WO2009133775A1 - 基地局、移動局及び周波数分割多重通信方法 - Google Patents

基地局、移動局及び周波数分割多重通信方法 Download PDF

Info

Publication number
WO2009133775A1
WO2009133775A1 PCT/JP2009/057694 JP2009057694W WO2009133775A1 WO 2009133775 A1 WO2009133775 A1 WO 2009133775A1 JP 2009057694 W JP2009057694 W JP 2009057694W WO 2009133775 A1 WO2009133775 A1 WO 2009133775A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
mbms
base station
data
signal
Prior art date
Application number
PCT/JP2009/057694
Other languages
English (en)
French (fr)
Inventor
彰人 森本
祥久 岸山
信彦 三木
元博 丹野
健一 樋口
佐和橋 衛
Original Assignee
株式会社 エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エヌ・ティ・ティ・ドコモ filed Critical 株式会社 エヌ・ティ・ティ・ドコモ
Priority to US12/989,577 priority Critical patent/US8570966B2/en
Priority to EP09738712.0A priority patent/EP2280564A4/en
Priority to CN200980123901.7A priority patent/CN102067637B/zh
Publication of WO2009133775A1 publication Critical patent/WO2009133775A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements

Definitions

  • the present invention relates to a base station, a mobile station, and a frequency division multiplexing communication method.
  • MBMS multimedia broadcast / multicast service
  • MBMS when the same MBMS data is transmitted from a plurality of base stations, the mobile station receives the MBMS data with high quality by soft-combining the same MBMS data from the plurality of base stations.
  • MBSFN MBMS with Single Frequency Network
  • CP cyclic prefix
  • the unicast channel and the MBMS channel shared data channel (SDCH)
  • SDCH shared data channel
  • the present invention has been made in view of the above circumstances, and is capable of efficiently using radio resources when performing MBMS and unicast communication, and frequency division of MBMS subframes and unicast frames.
  • An object is to provide a multiplex communication method.
  • a first channel for transmitting first data transmitted to a plurality of mobile stations and a transmission to one mobile station are provided.
  • a base station including a multiplexing unit configured to perform frequency division multiplexing with a second channel for transmitting the second data to be transmitted is provided.
  • a base station wherein the first signal generation unit generates the first channel, and the first channel includes the first data.
  • the 3rd mode of the present invention is the base station of the 1st mode, and is the 3rd signal generating part which generates the 2nd sub-frame, and includes the 2nd channel containing the 2nd data And a base station further comprising the third signal generator for inserting a guard band between the first channel including the first data.
  • a fourth aspect of the present invention is the base station according to any one of the first to third aspects, wherein the base station is multiplexed in a frequency band for transmitting the second channel and a frequency band for transmitting the first channel.
  • a base station is provided on which L1 / L2 control channels to be multiplexed are multiplexed.
  • a mobile station that communicates with the base station according to any one of the first to fourth aspects, wherein the first channel and the second channel that are frequency-division multiplexed are used.
  • a mobile station including a separation unit for separation is provided.
  • a frequency division multiplex communication method comprising: generating a second channel for transmitting the first data; and frequency-multiplexing the first channel and the second channel is provided.
  • the step of generating the first channel includes a first cycle for the first channel including the first data. Inserting a prefix, wherein generating the second channel inserts a second cyclic prefix having the same length as the first cyclic prefix into the second channel including the second data.
  • a frequency division multiplexing communication method including steps is provided.
  • An eighth aspect of the present invention is the frequency division multiplex communication method according to the sixth aspect, wherein the step of generating the second channel includes the second channel including the second data and the first data.
  • a frequency division multiplexing communication method including a step of inserting a guard band between the first channels.
  • a base station that transmits data to be transmitted to a plurality of mobile stations using N frequency bands, wherein the N is used for transmitting the data.
  • a base station including a control signal generation unit for designating one or more and less than N frequency bands in which L1 / L2 control channels are multiplexed from among the individual frequency bands.
  • a tenth aspect of the present invention is a mobile station that communicates with the base station of the ninth aspect, and separates a reception unit that receives a signal from the base station and a reception signal that is input from the reception unit. And acquiring information included in the L1 / L2 control channel based on the specific information input from the demultiplexing unit and the demultiplexing unit that extracts the specific information specifying the one or more and less than N frequency bands. And a data demodulation / decoding unit.
  • An eleventh aspect of the present invention is a frequency division multiplexing communication method for transmitting data transmitted to a plurality of mobile stations using N frequency bands, and is used for transmitting the data. Designating one or more and less than N frequency bands in which the L1 / L2 control channel is multiplexed from among the N frequency bands, and generating a subframe including the data according to the control signal And providing a frequency division multiplex communication method.
  • a base station when performing MBMS and unicast communication, a base station, a mobile station, and an MBMS channel and unicast channel frequency division multiplex communication method that enable efficient use of radio resources. Is provided.
  • FIG. 5 is a flowchart illustrating a frequency division multiplex communication method according to a second embodiment of the present invention. It is the schematic which shows the structure of the base station by the 1st Embodiment of this invention. It is the schematic which shows an example of a structure of the MBMS channel produced
  • FIG. 1 is a schematic diagram illustrating a configuration of a base station according to the first embodiment of the present invention.
  • the base station 10 includes an MBMS signal generation unit 12, a unicast signal generation unit 14, a frequency division multiplexing (FDM) unit 16, and a transmission unit 18.
  • FDM frequency division multiplexing
  • the MBMS signal generation unit 12 receives data (MBMS data) to be transmitted to a plurality of mobile stations from a buffer (not shown), and the input MBMS data and L1 / L2 control information are orthogonal frequency division multiplexing (OFDM). And an MBMS channel is generated by assigning a cyclic prefix (hereinafter, CP) for each OFDM symbol.
  • CP cyclic prefix
  • a relatively long CP is assigned to a symbol of MBMS data. This is to allow delays from the plurality of base stations 10 to fall within the CP when the same data is transmitted from the plurality of base stations 10 and the mobile station receives the same data from the plurality of base stations 10. .
  • the CP may have a length of, for example, 16.67 ⁇ sec, although not limited thereto.
  • the CP assigned to the symbol corresponding to the L1 / L2 control information may be shorter than the CP assigned to the symbol of the MBMS data (eg, 4.69 ⁇ sec).
  • the CP assigned to the L1 / L2 control information symbol is referred to as “short CP”
  • the CP assigned to the MBMS data symbol is referred to as “long CP”.
  • the L1 / L2 control channel includes scheduling information, uplink feedback information for uplink transmission from the mobile station to the base station 10 (information such as a frequency band to be used for uplink transmission), and a modulation code set.
  • Information regarding (MCS) and information (ACK, NACK) indicating the reception result of uplink transmission may be included.
  • the MBMS signal generation unit 12 outputs the MBMS channel generated as described above to the FDM unit 16.
  • the unicast signal generation unit 14 inputs data to be transmitted to any one mobile station (unicast data) from a buffer (not shown), OFDM-modulates the input data and L1 / L2 control information, A unicast channel is generated by assigning a CP to each OFDM symbol.
  • a long CP is added to the symbol of the unicast data, similarly to the above MBMS data.
  • Unicast communication is a one-to-one communication between the base station 10 and any one mobile station, and there is no need to consider signal delay from a plurality of base stations. Although it can be said that it is sufficient to assign a short CP, in the base station 10 according to the first embodiment, a long CP is also assigned to a symbol of unicast data. Further, a short CP is assigned to the symbol of the L1 / L2 control information. Further, the unicast signal generation unit 14 outputs the unicast channel generated as described above to the FDM unit 16.
  • the FDM unit 16 receives the MBMS channel from the MBMS signal generation unit 12 and the unicast channel from the unicast signal generation unit 14.
  • the FDM unit 16 frequency-division multiplexes the input MBMS channel and unicast channel to generate a transmission signal.
  • FIG. 2 is a diagram illustrating an example of a transmission signal. Referring to FIG. 2, MBMS channels and unicast channels having the same fundamental frequency width (but not limited to, for example, 50 MHz) are arranged side by side in the frequency axis direction. Also, as shown in the figure, a short CP is added to the L1 / L2 control information symbol (configured with two symbols in the example shown) in both of the frequency bands in which the MBMS channel and the unicast channel are transmitted. Thus, a long CP is assigned to the MBMS channel symbol and the unicast channel symbol.
  • the FDM unit 16 outputs the transmission signal generated by frequency division multiplexing the MBMS channel and the unicast channel to the transmission unit 18.
  • the transmission unit 18 having received the transmission signal performs a predetermined process on the transmission signal and transmits the transmission signal through an antenna (not shown).
  • FIG. 3 is a schematic diagram illustrating a configuration of a base station according to the first embodiment of the present invention.
  • the mobile station 30 includes a receiving unit 32, a demultiplexing unit 34, an MBMS signal demodulating / decoding unit 36, and a unicast signal demodulating / decoding unit 38.
  • the reception unit 32 receives the transmission signal transmitted from the base station 10, performs a predetermined process on the received signal, and outputs the processed signal to the separation unit 34.
  • the separation unit 34 separates the signal input from the reception unit 32 into an MBMS channel and a unicast channel.
  • the mobile station 30 needs to grasp the frequency band used for transmitting the MBMS channel and the frequency band used for transmitting the unicast channel. For this reason, information regarding the frequency band is notified from the base station 10 to the mobile station 30 in advance. This notification may be performed, for example, by higher layer (L3) signaling when the mobile station 30 connects to the base station 10 or to all mobile stations 30 existing in the cell of the base station 10.
  • L3 higher layer
  • the notification using higher layer signaling is suitable when the change in the frequency band to be used is relatively small (for example, when the change is not made after starting communication), and the notification using the broadcast channel is used. This is suitable when the frequency of changing the frequency band is relatively high.
  • the notification using multiplexing to the L1 / L2 control channel is suitable when the frequency band to be used is changed, for example, every time transmission is performed.
  • the separation unit 34 outputs the separated MBMS channel to the MBMS signal demodulation / decoding unit 36, and outputs the unicast channel to the unicast signal demodulation / decoding unit 38.
  • the MBMS signal demodulation / decoding unit 36 demodulates and decodes the MBMS channel by performing predetermined processing on the MBMS channel input from the separation unit 34.
  • the unicast signal demodulation / decoding unit 38 demodulates and decodes the unicast channel by performing predetermined processing on the unicast channel input from the separation unit 34.
  • FIG. 4 is a flowchart for explaining the frequency division multiplexing communication method according to the first embodiment.
  • MBMS data and L1 / L2 control information are OFDM-modulated in step S402
  • a long CP is assigned to a symbol of MBMS data
  • a short CP is assigned to a symbol of L1 / L2 control information in step S404.
  • an MBMS channel is generated.
  • step S406 the unicast data and the L1 / L2 control information are OFDM-modulated, in step S408, a long CP is added to the unicast data symbol, and a short CP is added to the L1 / L2 control information symbol.
  • a unicast channel is generated.
  • step S410 the MBMS channel generated in step S404 and the unicast channel generated in step S408 are frequency division multiplexed, and a transmission signal is transmitted in step S412.
  • steps S402 and S404 are executed before steps S406 and S408, but steps S406 and S408 may be executed first. Further, steps S402 and S404 and steps S406 and S408 may be performed almost simultaneously.
  • a CP having the same length as the CP inserted into the MBMS channel is inserted into the unicast channel, and the unicast channel and the MBMS channel are frequency division multiplexed. Orthogonality between channels can be maintained. That is, unicast communication and MBMS communication can be realized by frequency division multiplexing by inserting a long CP into the unicast channel. For this reason, compared with the case where unicast communication and MBMS communication were performed only by time division multiplexing, it becomes possible to use a radio
  • FIG. 5 is a schematic diagram illustrating a configuration of a base station according to the second embodiment of the present invention.
  • the base station 50 includes an MBMS signal generation unit 12, a unicast signal generation unit 54, an FDM unit 56, and a transmission unit 18.
  • the MBMS signal generation unit 12 generates an MBMS channel similarly to the MBMS signal generation unit 12 of the base station 10 according to the first embodiment, and outputs the generated MBMS channel to the FDM unit 56.
  • the unicast signal generation unit 54 inputs unicast data to be transmitted to any one mobile station from a buffer (not shown), performs OFDM modulation on the input data and L1 / L2 control information, and for each OFDM symbol A unicast channel is generated by assigning a CP to.
  • the CP inserted into the unicast channel in the unicast signal generation unit 54 is a short CP, unlike the first embodiment.
  • Unicast communication is one-to-one communication between the base station 10 and any one mobile station, and it is not necessary to consider the delay of data from a plurality of base stations. It is sufficient to give CP. Also, a short CP is assigned to the L1 / L2 control information symbol. This is the same as in the first embodiment.
  • the unicast signal generation unit 54 outputs the unicast channel generated as described above to the FDM unit 56.
  • the FDM unit 56 inputs the MBMS channel from the MBMS signal generation unit 12 and inputs the unicast channel from the unicast signal generation unit 54. If a unicast channel to which a short CP is assigned to a symbol corresponding to unicast data and an MBMS channel to which a long CP is assigned are frequency division multiplexed as they are, orthogonality cannot be maintained. Therefore, the FDM unit 56 assigns a guard band between the unicast channel and the MBMS channel, and frequency-division multiplexes the unicast channel and the MBMS channel to generate a transmission signal.
  • FIG. 6 is a diagram illustrating an example of a transmission signal. Referring to FIG.
  • an MBMS channel and a unicast channel are arranged side by side in the frequency axis direction.
  • a short CP is assigned to the L1 / L2 control information symbol (configured with 2 symbols in the example shown) in both the MBMS channel and the unicast channel
  • a long CP is assigned to the MBMS channel symbol.
  • a short CP is assigned to the symbol of the unicast channel.
  • a guard band is inserted between the unicast channel and the MBMS channel. Due to this guard band, the frequency bandwidths of the MBMS channel and the unicast channel become equal.
  • a guard band may be inserted between the MBMS channel and the unicast channel so that the frequency bandwidth of the MBMS channel and the frequency bandwidth of the unicast channel are different from each other.
  • the FDM unit 56 outputs the transmission signal generated by frequency division multiplexing to the transmission unit 18.
  • the transmission unit 18 having received the transmission signal performs a predetermined process on the transmission signal and transmits the transmission signal through an antenna (not shown).
  • the mobile station that communicates with the base station 50 according to the second embodiment of the present invention may have the same configuration as the mobile station 30 according to the first embodiment. Further, there is no change in the method of notifying the information on the frequency band used for the transmission of the MBMS channel and the unicast channel, which is necessary for separating the MBMS channel and the unicast channel.
  • it may be performed by higher layer (L3) signaling, may be notified to all mobile stations existing in the cell of the base station 50 through a broadcast channel, and information on the frequency band is L1 / L You may multiplex with a L2 control channel and you may notify with respect to a specific one or several mobile station.
  • L3 higher layer
  • the separation unit 34 of the mobile station according to the second embodiment can separate the unicast channel based on the information notified as described above for the frequency band used for the transmission of the unicast channel,
  • the FDM unit 56 of the base station 50 does not need to grasp the width of the guard band assigned between the unicast channel and the MBMS channel.
  • FIG. 7 is a flowchart for explaining a frequency division multiplex communication method according to the second embodiment.
  • MBMS data and L1 / L2 control information are OFDM-modulated in step S702, and a long CP is assigned to the MBMS data symbol and a short CP is assigned to the L1 / L2 control information symbol in step S704.
  • an MBMS channel is generated.
  • step S706 the unicast data and the L1 / L2 control information are OFDM-modulated
  • step S708 a short CP is assigned to the unicast data symbol, and a short CP is assigned to the L1 / L2 control information symbol.
  • a unicast channel is generated.
  • step S710 a guard band is provided between the unicast channel and the MBMS channel, and these channels and the guard band are frequency division multiplexed to generate a transmission signal. This transmission signal is transmitted in step S714.
  • a guard band is provided between the unicast channel and the MBMS channel, and the unicast channel and the MBMS channel are frequency division multiplexed. Can be maintained. That is, by providing a guard band, unicast communication and MBMS communication can be realized by frequency division multiplexing. For this reason, compared with the case where unicast communication and MBMS communication were performed only by time division multiplexing, it becomes possible to use a radio
  • use of a wide frequency band is allowed in IMT-Advanced, and services such as high-speed video streaming can be smoothly performed by performing MBMS communication and unicast communication in different frequency bands utilizing the wide frequency band. It becomes possible to provide.
  • the optimum CP can be used for the unicast channel by inserting the guard band, the optimum CP for both the MBMS channel and the unicast channel can be used.
  • FIG. 8 is a schematic diagram illustrating a configuration of a base station according to the third embodiment of the present invention.
  • the base station 80 includes an MBMS signal generation unit 82, a unicast signal generation unit 84, an L1 / L2 control signal generation unit 85, a signal multiplexing unit 86, and a transmission unit 88.
  • the MBMS signal generation unit 82 inputs MBMS data from a buffer (not shown), performs OFDM modulation on the input MBMS data, and assigns a long CP to each OFDM symbol to generate an MBMS channel.
  • the MBMS signal generation unit 12 outputs the MBMS channel generated as described above to the signal multiplexing unit 86.
  • the unicast signal generation unit 84 receives unicast data from a buffer (not shown), performs OFDM modulation on the input data, and assigns a CP to each OFDM symbol to generate a unicast channel.
  • a long CP is added to the symbol of the unicast data, similarly to the above MBMS data.
  • the L1 / L2 control information includes not only information necessary for the base station to perform feedback for uplink transmission in response to reception of the unicast channel from the mobile station, but also the base station 80.
  • the reception confirmation information (ACK / NACK) notified from the mobile station to the mobile station is also included.
  • the unicast signal generation unit 84 outputs the unicast channel generated as described above to the signal multiplexing unit 86.
  • the L1 / L2 control signal generator 85 provides feedback information for uplink transmission (ACK / NACK, scheduling information, MCS information, etc.), control information for downlink unicast transmission (MCS information, transmission allocation user information, etc.), etc.
  • L1 / L2 control signal is generated, and the L1 / L2 control signal is output to the signal multiplexer 86.
  • the signal multiplexing unit 86 inputs the MBMS channel from the MBMS signal generation unit 82, inputs the unicast channel from the unicast signal generation unit 84, and sends control signals related to the L1 / L2 control information from the L1 / L2 control signal generation unit 85. input.
  • the signal multiplexer 86 maps the input channel and signal to generate a transmission signal.
  • FIG. 9 is a diagram illustrating an example of a transmission signal. Referring to FIG. 9, MBMS channels and unicast channels having the same fundamental frequency width are arranged side by side in the frequency axis direction. Further, as shown in the figure, the part corresponding to the L1 / L2 control channel of the MBMS channel has no information (is not used). As described in the first and second embodiments, the frequency bandwidth of the MBMS channel and the frequency bandwidth of the unicast channel are not necessarily equal and may be different.
  • FIG. 10 is a schematic diagram illustrating a configuration of a base station according to the third embodiment of the present invention. As illustrated, the mobile station 100 includes a reception unit 102, a separation unit 104, an MBMS signal demodulation / decoding unit 106, a unicast signal demodulation / decoding unit 108, and a control signal demodulation / decoding unit 109. .
  • the receiving unit 102 receives the transmission signal transmitted from the base station 100, performs predetermined processing on the received signal, and outputs the processed signal to the separation unit 104.
  • the separation unit 104 separates the signal input from the reception unit 102 into an MBMS signal, a unicast signal, and an L1 / L2 control signal. Separation section 104 outputs the MBMS signal to MBMS signal demodulation / decoding section 106, outputs the unicast signal to unicast signal demodulation / decoding section 108, and outputs the L1 / L2 control signal to control signal demodulation / decoding section 109. Output to.
  • the control signal demodulation / decoding section 109 receives control signals related to L1 / L2 control information (control information for downlink unicast transmission (MCS information, transmission allocation user information, etc.)) from the control signal input from the separation section 104, and Feedback information for uplink transmission, etc.) is acquired, and control information for downlink unicast transmission is output to the unicast signal demodulation / decoding section 108 among the acquired control signals.
  • MCS information control information for downlink unicast transmission
  • MCS information transmission allocation user information, etc.
  • the MBMS signal demodulation / decoding unit 106 demodulates and decodes the MBMS channel by performing predetermined processing on the MBMS channel input from the separation unit 104.
  • the unicast signal demodulation / decoding unit 108 uses the L1 / L2 control information related to the downlink unicast transmission input from the control signal demodulation / decoding unit 109 to perform the unicast signal input from the demultiplexing unit 104. A predetermined process is performed to demodulate and decode the unicast signal.
  • the MBMS signal generator 82 OFDM-modulates the MBMS data, and a long CP is added to the OFDM symbol obtained by the modulation to generate an MBMS channel.
  • the unicast data is OFDM-modulated, a long CP is added to the OFDM symbol, and a unicast channel is generated.
  • L1 / L2 control signal generator 85 feedback information for uplink transmission (ACK / NACK, scheduling information, MCS information, etc.), control information for downlink unicast transmission (MCS information, transmission allocation user) L1 / L2 control signals such as information) are generated.
  • the MBMS channel, the unicast channel, and the L1 / L2 control signal are mapped to generate a transmission signal. And a predetermined process is performed with respect to a transmission signal, and it transmits.
  • the L1 / L2 control channel transmitted in the frequency band for transmitting the MBMS channel is transmitted in the frequency band for transmitting the unicast channel. For this reason, the symbol which transmits the L1 / L2 control channel of the frequency band which transmits a MBMS channel can be utilized for transmission of other information, and it becomes possible to use a radio
  • FIG. 11 is a schematic diagram illustrating a configuration of a base station according to the fourth embodiment of the present invention.
  • the base station 110 includes an MBMS signal generation unit 112, an L1 / L2 control signal generation unit 115, a signal multiplexing unit 116, and a transmission unit 118.
  • L1 / L2 control signal generation section 115 generates an L1 / L2 control signal such as feedback information (ACK / NACK, scheduling information, MCS information, etc.) for uplink transmission, and outputs the signal to signal multiplexing section 116.
  • L1 / L2 control signal such as feedback information (ACK / NACK, scheduling information, MCS information, etc.) for uplink transmission, and outputs the signal to signal multiplexing section 116.
  • the MBMS signal generation unit 112 performs OFDM modulation on MBMS data input from a buffer (not shown), and adds an CP to the OFDM symbol to generate an MBMS channel.
  • a long CP is inserted into the MBMS channel.
  • the MBMS signal generation unit 112 outputs the MBMS channel generated as described above to the signal multiplexing unit 116.
  • the signal multiplexing unit 116 receives the MBMS channel from the MBMS signal generation unit 112 and the control signal related to the L1 / L2 control information from the L1 / L2 control signal generation unit 115.
  • the signal multiplexing unit 116 maps the input channel and signal to generate a transmission signal.
  • FIG. 12 is a diagram illustrating an example of the transmission signal. Referring to FIG. 12, the frequency band for transmitting one MBMS channel has an L1 / L2 control channel, but the frequency band for transmitting the other MBMS channel has a transmission corresponding to the L1 / L2 control channel. No information to be included.
  • the signal multiplexing unit 116 outputs the transmission signal generated by the mapping to the transmission unit 118.
  • the transmission unit 118 that has received the transmission signal performs predetermined processing on the transmission signal, and transmits the transmission signal through an antenna (not shown).
  • FIG. 13 is a schematic diagram illustrating a configuration of a base station according to the third embodiment of the present invention.
  • the mobile station 130 includes a reception unit 132, a separation unit 134, an MBMS signal demodulation / decoding unit 136, and a control signal demodulation / decoding unit 139.
  • the receiving unit 132 receives the transmission signal transmitted from the base station 110, performs a predetermined process on the received signal, and outputs the processed signal to the separation unit 134.
  • the separating unit 134 separates the signal input from the receiving unit 132 into an MBMS channel and a control signal. Separation section 134 outputs the MBMS channel to MBMS signal demodulation / decoding section 136, and outputs the control signal to control signal demodulation / decoding section 139.
  • the control signal demodulation / decoding unit 139 acquires information on the L1 / L2 control information from the control signal input from the separation unit 134.
  • the MBMS signal demodulation / decoding unit 136 demodulates and decodes the MBMS channel by performing predetermined processing on the MBMS channel input from the separation unit 134.
  • an MBMS channel transmission method it is determined whether or not the frequency band is for transmitting L1 / L2 control information.
  • MBMS data and the L1 / L2 control channel are OFDM-modulated, and an CP is added to the OFDM symbol to generate an MBMS channel.
  • a long CP is inserted into the MBMS channel, and a short CP is inserted into the L1 / L2 control channel.
  • the MBMS data is OFDM-modulated, and a long CP is added to the OFDM symbol to generate an MBMS channel.
  • mapping is performed including the L1 / L2 control channel to generate a transmission signal. Then, the transmission signal generated by the mapping is transmitted after a predetermined process.
  • the use of a frequency bandwidth of 100 MHz is allowed, but this 100 MHz width is not a continuous frequency band width, and may be a total width of several frequency bands (so-called Frequency aggregation).
  • the MBMS channel may be transmitted in, for example, 2 GHz band and 3 GHz band.
  • the frequency band for transmitting the L1 / L2 control channel is specified by the L1 / L2 control signal generation unit 115, and thus, for example, the L1 / L2 control channel is transmitted in the 2 GHz band. And it is possible not to transmit in the 3 GHz band. In this case, a portion corresponding to the L1 / L2 control channel in the 3 GHz band can be used for MBMS data transmission.
  • an MBMS signal may be transmitted in two frequency bands in a continuous frequency band of 100 MHz. Even in this case, since the frequency band for transmitting the L1 / L2 control channel is designated, a frequency band for not transmitting the L1 / L2 control channel is generated. The part corresponding to the L1 / L2 control channel of this subframe can be diverted to MBMS data transmission.
  • wireless resources can be used effectively and services such as high-speed video streaming can be provided smoothly.
  • a long CP is inserted in the unicast channel as in the first embodiment, but in the signal multiplexing unit 86, a short CP is inserted as in the second embodiment.
  • a guard band may be provided between the unicast channel and the MBMS channel.
  • the fourth embodiment may be applied to the third embodiment. That is, in the third embodiment, the L1 / L2 control channel to be transmitted in the frequency band for transmitting the MBMS channel is transmitted in the frequency band for transmitting the unicast channel, but the L1 / L2 control channel is unicast. Instead of transmitting in the frequency band for transmitting the channel, the L1 / L2 control channel may be transmitted using one or more than N frequency bands of the N frequency bands for transmitting the MBMS channel. . This also generates a frequency band of the L1 / L2 control channel that does not include information, and can be used for transmission of other information (for example, MBMS data).
  • the base station, mobile station, and frequency division multiplexing communication method of the present invention are particularly effective for IMT-Advanced.
  • efficient use of radio resources is not limited to IMT-Advanced but also LTE.
  • the embodiment of the present invention may be implemented in the LTE system.
  • the MBMS communication has been described centering on so-called MBSFN, but the present invention is also applied to a case where a plurality of channels having different CP lengths are frequency-division multiplexed even in the case of single-cell MBMS. obtain.
  • This international application claims priority based on Japanese Patent Application No. 2008-117877 filed on Apr. 28, 2008, the entire contents of which are incorporated herein by reference.
  • Control signal generator 30 100, 130 Mobile station 32, 102, 132 Receiving unit 34, 104, 134 Separating unit 36, 106, 136 MBMS signal demodulation / decoding unit 38, 108 Unicast signal demodulation / decoding unit 109, 139 Control signal demodulation / decoding unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明の一実施形態による基地局は、複数の移動局に対して送信される第1のデータを送信するための第1のチャネルと、一の移動局に対して送信される第2のデータを送信するための第2のチャネルとを、周波数分割多重するよう構成される多重部を備える。

Description

基地局、移動局及び周波数分割多重通信方法
 本発明は、基地局、移動局及び周波数分割多重通信方法に関する。
 基地局と移動局との間のデータ送信は、典型的には1対1の所謂ユニキャスト通信で行われる。その一方で、基地局から複数の移動局に対して同じデータを同時に送信するマルチメディア・ブロードキャスト/マルチキャスト・サービス(MBMS)があり、ブロードキャストメッセージサービスや高速ビデオストリーミングサービスを可能とする点から、注目を集めている。
 MBMSでは、複数の基地局から同じMBMSデータが送信される場合、移動局は、複数の基地局からの同じMBMSデータをソフト合成(soft-combining)することにより、MBMSデータを高品質に受信することができる(所謂MBSFN(MBMS with Single Frequency Network))。この場合、複数の基地局からのMBMSデータを移動局において巡回プレフィックス(cyclic prefix:CP)長以内の遅延時間で受信する必要があり、遠い基地局からのMBMSデータの遅延を考慮すると、長いCPが必要となる。たとえば、LTE(第3.9世代(3.9G))では、ユニキャスト通信におけるCPは4.69μsecであるのに対し、MBMSにおけるCPは16.67μsecである。このようにCP長が異なるユニキャストチャネルとMBMSチャネル(共有データチャネル(SDCH))とを周波数多重により多重して送信した場合には、それぞれのチャネル間の直交性を保つことができない。このため、LTEにおいては、ユニキャストチャネルとMBMSチャネルはサブフレーム単位で時間多重されている。
3GPP、TS36.300、Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2
 しかし、IMT-Advanced(第4世代(4G))においては、非常に高いピークレート及びスループットを実現するために100MHzといった非常に広い周波数帯域の使用が検討されているため、ユニキャストチャネルとMBMSチャネルとが時間分割多重(TDM)によってのみ多重化されるというのは、効率的でなく不合理である。また、無線リソースの効率的な利用という観点からは、MBMSチャネルのL1/L2制御チャネルの送信法を見直す必要もある。
 本発明は、上記の事情に鑑みてなされ、MBMSとユニキャスト通信とを行う際に無線リソースの効率的な利用を可能とする基地局、移動局、およびMBMSサブフレームとユニキャストフレームの周波数分割多重通信方法を提供することを目的とする。
 上記の目的を実現するため、本発明の第1の態様は、複数の移動局に対して送信される第1のデータを送信するための第1のチャネルと、一の移動局に対して送信される第2のデータを送信するための第2のチャネルとを、周波数分割多重するよう構成される多重部を備える基地局を提供する。
 本発明の第2の態様は、第1の態様の基地局であって、前記第1のチャネルを生成する第1の信号生成部であって、前記第1のデータを含む第1のチャネルに第1の巡回プレフィックスを挿入する当該第1の信号生成部と、前記第2のチャネルを生成する第2の信号生成部であって、前記第2のデータを含む第2のチャネルに前記第1の巡回プレフィックスと同じ長さの第2の巡回プレフィックスを挿入する当該第2の信号生成部と、を更に備える基地局を提供する。
 本発明の第3の態様は、第1の態様の基地局であって、前記第2のサブフレームを生成する第3の信号生成部であって、前記第2のデータを含む第2のチャネルと前記第1のデータを含む第1のチャネルの間にガードバンドを挿入する当該第3の信号生成部を更に備える基地局を提供する。
 本発明の第4の態様は、第1から3のいずれかの態様の基地局であって、前記第2のチャネルを送信する周波数帯域に、前記第1のチャネルを送信する周波数帯域に多重されるべきL1/L2制御チャネルが多重される基地局を提供する。
 本発明の第5の態様は、上記第1から第4のいずれかの態様の基地局と通信を行う移動局であって、周波数分割多重された前記第1のチャネル及び前記第2のチャネルを分離する分離部を備える移動局を提供する。
 本発明の第6の態様は、複数の移動局に対して送信される第1のデータを送信するための第1のチャネルを生成するステップと、一の移動局に対して送信される第2のデータを送信するための第2のチャネルを生成するステップと、前記第1のチャネルと前記第2のチャネルとを周波数多重分割するステップと、を有する周波数分割多重通信方法を提供する。
 本発明の第7の態様は、第6の態様の周波数分割多重通信方法であって、前記第1のチャネルを生成するステップが、前記第1のデータを含む第1のチャネルに第1の巡回プレフィックスを挿入するステップを含み、前記第2のチャネルを生成するステップが、前記第2のデータを含む第2のチャネルに前記第1の巡回プレフィックスと同じ長さの第2の巡回プレフィックスを挿入するステップを含む周波数分割多重通信方法を提供する。
 本発明の第8の態様は、第6の態様の周波数分割多重通信方法であって、前記第2のチャネルを生成するステップが、第2のデータを含む第2のチャネルと第1のデータを含む第1のチャネルの間にガードバンドを挿入するステップを含む周波数分割多重通信方法を提供する。
 本発明の第9の態様は、N個の周波数帯域を使用して複数の移動局に対して送信されるデータを送信する基地局であって、前記データを送信するために使用される前記N個の周波数帯域のなかから、L1/L2制御チャネルが多重される1個以上N個未満の周波数帯域を指定する制御信号生成部を備える基地局を提供する。
 本発明の第10の態様は、第9の態様の基地局と通信を行う移動局であって、前記基地局からの信号を受信する受信部と、前記受信部から入力した受信信号を分離して、前記1個以上N個未満の周波数帯域を特定する特定情報を抽出する分離部と、前記分離部から入力した前記特定情報に基づいて、前記L1/L2制御チャネルに含まれる情報を取得するデータ復調復号部と、を備える移動局を提供する。
 本発明の第11の態様は、N個の周波数帯域を使用して複数の移動局に対して送信されるデータを送信する周波数分割多重通信方法であって、前記データを送信するために使用される前記N個の周波数帯域のなかから、L1/L2制御チャネルが多重される1個以上N個未満の周波数帯域を指定するステップと、前記制御信号に応じて、前記データを含むサブフレームを生成するステップと、を有する周波数分割多重通信方法を提供する。
 本発明の実施形態によれば、MBMSとユニキャスト通信とを行う際に、無線リソースの効率的な利用を可能とする基地局、移動局、およびMBMSチャネルとユニキャストチャネルの周波数分割多重通信方法が提供される。
本発明の第1の実施形態による基地局の構成を示す概略図である。 本発明の第1の実施形態による基地局において周波数分割多重されたMBMSチャネルとユニキャストチャネルを説明する図である。 本発明の第1の実施形態による移動局の構成を示す概略図である。 本発明の第1の実施形態による周波数分割多重通信方法を示すフローチャートである。 本発明の第2の実施形態による基地局の構成を示す概略図である。 本発明の第2の実施形態による基地局において周波数分割多重されたMBMSチャネルとユニキャストチャネルを説明する図である。 本発明の第2の実施形態による周波数分割多重通信方法を示すフローチャートである。 本発明の第1の実施形態による基地局の構成を示す概略図である。 第3の実施形態による基地局により生成されるMBMSチャネルの構成の一例を示す概略図である。 第4の実施形態による基地局において周波数分割多重されたMBMSチャネルとユニキャストチャネルを説明する図である。 本発明の第4の実施形態による基地局の構成を示す概略図である。 第4の実施形態による基地局において生成されるMBMSチャネルの構成の一例を示す概略図である。 第4の実施形態による移動局の構成を示す概略図である。
 本発明の実施形態について、図面を参照して以下に説明する。以下の説明において、同一又は類似の構成には同一又は類似の参照符号を付与し、重複する説明は省略する。
 <第1の実施形態> 
 図1から図4を参照しながら、本発明の第1の実施形態を説明する。
 (基地局)
 図1は、本発明の第1の実施形態による基地局の構成を示す概略図である。図示のとおり、基地局10は、MBMS信号生成部12と、ユニキャスト信号生成部14と、周波数分割多重(FDM)部16と、送信部18とを有している。
 MBMS信号生成部12は、複数の移動局に対して送信するデータ(MBMSデータ)を図示しないバッファから入力し、入力されたMBMSデータとL1/L2制御情報とを直交周波数分割多重方式(OFDM)で変調するとともに、OFDMシンボルごとに巡回プレフィックス(以下、CP)を付与してMBMSチャネルを生成する。ここで、MBMSデータのシンボルに対しては比較的長いCPが付与される。これは、複数の基地局10から同じデータが送信され移動局が複数の基地局10から同じデータを受信する場合に、複数の基地局10からの遅延がCP内に収まるようにするためである。具体的には、このCPは、これに限定されないが例えば16.67μsecの長さを有してよい。一方、L1/L2制御情報に対応するシンボルに付与されるCPは、MBMSデータのシンボルに付与されるCPに比べて短くて良い(例えば4.69μsec)。以下の説明においては、L1/L2制御情報のシンボルに付与されるCPを「短いCP」と記し、MBMSデータのシンボルに付与されるCPを「長いCP」と記す。なお、L1/L2制御チャネルには、スケジューリング情報、移動局から基地局10への上りリンク送信のための上りリンク・フィードバック情報(上りリンク送信に使用すべき周波数帯域等の情報)、変調符号セット(MCS)に関する情報、上りリンク送信の受信結果を示す情報(ACK,NACK)が含まれて良い。
 また、MBMS信号生成部12は、上述のように生成したMBMSチャネルをFDM部16へ出力する。
 ユニキャスト信号生成部14は、任意の一の移動局に対して送信するデータ(ユニキャストデータ)を図示しないバッファから入力し、入力されたデータとL1/L2制御情報とをOFDM変調するとともに、OFDMシンボルごとにCPを付与して、ユニキャストチャネルを生成する。ここで、ユニキャストデータのシンボルには、上記のMBMSデータと同様、長いCPが付与される。ユニキャスト通信は基地局10と任意の一の移動局との間の1対1の通信であり、複数の基地局からの信号の遅延を考慮する必要が無いため、ユニキャストデータのシンボルには短いCPを付与すれば十分と言うこともできるが、第1の実施形態による基地局10においては、ユニキャストデータのシンボルに対しても長いCPが付与される。また、L1/L2制御情報のシンボルに対しては、短いCPが付与される。また、ユニキャスト信号生成部14は、上述のように生成したユニキャストチャネルをFDM部16へ出力する。
 FDM部16は、MBMS信号生成部12からMBMSチャネルを入力し、ユニキャスト信号生成部14からユニキャストチャネルを入力する。FDM部16は、入力したMBMSチャネルとユニキャストチャネルとを周波数分割多重して、送信信号を生成する。図2は、送信信号の一例を示す図である。図2を参照すると、互いに等しい基本周波数幅(これに限定されないが例えば、50MHz)を有するMBMSチャネルとユニキャストチャネルとが周波数軸方向に並んで配置されている。また、図示のとおり、MBMSチャネルおよびユニキャストチャネルが送信されている周波数帯域の双方にL1/L2制御情報のシンボル(図示の例では2シンボルで構成されている)に短いCPが付与されて送信され、MBMSチャネルのシンボルとユニキャストチャネルのシンボルとに長いCPが付与されている。
 なお、図2は、MBMSチャネルとユニキャストチャネルの周波数帯域幅が互いに等しい場合を例示したが、これらの周波数帯域幅は異なっていて良い。
 再び図1を参照すると、FDM部16は、MBMSチャネルとユニキャストチャネルとを周波数分割多重することにより生成した送信信号を送信部18へ出力する。送信信号を入力した送信部18は、送信信号に対して所定の処理を行ない、図示しないアンテナを通して送信信号を送信する。
 (移動局)
 図3は、本発明の第1の実施形態による基地局の構成を示す概略図である。図示のとおり、移動局30は、受信部32と、分離部34と、MBMS信号復調・復号部36と、ユニキャスト信号復調・復号部38と、を有している。
 受信部32は、基地局10から送信された送信信号を受信し、受信された信号に所定の処理を行って、処理した信号を分離部34へ出力する。
 分離部34は、受信部32から入力した信号をMBMSチャネルおよびユニキャストチャネルに分離する。移動局30は、MBMSチャネルおよびユニキャストチャネルを分離する場合には、MBMSチャネルの送信に用いられた周波数帯域と、ユニキャストチャネルの送信に用いられた周波数帯域とを把握する必要がある。このため、周波数帯域に関する情報が基地局10から移動局30に対して予め通知される。この通知は、例えば、移動局30が当該基地局10と接続する際に上位レイヤ(L3)シグナリングで行っても良いし、当該基地局10のセル内に存在するすべての移動局30に対して報知チャネルで通知しても良いし、周波数帯域に関する情報をL1/L2制御チャネルに多重して特定の一又は複数の移動局30に対して通知しても良い。上位レイヤシグナリングを利用した通知は、使用される周波数帯域の変更が比較的少ない場合(例えば、通信を開始後は変更を行わない場合)に好適であり、報知チャネルを利用した通知は、使用される周波数帯域の変更頻度が比較的高い場合に好適である。また、L1/L2制御チャネルへの多重を利用する通知は、使用される周波数帯域が例えば送信の度に変更される場合に好適である。
 また、分離部34は、分離したMBMSチャネルをMBMS信号復調・復号部36へ出力し、ユニキャストチャネルをユニキャスト信号復調・復号部38へ出力する。MBMS信号復調・復号部36は、分離部34から入力したMBMSチャネルに対して所定の処理を行ってMBMSチャネルを復調・復号する。ユニキャスト信号復調・復号部38は、分離部34から入力したユニキャストチャネルに対して所定の処理を行ってユニキャストチャネルを復調・復号する。
 (周波数分割多重通信方法)
 図4を参照しながら、本発明の第1の実施形態によるMBMSチャネルとユニキャストチャネルの周波数分割多重通信方法を説明する。図4は、第1の実施形態による周波数分割多重通信方法を説明するフローチャートである。図4を参照すると、ステップS402においてMBMSデータとL1/L2制御情報とがOFDM変調され、ステップS404においてMBMSデータのシンボルに長いCPが付与され、L1/L2制御情報のシンボルに短いCPが付与されて、MBMSチャネルが生成される。
 次いで、ステップS406においてユニキャストデータとL1/L2制御情報とがOFDM変調され、ステップS408においてユニキャストデータのシンボルに長いCPが付与され、L1/L2制御情報のシンボルに短いCPが付与されて、ユニキャストチャネルが生成される。この後、ステップS410において、ステップS404で生成されたMBMSチャネルとステップS408で生成されたユニキャストチャネルとが周波数分割多重され、ステップS412において送信信号が送信される。
 なお、上記の説明においては、ステップS402およびS404が、ステップS406及びS408より先に実行されていたが、ステップS406及びS408を先に実行しても良い。また、ステップS402およびS404と、ステップS406及びS408とがほぼ同時に行われても良い。
 以上、第1の実施形態によれば、ユニキャストチャネルに対してMBMSチャネルに挿入されるCPと同じ長さを有するCPが挿入され、ユニキャストチャネルとMBMSチャネルとが周波数分割多重されるため、チャネルの間の直交性を維持することができる。すなわち、ユニキャストチャネルへの長いCPの挿入により、ユニキャスト通信とMBMS通信とを周波数分割多重により実現することができる。このため、ユニキャスト通信とMBMS通信とが時間分割多重でのみ行われていた場合と比較して、無線リソースを効率的に使用することが可能となる。特に、IMT-Advancedにおいては広い周波数帯域の使用が許容されるため、広い周波数帯域を活かして、MBMS通信とユニキャスト通信とを異なる周波数帯域で行うことにより、高速ビデオストリーミングなどのサービスをスムースに提供することが可能となる。
 <第2の実施形態> 
 図5から図7を参照しながら、本発明の第2の実施形態を説明する。
 (基地局)
 図5は、本発明の第2の実施形態による基地局の構成を示す概略図である。図示のとおり、基地局50は、MBMS信号生成部12と、ユニキャスト信号生成部54と、FDM部56と、送信部18とを有している。
 MBMS信号生成部12は、第1の実施形態による基地局10のMBMS信号生成部12と同様にMBMSチャネルを生成し、生成したMBMSチャネルをFDM部56へ出力する。
 ユニキャスト信号生成部54は、任意の一の移動局に対して送信するユニキャストデータを図示しないバッファから入力し、入力されたデータとL1/L2制御情報とをOFDM変調するとともに、OFDMシンボルごとにCPを付与して、ユニキャストチャネルを生成する。第2の実施形態においては、ユニキャスト信号生成部54においてユニキャストチャネルに挿入されるCPは、第1の実施形態とは異なり、短いCPである。ユニキャスト通信は基地局10と任意の一の移動局との間の1対1の通信であり、複数の基地局からのデータの遅延を考慮する必要が無いため、ユニキャストデータのシンボルに短いCPを付与すれば十分である。また、L1/L2制御情報のシンボルに対しても短いCPが付与される。これは第1の実施形態と同様である。
 また、ユニキャスト信号生成部54は、上述のように生成したユニキャストチャネルをFDM部56へ出力する。
 FDM部56は、MBMS信号生成部12からMBMSチャネルを入力し、ユニキャスト信号生成部54からユニキャストチャネルを入力する。ユニキャストデータに対応するシンボルに短いCPが付与されているユニキャストチャネルと長いCPが付与されているMBMSチャネルとをそのまま周波数分割多重すると、直交性を維持できない事態ともなる。そこで、FDM部56は、ユニキャストチャネルとMBMSチャネルの間にガードバンドを付与し、ユニキャストチャネルと、MBMSチャネルとを周波数分割多重して、送信信号を生成する。図6は、送信信号の一例を示す図である。図6を参照すると、MBMSチャネルとユニキャストチャネルとが周波数軸方向に並んで配置されている。また、図示のとおり、MBMSチャネルおよびユニキャストチャネルの双方においてL1/L2制御情報のシンボル(図示の例では2シンボルで構成されている)に短いCPが付与され、MBMSチャネルのシンボルに長いCPが付与され、ユニキャストチャネルのシンボルに短いCPが付与されている。さらに、ユニキャストチャネルとMBMSチャネルの間にガードバンドが挿入されている。このガードバンドにより、MBMSチャネルとユニキャストチャネルの周波数帯域幅は等しくなる。
 ただし、MBMSチャネルの周波数帯域幅とユニキャストチャネルの周波数帯域幅が互いに異なるように、MBMSチャネルとユニキャストチャネルの間にガードバンドが挿入されても良い。
 再び図5を参照すると、FDM部56は、周波数分割多重により生成した送信信号を送信部18へ出力する。送信信号を入力した送信部18は、送信信号に対して所定の処理を行ない、図示しないアンテナを通して送信信号を送信する。
 (移動局)
 上記の本発明の第2の実施形態による基地局50と通信を行う移動局は、第1の実施形態による移動局30と同一の構成を有していて良い。また、MBMSチャネルおよびユニキャストチャネルを分離するのに必要となる、MBMSチャネル及びユニキャストチャネルの送信に用いられた周波数帯域に関する情報を通知する方法にも変わりはなく、移動局が基地局50と接続する際に上位レイヤ(L3)シグナリングで行っても良いし、基地局50のセル内に存在するすべての移動局に対して報知チャネルで通知しても良いし、周波数帯域に関する情報をL1/L2制御チャネルに多重して特定の一又は複数の移動局に対して通知しても良い。
 なお、第2の実施形態による移動局の分離部34は、ユニキャストチャネルの送信に用いられた周波数帯域について上述のように通知された情報に基づいてユニキャストチャネルを分離することができるため、基地局50のFDM部56においてユニキャストチャネルとMBMSチャネルの間に付与されたガードバンドの幅を把握する必要はない。
 (周波数分割多重通信方法)
 図7を参照しながら、本発明の第2の実施形態によるMBMSチャネルとユニキャストチャネルの周波数分割多重通信方法を説明する。図7は、第2の実施形態による周波数分割多重通信方法を説明するフローチャートである。図7を参照すると、ステップS702においてMBMSデータとL1/L2制御情報とがOFDM変調され、ステップS704においてMBMSデータのシンボルに長いCPが付与され、L1/L2制御情報のシンボルに短いCPが付与されて、MBMSチャネルが生成される。
 次いで、ステップS706においてユニキャストデータとL1/L2制御情報とがOFDM変調され、ステップS708においてユニキャストデータのシンボルに短いCPが付与され、L1/L2制御情報のシンボルに短いCPが付与されて、ユニキャストチャネル
が生成される。次に、ステップS710においてユニキャストチャネルとMBMSチャネルの間にガードバンドが付与され、これらのチャネルとガードバンドとが周波数分割多重されて送信信号が生成される。この送信信号はステップS714において送信される。
 以上、第2の実施形態によれば、ユニキャストチャネルとMBMSチャネルの間にガードバンドが付与されて、ユニキャストチャネルと、MBMSチャネルとが周波数分割多重されるため、チャネルの間の直交性を維持することができる。すなわち、ガードバンドの付与により、ユニキャスト通信とMBMS通信とを周波数分割多重により実現することができる。このため、ユニキャスト通信とMBMS通信とが時間分割多重でのみ行われていた場合と比較して、無線リソースを効率的に使用することが可能となる。特に、IMT-Advancedにおいては広い周波数帯域の使用が許容されるため、広い周波数帯域を活かして、MBMS通信とユニキャスト通信とを異なる周波数帯域で行うことにより、高速ビデオストリーミングなどのサービスをスムースに提供することが可能となる。しかも、ガードバンドの挿入によれば、ユニキャストチャネルに最適なCPを用いることができるので、MBMSチャネルとユニキャストチャネルとの双方に最適なCPとを利用することができる。
 <第3の実施形態>
 図8から図10を参照しながら、本発明の第3の実施形態を説明する。
 (基地局)
 図8は、本発明の第3の実施形態による基地局の構成を示す概略図である。図示のとおり、基地局80は、MBMS信号生成部82と、ユニキャスト信号生成部84と、L1/L2制御信号生成部85と、信号多重部86と、送信部88とを有している。
 MBMS信号生成部82は、MBMSデータを図示しないバッファから入力し、入力されたMBMSデータをOFDM変調するとともに、OFDMシンボルごとに長いCPを付与してMBMSチャネルを生成する。また、MBMS信号生成部12は、上述のように生成したMBMSチャネルを信号多重部86へ出力する。
 ユニキャスト信号生成部84は、ユニキャストデータを図示しないバッファから入力し、入力されたデータをOFDM変調するとともに、OFDMシンボルごとにCPを付与して、ユニキャストチャネルを生成する。ここで、ユニキャストデータのシンボルには、上記のMBMSデータと同様、長いCPが付与される。また、上記のL1/L2制御情報には、基地局が移動局からのユニキャストチャネルの受信に応答して上りリンク送信のためのフィードバックを行うのに必要とする情報だけでなく、基地局80から移動局へ通知する受信確認情報(ACK/NACK)なども含まれる。
 ユニキャスト信号生成部84は、上述のように生成したユニキャストチャネルを信号多重部86へ出力する。
 L1/L2制御信号生成部85は、上りリンク送信に対するフィードバック情報(ACK/NACK、スケジューリング情報、MCS情報など)、下りリンクユニキャスト送信のための制御情報(MCS情報、送信割り当てユーザ情報など)などのL1/L2制御信号を生成し、そのL1/L2制御信号を信号多重部86へ出力する。
 信号多重部86は、MBMS信号生成部82からMBMSチャネルを入力し、ユニキャスト信号生成部84からユニキャストチャネルを入力し、L1/L2制御信号生成部85からL1/L2制御情報に関する制御信号を入力する。信号多重部86は、入力したチャネル及び信号をマッピングして送信信号を生成する。図9は、送信信号の一例を示す図である。図9を参照すると、互いに等しい基本周波数幅を有するMBMSチャネルとユニキャストチャネルとが周波数軸方向に並んで配置されている。また、図示のとおり、MBMSチャネルのL1/L2制御チャネルに相当する部分は情報を有していない(利用されていない)。なお、第1及び第2の実施形態でも説明したように、MBMSチャネルの周波数帯域幅とユニキャストチャネルの周波数帯域幅とは、必ずしも等しくなくて良く、異なっていて良い。
 再び図8を参照すると、信号多重部86は、マッピングにより生成した送信信号を送信部88へ出力する。送信信号を入力した送信部88は、送信信号に対して所定の処理を行ない、図示しないアンテナを通して送信信号を送信する。 
 (移動局)
 図10は、本発明の第3の実施形態による基地局の構成を示す概略図である。図示のとおり、移動局100は、受信部102と、分離部104と、MBMS信号復調・復号部106と、ユニキャスト信号復調・復号部108と、制御信号復調・復号部109を有している。
 受信部102は、基地局100から送信された送信信号を受信し、受信された信号に所定の処理を行って、処理された信号を分離部104へ出力する。
 分離部104は、受信部102から入力した信号をMBMS信号、ユニキャスト信号、およびL1/L2制御信号に分離する。また、分離部104は、MBMS信号をMBMS信号復調・復号部106へ出力し、ユニキャスト信号をユニキャスト信号復調・復号部108へ出力し、L1/L2制御信号を制御信号復調・復号部109へ出力する。
 制御信号復調・復号部109は、分離部104から入力した制御信号から、L1/L2制御情報に関する制御信号(下りリンクユニキャスト送信のための制御情報(MCS情報、送信割り当てユーザ情報など)、および上りリンク送信のためのフィードバック情報など)を取得し、取得した制御信号のうち、下りリンクユニキャスト送信のための制御情報をユニキャスト信号復調・復号部108とへ出力する。
 MBMS信号復調・復号部106は、分離部104から入力したMBMSチャネルに対して所定の処理を行ってMBMSチャネルを復調・復号する。
 ユニキャスト信号復調・復号部108は、制御信号復調・復号部109から入力した下りリンクのユニキャスト送信に関連したL1/L2制御情報を用いて、分離部104から入力したユニキャスト信号に対して所定の処理を行ってユニキャスト信号を復調・復号する。
 (周波数分割多重通信方法)
 次に、本発明の第3の実施形態によるMBMSチャネルとユニキャストチャネルの周波数分割多重通信方法を説明する。まず、MBMS信号生成部82にて、MBMSデータがOFDM変調され、変調により得られたOFDMシンボルに長いCPが付与されてMBMSチャネルが生成される。
 次に、ユニキャスト信号生成部84にて、ユニキャストデータがOFDM変調され、OFDMシンボルに長いCPが付与されて、ユニキャストチャネルが生成される。
 次に、L1/L2制御信号生成部85にて、上りリンク送信に対するフィードバック情報(ACK/NACK、スケジューリング情報、MCS情報など)、下りリンクユニキャスト送信のための制御情報(MCS情報、送信割り当てユーザ情報など)などのL1/L2制御信号が生成される。
 次に、MBMSチャネル、ユニキャストチャネル及びL1/L2制御信号がマッピングされて送信信号が生成される。そして、送信信号に対して所定の処理が行われて送信される。
 以上、第3の実施形態によれば、MBMSチャネルを送信する周波数帯域で送信されるL1/L2制御チャネルがユニキャストチャネルを送信する周波数帯域によって送信される。このため、MBMSチャネルを送信する周波数帯域のL1/L2制御チャネルを送信するシンボルを他の情報の送信に利用することができ、無線リソースを効率的に使用することが可能となる。
 <第4の実施形態>
 図11から図13を参照しながら、本発明の第4の実施形態を説明する。
 (基地局)
 図11は、本発明の第4の実施形態による基地局の構成を示す概略図である。図示のとおり、基地局110は、MBMS信号生成部112と、L1/L2制御信号生成部115と、信号多重部116と、送信部118とを有している。
 L1/L2制御信号生成部115は、上りリンク送信に対するフィードバック情報(ACK/NACK、スケジューリング情報、MCS情報など)などのL1/L2制御信号を生成し、その信号を信号多重部116へ出力する。
 MBMS信号生成部112は、図示しないバッファから入力したMBMSデータをOFDM変調するとともに、OFDMシンボルにCPを付与してMBMSチャネルを生成する。ここでは、MBMSチャネルには長いCPが挿入される。
 また、MBMS信号生成部112は、上述のように生成したMBMSチャネルを信号多重部116へ出力する。
 信号多重部116は、MBMS信号生成部112からMBMSチャネルを入力し、L1/L2制御信号生成部115からL1/L2制御情報に関する制御信号を入力する。信号多重部116は、入力したチャネル及び信号をマッピングして送信信号を生成する。図12は、この送信信号の一例を示す図である。図12を参照すると、一方のMBMSチャネルを送信する周波数帯域はL1/L2制御チャネルを有しているが、他方のMBMSチャネルを送信する周波数帯域のL1/L2制御チャネルに相当する部分には送信すべき情報は含まれていない。
 再び図11を参照すると、信号多重部116は、マッピングにより生成した送信信号を送信部118へ出力する。送信信号を入力した送信部118は、送信信号に対して所定の処理を行ない、図示しないアンテナを通して送信信号を送信する。
 (移動局)
 図13は、本発明の第3の実施形態による基地局の構成を示す概略図である。図示のとおり、移動局130は、受信部132と、分離部134と、MBMS信号復調・復号部136と、制御信号復調・復号部139とを有している。
 受信部132は、基地局110から送信された送信信号を受信し、受信された信号に所定の処理を行って、処理された信号を分離部134へ出力する。
 分離部134は、受信部132から入力した信号をMBMSチャネルおよび制御信号に分離する。また、分離部134は、MBMSチャネルをMBMS信号復調・復号部136へ出力し、制御信号を制御信号復調・復号部139へ出力する。
 制御信号復調・復号部139は、分離部134から入力した制御信号から、L1/L2制御情報に関する情報を取得する。
 MBMS信号復調・復号部136は、分離部134から入力したMBMSチャネルに対して所定の処理を行ってMBMSチャネルを復調・復号する。
 (送信方法)
 次に、本発明の第4の実施形態によるMBMSチャネル送信方法を説明する。 
 まず、L1/L2制御情報を送信する周波数帯域であるか否かが決定される。L1/L2制御情報を送信する周波数帯域の場合、MBMSデータとL1/L2制御チャネルとがOFDM変調されるとともに、OFDMシンボルにCPが付与されてMBMSチャネルが生成される。ここでは、MBMSチャネルに長いCPが挿入され、L1/L2制御チャネルに短いCPが挿入される。一方、L1/L2制御情報を送信する周波数帯域でない場合、MBMSデータがOFDM変調され、OFDMシンボルに長いCPが付与されてMBMSチャネルが生成される。
 続いて、MBMSチャネル、およびL1/L2制御チャネルがある場合はL1/L2制御チャネルをも含めて、マッピングが行われて送信信号が生成される。そして、マッピングにより生成された送信信号が、所定の処理を経た後、送信される。
 IMT-Advancedにおいては100MHzの周波数帯域幅の使用が許容されるが、この100MHzの幅は連続した周波数帯域の幅ではなく、幾つかの周波数帯域を合計した幅となる可能性がある(所謂、周波数アグリゲーション)。このような場合、MBMSチャネルを例えば2GHz帯と3GHz帯とで送信することがある。第4の実施形態による基地局110によれば、L1/L2制御信号生成部115によってL1/L2制御チャネルを送信する周波数帯域が指定されるため、例えば、L1/L2制御チャネルを2GHz帯で送信し、3GHz帯では送信しないようにすることができる。この場合、3GHz帯におけるL1/L2制御チャネルに対応する部分をMBMSデータの送信に使用することが可能となる。
 また、周波数アグリゲーションでなくとも、連続した100MHzの全周波数帯域中の2つの周波数帯域でMBMS信号を送信する場合がある。この場合でも、L1/L2制御チャネルを送信する周波数帯域が指定されるため、L1/L2制御チャネルを送信しない周波数帯域が生じる。このサブフレームのL1/L2制御チャネルに対応する部分をMBMSデータの送信に転用することが可能となる。
 したがって、無線リソースを有効に活用することができ、高速ビデオストリーミングなどのサービスをスムースに提供することが可能となる。
 以上、幾つかの実施形態を参照しながら本発明を説明したが、本発明は、上記の実施形態に限定されることなく、添付の特許請求の範囲に照らし種々の変更及び応用が可能である。例えば、第3の実施形態において、ユニキャストチャネルには第1の実施形態と同様に長いCPが挿入されたが、第2の実施形態と同様に短いCPを挿入するとともに、信号多重部86においてユニキャストチャネルとMBMSチャネルの間にガードバンドを付与しても良い。
 また、第4の実施形態を第3の実施形態に適用しても良い。すなわち、第3の実施形態ではMBMSチャネルを送信する周波数帯域で送信されるべきL1/L2制御チャネルをユニキャストチャネルを送信する周波数帯域で送信していたが、当該L1/L2制御チャネルをユニキャストチャネルを送信する周波数帯域で送信するのではなく、MBMSチャネルを送信するN個の周波数帯域のうちの1個以上N個未満の周波数帯域を使用してL1/L2制御チャネルを送信しても良い。これによっても、情報を含まないL1/L2制御チャネルの周波数帯域が生じるため、これを他の情報(例えば、MBMSデータ)の送信に利用することができる。
 さらに、本発明の実施形態による周波数分割多重通信方法を幾つか例示したが、各ステップ(又は手順)は、上述のとおりの順番で行われる必要はなく、順番を入れ換えて良い又は同時に行われて良いステップがあることは当業者にとって明らかである。
 また、上記の説明では、本発明の基地局、移動局及び周波数分割多重通信方法は、IMT-Advancedに特に効果的と述べたが、無線リソースの効率的な活用はIMT-AdvancedだけでなくLTEにおいても実現できるため、本発明の実施形態をLTEシステムにおいて実施して良いことは勿論である。さらに、MBMS通信として、所謂MBSFNを中心に説明したが、シングルセルMBMSの場合であっても、挿入されるCPの長さが異なる複数のチャネルを周波数分割多重する場合にも本発明を適用し得る。
 本国際出願は2008年4月28日に出願された日本国特許出願2008-117877号に基づく優先権を主張するものであり、2008-117877号の全内容をここに援用する。
 10,50,80,110 基地局
 12,112 MBMS信号生成部
 14,54,84 ユニキャスト信号生成部
 16,56 FDM多重部
 18,88,118 送信部
 85,115 制御信号生成部
 30,100,130 移動局
 32,102,132 受信部
 34,104,134 分離部
 36,106,136 MBMS信号復調復号部
 38,108 ユニキャスト信号復調復号部
 109,139 制御信号復調復号部

Claims (11)

  1.  複数の移動局に対して送信される第1のデータを送信するための第1のチャネルと、一の移動局に対して送信される第2のデータを送信するための第2のチャネルとを、周波数分割多重するよう構成される多重部を備える基地局。
  2.  前記第1のチャネルを生成する第1の信号生成部であって、前記第1のデータを含む第1のチャネルに第1の巡回プレフィックスを挿入する当該第1の信号生成部と、
     前記第2のチャネルを生成する第2の信号生成部であって、前記第2のデータを含む第2のチャネルに前記第1の巡回プレフィックスと同じ長さの第2の巡回プレフィックスを挿入する当該第2の信号生成部と、
     を更に備える、請求項1に記載の基地局。
  3.  前記第2のチャネルを生成する第3の信号生成部であって、前記第2のチャネルと前記第1のチャネルとの間にガードバンドを挿入する当該第3の信号生成部を更に備える、請求項1に記載の基地局。
  4.  前記第2のチャネルを送信するための周波数帯域に、前記第1のチャネルを送信するための周波数帯域に多重されるべきL1/L2制御チャネルが多重される、請求項1から3のいずれか一項に記載の基地局。
  5.  請求項1から4のいずれか一項に記載の基地局と通信を行う移動局であって、
     周波数分割多重された前記第1のチャネル及び前記第2のチャネルを分離する分離部を備える移動局。
  6.  複数の移動局に対して送信される第1のデータを送信するための第1のチャネルを生成するステップと、
     一の移動局に対して送信される第2のデータを送信するための第2のチャネルを生成するステップと、
     前記第1のチャネルと前記第2のチャネルとを周波数分割多重するステップと、
     を有する周波数分割多重通信方法。
  7.  前記第1のチャネルを生成するステップが、前記第1のチャネルに第1の巡回プレフィックスを挿入するステップを含み、
     前記第2のチャネルを生成するステップが、前記第2のチャネルに前記第1の巡回プレフィックスと同じ長さの第2の巡回プレフィックスを挿入するステップを含む、請求項6に記載の周波数分割多重通信方法。
  8.  前記第2のチャネルを生成するステップが、前記第2のチャネルと前記第1のチャネルとの間にガードバンドを挿入するステップを含む、請求項6に記載の周波数分割多重通信方法。
  9.  N個の周波数帯域を使用して複数の移動局に対して送信されるデータを送信する基地局であって、
     前記データを送信するため前記N個の周波数帯域のそれぞれを使用して送信されるN個の周波数帯域のなかから、L1/L2制御チャネルが多重される1個以上N個未満の周波数帯域を指定する制御信号を生成する制御信号生成部と、
     前記制御信号に応じて、前記データを含むチャネルを生成する信号生成部と、
     を備える基地局。
  10.  請求項9に記載の基地局と通信を行う移動局であって、
     前記基地局からの信号を受信する受信部と、
     前記受信部から入力した受信信号を分離して、前記1個以上N個未満の周波数帯域を特定する特定情報を抽出する分離部と、
     前記分離部から入力した前記特定情報に基づいて、前記L1/L2制御チャネルに含まれる情報を取得するデータ復調復号部と、
     を備える移動局。
  11.  N個の周波数帯域を使用して複数の移動局に対して送信されるデータを送信する周波数分割多重通信方法であって、
     前記データを送信するために使用される前記N個の周波数帯域のなかから、L1/L2制御チャネルが多重される1個以上N個未満の周波数帯域を指定するステップと、
     前記制御信号に応じて、前記データを含むサブフレームを生成するステップと、
     を有する周波数分割多重通信方法。
PCT/JP2009/057694 2008-04-28 2009-04-16 基地局、移動局及び周波数分割多重通信方法 WO2009133775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/989,577 US8570966B2 (en) 2008-04-28 2009-04-16 Base station, mobile station and frequency division multiplexing communication method
EP09738712.0A EP2280564A4 (en) 2008-04-28 2009-04-16 Base station, mobile station, and frequency-division multiplex communication method
CN200980123901.7A CN102067637B (zh) 2008-04-28 2009-04-16 基站、移动台以及频分复用通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008117877A JP5188870B2 (ja) 2008-04-28 2008-04-28 基地局、移動局及び周波数分割多重通信方法
JP2008-117877 2008-04-28

Publications (1)

Publication Number Publication Date
WO2009133775A1 true WO2009133775A1 (ja) 2009-11-05

Family

ID=41254994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057694 WO2009133775A1 (ja) 2008-04-28 2009-04-16 基地局、移動局及び周波数分割多重通信方法

Country Status (6)

Country Link
US (1) US8570966B2 (ja)
EP (1) EP2280564A4 (ja)
JP (1) JP5188870B2 (ja)
KR (1) KR20110007611A (ja)
CN (1) CN102067637B (ja)
WO (1) WO2009133775A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101543018B (zh) 2007-01-12 2012-12-26 庆熙大学校产学协力团 网络提取层单元的分组格式、使用该格式的视频编解码算法和装置以及使用该格式进行IPv6标签交换的QoS控制算法和装置
JP5146532B2 (ja) * 2008-05-09 2013-02-20 富士通株式会社 移動体通信システム、移動体通信方法、送信装置および受信装置
JP2010041687A (ja) 2008-08-08 2010-02-18 Fujitsu Ltd 無線通信装置および無線通信制御方法
WO2012058815A1 (en) * 2010-11-05 2012-05-10 Nokia Siemens Networks Oy Configuration uncertainty
US9107186B2 (en) 2011-02-23 2015-08-11 Qualcomm Incorporated Carrier aggregation for evolved multimedia broadcast multicast service enhancement
US9160592B2 (en) * 2011-02-23 2015-10-13 Qualcomm Incorporated System and method for single carrier optimization for evolved multimedia broadcast multicast service
US20130163501A1 (en) * 2011-12-22 2013-06-27 Qualcomm Incorporated Flexible cyclic prefix management
US11855818B1 (en) * 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
US20150350284A1 (en) * 2014-05-27 2015-12-03 Acer Incorporated Method of Enhancement of Data Transmission in Multimedia Service
US20180062801A1 (en) * 2016-08-24 2018-03-01 Qualcomm Incorporated Techniques for wireless communications in coordinated multi-point operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052921A1 (en) * 2005-10-31 2007-05-10 Lg Electronics Inc. Data receiving method for mobile communication terminal
JP2007194867A (ja) * 2006-01-18 2007-08-02 Ntt Docomo Inc 送信装置及び送信方法
JP2007221277A (ja) * 2006-02-14 2007-08-30 Ntt Docomo Inc 送信装置及び送信方法
JP2007300192A (ja) * 2006-04-27 2007-11-15 Kyocera Corp 移動体通信システム、基地局装置及び移動体通信システムの周波数割当方法
JP2008117877A (ja) 2006-11-02 2008-05-22 Sumitomo Heavy Ind Ltd レーザアニール装置、アニール方法、及び溶融深さ測定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100539462C (zh) * 2004-04-05 2009-09-09 北方电讯网络有限公司 用于支持正交频分复用应用中的多输入多输出传输的方法
US7894818B2 (en) * 2005-06-15 2011-02-22 Samsung Electronics Co., Ltd. Apparatus and method for multiplexing broadcast and unicast traffic in a multi-carrier wireless network
CN1941687A (zh) * 2005-09-29 2007-04-04 华为技术有限公司 广播业务信道与非广播业务信道的复用方法
EP1933489A1 (en) * 2005-10-07 2008-06-18 Matsushita Electric Industrial Co., Ltd. Wireless communication base station device and pilot transmitting method
WO2007074371A2 (en) * 2005-12-27 2007-07-05 Nokia Corporation Apparatus, method and computer program product providing frequency domain multiplexed multicast and unicast transmissions
KR101333918B1 (ko) * 2006-01-05 2013-11-27 엘지전자 주식회사 이동 통신 시스템의 점-대-다 서비스 통신
JP4447575B2 (ja) * 2006-05-01 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ 送信装置及び送信方法
JP4767768B2 (ja) * 2006-06-19 2011-09-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局及び基地局で使用される方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052921A1 (en) * 2005-10-31 2007-05-10 Lg Electronics Inc. Data receiving method for mobile communication terminal
JP2007194867A (ja) * 2006-01-18 2007-08-02 Ntt Docomo Inc 送信装置及び送信方法
JP2007221277A (ja) * 2006-02-14 2007-08-30 Ntt Docomo Inc 送信装置及び送信方法
JP2007300192A (ja) * 2006-04-27 2007-11-15 Kyocera Corp 移動体通信システム、基地局装置及び移動体通信システムの周波数割当方法
JP2008117877A (ja) 2006-11-02 2008-05-22 Sumitomo Heavy Ind Ltd レーザアニール装置、アニール方法、及び溶融深さ測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2280564A4

Also Published As

Publication number Publication date
KR20110007611A (ko) 2011-01-24
CN102067637A (zh) 2011-05-18
EP2280564A1 (en) 2011-02-02
JP2009267988A (ja) 2009-11-12
US20110103366A1 (en) 2011-05-05
EP2280564A4 (en) 2017-11-01
CN102067637B (zh) 2014-09-24
JP5188870B2 (ja) 2013-04-24
US8570966B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
JP5188870B2 (ja) 基地局、移動局及び周波数分割多重通信方法
EP2109338B1 (en) Indicating the frame offset of Multicast Broadcast Service data bursts in an MBS-MAP message
EP1764934B1 (en) Method for generating a frame in an orthogonal frequency division multiple access communication system
EP2424132B1 (en) Apparatus supporting an mbms service
US8724613B2 (en) Method and device for service time division multiplexing
US20080101270A1 (en) Enhanced multicast broadcast multimedia service
USRE43627E1 (en) Apparatus and method for multiplexing packets for broadcast services in a mobile communication system based on orthogonal frequency division multiplexing
US10172054B2 (en) Communication control method and user terminal
CN101529744A (zh) 具有可变尺寸循环前缀的无线通信系统帧结构
JP5199310B2 (ja) Mbms動的スケジューリング情報を処理する方法および装置
EP2403179B1 (en) Method and system for assigning carriers to a mobile station
US20080049697A1 (en) Method and Radio Communication System for Transmitting User Information as a Service to Several User Stations
WO2018084200A1 (ja) 移動通信方法、ユーザ端末及び装置
TWI472250B (zh) 傳輸資料的方法及主要站
US8780781B2 (en) Method and apparatus for receiving multicast and broadcast service in a broadband wireless communication system
CN109167842B (zh) 基于混合广播模式的内容分发和推送业务服务系统及方法
JP7425259B2 (ja) 通信制御方法及び基地局
KR101579752B1 (ko) 이동통신 시스템에서 멀티미디어 방송 서비스의 제어 메시지를 송수신하는 방법 및 장치
WO2010094194A1 (zh) 单播业务控制信息的发送方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123901.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009738712

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107026107

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12989577

Country of ref document: US