WO2009135970A1 - Dispositivo de aplicacion de hipertermia magnetica - Google Patents

Dispositivo de aplicacion de hipertermia magnetica Download PDF

Info

Publication number
WO2009135970A1
WO2009135970A1 PCT/ES2009/000235 ES2009000235W WO2009135970A1 WO 2009135970 A1 WO2009135970 A1 WO 2009135970A1 ES 2009000235 W ES2009000235 W ES 2009000235W WO 2009135970 A1 WO2009135970 A1 WO 2009135970A1
Authority
WO
WIPO (PCT)
Prior art keywords
application device
magnetic
magnetic hyperthermia
hyperthermia application
coil
Prior art date
Application number
PCT/ES2009/000235
Other languages
English (en)
French (fr)
Inventor
Gerardo Fabián GOYA
Nicolás CASSINELLI
Manuel Ricardo Ibarra Garcia
Original Assignee
Universidad De Zaragoza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Zaragoza filed Critical Universidad De Zaragoza
Priority to EP09742176.2A priority Critical patent/EP2283895A4/en
Publication of WO2009135970A1 publication Critical patent/WO2009135970A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • A61N1/406Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia using implantable thermoseeds or injected particles for localized hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets

Definitions

  • the main object of the present invention is a device for the application of magnetic hyperthermia.
  • Magnetic hyperthermia is a phenomenon of energy absorption in nanostructured fe ⁇ omagnetic materials, usually magnetic nanoparticles suspended in magnetic colloids (ferrofluids), when subjected to an alternating magnetic field.
  • magnetic hyperthermia is usually given to the induced temperature rise in tissues to which ferromagnetic materials have been applied when exposed to alternating electromagnetic fields. A growing number of applications of this phenomenon have been proposed in the field of biomedical research.
  • Microwave hyperthermia is already used as a complementary therapy of radiotherapy in tumor regression processes, due to the synergistic effects of both treatments.
  • the biological basis of hyperthermic therapies is related to the hypoxia situation of tumor regions that causes a lower sensitivity of neoplastic cells to radiotherapy, and a greater sensitivity to hyperthermia.
  • the hyperthermia process may involve laser radiation, ionizing radiation and / or microwaves. Although these techniques are capable of raising the cellular temperature, they have unwanted side effects, such as ionization of the genetic material or lack of selectivity. Hyperthermia with magnetic fluids is of great interest, as it suggests
  • the hyperthermia with magnetic fluids is related to the dissipation of energy when a ferromagnetic material is subjected to an alternating magnetic field, in particular due to magnetic losses (losses of Néel) and to the dissipation of energy due to the rotation of the nanoparticles (Brown losses).
  • a hyperthermia application device is defined, for example, in the patent application US 2003/0032995, in which a coil is wound around an approximately rectangular square-shaped magnetic core comprising an air gap in One of its sides.
  • a coil is wound around an approximately rectangular square-shaped magnetic core comprising an air gap in One of its sides.
  • an alternating magnetic flux appears in the core and, therefore, an alternating magnetic field in the air gap, where the part of the patient's body to be treated is introduced.
  • the hyperthermia application device is not aimed at patients but at samples for testing.
  • the device consists only of a coil that is fed with an alternating intensity. This creates a longitudinal alternating magnetic field inside the coil where the sample is introduced.
  • a disadvantage of the prior art devices is that to generate a magnetic field of sufficient power to produce the effect of hyperthermia on the magnetic particles, it is necessary to apply a high alternating intensity to the inductor or coil wound around the core magnetic, which implies the use of a large power source.
  • cables and other circuit elements must be adapted to the passage of large currents.
  • the high power of the generated magnetic field causes a large part of it to be outside the working region, and therefore there is a danger that they reach the user.
  • a large cover is usually used to keep the user away from the magnetic fields.
  • an object of the present invention is to provide a magnetic operation device of simple operation that is capable of generating high intensity magnetic fields but whose elements must not withstand large currents.
  • Another object of the present invention is to improve user safety in relation to its exposure to high intensity magnetic fields.
  • a hyperthermia device is a device capable of generating an alternating magnetic field in a specific area prepared to receive a sample, referred to herein as the "work region".
  • sample refers to any object to which said application applies.
  • hyperthermia treatment including magnetic solutions for testing, cell cultures, animals or body parts of a human patient. It can be assumed, as is known in the art, that either the sample has magnetic properties, or has been previously treated with some material that has them.
  • a magnetic hyperthermia application device for applying a hyperthermia treatment to a sample is described, comprising:
  • the working region is located inside the coil of the LC tank.
  • the resonance frequency is the frequency at which the reactive components of the capacitor and coil impedances are canceled.
  • the resonance frequency is given by the expression:
  • L t anque and Conque are respectively the inductance of the coil and the capacitor capacity.
  • This source of alternating voltage connected to the resonant tank LC, applies to it an alternating voltage whose frequency is close to the resonant frequency of said LC tank.
  • the frequency of the voltage generated by the alternating voltage source of variable frequency is between 200 kHz and 1 MHz.
  • the resonance frequency of the LC tank may vary due to changes in the parameters of the first condenser or the first coil, due to the temperature or other conditions.
  • the device of the invention also comprises a control means, connected to the LC tank and the alternating voltage source, which modifies the frequency of the voltage generated by the alternating voltage source to keep it at all times between 99% and 101% of the resonance frequency of the LC tank.
  • the control means also adjusts the amplitude of the voltage generated by the alternating voltage source based on the magnetic field strength that the user wishes to apply to the sample, and which can be selected using appropriate interface means .
  • control means include microcontrollers, microprocessors, FPGA's, DSP's or ASICs properly programmed, among others.
  • the resonance frequency of the LC tank were invariable, by modifying the frequency of the voltage of the variable voltage source to obtain a magnetic field of the desired frequency inside the first coil, the LC tank would cease to operate at its frequency of resonance, thus wasting the main advantage of this topology.
  • the first capacitor of the LC tank has variable capacity. The modification of the capacity C of the first capacitor, in accordance with the equation shown above, allows the value of the resonance frequency of the LC tank to be modified, which in turn enables the hyperthermia application device to function optimally at different frequencies
  • variable frequency alternating voltage source is formed by a direct voltage source connected to an inverter.
  • the inverter comprises a half bridge type circuit, formed by two transistors whose trip is controlled by a pulse generating device, and an LC series circuit, formed by a second coil and a second capacitor.
  • the second coil functions as a voltage booster, while the second capacitor serves to eliminate the component of zero frequency, that is, direct current.
  • the control means modulates the frequency and amplitude of the pulses generated by the pulse generating device so that the frequency of the output voltage is at all times similar to the resonant frequency of the LC tank.
  • the values of the capacity of the second capacitor and the inductance of the second coil are, respectively, between 100 nF and 1 ⁇ F and between 10 ⁇ Hy and 200 ⁇ Hy.
  • the hyperthermia application device of the invention further comprises:
  • suitable materials are ferrites doped with zirconium or manganese, or Mu metal (nickel alloy, iron, copper and molybdenum).
  • the geometry of the magnetic field created by the first coil is modified. Simulating or calculating the geometry of the magnetic field corresponding to each shape and position of the piece or pieces of high magnetic permeability, suitable devices can be designed for different applications.
  • the part or pieces of high magnetic permeability can be used to "shield" the magnetic field, avoiding that outside the hyperthermia application device it has too high values that could be harmful for the user. It is thus possible to reduce the size of the equipment, since the attenuation due to "shielding" of the field with magnetic materials is much greater than that produced through air. Consequently, if a large volume cover is necessary to keep the user away from the magnetic field.
  • the piece of high magnetic permeability has approximately rectangular shape of square or circular section, with an air gap on one of its sides and the first coil wound around it.
  • the working region where the sample is introduced is located in the air gap.
  • additional high magnetic permeability parts are arranged in areas near the air gap to shield the magnetic field, so that it is confined within the air gap as much as possible.
  • the piece of high magnetic permeability is approximately U-shaped and is arranged so that the first coil is located in the "interior" of the U in the longitudinal direction.
  • This geometry causes a part of the field to protrude from the imaginary surface that joins the two ends of the U, which is the area that constitutes the working region in this embodiment.
  • the U-shaped piece of high magnetic permeability shields the magnetic field, so that behind the closed end of the U its intensity is much lower.
  • the magnetic hyperthermia application device of the invention further comprises cooling means to prevent heat due to losses from causing an excessive increase in the inductor temperature.
  • the conductor that forms the inductor coil can have an internal conduit through which the cooling water circulates.
  • Other preferred embodiments of the hyperthermia application device of the invention comprise an interface means and a communication means.
  • the interface means allows the data acquired during the hyperthermia treatment to be transmitted to the user, such as data related to temperatures, treatment time, characteristics of the applied field or others.
  • the interface medium may be composed of one or combinations of the following elements: an LCD screen, a TFT screen, a touch screen, a set of LEDs, a keyboard, etc.
  • the communication medium serves to transmit the data acquired during hyperthermia treatment to a computer or other device.
  • Examples of media can be a USB, Ethernet, Bluetooth port,
  • ZigBee etc.
  • media through mobile technology such as GPRS, UMTS, GSM or others.
  • thermocouples In devices according to the prior art the measurement of the temperature is carried out by arranging common devices, such as thermocouples, inside the sample. However, this measurement procedure has very poor accuracy, especially for certain applications.
  • an embodiment of the device of the invention comprises an adiabatic Dewar vessel disposed in the working region, inside which the sample and a temperature measurement means are arranged.
  • the adiabaticity of the Dewar vessel ensures precise measures relative to the amount of heat dissipated in the sample during the hyperthermia treatment, by means of the well-known calorimetric expression
  • another particular embodiment of the invention comprises a sample introduction means that serves to introduce the sample into the respective working region according to the particular geometry of the device.
  • the sample introduction means is a sliding sample tray.
  • Figure 1 Shows a preferred embodiment of the device of the invention comprising a DC voltage source connected to an inverter and an LC tank.
  • Figure 2. Shows a detail of the working region where the sample is arranged in a hyperthermia application device without parts of high magnetic permeability.
  • Figure 3. Shows a preferred embodiment of a piece of high magnetic permeability with approximately rectangular shape and square or circular section.
  • Figure 4.- Shows a preferred embodiment of a piece of high magnetic permeability approximately U-shaped. PREFERRED EMBODIMENT OF THE INVENTION
  • Figure 1 shows an electrical scheme showing an LC tank (3), formed by a first capacitor (5) and a first coil (6) whose capacity and inductance are 10OnF and 4 ⁇ Hy, respectively.
  • An alternating voltage is applied to the LC tank (3) by means of an alternating voltage source (2), which is composed of a DC voltage source (7) of varying amplitude between 0 and 300 V connected to an inverter (8).
  • the inverter (8) comprises a half bridge type circuit (10), connected to a pulse generation module (9), and a series LC assembly, formed by a second capacitor (11) and a second coil (12) whose capacity and inductance are 10OnF and 35 ⁇ Hy, respectively.
  • control means (4) controls the frequency and amplitude of the trigger pulses transmitted to the transistors that form the half bridge circuit (10) to achieve that the frequency of the output voltage thereof is as similar as possible to The resonant frequency of the LC tank (3) at each moment.
  • the device of the invention (1) operates at frequencies close to the resonant frequency of the LC tank (3), in this example approximately 251.6 KHz, an intensity of between 0 and 400 is achieved within the LC tank (3). At RMS, while outside the LC tank (3) the intensity is approximately between 0 and 20 A RMS.
  • the control means (4) also controls the amplitude of the continuous voltage generated by the source (7).
  • the magnetic field inside the first coil (6) is proportional to the intensity that Ia it crosses, which in turn is proportional to the voltage applied to the LC tank (3), and which in turn depends on the voltage generated by the continuous voltage source (7). Therefore, depending on the needs of the user regarding the intensity of the alternating magnetic field, which the user indicates through an interface means that is not shown in the drawings, the control means (4) modifies the amplitude of The voltage generated by the continuous voltage source (7).
  • the device of the invention (1) allows modifying the magnitude and frequency of the magnetic field generated inside the first coil (6) depending on each application.
  • the working region (18) where the sample (14) is introduced is located inside the first coil (6).
  • Fig. 3 shows an example in which the first coil (6) of the LC tank (3) is wound around a piece of high magnetic permeability (13) which has an approximately rectangular shape of square or circular section, with an air gap (15 ) inside which the working region is located
  • Fig. 4 illustrates a piece of high magnetic permeability (13 ') approximately U-shaped. This geometry causes the field to extend forward, forming a working region (18 ") facing the ends of the U where the sample (14 ") is located. The magnetic field is negligible in the area after the piece of high magnetic permeability (13 '), so that the exposure of a user is minimized.
  • This embodiment is useful for applying superficial hyperthermia treatments, such as for treating skin conditions.
  • the hyperthermia application device (1) can also have means for measuring the temperature of the sample.
  • Fig. 5 shows a glass Dewar (16) adiabatic that is available in the working region (18, 18 ', 18 "), and through whose upper end a temperature probe (17) of optical fiber is introduced, thus obtaining accurate data about the elevation of temperature of the sample (14, 14 ', 14'").
  • the device of the invention (1) further comprises a housing or cover in which an interface means (for example, an LCD screen) is integrated by means of which the user can operate the device. It can also comprise a communication medium (for example, a USB port) through which the user can download the data of the treatments performed, such as treatment times, field strength, initial and final temperatures, etc.
  • an interface means for example, an LCD screen
  • a communication medium for example, a USB port

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Treatment Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Dispositivo de aplicación de hipertermia magnética (1 ) para aplicar un tratamiento de hipertermia magnética a una muestra, caracterizado porque comprende: un tanque resonante LC (3), formado por una primera bobina (5) y un primer condensador (6), conectado a una fuente de tensión alterna (2) de frecuencia variable, y un medio de control (4), conectado al tanque resonante LC (3) y a la fuente de tensión alterna (2), que controla la tensión de la fuente de tensión alterna (2) aplica al tanque resonante LC (3), de modo que su frecuencia está entre el 99% y el 101 % de la frecuencia de resonancia de dicho tanque LC (3).

Description

DISPOSITIVO DE APLICACIÓN DE HIPERTERMIA MAGNÉTICA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
El objeto principal de Ia presente invención es un dispositivo para Ia aplicación de hipertermia magnética.
ANTECEDENTES DE LA INVENCIÓN
La hipertermia magnética es un fenómeno de absorción de energía en materiales feπomagnéticos nanoestructurados, usualmente nanopartículas magnéticas suspendidas en coloides magnéticos (ferrofluidos), cuando son sometidos a un campo magnético alterno. Por razones de tipo histórico, usualmente se da el nombre de hipertermia magnética a Ia sobreelevación de temperatura inducida en tejidos a los que se han aplicado materiales ferromagnéticos cuando se exponen a campos electromagnéticos alternos. Un creciente número de aplicaciones de este fenómeno han sido propuestas en el campo de Ia investigación biomédica.
La hipertermia con microondas ya es utilizada como terapia complementaria de Ia radioterapia en procesos de regresión tumoral, debido a los efectos sinérgicos de ambos tratamientos. El fundamento biológico de las terapias hipertérmicas se relaciona con Ia situación de hipoxia de regiones tumorales que causa una menor sensibilidad de las células neoplásticas a Ia radioterapia, y una mayor sensibilidad a Ia hipertermia. Para lograr el aumento de temperatura deseado, el proceso de hipertermia puede involucrar radiación láser, radiaciones ionizantes y/o microondas. Aunque estas técnicas son capaces de elevar Ia temperatura celular, tienen efectos colaterales indeseados, como ionización del material genético o falta de selectividad. La hipertermia con fluidos magnéticos presenta gran interés, pues sugiere
Ia posibilidad de terapias no invasivas y de alta selectividad. Consiste en Ia citólisis de los tejidos a través de hipertermia local, por medio de Ia aplicación remota de un campo magnético alterno sobre nanopartículas magnéticas previamente ligadas/incorporadas en las células del paciente. Desde el punto de vista de Ia física, Ia hipertermia con fluidos magnéticos está relacionada con Ia disipación de energía cuando un material ferromagnético es sometido a un campo magnético alterno, en particular debido a pérdidas magnéticas (pérdidas de Néel) y a Ia disipación de energía debida a Ia rotación de las nanopartículas (pérdidas de Brown).
Un dispositivo de aplicación de hipertermia según Ia técnica anterior se define, por ejemplo, en Ia solicitud de patente US 2003/0032995, en Ia que una bobina se arrolla alrededor de un núcleo magnético de forma aproximadamente rectangular de sección cuadrada que comprende un entrehierro en uno de sus lados. Cuando se alimenta Ia bobina con una intensidad alterna aparece un flujo magnético alterno en el núcleo y, por tanto, un campo magnético alterno en el entrehierro, donde se introduce Ia parte del cuerpo del paciente que se desea tratar.
Otro ejemplo se describe en el documento "Cellular level loading and heating of superparamagnetic iron oxide nanoparticles", de Venkat S. Kalambur et al., Longmuir 2007, 23, pags. 12329-12336. En este caso el dispositivo de aplicación de hipertermia no está dirigido a pacientes sino a muestras para Ia realización de ensayos. El dispositivo consiste únicamente en una bobina que se alimenta con una intensidad alterna. Se crea así un campo magnético alterno longitudinal en el interior de Ia bobina donde se introduce Ia muestra.
Un inconveniente de los dispositivos de Ia técnica anterior es que para generar un campo magnético de una potencia suficiente como para producir el efecto de Ia hipertermia en las partículas magnéticas se requiere aplicar una elevada intensidad alterna al inductor o bobina arrollado alrededor del núcleo magnético, lo cual implica el uso una fuente de potencia de gran tamaño. Además, cables y otros elementos del circuito deben estar adaptados al paso de grandes corrientes. Además, Ia elevada potencia del campo magnético generado provoca que una gran parte del mismo esté fuera de Ia región de trabajo, y por tanto existe peligro de que alcancen al usuario. En Ia técnica anterior, se suele utilizar una cubierta de gran tamaño para mantener al usuario alejado de los campos magnéticos.
Otro inconveniente suele ser los sistemas de medida de temperatura utilizados en Ia técnica anterior con frecuencia no proporcionan resultados suficientemente precisos.
DESCRIPCIÓN DE LA INVENCIÓN
Así, un objeto de Ia presente invención es proporcionar un dispositivo de hipertermia magnética de funcionamiento sencillo que sea capaz de generar campos magnéticos de gran intensidad pero cuyos elementos no deban soportar grandes corrientes.
Otro objeto de Ia presente invención es mejorar Ia seguridad del usuario con relación a su exposición a campos magnéticos de elevada intensidad.
Otros objetos de Ia presente invención están dirigidos en general a mejoras en dispositivos de hipertermia magnética.
Un dispositivo de hipertermia es un dispositivo capaz de generar un campo magnético alterno en una zona específica preparada para recibir una muestra, denominada en el presente documento "región de trabajo", El término "muestra" hace referencia a cualquier objeto al que se aplica dicho tratamiento de hipertermia, incluyendo soluciones magnéticas para realizar ensayos, cultivos celulares, animales o partes del cuerpo de un paciente humano. Se puede suponer, como es conocido en Ia técnica, que o bien Ia muestra posee propiedades magnéticas, o bien ha sido tratada previamente con algún material que las posee.
Así, de acuerdo con un aspecto de Ia presente invención, se describe un dispositivo de aplicación de hipertermia magnética para aplicar un tratamiento de hipertermia a una muestra, que comprende:
a) Un tanque resonante LC
Se trata de una bobina y un condensador conectados en paralelo, conjunto que en el presente documento se denominará "tanque LC". En esta primera realización, Ia región de trabajo está situada en el interior de Ia bobina del tanque LC. Es bien conocida en Ia técnica Ia propiedad de este circuito para generar corrientes elevadas en su interior debido a fenómenos de resonancia cuando se Ie aplica una tensión alterna de una frecuencia aproximadamente igual a su frecuencia de resonancia. La frecuencia de resonancia, por definición, es Ia frecuencia a Ia cual las componentes reactivas de las impedancias del condensador y de Ia bobina se anulan. En el tanque resonante LC de Ia invención, Ia frecuencia de resonancia viene dada por Ia expresión:
1
/ =
LtanqueC, tanque
donde Ltanque y Conque son respectivamente Ia inductancia de Ia bobina y Ia capacidad del condensador.
Así, cuando se aplica al tanque LC una tensión alterna cuya frecuencia está cercana a su frecuencia de resonancia, se anulan las componentes reactivas de Ia bobina y del condensador, quedando sólo, visto desde fuera, sus resistencias de pérdidas. De este modo, a una frecuencia cercana a Ia de resonancia, el campo en generado por Ia bobina del tanque LC, Ia tensión en bornes del tanque LC y Ia corriente que pasa por dentro del tanque son máximas, mientras que Ia corriente que circula a través del tanque LC (es decir, a través del resto del circuito), es mínima. Este hecho presenta Ia ventaja de que se puede alimentar Ia bobina del tanque LC con intensidades elevadas, obteniéndose campos magnéticos también de valor elevado, sin Ia necesidad de disponer de un circuito de excitación preparado para soportar grandes intensidades, evitándose los inconvenientes en cuanto a coste y complejidad que ello conlleva. En el presente documento se denominará "primer condensador" y "primera bobina", respectivamente, al condensador y a Ia bobina que conforman el tanque LC
b) Una fuente de tensión alterna de frecuencia variable
Esta fuente de tensión alterna, conectada al tanque resonante LC, aplica al mismo una tensión alterna cuya frecuencia está cercana a Ia frecuencia de resonancia de dicho tanque LC. De este modo se maximiza el efecto explicado anteriormente, es decir, con una intensidad baja o moderada a través de Ia fuente se consiguen intensidades muy elevadas dentro del tanque LC, y por tanto a través de Ia bobina, consiguiéndose así un campo magnético en el interior de Ia bobina de intensidad elevada. En particular, de acuerdo con una realización preferida de Ia invención, Ia frecuencia de Ia tensión generada por Ia fuente de tensión alterna de frecuencia variable está entre 200 kHz y 1 MHz.
c) Un medio de control
La frecuencia de resonancia del tanque LC puede variar debido a cambios en los parámetros del primer condensador o de Ia primera bobina, debido a Ia temperatura o a otras condiciones. Por este motivo, el dispositivo de Ia invención comprende además un medio de control, conectado al tanque LC y a Ia fuente de tensión alterna, que modifica Ia frecuencia de Ia tensión generada por Ia fuente de tensión alterna para mantenerla en todo momento entre el 99% y el 101% de Ia frecuencia de resonancia del tanque LC. Además de controlar Ia frecuencia, el medio de control ajusta también Ia amplitud de Ia tensión generada por Ia fuente de tensión alterna en función de Ia intensidad de campo magnético que el usuario desea aplicar a Ia muestra, y que puede seleccionar utilizando medios de interfaz adecuados.
Ejemplos de medios de control incluyen microcontroladores, microprocesadores, FPGA's, DSP's o ASICs programados de forma adecuada, entre otros.
Es posible que, para determinadas aplicaciones, se requiera un campo magnético alterno a una frecuencia distinta de Ia frecuencia de resonancia del tanque LC de un dispositivo de aplicación de hipertermia particular. Si Ia frecuencia de resonancia del tanque LC fuese invariable, al modificar Ia frecuencia de Ia tensión de Ia fuente de tensión variable para obtener un campo magnético de Ia frecuencia deseada en el interior de Ia primera bobina, el tanque LC dejaría de funcionar a su frecuencia de resonancia, desaprovechándose así Ia principal ventaja de esta topología. Por este motivo, en una realización preferida más de Ia invención el primer condensador del tanque LC tiene capacidad variable. La modificación de Ia capacidad C del primer condensador, de acuerdo con Ia ecuación mostrada anteriormente, permite modificar el valor de Ia frecuencia de resonancia del tanque LC, Io que a su vez posibilita que el dispositivo de aplicación de hipertermia funcione de manera óptima a diferentes frecuencias.
En otra realización preferida, Ia fuente de tensión alterna de frecuencia variable está formada por una fuente de tensión continua conectada a un inversor. En particular, de acuerdo con una realización preferida más de Ia invención, el inversor comprende un circuito tipo medio puente, formado por dos transistores cuyo disparo es controlado por un dispositivo de generación de pulsos, y un circuito serie LC, formado por una segunda bobina y un segundo condensador. La segunda bobina funciona como un elevador de tensión, mientras que el segundo condensador sirve para eliminar Ia componente de frecuencia cero, es decir, de corriente continua. Así, en esta realización, el medio de control modula Ia frecuencia y amplitud de los pulsos generados por el dispositivo de generación de pulsos de modo que Ia frecuencia de Ia tensión de salida sea en todo momento parecida a Ia frecuencia de resonancia del tanque LC.
En realizaciones preferidas de Ia invención, los valores de Ia capacidad del segundo condensador y de Ia inductancia de Ia segunda bobina están, respectivamente, entre 100 nF y 1 μF y entre 10 μHy y 200 μHy.
Otra realización particular, el dispositivo de aplicación de hipertermia de Ia invención comprende además:
d) Al menos una pieza de alta permeabilidad magnética
Se trata de una pieza fabricada en cualquier material con propiedades magnéticas a las frecuencias de trabajo, es decir, debe presentar alta permeabilidad magnética y bajas pérdidas magnéticas a frecuencias de trabajo (200 kHz-1 MHz). Ejemplos de materiales adecuados son ferritas dopadas con zirconio o manganeso, o Mu metal (aleación de níquel, hierro, cobre y molibdeno).
Disponiendo una pieza de alta permeabilidad magnética en el dispositivo se consigue modificar Ia geometría del campo magnético creado por Ia primera bobina. Simulando o calculando Ia geometría del campo magnético correspondiente a cada forma y posición de Ia pieza o piezas de alta permeabilidad magnética se pueden diseñar dispositivos adecuados para diferentes aplicaciones. Además, Ia pieza o piezas de alta permeabilidad magnética pueden servir para "apantallar" el campo magnético, evitando que fuera del dispositivo de aplicación de hipertermia tenga valores demasiado elevados que podrían resultar perjudiciales para el usuario. Se consigue así disminuir el tamaño del equipo, ya que Ia atenuación debida al "apantallamiento" del campo con materiales magnéticos es mucho mayor que Ia que se produce a través de aire. En consecuencia, de ser necesaria una cubierta de gran volumen para mantener al usuario alejado del campo magnético.
Así, en una realización particular de Ia invención, Ia pieza de alta permeabilidad magnética tiene aproximadamente forma rectangular de sección cuadrada o circular, con un entrehierro en uno de sus lados y Ia primera bobina arrollada a su alrededor. En este caso, Ia región de trabajo donde se introduce Ia muestra está situada en el entrehierro. En una realización particular más, se disponen piezas de alta permeabilidad magnética adicionales en áreas cercanas al entrehierro para apantallar el campo magnético, de modo que quede confinado en el interior del entrehierro tanto como sea posible.
En otra realización particular, Ia pieza de alta permeabilidad magnética tiene forma aproximadamente de U y está dispuesta de forma que Ia primera bobina está situada en el "interior" de Ia U en dirección longitudinal. Esta geometría provoca que una parte del campo sobresalga de Ia superficie imaginaria que une los dos extremos de Ia U, que es Ia zona que constituye Ia región de trabajo en esta realización. Con un diseño cuidadoso de Ia geometría y posición de Ia pieza de alta permeabilidad magnética es posible controlar Ia distancia con Ia que sobresale el campo magnético, Io que permite utilizar el dispositivo para aplicar de forma controlada tratamientos de hipertermia a superficies, por ejemplo para tratar lesiones cutáneas o similares. Además, Ia pieza de alta permeabilidad magnética en forma de U apantalla el campo magnético, de forma que detrás del extremo cerrado de Ia U su intensidad es mucho menor.
El dispositivo de aplicación de hipertermia magnética de Ia invención comprende además medios de refrigeración para evitar que el calor debido a las pérdidas provoque un aumento excesivo de Ia temperatura del inductor. Por ejemplo, el conductor que forma Ia bobina del inductor puede tener un conducto interno por el que circula el agua de refrigeración. Otras realizaciones preferidas del dispositivo de aplicación de hipertermia de Ia invención comprenden un medio de interfaz y un medio de comunicación.
El medio de interfaz permite transmitir al usuario los datos adquiridos durante el tratamiento de hipertermia, como por ejemplo datos relativos a temperaturas, tiempo de tratamiento, características del campo aplicado u otras.
También sirve para que el usuario transmita al medio de control Ia intensidad del campo magnético requerido u otras preferencias. El medio de interfaz puede estar compuesto por uno o combinaciones de los siguientes elementos: una pantalla LCD, una pantalla TFT, una pantalla táctil, un conjunto de LED's, un teclado, etc.
El medio de comunicación sirve para transmitir los datos adquiridos durante el tratamiento de hipertermia a un ordenador u otro dispositivo. Ejemplos de medios de comunicación pueden ser un puerto USB, Ethernet, Bluetooth,
ZigBee, etc., así como medios de comunicación mediante tecnología móvil, como GPRS, UMTS, GSM u otros.
En dispositivos de acuerdo con Ia técnica anterior Ia medida de Ia temperatura se realiza disponiendo dispositivos comunes, tales como termopares, en el interior de Ia muestra. Sin embargo, este procedimiento de medida tiene una precisión muy pobre, especialmente para ciertas aplicaciones.
Con el objetivo de subsanar este inconveniente, una realización del dispositivo de Ia invención comprende un vaso Dewar adiabático dispuesto en Ia región de trabajo, en el interior del cual se dispone Ia muestra y un medio de medida de Ia temperatura. La adiabaticidad del vaso Dewar asegura medidas precisas relativas a Ia cantidad de calor disipado en Ia muestra durante el tratamiento de hipertermia, mediante Ia expresión calorimétrica bien conocida
Q = m C ΔT
donde m es Ia masa de Ia muestra, C es el calor especifico del material del que está compuesta Ia muestra y ΔT= TrT¡ es Ia diferencia de las temperaturas final e inicial del tratamiento.
Finalmente, otra realización particular de Ia invención comprende un medio de introducción de muestra que sirve para introducir Ia muestra en Ia región de trabajo respectiva según Ia geometría particular del dispositivo. En particular, el medio de introducción de muestra es una bandeja portamuestras deslizante.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
Figura 1.- Muestra una realización preferida del dispositivo de Ia invención que comprende una fuente de tensión continua conectada a un inversor y a un tanque LC.
Figura 2.- Muestra un detalle de Ia región de trabajo donde se dispone Ia muestra en un dispositivo de aplicación de hipertermia sin piezas de alta permeabilidad magnética.
Figura 3.- Muestra una realización preferida de una pieza de alta permeabilidad magnética con forma aproximadamente rectangular y sección cuadrada o circular.
Figura 4.- Muestra una realización preferida de una pieza de alta permeabilidad magnética con forma aproximadamente de U. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Se describe a continuación un ejemplo de realización del dispositivo de aplicación de hipertermia (1 ) de acuerdo con Ia invención. La Figura 1 muestra un esquema eléctrico donde se aprecia un tanque LC (3), formado por un primer condensador (5) y una primera bobina (6) cuya capacidad e inductancia son de 10OnF y 4μHy, respectivamente. Se aplica al tanque LC (3) una tensión alterna mediante una fuente de tensión alterna (2), que está compuesta por una fuente de tensión continua (7) de amplitud variable entre 0 y 300 V conectada a un inversor (8). El inversor (8), a su vez, comprende un circuito tipo medio puente (10), conectado a un módulo de generación de pulsos (9), y a un conjunto LC serie, formado por un segundo condensador (11 ) y una segunda bobina (12) cuya capacidad e inductancia son de 10OnF y 35μHy, respectivamente. El circuito tipo medio puente (10), junto con el módulo de generación de pulsos (9) que controla el disparo de los transistores, y el conjunto LC serie, transforma Ia tensión continua generada por Ia fuente (7) en una tensión alterna cuya frecuencia controla un medio de control (4) conectado al módulo de generación de pulsos (9) y al tanque LC (3).
Así, el medio de control (4) controla Ia frecuencia y amplitud de los pulsos de disparo transmitidos a los transistores que forman el circuito medio puente (10) para conseguir que Ia frecuencia de Ia tensión de salida del mismo sea Io más parecida posible a Ia frecuencia de resonancia del tanque LC (3) en cada momento. Cuando el dispositivo de Ia invención (1 ) funciona a frecuencias cercanas a Ia frecuencia de resonancia del tanque LC (3), en este ejemplo aproximadamente 251 ,6 KHz, se consigue dentro del tanque LC (3) una intensidad de entre 0 y 400 A RMS, mientras que fuera del tanque LC (3) Ia intensidad es de aproximadamente entre 0 y 20 A RMS.
El medio de control (4) controla además Ia amplitud de Ia tensión continua generada por Ia fuente (7). En concreto, se conoce que el campo magnético en el interior de Ia primera bobina (6) es proporcional a Ia intensidad que Ia atraviesa, que a su vez es proporcional a Ia tensión aplicada al tanque LC (3), y que a su vez depende de Ia tensión generada por Ia fuente (7) de tensión continua. Por Io tanto, en función de las necesidades del usuario relativas a Ia intensidad del campo magnético alterno, que el usuario indica a través de un medio de interfaz que no se muestra en los dibujos, el medio de control (4) modifica Ia amplitud de Ia tensión generada por Ia fuente (7) de tensión continua.
De este modo, el dispositivo de Ia invención (1 ) permite modificar Ia magnitud y Ia frecuencia del campo magnético generado en el interior de Ia primera bobina (6) en función de cada aplicación. En el ejemplo de Ia Fig. 2, Ia región de trabajo (18) donde se introduce Ia muestra (14) está situada en el interior de Ia primera bobina (6).
La Fig. 3 muestra un ejemplo en el que primera bobina (6) del tanque LC (3) está arrollada alrededor de una pieza de alta permeabilidad magnética (13) que tiene forma aproximadamente rectangular de sección cuadrada o circular, con un entrehierro (15) en el interior del cual se encuentra Ia región de trabajo
(18') donde se introduce Ia muestra (14'). Se han representado además unas piezas de alta permeabilidad magnética (13") adicionales, que sirven para apantallar el campo magnético al que está expuesto el usuario.
Por otro lado, Ia Fig. 4 ¡lustra una pieza de alta permeabilidad magnética (13') con forma aproximadamente de U. Esta geometría provoca que el campo se extienda hacia adelante, formando una región de trabajo (18") frente a los extremos de Ia U donde se sitúa Ia muestra (14"). El campo magnético es despreciable en Ia zona posterior a Ia pieza de alta permeabilidad magnética (13'), de modo que se minimiza Ia exposición de un usuario. Esta realización es útil para aplicar tratamientos de hipertermia superficiales, como por ejemplo para tratar afecciones cutáneas.
El dispositivo de aplicación de hipertermia (1 ) puede disponer además de medios para medir Ia temperatura de Ia muestra. La Fig. 5 muestra un vaso Dewar (16) adiabático que se dispone en Ia región de trabajo (18, 18', 18"), y a través de cuyo extremo superior se introduce una sonda de temperatura (17) de fibra óptica, obteniéndose así datos precisos acerca de Ia elevación de temperatura de Ia muestra (14, 14', 14'").
Aunque no se muestran en las figuras, el dispositivo de Ia invención (1 ) comprende además una carcasa o cubierta en Ia que se integra un medio de interfaz (por ejemplo, una pantalla LCD) mediante el cual el usuario puede manejar el dispositivo. También puede comprender un medio de comunicación (por ejemplo, un puerto USB) mediante el cual el usuario puede descargar los datos de los tratamientos realizados, como tiempos de tratamiento, intensidad de campo, temperaturas inicial y final, etc.

Claims

R E I V I N D I C A C I O N E S
1. Dispositivo de aplicación de hipertermia magnética (1) para aplicar un tratamiento de hipertermia magnética a una muestra (14, 14', 14", 14'"), caracterizado porque comprende
un tanque resonante LC (3), formado por una primera bobina (6) y un primer condensador (5);
una fuente de tensión alterna (2) de frecuencia variable, conectada al tanque resonante LC (3); y
un medio de control (4), conectado al tanque resonante LC (3) y a Ia fuente de tensión alterna (2) de frecuencia variable, que controla Ia tensión que Ia fuente de tensión alterna (2) aplica al tanque resonante LC (3), de modo que su frecuencia está entre el 99% y el 101% de Ia frecuencia de resonancia de dicho tanque LC (3).
2. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 1 , donde el medio de control (4) se elige de Ia siguiente lista: un microcontrolador, un microprocesador, una FPGA, un DSP y un ASIC.
3. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo cualquiera de las reivindicaciones 1 , caracterizado porque el primer condensador (5) es de capacidad variable.
4. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 1 , caracterizado porque Ia frecuencia de Ia tensión alterna aplicada al tanque resonante LC (3) está entre 200 kHz y 1 MHz.
5. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con Ia reivindicación 1 , caracterizado porque Ia fuente de tensión alterna (2) de frecuencia variable comprende una fuente de tensión continua (7) conectada a un inversor (8).
6. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con Ia reivindicación 5, caracterizado porque el inversor (8) comprende un circuito tipo medio puente (10), formado por dos transistores cuyo disparo es controlado por un dispositivo de generación de pulsos (9), y un conjunto LC serie formado por una segunda bobina (12) y un segundo condensador (11 ).
7. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con Ia reivindicación 6, caracterizado porque el valor de Ia capacidad del segundo condensador (11 ) del conjunto LC serie está entre 100 nF y 1 μF.
8. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con Ia reivindicación 6, caracterizado porque el valor de Ia inductancia de Ia segunda bobina (12) del conjunto LC serie está entre 10 μHy y 200 μHy.
9. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 1 , caracterizado porque una región de trabajo (18) está situada en el interior de Ia primera bobina (6).
10. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con las reivindicaciones 1-8, caracterizado porque comprende además una pieza de alta permeabilidad magnética (13, 13', 13") que modifica Ia geometría del campo magnético.
11. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 10, caracterizado porque Ia pieza de alta permeabilidad magnética (13) de forma rectangular, de sección cuadrada o circular, con un entrehierro (15) en uno de sus lados, con Ia primera bobina (6) arrollada a su alrededor.
12. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con cualquiera de las reivindicaciones 1O u 11 , caracterizado porque Ia pieza de alta permeabilidad magnética (13") está dispuesta junto al entrehierro (15) para apantallar el campo magnético.
13. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con cualquiera de las reivindicaciones 11 ó 12, caracterizado porque una región de trabajo (18') está situada en el interior del entrehierro (15).
14. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 10, caracterizado porque comprende una pieza de alta permeabilidad magnética (13') con forma de U, con Ia primera bobina (6) situada en su interior en Ia dirección longitudinal de Ia U.
15. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 14, caracterizado porque una región de trabajo (18") está situada frente a los extremos de Ia pieza de alta permeabilidad magnética (13') con forma de U.
16. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 1 , caracterizado porque además comprende medios de refrigeración de Ia primera bobina (6).
17. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 1 , caracterizado porque además comprende un vaso adiabático
Dewar (16) donde se introduce Ia muestra (14, 14', 14", 14'").
18. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 1 , caracterizado porque además comprende un medio de interfaz.
19. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con Ia reivindicación 18, donde el medio de interfaz comprende al menos uno de Ia siguiente lista: una pantalla LCD, una pantalla TFT, una pantalla táctil, un teclado y un conjunto de LED's.
20. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 1 , caracterizado porque además comprende un medio de comunicaciones.
21. Dispositivo de aplicación de hipertermia magnética (1 ) de acuerdo con Ia reivindicación 20, donde el medio de comunicaciones comprende al menos uno de Ia siguiente lista: LJSB, Ethernet, Bluetooth, ZigBee, GPRS, UMTS y GSM.
22. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con Ia reivindicación 1 , caracterizado porque además comprende un medio de introducción de muestra para introducir una muestra (14, 14', 14", 14'") en Ia región de trabajo (18, 18', 18").
23. Dispositivo de aplicación de hipertermia magnética (1) de acuerdo con Ia reivindicación 22, caracterizado porque el medio de introducción de muestra es una bandeja portamuestras deslizante.
PCT/ES2009/000235 2008-05-08 2009-05-04 Dispositivo de aplicacion de hipertermia magnetica WO2009135970A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09742176.2A EP2283895A4 (en) 2008-05-08 2009-05-04 DEVICE FOR THE USE OF MAGNETIC HYPERTHERMIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200801327A ES2328215B1 (es) 2008-05-08 2008-05-08 Dispositivo de aplicacion de hipertermia magnetica.
ESP200801327 2008-05-08

Publications (1)

Publication Number Publication Date
WO2009135970A1 true WO2009135970A1 (es) 2009-11-12

Family

ID=41226504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000235 WO2009135970A1 (es) 2008-05-08 2009-05-04 Dispositivo de aplicacion de hipertermia magnetica

Country Status (3)

Country Link
EP (1) EP2283895A4 (es)
ES (1) ES2328215B1 (es)
WO (1) WO2009135970A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005151B2 (en) 2011-09-07 2015-04-14 Choon Kee Lee Thermal apparatus
CN110354392A (zh) * 2019-08-02 2019-10-22 北京大学第三医院(北京大学第三临床医学院) 一种用于热疗的线圈机构、发热装置及热疗设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTV20130027A1 (it) * 2013-02-28 2014-08-29 Mbn Nanomaterialia Spa Procedimento per la produzione di particelle sub-micrometriche e loro uso teranostico in oncologia con una specifica apparecchiatura.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400940A2 (en) * 1989-06-01 1990-12-05 Leveen, Harry H. Radio frequency thermotherapy
US20030032995A1 (en) 2001-07-25 2003-02-13 Triton Biosystems, Inc. Thermotherapy via targeted delivery of nanoscale magnetic particles
US20050251233A1 (en) * 2004-05-07 2005-11-10 John Kanzius System and method for RF-induced hyperthermia
WO2006092021A1 (en) * 2005-03-04 2006-09-08 Intervention Technology Pty Ltd A minimal device and method for effecting hyperthermia derived anaesthesia
US20070179576A1 (en) * 2004-04-23 2007-08-02 Kanazawa University Technology Licensing Organization Ltd Thermal therapy device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679561A (en) * 1985-05-20 1987-07-14 The United States Of America As Represented By The United States Department Of Energy Implantable apparatus for localized heating of tissue
US5810888A (en) * 1997-06-26 1998-09-22 Massachusetts Institute Of Technology Thermodynamic adaptive phased array system for activating thermosensitive liposomes in targeted drug delivery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400940A2 (en) * 1989-06-01 1990-12-05 Leveen, Harry H. Radio frequency thermotherapy
US20030032995A1 (en) 2001-07-25 2003-02-13 Triton Biosystems, Inc. Thermotherapy via targeted delivery of nanoscale magnetic particles
US20070179576A1 (en) * 2004-04-23 2007-08-02 Kanazawa University Technology Licensing Organization Ltd Thermal therapy device
US20050251233A1 (en) * 2004-05-07 2005-11-10 John Kanzius System and method for RF-induced hyperthermia
WO2006092021A1 (en) * 2005-03-04 2006-09-08 Intervention Technology Pty Ltd A minimal device and method for effecting hyperthermia derived anaesthesia

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2283895A4
VENKAT S. ET AL.: "Cellular level loading and heating of superparamagnetic iron oxide nanoparticles", KALAMBUR ET AL., LONGMUIR, vol. 23, 2007, pages 12329 - 12336

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005151B2 (en) 2011-09-07 2015-04-14 Choon Kee Lee Thermal apparatus
CN110354392A (zh) * 2019-08-02 2019-10-22 北京大学第三医院(北京大学第三临床医学院) 一种用于热疗的线圈机构、发热装置及热疗设备

Also Published As

Publication number Publication date
EP2283895A1 (en) 2011-02-16
ES2328215A1 (es) 2009-11-10
ES2328215B1 (es) 2010-08-30
EP2283895A4 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
ES2320837B1 (es) Dispositivo de hipertermia y su utilizacion con nanoparticulas.
JP6472133B2 (ja) 体腔および腔様の部分における癌を治療するためのエネルギー場を発生する装置
Stauffer et al. Observations on the use of ferromagnetic implants for inducing hyperthermia
Soni et al. Near-infrared-and magnetic-field-responsive NaYF4: Er3+/Yb3+@ SiO2@ AuNP@ Fe3O4 nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption
Hand et al. Methods of external hyperthermic heating
US20220071702A1 (en) Precise ablation treatment of cancer using the synergetic effects of electromagnetic radiation with nanoparticles
US20120190911A1 (en) Low temperature hyperthermia system for therapeutic treatment of invasive agents
Attaluri et al. Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia
ES2328215B1 (es) Dispositivo de aplicacion de hipertermia magnetica.
Li et al. Numerical simulation of magnetic fluid hyperthermia based on multiphysics coupling and recommendation on preferable treatment conditions
Wu et al. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia
Xie et al. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers
RU170891U1 (ru) Индукционное устройство для гипертермии
Rast et al. Computational modeling of electromagnetically induced heating of magnetic nanoparticle materials for hyperthermic cancer treatment
CN107280959A (zh) 一种人体穴位用的红外贴片
Gonzalez et al. Portable electromagnetic field applicator for magnetic hyperthermia experiments
Li et al. Study on the Thermal Characteristics of Fe 3 O 4 Nanoparticles and Gelatin Compound for Magnetic Fluid Hyperthermia in Radiofrequency Magnetic Field
Kuwahata et al. Ferromagnetic resonance heating of magnetic nanoparticles Resovist for biomedical applications
Yamazaki et al. Development of magnetic hyperthermia coil system for wide treatment temperature area on neck and breast cancer models
JP2005253813A (ja) Mri治療システム
Lv et al. A theoretical way of distinguishing the thermal and non-thermal effects in biological tissues subject to EM radiation
ES2584255A1 (es) Dispositivo terapéutico portátil para el tratamiento de la artritis mediante estimulación magneto-térmica
Bodnar Manipulation of magnetic nanoparticles with rotating and pulsed magnetic field
Marchetti Accurate evaluation of the electric fields generated for microwave hyperthermia
Grupen Non-Ionizing Radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009742176

Country of ref document: EP