, the externally applied magnetic field H ext is zero. Further, from the expressions (4) and (5), since g (π)> g (0) is generally satisfied, J c P → AP > J c AP → P.
 (2)、(3)式によれば、Jcは例えばフリー層の体積Vに比例するので、フリー層を薄くすればJcを小さくすることができる。しかしながら、メモリーとしての安定性、即ちフリー層磁化の熱安定性は、Kuを磁気異方性としてKu×Vと記述することができるため、フリー層を薄く(Vを小さく)するとメモリーとしての安定性は低下する。つまり、フリー層の厚みは当該制限の範囲でしか小さくすることはできない。さらに、その他のパラメータは材料のもつ物性値である。この物性値に注目して磁化反転電流密度Jcを小さくするための材料開発は行なわれているが、これまで充分な特性が得られていない。 According to the expressions (2) and (3), J c is proportional to the volume V of the free layer, for example. Therefore, if the free layer is made thinner, J c can be reduced. However, the stability of the memory, i.e. the thermal stability of the free layer magnetization, it is possible to describe the K u × V a K u as anisotropy, (small V) thin free layer Then as a memory The stability of is reduced. That is, the thickness of the free layer can be reduced only within the range of the restriction. Further, the other parameters are physical property values of the material. This material development to reduce the magnetization reversal current density J c by focusing on the physical property values is performed, sufficient characteristics are not obtained heretofore.
 本発明の主な技術的ポイントは、フリー層と固定層の磁化容易軸の方向を異なるものとすることにより、上述の(2)式で表されるJc P→APを低減するとともに、反転開始時の注入スピンによるトルクを確実に有限の値とし、磁化反転の高速化を実現することにある。 The main technical point of the present invention is that the direction of the easy axis of magnetization of the free layer and the fixed layer is made different to reduce J c P → AP expressed by the above equation (2) and to invert The purpose is to ensure that the torque due to the injection spin at the start is a finite value and to increase the speed of magnetization reversal.
 図1に示すように、フリー層の磁化容易軸10と固定層の磁化容易軸12とのなす角度をθとすると、注入スピン電流が無い時のフリー層の磁化と固定層の磁化も角度θをなす。従って、フリー層25と固定層23の磁化が平行状態から反平行状態へ反転するための閾値電流密度Jc P→APは、
 J P→AP=-e(VMsB)αγ[+Hext+(HU+Ms)/2]/g(θ)
                                (6)
によって表される。ここで、一般にg(θ)>g(0)であるので、J P→AP<Jc P→APであり、(2)式で表されるθ=0を代入した場合に比して閾値電流密度を低くすることができることがわかる。同様にして、g(θ+π)<g(π)であるので、J AP→P>Jc AP→Pとなるが、θ<π/2では、J P→AP>J AP→Pであるので、その範囲では、電流密度の閾値を実質的に低くする効果がある。
As shown in FIG. 1, when the angle between the easy axis 10 of the free layer and the easy axis 12 of the fixed layer is θ, the magnetization of the free layer and the fixed layer when there is no injected spin current are also θ Make. Therefore, the threshold current density J c P → AP for switching the magnetization of the free layer 25 and the fixed layer 23 from the parallel state to the antiparallel state is
J P → AP = −e (VM s / μ B ) αγ [+ H ext + (H U + M s / μ 0 ) / 2] / g (θ)
(6)
Represented by Here, since g (θ)> g (0) in general, J P → AP <J c P → AP , as compared with the case where θ = 0 expressed by the equation (2) is substituted. It can be seen that the threshold current density can be lowered. Similarly, since g (θ + π) <g (π), J AP → P > J c AP → P , but when θ <π / 2, J P → AP > J AP → P Therefore, in that range, there is an effect of substantially lowering the threshold value of the current density.
 また、図3に示すようにフリー層の磁化が注入されるスピンによるトルクに対して角度θを持つことにより、反転開始時のトルクがゼロでない値となることは明らかである。比較のため、図2に、従来のスピンバルブ素子における、フリー層の磁化容易軸と注入スピントルクの相対関係を示している。前述のように、熱ゆらぎによりフリー層磁化の角度はある範囲に分布する。熱ゆらぎに関わらず、フリー層磁化の角度が固定層磁化の角度に対して有限の角度値をもつようにするには、角度θが、熱ゆらぎによってもたらされる角度よりも大きいことが望ましい。一般に、磁化の傾きθによる異方性エネルギーが熱エネルギーと同等になる条件は、Ku×V×sinθ=kT(ここで、kはボルツマン定数、Tは絶対温度で表わした作動時の温度)として表されるので、
 (k×T)/(Ku×V)<sinθ (7)
であることが望ましい。例えば、フリー層の材料としてCoFe系材料を想定し、Ku=4x10Jm、フリー層の形状を長径130nm×短径70nmの楕円状で厚さ2nm、素子一つ当たりの体積V=1.4×10-23とすると、温度300Kでの熱エネルギー4.14x10-21Jを用いて、(7)式より、θ>0.035πラジアン(=6.3°)を得る。
Further, as shown in FIG. 3, it is clear that the torque at the start of reversal becomes a non-zero value by having an angle θ with respect to the torque caused by the spin into which the magnetization of the free layer is injected. For comparison, FIG. 2 shows a relative relationship between the easy magnetization axis of the free layer and the injection spin torque in a conventional spin valve element. As described above, the angle of the free layer magnetization is distributed in a certain range due to thermal fluctuation. Regardless of thermal fluctuation, in order for the angle of the free layer magnetization to have a finite angle value with respect to the angle of the fixed layer magnetization, it is desirable that the angle θ is larger than the angle caused by the thermal fluctuation. In general, the condition that the anisotropic energy due to the magnetization inclination θ is equivalent to the thermal energy is K u × V × sin 2 θ = kT (where k is the Boltzmann constant and T is the absolute temperature during operation). Temperature).
(K × T) / (K u × V) <sin 2 θ (7)
It is desirable that For example, assuming a CoFe-based material as the material of the free layer, K u = 4 × 10 4 Jm 3 , the shape of the free layer is an ellipse having a major axis of 130 nm × minor axis of 70 nm, a thickness of 2 nm, and a volume per element V = 1 Assuming .4 × 10 −23 m 3 , θ> 0.035π radians (= 6.3 °) is obtained from Equation (7) using 4.14 × 10 −21 J at a temperature of 300 K.
 傾き角度θが大きくなるにつれて、Jcが減少し磁化反転時間も短くなるが、その一方で、磁化反転によるスピンバルブ素子の電気抵抗比率(MR比)が減少し、かつ、後述するように、磁化反転後、安定点への収束が遅くなる傾向がある。安定点への収束が遅くなるのは、注入スピンとフリー層の異方性磁界の2つの駆動力がバランスし、それに沿った歳差運動が安定になっているものと推定される。これら2つの制限条件から、θの実際的な上限を定めるとすれば約30°(=π/6ラジアン)程度とするのが好適であることも見出した。 As the tilt angle θ increases, J c decreases and the magnetization reversal time also shortens. On the other hand, the electrical resistance ratio (MR ratio) of the spin valve element due to magnetization reversal decreases, and as described later, After magnetization reversal, convergence to a stable point tends to be slow. The slow convergence to the stable point is presumed that the two driving forces of the injected spin and the anisotropic magnetic field of the free layer are balanced and the precession along the balance is stable. From these two limiting conditions, it has also been found that if a practical upper limit of θ is determined, it is preferable to set it to about 30 ° (= π / 6 radians).
 TMR方式のスピンバルブ素子の作製手順例を以下に示す。以下であげる各層の材料、膜厚は一例である。酸化膜付きのシリコンウエファー等の基板5上に、電極層21としてCu薄膜(30nm)を形成し、その後、強磁性層23としてCoFeB(20nm)、絶縁体層24としてMgO(0.6nm)、強磁性層25としてCoFeB(2nm)、キャッピング層26としてCu(2nm)を順次積層する。さらに、ネガレジストを塗布し、電子線照射によりパターニングを施し、イオンミリング、もしくはドライエッチにより楕円柱状のスピンバルブ素子を形成する。さらにCVD法等によりSiO膜を形成して前記楕円柱状のスピンバルブ素子の側面を被覆した後、スピンバルブ素子上のレジストをリフトオフにより除去し、上部電極を形成する。その後、数kOe(1Oe≒79.6A/m)程度の磁場中、350~500℃でアニールを行うことで固定層の磁化容易軸を決定する。またGMR方式のスピンバルブ素子の場合は、絶縁体層24に代って、Cuなどの非磁性層51が用いられる他は、基本的には同様の作製手順が用いられる。 An example of a procedure for manufacturing a TMR type spin valve element is shown below. The material and film thickness of each layer given below are examples. A Cu thin film (30 nm) is formed as an electrode layer 21 on a substrate 5 such as a silicon wafer with an oxide film, and then CoFeB (20 nm) as a ferromagnetic layer 23, MgO (0.6 nm) as an insulator layer 24, CoFeB (2 nm) is sequentially stacked as the ferromagnetic layer 25 and Cu (2 nm) is sequentially stacked as the capping layer 26. Further, a negative resist is applied, patterning is performed by electron beam irradiation, and an elliptical columnar spin valve element is formed by ion milling or dry etching. Further, an SiO 2 film is formed by CVD or the like to cover the side surfaces of the elliptical columnar spin valve element, and then the resist on the spin valve element is removed by lift-off to form an upper electrode. Thereafter, annealing is performed at 350 to 500 ° C. in a magnetic field of about several kOe (1 Oe≈79.6 A / m) to determine the easy axis of magnetization of the fixed layer. In the case of a GMR type spin valve element, basically the same manufacturing procedure is used except that a nonmagnetic layer 51 such as Cu is used instead of the insulator layer 24.
 本発明のスピンバルブ素子を構成する材料としては、基板5としてはシリコン基板、ガラス基板が可能であり、またヒートシンクとしての機能が高い銅基板も可能であり、必要に応じてこれらを水冷などの方法で冷却することも可能である。電極層21、29、31としてはTa、Pt、Cu、Au、Ag、Al、Mo、反強磁性層22としてはIrMn、PtMn、そして、強磁性層23(固定層)としてはCoFe、CoFeBが好適であり、絶縁層24としてはMgO、Al酸化物、非磁性層51としてはCu、強磁性層25(フリー層)としては、一般に用いられるCoFe、CoFeBの他、垂直方向の磁化容易軸となる異方性の得やすいTbFe、TbFeCo、GdFe、GdFeCoなどや、結晶異方性の小さいNiFeが好適であるが、これに限定されるものではない。また、キャッッピング層27としてCu、Pdが代表例としてあげられるが、本発明に用いることができる強磁性層がこれに限定されるものではない。 As a material constituting the spin valve element of the present invention, the substrate 5 can be a silicon substrate or a glass substrate, and a copper substrate having a high function as a heat sink is also possible. It is also possible to cool by the method. The electrode layers 21, 29, 31 are Ta, Pt, Cu, Au, Ag, Al, Mo, the antiferromagnetic layer 22 is IrMn, PtMn, and the ferromagnetic layer 23 (fixed layer) is CoFe, CoFeB. The insulating layer 24 is MgO, Al oxide, the nonmagnetic layer 51 is Cu, the ferromagnetic layer 25 (free layer) is commonly used CoFe, CoFeB, and the perpendicular easy axis Anisotropy TbFe, TbFeCo, GdFe, GdFeCo, or the like that easily obtains anisotropy or NiFe having a small crystal anisotropy is suitable, but is not limited thereto. Further, Cu and Pd are typical examples of the capping layer 27, but the ferromagnetic layer that can be used in the present invention is not limited to this.
 スピンバルブ素子として機能を発現するには、強磁性層23(固定層)の保持力を強磁性層25(フリー層)より大きくすることが必要である。この方法としては、強磁性層23(固定層)と強磁性層25(フリー層)の材質を同じにして、前者の膜厚を後者の膜厚より大きくすることにより保磁力差をつけることが行われている。また、反強磁性層(ピン止め層)22を付与し、それとの反強磁性結合で強磁性層23(固定層)の保持力を高くすることも行なわれている。また必要に応じて、例えばCoFeB/Ru/CoFeBなど反強磁性結合膜とすることも可能である。固定層を含む各層の結晶性や磁化容易軸方向は、これらを積層後、磁場中アニールを施すことで制御される。 In order to exhibit a function as a spin valve element, it is necessary to make the holding force of the ferromagnetic layer 23 (fixed layer) larger than that of the ferromagnetic layer 25 (free layer). As this method, the material of the ferromagnetic layer 23 (fixed layer) and the ferromagnetic layer 25 (free layer) are made the same, and the former film thickness is made larger than the latter film thickness to give a difference in coercive force. Has been done. Further, an antiferromagnetic layer (pinned layer) 22 is provided, and the retention of the ferromagnetic layer 23 (fixed layer) is increased by antiferromagnetic coupling therewith. If necessary, an antiferromagnetic coupling film such as CoFeB / Ru / CoFeB may be used. The crystallinity and the easy axis direction of each layer including the fixed layer are controlled by annealing in a magnetic field after laminating them.
 フリー層と固定層の磁化容易の方向を相互に異なることとするには以下の方法がある。即ち、フリー層の面内形状を楕円、長方形とし、そのアスペクト比を大きくして形状による異方性磁界を大きくし、その長軸方向を磁化容易軸とする。一方、固定層の磁化容易軸は、前記磁場中アニールにおける磁場印加方向により定まるので、この磁場印加方向とフリー層の長軸方向を異なるものとすることにより、フリー層と固定層の磁化容易軸を異なるものとすることができる。フリー層と固定層の面内形状は異なる(即ち、フリー層に付与する形状異方性を固定層には付与しない)ことが望ましいが、仮に同じ形状としても、固定層の磁化容易軸は隣接する反強磁性層22で規定されるので、フリー層の磁化容易軸とは一致しないように形成することができる。フリー層の面内形状は、Cl、BCl、SiClなどのハロゲンガス等を用いた通常のドライエッチングで加工可能である。また、フリー層と固定層の面内形状を変えるには、ドライエッチをフリー層と固定層の中間でストップさせる必要があるが、これは、例えばプラズマ発光分光を用いたエッチング終点モニタを用いることなどにより可能である。 There are the following methods for making the directions of easy magnetization of the free layer and the fixed layer different from each other. That is, the in-plane shape of the free layer is an ellipse or a rectangle, the aspect ratio is increased to increase the anisotropic magnetic field due to the shape, and the major axis direction is the easy axis of magnetization. On the other hand, since the magnetization easy axis of the fixed layer is determined by the magnetic field application direction in the annealing in the magnetic field, by making the magnetic field application direction different from the long axis direction of the free layer, the magnetization easy axis of the free layer and the fixed layer is determined. Can be different. It is desirable that the in-plane shapes of the free layer and the pinned layer are different (that is, the shape anisotropy imparted to the free layer is not imparted to the pinned layer). Therefore, it can be formed so as not to coincide with the easy axis of magnetization of the free layer. The in-plane shape of the free layer can be processed by normal dry etching using a halogen gas such as Cl 2 , BCl 2 , or SiCl 4 . Also, in order to change the in-plane shape of the free layer and the fixed layer, it is necessary to stop dry etching between the free layer and the fixed layer. For this, for example, an etching end point monitor using plasma emission spectroscopy is used. This is possible.
 以下に、スピン注入によるフリー層磁化挙動の計算例を示す。計算はランダウ・リフシツ・ギルバート方程式(LLG方程式)にスピン注入項を加えた以下の(8)、(9)式を用い、フリー層全体を1つの磁化と考えるマクロスピン近似によった。
 dm/dt=γm×Heff+αm×dm/dt+βST(θ)Im×(m×s) (8)
 βST(θ)=g(θ)μB/(Ms×V×e) (9)
ただし、m、sは、固定層、固定層の磁化の方向を示す単位ベクトル、γは磁気ジャイロ定数、Heffは有効磁場、αはギルバートのダンピング定数、1は電流、θはsとmのなす角、μBはボーア磁子、Msはフリー層の飽和磁化、Vはフリー層体積、eは電子電荷である。ここで、m、s、Heffはベクトルであり、このため、ベクトル同士に作用する「×」記号の演算は、外積(ベクトル積)を表わす。フリー層磁化の材料としてはCoFe系材料を想定し、フリー層の形状を長径130nmx短径70nmの楕円状で厚さ2mmとして具体的な計算を行った。計算に用いたパラメータと主な物理定数の値を表1に示す。また、時間tは(γMs-1で規格化しており、表1の物性値による単位規格化時間は、約17psecに相当する。以下の計算では、x-y平面をフリー層面内、X軸を固定層の磁化容易軸(=スピン注入Sの方向)、Z軸を膜面に垂直な方向としている。
Figure JPOXMLDOC01-appb-T000001
An example of calculation of free layer magnetization behavior by spin injection is shown below. The calculation was based on the macrospin approximation using the following equations (8) and (9) in which the spin injection term was added to the Landau-Lifschitz-Gilbert equation (LLG equation), and the entire free layer was considered as one magnetization.
dm / dt = γm × H eff + αm × dm / dt + β ST (θ) Im × (m × s) (8)
β ST (θ) = g (θ) μ B / (M s × V × e) (9)
Where m and s are unit vectors indicating the magnetization direction of the fixed layer and the fixed layer, γ is a magnetic gyro constant, H eff is an effective magnetic field, α is a Gilbert damping constant, 1 is a current, θ is s and m The angle formed, μ B is a Bohr magneton, M s is the saturation magnetization of the free layer, V is the free layer volume, and e is the electronic charge. Here, m, s, and H eff are vectors, and therefore, the operation of the “x” symbol acting on the vectors represents an outer product (vector product). As a material for the free layer magnetization, a CoFe-based material was assumed, and a specific calculation was performed assuming that the shape of the free layer is an ellipse having a major axis of 130 nm × minor axis of 70 nm and a thickness of 2 mm. Table 1 shows the parameters used in the calculation and the values of the main physical constants. The time t is normalized by (γM s ) −1 , and the unit standardization time based on the physical property values in Table 1 corresponds to about 17 psec. In the following calculation, the xy plane is in the free layer plane, the X axis is the axis of easy magnetization of the fixed layer (= direction of spin injection S), and the Z axis is the direction perpendicular to the film plane.
Figure JPOXMLDOC01-appb-T000001
 上記の条件による磁化反転の動的挙動の計算例を、フリー層の磁化単位ベクトルmの各座標の時間変化(左図)と、mの軌跡の3次元表示(右図)とによって図4~8に示す。図4および5は、従来のスピンバルブ素子において、フリー層と固定層の磁化容易軸が平行の場合の計算例である。そのうち、図4はフリー層と固定層の初期磁化が正確に平行な場合であり、この状態で磁化が反平行となるような偏極スピン電流を注入しても磁化反転は起こらない。また、図5はフリー層の初期磁化が固定層に対して6°傾いている場合であり、フリー層の磁化容易軸を中心とする歳差運動を繰り返しながら、規格化された時間の単位で時刻(規格化時間)245の時点で磁化の反転が起きている。従来の磁化反転現象は、おおよそこの2つの例で表される。 Examples of calculation of the dynamic behavior of magnetization reversal under the above conditions are shown in FIG. 4 to FIG. 4 by the time change (left figure) of each coordinate of the magnetization unit vector m of the free layer and the three-dimensional display (right figure) of the locus of m. It is shown in FIG. 4 and 5 are calculation examples in the case where the easy axes of the free layer and the fixed layer are parallel in the conventional spin valve element. 4 shows a case where the initial magnetization of the free layer and the fixed layer is exactly parallel, and no magnetization reversal occurs even when a polarized spin current is injected so that the magnetization is antiparallel in this state. FIG. 5 shows the case where the initial magnetization of the free layer is tilted by 6 ° with respect to the fixed layer. The precession around the easy axis of the free layer is repeated and the unit of time is normalized. Magnetization reversal occurs at time (standardization time) 245. The conventional magnetization reversal phenomenon is roughly represented by these two examples.
 これに対し、図6および7は、本発明のスピンバルブ素子において、フリー層と固定層の磁化容易軸が15°(=π/12ラジアン)の角度をなす場合である。このうち、図6はフリー層の初期磁化が固定層の磁化容易軸(X軸)に正確に平行な場合であり、規格化時間179において磁化反転が起きていることを示している。また、図7はフリー層の初期磁化が、フリー層自体の磁化容易軸に一致して、固定層の磁化容易軸(X軸)に対して15°の角度をなす場合である。従来の図4の場合と異なり、初期状態でも有限のトルクが存在するので、規格化時間420で磁化反転が起きている。また、図6のフリー層の磁化が磁化容易軸と15°異なっているという初期状態は、熱ゆらぎの範囲である6°を超えるものであるが、図4との比較を行なうため、あえて試算したものである。初期磁化の向きはフリー層の磁化容易軸方向(θ)に熱ゆらぎの効果を加えた角度となる。この熱ゆらぎまで考慮した後の角度をβとすると、g(β)>g(0)が成り立つため、上記の場合(図6および7)の磁化反転のための閾値電流密度Jcは、従来(図4および5)より小さく抑えられていることは明らかである。 On the other hand, FIGS. 6 and 7 show the case where the easy axis of magnetization of the free layer and the fixed layer forms an angle of 15 ° (= π / 12 radians) in the spin valve element of the present invention. Among these, FIG. 6 shows the case where the initial magnetization of the free layer is exactly parallel to the magnetization easy axis (X axis) of the fixed layer, and shows that magnetization reversal occurs at the normalization time 179. FIG. 7 shows a case where the initial magnetization of the free layer coincides with the easy axis of the free layer itself and forms an angle of 15 ° with respect to the easy axis (X axis) of the fixed layer. Unlike the conventional case of FIG. 4, since a finite torque exists even in the initial state, magnetization reversal occurs at the normalization time 420. In addition, the initial state in which the magnetization of the free layer in FIG. 6 is different from the easy axis by 15 ° exceeds the thermal fluctuation range of 6 °. However, for comparison with FIG. It is a thing. The direction of initial magnetization is an angle obtained by adding the effect of thermal fluctuation to the easy axis direction (θ) of the free layer. Assuming that the angle after taking into account this thermal fluctuation is β, g (β)> g (0) is satisfied. Therefore, the threshold current density J c for magnetization reversal in the above case (FIGS. 6 and 7) is the conventional value. Obviously, it is kept smaller than (FIGS. 4 and 5).
 図8は、フリー層と固定層の磁化容易軸が30°(=π/6ラジアン)の角度をなし、かつ、フリー層の初期磁化がフリー層自体の磁化容易軸に一致している場合を示している。この場合、フリー層の磁化は規格化時間370で反転している。図7と図8とを比較すればわかるように、フリー層の初期磁化がフリー層自体の磁化容易軸に一致している条件においては、磁化容易軸の傾き角度θが大きいほど磁化反転時間が短くなる傾向が認められる。これは、図3から、初期のトルクが大きくなることが容易に推測され、それと一致する傾向である。しかしながら、前述のように、傾き角度θが大きくなると、磁化反転によるスピンバルブ素子の電気抵抗比率(MR比)が減少し、かつ磁化反転後に安定点への収束が遅くなる傾向が認められる。この傾向は、図7と図8における磁化mのx成分の振動の減衰の違いとして現れている。 FIG. 8 shows a case where the easy axis of the free layer and the fixed layer has an angle of 30 ° (= π / 6 radians), and the initial magnetization of the free layer matches the easy axis of the free layer itself. Show. In this case, the magnetization of the free layer is reversed at the normalized time 370. As can be seen from a comparison between FIG. 7 and FIG. 8, under the condition that the initial magnetization of the free layer coincides with the easy axis of the free layer itself, the magnetization reversal time increases as the tilt angle θ of the easy magnetization axis increases. There is a tendency to shorten. From FIG. 3, it can be easily estimated that the initial torque increases, and this tends to coincide with this. However, as described above, when the tilt angle θ increases, the electric resistance ratio (MR ratio) of the spin valve element due to magnetization reversal decreases, and the tendency to converge to a stable point after magnetization reversal is delayed. This tendency appears as a difference in the attenuation of the vibration of the x component of the magnetization m in FIGS.
 次に、本発明のスピンバルブ素子(磁気メモリー素子)をメモリーセルとして使用した不揮発記憶装置(本発明装置)の一構成例について図9および図10を用いて説明する。 Next, a configuration example of a nonvolatile memory device (the device of the present invention) using the spin valve element (magnetic memory device) of the present invention as a memory cell will be described with reference to FIGS.
 図9は本発明に係る不揮発記憶装置の一実施例であるクロスポイント型メモリーセルアレイを構成する磁気メモリー素子を可変抵抗8の記号によって模式的に示している。また、図10は、ワード線とビット線とによって駆動される不揮発性記憶装置100のメモリーアレイの構成を示すブロックダイアグラムである。既に説明したように本発明の磁気メモリー素子は、スピン注入磁化反転によってスイッチングが可能となる。そこで、上部電極、下部電極をアレイ状に形成し、その交点付近に磁気メモリー素子を両電極に接続して設けることによりクロスポイント型メモリーが形成される。例えば、あらかじめSi基板上に適当な絶縁膜を通じて配線を形成しその上部に本発明の磁気メモリー素子を形成し、上部電極を更に形成することが可能である。これにより、正極性および負極性の電気パルスをフリー層側から印加することで効率的にスイッチングを行うことが可能である。 FIG. 9 schematically shows magnetic memory elements constituting a cross-point type memory cell array, which is an embodiment of the nonvolatile memory device according to the present invention, by a variable resistor 8 symbol. FIG. 10 is a block diagram showing a configuration of a memory array of the nonvolatile memory device 100 driven by word lines and bit lines. As already described, the magnetic memory element of the present invention can be switched by spin transfer magnetization reversal. Therefore, the cross-point type memory is formed by forming the upper electrode and the lower electrode in an array and providing a magnetic memory element connected to both electrodes in the vicinity of the intersection. For example, it is possible to form a wiring on an Si substrate in advance through an appropriate insulating film and form the magnetic memory element of the present invention on the upper part to further form an upper electrode. Thereby, it is possible to perform switching efficiently by applying positive and negative electric pulses from the free layer side.
 メモリーの内容が書き込まれる際には、ワードラインデコーダ110によって、ワードラインWLi(i=1~n)のうちのアクセスされるワードに対応するラインが選択され、その選択されたワードラインに接続されたメモリーセルの行に対して書き込むべきデータに対応する信号がビットラインデコーダ120からビットラインBLj(j=1~m)を通じて対応するメモリーセルに対して印加される。そして、ビットラインの電圧との差を取ると、アクセスされるワードラインに接続されたメモリーセルのそれぞれに対して、必要なデータに応じてセット動作またはリセット動作が実現するような信号がビットラインデコーダ120から印加される。図示しないが、各クロスポイントにはトランジスタを1つ以上有する付加回路や正負の電源線が備えられていて、アドレスされた信号に応じてトランジスタが開閉することによって、スピンバルブ素子に正負のパルスを印加するようになっていてもよい。いずれの構成であっても、ワードラインデコーダ110やビットラインデー子だ120の出力段のトランジスタ、あるいは、スピンバルブ素子に接続されたトランジスタの電流は、本発明の特徴を備えるスピンバルブ素子においては低減される。 When the contents of the memory are written, the word line decoder 110 selects a line corresponding to the accessed word from the word lines WLi (i = 1 to n), and is connected to the selected word line. A signal corresponding to data to be written to a row of the memory cells is applied from the bit line decoder 120 to the corresponding memory cells through the bit lines BLj (j = 1 to m). Then, taking the difference from the voltage of the bit line, for each memory cell connected to the accessed word line, a signal that realizes a set operation or a reset operation according to necessary data is transmitted to the bit line. Applied from the decoder 120. Although not shown, each crosspoint is provided with an additional circuit having one or more transistors and a positive and negative power supply line. When the transistors open and close according to the addressed signal, positive and negative pulses are applied to the spin valve element. Application may be made. Regardless of the configuration, the current of the output stage transistor of the word line decoder 110 or the bit line data element 120 or the transistor connected to the spin valve element is the same in the spin valve element having the features of the present invention. Reduced.
 また、メモリーの内容が読み出される際には、ビットラインデコーダ120に含まれ、各ビットラインに対応して設けられる電流検出部(図示しない)が、書き込み時と同様に動作するワードラインデコーダによって選択されるワードラインに対して各ビットラインが流す電流を検出し、アクセスされるワードのあるワードラインにおいて各ビットラインに対応するメモリーセル8の抵抗に応じた電圧値を検出して、メモリーセル8の状態を読み出す。 When the memory contents are read, a current detection unit (not shown) included in the bit line decoder 120 and provided corresponding to each bit line is selected by a word line decoder that operates in the same manner as in writing. A current flowing through each bit line is detected with respect to the word line to be accessed, and a voltage value corresponding to the resistance of the memory cell 8 corresponding to each bit line is detected in the word line with the word to be accessed. Read the status.
 以上、本発明の実施形態により説明したように、本発明の実施の態様においては、スピン注入磁化反転スピンバルブ素子における磁化反転電流が低減される。また、本発明の実施の形態においては、磁化反転の高速化を実現することができる。本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形、変更および組合せが可能である。 As described above, according to the embodiment of the present invention, in the embodiment of the present invention, the magnetization reversal current in the spin injection magnetization reversal spin valve element is reduced. In the embodiment of the present invention, it is possible to increase the speed of magnetization reversal. The present invention is not limited to the above-described embodiments, and various modifications, changes and combinations are possible based on the technical idea of the present invention.

Claims (6)

  1.  1層の絶縁体層または非磁性層からなる中間層と、該中間層を挟む1対の強磁性層とを備えるスピンバルブ素子であって、
     前記1対の強磁性層の各強磁性層の保磁力が互いに異なっており、前記1対の強磁性層の各強磁性層の磁化容易軸の方向が互いに異なっているスピンバルブ素子。
    A spin valve element comprising an intermediate layer made of one insulating layer or a nonmagnetic layer, and a pair of ferromagnetic layers sandwiching the intermediate layer,
    A spin valve element in which coercive forces of the ferromagnetic layers of the pair of ferromagnetic layers are different from each other, and directions of easy magnetization axes of the ferromagnetic layers of the pair of ferromagnetic layers are different from each other.
  2.  前記1対の強磁性層の各強磁性層の磁化容易軸の方向が、強磁性層の面内において互いに異なることを特徴とする、請求項1に記載のスピンバルブ素子。 The spin valve element according to claim 1, wherein directions of easy magnetization axes of the ferromagnetic layers of the pair of ferromagnetic layers are different from each other in a plane of the ferromagnetic layer.
  3.  前記1対の強磁性層それぞれの磁化容易軸のなす角度θが下記(1)式を満たす請求項1に記載のスピンバルブ素子。
     (k×T)/(Ku×V)<sinθ<0.25
    ここで、Kは磁気異方性定数、kはボルツマン定数、Tは絶対温度で表わした作動時の温度、Vは保磁力が小さい方の強磁性層の素子一つ当たりの体積である。
    2. The spin valve element according to claim 1, wherein an angle θ formed by an easy axis of each of the pair of ferromagnetic layers satisfies the following expression (1).
    (K × T) / (K u × V) <sin 2 θ <0.25
    Here, Ku is the magnetic anisotropy constant, k is the Boltzmann constant, T is the operating temperature expressed in absolute temperature, and V is the volume per element of the ferromagnetic layer with the smaller coercive force.
  4.  前記一対の強磁性層の少なくともいずれかの強磁性層の周縁の形状が、当該強磁性層の面に含まれる第1の方向と該面に含まれ該第1の方向に直交する第2の方向との範囲が互いに異なっている形状である、請求項1~3のいずれかに記載のスピンバルブ素子。 The shape of the periphery of at least one of the pair of ferromagnetic layers is a first direction included in the surface of the ferromagnetic layer and a second direction included in the surface and perpendicular to the first direction. The spin valve element according to any one of claims 1 to 3, wherein the range of the direction is different from each other.
  5.  請求項1~3のいずれかに記載のスピンバルブ素子を記憶素子として用いる記憶装置。 A storage device using the spin valve element according to any one of claims 1 to 3 as a storage element.
  6.  請求項4に記載のスピンバルブ素子を記憶素子として用いる記憶装置。 A storage device using the spin valve element according to claim 4 as a storage element.
PCT/JP2008/065414 2008-05-09 2008-08-28 Spin valve element and storage device WO2009136454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-123100 2008-05-09
JP2008123100A JP2011175987A (en) 2008-05-09 2008-05-09 Spin valve element and storage device

Publications (1)

Publication Number Publication Date
WO2009136454A1 true WO2009136454A1 (en) 2009-11-12

Family

ID=41264511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065414 WO2009136454A1 (en) 2008-05-09 2008-08-28 Spin valve element and storage device

Country Status (2)

Country Link
JP (1) JP2011175987A (en)
WO (1) WO2009136454A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103918A (en) * 2011-11-30 2017-08-29 索尼公司 Memory element
CN107580729A (en) * 2015-05-08 2018-01-12 罗切斯特大学 Perpendicular magnetization nanomagnets are switched over using spin(-)orbit torque when without external magnetic field
CN109994598A (en) * 2017-12-28 2019-07-09 Tdk株式会社 Spin(-)orbit torque type magnetizes rotating element, spin(-)orbit torque type magneto-resistance effect element
US11594357B2 (en) 2015-05-08 2023-02-28 University Of Rochester Switching of perpendicularly magnetized nanomagnets with spin-orbit torques in the absence of external magnetic fields

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120104522A1 (en) * 2010-11-01 2012-05-03 Seagate Technology Llc Magnetic tunnel junction cells having perpendicular anisotropy and enhancement layer
EP2641247B1 (en) * 2010-11-17 2016-01-20 New York University Bipolar spin-transfer switching
JP2013115320A (en) * 2011-11-30 2013-06-10 Sony Corp Storage element, storage device
JP5576449B2 (en) * 2012-09-26 2014-08-20 株式会社東芝 Nonvolatile memory device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097709A (en) * 1996-09-20 1998-04-14 Fujitsu Ltd Spin valve magneto-resistive head and its production as well as magnetic recording and reproducing device
JP2005286065A (en) * 2004-03-29 2005-10-13 Sony Corp Magnetoresistive effect element, magnetoresistance effect magnetic head, and magnetic tape unit
JP2007207919A (en) * 2006-01-31 2007-08-16 Toshiba Corp Magnetoresistance effect element and magnetic memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097709A (en) * 1996-09-20 1998-04-14 Fujitsu Ltd Spin valve magneto-resistive head and its production as well as magnetic recording and reproducing device
JP2005286065A (en) * 2004-03-29 2005-10-13 Sony Corp Magnetoresistive effect element, magnetoresistance effect magnetic head, and magnetic tape unit
JP2007207919A (en) * 2006-01-31 2007-08-16 Toshiba Corp Magnetoresistance effect element and magnetic memory

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103918A (en) * 2011-11-30 2017-08-29 索尼公司 Memory element
CN107103918B (en) * 2011-11-30 2020-09-11 索尼公司 Memory element
CN107580729A (en) * 2015-05-08 2018-01-12 罗切斯特大学 Perpendicular magnetization nanomagnets are switched over using spin(-)orbit torque when without external magnetic field
JP2018519675A (en) * 2015-05-08 2018-07-19 ユニバーシティ オブ ロチェスターUniversity Of Rochester Switching of perpendicular magnetized nanomagnets by spin-orbit torque in the absence of external magnetic field
US11004588B2 (en) 2015-05-08 2021-05-11 University Of Rochester Switching of perpendicularly magnetized nanomagnets with spin-orbit torques in the absence of external magnetic fields
US11594357B2 (en) 2015-05-08 2023-02-28 University Of Rochester Switching of perpendicularly magnetized nanomagnets with spin-orbit torques in the absence of external magnetic fields
US11626229B2 (en) 2015-05-08 2023-04-11 University Of Rochester Switching of perpendicularly magnetized nanomagnets with spin-orbit torques in the absence of external magnetic fields
CN109994598A (en) * 2017-12-28 2019-07-09 Tdk株式会社 Spin(-)orbit torque type magnetizes rotating element, spin(-)orbit torque type magneto-resistance effect element
CN109994598B (en) * 2017-12-28 2024-01-16 Tdk株式会社 Spin orbit torque type magnetization rotating element and magnetoresistance effect element

Also Published As

Publication number Publication date
JP2011175987A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
KR101983856B1 (en) Storage element and storage device
WO2009136454A1 (en) Spin valve element and storage device
US8436438B2 (en) Memory element and memory device
US10937955B2 (en) Memory element and memory device
TWI509603B (en) Memory elements and memory devices
KR20090102676A (en) Magnetoresistance effect element and magnetic random access memory
KR20080060143A (en) Storage element and memory
US8743594B2 (en) Memory element and memory device
US11031544B2 (en) Memory device with superparamagnetic layer
WO2014050380A1 (en) Storage element, storage device, and magnetic head
JP2013033881A (en) Storage element and storage device
JP2012160681A (en) Memory element, memory device
KR102060744B1 (en) Spin transfer torque magnetic storage element with low write error rate
JP5354388B2 (en) Spin valve recording element and storage device
KR102214264B1 (en) Spin transfer torque MRAM with auxiliary layers and methods of operating the same
JP2008243933A (en) Magnetic random access memory and recording device equipped with the same
KR20120023560A (en) Memory element and memory device
US9767874B2 (en) Memory apparatus and memory device
WO2017169291A1 (en) Magnetoresistive element, memory element, and electronic apparatus
JP2008300622A (en) Magnetoresistive element and magnetic memory device
WO2013080437A1 (en) Storage element, and storage device
JPWO2019244662A1 (en) Manufacturing method of magnetic storage element, magnetic head, magnetic storage device, electronic device, and magnetic storage element
JP2012248811A (en) Storage element and storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08809489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP