JP2013115320A - Storage element, storage device - Google Patents

Storage element, storage device Download PDF

Info

Publication number
JP2013115320A
JP2013115320A JP2011261855A JP2011261855A JP2013115320A JP 2013115320 A JP2013115320 A JP 2013115320A JP 2011261855 A JP2011261855 A JP 2011261855A JP 2011261855 A JP2011261855 A JP 2011261855A JP 2013115320 A JP2013115320 A JP 2013115320A
Authority
JP
Japan
Prior art keywords
layer
magnetization
storage
oxide
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011261855A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
裕行 内田
Masakatsu Hosomi
政功 細見
Hiroyuki Omori
広之 大森
Kazuhiro Bessho
和宏 別所
Yutaka Higo
豊 肥後
Tetsuya Asayama
徹哉 浅山
Kazuaki Yamane
一陽 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011261855A priority Critical patent/JP2013115320A/en
Priority to PCT/JP2012/006978 priority patent/WO2013080437A1/en
Publication of JP2013115320A publication Critical patent/JP2013115320A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • H01F10/3231Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer
    • H01F10/3236Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer made of a noble metal, e.g.(Co/Pt) n multilayers having perpendicular anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets

Abstract

PROBLEM TO BE SOLVED: To provide a storage element capable of high speed operation by preventing an inversion current from increasing in a short pulse width region, thereby ensuring thermal stability.SOLUTION: The storage element includes a layer structure having a storage layer the orientation of magnetization of which changes corresponding to the information, a magnetization fixed layer having magnetization perpendicular to a film surface becoming the reference of the information stored in the storage layer, and an intermediate layer of a non-magnetic material provided between the storage layer and the magnetization fixed layer. The storage layer includes a region of an oxide having a granular structure, and when current is fed in the lamination direction of the layer structure, the orientation of magnetization of the storage layer changes thus recording the information in the storage layer.

Description

本開示は、スピントルク磁化反転を利用して記録を行う記憶素子及び記憶装置に関する。   The present disclosure relates to a storage element and a storage device that perform recording using spin torque magnetization reversal.

特開2003−17782号公報JP 2003-17782 A 米国特許第6256223号明細書US Pat. No. 6,256,223 特開2008−227388号公報JP 2008-227388 A

Physical Review B, 54, 9353(1996)Physical Review B, 54, 9353 (1996) Journal of Magnetism and Magnetic Materials, 159, L1(1996)Journal of Magnetism and Magnetic Materials, 159, L1 (1996) Nature Materials., 5, 210(2006)Nature Materials., 5, 210 (2006)

モバイル端末から大容量サーバに至るまで、各種情報機器の飛躍的な発展に伴い、これを構成するメモリやロジックなどの素子においても高集積化、高速化、低消費電力化など、さらなる高性能化が追求されている。特に半導体不揮発性メモリの進歩は著しく、大容量ファイルメモリとしてのフラッシュメモリは、ハードディスクドライブを駆逐する勢いで普及が進んでいる。一方、コードストレージ用さらにはワーキングメモリへの展開を睨み、現在一般に用いられているNORフラッシュメモリ、DRAMなどを置き換えるべくFeRAM(Ferroelectric Random Access Memory)、MRAM(Magnetic Random Access Memory)、PCRAM(Phase-Change Random Access Memory)などの開発が進められている。これらのうち一部はすでに実用化されている。   Along with the dramatic development of various information devices ranging from mobile terminals to large-capacity servers, even higher performance, such as higher integration, higher speed, and lower power consumption in the elements such as memory and logic. Is being pursued. In particular, the progress of semiconductor non-volatile memories is remarkable, and flash memories as large-capacity file memories are becoming widespread with the momentum to drive out hard disk drives. On the other hand, in order to expand into code storage and working memory, FeRAM (Ferroelectric Random Access Memory), MRAM (Magnetic Random Access Memory), PCRAM (Phase- Development of “Change Random Access Memory” is underway. Some of these are already in practical use.

なかでもMRAMは、磁性体の磁化方向によりデータ記憶を行うために高速かつほぼ無限(1015回以上)の書換えが可能であり、すでに産業オートメーションや航空機などの分野で使用されている。MRAMはその高速動作と信頼性から、今後コードストレージやワーキングメモリへの展開が期待されているものの、現実には低消費電力化、大容量化に課題を有している。これはMRAMの記録原理、すなわち配線から発生する電流磁界により磁化を反転させるという方式に起因する本質的な問題である。 In particular, MRAM can be rewritten at high speed and almost infinitely (10 15 times or more) in order to store data depending on the magnetization direction of the magnetic material, and has already been used in fields such as industrial automation and aircraft. Although MRAM is expected to be expanded to code storage and working memory in the future due to its high-speed operation and reliability, in reality, it has problems in reducing power consumption and increasing capacity. This is an essential problem due to the recording principle of MRAM, that is, the method of reversing the magnetization by the current magnetic field generated from the wiring.

この問題を解決するための一つの方法として、電流磁界によらない記録、すなわち磁化反転方式が検討されている。なかでもスピントルク磁化反転に関する研究は活発である(例えば、特許文献1、2、3、非特許文献1、2参照)。   As one method for solving this problem, recording not using a current magnetic field, that is, a magnetization reversal method has been studied. In particular, research on spin torque magnetization reversal is active (see, for example, Patent Documents 1, 2, and 3, Non-Patent Documents 1 and 2).

スピントルク磁化反転の記憶素子は、MRAMと同じくMTJ(Magnetic Tunnel Junction)およびTMR(Tunneling Magnetoresistive)素子により構成されている場合が多い。
この構成は、ある方向に固定された磁性層を通過するスピン偏極電子が、他の自由な(方向を固定されない)磁性層に進入する際にその磁性層にトルクを与えること(これをスピントランスファトルクとも呼ぶ)を利用したもので、あるしきい値以上の電流を流せば自由磁性層が反転する。0/1の書換えは電流の極性を変えることにより行う。
この反転のための電流の絶対値は0.1μm程度のスケールの素子で1mA以下である。しかもこの電流値が素子体積に比例して減少するため、スケーリングが可能である。さらに、MRAMで必要であった記録用電流磁界発生用のワード線が不要であるため、セル構造が単純になるという利点もある。
以下、スピントルク磁化反転を利用したMRAMを、ST−MRAM(Spin Torque-Magnetic Random Access Memory)と呼ぶ。スピントルク磁化反転は、またスピン注入磁化反転と呼ばれることもある。高速かつ書換え回数がほぼ無限大であるというMRAMの利点を保ったまま、低消費電力化、大容量化を可能とする不揮発メモリとして、ST−MRAMに大きな期待が寄せられている。
The memory element of spin torque magnetization reversal is often composed of MTJ (Magnetic Tunnel Junction) and TMR (Tunneling Magnetoresistive) elements as in MRAM.
In this configuration, when spin-polarized electrons passing through a magnetic layer fixed in a certain direction enter another free (non-fixed direction) magnetic layer, a torque is applied to the magnetic layer (this is spinned). The free magnetic layer is inverted when a current exceeding a certain threshold is passed. The rewriting of 0/1 is performed by changing the polarity of the current.
The absolute value of the current for this inversion is 1 mA or less for an element having a scale of about 0.1 μm. In addition, since this current value decreases in proportion to the element volume, scaling is possible. Further, since the word line for generating a recording current magnetic field required for the MRAM is unnecessary, there is an advantage that the cell structure is simplified.
Hereinafter, the MRAM using spin torque magnetization reversal is referred to as ST-MRAM (Spin Torque-Magnetic Random Access Memory). Spin torque magnetization reversal may also be referred to as spin injection magnetization reversal. High expectations are placed on ST-MRAM as a non-volatile memory that enables low power consumption and large capacity while maintaining the advantages of MRAM, which is high speed and the number of rewrites is almost infinite.

ST−MRAMの記憶素子に用いる強磁性体として、さまざまな材料が検討されているが、一般に面内磁気異方性を有するものよりも垂直磁気異方性を有するものの方が低電力化、大容量化に適しているとされている。これは垂直磁化の方がスピントルク磁化反転の際に超えるべき閾値(反転電流)が低く、また垂直磁化膜の有する高い磁気異方性が大容量化により微細化した記憶素子の熱安定性を保持するのに有利なためである。
ところで、ST−MRAMの書き込み電力の低減および高速動作の観点から、MTJ素子の短パルス幅での動作特性が重要である。
この場合、電流パルス幅数ナノ秒の短パルスの領域では書き込みに寄与する熱の影響が無くなるため、反転電流が増大し、省電力および高速動作に不利となる。
Various materials have been studied as a ferromagnetic material used for the memory element of ST-MRAM. Generally, a material having perpendicular magnetic anisotropy has a lower power and a larger power than those having in-plane magnetic anisotropy. It is said that it is suitable for capacity increase. This is because the perpendicular magnetization has a lower threshold (reversal current) that must be exceeded when the spin torque magnetization is reversed, and the high magnetic anisotropy of the perpendicular magnetization film reduces the thermal stability of the memory element that has been miniaturized by increasing the capacity. This is because it is advantageous for holding.
By the way, from the viewpoint of reducing the write power and high-speed operation of the ST-MRAM, the operation characteristics of the MTJ element with a short pulse width are important.
In this case, in the region of a short pulse with a current pulse width of several nanoseconds, the influence of heat contributing to writing is eliminated, so that the inversion current increases, which is disadvantageous for power saving and high-speed operation.

そこで本開示では、短パルス幅領域での反転電流の増加を防ぎ、高速動作が可能なST−MRAM素子を提供することを目的とする。   Accordingly, an object of the present disclosure is to provide an ST-MRAM element that can prevent an increase in inversion current in a short pulse width region and can operate at high speed.

本開示の記憶素子は、情報に対応して磁化の向きが変化される記憶層と、上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層とを有する層構造を備える。そして、上記記憶層はグラニュラー構造の酸化物の領域を含み、上記層構造の積層方向に電流を流すことにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われる。   The storage element of the present disclosure includes a storage layer in which the direction of magnetization is changed corresponding to information, a magnetization fixed layer having magnetization perpendicular to a film surface serving as a reference of information stored in the storage layer, and the storage A layer structure having a layer and a nonmagnetic intermediate layer provided between the magnetization fixed layer. The storage layer includes an oxide region having a granular structure, and when a current flows in the stacking direction of the layer structure, the magnetization direction of the storage layer changes, and information is recorded on the storage layer. Is done.

また、本開示の記憶装置は、情報を磁性体の磁化状態により保持する記憶素子と、互いに交差する2種類の配線とを備え、上記記憶素子は、情報に対応して磁化の向きが変化される記憶層と、上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層と、を有する層構造を備え、上記層構造の積層方向に電流を流すことにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われるとともに、上記記憶層は、グラニュラー構造の酸化物の領域を含む。そして、上記2種類の配線の間に上記記憶素子が配置され、上記2種類の配線を通じて、上記記憶素子に上記積層方向の電流が流れる。   In addition, the storage device of the present disclosure includes a storage element that holds information according to the magnetization state of the magnetic material, and two types of wiring that intersect each other, and the magnetization direction of the storage element is changed according to the information. A storage layer, a magnetization fixed layer having magnetization perpendicular to a film surface serving as a reference for information stored in the storage layer, and a nonmagnetic intermediate layer provided between the storage layer and the magnetization fixed layer, , And the direction of magnetization of the storage layer is changed by flowing a current in the stacking direction of the layer structure so that information is recorded on the storage layer, and the storage layer Includes an oxide region having a granular structure. The memory element is disposed between the two types of wirings, and the current in the stacking direction flows through the memory elements through the two types of wirings.

本開示の記憶素子によれば、情報を磁性体の磁化状態により保持する記憶層を有し、この記憶層に対して、中間層を介して磁化固定層が設けられており、積層方向に流れる電流に伴って発生するスピントルク磁化反転を利用して記憶層の磁化を反転させることにより情報の記録が行われるので、積層方向に電流を流すことで情報の記録を行うことができる。このとき、記憶層は、酸化物からなるグラニュラー構造の領域を含んでいることから、記憶層の磁化の向きを反転させるために必要となる書き込み電流値を低減することができる。
一方で、垂直磁化膜の有する強い磁気異方性エネルギのために記憶層の熱安定性を十分に保つことができる。
According to the storage element of the present disclosure, the storage layer that holds information according to the magnetization state of the magnetic material has a magnetization fixed layer via the intermediate layer, and flows in the stacking direction. Since information recording is performed by reversing the magnetization of the storage layer using spin torque magnetization reversal that occurs with current, information can be recorded by flowing current in the stacking direction. At this time, since the storage layer includes a region having a granular structure made of an oxide, a write current value necessary for reversing the magnetization direction of the storage layer can be reduced.
On the other hand, the thermal stability of the memory layer can be sufficiently maintained due to the strong magnetic anisotropy energy of the perpendicular magnetization film.

反転電流の低減と熱安定性の確保を両立させる観点で注目されているのが、垂直磁化膜を記憶層に用いた構造である。例えば非特許文献3によれば、Co/Ni多層膜などの垂直磁化膜を記憶層に用いることにより、反転電流の低減と熱安定性の確保を両立できる可能性が示唆されている。
垂直磁気異方性を有する磁性材料には希土類−遷移金属合金(TbCoFeなど)、金属多層膜(Co/Pd多層膜など)、規則合金(FePtなど)、酸化物と磁性金属の間の界面異方性の利用(Co/MgOなど)等いくつかの種類がある。
本開示の記憶素子は、記憶層の強磁性材料はCo−Fe−B層としている。
また、ST−MRAMにおいて大きな読み出し信号を与える高磁気抵抗変化率を実現するためにトンネル接合構造を採用することを考え、さらに耐熱性や製造上の容易さを考慮すると、界面磁気異方性を利用した材料、すなわちトンネルバリアであるMgO上にCoもしくはFeを含む磁性材料を積層させたものが有望である。
A structure using a perpendicular magnetization film as a storage layer is attracting attention from the viewpoint of achieving both reduction of reversal current and ensuring of thermal stability. For example, Non-Patent Document 3 suggests that the use of a perpendicular magnetization film such as a Co / Ni multilayer film for the storage layer can achieve both reduction of reversal current and securing of thermal stability.
Magnetic materials having perpendicular magnetic anisotropy include rare earth-transition metal alloys (such as TbCoFe), metal multilayer films (such as Co / Pd multilayer films), ordered alloys (such as FePt), and interface differences between oxides and magnetic metals. There are several types such as utilization of directionality (Co / MgO, etc.).
In the memory element of the present disclosure, the ferromagnetic material of the memory layer is a Co—Fe—B layer.
In addition, considering the use of a tunnel junction structure in order to realize a high magnetoresistance change rate that gives a large read signal in ST-MRAM, and considering heat resistance and ease of manufacturing, the interface magnetic anisotropy is reduced. A promising material is a laminate of a magnetic material containing Co or Fe on MgO, which is a tunnel barrier.

また、本開示の記憶装置の構成によれば、2種類の配線を通じて、記憶素子に積層方向の電流が流れ、スピントランスファが起こることにより、2種類の配線を通じて記憶素子の積層方向に電流を流してスピントルク磁化反転による情報の記録を行うことができる。
また、上記記憶層の熱安定性は十分に保つことができるため、記憶素子に記録された情報を安定に保持し、かつ記憶装置の微細化、信頼性の向上、低消費電力化を実現することが可能になる。
In addition, according to the configuration of the memory device of the present disclosure, current in the stacking direction flows through the memory element through two types of wiring, and spin transfer occurs, so that current flows in the stacking direction of the memory element through the two types of wiring. Thus, information can be recorded by spin torque magnetization reversal.
In addition, since the thermal stability of the storage layer can be sufficiently maintained, the information recorded in the storage element can be stably held, and the storage device can be miniaturized, improved in reliability, and reduced in power consumption. It becomes possible.

本開示によれば、短パルス幅領域での反転電流の増加を防ぎことができる。これにより、所定の時間内に記憶層の磁化の向きを反転させて情報の書き込みを行うことが可能になる。 したがって、書き込みエラーを低減することができ、より短い時間で書き込み動作を行うことができる。すなわち、信頼性の高い高速動作が可能となる。
また、反転電流の増加を防ぐことから、消費電力を低減できる。
これにより、動作エラーをなくして、記憶素子の動作マージンを充分に得ることができる。従って、安定して動作する、信頼性の高い記憶装置を実現することができる。
また、書き込み電流を低減して、記憶素子に書き込みを行う際の消費電力を低減することが可能なので、記憶装置全体の消費電力を低減することが可能になる。
According to the present disclosure, an increase in inversion current in a short pulse width region can be prevented. This makes it possible to write information by reversing the magnetization direction of the storage layer within a predetermined time. Therefore, write errors can be reduced and a write operation can be performed in a shorter time. That is, high-speed operation with high reliability is possible.
Further, since the increase of the reverse current is prevented, the power consumption can be reduced.
Thereby, an operation error can be eliminated and a sufficient operation margin of the memory element can be obtained. Therefore, a highly reliable storage device that operates stably can be realized.
In addition, since it is possible to reduce power consumption when writing data to the memory element by reducing write current, power consumption of the entire memory device can be reduced.

本開示の実施の形態の記憶装置の斜視図である。3 is a perspective view of a storage device according to an embodiment of the present disclosure. FIG. 実施の形態の記憶装置の断面図である。It is sectional drawing of the memory | storage device of embodiment. 実施の形態の記憶素子の層構造を示す図である。It is a figure which shows the layer structure of the memory element of embodiment. 実施の形態の記憶素子の実験用試料の構造図である。FIG. 3 is a structural diagram of an experimental sample of the memory element of the embodiment. 励起エネルギと反転時間の関係をプロットした図である。It is the figure which plotted the relationship between excitation energy and inversion time. 実施の形態の磁気ヘッド適用例の説明図である。It is explanatory drawing of the example of magnetic head application of embodiment.

以下、本開示の実施の形態を次の順序で説明する。
<1.実施の形態の記憶装置の構成>
<2.実施の形態の記憶素子の概要>
<3.実施の形態の具体的構成>
<4.実験およびシミュレーション>
<5.変形例>
Hereinafter, embodiments of the present disclosure will be described in the following order.
<1. Configuration of Storage Device of Embodiment>
<2. Outline of Memory Element of Embodiment>
<3. Specific Configuration of Embodiment>
<4. Experiment and Simulation>
<5. Modification>

<1.実施の形態の記憶装置の構成>

まず、本開示の実施の形態となる記憶装置の構成について説明する。
実施の形態の記憶装置の模式図を、図1及び図2に示す。図1は斜視図、図2は断面図である。
<1. Configuration of Storage Device of Embodiment>

First, the configuration of the storage device according to the embodiment of the present disclosure will be described.
1 and 2 are schematic diagrams of a storage device according to an embodiment. 1 is a perspective view, and FIG. 2 is a cross-sectional view.

図1に示すように、実施の形態の記憶装置は、互いに直交する2種類のアドレス配線(例えばワード線とビット線)の交点付近に、磁化状態で情報を保持することができるST−MRAMによる、例えば記憶素子3が配置されて成る。
即ち、シリコン基板等の半導体基体10の素子分離層2により分離された部分に、各記憶装置を選択するための選択用トランジスタを構成する、ドレイン領域8、ソース領域7、並びにゲート電極1が、それぞれ形成されている。このうち、ゲート電極1は、図中前後方向に延びる一方のアドレス配線(ワード線)を兼ねている。
As shown in FIG. 1, the storage device according to the embodiment is based on an ST-MRAM that can hold information in a magnetized state in the vicinity of an intersection of two types of address lines (for example, a word line and a bit line) orthogonal to each other. For example, the memory element 3 is arranged.
That is, a drain region 8, a source region 7, and a gate electrode 1 that constitute a selection transistor for selecting each storage device in a portion separated by an element isolation layer 2 of a semiconductor substrate 10 such as a silicon substrate, Each is formed. Of these, the gate electrode 1 also serves as one address wiring (word line) extending in the front-rear direction in the figure.

ドレイン領域8は、図1中左右の選択用トランジスタに共通して形成されており、このドレイン領域8には、配線9が接続されている。
そして、ソース領域7と、上方に配置された、図1中左右方向に延びるビット線6との間に、スピントルク磁化反転により磁化の向きが反転する記憶層を有する、例えば記憶素子3が配置されている。この記憶素子3は、例えば磁気トンネル接合素子(MTJ素子)により構成される。
The drain region 8 is formed in common to the left and right selection transistors in FIG. 1, and a wiring 9 is connected to the drain region 8.
And, for example, the storage element 3 is disposed between the source region 7 and the bit line 6 that is disposed above and extends in the left-right direction in FIG. 1 and whose magnetization direction is reversed by spin torque magnetization reversal. Has been. The storage element 3 is constituted by, for example, a magnetic tunnel junction element (MTJ element).

図2に示すように、記憶素子3は2つの磁性層15、17を有する。この2層の磁性層15、17のうち、一方の磁性層を磁化M15の向きが固定された磁化固定層15として、他方の磁性層を磁化M17の向きが変化する磁化自由層即ち記憶層17とする。
また、記憶素子3は、ビット線6と、ソース領域7とに、それぞれ上下のコンタクト層4を介して接続されている。
これにより、2種類のアドレス配線1、6を通じて、記憶素子3に上下方向の電流を流して、スピントルク磁化反転により記憶層17の磁化M17の向きを反転させることができる。
As shown in FIG. 2, the memory element 3 has two magnetic layers 15 and 17. Of these two magnetic layers 15, 17, one magnetic layer is a magnetization fixed layer 15 in which the direction of the magnetization M 15 is fixed, and the other magnetic layer is a magnetization free layer, that is, a storage layer 17 in which the direction of the magnetization M 17 changes. And
The storage element 3 is connected to the bit line 6 and the source region 7 via the upper and lower contact layers 4, respectively.
As a result, a current in the vertical direction can be passed through the storage element 3 through the two types of address wirings 1 and 6, and the direction of the magnetization M17 of the storage layer 17 can be reversed by spin torque magnetization reversal.

このような記憶装置では、選択トランジスタの飽和電流以下の電流で書き込みを行う必要があり、トランジスタの飽和電流は微細化に伴って低下することが知られているため、記憶装置の微細化のためには、スピントランスファの効率を改善して、記憶素子3に流す電流を低減させることが好適である。   In such a memory device, it is necessary to perform writing at a current equal to or lower than the saturation current of the selection transistor, and it is known that the saturation current of the transistor decreases with miniaturization. For this, it is preferable to improve the efficiency of the spin transfer and reduce the current flowing through the memory element 3.

また、読み出し信号を大きくするためには、大きな磁気抵抗変化率を確保する必要があり、そのためには上述のようなMTJ構造を採用すること、すなわち2層の磁性層15、17の間に中間層をトンネル絶縁層(トンネルバリア層)とした記憶素子3の構成にすることが効果的である。
このように中間層としてトンネル絶縁層を用いた場合には、トンネル絶縁層が絶縁破壊することを防ぐために、記憶素子3に流す電流量に制限が生じる。すなわち記憶素子3の繰り返し書き込みに対する信頼性の確保の観点からも、スピントルク磁化反転に必要な電流を抑制することが好ましい。なお、スピントルク磁化反転に必要な電流は、反転電流、記憶電流などと呼ばれることがある。
Further, in order to increase the read signal, it is necessary to secure a large magnetoresistance change rate. For that purpose, the above-described MTJ structure is adopted, that is, between the two magnetic layers 15 and 17. It is effective to adopt a configuration of the memory element 3 in which the layer is a tunnel insulating layer (tunnel barrier layer).
When the tunnel insulating layer is used as the intermediate layer in this way, the amount of current flowing through the memory element 3 is limited in order to prevent the tunnel insulating layer from being broken down. That is, it is preferable to suppress the current necessary for the spin torque magnetization reversal from the viewpoint of ensuring the reliability of the memory element 3 against repeated writing. Note that the current required for spin torque magnetization reversal may be referred to as reversal current or storage current.

また記憶装置は不揮発メモリ装置であるから、電流によって書き込まれた情報を安定に記憶する必要がある。つまり、記憶層の磁化の熱揺らぎに対する安定性(熱安定性)を確保する必要がある。
記憶層の熱安定性が確保されていないと、反転した磁化の向きが、熱(動作環境における温度)により再反転する場合があり、書き込みエラーとなってしまう。
本記憶装置における記憶素子3(ST−MRAM)は、従来のMRAMと比較して、スケーリングにおいて有利、すなわち体積を小さくすることは可能であるが、体積が小さくなることは、他の特性が同一であるならば、熱安定性を低下させる方向にある。
ST−MRAMの大容量化を進めた場合、記憶素子3の体積は一層小さくなるので、熱安定性の確保は重要な課題となる。
そのため、ST−MRAMにおける記憶素子3において、熱安定性は非常に重要な特性であり、体積を減少させてもこの熱安定性が確保されるように設計する必要がある。
Further, since the storage device is a nonvolatile memory device, it is necessary to stably store information written by current. That is, it is necessary to ensure the stability (thermal stability) against the thermal fluctuation of the magnetization of the storage layer.
If the thermal stability of the storage layer is not ensured, the reversed magnetization direction may be reversed again by heat (temperature in the operating environment), resulting in a write error.
The storage element 3 (ST-MRAM) in the present storage device is advantageous in scaling as compared with the conventional MRAM, that is, it is possible to reduce the volume, but the decrease in the volume has the same other characteristics. If it is, it exists in the direction which reduces thermal stability.
When the capacity of the ST-MRAM is increased, the volume of the memory element 3 is further reduced, so ensuring thermal stability becomes an important issue.
Therefore, in the storage element 3 in the ST-MRAM, thermal stability is a very important characteristic, and it is necessary to design the thermal stability to be ensured even if the volume is reduced.

<2.実施の形態の記憶素子の概要>

つぎに本開示の実施の形態となる記憶素子の概要について説明する。
本開示の実施の形態は、前述したスピントルク磁化反転により、記憶素子の記憶層の磁化の向きを反転させて、情報の記録を行うものである。
記憶層は、強磁性層を含む磁性体により構成され、情報を磁性体の磁化状態(磁化の向き)により保持するものである。
図3は記憶素子の層構造の例を示すものである。
記憶素子3は、例えば図3Aに一例を示す層構造とされ、少なくとも2つの強磁性体層としての記憶層17、磁化固定層15を備え、またその2つの磁性層の間の中間層16を備える。
<2. Outline of Memory Element of Embodiment>

Next, an outline of a memory element according to an embodiment of the present disclosure will be described.
In the embodiment of the present disclosure, information is recorded by reversing the magnetization direction of the storage layer of the storage element by the spin torque magnetization reversal described above.
The storage layer is made of a magnetic material including a ferromagnetic layer, and holds information by the magnetization state (magnetization direction) of the magnetic material.
FIG. 3 shows an example of the layer structure of the memory element.
The storage element 3 has a layer structure as shown in FIG. 3A, for example, and includes at least two storage layers 17 as a ferromagnetic layer and a magnetization fixed layer 15, and an intermediate layer 16 between the two magnetic layers. Prepare.

記憶層17は、膜面に垂直な磁化を有し、情報に対応して磁化の向きが変化される。
磁化固定層15は、記憶層17に記憶された情報の基準となる膜面に垂直な磁化を有する。
中間層16は、非磁性体であって、記憶層17と磁化固定層15の間に設けられる。
そして記憶層17、中間層16、磁化固定層15を有する層構造の積層方向にスピン偏極した電子を注入することにより、記憶層17の磁化の向きが変化して、記憶層17に対して情報の記録が行われる。
The storage layer 17 has magnetization perpendicular to the film surface, and the magnetization direction is changed in accordance with information.
The magnetization fixed layer 15 has a magnetization perpendicular to the film surface serving as a reference for information stored in the storage layer 17.
The intermediate layer 16 is a nonmagnetic material and is provided between the storage layer 17 and the magnetization fixed layer 15.
Then, by injecting spin-polarized electrons in the stacking direction of the layer structure including the storage layer 17, the intermediate layer 16, and the magnetization fixed layer 15, the magnetization direction of the storage layer 17 changes, and the storage layer 17 Information is recorded.

ここでスピントルク磁化反転について簡単に説明する。
電子は2種類のスピン角運動量をもつ。仮にこれを上向き、下向きと定義する。非磁性体内部では両者が同数であり、強磁性体内部では両者の数に差がある。ST−MRAMを構成する2層の強磁性体である磁化固定層15及び記憶層17において、互いの磁気モーメントの向きが反方向状態のときに、電子を磁化固定層15から記憶層17への移動させた場合について考える。
Here, the spin torque magnetization reversal will be briefly described.
Electrons have two types of spin angular momentum. This is defined as upward and downward. The number of both is the same inside the non-magnetic material, and the number of both is different inside the ferromagnetic material. In the magnetization fixed layer 15 and the storage layer 17, which are the two layers of ferromagnetic material constituting the ST-MRAM, electrons are transferred from the magnetization fixed layer 15 to the storage layer 17 when the directions of the magnetic moments are opposite to each other. Consider the case of moving.

磁化固定層15は、高い保磁力のために磁気モーメントの向きが固定された固定磁性層である。
磁化固定層15を通過した電子はスピン偏極、すなわち上向きと下向きの数に差が生じる。非磁性層である中間層16の厚さが充分に薄く構成されていると、磁化固定層15の通過によるスピン偏極が緩和して通常の非磁性体における非偏極(上向きと下向きが同数)状態になる前に他方の磁性体、すなわち記憶層17に電子が達する。
The magnetization fixed layer 15 is a fixed magnetic layer in which the direction of the magnetic moment is fixed for high coercive force.
The electrons that have passed through the magnetization pinned layer 15 have a difference in spin polarization, that is, the upward and downward numbers. If the thickness of the intermediate layer 16 that is a nonmagnetic layer is sufficiently thin, spin polarization due to passage through the magnetization fixed layer 15 is relaxed, and nonpolarization in a normal nonmagnetic material (the same number of upwards and downwards). ) Electrons reach the other magnetic body, that is, the memory layer 17 before the state becomes.

記憶層17では、スピン偏極度の符号が逆になっていることにより、系のエネルギを下げるために一部の電子は反転、すなわちスピン角運動量の向きをかえさせられる。このとき、系の全角運動量は保存されなくてはならないため、向きを変えた電子による角運動量変化の合計と等価な反作用が記憶層17の磁気モーメントにも与えられる。
電流すなわち単位時間に通過する電子の数が少ない場合には、向きを変える電子の総数も少ないために記憶層17の磁気モーメントに発生する角運動量変化も小さいが、電流が増えると多くの角運動量変化を単位時間内に与えることができる。
In the memory layer 17, since the signs of the spin polarization are reversed, some electrons are inverted, that is, the direction of the spin angular momentum is changed in order to lower the energy of the system. At this time, since the total angular momentum of the system must be preserved, a reaction equivalent to the sum of changes in angular momentum due to the electrons whose direction is changed is also given to the magnetic moment of the storage layer 17.
When the current, that is, the number of electrons passing through the unit time is small, the total number of electrons changing the direction is small, and therefore the change in the angular momentum generated in the magnetic moment of the storage layer 17 is small. Changes can be given within a unit time.

角運動量の時間変化はトルクであり、トルクがあるしきい値を超えると記憶層17の磁気モーメントは歳差運動を開始し、その一軸異方性により180度回転したところで安定となる。すなわち反方向状態から同方向状態への反転が起こる。
磁化が同方向状態にあるとき、電流を逆に記憶層17から磁化固定層15へ電子を送る向きに流すと、今度は磁化固定層15で反射される際にスピン反転した電子が記憶層17に進入する際にトルクを与え、反方向状態へと磁気モーメントを反転させることができる。ただしこの際、反転を起こすのに必要な電流量は、反方向状態から同方向状態へと反転させる場合よりも多くなる。
The time change of the angular momentum is torque, and when the torque exceeds a certain threshold value, the magnetic moment of the storage layer 17 starts precession and becomes stable when rotated 180 degrees due to its uniaxial anisotropy. That is, inversion from the opposite direction state to the same direction state occurs.
When the magnetization is in the same direction state, if a current is flowed in the opposite direction to send electrons from the storage layer 17 to the magnetization fixed layer 15, the electrons that have been spin-reversed when reflected by the magnetization fixed layer 15 are now stored in the storage layer 17. Torque is applied when entering, and the magnetic moment can be reversed to the opposite direction. However, at this time, the amount of current required to cause the reversal is larger than when reversing from the opposite direction state to the same direction state.

磁気モーメントの同方向状態から反方向状態への反転は直感的な理解が困難であるが、磁化固定層15が固定されているために磁気モーメントが反転できず、系全体の角運動量を保存するために記憶層17が反転する、と考えてもよい。このように、0/1の記録は、磁化固定層15から記憶層17の方向またはその逆向きに、それぞれの極性に対応する、あるしきい値以上の電流を流すことによって行われる。   Although it is difficult to intuitively understand the reversal of the magnetic moment from the same direction to the opposite direction, the magnetic moment cannot be reversed because the magnetization fixed layer 15 is fixed, and the angular momentum of the entire system is preserved. Therefore, it may be considered that the memory layer 17 is inverted. As described above, recording of 0/1 is performed by flowing a current of a certain threshold value or more corresponding to each polarity in the direction from the fixed magnetization layer 15 to the storage layer 17 or vice versa.

情報の読み出しは、従来型のMRAMと同様、磁気抵抗効果を用いて行われる。すなわち上述の記録の場合と同様に膜面垂直方向に電流を流す。そして、記憶層17の磁気モーメントが、磁化固定層15の磁気モーメントに対して同方向であるか反方向であるかに従い、素子の示す電気抵抗が変化する現象を利用する。   Information is read out by using the magnetoresistive effect as in the conventional MRAM. That is, a current is passed in the direction perpendicular to the film surface as in the case of the above recording. Then, a phenomenon is used in which the electric resistance of the element changes depending on whether the magnetic moment of the storage layer 17 is in the same direction or in the opposite direction to the magnetic moment of the magnetization fixed layer 15.

磁化固定層15と記憶層17の間の中間層16として用いる材料は金属でも絶縁体でも構わないが、より高い読み出し信号(抵抗の変化率)が得られ、かつより低い電流によって記録が可能とされるのは、中間層として絶縁体を用いた場合である。このときの素子を強磁性トンネル接合(Magnetic Tunnel Junction:MTJ)と呼ぶ。   The material used for the intermediate layer 16 between the magnetization fixed layer 15 and the storage layer 17 may be a metal or an insulator, but a higher read signal (resistance change rate) can be obtained and recording can be performed with a lower current. This is the case when an insulator is used as the intermediate layer. The element at this time is called a ferromagnetic tunnel junction (Magnetic Tunnel Junction: MTJ).

スピントルク磁化反転によって、磁性層の磁化の向きを反転させるときに、必要となる電流の閾値Icは、磁性層の磁化容易軸が面内方向であるか、垂直方向であるかによって異なる。
本実施の形態の記憶素子は垂直磁化型であるが、従前の面内磁化型の記憶素子の場合における磁性層の磁化の向きを反転させる反転電流をIc_paraとする。
同方向から逆方向に反転させる場合、
Ic_para=(A・α・Ms・V/g(0)/P)(Hk+2πMs)
となり、逆方向から同方向に反転させる場合、
Ic_para=−(A・α・Ms・V/g(π)/P)(Hk+2πMs)
となる。
なお、同方向、逆方向とは、磁化固定層の磁化方向を基準としてみた記憶層の磁化方向である。平行、反平行とも呼ばれる。
When the magnetization direction of the magnetic layer is reversed by spin torque magnetization reversal, the required current threshold Ic differs depending on whether the easy axis of magnetization of the magnetic layer is in the in-plane direction or in the vertical direction.
Although the memory element of this embodiment is a perpendicular magnetization type, the reversal current that reverses the magnetization direction of the magnetic layer in the case of a conventional in-plane magnetization type memory element is Ic_para.
When reversing from the same direction to the opposite direction,
Ic_para = (A · α · Ms · V / g (0) / P) (Hk + 2πMs)
And when reversing from the opposite direction to the same direction,
Ic_para = − (A · α · Ms · V / g (π) / P) (Hk + 2πMs)
It becomes.
The same direction and the opposite direction are the magnetization directions of the storage layer with reference to the magnetization direction of the magnetization fixed layer. Also called parallel or antiparallel.

一方、本例のような垂直磁化型の記憶素子の反転電流をIc_perpとすると、同方向から逆方向に反転させる場合、
Ic_perp=(A・α・Ms・V/g(0)/P)(Hk−4πMs)
となり、逆方向から同方向に反転させる場合、
Ic_perp=−(A・α・Ms・V/g(π)/P)(Hk−4πMs)
となる。
On the other hand, when the reversal current of the perpendicular magnetization type storage element as in this example is Ic_perp, when reversing from the same direction to the reverse direction,
Ic_perp = (A · α · Ms · V / g (0) / P) (Hk−4πMs)
And when reversing from the opposite direction to the same direction,
Ic_perp = − (A · α · Ms · V / g (π) / P) (Hk−4πMs)
It becomes.

ただし、Aは定数、αはダンピング定数、Msは飽和磁化、Vは素子体積、Pはスピン分極率、g(0)、g(π)はそれぞれ同方向時、逆方向時にスピントルクが相手の磁性層に伝達される効率に対応する係数、Hkは磁気異方性である。   Where A is a constant, α is a damping constant, Ms is saturation magnetization, V is element volume, P is spin polarizability, g (0) and g (π) are in the same direction and spin torque in the opposite direction. A coefficient Hk corresponding to the efficiency transmitted to the magnetic layer is magnetic anisotropy.

上記各式において、垂直磁化型の場合の(Hk−4πMs)と面内磁化型の場合の(Hk+2πMs)とを比較すると、垂直磁化型が低記憶電流化により適していることが理解できる。   In each of the above formulas, comparing (Hk−4πMs) in the perpendicular magnetization type and (Hk + 2πMs) in the in-plane magnetization type, it can be understood that the perpendicular magnetization type is more suitable for reducing the storage current.

ここで、反転電流Ic0は熱安定性の指標Δとの関係で表すと次の(数1)により表される。

Figure 2013115320

但しeは電子の電荷、ηはスピン注入効率、バー付きのhは換算プランク定数、αはダンピング定数、kBはボルツマン定数、Tは温度である。 Here, the inversion current Ic0 is expressed by the following (Equation 1) in terms of the relationship with the thermal stability index Δ.
Figure 2013115320

Where e is the charge of the electron, η is the spin injection efficiency, h with a bar is the converted Planck constant, α is the damping constant, k B is the Boltzmann constant, and T is the temperature.

本実施の形態では、磁化状態により情報を保持することができる磁性層(記憶層17)と、磁化の向きが固定された磁化固定層15とを有する記憶素子を構成する。
メモリとして存在し得るためには、書き込まれた情報を保持することができなければならない。情報を保持する能力の指標として、熱安定性の指標Δ(=KV/kBT)の値で判断される。このΔは(数2)により表される。

Figure 2013115320

ここで、Hkは実効的な異方性磁界、kBはボルツマン定数、Tは温度、Msは飽和磁化量、Vは記憶層の体積、Kは異方性エネルギである。 In the present embodiment, a storage element including a magnetic layer (storage layer 17) capable of holding information depending on the magnetization state and a magnetization fixed layer 15 in which the magnetization direction is fixed is configured.
In order to be able to exist as a memory, it must be able to hold the written information. As an index of the ability to hold information, it is determined by the value of the thermal stability index Δ (= KV / kBT). This Δ is expressed by (Equation 2).
Figure 2013115320

Here, Hk represents an effective anisotropy field, k B is the Boltzmann constant, T is the temperature, Ms is the saturation magnetization, V is the volume of the storage layer, K is an anisotropic energy.

実効的な異方性磁界Hkには、形状磁気異方性、誘導磁気異方性、結晶磁気異方性等の影響が取り込まれており、単磁区の一斉回転モデルを仮定した場合、これは保磁力と同等となる。   The effect of shape magnetic anisotropy, induced magnetic anisotropy, crystal magnetic anisotropy, etc. is incorporated into the effective anisotropy magnetic field Hk. Equivalent to coercive force.

熱安定性の指標Δと電流の閾値Icとは、トレードオフの関係になることが多い。そのため、メモリ特性を維持するには、これらの両立が課題となることが多い。
記憶層の磁化状態を変化させる電流の閾値は、実際には、例えば記憶層17の厚さが2nmであり、平面パターンが直径100nm円形のTMR素子において、百〜数百μA程度である。
これに対して、電流磁場により磁化反転を行う通常のMRAMでは、書き込み電流が数mA以上必要となる。
従って、ST−MRAMの場合には、上述のように書き込み電流の閾値が充分に小さくなるため、集積回路の消費電力を低減させるために有効であることが分かる。
また、通常のMRAMで必要とされる、電流磁界発生用の配線が不要となるため、集積度においても通常のMRAMに比較して有利である。
The thermal stability index Δ and the current threshold value Ic often have a trade-off relationship. Therefore, in order to maintain the memory characteristics, it is often a problem to achieve both.
The threshold value of the current for changing the magnetization state of the storage layer is actually about one hundred to several hundred μA in a TMR element in which the thickness of the storage layer 17 is 2 nm and the planar pattern is 100 nm in diameter, for example.
On the other hand, in a normal MRAM that performs magnetization reversal by a current magnetic field, a write current of several mA or more is required.
Therefore, in the case of the ST-MRAM, it can be understood that the write current threshold is sufficiently small as described above, which is effective in reducing the power consumption of the integrated circuit.
In addition, since a wiring for generating a current magnetic field, which is required in a normal MRAM, is not necessary, the degree of integration is advantageous as compared with a normal MRAM.

そして、スピントルク磁化反転を行う場合には、記憶素子に直接電流を流して情報の書き込み(記録)を行うことから、書き込みを行うメモリセルを選択するために、記憶素子を選択トランジスタと接続してメモリセルを構成する。
この場合、記憶素子に流れる電流は、選択トランジスタで流すことが可能な電流(選択トランジスタの飽和電流)の大きさによって制限される。
When spin torque magnetization reversal is performed, current is directly supplied to the storage element to write (record) information. Therefore, in order to select a memory cell to be written, the storage element is connected to a selection transistor. To constitute a memory cell.
In this case, the current flowing through the memory element is limited by the magnitude of the current that can be passed through the selection transistor (the saturation current of the selection transistor).

記録電流を低減させるためには、上述のように垂直磁化型を採用することが望ましい。また垂直磁化膜は一般に面内磁化膜よりも高い磁気異方性を持たせることが可能であるため、上述のΔを大きく保つ点でも好ましい。   In order to reduce the recording current, it is desirable to adopt the perpendicular magnetization type as described above. Further, since the perpendicular magnetization film can generally have a higher magnetic anisotropy than the in-plane magnetization film, it is preferable in that the above Δ is kept large.

垂直異方性を有する磁性材料には希土類−遷移金属合金(TbCoFeなど)、金属多層膜(Co/Pd多層膜など)、規則合金(FePtなど)、酸化物と磁性金属の間の界面異方性の利用(Co/MgOなど)等いくつかの種類があるが、希土類−遷移金属合金は加熱により拡散、結晶化すると垂直磁気異方性を失うため、ST−MRAM用材料としては好ましくない。
また金属多層膜も加熱により拡散し、垂直磁気異方性が劣化することが知られており、さらに垂直磁気異方性が発現するのは面心立方の(111)配向となっている場合であるため、MgOやそれに隣接して配置するFe、CoFe、CoFeBなどの高分極率層に要求される(001)配向を実現させることが困難となる。L10規則合金は高温でも安定であり、かつ(001)配向時に垂直磁気異方性を示すことから、上述のような問題は起こらないものの、製造時に500℃以上の十分に高い温度で加熱する、あるいは製造後に500℃以上の高温で熱処理を行うことで原子を規則配列させる必要があり、トンネルバリア等積層膜の他の部分における好ましくない拡散や界面粗さの増大を引き起こす可能性がある。
Magnetic materials having perpendicular anisotropy include rare earth-transition metal alloys (such as TbCoFe), metal multilayer films (such as Co / Pd multilayer films), ordered alloys (such as FePt), and interface anisotropy between oxides and magnetic metals. However, rare earth-transition metal alloys lose their perpendicular magnetic anisotropy when they are diffused and crystallized by heating, and thus are not preferable as materials for ST-MRAM.
In addition, it is known that metal multilayer film diffuses by heating and the perpendicular magnetic anisotropy deteriorates. Further, the perpendicular magnetic anisotropy is manifested in the case of a face-centered cubic (111) orientation. Therefore, it is difficult to realize the (001) orientation required for high polarizability layers such as MgO and Fe, CoFe, CoFeB arranged adjacent to MgO. The L10 ordered alloy is stable even at high temperatures and exhibits perpendicular magnetic anisotropy during (001) orientation, so that the above-mentioned problems do not occur, but it is heated at a sufficiently high temperature of 500 ° C. or higher during production. Alternatively, it is necessary to arrange the atoms regularly by performing a heat treatment at a high temperature of 500 ° C. or higher after manufacture, which may cause undesired diffusion or increase in interface roughness in other portions of the laminated film such as a tunnel barrier.

これに対し、界面磁気異方性を利用し、垂直異方性を有する磁性材料にとしてCo−Fe−B合金があり、ST−MRAMおいて大きな読み出し信号を与える高磁気抵抗変化率を実現するためにトンネル障壁としてMgOと組み合わせが可能な点で有望視されている。
しかしながら、他の材料と同様、短パルス領域での書き込み動作においては書き込み電流の増大が懸念される。
On the other hand, there is a Co—Fe—B alloy as a magnetic material having perpendicular anisotropy utilizing interfacial magnetic anisotropy, and realizes a high magnetoresistance change rate that gives a large read signal in ST-MRAM. Therefore, it is considered promising in that it can be combined with MgO as a tunnel barrier.
However, like other materials, there is a concern about an increase in write current in a write operation in a short pulse region.

これの解答として、本開示において筆者らは、図3Bに示すように記憶層17にグラニュラー構造22の酸化物21を形成する構造を考案した。グラニュラー構造とは、材料中にナノスケールの微少な粒子が分散した状態とされる。
例えば、記憶層17は磁性材料としてCo−Fe−Bを使用するが、このCo−Fe−Bの結晶中に酸化物21(例えば酸化ケイ素)の微少な粒子がCo−Fe−Bの結晶中の一定の領域に分散している状態とされる。ここでいう分散状態とは酸化物粒子21が均一な連続膜を形成していない状態をいう。これにより、反転電流が低下し、熱安定性を確保する記憶素子20を実現することができる。
As an answer to this, the present inventors have devised a structure in which the oxide 21 of the granular structure 22 is formed in the memory layer 17 as shown in FIG. 3B. The granular structure is a state in which minute nano-scale particles are dispersed in a material.
For example, the storage layer 17 uses Co—Fe—B as a magnetic material, and in this Co—Fe—B crystal, fine particles of oxide 21 (for example, silicon oxide) are contained in the Co—Fe—B crystal. It is assumed that it is dispersed in a certain area. The dispersed state here refers to a state in which the oxide particles 21 do not form a uniform continuous film. Thereby, the reversal current is reduced, and the memory element 20 that ensures thermal stability can be realized.

さらに、選択トランジスタの飽和電流値を考慮して、記憶層17と磁化固定層15との間の非磁性の中間層16として、絶縁体から成るトンネル絶縁層を用いて磁気トンネル接合(MTJ)素子を構成する。
トンネル絶縁層を用いて磁気トンネル接合(MTJ)素子を構成することにより、非磁性導電層を用いて巨大磁気抵抗効果(GMR)素子を構成した場合と比較して、磁気抵抗変化率(MR比)を大きくすることができ、読み出し信号強度を大きくすることができるためである。
Further, in consideration of the saturation current value of the selection transistor, a magnetic tunnel junction (MTJ) element using a tunnel insulating layer made of an insulator as the nonmagnetic intermediate layer 16 between the storage layer 17 and the magnetization fixed layer 15. Configure.
By constructing a magnetic tunnel junction (MTJ) element using a tunnel insulating layer, a magnetoresistance change rate (MR ratio) is compared with a case where a giant magnetoresistive effect (GMR) element is constructed using a nonmagnetic conductive layer. This is because the read signal intensity can be increased.

そして特に、このトンネル絶縁層としての中間層16の材料として、酸化マグネシウム(MgO)を用いることにより、磁気抵抗変化率(MR比)を大きくすることができる。
また、一般に、スピントランスファの効率はMR比に依存し、MR比が大きいほど、スピントランスファの効率が向上し、磁化反転電流密度を低減することができる。
従って、トンネル絶縁層の材料として酸化マグネシウムを用い、同時に上記の記憶層17を用いることにより、スピントルク磁化反転による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
これにより、MR比(TMR比)を確保して、スピントルク磁化反転による書き込み閾値電流を低減することができ、少ない電流で情報の書き込み(記録)を行うことができる。また、読み出し信号強度を大きくすることができる。
In particular, by using magnesium oxide (MgO) as the material of the intermediate layer 16 as the tunnel insulating layer, the magnetoresistance change rate (MR ratio) can be increased.
In general, the efficiency of the spin transfer depends on the MR ratio, and as the MR ratio increases, the efficiency of the spin transfer improves and the magnetization reversal current density can be reduced.
Therefore, by using magnesium oxide as the material of the tunnel insulating layer and simultaneously using the memory layer 17 described above, the write threshold current due to the spin torque magnetization reversal can be reduced, and information is written (recorded) with a small current. be able to. In addition, the read signal intensity can be increased.
Thereby, the MR ratio (TMR ratio) can be secured, the write threshold current due to the spin torque magnetization reversal can be reduced, and information can be written (recorded) with a small current. In addition, the read signal intensity can be increased.

このようにトンネル絶縁層を酸化マグネシウム(MgO)膜により形成する場合には、MgO膜が結晶化していて、001方向に結晶配向性を維持していることがより望ましい。
なお、本実施の形態において、記憶層17と磁化固定層15との間の中間層16(トンネル絶縁層)は、酸化マグネシウムから成る構成とする他にも、例えば酸化アルミニウム、窒化アルミニウム、SiO2、Bi23、MgF2、CaF、SrTiO2、AlLaO3、Al−N−O等の各種の絶縁体、誘電体、半導体を用いて構成することもできる。
Thus, when the tunnel insulating layer is formed of a magnesium oxide (MgO) film, it is more desirable that the MgO film is crystallized and the crystal orientation is maintained in the 001 direction.
In the present embodiment, the intermediate layer 16 (tunnel insulating layer) between the storage layer 17 and the magnetization fixed layer 15 is made of magnesium oxide, for example, aluminum oxide, aluminum nitride, SiO 2 , Bi 2 O 3 , MgF 2 , CaF, SrTiO 2 , AlLaO 3 , Al—N—O, and other various insulators, dielectrics, and semiconductors can also be used.

トンネル絶縁層の面積抵抗値は、スピントルク磁化反転により記憶層17の磁化の向きを反転させるために必要な電流密度を得る観点から、数十Ωμm2程度以下に制御する必要がある。
そして、MgO膜から成るトンネル絶縁層では、面積抵抗値を上述の範囲とするために、MgO膜の膜厚を1.5nm以下に設定する必要がある。
The area resistance value of the tunnel insulating layer needs to be controlled to about several tens of Ωμm 2 or less from the viewpoint of obtaining a current density necessary for reversing the magnetization direction of the memory layer 17 by spin torque magnetization reversal.
In the tunnel insulating layer made of the MgO film, the film thickness of the MgO film needs to be set to 1.5 nm or less in order to make the sheet resistance value in the above range.

また、本開示の実施の形態において、記憶層17に隣接してキャップ層18が配置され、このキャップ層は酸化物層を有する。
キャップ層18の酸化物としては、たとえばMgO、酸化アルミニウム、TiO2、SiO2、Bi23、SrTiO2、AlLaO3、Al−N−O等を用いる。
In the embodiment of the present disclosure, a cap layer 18 is disposed adjacent to the storage layer 17, and the cap layer includes an oxide layer.
As the oxide of the cap layer 18, for example, MgO, aluminum oxide, TiO 2 , SiO 2 , Bi 2 O 3 , SrTiO 2 , AlLaO 3 , Al—N—O, or the like is used.

また、記憶層17の磁化の向きを、小さい電流で容易に反転できるように、記憶素子を小さくすることが望ましい。
従って、好ましくは、記憶素子の面積を0.01μm2以下とする。
In addition, it is desirable to make the memory element small so that the magnetization direction of the memory layer 17 can be easily reversed with a small current.
Therefore, preferably, the area of the memory element is 0.01 μm 2 or less.

磁化固定層15及び記憶層17のそれぞれの膜厚は、0.5nm〜30nmであることが好ましい。
記憶素子のその他の構成は、スピントルク磁化反転により情報を記録する記憶素子の従来公知の構成と同様とすることができる。
The film thicknesses of the magnetization fixed layer 15 and the storage layer 17 are preferably 0.5 nm to 30 nm.
The other configuration of the storage element can be the same as the conventionally known configuration of the storage element that records information by spin torque magnetization reversal.

磁化固定層15は、強磁性層のみにより、或いは反強磁性層と強磁性層の反強磁性結合を利用することにより、その磁化の向きが固定された構成とすることが出来る。
また、磁化固定層15は、単層の強磁性層から成る構成、或いは複数層の強磁性層を非磁性層を介して積層した積層フェリピン構造とすることが出来る。
The magnetization pinned layer 15 can be configured to have its magnetization direction fixed by using only the ferromagnetic layer or by using the antiferromagnetic coupling between the antiferromagnetic layer and the ferromagnetic layer.
In addition, the magnetization fixed layer 15 can be configured by a single ferromagnetic layer or a laminated ferripin structure in which a plurality of ferromagnetic layers are laminated via a nonmagnetic layer.

積層フェリピン構造の磁化固定層15を構成する強磁性層の材料としては、Co,CoFe,CoFeB等を用いることができる。また、非磁性層の材料としては、Ru,Re,Ir,Os等を用いることができる。
反強磁性層の材料としては、FeMn合金、PtMn合金、PtCrMn合金、NiMn合金、IrMn合金、NiO、Fe23等の磁性体を挙げることができる。
また、これらの磁性体に、Ag,Cu,Au,Al,Si,Bi,Ta,B,C,O,N,Pd,Pt,Zr,Hf,Ir,W,Mo,Nb等の非磁性元素を添加して、磁気特性を調整したり、その他の結晶構造や結晶性や物質の安定性等の各種物性を調整したりすることができる。
Co, CoFe, CoFeB, or the like can be used as the material of the ferromagnetic layer constituting the magnetization fixed layer 15 having the laminated ferripin structure. Moreover, Ru, Re, Ir, Os etc. can be used as a material of a nonmagnetic layer.
Examples of the material of the antiferromagnetic layer include magnetic materials such as FeMn alloy, PtMn alloy, PtCrMn alloy, NiMn alloy, IrMn alloy, NiO, and Fe 2 O 3 .
In addition, nonmagnetic elements such as Ag, Cu, Au, Al, Si, Bi, Ta, B, C, O, N, Pd, Pt, Zr, Hf, Ir, W, Mo, and Nb are included in these magnetic materials. Can be added to adjust the magnetic properties and other physical properties such as crystal structure, crystallinity and material stability.

また、記憶素子の膜構成は、記憶層17が磁化固定層15の下側に配置される構成でも問題ない。この場合は、上記導電性酸化物キャップ層が果たす役割は、導電性酸化物下地層により担われることになる。
In addition, the film configuration of the storage element may be a configuration in which the storage layer 17 is disposed below the magnetization fixed layer 15. In this case, the role of the conductive oxide cap layer is played by the conductive oxide underlayer.

<3.実施の形態の具体的構成>

続いて、実施の形態の具体的構成について説明する。
記憶装置の構成は先に図1、図2で述べたとおり、直交する2種類のアドレス配線1、6(例えばワード線とビット線)の交点付近に、磁化状態で情報を保持することができる記憶素子3が配置されるものである。
そして2種類のアドレス配線1、6を通じて、記憶素子3に上下方向の電流を流して、スピントルク磁化反転により記憶層17の磁化の向きを反転させることができる。
<3. Specific Configuration of Embodiment>

Next, a specific configuration of the embodiment will be described.
As described above with reference to FIGS. 1 and 2, the configuration of the memory device can hold information in a magnetized state near the intersection of two kinds of orthogonal address lines 1 and 6 (for example, a word line and a bit line). The storage element 3 is arranged.
The direction of magnetization of the memory layer 17 can be reversed by spin torque magnetization reversal by passing a current in the vertical direction through the memory element 3 through the two types of address lines 1 and 6.

図3は実施の形態の記憶素子(ST−MRAM)の層構造の例を表している。   FIG. 3 illustrates an example of a layer structure of the memory element (ST-MRAM) according to the embodiment.

既に説明した通り、図3Aに示すように、記憶素子3は下層側から順に、下地層14、磁化固定層15、中間層16、記憶層17、キャップ層18が積層されている。
この場合、スピン注入により磁化M17の向きが反転する記憶層17に対して、下層に磁化固定層15を設けている。
スピン注入型メモリにおいては、記憶層17の磁化M17と磁化固定層15の磁化M15の相対的な角度によって情報の「0」「1」を規定している。
As already described, as shown in FIG. 3A, the storage element 3 has the base layer 14, the magnetization fixed layer 15, the intermediate layer 16, the storage layer 17, and the cap layer 18 stacked in order from the lower layer side.
In this case, the magnetization fixed layer 15 is provided in the lower layer with respect to the memory layer 17 in which the direction of the magnetization M17 is reversed by spin injection.
In the spin injection memory, information “0” and “1” are defined by the relative angle between the magnetization M17 of the storage layer 17 and the magnetization M15 of the magnetization fixed layer 15.

記憶層17と磁化固定層15との間には、トンネルバリア層(トンネル絶縁層)となる中間層16が設けられ、記憶層17と磁化固定層15とにより、MTJ素子が構成されている。また、磁化固定層15の下には下地層14が設けられる。
記憶層17と磁化固定層15は、例えばCo−Fe−B層とされる。
An intermediate layer 16 serving as a tunnel barrier layer (tunnel insulating layer) is provided between the storage layer 17 and the magnetization fixed layer 15, and the storage layer 17 and the magnetization fixed layer 15 constitute an MTJ element. An underlayer 14 is provided under the magnetization fixed layer 15.
The storage layer 17 and the magnetization fixed layer 15 are, for example, Co—Fe—B layers.

記憶層17は、磁化M17の方向が層面垂直方向に自由に変化する磁気モーメントを有する強磁性体から構成されている。磁化固定層15は、磁化M15が膜面垂直方向に固定された磁気モーメントを有する強磁性体から構成されている。
情報の記憶は一軸異方性を有する記憶層15の磁化の向きにより行う。書込みは、膜面垂直方向に電流を印加し、スピントルク磁化反転を起こすことにより行う。このように、スピン注入により磁化の向きが反転する記憶層15に対して、下層に磁化固定層15が設けられ、記憶層17の記憶情報(磁化方向)の基準とされる。
The memory layer 17 is made of a ferromagnetic material having a magnetic moment in which the direction of the magnetization M17 freely changes in the direction perpendicular to the layer surface. The magnetization fixed layer 15 is made of a ferromagnetic material having a magnetic moment in which the magnetization M15 is fixed in the direction perpendicular to the film surface.
Information is stored according to the direction of magnetization of the storage layer 15 having uniaxial anisotropy. Writing is performed by applying a current in the direction perpendicular to the film surface to cause spin torque magnetization reversal. In this manner, the magnetization fixed layer 15 is provided in the lower layer with respect to the storage layer 15 whose magnetization direction is reversed by spin injection, and is used as a reference for storage information (magnetization direction) of the storage layer 17.

磁化固定層15は情報の基準であるので、記録や読み出しによって磁化の方向が変化してはいけないが、必ずしも特定の方向に固定されている必要はなく、記憶層17よりも保磁力を大きくするか、膜厚を厚くするか、あるいは磁気ダンピング定数を大きくして記憶層17よりも動きにくくすればよい。   Since the magnetization fixed layer 15 is a reference of information, the direction of magnetization should not be changed by recording or reading, but it is not necessarily fixed in a specific direction, and the coercive force is larger than that of the storage layer 17. Alternatively, the film thickness may be increased or the magnetic damping constant may be increased to make it harder to move than the storage layer 17.

中間層16は、例えば酸化マグネシウム(MgO)層とされる。この場合には、磁気抵抗変化率(MR比)を高くすることができる。
このようにMR比を高くすることによって、スピン注入の効率を向上して、記憶層17の磁化M17の向きを反転させるために必要な電流密度を低減することができる。
なお中間層16は、酸化マグネシウムから成る構成とする他にも、例えば酸化アルミニウム、窒化アルミニウム、SiO2、Bi23、MgF2、CaF、SrTiO2、AlLaO3、Al−N−O等の各種の絶縁体、誘電体、半導体を用いて構成することもできる。
The intermediate layer 16 is, for example, a magnesium oxide (MgO) layer. In this case, the magnetoresistance change rate (MR ratio) can be increased.
By increasing the MR ratio in this way, the efficiency of spin injection can be improved and the current density required to reverse the direction of the magnetization M17 of the storage layer 17 can be reduced.
In addition to the structure made of magnesium oxide, the intermediate layer 16 is made of aluminum oxide, aluminum nitride, SiO 2 , Bi 2 O 3 , MgF 2 , CaF, SrTiO 2 , AlLaO 3 , Al—N—O, or the like. Various insulators, dielectrics, and semiconductors can be used.

下地層14およびキャップ層18としては、Ta、Ti、W、Ru等各種金属およびTiN等の導電性窒化物を用いることができる。また、下地層14およびキャップ層18は単層で用いても良いし、異なる材料を複数積層しても良い。   As the underlayer 14 and the cap layer 18, various metals such as Ta, Ti, W, and Ru and conductive nitrides such as TiN can be used. The underlayer 14 and the cap layer 18 may be used as a single layer, or a plurality of different materials may be stacked.

図3Bに示す記憶素子20の構造は、記憶素子3の構造とは記憶層17の構造が相違するものである。記憶素子20の記憶層17は、酸化物21がグラニュラー構造22で形成された構造となっている。
グラニュラー構造とは上述の通り、材料中にナノスケールの微少な粒子が分散した状態とされる。
記憶層17は磁性材料としてCo−Fe−Bを使用するが、このCo−Fe−Bの結晶中に酸化物(例えば酸化ケイ素)21の微少な粒子がCo−Fe−Bの結晶中の一定の領域に図3Bのように分散している状態とされる。ここでいう分散状態とは酸化物粒子21が均一な連続膜を形成していない状態をいう。
The structure of the memory element 20 shown in FIG. 3B is different from the structure of the memory element 3 in the structure of the memory layer 17. The memory layer 17 of the memory element 20 has a structure in which an oxide 21 is formed with a granular structure 22.
As described above, the granular structure is a state in which minute nanoscale particles are dispersed in a material.
The storage layer 17 uses Co—Fe—B as a magnetic material, and in this Co—Fe—B crystal, fine particles of oxide (for example, silicon oxide) 21 are constant in the Co—Fe—B crystal. The region is dispersed as shown in FIG. 3B. The dispersed state here refers to a state in which the oxide particles 21 do not form a uniform continuous film.

このような酸化物21によるグラニュラー構造22は、図3Bのように1つに限定されるものでなく2つ以上形成されていてもよい。
酸化物21として、酸化ケイ素、酸化マグネシウム、酸化タンタル、酸化アルミニウム、酸化コバルト、酸化ジリコニウム、酸化チタンおよび酸化クロムのうち、すくなくとも1つから選定できる。
Such a granular structure 22 made of the oxide 21 is not limited to one as shown in FIG. 3B and may be formed in two or more.
The oxide 21 can be selected from at least one of silicon oxide, magnesium oxide, tantalum oxide, aluminum oxide, cobalt oxide, zirconium oxide, titanium oxide and chromium oxide.

図3A、図3Bの実施の形態においては、特に記憶層17が受ける実効的な反磁界の大きさが記憶層17の飽和磁化量Msよりも小さくなるように、記憶素子3の記憶層17の組成が調整されている。
即ち、記憶層17は、強磁性材料Co−Fe−B組成を選定するが、記憶層17が受ける実効的な反磁界の大きさを低くして、記憶層17の飽和磁化量Msよりも小さくなるようにする。
In the embodiment of FIGS. 3A and 3B, the storage layer 17 of the storage element 3 is configured so that the effective demagnetizing field received by the storage layer 17 is smaller than the saturation magnetization Ms of the storage layer 17 in particular. The composition is adjusted.
That is, the composition of the ferromagnetic material Co—Fe—B is selected for the storage layer 17, but the magnitude of the effective demagnetizing field received by the storage layer 17 is reduced to be smaller than the saturation magnetization Ms of the storage layer 17. To be.

これらの実施の形態の記憶素子3、20は、下地層14からキャップ層18までを真空装置内で連続的に形成して、その後エッチング等の加工により記憶素子3のパターンを形成することにより、製造することができる。   In the memory elements 3 and 20 of these embodiments, the base layer 14 to the cap layer 18 are continuously formed in a vacuum apparatus, and then the pattern of the memory element 3 is formed by processing such as etching. Can be manufactured.

以上の本実施の形態によれば、反転電流が低下し、熱安定性を確保する記憶素子を実現することができる。
すなわち、記憶層17の磁化M17の向きを反転させるために必要となる、書き込み電流量を低減することができる。
また、情報保持能力である熱安定性を充分に確保することができるため、特性バランスに優れた記憶素子3、20を構成することができる。
これにより、動作エラーをなくして、動作マージンを充分に得ることができ、安定して動作させることができる。
According to this embodiment described above, it is possible to realize a memory element that reduces the reversal current and ensures thermal stability.
That is, the amount of write current required to reverse the direction of the magnetization M17 of the storage layer 17 can be reduced.
In addition, since the thermal stability that is the information holding capability can be sufficiently ensured, the memory elements 3 and 20 having excellent characteristic balance can be configured.
As a result, an operation error can be eliminated, a sufficient operation margin can be obtained, and a stable operation can be achieved.

従って、安定して動作する、信頼性の高い記憶装置を実現することができる。
また、書き込み電流を低減して、書き込みを行う際の消費電力を低減することが可能になる。
さらに、本実施の形態の記憶素子により記憶装置を構成した、記憶装置全体の消費電力を低減することが可能になる。
また、図3で説明した記憶素子3、20を備え、図1に示した構成の記憶装置は、記憶装置を製造する際に、一般の半導体MOS形成プロセスを適用できるという利点を有している。従って、本実施の形態の記憶装置を、汎用メモリとして適用することが可能になる。
Therefore, a highly reliable storage device that operates stably can be realized.
In addition, it is possible to reduce power consumption when writing by reducing a write current.
Furthermore, the power consumption of the entire storage device in which the storage device is configured by the storage element of this embodiment can be reduced.
Further, the memory device having the memory elements 3 and 20 described in FIG. 3 and having the configuration shown in FIG. 1 has an advantage that a general semiconductor MOS formation process can be applied when manufacturing the memory device. . Therefore, the storage device of this embodiment can be applied as a general-purpose memory.

<4.実施の形態に関する実験およびシミュレーション>

ここで、図3A、図3Bに示した本実施の形態の記憶素子3、20の構成において、図4に示す試料を作製し、その特性を調べる実験および励起エネルギとの関係についてシミュレーションを実施した。
実験は反転電流値と熱安定性の指標を求めるものである。記憶素子3、20に10nsから100msのパルス幅の電流を流して、その後の記憶素子の抵抗値を測定した。
さらに、記憶素子3、20に流す電流量を変化させて、この記憶素子3、20の記憶層17の磁化の向きが反転する電流値を求めた。
また、記憶素子3、20の磁気抵抗曲線を複数回測定することによって得られる保磁力の分散が記憶素子の前述した保持特性(熱安定性)の指標(Δ)に対応する。測定される保磁力の分散が少ないほど高いΔ値を持つ。そして、記憶素子間のばらつきを考慮するために、同一構成の記憶素子を各々20個程度作製して、上述の測定を行い、反転電流値及び熱安定性の指標Δの平均値を求めた。
<4. Experiments and Simulations Regarding Embodiments>

Here, in the configuration of the memory elements 3 and 20 of the present embodiment shown in FIGS. 3A and 3B, the sample shown in FIG. 4 was prepared, and the experiment for examining the characteristics and the simulation on the relationship with the excitation energy were performed. .
The experiment seeks the reversal current value and thermal stability index. A current having a pulse width of 10 ns to 100 ms was passed through the memory elements 3 and 20, and the resistance value of the memory elements thereafter was measured.
Further, the amount of current flowing through the storage elements 3 and 20 was changed, and the current value at which the magnetization direction of the storage layer 17 of the storage elements 3 and 20 was reversed was obtained.
Further, the dispersion of the coercive force obtained by measuring the magnetoresistance curves of the storage elements 3 and 20 a plurality of times corresponds to the above-described index (Δ) of the retention characteristic (thermal stability) of the storage element. The smaller the dispersion of the measured coercive force, the higher the Δ value. Then, in order to take into account the variation between the memory elements, about 20 memory elements having the same configuration were manufactured, and the above-described measurement was performed to obtain the average value of the inversion current value and the thermal stability index Δ.

実際の記憶装置には、図1に示したように、記憶素子3、20以外にもスイッチング用の半導体回路等が存在するが、ここでは、キャップ層18に隣接する記憶層17の磁化反転特性を調べる目的で、記憶素子のみを形成したウェハにより検討を行った。   As shown in FIG. 1, an actual memory device includes a semiconductor circuit for switching in addition to the memory elements 3 and 20. Here, the magnetization reversal characteristics of the memory layer 17 adjacent to the cap layer 18 are present. For the purpose of investigating, a wafer with only memory elements formed was examined.

実験用の記憶素子試料として、図4に示すように、
・下地層14:膜厚10nmのTa膜と膜厚10nmのRu膜の積層膜。
・磁化固定層15:CoPt:2nm/Ru:0.7nm/[Co20Fe80]70B30:2nmの積層膜。
・中間層(トンネル絶縁層)16:膜厚1.0nmのMgO膜。
・キャップ層18:/Ta:5nm膜/
以上の各層を共通として上で、記憶層17に以下のグラニュラー構造22を形成し、5種類の試料を用意した。
図4A〜Eに示すように、
・試料1(図4A)記憶層17:グラニュラー構造22なし
・試料2(図4B)記憶層17:Ta:0.05nmのグラニュラー構造22を形成
・試料3(図4C)記憶層17:MgO:0.1nmのグラニュラー構造22を形成
・試料4(図4D)記憶層17:MgO:0.2nmのグラニュラー構造22を形成
・試料5(図4E)記憶層17:AlOx:0.1nmのグラニュラー構造22を形成
As a memory element sample for experiment, as shown in FIG.
Underlayer 14: A laminated film of a Ta film with a thickness of 10 nm and a Ru film with a thickness of 10 nm.
Magnetization fixed layer 15: CoPt: 2 nm / Ru: 0.7 nm / [Co20Fe80] 70B30: a laminated film of 2 nm.
Intermediate layer (tunnel insulating layer) 16: MgO film having a thickness of 1.0 nm.
Cap layer 18: / Ta: 5 nm film /
With the above layers in common, the following granular structure 22 was formed in the memory layer 17 to prepare five types of samples.
As shown in FIGS.
Sample 1 (FIG. 4A) storage layer 17: no granular structure 22 Sample 2 (FIG. 4B) storage layer 17: Ta: 0.05 nm granular structure 22 is formed Sample 3 (FIG. 4C) storage layer 17: MgO: Formation of 0.1 nm granular structure 22 Sample 4 (FIG. 4D) storage layer 17: MgO: 0.2 nm granular structure 22 formation Sample 5 (FIG. 4E) storage layer 17: AlOx: 0.1 nm granular structure Form 22

各試料は、厚さ0.725mmのシリコン基板上に、厚さ300nmの熱酸化膜を形成し、その上に上記の構成の記憶素子を形成した。また下地層とシリコン基板との間に図示しない膜厚100nmのCu膜(ワード線となるもの)を設けた。
絶縁層以外の各層は、DCマグネトロンスパッタ法を用いて成膜した。酸化物を用いた絶縁層は、RFマグネトロンスパッタ法もしくは、DCマグネトロンスパッタ法を用いて金属層を成膜した後酸化チャンバーで酸化した。記憶素子の各層を成膜した後に、磁場中熱処理炉で、300℃・1時間の熱処理を行った。
In each sample, a 300 nm thick thermal oxide film was formed on a 0.725 mm thick silicon substrate, and a memory element having the above-described structure was formed thereon. Further, a 100 nm thick Cu film (to be a word line) (not shown) was provided between the base layer and the silicon substrate.
Each layer other than the insulating layer was formed using a DC magnetron sputtering method. The insulating layer using the oxide was oxidized in an oxidation chamber after a metal layer was formed by RF magnetron sputtering or DC magnetron sputtering. After each layer of the memory element was formed, heat treatment was performed at 300 ° C. for 1 hour in a heat treatment furnace in a magnetic field.

次に、ワード線部分をフォトリソグラフィによってマスクした後に、ワード線以外の部分の積層膜に対してArプラズマにより選択エッチングを行うことにより、ワード線(下部電極)を形成した。この際に、ワード線部分以外は、基板の深さ5nmまでエッチングした。
その後、電子ビーム描画装置により記憶素子のパターンのマスクを形成し、積層膜に対して選択エッチングを行い、記憶素子を形成した。記憶素子部分以外は、ワード線のCu層直上までエッチングした。
Next, after masking the word line portion by photolithography, the word line (lower electrode) was formed by performing selective etching with Ar plasma on the laminated film other than the word line. At this time, the portion other than the word line portion was etched to a depth of 5 nm of the substrate.
Thereafter, a mask of a memory element pattern was formed by an electron beam drawing apparatus, and selective etching was performed on the laminated film to form a memory element. Except for the memory element portion, the etching was performed up to the Cu layer of the word line.

なお、特性評価用の記憶素子には、磁化反転に必要なスピントルクを発生させるために、記憶素子に充分な電流を流す必要があるため、トンネル絶縁層の抵抗値を抑える必要がある。そこで、記憶素子のパターンを、短軸0.09μm×長軸0.09μmの円形状として、記憶素子の面積抵抗値(Ωμm2)が20Ωμm2となるようにした。
次に、記憶素子部分以外を、厚さ100nm程度のAl23のスパッタリングによって絶縁した。その後、フォトリソグラフィを用いて、上部電極となるビット線及び測定用のパッドを形成した。このようにして、記憶素子の試料を作製した。
In addition, in order to generate the spin torque necessary for the magnetization reversal, it is necessary to flow a sufficient current through the storage element for the characteristic evaluation storage element, and thus it is necessary to suppress the resistance value of the tunnel insulating layer. Therefore, the memory element pattern is a circle having a minor axis of 0.09 μm and a major axis of 0.09 μm, and the area resistance value (Ωμm 2 ) of the memory element is 20 Ωμm 2 .
Next, the portions other than the memory element portion were insulated by sputtering of Al 2 O 3 having a thickness of about 100 nm. Thereafter, a bit line to be an upper electrode and a measurement pad were formed using photolithography. In this way, a sample of the memory element was manufactured.

以上、作製した記憶素子の各試料に対して、特性の評価を行った。測定に先立ち、反転電流のプラス方向とマイナス方向の値を対称になるように制御することを可能にするため、記憶素子に対して、外部から磁界を与えることができるように構成した。また、記憶素子に印加される電圧が、絶縁層が破壊しない範囲内の1Vまでとなるように設定した。   As described above, the characteristics of each of the manufactured memory element samples were evaluated. Prior to the measurement, in order to control the positive and negative values of the reversal current to be symmetrical, a magnetic field can be applied to the storage element from the outside. Further, the voltage applied to the memory element was set to 1 V within a range where the insulating layer was not broken.

[実験]
本実験は反転電流値と熱安定性の指標を求めるものである。記憶素子3、20に10nsから100msのパルス幅の電流を流して、その後の記憶素子の抵抗値を測定した。
さらに、記憶素子3、20に流す電流量を変化させて、この記憶素子3、20の記憶層17の磁化の向きが反転する電流値を求めた。
また、記憶素子3、20の磁気抵抗曲線を複数回測定することによって得られる保磁力の分散が記憶素子の前述した保持特性(熱安定性)の指標(Δ)に対応する。測定される保磁力の分散が少ないほど高いΔ値を持つ。そして、記憶素子間のばらつきを考慮するために、同一構成の記憶素子を各々20個程度作製して、上述の測定を行い、反転電流値及び熱安定性の指標Δの平均値を求めた。
[Experiment]
In this experiment, an inversion current value and an index of thermal stability are obtained. A current having a pulse width of 10 ns to 100 ms was passed through the memory elements 3 and 20, and the resistance value of the memory elements thereafter was measured.
Further, the amount of current flowing through the storage elements 3 and 20 was changed, and the current value at which the magnetization direction of the storage layer 17 of the storage elements 3 and 20 was reversed was obtained.
Further, the dispersion of the coercive force obtained by measuring the magnetoresistance curves of the storage elements 3 and 20 a plurality of times corresponds to the above-described index (Δ) of the retention characteristic (thermal stability) of the storage element. The smaller the dispersion of the measured coercive force, the higher the Δ value. Then, in order to take into account the variation between the memory elements, about 20 memory elements having the same configuration were manufactured, and the above-described measurement was performed to obtain the average value of the inversion current value and the thermal stability index Δ.

Figure 2013115320
Figure 2013115320

表1には試料1〜5の電流による書き込みでの磁化反転特性について、パルス幅100nsでの反転電流値とパルス幅10nsでの反転電流値の比率をまとめた。パルス幅100nsは磁化反転に熱の影響が残る領域である。反対に、パルス幅10nsは断熱領域になり、熱の影響をほぼ受けない。
したがって、100nsパルス幅および10nsパルス幅での反転電流を比べることで、短パルス領域での電流増大の程度を評価することが可能である。
反転電流は短パルス領域になるに従い増大し、数十ns以下の領域では急激に増大することが知られている。
Table 1 summarizes the ratio of the reversal current value at a pulse width of 100 ns and the reversal current value at a pulse width of 10 ns with respect to the magnetization reversal characteristics of the samples 1 to 5 by writing with current. The pulse width of 100 ns is a region where the influence of heat remains on the magnetization reversal. On the contrary, the pulse width of 10 ns becomes an adiabatic region and is hardly affected by heat.
Therefore, it is possible to evaluate the degree of current increase in the short pulse region by comparing the inversion current at the 100 ns pulse width and the 10 ns pulse width.
It is known that the inversion current increases as the short pulse region is reached, and rapidly increases in the region of several tens of ns or less.

記憶層17に酸化物21によるグラニュラー構造22を形成した試料3〜5に対し、グラニュラー構造22のない試料1および非磁性体による構造の試料2ではパルス幅10nsにおける反転電流値の上昇が大きい。
さらには、試料3、4のように同じ酸化物21によるグラニュラー構造22においても差が生じ、実験ではグラニュラー構造22の性質が強い試料3にて短パルス領域での反転電流の抑制が強くなった。
また、試料5のように、本開示では酸化物21であれば、その材料によらずに効果を得ることができる。
In contrast to Samples 3 to 5 in which the granular structure 22 made of the oxide 21 is formed in the memory layer 17, the increase in the inversion current value at a pulse width of 10 ns is larger in the sample 1 without the granular structure 22 and the sample 2 made of the nonmagnetic material.
Furthermore, a difference also occurs in the granular structure 22 made of the same oxide 21 as in the samples 3 and 4, and in the experiment, the reversal current in the short pulse region is strongly suppressed in the sample 3 having the strong granular structure 22 property. .
In addition, like the sample 5, in the present disclosure, the oxide 21 can provide an effect regardless of the material.

上述の効果が得られた理由は次のように考えることができる。
記憶層17の磁性体において、均一な連続膜ではなく粒状に分散しているグラニュラー構造22が導入されると、記憶層17内部の酸化物21と磁性体の界面異方性が変調される。これは特にCo−Fe−B合金と酸化物21による材料系に強く影響し、粒状化した酸化物21と磁性体が面内方向の接合を行うことで膜面内方向の界面異方性が発生する。
The reason why the above effect is obtained can be considered as follows.
When a granular structure 22 that is dispersed in a granular form instead of a uniform continuous film is introduced into the magnetic body of the storage layer 17, the interface anisotropy between the oxide 21 and the magnetic body inside the storage layer 17 is modulated. This particularly strongly affects the material system of the Co—Fe—B alloy and the oxide 21, and the interface anisotropy in the in-plane direction of the film is caused by the granulated oxide 21 and the magnetic material joining in the in-plane direction. Occur.

つまり、膜面内方向の磁気異方性が生じる。結果、記憶層17全体でみた場合、膜面垂直方向を向く磁化に対して膜面内方向の磁化成分が混入することになり、垂直磁気異方性と面内磁気異方性を同時に有する斜め磁化の状態(磁化の向きが膜面に垂直な方向から傾斜している状態)になる。今回の実験では、酸化物21のグラニュラー構造22に対して効果が発現した、これは酸化物21がグラニュラー構造22を形成しやすいこともあるが、上記の界面異方性の起源が酸化物21であることからより強力な面内方向の磁気異方性が得られたものと考えられる。   That is, magnetic anisotropy occurs in the in-plane direction. As a result, when viewed in the entire memory layer 17, the magnetization component in the in-film direction is mixed with the magnetization in the direction perpendicular to the film surface, and the oblique magnetic anisotropy having the perpendicular magnetic anisotropy and the in-plane magnetic anisotropy at the same time. It becomes a state of magnetization (a state in which the direction of magnetization is inclined from the direction perpendicular to the film surface). In this experiment, an effect was exerted on the granular structure 22 of the oxide 21, which may easily form the granular structure 22, but the origin of the interface anisotropy is the oxide 21. Therefore, it is considered that stronger in-plane magnetic anisotropy was obtained.

このモデルは、試料3、4においても反映され、グラニュラー性の強い構造(試料3)で、特に強い面内方向の磁気異方性が生じる。   This model is also reflected in Samples 3 and 4, and has a particularly strong in-plane magnetic anisotropy with a highly granular structure (Sample 3).

[シミュレーション]
斜め磁化が形成されることによる短パルス領域での反転電流の抑制、つまり磁化の高速反転特性の向上について、シミュレーションを行った。図5はその結果である。
図5はある電流における励起エネルギEと反転時間tsとの関係を示したものである。横軸の励起エネルギEは対数スケールでプロットしている。ここで、励起エネルギEは電流を印加した時点における磁化方向から計算される値を用いる。磁化方向は熱揺らぎによって平衡状態からずれるが、励起エネルギEが大きいほど(図5で言えば右側に行くほど)平衡状態からのずれが大きいことを意味する。
[simulation]
A simulation was performed to suppress the reversal current in the short pulse region due to the formation of oblique magnetization, that is, to improve the high-speed reversal characteristics of the magnetization. FIG. 5 shows the result.
FIG. 5 shows the relationship between the excitation energy E and the inversion time ts at a certain current. The excitation energy E on the horizontal axis is plotted on a logarithmic scale. Here, the excitation energy E uses a value calculated from the magnetization direction at the time when the current is applied. The magnetization direction deviates from the equilibrium state due to thermal fluctuation, but the greater the excitation energy E (the more toward the right in FIG. 5), the greater the deviation from the equilibrium state.

励起エネルギEと反転時間tsの関係はつぎの(数3)であらわされる。

Figure 2013115320

斜め磁化がなく、完全に磁化が平衡状態であれば、無限の反転時間が必要であるが、実際には熱揺らぎによって励起エネルギは0以上の値となるために、有限の時間で反転が可能である。
その傾向が図5中の破線で示されている。横軸の励起エネルギEを対数スケールにした場合、破線はほぼ直線となる。そして、励起エネルギEが大きいほど、短い時間で反転することが分かる。 The relationship between the excitation energy E and the inversion time ts is expressed by the following (Equation 3).
Figure 2013115320

If there is no oblique magnetization and the magnetization is completely balanced, an infinite reversal time is required. However, since the excitation energy actually becomes 0 or more due to thermal fluctuation, reversal is possible in a finite time. It is.
This tendency is indicated by a broken line in FIG. When the excitation energy E on the horizontal axis is a logarithmic scale, the broken line is almost a straight line. And it turns out that it reverses in a short time, so that the excitation energy E is large.

一方、斜め磁化を用いた場合の励起エネルギEと反転時間tsの関係が図5中の実線で示されている。斜め磁化のない場合と異なり、励起エネルギEが減少したときの反転時間tsの増加が見られない。これは、励起エネルギEが0(図5で示した対数スケールの場合には負の無限大)のときでも、一部の磁化の向きが垂直軸から傾いているために、有限のスピントルクが働くためである。
よって、例えば、図5において20nsになるように特定の電流パルス幅を設定すると、斜め磁化状態では反転時間の飽和域に到達しているために100%の確率で反転が起きるが、斜め磁化ではない状態ではさらに印加電流値を増やし反転確率を上昇させなければならない。このため、斜め磁化を用いた実施例は短パルス領域において反転電流を低減することに好適である。
On the other hand, the relationship between the excitation energy E and the reversal time ts when oblique magnetization is used is shown by a solid line in FIG. Unlike the case without oblique magnetization, the reversal time ts does not increase when the excitation energy E decreases. This is because even when the excitation energy E is 0 (negative infinity in the case of the logarithmic scale shown in FIG. 5), the direction of a part of the magnetization is inclined from the vertical axis. To work.
Therefore, for example, when a specific current pulse width is set to 20 ns in FIG. 5, in the oblique magnetization state, reversal occurs with a probability of 100% because the reversal time saturation region is reached. In the absence, the applied current value must be further increased to increase the inversion probability. For this reason, the embodiment using oblique magnetization is suitable for reducing the reversal current in the short pulse region.

種々の検討の結果、グラニュラー構造22を形成する材料が酸化物21であれば、斜め磁化の効果を付与する本開示の効果を受けることができ、この場合の酸化物21は酸化ケイ素、酸化マグネシウム、酸化タンタル、酸化アルミニウム、酸化コバルト、酸化ジルコニウム、酸化チタン、酸化クロムの少なくとも一つから選択することができる。また、実験ではCo−Fe−B合金のB組成を30%としたが、TMR値や耐熱性の観点からB組成を20〜40%程度と変化させても良い。   As a result of various studies, if the material forming the granular structure 22 is the oxide 21, the effect of the present disclosure that imparts the effect of oblique magnetization can be obtained. In this case, the oxide 21 is silicon oxide, magnesium oxide. , Tantalum oxide, aluminum oxide, cobalt oxide, zirconium oxide, titanium oxide, and chromium oxide. In the experiment, the B composition of the Co—Fe—B alloy was set to 30%, but the B composition may be changed to about 20 to 40% from the viewpoint of TMR value and heat resistance.

また、下地層14やキャップ層18は、単一材料でも複数材料の積層構造でも良い。
また磁化固定層15は、単層でも、2層の強磁性層と非磁性層から成る積層フェリピン構造を用いても良い。また積層フェリピン構造膜に反強磁性膜を付与した構造でもよい。
The underlayer 14 and the cap layer 18 may be a single material or a laminated structure of a plurality of materials.
In addition, the magnetization fixed layer 15 may be a single layer or a laminated ferripin structure including two ferromagnetic layers and a nonmagnetic layer. Moreover, the structure which provided the antiferromagnetic film | membrane to the laminated ferripin structure film may be sufficient.

<5.変形例>

本開示の記憶素子3もしくは記憶素子20の構造は、TMR素子等の磁気抵抗効果素子の構成となるが、このTMR素子としての磁気抵抗効果素子は、上述の記憶装置のみならず、磁気ヘッド及びこの磁気ヘッドを搭載したハードディスクドライブ、集積回路チップ、さらにはパーソナルコンピュータ、携帯端末、携帯電話、磁気センサ機器をはじめとする各種電子機器、電気機器等に適用することが可能である。
<5. Modification>

The structure of the memory element 3 or the memory element 20 according to the present disclosure is a configuration of a magnetoresistive effect element such as a TMR element. The magnetoresistive effect element as the TMR element includes not only the above-described memory device but also a magnetic head and The present invention can be applied to a hard disk drive equipped with this magnetic head, an integrated circuit chip, and various electronic devices such as personal computers, portable terminals, mobile phones, and magnetic sensor devices, and electric devices.

一例として図6A、図6Bに、上記記憶素子3、20の構造の磁気抵抗効果素子101を複合型磁気ヘッド100に適用した例を示す。なお、図6Aは、複合型磁気ヘッド100について、その内部構造が分かるように一部を切り欠いて示した斜視図であり、図6Bは複合型磁気ヘッド100の断面図である。
複合型磁気ヘッド100は、ハードディスク装置等に用いられる磁気ヘッドであり、基板122上に、本開示の技術を適用した磁気抵抗効果型磁気ヘッドが形成されてなるとともに、当該磁気抵抗効果型磁気ヘッド上にインダクティブ型磁気ヘッドが積層形成されてなる。ここで、磁気抵抗効果型磁気ヘッドは、再生用ヘッドとして動作するものであり、インダクティブ型磁気ヘッドは、記録用ヘッドとして動作する。すなわち、この複合型磁気ヘッド100は、再生用ヘッドと記録用ヘッドを複合して構成されている。
As an example, FIGS. 6A and 6B show an example in which the magnetoresistive effect element 101 having the structure of the storage elements 3 and 20 is applied to the composite magnetic head 100. 6A is a perspective view of the composite magnetic head 100 with a part cut away so that the internal structure can be seen. FIG. 6B is a cross-sectional view of the composite magnetic head 100. FIG.
The composite magnetic head 100 is a magnetic head used in a hard disk device or the like. A magnetic resistance effect type magnetic head to which the technology of the present disclosure is applied is formed on a substrate 122, and the magnetoresistive effect type magnetic head. An inductive magnetic head is laminated on the top. Here, the magnetoresistive head is operated as a reproducing head, and the inductive magnetic head is operated as a recording head. That is, the composite magnetic head 100 is configured by combining a reproducing head and a recording head.

複合型磁気ヘッド100に搭載されている磁気抵抗効果型磁気ヘッドは、いわゆるシールド型MRヘッドであり、基板122上に絶縁層123を介して形成された第1の磁気シールド125と、第1の磁気シールド125上に絶縁層123を介して形成された磁気抵抗効果素子101と、磁気抵抗効果素子101上に絶縁層123を介して形成された第2の磁気シールド127とを備えている。絶縁層123は、Al23やSiO2等のような絶縁材料からなる。
第1の磁気シールド125は、磁気抵抗効果素子101の下層側を磁気的にシールドするためのものであり、Ni−Fe等のような軟磁性材からなる。この第1の磁気シールド125上に、絶縁層123を介して磁気抵抗効果素子101が形成されている。
The magnetoresistance effect type magnetic head mounted on the composite type magnetic head 100 is a so-called shield type MR head, and includes a first magnetic shield 125 formed on a substrate 122 via an insulating layer 123, and a first magnetic shield 125. The magnetoresistive effect element 101 formed on the magnetic shield 125 via the insulating layer 123 and the second magnetic shield 127 formed on the magnetoresistive effect element 101 via the insulating layer 123 are provided. The insulating layer 123 is made of an insulating material such as Al 2 O 3 or SiO 2 .
The first magnetic shield 125 is for magnetically shielding the lower layer side of the magnetoresistive effect element 101, and is made of a soft magnetic material such as Ni—Fe. A magnetoresistive effect element 101 is formed on the first magnetic shield 125 with an insulating layer 123 interposed therebetween.

磁気抵抗効果素子101は、この磁気抵抗効果型磁気ヘッドにおいて、磁気記録媒体からの磁気信号を検出する感磁素子として機能する。そして、この磁気抵抗効果素子101は、上述した記憶素子3もしくは記憶素子20と同様な膜構成とされる。
この磁気抵抗効果素子101は、略矩形状に形成されてなり、その一側面が磁気記録媒体対向面に露呈するようになされている。そして、この磁気抵抗効果素子101の両端にはバイアス層128,129が配されている。またバイアス層128,129と接続されている接続端子130,131が形成されている。接続端子130,131を介して磁気抵抗効果素子101にセンス電流が供給される。
さらにバイアス層128,129の上部には、絶縁層123を介して第2の磁気シールド層127が設けられている。
In this magnetoresistive effect type magnetic head, the magnetoresistive effect element 101 functions as a magnetosensitive element that detects a magnetic signal from the magnetic recording medium. The magnetoresistive effect element 101 has a film configuration similar to that of the memory element 3 or the memory element 20 described above.
The magnetoresistive effect element 101 is formed in a substantially rectangular shape, and one side surface thereof is exposed to the magnetic recording medium facing surface. Bias layers 128 and 129 are disposed at both ends of the magnetoresistive effect element 101. Further, connection terminals 130 and 131 connected to the bias layers 128 and 129 are formed. A sense current is supplied to the magnetoresistive effect element 101 via the connection terminals 130 and 131.
Further, a second magnetic shield layer 127 is provided on the bias layers 128 and 129 via an insulating layer 123.

以上のような磁気抵抗効果型磁気ヘッドの上に積層形成されたインダクティブ型磁気ヘッドは、第2の磁気シールド127及び上層コア132によって構成される磁気コアと、当該磁気コアを巻回するように形成された薄膜コイル133とを備えている。
上層コア132は、第2の磁気シールド122と共に閉磁路を形成して、このインダクティブ型磁気ヘッドの磁気コアとなるものであり、Ni−Fe等のような軟磁性材からなる。ここで、第2の磁気シールド127及び上層コア132は、それらの前端部が磁気記録媒体対向面に露呈し、且つ、それらの後端部において第2の磁気シールド127及び上層コア132が互いに接するように形成されている。ここで、第2の磁気シールド127及び上層コア132の前端部は、磁気記録媒体対向面において、第2の磁気シールド127及び上層コア132が所定の間隙gをもって離間するように形成されている。
すなわち、この複合型磁気ヘッド100において、第2の磁気シールド127は、磁気抵抗効果素子126の上層側を磁気的にシールドするだけでなく、インダクティブ型磁気ヘッドの磁気コアも兼ねており、第2の磁気シールド127と上層コア132によってインダクティブ型磁気ヘッドの磁気コアが構成されている。そして間隙gが、インダクティブ型磁気ヘッドの記録用磁気ギャップとなる。
The inductive magnetic head laminated on the magnetoresistive effect magnetic head as described above has a magnetic core constituted by the second magnetic shield 127 and the upper core 132, and is wound around the magnetic core. And a formed thin film coil 133.
The upper layer core 132 forms a closed magnetic path together with the second magnetic shield 122 and becomes a magnetic core of the inductive magnetic head, and is made of a soft magnetic material such as Ni-Fe. Here, the front end of the second magnetic shield 127 and the upper core 132 are exposed to the surface facing the magnetic recording medium, and the second magnetic shield 127 and the upper core 132 are in contact with each other at their rear ends. It is formed as follows. Here, the front end portions of the second magnetic shield 127 and the upper core 132 are formed so that the second magnetic shield 127 and the upper core 132 are separated from each other with a predetermined gap g on the surface facing the magnetic recording medium.
That is, in this composite magnetic head 100, the second magnetic shield 127 not only magnetically shields the upper layer side of the magnetoresistive effect element 126 but also serves as the magnetic core of the inductive magnetic head. The magnetic shield 127 and the upper core 132 constitute the magnetic core of the inductive magnetic head. The gap g becomes a recording magnetic gap of the inductive magnetic head.

また、第2の磁気シールド127上には、絶縁層123に埋設された薄膜コイル133が形成されている。ここで、薄膜コイル133は、第2の磁気シールド127及び上層コア132からなる磁気コアを巻回するように形成されている。図示していないが、この薄膜コイル133の両端部は、外部に露呈するようになされ、薄膜コイル133の両端に形成された端子が、このインダクティブ型磁気ヘッドの外部接続用端子となる。すなわち、磁気記録媒体への磁気信号の記録時には、これらの外部接続用端子から薄膜コイル132に記録電流が供給されることとなる。   A thin film coil 133 embedded in the insulating layer 123 is formed on the second magnetic shield 127. Here, the thin film coil 133 is formed so as to wind a magnetic core composed of the second magnetic shield 127 and the upper core 132. Although not shown, both ends of the thin film coil 133 are exposed to the outside, and terminals formed at both ends of the thin film coil 133 are external connection terminals of the inductive magnetic head. That is, when a magnetic signal is recorded on the magnetic recording medium, a recording current is supplied to the thin film coil 132 from these external connection terminals.

以上のような複合型磁気ヘッド121は、再生用ヘッドとして磁気抵抗効果型磁気ヘッドを搭載しているが、当該磁気抵抗効果型磁気ヘッドは、磁気記録媒体からの磁気信号を検出する感磁素子として、本開示の技術を適用した磁気抵抗効果素子101を備えている。そして、本開示の技術を適用した磁気抵抗効果素子101は、上述したように非常に優れた特性を示すので、この磁気抵抗効果型磁気ヘッドは、磁気記録の更なる高記録密度化に対応することができる。   The composite magnetic head 121 as described above is equipped with a magnetoresistive effect type magnetic head as a reproducing head, and the magnetoresistive effect type magnetic head detects a magnetic signal from a magnetic recording medium. As shown, a magnetoresistive effect element 101 to which the technique of the present disclosure is applied is provided. Since the magnetoresistive effect element 101 to which the technology of the present disclosure is applied exhibits very excellent characteristics as described above, this magnetoresistive effect type magnetic head can cope with higher recording density of magnetic recording. be able to.

なお本技術は以下のような構成も採ることができる。
(1)情報に対応して磁化の向きが変化される記憶層と、
上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、
上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層と、
を有する層構造を備え、
上記記憶層は、グラニュラー構造の酸化物の領域を含み、
上記層構造の積層方向に電流を流すことにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われる記憶素子。
(2)上記酸化物が酸化ケイ素、酸化マグネシウム、酸化タンタル、酸化アルミニウム、酸化コバルト、酸化ジルコニウム、酸化チタン、酸化クロムの少なくとも一つからなる上記(1)に記載の記憶素子。
(3)上記記憶層の磁化の向きが膜面に垂直な方向から傾斜している上記(1)又は(2)に記載の記憶素子。
(4)上記グラニュラー構造の酸化物の存在する領域が上記記憶層に2つ以上形成されている上記(1)乃至(3)いずれかに記載の記憶素子。
(5)上記記憶層を構成する強磁性材料はCo−Fe−Bである上記(1)乃至(3)いずれかに記載の記憶素子。
In addition, this technique can also take the following structures.
(1) a storage layer whose magnetization direction is changed in response to information;
A magnetization fixed layer having magnetization perpendicular to a film surface serving as a reference of information stored in the storage layer;
A nonmagnetic intermediate layer provided between the storage layer and the magnetization fixed layer;
A layer structure having
The storage layer includes an oxide region having a granular structure,
A storage element in which information is recorded on the storage layer by changing the magnetization direction of the storage layer by passing a current in the stacking direction of the layer structure.
(2) The memory element according to (1), wherein the oxide includes at least one of silicon oxide, magnesium oxide, tantalum oxide, aluminum oxide, cobalt oxide, zirconium oxide, titanium oxide, and chromium oxide.
(3) The memory element according to (1) or (2), wherein the magnetization direction of the memory layer is inclined from a direction perpendicular to the film surface.
(4) The memory element according to any one of (1) to (3), wherein two or more regions where the oxide having the granular structure is present are formed in the memory layer.
(5) The memory element according to any one of (1) to (3), wherein the ferromagnetic material constituting the memory layer is Co—Fe—B.

1 ゲート電極、2 素子分離層、3 20 記憶素子、4 コンタクト層、6 ビット線、7 ソース領域、8 ドレイン領域、9 配線、10 半導体基体、14 下地層、15 磁化固定層、16 中間層、17 記憶層、18 キャップ層、21 酸化物、22 グラニュラー構造、100 複合型磁気ヘッド、122 基板、123 絶縁層、125 第1の磁気シールド、127 第2の磁気シールド 、128 129 バイアス層、130 131 接続端子、132 上層コア、133 薄膜コイル   DESCRIPTION OF SYMBOLS 1 Gate electrode, 2 Element separation layer, 3 20 Memory element, 4 Contact layer, 6 Bit line, 7 Source region, 8 Drain region, 9 Wiring, 10 Semiconductor base | substrate, 14 Underlayer, 15 Magnetization fixed layer, 16 Intermediate layer, 17 memory layer, 18 cap layer, 21 oxide, 22 granular structure, 100 composite magnetic head, 122 substrate, 123 insulating layer, 125 first magnetic shield, 127 second magnetic shield, 128 129 bias layer, 130 131 Connection terminal, 132 upper layer core, 133 thin film coil

Claims (6)

情報に対応して磁化の向きが変化される記憶層と、
上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、
上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層と、
を有する層構造を備え、
上記記憶層は、グラニュラー構造の酸化物の領域を含み、
上記層構造の積層方向に電流を流すことにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われる記憶素子。
A storage layer whose magnetization direction is changed in response to information;
A magnetization fixed layer having magnetization perpendicular to a film surface serving as a reference of information stored in the storage layer;
A nonmagnetic intermediate layer provided between the storage layer and the magnetization fixed layer;
A layer structure having
The storage layer includes an oxide region having a granular structure,
A storage element in which information is recorded on the storage layer by changing the magnetization direction of the storage layer by passing a current in the stacking direction of the layer structure.
上記酸化物が酸化ケイ素、酸化マグネシウム、酸化タンタル、酸化アルミニウム、酸化コバルト、酸化ジルコニウム、酸化チタン、酸化クロムの少なくとも一つからなる請求項1に記載の記憶素子。   The memory element according to claim 1, wherein the oxide comprises at least one of silicon oxide, magnesium oxide, tantalum oxide, aluminum oxide, cobalt oxide, zirconium oxide, titanium oxide, and chromium oxide. 上記記憶層の磁化の向きが膜面に垂直な方向から傾斜している請求項2に記載の記憶素子。   The memory element according to claim 2, wherein the magnetization direction of the memory layer is inclined from a direction perpendicular to the film surface. 上記グラニュラー構造の酸化物の存在する領域が上記記憶層に2つ以上形成されている請求項1に記載の記憶素子。   The memory element according to claim 1, wherein two or more regions in which the oxide having the granular structure exists are formed in the memory layer. 上記記憶層を構成する強磁性材料はCo−Fe−Bである請求項1に記載の記憶素子。   The memory element according to claim 1, wherein the ferromagnetic material constituting the memory layer is Co—Fe—B. 情報を磁性体の磁化状態により保持する記憶素子と、
互いに交差する2種類の配線とを備え、
上記記憶素子は、
情報に対応して磁化の向きが変化される記憶層と、
上記記憶層に記憶された情報の基準となる膜面に垂直な磁化を有する磁化固定層と、
上記記憶層と上記磁化固定層の間に設けられる非磁性体による中間層と、
を有する層構造を備え、
上記層構造の積層方向に電流を流すことにより、上記記憶層の磁化の向きが変化して、上記記憶層に対して情報の記録が行われるとともに、
上記記憶層は、グラニュラー構造の酸化物の領域を含み、
上記2種類の配線の間に上記記憶素子が配置され、
上記2種類の配線を通じて、上記記憶素子に上記積層方向の電流が流れる記憶装置。
A storage element that holds information according to the magnetization state of the magnetic material;
Two types of wiring intersecting each other,
The memory element is
A storage layer whose magnetization direction is changed in response to information;
A magnetization fixed layer having magnetization perpendicular to a film surface serving as a reference of information stored in the storage layer;
A nonmagnetic intermediate layer provided between the storage layer and the magnetization fixed layer;
A layer structure having
By passing a current in the stacking direction of the layer structure, the magnetization direction of the storage layer changes, and information is recorded on the storage layer.
The storage layer includes an oxide region having a granular structure,
The memory element is disposed between the two types of wirings,
A storage device in which a current in the stacking direction flows in the storage element through the two types of wirings.
JP2011261855A 2011-11-30 2011-11-30 Storage element, storage device Pending JP2013115320A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011261855A JP2013115320A (en) 2011-11-30 2011-11-30 Storage element, storage device
PCT/JP2012/006978 WO2013080437A1 (en) 2011-11-30 2012-10-31 Storage element, and storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261855A JP2013115320A (en) 2011-11-30 2011-11-30 Storage element, storage device

Publications (1)

Publication Number Publication Date
JP2013115320A true JP2013115320A (en) 2013-06-10

Family

ID=48534941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261855A Pending JP2013115320A (en) 2011-11-30 2011-11-30 Storage element, storage device

Country Status (2)

Country Link
JP (1) JP2013115320A (en)
WO (1) WO2013080437A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017189A (en) * 2013-07-11 2015-01-29 日東電工株式会社 Sealing sheet manufacturing unit and sealing sheet manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277870B2 (en) * 2006-04-17 2009-06-10 ソニー株式会社 Storage element and memory
JP2011175987A (en) * 2008-05-09 2011-09-08 Fuji Electric Co Ltd Spin valve element and storage device
JP2011060918A (en) * 2009-09-08 2011-03-24 Nippon Hoso Kyokai <Nhk> Spin injection magnetization reversal element, magnetic random access memory, optical modulator, display apparatus, holography apparatus, hologram recording apparatus, and method of manufacturing optical modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017189A (en) * 2013-07-11 2015-01-29 日東電工株式会社 Sealing sheet manufacturing unit and sealing sheet manufacturing method

Also Published As

Publication number Publication date
WO2013080437A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
US10217501B2 (en) Memory element and memory apparatus
JP5867030B2 (en) Memory element and memory device
USRE49364E1 (en) Memory element, memory apparatus
TWI530945B (en) Memory elements and memory devices
JP6244617B2 (en) Storage element, storage device, magnetic head
JP6194752B2 (en) Storage element, storage device, magnetic head
CN106887247B (en) Information storage element and storage device
JP5782715B2 (en) Storage element and storage device
WO2014050379A1 (en) Storage element, storage device, and magnetic head
JP5987613B2 (en) Storage element, storage device, magnetic head
JP2012244031A (en) Storage element and storage device
JP2012235015A (en) Storage element and storage device
TWI473088B (en) Memory elements and memory devices
JP2013115400A (en) Storage element, storage device
JP2012238631A (en) Memory element and memory device
JP2013115399A (en) Storage element, storage device
US20130163315A1 (en) Memory element and memory apparatus
JP2012054439A (en) Storage element and storage device
WO2013080437A1 (en) Storage element, and storage device
JP2017212464A (en) Storage element, storage device, and magnetic head
JP2004039757A (en) Magnetoresistive effect element and magnetic memory device
JP2012248811A (en) Storage element and storage device