WO2009135956A1 - Rodilla articulada para simulación artroscópica - Google Patents

Rodilla articulada para simulación artroscópica Download PDF

Info

Publication number
WO2009135956A1
WO2009135956A1 PCT/ES2008/000311 ES2008000311W WO2009135956A1 WO 2009135956 A1 WO2009135956 A1 WO 2009135956A1 ES 2008000311 W ES2008000311 W ES 2008000311W WO 2009135956 A1 WO2009135956 A1 WO 2009135956A1
Authority
WO
WIPO (PCT)
Prior art keywords
knee
articulated
movements
arthroscopic
angular
Prior art date
Application number
PCT/ES2008/000311
Other languages
English (en)
French (fr)
Inventor
Jorge Potti Cuervo
Carlos Guillermo Illana Alejandro
Bernardo Sierra Picon
Original Assignee
Gmv Aerospace And Defence S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gmv Aerospace And Defence S.A. filed Critical Gmv Aerospace And Defence S.A.
Priority to EP08761556.3A priority Critical patent/EP2306436B1/en
Priority to PCT/ES2008/000311 priority patent/WO2009135956A1/es
Priority to US12/991,509 priority patent/US8388351B2/en
Publication of WO2009135956A1 publication Critical patent/WO2009135956A1/es

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts

Definitions

  • the invention refers to an articulated knee for arthroscopic simulation that, due to its fidelity and realism, constitutes a powerful trainer to perform surgery operations of this type.
  • the articulated knee of the invention is capable of faithfully reproducing all the movements of a real knee, which also provides reaction of forces as if the user was facing a true operation, all assisted by a virtual system that completes The simulation.
  • minimum invasion or “minimally invasive surgery”
  • arthroscopic surgery which consists of performing surgical interventions without opening the patient, only by making a small incision called the portal, by where the instruments will penetrate required to perform operations on a specific organ: bone, muscle, ligaments, etc., normally located in joints.
  • US Patent 4,605,373 is known, which presents a device for practicing fractured limb manipulation by quantifying the movements applied to the leg.
  • the internal part of the joint is not hollow and is not designed to virtually explore the interior, but only to evaluate the movements applied from the outside. It does not limit varo-valgus movement and does not transmit force reactions.
  • patent US 2004/0254771 A1 presents a joint simulator that physically simulates various structures of
  • the articulated knee for arthroscopic simulation that the present invention proposes resolves the aforementioned drawbacks, since it allows a training adjusted to reality, faithfully reproducing both the possible movements to which the surgeon will submit to the knee, and the feedback of forces that in the real intervention will notice the surgeon on the occasion of the manipulation of the different organs and tissues of the patient.
  • the articulated knee of the invention comprises a articulation mechanism which allows said knee to have flexo-extension and varus-valgus movements, reaction of forces for each movement and means to quantify the tensile force and displacement in each movement of the knee.
  • the articulated knee of the present invention through its articulation mechanism, comprises the following means:
  • haptic simulation is carried out thanks to the fact that the knee of the invention is hollow, facilitating the entry and manipulation of surgical instruments associated with haptic devices that allow feedback of forces that generate different sensations of touch such as hardness of the bone organs, elasticity of the ligaments, etc., giving the simulation of a total realism.
  • Figure 1 Shows elevation, plan and profile views of an example of an articulated knee for arthroscopic simulation according to the invention when it is flexed 45 °.
  • Figure 2. Shows a side view of the knee of the invention when it is flexed 90 °.
  • Figure 3. Shows a side view of the knee of the invention when it is fully extended.
  • Figure 4.- Shows a perspective view of the knee of Figure 2 when it has moved laterally, in a varus position.
  • Figure 5. Shows a perspective view of the knee of Figure 2 when it has moved laterally, in a valgus position.
  • Figure 6. Shows a perspective view of the knee of Figure 2 when it is in a straight position.
  • Figure 7. Shows an exploded view of the knee joint mechanism of the invention.
  • Figures 8 and 9. Shows two views in upper lateral and lower lateral perspective, respectively, of the complete articulation mechanism of the knee of the present invention.
  • Figure 10. Shows a perspective view of the complete set of arthroscopic simulation to which the knee of the present invention is coupled.
  • the articulated knee of the invention generally comprises an anatomical model or knee itself (24) representing the lower part of a leg, just below the knee and which is hollow, to which an articulation mechanism (1) is coupled in its upper part.
  • This articulation mechanism (1) capable of being coupled to a virtual reality simulator as can be seen in Figure 10, which has all the necessary elements to perform a complete simulation, enabling user training.
  • the anatomical model or knee (24) of the invention allows, through said articulation mechanism (1) and as seen in figures 1 to 6, articulation movements angular, that is to say, of flexion and extension in different degrees, movements of lateral articulation, that is, of varus or of valgus, and movements of extension or traction.
  • this articulation mechanism (1) does not prevent or hinder the use of haptic devices (30a, 30b) and their corresponding simulated instruments by means of rods (29a, 29b) introduced by the portals ( 28a, 28b) provided on said knee (24) in order to achieve a simulation true to reality.
  • the articulation mechanism (1) which is provided in the upper part of the knee (24), and as can be seen in figures 7 to 9, comprises a frame (20), with means for coupled to the simulator, on which two mechanism support plates (12a and 12b) are anchored, the same being joined together and through the interposition of two fixing pieces (13a) and (13b), by a bridge (16) which It fulfills the functions of parallelism and support of both plates (12a and 12b).
  • Said bridge (16) which has a curved downward configuration, rests in its central area on a plate (2) integral with the frame (20) giving mechanical rigidity to the structure.
  • two sliding parts (8a) and (8b) are provided, which in turn join a central rocker (10) that constitutes the joint connection with the body of the knee (24), counting said sliders (8a) and (8b) at their ends that join them to the plates (12a) and (12b) with parts (22a) and (22b) that swing on axes (25a and (25b), the first of which
  • the rocker (10) is articulated vertically simulating the flexion of the knee (24), acting on the axes (25a and 25b) and rotating the piece (22a) to transmit said rotation, by means of Ia connecting rod (4) to the angular reader (17c) whose function is to provide the CPU with the degree of rotation of the knee (24) for the virtual representation of movements of its internal structures, together with its haptic representation, as well as The feedback of forces produced by said flexion movement.
  • Ia knee that is, those that allow both lateral movements of varus-valgus, such as the tensile traction of the interchondral cavity and its quantification means
  • varus-valgus such as the tensile traction of the interchondral cavity and its quantification means
  • FIGS 7, 8 and 9 comprise at least two readers of angular movement (17a, 17b) located in the mechanism support plates (12b, 12a) respectively to measure both the displacement produced by a traction that can occur in the knee (24), as the deviation or lateral or varus-valgus movements .
  • both lateral and tensile in the knee (24) is fixed to the rocker (10) in a solidary manner so that both elements, body (24) and rocker (10), will move with the same angle by pivoting said rocker (10) on the axes (23a and 23b) on the skates (14a and 14b) respectively, which in turn join the said sliders (8a) and (8b).
  • the angular movement reader (17a) measures the valgus movement
  • the angular movement reader (17b) measures the varus movement.
  • the angular readers (17a) and (17b) act, on the contrary, it means that an extension of the knee is taking place, that is, that the condyles are separating. In the event that the separation measured in each one is not the same, that will mean that in addition to the extension itself, a valgus or varus movement will be produced, depending on the interior or exterior condyle.
  • each of the plates (12a) and (12b) a cable (21a) and (21b) anchored, respectively , at one end of an elastic element, such as a spring (19a) and (19b) provided for this purpose, following its path to a pulley (5a) and (5b), turning it, and that, fixed at a point thereof, continues its path through a pair of pulleys (6a ) and (6b), following a tension pulley (11a) and (11b), from it returning to the pair of pulleys (6a) and (6b), and which continues to end tied at an anchor point (26b) provided for such end in the plate (12a) and (12b).
  • an elastic element such as a spring (19a) and (19b) provided for this purpose, following its path to a pulley (5a) and (5b), turning it, and that, fixed at a point thereof, continues its path through a pair of pulleys (6a ) and (6b), following a tension pulley (11a) and (11b), from it
  • the functionality of said cable is as follows: for example, when moving the slide (8b) provided with another elastic element, such as an antagonistic spring (27b) is dragged by the rocker (10), when the knee (24) is manipulated, in this case valgus movement, results in the approach of the pulley (11 b) towards the shaft (25b) and therefore the spring (19b) picks up the cable (21b) by rotating the pulley (5b) by changing the angular reader position (17b).
  • another elastic element such as an antagonistic spring (27b)
  • the rocker (10) is articulated horizontally from the axes (23a and 23b) in an independent way, so that left, right (varus-valgus) or traction (articular extension) movements can be made of the knee).
  • traction the slides (8a) and / or (8b) act, moving on the main axis (25a) and / or (25b) limited and driven by the window (32a) and (32b) , assisted by their respective elastic elements, such as springs (27a) and (27b) according to the resulting displacement.
  • Said springs (27a) and (27b) simulate the reaction of forces to joint tension, similar to human anatomy.
  • joint and / or extension movements can be simultaneous only when the knee
  • the blocking means to prevent lateral movements of varus - valgus when the leg is extended comprise, according to a possible embodiment of the invention, grooved connecting rods (15a and 15b) that limit the angular and linear path of their respective sliding (8a and 8b) when in the window (7a) and (7b) it is at the end of its path and abutting the axis (9a) and (9b).
  • FIG. 10 represents a practical application of the articulated knee of the invention coupled to a simulator equipped with its corresponding display screen (31), together with the haptic devices (30a and 30b) which support or integrate the instruments simulated by the rods (29a) and (29b), which are introduced by the portals (28a and 28b) provided in the body of the knee (24) for haptic simulation.
  • the rocker (10) supports the anatomical model to simulate in virtual reality, in this case a leg with a knee model (24) because it is a simulator for arthroscopy training .
  • said element, instead of said knee (24) can be configured as a foot as an anatomical model for the virtual representation of the ankle joints, or a hand as a model for representing the wrist , etc., as well as any other joints that may be articulated and / or pulled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Instructional Devices (AREA)

Abstract

Rodilla articulada para simulación artroscópica que permite un entrenamiento fiel a la realidad de este tipo de operaciones y que básicamente se estructura a partir de un mecanismo de articulación (1) dotado de un armazón (20) para su acoplamiento al simulador y que además comprende medios de articulación angular y lateral, medios de tracción y medios de cuantificación de estos movimientos, así como medios que permiten la realimentación de fuerzas, tanto en los movimientos realizados en cada uno de los ejes de rotación y tracción de la rodilla (24) como en los movimientos realizados por las varillas (29a, 29b) unidas a los dispositivos hápticos (30a,30b) y que son introducidas por los portales de entrada (28a,28b) simulando el instrumental quirúrgico.

Description

RODILLA ARTICULADA PARA SIMULACIÓN ARTROSCÓPICA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La invención, tal como expresa el enunciado, se refiere a una rodilla articulada para simulación artroscópica que por su fidelidad y realismo constituye un potente entrenador para realizar operaciones de cirugía de este tipo.
Más concretamente, Ia rodilla articulada de Ia invención es capaz de reproducir fielmente todos los movimientos de una rodilla real, que además proporciona reacción de fuerzas tal y como sí el usuario se enfrentase a una verdadera operación, todo ello asistido por un sistema virtual que completa Ia simulación.
ANTECEDENTES DE LA INVENCIÓN
Desde hace ya varias décadas existen en el campo de Ia cirugía diferentes técnicas que persiguen Ia curación del paciente a través de intervenciones que, al contrario que las denominadas de cirugía abierta, no requieran practicar una amplia incisión al paciente con el fin de actuar sobre los órganos afectados, permitiendo así una rápida recuperación del mismo, un menor tiempo de hospitalización y un menor riesgo de infecciones.
Una de estas técnicas, las cuales quedan englobadas normalmente dentro del término "mínima invasión" o "cirugía mínimamente invasiva", es Ia cirugía artroscópica, Ia cual consiste en realizar intervenciones quirúrgicas sin abrir al paciente, únicamente practicando una pequeña incisión denominada portal, por donde penetrará el instrumental requerido para realizar operaciones en un órgano determinado: hueso, músculo, ligamentos, etc., normalmente situados en articulaciones.
Este tipo de operaciones, sin embargo, si bien presentan multitud de ventajas, hacen necesaria una exhaustiva preparación por parte del personal médico que va a realizar Ia intervención.
Por este motivo, y de cara a conseguir un entrenamiento fiel a Ia realidad, han aparecido numerosos modelos mecánicos y/o virtuales que persiguen entrenar a dicho personal médico Io mejor posible para que este tipo de operaciones puedan ser luego posteriormente abordadas con éxito.
Estos simuladores, sin embargo, adolecen del inconveniente de que no son capaces de reproducir fielmente todos y cada uno de los posibles movimientos que el cirujano necesita realizar posteriormente sobre el paciente para practicar Ia intervención, como por ejemplo el movimiento lateral denominado varo - valgo cuando Ia pierna del paciente se encuentra flexionada, que es imposible de realizar si ésta está extendida, el de tracción o distensión, o incluso el del mero movimiento articular.
Además, dichos simuladores en Ia mayoría de los casos tampoco son capaces de valorar Ia fuerza ejercida por el cirujano, ni de realimentar en los dispositivos hápticos que maneja el cirujano Ia oposición ejercida por los órganos internos del paciente, por' Io que es imposible determinar si el entrenamiento se está ejecutando de una manera adecuada, o en otras palabras, si dicho cirujano está aprendiendo debidamente las diferentes técnicas que más tarde serán necesarias ejecutar en Ia intervención sobre el paciente.
Otros simuladores, presentan el inconveniente de que, aunque reproducen en su interior Ia estructura articular correspondiente al fémur y Ia tibia, dicha articulación ocupa gran parte de Ia cavidad, no dejando espacio libre en su interior para el movimiento del instrumental háptico, y por Io tanto, tampoco son capaces de reproducir fielmente las condiciones de una operación de artroscopia real.
Es conocida Ia patente US 4.605.373, Ia cual presenta un dispositivo para practicar Ia manipulación de miembros fracturados cuantificando los movimientos aplicados a Ia pierna. Sin embargo, Ia parte interna de Ia articulación no está hueca y no está diseñada para explorar virtualmente el interior, sino para evaluar únicamente los movimientos aplicados desde el exterior. No limita el movimiento de varo-valgo y no trasmite reacciones de fuerza.
Por último, Ia patente US 2004/0254771 A1 presenta un simulador de articulaciones que simula físicamente diversas estructuras de
Ia rodilla pero no permite Ia penetración de instrumental para simular operaciones de artroscopia. Tanto los movimientos como Ia reflexión de fuerzas vienen dados por actuadores externos (brazo robótico ligado a Ia articulación) y no por el propio mecanismo de Ia articulación.
DESCiPCIÓN DE LA INVENCIÓN
La rodilla articulada para simulación artroscópica que Ia presente invención propone resuelve los inconvenientes antes mencionados, pues permite un entrenamiento ajustado a Ia realidad, reproduciendo fielmente tanto los posibles movimientos a los que el cirujano someterá a Ia rodilla, como Ia realimentación de fuerzas que en Ia intervención real notará el cirujano con motivo de Ia manipulación de los diferentes órganos y tejidos del paciente.
Así, Ia rodilla articulada de Ia invención comprende un mecanismo de articulación el cual permite que dicha rodilla tenga movimientos de flexo-extensión y varo-valgo, reacción de fuerzas para cada movimiento y medios para cuantificar Ia fuerza de tracción y el desplazamiento en cada movimiento de Ia rodilla.
Más concretamente, Ia rodilla articulada de Ia presente invención, a través de su mecanismo de articulación, comprende los siguientes medios:
- Medios de articulación angular de Ia rodilla, es decir, de flexión.
- Medios de articulación lateral de Ia rodilla que permiten los movimientos laterales de varo - valgo cuando Ia pierna no se encuentra recta, es decir en cualquier rango de articulación.
- Medios de bloqueo para impedir los movimientos laterales de varo - valgo cuando Ia pierna se encuentra extendida, tal y como reacciona Ia propia anatomía humana.
- Medios de extensión para permitir el movimiento de distensión, es decir, de tracción de Ia cavidad intercondial.
- Medios de cuantificación de cada uno de los movimientos anteriores que permiten medir Ia longitud lineal o angular desplazada en dichos movimientos; y
- Medios de realimentación de fuerzas, tanto en los movimientos realizados en cada uno de los ejes de rotación y tracción de Ia rodilla como en los movimientos realizados por los dispositivos hápticos introducidos por los portales de entrada, portadores del instrumental quirúrgico.
Además, todos estos movimientos son cuantificados y procesados en una unidad central o CPU Ia cual cuenta con diferentes módulos software de simulación capaces de reproducir gráficamente en una pantalla los movimientos y manipulaciones realizados por el usuario, gestionar una biblioteca de imágenes y escenarios sobre los que transcurre Ia simulación y sobre las que el usuario interactúa de forma virtual, así como almacenar y gestionar todos los datos generados durante Ia simulación, etc.
Por último, toda Ia simulación háptica se realiza gracias a que Ia rodilla de Ia invención es hueca, facilitando Ia entrada y manipulación del instrumental quirúrgico asociado a los dispositivos hápticos que permiten Ia retroalimentación de fuerzas que generan las diferentes sensaciones de tacto tales como dureza de los órganos óseos, elasticidad de los ligamentos, etc., dando a Ia simulación de un realismo total.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, se acompaña a Ia presente memoria descriptiva, como parte integrante de Ia misma, de un juego de planos, en los que, con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
Figura 1.- Muestra vistas en alzado, planta y perfil de un ejemplo de realización de una rodilla articulada para simulación artroscópica según Ia invención cuando ésta se encuentra flexionada 45°.
Figura 2.- Muestra una vista lateral de Ia rodilla de Ia invención cuando ésta se encuentra flexionada 90°. Figura 3.- Muestra una vista lateral de Ia rodilla de Ia invención cuando ésta se encuentra totalmente extendida.
Figura 4.- Muestra una vista en perspectiva de Ia rodilla de Ia figura 2 cuando ésta se ha desplazado lateralmente, en posición de varo.
Figura 5.- Muestra una vista en perspectiva de Ia rodilla de Ia figura 2 cuando ésta se ha desplazado lateralmente, en posición de valgo.
Figura 6.- Muestra una vista en perspectiva de Ia rodilla de Ia figura 2 cuando ésta se encuentra en posición recta.
Figura 7.- Muestra una vista en explosión del mecanismo de articulación de Ia rodilla de Ia invención.
Figuras 8 y 9.- Muestra sendas vistas en perspectiva lateral superior y lateral inferior, respectivamente, del mecanismo de articulación completo de Ia rodilla de Ia presente invención.
Figura 10.- Muestra una vista en perspectiva del conjunto completo de simulación artroscópica al cual se encuentra acoplada Ia rodilla de Ia presente invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Según una posible realización de Ia invención mostrada en las figuras, Ia rodilla articulada de Ia invención comprende, de forma general, un modelo anatómico o rodilla propiamente dicha (24) que representa Ia parte inferior de una pierna, justo por debajo de Ia rodilla y que es hueca, a Ia que se acopla, en su parte superior, un mecanismo de articulación (1). Este mecanismo de articulación (1), susceptible de acoplarse a un simulador de realidad virtual tal y como puede verse en Ia figura 10, el cual cuenta con todos los elementos necesarios para realizar una completa simulación, posibilitando el entrenamiento del usuario.
Así, como si de una rodilla real se tratara, el modelo anatómico o rodilla (24) de Ia invención permite realizar, a través de dicho mecanismo de articulación (1) y tal como se observa en las figuras 1 a 6, movimientos de articulación angular, es decir, de flexión y extensión en distintos grados, movimientos de articulación lateral, es decir, de varo o de valgo, y movimientos de extensión o tracción.
Sin embargo, este mecanismo de articulación (1), aún permitiendo realizar todos estos movimientos, no impide ni dificulta Ia utilización de dispositivos hápticos (30a, 30b) y su correspondiente instrumental simulado mediante unas varillas (29a, 29b) introducidas por los portales (28a, 28b) previstos en dicha rodilla (24) de cara a lograr una simulación fiel a Ia realidad.
Para ello, el mecanismo de articulación (1), el cual se encuentra previsto en Ia parte superior de Ia rodilla (24), y tal y como puede verse en las figuras 7 a 9, comprende un armazón (20), con medios para acoplarse al simulador, sobre el que se anclan dos placas soporte de mecanismos (12a y 12b) quedando las mismas unidas entre sí y mediante Ia interposición de sendas piezas de fijación (13a) y (13b), por un puente (16) el cual cumple con las funciones de paralelismo y apoyo de ambas placas (12a y 12b). Dicho puente (16), que presenta una configuración curvada hacia abajo, descansa en su zona central sobre una pletina (2) solidaria con el armazón (20) dando rigidez mecánica a Ia estructura.
Acoplados a los extremos distales de dichas placas (12a) y (12b), se han previsto sendas piezas correderas (8a) y (8b) que a su vez se unen a un balancín central (10) que constituye el nexo de unión solidaria con el cuerpo de Ia rodilla (24), contando dichas correderas (8a) y (8b) en sus extremos que las unen a las placas (12a) y (12b) con unas piezas (22a) y (22b) que basculan sobre unos ejes (25a y (25b), Ia primera de las cuales
(22a), prevista en Ia placa (12a), se acopla a una biela (4) que transmitirá el movimiento del cuerpo de Ia rodilla (24), tal como se explica más adelante.
Así, en cuento a los medios de articulación angular de Ia rodilla y su cuantificación, es decir, aquellos que permiten el movimiento de flexo- extensión y Ia medida o cuantificación de los mismos, se tiene que, de forma general, y según una posible realización de Ia invención, mostrada en las figuras 7, 8 y 9, comprenden al menos un lector de movimiento angular (17c), preferiblemente un encoder, alojado en Ia placa soporte de mecanismos (12a), de manera que, cada movimiento de flexión de Ia rodilla
(24) es transmitido a Ia biela (4), hasta Ia palanca (3) prevista en el extremo opuesto de Ia biela (4), de manera que el giro es recibido por dicho lector angular (17c) y éste envía Ia posición a Ia CPU del simulador para ser procesada.
De forma más concreta, se tiene que el balancín (10) se articula en vertical simulando Ia flexión de Ia rodilla (24), actuando sobre los ejes (25a y 25b) y girando Ia pieza (22a) para transmitir dicho giro, mediante Ia biela (4) al lector angular (17c) cuya función consiste en suministrar a Ia CPU el grado de giro de Ia rodilla (24) para Ia representación virtual de movimientos de las estructuras internas de Ia misma, junto con su representación háptica, así como Ia realimentación de fuerzas producida por dicho movimiento de flexión.
En cuanto a los medios de articulación lateral y de extensión de
Ia rodilla, es decir, aquellos que permiten tanto los movimientos laterales de varo - valgo como los de tracción de Ia cavidad intercondial y sus medios de cuantificación, se tiene que, de forma general, y según una posible realización de Ia invención, mostrada en las figuras 7, 8 y 9, comprenden al menos sendos lectores de movimiento angular (17a, 17b) situados en las placas soportes de mecanismos (12b, 12a) respectivamente para medir tanto el desplazamiento producido por una tracción que puede producirse en Ia rodilla (24), como Ia desviación o movimientos laterales o de varo - valgo.
Así, tanto para producir como para cuantificar estos dos movimientos, tanto lateral como de tracción en Ia rodilla (24), ésta, tal como se ha descrito, está fijada al balancín (10) de una forma solidaria de manera que ambos elementos, cuerpo (24) y balancín (10), se moverán con el mismo ángulo pivotando dicho balancín (10) en los ejes (23a y 23b) sobre los patines (14a y 14b) respectivamente, los cuales a su vez se unen a las citadas correderas (8a) y (8b).
De forma más concreta, para Ia cuantificación de los movimientos se tiene que, según una realización preferente, el lector de movimiento angular (17a) mide el movimiento valgo, mientras que el lector de movimiento angular (17b) mide el movimiento varo. Cuando actúan a Ia vez los lectores angulares (17a) y (17b) significa, por el contrario, que se está produciendo una extensión de Ia rodilla, es decir, que los cóndilos se están separando. En el caso de que Ia separación medida en cada uno no sea igual eso significará que además de Ia propia extensión se estará produciendo un movimiento valgo o varo, según predomine el cóndilo interior o exterior.
Además, para Ia cuantificación de dichos movimientos, tanto lateral o de varo - valgo, como el de tracción, existe además, en cada una de las placas (12a) y (12b) un cable (21a) y (21b) anclado, respectivamente, en un extremo de un elemento elástico, como por ejemplo un muelle (19a) y (19b) previsto para tal fin, siguiendo su trayectoria hasta una polea (5a) y (5b), dando una vuelta a ésta, y que, fijado en un punto de Ia misma, continua su trayectoria pasando por un par de poleas (6a) y (6b), siguiendo por una polea tensora (11a) y (11b), desde ella retornando al par de poleas (6a) y (6b), y que continúa terminando amarrado en un punto (26b) de anclaje previsto para tal fin en Ia placa (12a) y (12b).
La funcionalidad de dicho cable es Ia siguiente: por ejemplo, al mover Ia corredera (8b) dotada de otro elemento elástico, como por ejemplo un muelle (27b) antagonista es arrastrada por el balancín (10), cuando Ia rodilla (24) es manipulada, en este caso movimiento valgo, lleva como consecuencia Ia aproximación de Ia polea (11 b) hacia el eje (25b) y por Io tanto el muelle (19b) recoge el cable (21b) haciendo girar Ia polea (5b) cambiando Ia posición del lector angular (17b).
Por otro lado, el balancín (10) se articula en horizontal desde los ejes (23a y 23b) de una forma independiente, de manera que se pueden efectuar movimientos de giro a izquierda, derecha (varo-valgo) o de tracción (extensión articular de Ia rodilla). En el caso de estos últimos, de tracción, actúan las correderas (8a) y/o (8b), desplazándose en el eje principal (25a) y/o (25b) limitado y conducido por Ia ventana (32a) y (32b), asistidas por sus respectivos elementos elásticos, como por ejemplo muelles (27a) y (27b) según Ia resultante del desplazamiento. Dichos muelles (27a) y (27b) simulan Ia reacción de fuerzas a Ia tensión articular, similar a Ia anatomía humana.
Todos estos movimientos son transmitidos por medio de los respectivos cables (21a, 21b) para ser cuantificados por los correspondientes lectores angulares (17a, 17b), enviados a Ia CPU, analizados, procesados, etc. con el fin tanto de generar los correspondientes escenarios de simulación y su representación en pantalla (31), como su almacenamiento en el sistema con el fin de generar los análisis o informes posteriores con los que evaluar Ia simulación llevada a cabo.
Además, y tal y como ya se dijo anteriormente, los movimientos de articulación y/o extensión pueden ser simultáneos sólo cuando Ia rodilla
(24) está flexionada. Sin embargo, si dicha rodilla (24) está completamente estirada o extendida en posición recta, según muestra Ia Fig. 3, el mecanismo de articulación (1) no permitirá ningún movimiento lateral o extensión de Ia rodilla (24), obedeciendo al comportamiento real de Ia anatomía humana.
Así, los medios de bloqueo para impedir los movimientos laterales de varo - valgo cuando Ia pierna se encuentra extendida, comprenden, según una posible realización de Ia invención, unas bielas ranuradas (15a y 15b) que limitan el recorrido angular y lineal de sus respectivas correderas (8a y 8b) cuando en Ia ventana (7a) y (7b) está en el final de su recorrido y hace tope con el eje (9a) y (9b).
Por último, Ia Fig. 10 representa una aplicación práctica de Ia rodilla articulada de Ia invención acoplada a un simulador dotado de su correspondiente pantalla (31) de visualización, junto con los dispositivos hápticos (30a y 30b) los cuales soportan o integran el instrumental simulado por las varillas (29a) y (29b), que son introducidas por los portales (28a y 28b) previstos en el cuerpo de Ia rodilla (24) para Ia simulación háptica.
Como también se ha dicho anteriormente, Ia introducción del instrumental simulado por los dispositivos hápticos (30a y 30b) es posible ya que el mecanismo de articulación (1) de Ia rodilla de Ia invención se estructura de forma que quede hueco el interior de Ia misma, evitando Ia interferencia mecánica. Cabe señalar que, tal como se ha dicho, el balancín (10) soporta el modelo anatómico a simular en realidad virtual, en este caso una pierna con un modelo de rodilla (24) pues se trata de realizar un simulador para el entrenamiento de artroscopia. Sin embargo, en otras posibles realizaciones de Ia invención, dicho elemento, en lugar de dicha rodilla (24) puede configurarse como un pie como modelo anatómico para Ia representación virtual de las articulaciones del tobillo, o una mano como modelo para representación de Ia muñeca, etc., así como cualesquiera otras articulaciones susceptibles de ser articuladas y/o traccionadas.

Claims

R E I V I N D I C A C I O N E S
1.- Rodilla (24) articulada para simulación artroscópica caracterizada porque el mecanismo de articulación (1) comprende:
- Medios de articulación angular o de flexión;
- medios de articulación lateral o de varo - valgo;
- medios de extensión o tracción de Ia cavidad intercondial;
- medios de bloqueo para impedir los movimientos laterales de varo - valgo cuando Ia pierna se encuentra extendida; y
- medios de cuantificación de cada uno de los movimientos anteriores que permiten medir Ia longitud lineal o angular desplazada en dichos movimientos.
2.- Rodilla (24) articulada para simulación artroscópica según reivindicación primera, caracterizada porque los medios de cuantificación de los movimientos angulares o de flexión comprenden al menos un lector angular (17c).
3.- Rodilla (24) articulada para simulación artroscópica según reivindicación segunda, caracterizada porque los movimientos angulares o de flexión son transmitidos al lector angular (17c) mediante una biela (4) que transmite el movimiento de una pieza (22a) que gira solidaria a un eje (25a) sobre el cual actúa un balancín (10) al cual se encuentra unida de forma solidaria Ia rodilla (24).
4.- Rodilla (24) articulada para simulación artroscópica según reivindicación primera, caracterizada porque los medios de cuantificación de los movimientos de articulación lateral o de varo - valgo y los de de extensión o tracción comprenden al menos dos lectores de movimiento angular (17a, 17b).
5.- Rodilla (24) articulada para simulación artroscópica según reivindicación cuarta, caracterizada porque un lector de movimiento angular (17a) mide el movimiento valgo y el otro lector de movimiento angular (17b) mide el movimiento varo de forma que se pueda cuantificar si se produce sólo una extensión, sólo un movimiento de varo o valgo o bien una combinación de extensión y movimiento varo o valgo simultáneo.
6.- Rodilla (24) articulada para simulación artroscópica según reivindicación cuarta o quinta, caracterizada porque los dos lectores de movimiento angular (17a, 17b) se sitúan cada uno en una de las dos placas soporte de mecanismos (12b, 12a).
7.- Rodilla (24) articulada para simulación artroscópica según reivindicaciones 4 a 6, caracterizada porque comprende, en cada una de las placas (12a) y (12b) un cable (21a) y (21b) anclado por un extremo a un elemento elástico (19a) y (19b) y por el otro a un punto de anclaje (26a) (26b) respectivamente, que en su trayectoria pasa por al menos una polea cuyo eje se encuentra asociado al correspondiente lector de movimiento angular (17a, 17b) de forma que pueda cuantificar el movimiento de rodilla
(24).
8.- Rodilla (24) articulada para simulación artroscópica según reivindicación primera, caracterizada porque los medios de extensión o tracción comprenden sendas correderas (8a) (8b), susceptibles de desplazarse, las cuales se encuentran asistidas por sendos elementos elásticos (27a) y (27b) que simulan Ia reacción de fuerzas a Ia tensión articular.
9.- Rodilla (24) articulada para simulación artroscópica según reivindicación primera, caracterizada porque los medios de bloqueo para impedir los movimientos laterales de varo - valgo cuando Ia pierna se encuentra extendida, comprenden unas bielas ranuradas (15a y 15b) que limitan el recorrido angular y lineal de sus respectivas correderas (8a y 8b).
10.- Rodilla (24) articulada para simulación artroscópica según reivindicación primera, caracterizada porque comprende un armazón (20) dotado con medios para acoplarse a un simulador el cual a su vez comprende una pantalla (31) de visualización y dispositivos hápticos (30a y 30b) que soportan el instrumental simulado por varillas (29a) y (29b) introducidas en el cuerpo de Ia rodilla (24) a través de los correspondientes portales (28a y 28b).
11.- Rodilla (24) articulada para simulación artroscópica según cualquiera de las reivindicaciones anteriores, caracterizada porque comprende medios de realimentación de fuerzas tanto para los movimientos realizados en cada uno de los ejes de rotación y tracción de Ia rodilla como en los movimientos realizados por los dispositivos hápticos (30a y 30b) introducidos por los portales (28a y 28b)de entrada.
12.- Rodilla (24) articulada para simulación artroscópica según cualquiera de las reivindicaciones anteriores, caracterizada porque el mecanismo de articulación (1) de Ia rodilla de Ia invención se estructura de forma que quede hueco el interior de dicha rodilla (24) para evitar Ia interferencia mecánica con el instrumental simulado por varillas (29a) y (29b) soportado por los dispositivos hápticos (30a y 30b).
PCT/ES2008/000311 2008-05-06 2008-05-06 Rodilla articulada para simulación artroscópica WO2009135956A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08761556.3A EP2306436B1 (en) 2008-05-06 2008-05-06 Articulated knee for arthroscopy simulation
PCT/ES2008/000311 WO2009135956A1 (es) 2008-05-06 2008-05-06 Rodilla articulada para simulación artroscópica
US12/991,509 US8388351B2 (en) 2008-05-06 2008-05-06 Articulated knee for arthroscopy simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/000311 WO2009135956A1 (es) 2008-05-06 2008-05-06 Rodilla articulada para simulación artroscópica

Publications (1)

Publication Number Publication Date
WO2009135956A1 true WO2009135956A1 (es) 2009-11-12

Family

ID=41264454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000311 WO2009135956A1 (es) 2008-05-06 2008-05-06 Rodilla articulada para simulación artroscópica

Country Status (3)

Country Link
US (1) US8388351B2 (es)
EP (1) EP2306436B1 (es)
WO (1) WO2009135956A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503050A (zh) * 2010-11-15 2014-01-08 先进机械技术公司 用于关节运动模拟的方法和设备
US10810907B2 (en) 2016-12-19 2020-10-20 National Board Of Medical Examiners Medical training and performance assessment instruments, methods, and systems

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2006846C2 (en) * 2011-05-25 2012-11-27 Univ Delft Tech Training facility, surgical instruments and artificial knee with an upper limb and a lower limb for simulation and training of arthroscopic surgical techniques.
CN103943017B (zh) * 2014-03-22 2016-08-17 北京航空航天大学 一种带有力反馈的虚拟腹腔镜手术模拟器及其制作方法
US10531968B2 (en) * 2014-05-23 2020-01-14 Joseph Coggins Prosthetic limb test apparatus and method
US9667884B2 (en) 2014-09-05 2017-05-30 Lsi Solutions, Inc. System and method for evaluating surgical knot formation
WO2018051162A1 (en) 2016-09-19 2018-03-22 Biomodex S.A.S. Method for fabricating a physical simulation device, simulation device and simulation system
GB2554756B (en) * 2016-10-10 2020-11-04 Generic Robotics Simulator for manual tasks
US11657730B2 (en) 2016-10-10 2023-05-23 Generic Robotics Limited Simulator for manual tasks
KR102298444B1 (ko) * 2016-12-28 2021-09-07 한국전자기술연구원 의료 시뮬레이터용 촉감 생성장치 및 이를 포함하는 의료 시뮬레이터
WO2019195705A1 (en) 2018-04-07 2019-10-10 University Of Iowa Research Foundation Fracture reduction simulator
RU2762913C1 (ru) * 2020-11-19 2021-12-23 Государственное бюджетное учреждение здравоохранения города Москвы городская клиническая больница имени С.П. Боткина департамента здравоохранения города Москвы (ГБУЗ ГКБ им. С.П. Боткина ДЗМ) Способ отработки навыков триангуляции в артроскопической хирургии коленного сустава с использованием симуляционных технологий
CN113252328B (zh) * 2021-05-13 2022-10-18 重庆理工大学 一种外骨骼疲劳寿命测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605373A (en) 1985-01-10 1986-08-12 Rosen Bernard A Training device for setting broken limbs
WO1999042978A1 (en) * 1998-02-19 1999-08-26 Boston Dynamics, Inc. Method and apparatus for surgical training and simulating surgery
EP1205295A1 (fr) * 2000-11-14 2002-05-15 Centre Hospitalier Regional Et Universitaire De Lille Simulateur d'arthroscopie d'une cavité articulaire
WO2003001483A1 (de) * 2001-06-25 2003-01-03 Robert Riener Programmierbarer gelenksimulator mit kraft- und bewegungsfeedback
US20070212672A1 (en) * 2006-02-10 2007-09-13 Mcallister Craig M Apparatus and method for instruction in orthopedic surgery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000564A (en) * 1976-01-07 1977-01-04 The United States Of America As Represented By The Secretary Of The Department Of Transportation Programmable anthropomorphic articulation
US4276032A (en) * 1980-06-20 1981-06-30 Woley Paul F Knee joint for anthropomorphic dummy
US4433961A (en) * 1980-09-15 1984-02-28 Chandler Eugene J Human knee model suitable for teaching operative arthroscopy and having replaceable joint
US4349339A (en) * 1981-07-31 1982-09-14 Ford Motor Company Force-indicating dummy legs
SE447312B (sv) * 1985-02-11 1986-11-03 Kjell Lindskog Anordning vid undervisning i omhendertagande av en skelettskada
US4850877A (en) * 1987-01-20 1989-07-25 Donjoy, Inc. Method of determining stress effects in components of the human knee and anthropomorphic leg device therefor
GB2244843B (en) 1990-05-25 1994-04-27 Dynamic Res Inc Accident simulating apparatus and method
AU2226297A (en) * 1996-03-06 1997-09-22 United Surgical Services Limited Surgical model
US5873734A (en) * 1997-05-30 1999-02-23 The Science Learning Workshop, Inc. Biomechanical models
GB9713186D0 (en) 1997-06-24 1997-08-27 Univ Sheffield Artificial joints
GB0300703D0 (en) * 2003-01-13 2003-02-12 Browne Wilkinson Oliver Orthopaedic skeletal demonstration aid
US7699615B2 (en) * 2005-02-03 2010-04-20 Christopher Sakezles Joint replica models and methods of using same for testing medical devices
US7597017B2 (en) * 2006-07-21 2009-10-06 Victhom Human Bionics, Inc. Human locomotion simulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605373A (en) 1985-01-10 1986-08-12 Rosen Bernard A Training device for setting broken limbs
WO1999042978A1 (en) * 1998-02-19 1999-08-26 Boston Dynamics, Inc. Method and apparatus for surgical training and simulating surgery
EP1205295A1 (fr) * 2000-11-14 2002-05-15 Centre Hospitalier Regional Et Universitaire De Lille Simulateur d'arthroscopie d'une cavité articulaire
WO2003001483A1 (de) * 2001-06-25 2003-01-03 Robert Riener Programmierbarer gelenksimulator mit kraft- und bewegungsfeedback
US20040254771A1 (en) 2001-06-25 2004-12-16 Robert Riener Programmable joint simulator with force and motion feedback
US20070212672A1 (en) * 2006-02-10 2007-09-13 Mcallister Craig M Apparatus and method for instruction in orthopedic surgery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"CVRMed-MRCAS'97 First Joint Conference, Computer vision, virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery Proceedings.", 1997, article GIBSON ET AL.: "Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering and haptic feedback", pages: 369 - 378, XP000972342 *
"Simulador avanzaao or entrenamiento ai servicio de the adquisicion of destrezas in técnicas of cirugia mínimamente invasiva. Insight Arthro VR (description).", GMV INNOVATING SOLUTIONS, XP008137821, Retrieved from the Internet <URL:http:/ /www.insightmist.com> [retrieved on 20081219] *
"Simulation for Emergency Management. Proceedings of the 1996 Simulation Multiconference", 1996, article LOGAN ET AL.: "Virtual environment knee arthroscopy training system", pages: 11 - 16, XP008140385 *
MCCARTHY ET AL.: "Passive Haptics in a knee Arthroscopy Simulator", CLINICAL ORTHOPEDICS AND RELATED RESEARCH., no. 442, January 2006 (2006-01-01), pages 13 - 20, XP008140384 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503050A (zh) * 2010-11-15 2014-01-08 先进机械技术公司 用于关节运动模拟的方法和设备
US10810907B2 (en) 2016-12-19 2020-10-20 National Board Of Medical Examiners Medical training and performance assessment instruments, methods, and systems

Also Published As

Publication number Publication date
EP2306436A1 (en) 2011-04-06
EP2306436A4 (en) 2012-12-12
US8388351B2 (en) 2013-03-05
US20110097696A1 (en) 2011-04-28
EP2306436B1 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2009135956A1 (es) Rodilla articulada para simulación artroscópica
EP1609431B1 (en) Haptic device for use in surgical simulation systems
ES2597809T3 (es) Sistema de simulación para adiestramiento en cirugía artroscópica
US20090142739A1 (en) Laparoscopic trainer and method of training
De Paolis Serious game for laparoscopic suturing training
US20110256519A1 (en) Surgical operation training device
Singh et al. Design and validation of an open-source, partial task trainer for endonasal neuro-endoscopic skills development: Indian experience
Barnamehei et al. Muscle and joint force dependence of scaling and skill level of athletes in high-speed overhead task: Musculoskeletal simulation study
Stylopoulos et al. CELTS: a clinically-based computer enhanced laparoscopic training system
RU147842U1 (ru) Медицинский тренажер для развития хирургических навыков при проведении эндоскопических операций
Harada et al. Quantitative pediatric surgical skill assessment using a rapid-prototyped chest model
US20190172370A1 (en) Neurosurgical Laparoscopy Training Device and Method of Training
Parente et al. Training minimally invasive surgery’s basic skills: is expensive always better?
ES2907778T3 (es) Dispositivo de control periférico para simular procedimientos de endoscopia
Jimbo et al. Preoperative simulation regarding the appropriate port location for laparoscopic hepaticojejunostomy: a randomized study using a disease-specific training simulator
Jin et al. Exploring laparoscopic surgery training with cable-driven arm exoskeleton (carex-m)
Cuschieri Training and simulation
RU2715146C1 (ru) Симулятор для получения практических навыков по хирургическому лечению травма-ортопедических патологий млекопитающих и способ получения практических навыков по хирургическому лечению травма-ортопедических патологий млекопитающих
BR202020023640U2 (pt) Instrumento sintético de simulaçao realística para treinamento de anastomose ureteropiélica
Podolsky et al. Robotic Cleft Palate Surgery and Simulation
Lorias-Espinoza et al. Mechanism that Emulates the Flexible Endoscope for Training: A Proof of Concept
ES2346025B2 (es) Sistema para la simulacion de practicas quirurgicas.
Kobiela et al. Structured box training improves stability of retraction while multitasking in colorectal surgery simulation
WO2023225768A1 (es) Simulador basado en realidad virtual inmersiva para entrenamiento de procedimientos quirúrgicos
Erdman et al. A Review of Kinematic Theories and Practices Compiled for Biomechanics Students and Researchers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761556

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008761556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008761556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12991509

Country of ref document: US