WO2009134060A2 - Ofdm receiver without reordering of sub-carrier and method for processing ofdm signal - Google Patents

Ofdm receiver without reordering of sub-carrier and method for processing ofdm signal Download PDF

Info

Publication number
WO2009134060A2
WO2009134060A2 PCT/KR2009/002229 KR2009002229W WO2009134060A2 WO 2009134060 A2 WO2009134060 A2 WO 2009134060A2 KR 2009002229 W KR2009002229 W KR 2009002229W WO 2009134060 A2 WO2009134060 A2 WO 2009134060A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ofdm
frequency error
modulated information
multiplier
Prior art date
Application number
PCT/KR2009/002229
Other languages
French (fr)
Korean (ko)
Other versions
WO2009134060A3 (en
Inventor
박탄중
Original Assignee
(주)에프씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프씨아이 filed Critical (주)에프씨아이
Publication of WO2009134060A2 publication Critical patent/WO2009134060A2/en
Publication of WO2009134060A3 publication Critical patent/WO2009134060A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/2659Coarse or integer frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/266Fine or fractional frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking

Definitions

  • the present invention relates to an OFDM receiver, and more particularly, to an OFDM receiver and an OFDM signal processing method that do not require reordering of subcarriers.
  • Orthogonal Frequency Division Multiplexing divides one information into several subcarriers and adds orthogonal to minimize the spacing between the divided subcarriers.
  • OFDM is expected to be widely used for 4G communication because it can solve the fading problem, which is a problem in broadband communication, efficiently utilize frequency resources, and easily integrate with technologies such as Multiple Input Multiple Output (MIMO). do.
  • MIMO Multiple Input Multiple Output
  • OFDM has a merit that high-speed communication is possible even under adverse conditions such as multipath interference due to reflection of radio waves by a mountaintop or a building, which has been a problem in a single carrier environment.
  • an OFDM transmitter converts a signal in a frequency domain that modulates a signal to be transmitted into a signal in a time domain and transmits the received signal in a frequency domain. Convert it back to a signal and process it.
  • the signal in the time domain is transformed into a signal in the frequency domain by fast Fourier transform (FFT), and the signal in the frequency domain is converted into a signal in the time domain by Inverse Fast Fourier Transform.
  • FFT fast Fourier transform
  • 1 shows the flow of signals transmitted and received in an OFDM transmitter and a receiver.
  • the transmitter 110 first generates a modulation spectrum signal 111 in which a signal to be transmitted is modulated.
  • the modulation of the signal is supported by Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (16-QAM), and 32-QAM.
  • the modulation spectrum signal 111 includes a portion (hatched portion) without modulated information in addition to the portion 0 to (N-1) with modulated information.
  • the modulation spectrum signal 111 is ordered by the array spectrum signal 112 and then transmitted by inverse fast Fourier transform (113).
  • the array spectrum signal 112 rotates the internal spectrum signal by a certain amount so that the unmodulated portion (hatched portion) at the bottom of the modulation spectrum signal 111 is centered.
  • the receiver 120 performs fast Fourier transform of the received time domain signal into a signal of frequency domain (123).
  • the converted signal 122 corresponds to the array spectrum signal 112 at the transmitter 110.
  • the channel estimation and the channel compensation according to the channel estimation are performed using the converted signal 122.
  • the converted signal 122 is a modulation spectrum signal of the transmitter 110. It should be rearranged to the same type of spectral signal as 111).
  • the above-described method has a disadvantage in that the receiver 120 is complicated and resources are increased because additional memory for rearrangement and additional generation of circuits or control signals necessary for performing the rearrangement are required. have.
  • An object of the present invention is to provide an OFDM receiver that does not require reordering of subcarriers.
  • Another technical problem to be solved by the present invention is to provide an OFDM signal processing method that does not require reordering of subcarriers.
  • a receiver for achieving the above technical problem, an I / Q demodulator, an FFT processing apparatus, a multiple frequency error correction block, a first multiplier, an integer multiple frequency error correction block, a first adder and a second adder.
  • the I / Q demodulator demodulates an I (In phase) signal and a Q (quadrature) signal having a phase difference of 90 ° from the I signal using an OFDM digital signal.
  • the first multiplier multiplies the output of the I signal by the Q signal and the first adder.
  • the FFT processor generates a spectral signal by performing a fast Fourier operation on the signal output from the first multiplier.
  • the prime frequency frequency error correction block outputs a prime frequency error compensation value that cancels the frequency error of the prime multiples included in the signal output from the first multiplier.
  • the integer frequency error correction block outputs an integer frequency error compensation value that cancels an integer frequency error included in a spectrum signal output from the FFT processing apparatus.
  • the first adder adds the decimal frequency error compensation value and the output of the second adder.
  • the second adder adds the integer frequency error compensation value and an offset value M to be added to the I signal and the Q signal.
  • the OFDM signal processing method for achieving the above another technical problem is an OFDM signal processing method for demodulating the received OFDM signal into an I / Q signal and then fast Fourier transform the received OFDM signal, I / Q signal Demodulating a signal, applying an offset to the I / Q signal, and generating a spectrum signal by performing Fast Fourier transform on the I / Q signal to which the offset is applied.
  • the receiver and the signal processing method according to the present invention have the advantage of simplifying the system and minimizing the resource since no reordering is performed after the FFT on the subcarriers when processing the received OFDM signal.
  • 1 shows the flow of signals transmitted and received in an OFDM transmitter and a receiver.
  • FIG. 2 is a block diagram of an OFDM receiver that does not require reordering of subcarriers according to an embodiment of the present invention.
  • FIG. 3 defines the offset value M shown in FIG. 2.
  • FIG. 2 is a block diagram of an OFDM receiver that does not require reordering of subcarriers according to an embodiment of the present invention.
  • the OFDM receiver 200 includes an ADC 210, an I / Q demodulator 220, an FFT processor 230, a prime frequency error correction block 240, and a first multiplier M1. , Integer frequency error correction block 250, first adder A1, second adder A2, symbol delay unit 260, second multiplier M2, channel estimator 270, and equalizer 280. It is provided.
  • the ADC 210 generates the OFDM digital signal by converting an analog signal received through an OFDM multiple antenna.
  • the I / Q demodulator 220 demodulates an I (In phase) signal and a Q (quadrature) signal having a phase difference of 90 ° from the I signal using an OFDM digital signal.
  • the first multiplier M1 multiplies the I signal, the Q signal, and the output of the first adder A1.
  • the FFT processor 230 generates a spectral signal by performing a fast Fourier operation on the signal output from the first multiplier M1.
  • the prime frequency error correction block 240 outputs a prime frequency error compensation value ER1 that cancels the prime frequency frequency error included in the signal output from the first multiplier M1.
  • the integer frequency error correction block 250 outputs an integer frequency error compensation value ER2 that cancels the integer frequency error included in the spectrum signal output from the FFT processor 230.
  • the first adder A1 adds the outputs of the decimal frequency error compensation value ER1 and the second adder A2.
  • the second adder A2 adds the integer frequency error compensation value ER2 and an offset value M to be added to the I signal and the Q signal.
  • the symbol delay unit 260 delays the symbols constituting the spectrum signal output from the FFT processor 230.
  • the channel estimator 270 estimates a channel by using the spectrum signal output from the FFT processor 230 and outputs a channel compensation signal.
  • the second multiplier M2 multiplies the output signal of the symbol delay unit 260 and the output signal of the channel estimator 270.
  • the equalizer 280 equalizes the output of the second multiplier M2.
  • FIG. 3 defines the offset value M shown in FIG. 2.
  • the offset value M corresponds to the spectral signals 111 and 112 of FIG. 1 at the transmitter and includes a portion A of the portion with modulated information and a portion without modulated information. ) And the remaining portion (B) with the modulated information, the rotation of the spectral signal is generated by the sum of the portion (A) of the portion with the modulated information and the portion without the modulated information (hatched). Means the amount to make.
  • An OFDM signal is formed by modulating an orthogonal carrier using a sequence of symbols generated by mapping an input bit stream into I / Q symbols, which are complex symbols.
  • the OFDM signal obtained by reducing the bit stream through this process is shown in Equation 1.
  • N is the number of subcarriers (sub-carriers)
  • X [m] means the m-th symbol in the interval [0, N-1].
  • Equation 2 Assuming that the subcarriers shown in Equation 1 are shifted by M in the frequency domain, the shifted subcarriers can be expressed as Equation 2.
  • a subcarrier shifted by M in the frequency domain may be implemented by multiplying a sine wave having an M / N frequency in the time domain.
  • the rotation of the spectrum signal is achieved by applying an offset M to the I and Q signals.
  • the OFDM signal processing method performed by the receiver is an OFDM signal processing method for demodulating a received OFDM signal into an I / Q signal and then performing fast Fourier transform, and demodulating the received OFDM signal into an I / Q signal. And applying an offset to the I / Q signal and generating a spectrum signal by performing fast Fourier transform on the I / Q signal to which the offset is applied.
  • OFDM is expected to be widely used in 4G communication because it can solve the fading problem that is a problem in broadband communication, efficiently utilize frequency resources, and easily integrate with technologies such as MIMO (Multiple Input Multiple Output). do. OFDM may be widely used in the future by enabling high-speed communication even under bad conditions such as reflection of radio waves by mountain tops or buildings, which have been a problem in a single carrier environment, causing multipath interference.
  • MIMO Multiple Input Multiple Output

Abstract

This invention discloses an OFDM receiver that does not require reordering of a sub-carrier and a method for processing an OFDM signal. The OFDM receiver comprises an I/Q demodulator, an FFT processor, a block for correcting fractional frequency errors, a first multiplier, a block for correcting integral frequency errors, a first adder and a second adder. The method for processing an OFDM signal comprises steps of: demodulating a received OFDM signal to an I/Q signal, applying an offset to the I/Q signal, and generating a spectrum signal by quickly Fourier-transforming the I/Q signal to which the offset is applied.

Description

 부반송파의 리오더링이 필요하지 않은 OFDM 수신기 및 OFDM 신호처리방법OFDM receiver and OFDM signal processing method that does not require reordering of subcarriers
본 발명은 OFDM 수신기에 관한 것으로, 특히 부반송파의 리오더링이 필요하지 않은 OFDM 수신기 및 OFDM 신호처리방법에 관한 것이다. The present invention relates to an OFDM receiver, and more particularly, to an OFDM receiver and an OFDM signal processing method that do not require reordering of subcarriers.
직교 주파수 분할 다중(Orthogonal Frequency Division Multiplexing, OFDM)은 하나의 정보를 여러 개의 부반송파(sub-carrier)로 분할하고, 분할된 부반송파들 사이의 간격을 최소로 하기 위해 직교성(orthogonal)을 부가하여 다중(multiplex)시켜 전송하는 멀티 캐리어(Multi-carrier) 전송기술이다. OFDM은 광대역 통신에서 문제되는 페이딩(fading) 문제를 해결할 수 있고, 효율적 주파수자원의 활용도 가능함은 물론 MIMO(Multiple Input Multiple Output)등의 기술과의 접목도 용이하여, 4세대 통신에는 널리 쓰일 것으로 예상된다. OFDM은 단일 반송파 환경에서 문제시 되어온 산꼭대기나 빌딩 등에 의하여 전파가 반사되어 다중경로 간섭을 일으키는 등 나쁜 조건 하에서도 고속으로 통신이 가능한 장점이 있다.  Orthogonal Frequency Division Multiplexing (OFDM) divides one information into several subcarriers and adds orthogonal to minimize the spacing between the divided subcarriers. Multi-carrier transmission technology to transmit by multiplex. OFDM is expected to be widely used for 4G communication because it can solve the fading problem, which is a problem in broadband communication, efficiently utilize frequency resources, and easily integrate with technologies such as Multiple Input Multiple Output (MIMO). do. OFDM has a merit that high-speed communication is possible even under adverse conditions such as multipath interference due to reflection of radio waves by a mountaintop or a building, which has been a problem in a single carrier environment.
일반적으로 OFDM 송신기는 송신하고자 하는 신호를 변조(modulation)시킨 주파수영역(frequency domain)의 신호를 시간영역(time domain)의 신호로 변환하여 송신하고, 수신기는 수신된 시간영역의 신호를 주파수영역의 신호로 다시 변환하여 처리한다. 시간영역의 신호는 고속 푸리에 변환(Fast Fourier Transform, FFT)하여 주파수영역의 신호로 변환시키고, 반대로 주파수영역의 신호는 역 고속 푸리에 변환(Inverse Fast Fourier Transform)하여 시간영역의 신호로 변환시킨다.  In general, an OFDM transmitter converts a signal in a frequency domain that modulates a signal to be transmitted into a signal in a time domain and transmits the received signal in a frequency domain. Convert it back to a signal and process it. The signal in the time domain is transformed into a signal in the frequency domain by fast Fourier transform (FFT), and the signal in the frequency domain is converted into a signal in the time domain by Inverse Fast Fourier Transform.
도 1은 OFDM 송신기와 수신기에 있어서의 송수신되는 신호의 흐름을 나타낸다.  1 shows the flow of signals transmitted and received in an OFDM transmitter and a receiver.
도 1을 참조하면, 송신기(110)에서는 먼저 송신하고자 하는 신호를 변조시킨 변조스펙트럼신호(111)를 생성시킨다. 이 때 신호의 변조는 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying), 16-QAM(Quadrature Amplitude Modulation) 및 32-QAM 방식이 지원된다. 변조스펙트럼신호(111)는 변조된 정보가 있는 부분(0~(N-1)) 이외에도 변조된 정보가 없는 부분(빗금 친 부분)도 포함하고 있다. 변조스펙트럼신호(111)는 배열스펙트럼신호(112)로 배열(ordering)시킨 후 역 고속 푸리에 변환(113, Inverse Fast Fourier Transform)되어 송신된다. 배열스펙트럼신호(112)는, 내부 스펙트럼 신호를 일정한 양 로테이션(rotation)시켜 변조스펙트럼신호(111)의 하부에 있는 변조된 정보가 없는 부분(빗금 친 부분)이 중앙에 오도록 한다.  Referring to FIG. 1, the transmitter 110 first generates a modulation spectrum signal 111 in which a signal to be transmitted is modulated. At this time, the modulation of the signal is supported by Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (16-QAM), and 32-QAM. The modulation spectrum signal 111 includes a portion (hatched portion) without modulated information in addition to the portion 0 to (N-1) with modulated information. The modulation spectrum signal 111 is ordered by the array spectrum signal 112 and then transmitted by inverse fast Fourier transform (113). The array spectrum signal 112 rotates the internal spectrum signal by a certain amount so that the unmodulated portion (hatched portion) at the bottom of the modulation spectrum signal 111 is centered.
수신기(120)에서는 수신된 시간영역의 신호를 주파수영역의 신호로 고속 푸리에 변환(Fast Fourier Transform)한다(123). 변환된 신호(122)는 송신기(110)에서의 배열스펙트럼신호(112)에 대응된다. 이후의 처리단계에서는, 변환된 신호(122)를 이용하여 채널추정(Channel estimation) 및 채널추정에 따른 채널보상을 수행하는데, 이를 위해서 변환된 신호(122)가 송신기(110)의 변조스펙트럼신호(111)와 동일한 형태의 스펙트럼신호로 재배열(reordering) 되어야 한다(121).  The receiver 120 performs fast Fourier transform of the received time domain signal into a signal of frequency domain (123). The converted signal 122 corresponds to the array spectrum signal 112 at the transmitter 110. In a subsequent processing step, the channel estimation and the channel compensation according to the channel estimation are performed using the converted signal 122. For this purpose, the converted signal 122 is a modulation spectrum signal of the transmitter 110. It should be rearranged to the same type of spectral signal as 111).
OFDM 수신기(120)에서 재배열을 수행할 때, 메모리에 변환된 신호(122)를 저장한 후 이를 변조된 신호(121)로 재배열하는 방식과 부반송파 인덱스(sub carrier index)를 재계산하는 방식이 사용될 수 있다. 그러나 상기의 방식은 재배열을 위한 부가 메모리가 추가로 필요하고 재배열을 수행하는데 필요한 회로나 제어신호의 생성이 추가로 필요하기 때문에 수신기(120)가 복잡해지고 리소스(resource)가 증가한다는 단점이 있다. When the rearrangement is performed in the OFDM receiver 120, a method of storing the converted signal 122 in the memory and rearranging the converted signal 122 into the modulated signal 121 and recomputing a subcarrier index This can be used. However, the above-described method has a disadvantage in that the receiver 120 is complicated and resources are increased because additional memory for rearrangement and additional generation of circuits or control signals necessary for performing the rearrangement are required. have.
본 발명이 해결하고자 하는 기술적 과제는, 부반송파의 리오더링이 필요하지 않은 OFDM 수신기를 제공하는데 있다.  An object of the present invention is to provide an OFDM receiver that does not require reordering of subcarriers.
본 발명이 해결하고자 하는 다른 기술적 과제는, 부반송파의 리오더링이 필요하지 않은 OFDM 신호 처리방법을 제공하는데 있다. Another technical problem to be solved by the present invention is to provide an OFDM signal processing method that does not require reordering of subcarriers.
상기 기술적 과제를 이루기 위한 본 발명에 따른 수신기는, I/Q 복조기, FFT 처리장치, 소수배 주파수 오차 보정블록, 제1곱셈기, 정수배 주파수 오차 보정블록, 제1덧셈기 및 제2덧셈기를 구비한다.  A receiver according to the present invention for achieving the above technical problem, an I / Q demodulator, an FFT processing apparatus, a multiple frequency error correction block, a first multiplier, an integer multiple frequency error correction block, a first adder and a second adder.
상기 I/Q 복조기는 OFDM 디지털 신호를 이용하여 I(In phase)신호 및 상기 I신호와 90°의 위상 차이가 있는 Q(quadrature)신호를 복조한다. 상기 제1곱셈기는 상기 I신호와 상기 Q신호 및 상기 제1덧셈기의 출력을 곱한다. 상기 FFT 처리장치는 상기 제1곱셈기로부터 출력되는 신호에 고속 푸리에 연산을 수행하여 스펙트럼신호를 생성한다. 상기 소수배 주파수 오차 보정블록은 상기 제1곱셈기로부터 출력되는 신호에 포함된 소수배의 주파수 오차를 상쇄시키는 소수배 주파수 오차보상값을 출력한다. 상기 정수배 주파수 오차 보정블록은 상기 FFT 처리장치로부터 출력되는 스펙트럼신호에 포함된 정수배 주파수 오차를 상쇄시키는 정수배 주파수 오차보상값을 출력한다. 상기 제1덧셈기는 상기 소수배 주파수 오차보상값 및 상기 제2덧셈기의 출력을 더한다. 상기 제2덧셈기는 상기 정수배 주파수 오차보상값 및 상기 I신호와 상기 Q신호에 부가할 오프셋 값(M)을 더한다.  The I / Q demodulator demodulates an I (In phase) signal and a Q (quadrature) signal having a phase difference of 90 ° from the I signal using an OFDM digital signal. The first multiplier multiplies the output of the I signal by the Q signal and the first adder. The FFT processor generates a spectral signal by performing a fast Fourier operation on the signal output from the first multiplier. The prime frequency frequency error correction block outputs a prime frequency error compensation value that cancels the frequency error of the prime multiples included in the signal output from the first multiplier. The integer frequency error correction block outputs an integer frequency error compensation value that cancels an integer frequency error included in a spectrum signal output from the FFT processing apparatus. The first adder adds the decimal frequency error compensation value and the output of the second adder. The second adder adds the integer frequency error compensation value and an offset value M to be added to the I signal and the Q signal.
상기 다른 기술적 과제를 이루기 위한 본 발명에 따른 OFDM 신호 처리방법은, 수신된 OFDM 신호를 I/Q 신호로 복조한 후 이를 고속 푸리에 변환하는 OFDM 신호 처리방법이며, 수신된 OFDM 신호를 I/Q 신호로 복조하는 복조단계, 상기 I/Q 신호에 오프셋을 인가하는 단계 및 상기 오프셋이 인가된 I/Q 신호를 고속 푸리에 변환하여 스펙트럼신호를 생성하는 단계를 구비한다. The OFDM signal processing method according to the present invention for achieving the above another technical problem is an OFDM signal processing method for demodulating the received OFDM signal into an I / Q signal and then fast Fourier transform the received OFDM signal, I / Q signal Demodulating a signal, applying an offset to the I / Q signal, and generating a spectrum signal by performing Fast Fourier transform on the I / Q signal to which the offset is applied.
본 발명에 따른 수신기 및 신호처리방법은, 수신된 OFDM 신호를 처리할 때 부반송파에 대한 FFT 후 리오더링을 수행하지 않기 때문에, 시스템이 간단하고 리소스를 최소한으로 하는 장점이 있다.The receiver and the signal processing method according to the present invention have the advantage of simplifying the system and minimizing the resource since no reordering is performed after the FFT on the subcarriers when processing the received OFDM signal.
도 1은 OFDM 송신기와 수신기에 있어서의 송수신되는 신호의 흐름을 나타낸다.  1 shows the flow of signals transmitted and received in an OFDM transmitter and a receiver.
도 2는 본 발명의 일실시예에 따른 부반송파의 리오더링이 필요하지 않은 OFDM 수신기의 블록 다이어그램이다.  2 is a block diagram of an OFDM receiver that does not require reordering of subcarriers according to an embodiment of the present invention.
도 3은 도 2에 도시된 오프셋 값(M)을 정의한다. FIG. 3 defines the offset value M shown in FIG. 2.
이하에서는 본 발명의 구체적인 실시 예를 도면을 참조하여 상세히 설명하도록 한다.  Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 일실시예에 따른 부반송파의 리오더링이 필요하지 않은 OFDM 수신기의 블록 다이어그램이다.  2 is a block diagram of an OFDM receiver that does not require reordering of subcarriers according to an embodiment of the present invention.
도 2를 참조하면, 상기 OFDM 수신기(200)는, ADC(210), I/Q 복조기(220), FFT 처리장치(230), 소수배 주파수 오차 보정블록(240), 제1곱셈기(M1), 정수배 주파수 오차 보정블록(250), 제1덧셈기(A1), 제2덧셈기(A2), 심볼 지연부(260), 제2곱셈기(M2), 채널 추정부(270) 및 등화기(280)를 구비한다.  Referring to FIG. 2, the OFDM receiver 200 includes an ADC 210, an I / Q demodulator 220, an FFT processor 230, a prime frequency error correction block 240, and a first multiplier M1. , Integer frequency error correction block 250, first adder A1, second adder A2, symbol delay unit 260, second multiplier M2, channel estimator 270, and equalizer 280. It is provided.
ADC(210)는 OFDM 다중 안테나를 통해 수신된 아날로그 신호를 변환하여 상기 OFDM 디지털 신호를 생성한다. I/Q 복조기(220)는 OFDM 디지털 신호를 이용하여 I(In phase)신호 및 상기 I신호와 90°의 위상 차이가 있는 Q(quadrature)신호를 복조한다.  The ADC 210 generates the OFDM digital signal by converting an analog signal received through an OFDM multiple antenna. The I / Q demodulator 220 demodulates an I (In phase) signal and a Q (quadrature) signal having a phase difference of 90 ° from the I signal using an OFDM digital signal.
제1곱셈기(M1)는 I신호와 Q신호 및 제1덧셈기(A1)의 출력을 곱한다. FFT 처리장치(230)는 제1곱셈기(M1)로부터 출력되는 신호에 고속 푸리에 연산을 수행하여 스펙트럼신호를 생성한다. 소수배 주파수 오차 보정블록(240)은 상기 제1곱셈기(M1)로부터 출력되는 신호에 포함된 소수배의 주파수 오차를 상쇄시키는 소수배 주파수 오차보상값(ER1)을 출력한다. 정수배 주파수 오차 보정블록(250)은 FFT 처리장치(230)로부터 출력되는 스펙트럼신호에 포함된 정수배 주파수 오차를 상쇄시키는 정수배 주파수 오차보상값(ER2)을 출력한다. 제1덧셈기(A1)는 소수배 주파수 오차보상값(ER1) 및 제2덧셈기(A2)의 출력을 더한다. 제2덧셈기(A2)는 상기 정수배 주파수 오차보상값(ER2) 및 상기 I신호와 상기 Q신호에 부가할 오프셋 값(M)을 더한다.  The first multiplier M1 multiplies the I signal, the Q signal, and the output of the first adder A1. The FFT processor 230 generates a spectral signal by performing a fast Fourier operation on the signal output from the first multiplier M1. The prime frequency error correction block 240 outputs a prime frequency error compensation value ER1 that cancels the prime frequency frequency error included in the signal output from the first multiplier M1. The integer frequency error correction block 250 outputs an integer frequency error compensation value ER2 that cancels the integer frequency error included in the spectrum signal output from the FFT processor 230. The first adder A1 adds the outputs of the decimal frequency error compensation value ER1 and the second adder A2. The second adder A2 adds the integer frequency error compensation value ER2 and an offset value M to be added to the I signal and the Q signal.
심볼 지연부(260)는 FFT 처리장치(230)로부터 출력되는 스펙트럼신호를 구성하는 심볼을 지연시킨다. 채널 추정부(270)는 FFT 처리장치(230)로부터 출력되는 스펙트럼신호를 이용하여 채널을 추정하고 채널보상신호를 출력한다. 제2곱셈기(M2)는 심볼 지연부(260)의 출력신호 및 채널 추정부(270)의 출력신호를 곱한다. 등화기(280)는 제2곱셈기(M2)의 출력을 이퀄라이징(equalizing) 한다.  The symbol delay unit 260 delays the symbols constituting the spectrum signal output from the FFT processor 230. The channel estimator 270 estimates a channel by using the spectrum signal output from the FFT processor 230 and outputs a channel compensation signal. The second multiplier M2 multiplies the output signal of the symbol delay unit 260 and the output signal of the channel estimator 270. The equalizer 280 equalizes the output of the second multiplier M2.
도 3은 도 2에 도시된 오프셋 값(M)을 정의한다.  FIG. 3 defines the offset value M shown in FIG. 2.
도 3을 참조하면, 오프셋 값(M)은, 송신기에서의 스펙트럼신호(도 1의 111, 112)에 대응되며, 변조된 정보가 있는 부분의 일부분(A), 변조된 정보가 없는 부분(빗금) 및 변조된 정보가 있는 나머지 부분(B)의 순서로 배열되었을 때, 변조된 정보가 있는 부분의 일부분(A) 및 변조된 정보가 없는 부분(빗금)의 합만큼의 스펙트럼신호의 로테이션이 일어나도록 하는 양을 의미한다.  Referring to FIG. 3, the offset value M corresponds to the spectral signals 111 and 112 of FIG. 1 at the transmitter and includes a portion A of the portion with modulated information and a portion without modulated information. ) And the remaining portion (B) with the modulated information, the rotation of the spectral signal is generated by the sum of the portion (A) of the portion with the modulated information and the portion without the modulated information (hatched). Means the amount to make.
기타 심볼 지연부(260), 채널 추정부(270) 및 등화기(280)의 동작은 일반적으로 알려져 있으므로 여기서는 자세하게 설명하지 않는다.  The operations of the other symbol delay unit 260, the channel estimator 270, and the equalizer 280 are generally known and will not be described in detail here.
이하에서는 도 2에 도시된 수신기에서 I/Q 신호의 오프셋을 보상함으로써, FFT 이후에 수행하던 리오더링(reordering)이 더 이상 필요 없게 되는 수학적 이유에 대하여 설명한다.  Hereinafter, a mathematical reason for reordering performed after the FFT is no longer needed by compensating the offset of the I / Q signal in the receiver shown in FIG. 2 will be described.
OFDM 신호는 입력 비트 스트림(bit stream)을 복소 심볼(complex symbol)인 I/Q 심볼로 맵핑(mapping) 함으로써 생성된 심볼의 시퀀스(sequence)를 사용하여, 직교성 반송파를 변조하여 형성된다. 이 과정을 통해 비트 스트림을 감소시킨 OFDM 신호는 수학식 1과 같다.  An OFDM signal is formed by modulating an orthogonal carrier using a sequence of symbols generated by mapping an input bit stream into I / Q symbols, which are complex symbols. The OFDM signal obtained by reducing the bit stream through this process is shown in Equation 1.
수학식 1
Figure PCTKR2009002229-appb-M000001
Equation 1
Figure PCTKR2009002229-appb-M000001
여기서 N은 부반송파(sub-carrier)의 개수이고, X[m]은 [0, N-1] 구간에서 m번째 심볼을 의미한다.   Here, N is the number of subcarriers (sub-carriers), X [m] means the m-th symbol in the interval [0, N-1].
수학식 1에 표시된 부반송파가 주파수 영역에서 M만큼 쉬프트(shift) 되어 있다고 가정하면, 쉬프트 된 부반송파는 수학식 2와 같이 표시될 수 있다.  Assuming that the subcarriers shown in Equation 1 are shifted by M in the frequency domain, the shifted subcarriers can be expressed as Equation 2.
수학식 2
Figure PCTKR2009002229-appb-M000002
Equation 2
Figure PCTKR2009002229-appb-M000002
수학식 2를 참조하면, 주파수 영역에서 M 만큼 쉬프트 되어 있는 부반송파는 시간영역에서 M/N 주파수를 가지는 정현파를 곱하여 구현될 수 있음을 알 수 있다. 본 발명에 따른 부반송파의 리오더링이 필요하지 않은 OFDM 수신기는, 도 2를 참조하면, I신호 및 Q신호에 오프셋(M)을 인가함으로서, 스펙트럼신호의 로테이션을 달성한다.  Referring to Equation 2, it can be seen that a subcarrier shifted by M in the frequency domain may be implemented by multiplying a sine wave having an M / N frequency in the time domain. In the OFDM receiver that does not require reordering of subcarriers according to the present invention, referring to FIG. 2, the rotation of the spectrum signal is achieved by applying an offset M to the I and Q signals.
종래의 OFDM 수신기에서는 I/Q 신호에 대해 일정한 주파수 오차만을 고려한 후 FFT 하고, FFT 된 신호에 대하여 리오더링 하는 과정을 수행하였다. 그러나 도 2를 참조하면, 본 발명에서는 도 2에 예를 든 것처럼, FFT를 수행하기 전 단계의 신호에 오프셋을 인가함으로써, FFT를 수행한 후 리오더링을 전혀 수행되지 않거나 필요에 따라 수행되는 최소한의 리오더링 블록이 요구될 뿐이다.  In a conventional OFDM receiver, only a constant frequency error is considered for an I / Q signal, and then FFT is performed, and a process of reordering the FFT signal is performed. However, referring to FIG. 2, in the present invention, as shown in FIG. 2, at least the reordering is not performed at the time of performing the FFT or performed as necessary by applying an offset to the signal of the step before performing the FFT. Only a reordering block of is required.
이상에서는 수신기라는 장치에 대해서만 설명하였지만, 수신기가 수행하는 과정은 아래와 같이 유추할 수 있다. 즉, 수신기가 수행하는 OFDM 신호 처리방법은, 수신된 OFDM 신호를 I/Q 신호로 복조한 후 이를 고속 푸리에 변환하는 OFDM 신호 처리방법이며, 수신된 OFDM 신호를 I/Q 신호로 복조하는 복조단계, 상기 I/Q 신호에 오프셋을 인가하는 단계 및 상기 오프셋이 인가된 I/Q 신호를 고속 푸리에 변환하여 스펙트럼신호를 생성하는 단계를 구비한다.  In the above, only the apparatus called a receiver has been described, but a process performed by the receiver can be inferred as follows. That is, the OFDM signal processing method performed by the receiver is an OFDM signal processing method for demodulating a received OFDM signal into an I / Q signal and then performing fast Fourier transform, and demodulating the received OFDM signal into an I / Q signal. And applying an offset to the I / Q signal and generating a spectrum signal by performing fast Fourier transform on the I / Q signal to which the offset is applied.
이상에서는 본 발명에 대한 기술사상을 첨부 도면과 함께 서술하였지만 이는 본 발명의 바람직한 실시 예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 이라면 누구나 본 발명의 기술적 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다. In the above description, the technical idea of the present invention has been described with the accompanying drawings, which illustrate exemplary embodiments of the present invention by way of example and do not limit the present invention. In addition, it is apparent that any person having ordinary knowledge in the technical field to which the present invention belongs may make various modifications and imitations without departing from the scope of the technical idea of the present invention.
OFDM은 광대역 통신에서 문제되는 페이딩(fading) 문제를 해결할 수 있고, 효율적 주파수 자원의 활용도 가능함은 물론 MIMO(Multiple Input Multiple Output)등의 기술과의 접목도 용이하여, 4세대 통신에는 널리 쓰일 것으로 예상된다. OFDM은 단일 반송파 환경에서 문제시 되어온 산꼭대기나 빌딩 등에 의하여 전파가 반사되어 다중경로 간섭을 일으키는 등 나쁜 조건 하에서도 고속으로 통신이 가능하도록 하여 향후 널리 쓰일 수 있을 것이다.OFDM is expected to be widely used in 4G communication because it can solve the fading problem that is a problem in broadband communication, efficiently utilize frequency resources, and easily integrate with technologies such as MIMO (Multiple Input Multiple Output). do. OFDM may be widely used in the future by enabling high-speed communication even under bad conditions such as reflection of radio waves by mountain tops or buildings, which have been a problem in a single carrier environment, causing multipath interference.

Claims (6)

  1. OFDM 디지털 신호를 이용하여 I(In phase)신호 및 상기 I신호와 90°의 위상 차이가 있는 Q(quadrature)신호를 복조하는 I/Q 복조기(220);  An I / Q demodulator 220 for demodulating an I (In phase) signal and a Q (quadrature) signal having a phase difference of 90 ° from the I signal using an OFDM digital signal;
    상기 I신호와 상기 Q신호 및 제1덧셈기의 출력을 곱하는 제1곱셈기(M1);  A first multiplier (M1) that multiplies the output of the I signal by the Q signal and a first adder;
    상기 제1곱셈기로부터 출력되는 신호에 고속 푸리에 연산을 수행하여 스펙트럼신호를 생성하는 FFT 처리장치(230);  An FFT processor 230 generating a spectral signal by performing a fast Fourier operation on the signal output from the first multiplier;
    상기 제1곱셈기(M1)로부터 출력되는 신호에 포함된 소수배의 주파수 오차를 상쇄시키는 소수배 주파수 오차보상값(ER1)을 출력하는 소수배 주파수 오차 보정블록(240);  A multiples frequency error correction block 240 for outputting a multiples frequency error compensation value ER1 that cancels the multiples frequency error included in the signal output from the first multiplier M1;
    상기 스펙트럼신호에 포함된 정수배 주파수 오차를 상쇄시키는 정수배 주파수 오차보상값(ER2)을 출력하는 정수배 주파수 오차 보정블록(250);  An integer frequency error correction block 250 for outputting an integer frequency error compensation value ER2 that cancels an integer frequency error included in the spectrum signal;
    상기 소수배 주파수 오차보상값(ER1) 및 제2덧셈기(A2)의 출력을 더하는 제1덧셈기(A1); 및  A first adder (A1) for adding outputs of the fractional frequency error compensation value (ER1) and a second adder (A2); And
    상기 정수배 주파수 오차보상값(ER2) 및 상기 I신호와 상기 Q신호에 부가할 오프셋 값(M)을 더하는 제2덧셈기(A2)를 구비하는 것을 특징으로 하는 부반송파의 리오더링이 필요하지 않은 OFDM 수신기. And a second adder (A2) for adding the integer frequency error compensation value (ER2) and an offset value (M) to be added to the I signal and the Q signal. .
  2. 제1항에 있어서,  The method of claim 1,
    OFDM 다중 안테나를 통해 수신된 아날로그 신호를 변환하여 상기 OFDM 디지털 신호를 생성하는 ADC(210)를 더 구비하는 것을 특징으로 하는 부반송파의 리오더링이 필요하지 않은 OFDM 수신기. And an ADC (210) for converting an analog signal received through an OFDM multiple antenna to generate the OFDM digital signal.
  3. 제1항에 있어서,  The method of claim 1,
    상기 스펙트럼신호를 구성하는 심볼을 지연시키는 심볼 지연부(260);  A symbol delay unit (260) for delaying symbols constituting the spectrum signal;
    상기 스펙트럼신호를 이용하여 채널을 추정하고 채널보상신호를 출력하는 채널 추정부(270);  A channel estimator 270 for estimating a channel using the spectrum signal and outputting a channel compensation signal;
    상기 심볼 지연부의 출력신호 및 상기 채널 추정부의 출력신호를 곱하는 제2곱셈기(M2); 및  A second multiplier (M2) for multiplying an output signal of the symbol delay unit and an output signal of the channel estimator; And
    상기 제2곱셈기(M2)의 출력을 이퀄라이징(equalizing) 하는 등화기(280)를 더 구비하는 것을 특징으로 하는 부반송파의 리오더링이 필요하지 않은 OFDM 수신기. And an equalizer (280) for equalizing the output of the second multiplier (M2).
  4. 제1항에 있어서,  The method of claim 1,
    상기 오프셋 값(M)은,  The offset value (M) is,
    상기 스펙트럼신호에 대응되는 송신기에서의 스펙트럼신호가, 변조된 정보가 있는 부분의 일부분, 변조된 정보가 없는 부분 및 변조된 정보가 있는 나머지 부분의 순서로 배열되었을 때,  When the spectral signal at the transmitter corresponding to the spectral signal is arranged in the order of a part of the part with modulated information, a part without modulated information and the remaining part with modulated information,
    상기 변조된 정보가 있는 부분의 일부분 및 상기 변조된 정보가 없는 부분의 합만큼의 스펙트럼신호의 로테이션이 일어나도록 하는 양인 것을 특징으로 하는 부반송파의 리오더링이 필요하지 않은 OFDM 수신기. And reordering of subcarriers, wherein the spectral signal is rotated by a sum of a portion of the portion with modulated information and a portion without the modulated information.
  5. 수신된 OFDM 신호를 I/Q 신호로 복조한 후 이를 고속 푸리에 변환하는 OFDM 신호 처리방법에 있어서,  An OFDM signal processing method for demodulating a received OFDM signal into an I / Q signal and then performing fast Fourier transform on the received OFDM signal,
    수신된 OFDM 신호를 I/Q 신호로 복조하는 복조단계;  Demodulating the received OFDM signal into an I / Q signal;
    상기 I/Q 신호에 오프셋을 인가하는 단계; 및  Applying an offset to the I / Q signal; And
    상기 오프셋이 인가된 I/Q 신호를 고속 푸리에 변환하여 스펙트럼신호를 생성하는 단계를 구비하는 것을 특징으로 하는 OFDM 신호 처리방법. And a fast Fourier transforming the I / Q signal to which the offset is applied to generate a spectral signal.
  6. 제5항에 있어서,  The method of claim 5,
    상기 오프셋은,  The offset is,
    상기 스펙트럼신호에 대응되는 송신기에서의 스펙트럼신호가, 변조된 정보가 있는 부분의 일부분, 변조된 정보가 없는 부분 및 변조된 정보가 있는 나머지 부분의 순서로 배열되었을 때,  When the spectral signal at the transmitter corresponding to the spectral signal is arranged in the order of a part of the part with modulated information, a part without modulated information and the remaining part with modulated information,
    상기 변조된 정보가 있는 부분의 일부분 및 상기 변조된 정보가 없는 부분의 합만큼의 스펙트럼신호의 로테이션이 일어나도록 하는 양인 것을 특징으로 하는 OFDM 신호 처리방법. OFDM signal processing method, characterized in that the rotation of the spectrum signal by the sum of the portion of the portion with the modulated information and the portion without the modulated information.
PCT/KR2009/002229 2008-04-28 2009-04-28 Ofdm receiver without reordering of sub-carrier and method for processing ofdm signal WO2009134060A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0039276 2008-04-28
KR1020080039276A KR100980498B1 (en) 2008-04-28 2008-04-28 Orthogonal Frequency Division Multiplexing Receiver without reordering the sub-carrier and the method for processing the Orthogonal Frequency Division Multiplexing signal

Publications (2)

Publication Number Publication Date
WO2009134060A2 true WO2009134060A2 (en) 2009-11-05
WO2009134060A3 WO2009134060A3 (en) 2010-02-25

Family

ID=41255548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002229 WO2009134060A2 (en) 2008-04-28 2009-04-28 Ofdm receiver without reordering of sub-carrier and method for processing ofdm signal

Country Status (2)

Country Link
KR (1) KR100980498B1 (en)
WO (1) WO2009134060A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027046A (en) * 2001-06-20 2003-04-03 코닌클리케 필립스 일렉트로닉스 엔.브이. Frequency correction with symmetrical phase adjustment in each OFDM symbol
KR20040041498A (en) * 2002-11-08 2004-05-17 후지쯔 가부시끼가이샤 Receiving apparatus in ofdm transmission system
KR20060069494A (en) * 2004-07-28 2006-06-21 가시오게산키 가부시키가이샤 Ofdm signal demodulator circuit and ofdm signal demodulating method
KR20070035935A (en) * 2005-09-28 2007-04-02 한국전자통신연구원 Transmitter and receiver of digital implemented carrier interferometry orthogonal frequency division multiplexing, method of transmitting and receiving thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441501B1 (en) * 2002-01-17 2004-07-23 삼성전자주식회사 Apparatus for recovering symbol timing of OFDM Receiver and Method using the same
KR20040008872A (en) * 2002-07-19 2004-01-31 주식회사 오픈솔루션 Ofdm receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027046A (en) * 2001-06-20 2003-04-03 코닌클리케 필립스 일렉트로닉스 엔.브이. Frequency correction with symmetrical phase adjustment in each OFDM symbol
KR20040041498A (en) * 2002-11-08 2004-05-17 후지쯔 가부시끼가이샤 Receiving apparatus in ofdm transmission system
KR20060069494A (en) * 2004-07-28 2006-06-21 가시오게산키 가부시키가이샤 Ofdm signal demodulator circuit and ofdm signal demodulating method
KR20070035935A (en) * 2005-09-28 2007-04-02 한국전자통신연구원 Transmitter and receiver of digital implemented carrier interferometry orthogonal frequency division multiplexing, method of transmitting and receiving thereof

Also Published As

Publication number Publication date
KR100980498B1 (en) 2010-09-07
KR20090113519A (en) 2009-11-02
WO2009134060A3 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US10992505B2 (en) Apparatus and method for transmitting data using a plurality of carriers
US8660197B2 (en) Method of and equipment for compensating carrier frequency offset in an orthogonal frequency division multiplexing wireless radio transmission system
US7643567B2 (en) OFDM signal transmitting method and transmitter and receiver thereof
US20060018250A1 (en) Apparatus and method for transmitting and receiving a signal in an orthogonal frequency division multiplexing system
CA2298722C (en) Estimation of frequency offsets in ofdm communication systems
CN110493156B (en) Frequency offset estimation method based on constellation point diversity in 5G mobile communication system
CA2736959A1 (en) Efficient multiplexing of reference signal and data in a wireless communication system
KR20080021786A (en) Receiver apparatus for receiving a multicarrier signal
JP2001053712A (en) Phase tracking circuit for multicarrier modulation signal
CN113973031B (en) Channel equalization method of OFDM system
US9344315B2 (en) Transmitting system and receiving system, and transmitting method and receiving method
JP2001144724A (en) Ofdm-cdma system communication equipment
WO2014128019A1 (en) Estimation of the cfo by transmission of a single subcarrier signal in ofdm system
KR20040035291A (en) Multi-carrier transmission system having the pilot tone in frequence domain and a method inserting pilot tone thereof
KR20020056986A (en) Modulator and demodulator using dispersed pilot subchannel and ofdm frame structure in orthogonal frequency division multiplexing system
JP2002319919A (en) Power line communication apparatus
US7760827B2 (en) Method and apparatus for improving recovery performance of time windowed signals
JP2000286819A (en) Demodulator
WO2014139863A1 (en) Adapted bit loading for ofdm system using modulus and phase of estimated transfer function of the communication channel
CN108768914B (en) Efficient frequency division multiplexing transmission method and transmission system combining orthogonal and non-orthogonal
US7289425B2 (en) Parallel orthogonal frequency division multiplexed communication system
WO2011062293A1 (en) Receiving device, receiving method, and program
JP3558879B2 (en) Digital communication device
WO2009134060A2 (en) Ofdm receiver without reordering of sub-carrier and method for processing ofdm signal
JP4812567B2 (en) Pilot signal allocation method and radio apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738966

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738966

Country of ref document: EP

Kind code of ref document: A2