WO2009133707A1 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
WO2009133707A1
WO2009133707A1 PCT/JP2009/001954 JP2009001954W WO2009133707A1 WO 2009133707 A1 WO2009133707 A1 WO 2009133707A1 JP 2009001954 W JP2009001954 W JP 2009001954W WO 2009133707 A1 WO2009133707 A1 WO 2009133707A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
power module
during
heating operation
heat
Prior art date
Application number
PCT/JP2009/001954
Other languages
French (fr)
Japanese (ja)
Inventor
吉本昭雄
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2009133707A1 publication Critical patent/WO2009133707A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Definitions

  • the present invention relates to a heat pump device.
  • the air conditioning performance is improved by inverter control of the compressor.
  • electrical components such as a power module that constitutes a switching element and the like, an electrolytic capacitor, a reactor, and an IC for a control circuit are mounted.
  • the heat-resistant temperature is relatively low, and it is easily damaged by heat.
  • the reason for exchanging heat between the power module and the refrigerant only during the heating operation is that the exhaust heat of the power module is absorbed by the refrigerant during the heating operation and the heating capacity is improved, but the power module is exhausted during the cooling operation. This is because the cooling capacity is lowered due to the heat, and the cooling capacity is lowered, and the air conditioning capacity in the total cooling and heating is hardly changed or lowered.
  • the present invention has been made in view of such points, and an object thereof is to increase the heat exchange amount during heating operation while sufficiently securing the cooling capacity of the power module.
  • the present invention cools the power module by exchanging heat with the refrigerant during cooling operation and heating operation, and also provides an electrolytic capacitor, a reactor, and an IC for a control circuit that are heat sources other than the power module. Etc. so as to exchange heat with the refrigerant.
  • the present invention relates to a refrigerant circuit (10) for performing a refrigeration cycle by circulating a refrigerant, and a power module (for controlling driving of a refrigeration apparatus (20) connected to the refrigerant circuit (10)).
  • a control device 60
  • a control device 60
  • a heat pump device capable of switching between a cooling operation and a heating operation by changing the refrigerant circulation direction. Took.
  • heat exchange is performed only between the main cooling mechanism (11) for cooling the power module (62), the refrigerant flowing through the refrigerant circuit (10), and the electrical component (63) during heating operation. And a sub-cooling mechanism (15) for cooling the electrical component (63).
  • the power module (62) is cooled by the main cooling mechanism (11), while the refrigerant flowing through the refrigerant circuit (10) and the electrical component (63) are heat-exchanged only during the heating operation. For this reason, in both the cooling operation and the heating operation, the power module (62) can be sufficiently cooled to suppress the occurrence of breakage or thermal runaway due to heat, thereby ensuring reliability.
  • the electrical components (63) such as electrolytic capacitors, reactors, and ICs for control circuits, which are heat sources other than the power module (62), are exchanged with refrigerant, so that the electrical components (63) can be discharged. Heat can be used to heat the refrigerant to increase the amount of heat exchange during heating operation, thereby improving the heating capacity.
  • the main cooling mechanism (11) exchanges heat between the refrigerant flowing through the refrigerant circuit (10) and the power module (62) during cooling operation and heating operation. And the power module (62) is cooled.
  • the main cooling mechanism (11) exchanges heat between the refrigerant flowing through the refrigerant circuit (10) and the power module (62) during the cooling operation and the heating operation so that the power module (62) To be cooled. For this reason, at the time of cooling operation and heating operation, the power module (62) can be sufficiently cooled by the refrigerant, and it is possible to ensure reliability by suppressing occurrence of breakage or thermal runaway due to heat.
  • the sub-cooling mechanism (15) is connected to a main refrigerant pipe (11) constituting the refrigerant circuit (10) and the electrical component (63) is
  • the attached bypass pipe (12) and the bypass pipe (12) are attached to the bypass pipe (12) and block the refrigerant flow in the bypass pipe (12) during the cooling operation, while the refrigerant in the bypass pipe (12) flows during the heating operation.
  • a bypass control valve (14) that permits distribution is provided.
  • the electrical component (63) is attached to the bypass pipe (12) connected by bypass to the main refrigerant pipe (11).
  • a bypass control valve (14) is connected to the bypass pipe (12), and the refrigerant flow in the bypass pipe (12) is blocked during cooling operation, while the refrigerant flow in the bypass pipe (12) is blocked during heating operation. Allowed.
  • this bypass control valve (14) can be comprised by the non-return valve which can distribute
  • the refrigerant is allowed to flow during the cooling operation, while during the heating operation.
  • the main control valve (13) for blocking the refrigerant flow and flowing the refrigerant through the bypass pipe (12) is provided.
  • the main control valve (13) is attached between the connecting portions at both ends of the bypass pipe (12) in the main refrigerant pipe (11).
  • the main control valve (13) allows the refrigerant to flow during the cooling operation, while interrupting the refrigerant flow during the heating operation and allows the refrigerant to flow through the bypass pipe (12). For this reason, at the time of heating operation, all the refrigerants flowing through the main refrigerant pipe (11) flow into the bypass pipe (12), and the refrigerant at the time of heating operation is further heated to improve the heating capacity.
  • the main control valve (13) can be composed of a check valve that can circulate the refrigerant only in one direction, an electromagnetic valve that can be opened and closed in accordance with an air conditioning operation, and the like.
  • the fifth invention is such that in any one of the first to fourth inventions, the electrical component (63) includes at least a reactor.
  • the electrical component (63) includes at least a reactor. For this reason, at the time of heating operation, a refrigerant
  • coolant can be heated using the exhaust heat of a reactor with big emitted-heat amount, the heat exchange amount at the time of heating operation can be increased, and heating capacity improves.
  • the power module (62) can be sufficiently cooled with the refrigerant to suppress the occurrence of breakage due to heat or the occurrence of thermal runaway, thereby ensuring reliability.
  • the electrical components (63) such as electrolytic capacitors, reactors, and ICs for control circuits, which are heat sources other than the power module (62), are exchanged with the refrigerant, thereby discharging the electrical components (63). Heat can be used to heat the refrigerant to increase the amount of heat exchange during heating operation, thereby improving the heating capacity.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigerant flow direction during cooling operation of the heat pump device according to the embodiment of the present invention.
  • FIG. 2 is a refrigerant circuit diagram illustrating the flow direction of the refrigerant during the heating operation.
  • FIG. 3 is a refrigerant circuit diagram showing a part of the vicinity of the mounting portion of the electrical component in an enlarged manner.
  • the heat pump device constitutes an air conditioner (1) that performs switching between indoor cooling and heating.
  • FIG. 1 is a refrigerant circuit diagram showing the refrigerant flow direction during the cooling operation of the heat pump device
  • FIG. 2 is a refrigerant circuit diagram showing the refrigerant distribution direction during the heating operation.
  • the air conditioner (1) includes a refrigerant circuit (10) in which a refrigerant circulates and a vapor compression refrigeration cycle is performed.
  • the refrigerant circuit (10) is filled with fluorocarbon as a refrigerant.
  • a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  • the main refrigerant pipe (11) constituting the refrigerant circuit (10) includes a compressor (20) as a refrigeration device, an indoor heat exchanger (21), an expansion valve (22), and an outdoor heat exchanger (23 ) And a four-way selector valve (24).
  • a bypass pipe (12) is connected between the expansion valve (22) and the outdoor heat exchanger (23) in the main refrigerant pipe (11).
  • the compressor (20) is a positive displacement compressor and includes a hollow and sealed casing (30).
  • the suction pipe (11b) is connected to the lower side of the casing (30), and the discharge pipe (11a) is connected to the top plate of the casing (30).
  • the discharge pipe (11a) penetrates the top plate of the casing (30) up and down, and the lower end thereof opens into the internal space of the casing (30).
  • the casing (30) is made of a metal material such as iron.
  • the compressor (20) of the present embodiment constitutes a so-called high pressure dome type compressor in which the internal space of the casing (30) is filled with a high pressure refrigerant.
  • the compressed refrigerant is sent out to the four-way switching valve (24) via the discharge pipe (11a) provided on the discharge side of the compressor (20).
  • the four-way selector valve (24) has four ports from first to fourth.
  • the four-way switching valve (24) has a first port on the discharge side of the compressor (20), a second port on the indoor heat exchanger (21), a third port on the suction side of the compressor (20), The fourth port is connected to the outdoor heat exchanger (23).
  • the four-way selector valve (24) is connected to the first port and the fourth port as shown in FIG. 1 and at the same time the second port and the third port are connected, and as shown in FIG. At the same time when the second port is connected, the setting is switched to the state where the third port and the fourth port are connected.
  • the indoor heat exchanger (21) is installed indoors and is composed of a fin-and-tube heat exchanger. In the indoor heat exchanger (21), heat is exchanged between the refrigerant and the room air.
  • the outdoor heat exchanger (23) is installed outdoors and is configured by a fin-and-tube heat exchanger. In the outdoor heat exchanger (23), heat is exchanged between the refrigerant and the outdoor air.
  • the expansion valve (22) is a pressure reducing mechanism that depressurizes the refrigerant, and is configured by, for example, an electronic expansion valve.
  • the compressor (20) includes an inverter device (60) as a control device for driving and controlling the drive motor.
  • the inverter device (60) includes a power module (62) composed of a silicon carbide (SiC) element, a silicon (Si) element, etc. constituting a switching element, and an electrical component such as an electrolytic capacitor, a reactor, and an IC for a control circuit.
  • Product (63) is a silicon carbide (SiC) element, a silicon (Si) element, etc. constituting a switching element, and an electrical component such as an electrolytic capacitor, a reactor, and an IC for a control circuit.
  • the power module (62) and the electrical component (63) are connected via a signal line and a power line (not shown) so that signals can be transmitted / received and power can be transmitted to each other. Further, the power module (62) and the compressor (20) are connected via an output line (not shown) so that drive control of the drive motor is performed based on a control signal output from the power module (62). It has become.
  • the power module (62) is attached to a main refrigerant pipe (11) between the expansion valve (22) and the outdoor heat exchanger (23).
  • the power module (62) has its mounting surface facing the main refrigerant pipe (11) side, and the expansion valve (22) of the main refrigerant pipe (11) through the heat transfer member (64). It is attached to the position. Therefore, the main refrigerant pipe (11) constitutes a main cooling mechanism for cooling the power module (62).
  • the main refrigerant pipe (11) is a cylindrical pipe
  • the power module (62) when the power module (62) is brought into direct contact with the main refrigerant pipe (11), the main refrigerant is partially included in the chip area.
  • the shape of the heat transfer member (64) is an arc shape corresponding to the outer shape of the main refrigerant pipe (11). Since the power module (62) side is flat, the entire chip surface is in close contact with the main refrigerant pipe (11), which is advantageous in improving heat exchange efficiency.
  • the electrical component (63) is attached to the bypass pipe (12) via the heat transfer member (64).
  • the bypass pipe (12) has a bypass control valve (14) that blocks the flow of the refrigerant in the bypass pipe (12) during the cooling operation and permits the refrigerant in the bypass pipe (12) during the heating operation. It is attached.
  • the subcooling mechanism (15) which cools an electrical component (63) by the said bypass piping (12) and a bypass control valve (14) is comprised.
  • the refrigerant flow is interrupted during the heating operation and the bypass pipe (12 ) Is provided with a main control valve (13) for circulating the refrigerant.
  • bypass control valve (14) and the main control valve (13) are constituted by check valves, but are not limited to this form, and are constituted by, for example, electromagnetic valves or expansion valves. You may do it.
  • the air conditioner (1) can perform a cooling operation and a heating operation.
  • the inverter device (60) drives the drive motor of the compressor (20) to expand and contract the volume of the compression chamber, and the compression mechanism performs the refrigerant compression operation.
  • the four-way switching valve (24) is in the state shown in FIG. Further, the opening degree of the expansion valve (22) is appropriately adjusted.
  • the refrigerant compressed by the compressor (20) becomes high-pressure refrigerant, flows through the discharge pipe (11a), and flows through the outdoor heat exchanger (23) via the four-way switching valve (24). In the outdoor heat exchanger (23), the refrigerant radiates heat to the outdoor air.
  • the refrigerant that has radiated heat in the outdoor heat exchanger (23) flows toward the expansion valve (22) through the main control valve (13).
  • the power module (62) is attached to the main refrigerant pipe (11) between the outdoor heat exchanger (23) and the expansion valve (22), the heat generated in the power module (62) Then, it is given to the high-pressure refrigerant flowing through the main refrigerant pipe (11) via the heat transfer member (64). As a result, the power module (62) is cooled.
  • the refrigerant that has radiated heat in the outdoor heat exchanger (23) is depressurized when passing through the expansion valve (22) and flows through the indoor heat exchanger (21).
  • the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled.
  • the refrigerant evaporated in the indoor heat exchanger (21) is sucked into the compression mechanism of the compressor (20) through the suction pipe (11b).
  • the four-way selector valve (24) is in the state shown in FIG. Further, the opening degree of the expansion valve (22) is appropriately adjusted.
  • the refrigerant compressed by the compressor (20) becomes high-pressure refrigerant, flows through the discharge pipe (11a), and flows through the indoor heat exchanger (21) via the four-way switching valve (24).
  • the indoor heat exchanger (21) the refrigerant radiates heat to the indoor air. As a result, the room is heated.
  • the refrigerant after radiating heat in the indoor heat exchanger (21) is depressurized when passing through the expansion valve (22).
  • the heat generated in the power module (62) is applied to the refrigerant flowing through the main refrigerant pipe (11) via the heat transfer member (64). As a result, the power module (62) is cooled.
  • the refrigerant to which the exhaust heat of the power module (62) is given flows through the bypass pipe (12). .
  • the heat generated in the electrical component (63) is applied to the refrigerant flowing through the bypass pipe (12) via the heat transfer member (64).
  • the electrical component (63) is cooled.
  • the refrigerant to which the exhaust heat of the electrical component (63) is applied flows through the outdoor heat exchanger (23) through the bypass control valve (14).
  • the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (23) is sucked into the compression mechanism of the compressor (20) through the suction pipe (11b).
  • heat exchange is performed between the refrigerant flowing through the main refrigerant pipe (11) and the power module (62) during the cooling operation and the heating operation.
  • the power module (62) can be sufficiently cooled with the refrigerant to suppress the occurrence of breakage or thermal runaway due to heat, thereby ensuring reliability.
  • the electric components (63) such as an electrolytic capacitor, a reactor, and an IC for a control circuit, which are heat sources other than the power module (62), and the refrigerant flowing through the bypass pipe (12).
  • the electric components (63) such as an electrolytic capacitor, a reactor, and an IC for a control circuit, which are heat sources other than the power module (62)
  • the refrigerant flowing through the bypass pipe (12) since the refrigerant is heated using the exhaust heat of the electrical component (63) and the amount of heat exchange during the heating operation can be increased, the heating capacity is improved.
  • the main control valve (13) is installed between the connection ends of the bypass pipe (12) in the main refrigerant pipe (11) to allow the refrigerant to flow during the cooling operation, while blocking the refrigerant flow during the heating operation. Then, all the refrigerants flowing through the main refrigerant pipe (11) flow into the bypass pipe (12).
  • the present invention is not limited to this mode. For example, as shown in FIG. Without attaching the main control valve (13) to 11), only the bypass control valve (14) is attached to the bypass pipe (12), and part of the refrigerant flowing through the main refrigerant pipe (11) can be removed during heating operation. You may make it branch to a bypass piping (12), heat-exchange the refrigerant
  • the present invention is applied to a rotary type compressor.
  • the present invention may be applied to, for example, a scroll type compressor, a swing swing type compressor, and other types of compressors.
  • the present invention is extremely useful because it provides a highly practical effect that the amount of heat exchange during heating operation can be increased while sufficiently securing the cooling capacity of the power module. Industrial applicability is high.
  • Air conditioner heat pump device
  • Refrigerant circuit 11
  • Main refrigerant piping main cooling mechanism
  • Bypass piping 13
  • Main control valve 14
  • Sub cooling mechanism 20
  • Compressor refrigeration equipment
  • Inverter device control device
  • Power module 63 Electrical components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air-conditioning device (1) is provided with a main refrigerant piping (11) that constitutes a refrigerant circuit (10) and with a bypass piping (12) that is connected to the main refrigerant piping (11) and whereon electrical equipment (63) is mounted. Bypass control valve (14) blocks passage of refrigerant in the bypass piping (12) during a cooling operation, while allowing the passage of refrigerant during a heating operation, and allowing heat exchange between the electrical equipment (63) and refrigerant passing through the refrigerant circuit (10) only during the heating operation.

Description

ヒートポンプ装置Heat pump equipment
  本発明は、ヒートポンプ装置に関するものである。 The present invention relates to a heat pump device.
  従来より、ヒートポンプ装置等の冷媒回路を用いた空気調和装置では、圧縮機をインバータ制御することで空調性能の向上を図っている。ここで、圧縮機をインバータ制御するインバータ装置の回路基板には、スイッチング素子等を構成するパワーモジュールや、電解コンデンサ、リアクトル、制御回路用のIC等の電装品が実装され、このパワーモジュールは、例えばシリコン素子等で形成されるため、耐熱温度が比較的低く、熱による破損を招き易い。 Conventionally, in an air conditioner using a refrigerant circuit such as a heat pump device, the air conditioning performance is improved by inverter control of the compressor. Here, on the circuit board of the inverter device that controls the inverter with an inverter, electrical components such as a power module that constitutes a switching element and the like, an electrolytic capacitor, a reactor, and an IC for a control circuit are mounted. For example, since it is formed of a silicon element or the like, the heat-resistant temperature is relatively low, and it is easily damaged by heat.
  そこで、特許文献1に記載の空気調和装置では、発熱したパワーモジュールを冷却する方法として、空気調和装置の冷媒回路にパワーモジュールを密接させて熱交換を行うことが開示されている。具体的に、冷媒回路にバイパス路を設けてバイパス路にパワーモジュールを密接させ、このバイパス路に逆止弁を接続して暖房運転時のみにパワーモジュールと冷媒とを熱交換させることで、パワーモジュールを冷却するとともに、パワーモジュールの排熱を利用して冷媒を加熱し、暖房運転時の熱交換量を増大することができるようにしている。 Therefore, in the air conditioner described in Patent Document 1, it is disclosed that heat exchange is performed by bringing the power module into close contact with the refrigerant circuit of the air conditioner as a method of cooling the generated power module. Specifically, a bypass path is provided in the refrigerant circuit, the power module is in close contact with the bypass path, and a check valve is connected to the bypass path to exchange heat between the power module and the refrigerant only during heating operation. While cooling a module, the refrigerant | coolant is heated using the exhaust heat of a power module so that the heat exchange amount at the time of heating operation can be increased.
  ここで、暖房運転時にのみパワーモジュールと冷媒とを熱交換させている理由は、暖房運転時はパワーモジュールの排熱が冷媒に吸収されて暖房能力が向上するが、冷房運転時にはパワーモジュールの排熱で冷媒が高温となって冷房能力が低下し、冷暖房トータルでの空調能力がほとんど変化しないか又は低下するからである。 Here, the reason for exchanging heat between the power module and the refrigerant only during the heating operation is that the exhaust heat of the power module is absorbed by the refrigerant during the heating operation and the heating capacity is improved, but the power module is exhausted during the cooling operation. This is because the cooling capacity is lowered due to the heat, and the cooling capacity is lowered, and the air conditioning capacity in the total cooling and heating is hardly changed or lowered.
特開2002-156149号公報JP 2002-156149 A
  しかしながら、従来の空気調和装置では、暖房運転時にのみパワーモジュールと冷媒との熱交換が行われるから、冷房運転時にはパワーモジュールの冷媒冷却が行われずにヒートシンクによる空気冷却のみが行われることとなり、パワーモジュールの冷却効率が低下してしまう。このように、パワーモジュールが高温状態となると、熱による破損や熱暴走が生じる等、装置の信頼性に影響があるため、冷房運転時及び暖房運転時においてパワーモジュールを十分に冷却する必要がある。 However, in the conventional air conditioner, heat exchange between the power module and the refrigerant is performed only during the heating operation. Therefore, during the cooling operation, only the air cooling by the heat sink is performed without cooling the refrigerant of the power module. The cooling efficiency of the module will be reduced. As described above, when the power module is in a high temperature state, the reliability of the apparatus is affected, such as breakage due to heat or thermal runaway. Therefore, it is necessary to sufficiently cool the power module during the cooling operation and the heating operation. .
  本発明は、かかる点に鑑みてなされたものであり、その目的は、パワーモジュールの冷却能力を十分に確保しつつ、暖房運転時の熱交換量を増大することにある。 The present invention has been made in view of such points, and an object thereof is to increase the heat exchange amount during heating operation while sufficiently securing the cooling capacity of the power module.
  上述した目的を達成するため、本発明では、冷房運転時及び暖房運転時にパワーモジュールを冷媒と熱交換させて冷却するとともに、パワーモジュール以外の発熱源である電解コンデンサ、リアクトル、制御回路用のIC等の電装品を冷媒と熱交換させるようにした。 In order to achieve the above-described object, the present invention cools the power module by exchanging heat with the refrigerant during cooling operation and heating operation, and also provides an electrolytic capacitor, a reactor, and an IC for a control circuit that are heat sources other than the power module. Etc. so as to exchange heat with the refrigerant.
  具体的に、本発明は、冷媒を循環させて冷凍サイクルを行うための冷媒回路(10)と、該冷媒回路(10)に接続された冷凍機器(20)を駆動制御するためのパワーモジュール(62)及び電装品(63)を有する制御装置(60)とを備え、冷媒の循環方向を変更することで冷房運転と暖房運転とを切り替え可能なヒートポンプ装置を対象とし、次のような解決手段を講じた。 Specifically, the present invention relates to a refrigerant circuit (10) for performing a refrigeration cycle by circulating a refrigerant, and a power module (for controlling driving of a refrigeration apparatus (20) connected to the refrigerant circuit (10)). 62) and a control device (60) having an electrical component (63), and a heat pump device capable of switching between a cooling operation and a heating operation by changing the refrigerant circulation direction. Took.
  すなわち、第1の発明は、前記パワーモジュール(62)を冷却する主冷却機構(11)と、前記冷媒回路(10)を流通する冷媒と前記電装品(63)とを暖房運転時にのみ熱交換させて前記電装品(63)を冷却する副冷却機構(15)とを備えている。 That is, in the first invention, heat exchange is performed only between the main cooling mechanism (11) for cooling the power module (62), the refrigerant flowing through the refrigerant circuit (10), and the electrical component (63) during heating operation. And a sub-cooling mechanism (15) for cooling the electrical component (63).
  第1の発明では、主冷却機構(11)によってパワーモジュール(62)が冷却される一方、冷媒回路(10)を流通する冷媒と電装品(63)とが暖房運転時にのみ熱交換される。このため、冷房運転時及び暖房運転時の双方において、パワーモジュール(62)を十分に冷却して熱による破損や熱暴走が生じることを抑制して信頼性を確保することができる。また、暖房運転時に、パワーモジュール(62)以外の発熱源である電解コンデンサ、リアクトル、制御回路用のIC等の電装品(63)を冷媒と熱交換させることで、電装品(63)の排熱を利用して冷媒を加熱し、暖房運転時の熱交換量を増大させることができ、暖房能力が向上する。 In the first invention, the power module (62) is cooled by the main cooling mechanism (11), while the refrigerant flowing through the refrigerant circuit (10) and the electrical component (63) are heat-exchanged only during the heating operation. For this reason, in both the cooling operation and the heating operation, the power module (62) can be sufficiently cooled to suppress the occurrence of breakage or thermal runaway due to heat, thereby ensuring reliability. In addition, during heating operation, the electrical components (63) such as electrolytic capacitors, reactors, and ICs for control circuits, which are heat sources other than the power module (62), are exchanged with refrigerant, so that the electrical components (63) can be discharged. Heat can be used to heat the refrigerant to increase the amount of heat exchange during heating operation, thereby improving the heating capacity.
  第2の発明は、第1の発明において、前記主冷却機構(11)は、冷房運転時及び暖房運転時に、前記冷媒回路(10)を流通する冷媒と前記パワーモジュール(62)とを熱交換させて前記パワーモジュール(62)を冷却するように構成されたものである。 In a second aspect based on the first aspect, the main cooling mechanism (11) exchanges heat between the refrigerant flowing through the refrigerant circuit (10) and the power module (62) during cooling operation and heating operation. And the power module (62) is cooled.
  第2の発明では、主冷却機構(11)によって、冷房運転時及び暖房運転時に、冷媒回路(10)を流通する冷媒とパワーモジュール(62)とが熱交換して該パワーモジュール(62)が冷却される。このため、冷房運転時及び暖房運転時に、パワーモジュール(62)を十分に冷媒冷却することができ、熱による破損や熱暴走が生じることを抑制して信頼性を確保することができる。 In the second invention, the main cooling mechanism (11) exchanges heat between the refrigerant flowing through the refrigerant circuit (10) and the power module (62) during the cooling operation and the heating operation so that the power module (62) To be cooled. For this reason, at the time of cooling operation and heating operation, the power module (62) can be sufficiently cooled by the refrigerant, and it is possible to ensure reliability by suppressing occurrence of breakage or thermal runaway due to heat.
  第3の発明は、第1又は第2の発明において、前記副冷却機構(15)は、前記冷媒回路(10)を構成する主冷媒配管(11)に接続され且つ前記電装品(63)が取り付けられたバイパス配管(12)と、該バイパス配管(12)に取り付けられ、冷房運転時に前記バイパス配管(12)の冷媒の流通を遮断する一方、暖房運転時に前記バイパス配管(12)の冷媒の流通を許可するバイパス制御弁(14)とを備えた構成としている。 According to a third invention, in the first or second invention, the sub-cooling mechanism (15) is connected to a main refrigerant pipe (11) constituting the refrigerant circuit (10) and the electrical component (63) is The attached bypass pipe (12) and the bypass pipe (12) are attached to the bypass pipe (12) and block the refrigerant flow in the bypass pipe (12) during the cooling operation, while the refrigerant in the bypass pipe (12) flows during the heating operation. A bypass control valve (14) that permits distribution is provided.
  第3の発明では、主冷媒配管(11)にバイパス接続されたバイパス配管(12)に電装品(63)が取り付けられている。このバイパス配管(12)には、バイパス制御弁(14)が接続され、冷房運転時にはバイパス配管(12)の冷媒の流通が遮断される一方、暖房運転時にはバイパス配管(12)の冷媒の流通が許可される。 In the third invention, the electrical component (63) is attached to the bypass pipe (12) connected by bypass to the main refrigerant pipe (11). A bypass control valve (14) is connected to the bypass pipe (12), and the refrigerant flow in the bypass pipe (12) is blocked during cooling operation, while the refrigerant flow in the bypass pipe (12) is blocked during heating operation. Allowed.
  このため、暖房運転時にのみ電装品(63)と冷媒とが熱交換され、電装品(63)の排熱を利用して冷媒を加熱し、暖房運転時の熱交換量を増大させることができ、暖房能力が向上する。なお、このバイパス制御弁(14)は、一方向にのみ冷媒を流通可能な逆止弁や、冷暖房運転に応じて開閉可能な電磁弁等で構成することができる。 For this reason, the electrical component (63) and the refrigerant are heat-exchanged only during the heating operation, and the refrigerant is heated using the exhaust heat of the electrical component (63), so that the heat exchange amount during the heating operation can be increased. , Heating capacity is improved. In addition, this bypass control valve (14) can be comprised by the non-return valve which can distribute | circulate a refrigerant | coolant only to one direction, the solenoid valve etc. which can be opened and closed according to air-conditioning driving | operation.
  第4の発明は、第3の発明において、前記主冷媒配管(11)における前記バイパス配管(12)の両端の接続部の間には、冷房運転時に冷媒の流通を許可する一方、暖房運転時に冷媒の流通を遮断して該バイパス配管(12)に冷媒を流通させる主制御弁(13)が取り付けられた構成としている。 According to a fourth aspect, in the third aspect, between the connecting portions at both ends of the bypass pipe (12) in the main refrigerant pipe (11), the refrigerant is allowed to flow during the cooling operation, while during the heating operation. The main control valve (13) for blocking the refrigerant flow and flowing the refrigerant through the bypass pipe (12) is provided.
  第4の発明では、主冷媒配管(11)におけるバイパス配管(12)の両端の接続部の間に主制御弁(13)が取り付けられている。この主制御弁(13)により、冷房運転時には冷媒の流通が許可される一方、暖房運転時には冷媒の流通が遮断されてバイパス配管(12)に冷媒が流通する。このため、暖房運転時には、主冷媒配管(11)を流通する全ての冷媒がバイパス配管(12)に流れ込むこととなり、暖房運転時の冷媒がさらに加熱され、暖房能力が向上する。なお、この主制御弁(13)は、一方向にのみ冷媒を流通可能な逆止弁や、冷暖房運転に応じて開閉可能な電磁弁等で構成することができる。 In the fourth invention, the main control valve (13) is attached between the connecting portions at both ends of the bypass pipe (12) in the main refrigerant pipe (11). The main control valve (13) allows the refrigerant to flow during the cooling operation, while interrupting the refrigerant flow during the heating operation and allows the refrigerant to flow through the bypass pipe (12). For this reason, at the time of heating operation, all the refrigerants flowing through the main refrigerant pipe (11) flow into the bypass pipe (12), and the refrigerant at the time of heating operation is further heated to improve the heating capacity. The main control valve (13) can be composed of a check valve that can circulate the refrigerant only in one direction, an electromagnetic valve that can be opened and closed in accordance with an air conditioning operation, and the like.
  第5の発明は、第1乃至第4の発明のうち何れか1つにおいて、前記電装品(63)が、少なくともリアクトルを含む構成としている。 The fifth invention is such that in any one of the first to fourth inventions, the electrical component (63) includes at least a reactor.
  第5の発明では、電装品(63)が少なくともリアクトルを含んでいる。このため、暖房運転時に、発熱量の大きなリアクトルの排熱を利用して冷媒を加熱し、暖房運転時の熱交換量を増大させることができ、暖房能力が向上する。 In the fifth invention, the electrical component (63) includes at least a reactor. For this reason, at the time of heating operation, a refrigerant | coolant can be heated using the exhaust heat of a reactor with big emitted-heat amount, the heat exchange amount at the time of heating operation can be increased, and heating capacity improves.
  本発明によれば、冷房運転時及び暖房運転時には、パワーモジュール(62)を十分に冷媒冷却して熱による破損や熱暴走が生じることを抑制して信頼性を確保することができる。また、暖房運転時には、パワーモジュール(62)以外の発熱源である電解コンデンサ、リアクトル、制御回路用のIC等の電装品(63)を冷媒と熱交換させることで、電装品(63)の排熱を利用して冷媒を加熱し、暖房運転時の熱交換量を増大させることができ、暖房能力が向上する。 According to the present invention, during the cooling operation and the heating operation, the power module (62) can be sufficiently cooled with the refrigerant to suppress the occurrence of breakage due to heat or the occurrence of thermal runaway, thereby ensuring reliability. In addition, during heating operation, the electrical components (63) such as electrolytic capacitors, reactors, and ICs for control circuits, which are heat sources other than the power module (62), are exchanged with the refrigerant, thereby discharging the electrical components (63). Heat can be used to heat the refrigerant to increase the amount of heat exchange during heating operation, thereby improving the heating capacity.
図1は、本発明の実施形態に係るヒートポンプ装置の冷房運転時における冷媒の流通方向を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing a refrigerant flow direction during cooling operation of the heat pump device according to the embodiment of the present invention. 図2は、暖房運転時における冷媒の流通方向を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram illustrating the flow direction of the refrigerant during the heating operation. 図3は、電装品の取付部周辺を一部拡大して示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram showing a part of the vicinity of the mounting portion of the electrical component in an enlarged manner.
  以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature and is not intended to limit the present invention, its application, or its use.
  本発明の実施形態に係るヒートポンプ装置は、室内の冷房と暖房とを切り換えて行う空気調和装置(1)を構成している。図1はヒートポンプ装置の冷房運転時における冷媒の流通方向を示す冷媒回路図、図2は暖房運転時における冷媒の流通方向を示す冷媒回路図である。図1及び図2に示すように、空気調和装置(1)は、冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる冷媒回路(10)を備えている。冷媒回路(10)には、冷媒としてのフルオロカーボンが充填されている。この冷媒回路(10)では、冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。 The heat pump device according to the embodiment of the present invention constitutes an air conditioner (1) that performs switching between indoor cooling and heating. FIG. 1 is a refrigerant circuit diagram showing the refrigerant flow direction during the cooling operation of the heat pump device, and FIG. 2 is a refrigerant circuit diagram showing the refrigerant distribution direction during the heating operation. As shown in FIGS. 1 and 2, the air conditioner (1) includes a refrigerant circuit (10) in which a refrigerant circulates and a vapor compression refrigeration cycle is performed. The refrigerant circuit (10) is filled with fluorocarbon as a refrigerant. In the refrigerant circuit (10), a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  -冷媒回路の構成-
  冷媒回路(10)を構成する主冷媒配管(11)には、冷凍機器としての圧縮機(20)と、室内熱交換器(21)と、膨張弁(22)と、室外熱交換器(23)と、四路切換弁(24)とが接続されている。そして、主冷媒配管(11)における膨張弁(22)と室外熱交換器(23)との間には、バイパス配管(12)が接続されている。
-Composition of refrigerant circuit-
The main refrigerant pipe (11) constituting the refrigerant circuit (10) includes a compressor (20) as a refrigeration device, an indoor heat exchanger (21), an expansion valve (22), and an outdoor heat exchanger (23 ) And a four-way selector valve (24). A bypass pipe (12) is connected between the expansion valve (22) and the outdoor heat exchanger (23) in the main refrigerant pipe (11).
  前記圧縮機(20)は、容積型の圧縮機で構成されており、中空で密閉型のケーシング(30)を備えている。ケーシング(30)の下側寄りに吸入管(11b)が接続され、ケーシング(30)の天板に吐出管(11a)が接続されている。吐出管(11a)は、ケーシング(30)の天板を上下に貫通しており、その下端部がケーシング(30)の内部空間に開口している。なお、ケーシング(30)は、例えば鉄等の金属材料で構成されている。 The compressor (20) is a positive displacement compressor and includes a hollow and sealed casing (30). The suction pipe (11b) is connected to the lower side of the casing (30), and the discharge pipe (11a) is connected to the top plate of the casing (30). The discharge pipe (11a) penetrates the top plate of the casing (30) up and down, and the lower end thereof opens into the internal space of the casing (30). The casing (30) is made of a metal material such as iron.
  前記圧縮機(20)のケーシング(30)内には、ロータリー型の圧縮機構(図示せず)と、圧縮機構を作動させる駆動モータ(図示せず)とが収容されている。この圧縮機(20)の圧縮機構では、ガス冷媒が凝縮圧力まで圧縮される。本実施形態の圧縮機(20)は、ケーシング(30)の内部空間が高圧冷媒で満たされる、いわゆる高圧ドーム型の圧縮機を構成している。圧縮された冷媒は、圧縮機(20)の吐出側に設けられた吐出管(11a)を介して四路切換弁(24)に送り出される。 In the casing (30) of the compressor (20), a rotary type compression mechanism (not shown) and a drive motor (not shown) for operating the compression mechanism are accommodated. In the compression mechanism of the compressor (20), the gas refrigerant is compressed to the condensation pressure. The compressor (20) of the present embodiment constitutes a so-called high pressure dome type compressor in which the internal space of the casing (30) is filled with a high pressure refrigerant. The compressed refrigerant is sent out to the four-way switching valve (24) via the discharge pipe (11a) provided on the discharge side of the compressor (20).
  前記四路切換弁(24)は、第1から第4までの4つのポートを備えている。四路切換弁(24)は、第1ポートが圧縮機(20)の吐出側と、第2ポートが室内熱交換器(21)と、第3ポートが圧縮機(20)の吸入側と、第4ポートが室外熱交換器(23)とそれぞれ繋がっている。四路切換弁(24)は、図1に示すように第1ポートと第4ポートとが繋がると同時に第2ポートと第3ポートとが繋がる状態と、図2に示すように第1ポートと第2ポートとが繋がると同時に第3ポートと第4ポートとが繋がる状態とに設定が切り換わるように構成されている。 The four-way selector valve (24) has four ports from first to fourth. The four-way switching valve (24) has a first port on the discharge side of the compressor (20), a second port on the indoor heat exchanger (21), a third port on the suction side of the compressor (20), The fourth port is connected to the outdoor heat exchanger (23). The four-way selector valve (24) is connected to the first port and the fourth port as shown in FIG. 1 and at the same time the second port and the third port are connected, and as shown in FIG. At the same time when the second port is connected, the setting is switched to the state where the third port and the fourth port are connected.
  前記室内熱交換器(21)は、室内に設置されており、フィンアンドチューブ式の熱交換器で構成されている。室内熱交換器(21)では、冷媒と室内空気との間で熱交換が行われる。室外熱交換器(23)は、室外に設置されており、フィンアンドチューブ式の熱交換器で構成されている。室外熱交換器(23)では、冷媒と室外空気との間で熱交換が行われる。膨張弁(22)は、冷媒を減圧する減圧機構であり、例えば電子膨張弁で構成されている。 The indoor heat exchanger (21) is installed indoors and is composed of a fin-and-tube heat exchanger. In the indoor heat exchanger (21), heat is exchanged between the refrigerant and the room air. The outdoor heat exchanger (23) is installed outdoors and is configured by a fin-and-tube heat exchanger. In the outdoor heat exchanger (23), heat is exchanged between the refrigerant and the outdoor air. The expansion valve (22) is a pressure reducing mechanism that depressurizes the refrigerant, and is configured by, for example, an electronic expansion valve.
  -インバータ装置の構成-
  圧縮機(20)は、駆動モータを駆動制御するための制御装置としてのインバータ装置(60)を備えている。インバータ装置(60)は、スイッチング素子等を構成する炭化シリコン(SiC)素子、シリコン(Si)素子等で構成されたパワーモジュール(62)と、電解コンデンサ、リアクトル、制御回路用のIC等の電装品(63)とを備えている。
-Inverter configuration-
The compressor (20) includes an inverter device (60) as a control device for driving and controlling the drive motor. The inverter device (60) includes a power module (62) composed of a silicon carbide (SiC) element, a silicon (Si) element, etc. constituting a switching element, and an electrical component such as an electrolytic capacitor, a reactor, and an IC for a control circuit. Product (63).
  前記パワーモジュール(62)と電装品(63)とは、図示しない信号ライン及び電源ラインを介して接続され、互いに信号の送受信及び電力搬送を行うことができるようになっている。また、パワーモジュール(62)と圧縮機(20)とは、図示しない出力ラインを介して接続され、パワーモジュール(62)から出力される制御信号に基づいて駆動モータの駆動制御が行われるようになっている。 The power module (62) and the electrical component (63) are connected via a signal line and a power line (not shown) so that signals can be transmitted / received and power can be transmitted to each other. Further, the power module (62) and the compressor (20) are connected via an output line (not shown) so that drive control of the drive motor is performed based on a control signal output from the power module (62). It has become.
  図1及び図2に示すように、前記パワーモジュール(62)は、膨張弁(22)と室外熱交換器(23)との間の主冷媒配管(11)に取り付けられている。具体的に、パワーモジュール(62)は、その実装面を主冷媒配管(11)側に対向させた状態で、伝熱部材(64)を介して主冷媒配管(11)の膨張弁(22)寄りの位置に取り付けられている。したがって、上記主冷媒配管(11)はパワーモジュール(62)を冷却する主冷却機構を構成している。 As shown in FIGS. 1 and 2, the power module (62) is attached to a main refrigerant pipe (11) between the expansion valve (22) and the outdoor heat exchanger (23). Specifically, the power module (62) has its mounting surface facing the main refrigerant pipe (11) side, and the expansion valve (22) of the main refrigerant pipe (11) through the heat transfer member (64). It is attached to the position. Therefore, the main refrigerant pipe (11) constitutes a main cooling mechanism for cooling the power module (62).
  ここで、例えば、主冷媒配管(11)が円筒状の配管である場合に、パワーモジュール(62)を主冷媒配管(11)に直接接触させた場合には、チップ面積の一部に主冷媒配管(11)と接触していない箇所が生じてしまい、熱交換効率が低下するおそれがあるが、伝熱部材(64)の形状を主冷媒配管(11)の外形形状に対応した円弧形状とし、パワーモジュール(62)側を平面とすることで、チップ表面全体が主冷媒配管(11)と密着した状態となることから、熱交換効率を向上させる上で有利となる。また、伝熱部材(64)としてアルミニウム等の熱伝導率の高い材料を用いるようにすれば、パワーモジュール(62)で生じた熱が確実に主冷媒配管(11)側に放熱されるため好ましい。 Here, for example, when the main refrigerant pipe (11) is a cylindrical pipe, when the power module (62) is brought into direct contact with the main refrigerant pipe (11), the main refrigerant is partially included in the chip area. Although there is a possibility that a portion not in contact with the pipe (11) may be generated and the heat exchange efficiency may be lowered, the shape of the heat transfer member (64) is an arc shape corresponding to the outer shape of the main refrigerant pipe (11). Since the power module (62) side is flat, the entire chip surface is in close contact with the main refrigerant pipe (11), which is advantageous in improving heat exchange efficiency. In addition, it is preferable to use a material having high thermal conductivity such as aluminum as the heat transfer member (64) because heat generated in the power module (62) is surely radiated to the main refrigerant pipe (11) side. .
  一方、前記電装品(63)は、伝熱部材(64)を介してバイパス配管(12)に取り付けられている。ここで、バイパス配管(12)には、冷房運転時にバイパス配管(12)の冷媒の流通を遮断する一方、暖房運転時にバイパス配管(12)の冷媒の流通を許可するバイパス制御弁(14)が取り付けられている。そして、上記バイパス配管(12)とバイパス制御弁(14)とをによって電装品(63)を冷却する副冷却機構(15)が構成されている。 On the other hand, the electrical component (63) is attached to the bypass pipe (12) via the heat transfer member (64). Here, the bypass pipe (12) has a bypass control valve (14) that blocks the flow of the refrigerant in the bypass pipe (12) during the cooling operation and permits the refrigerant in the bypass pipe (12) during the heating operation. It is attached. And the subcooling mechanism (15) which cools an electrical component (63) by the said bypass piping (12) and a bypass control valve (14) is comprised.
  また、前記主冷媒配管(11)におけるバイパス配管(12)の両端の接続部の間には、冷房運転時に冷媒の流通を許可する一方、暖房運転時に冷媒の流通を遮断してバイパス配管(12)に冷媒を流通させる主制御弁(13)が取り付けられている。 Further, between the connecting portions at both ends of the bypass pipe (12) in the main refrigerant pipe (11), while allowing the refrigerant to flow during the cooling operation, the refrigerant flow is interrupted during the heating operation and the bypass pipe (12 ) Is provided with a main control valve (13) for circulating the refrigerant.
  なお、本実施形態では、前記バイパス制御弁(14)及び主制御弁(13)を逆止弁で構成しているが、この形態に限定するものではなく、例えば、電磁弁や膨張弁で構成しても良い。 In the present embodiment, the bypass control valve (14) and the main control valve (13) are constituted by check valves, but are not limited to this form, and are constituted by, for example, electromagnetic valves or expansion valves. You may do it.
  -運転動作-
  次に、この空気調和装置(1)の運転動作について説明する。この空気調和装置(1)は、冷房運転と暖房運転とが可能となっている。これらの運転では、インバータ装置(60)により、圧縮機(20)の駆動モータが駆動されることで圧縮室の容積が拡縮され、圧縮機構で冷媒の圧縮動作が行われる。
-Driving operation-
Next, the operation of the air conditioner (1) will be described. The air conditioner (1) can perform a cooling operation and a heating operation. In these operations, the inverter device (60) drives the drive motor of the compressor (20) to expand and contract the volume of the compression chamber, and the compression mechanism performs the refrigerant compression operation.
  -冷房運転-
  冷房運転では、四路切換弁(24)が図1に示す状態となる。また、膨張弁(22)の開度が適宜調節される。
-Cooling operation-
In the cooling operation, the four-way switching valve (24) is in the state shown in FIG. Further, the opening degree of the expansion valve (22) is appropriately adjusted.
  圧縮機(20)で圧縮された冷媒が高圧冷媒となって吐出管(11a)を流通し、四路切換弁(24)を介して室外熱交換器(23)を流れる。室外熱交換器(23)では、冷媒が室外空気へ放熱する。 The refrigerant compressed by the compressor (20) becomes high-pressure refrigerant, flows through the discharge pipe (11a), and flows through the outdoor heat exchanger (23) via the four-way switching valve (24). In the outdoor heat exchanger (23), the refrigerant radiates heat to the outdoor air.
  室外熱交換器(23)で放熱した後の冷媒は、主制御弁(13)を通って膨張弁(22)に向かって流れる。ここで、室外熱交換器(23)と膨張弁(22)との間の主冷媒配管(11)にはパワーモジュール(62)が取り付けられているので、パワーモジュール(62)で発生した熱は、伝熱部材(64)を介して主冷媒配管(11)を流れる高圧冷媒へ付与される。その結果、パワーモジュール(62)が冷却される。 The refrigerant that has radiated heat in the outdoor heat exchanger (23) flows toward the expansion valve (22) through the main control valve (13). Here, since the power module (62) is attached to the main refrigerant pipe (11) between the outdoor heat exchanger (23) and the expansion valve (22), the heat generated in the power module (62) Then, it is given to the high-pressure refrigerant flowing through the main refrigerant pipe (11) via the heat transfer member (64). As a result, the power module (62) is cooled.
  室外熱交換器(23)で放熱した後の冷媒は、膨張弁(22)を通過する際に減圧されて、室内熱交換器(21)を流れる。室内熱交換器(21)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器(21)で蒸発した冷媒は、吸入管(11b)を介して圧縮機(20)の圧縮機構内へ吸入される。 The refrigerant that has radiated heat in the outdoor heat exchanger (23) is depressurized when passing through the expansion valve (22) and flows through the indoor heat exchanger (21). In the indoor heat exchanger (21), the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled. The refrigerant evaporated in the indoor heat exchanger (21) is sucked into the compression mechanism of the compressor (20) through the suction pipe (11b).
  -暖房運転-
  暖房運転では、四路切換弁(24)が図2で示す状態となる。また、膨張弁(22)の開度が適宜調節される。
-Heating operation-
In the heating operation, the four-way selector valve (24) is in the state shown in FIG. Further, the opening degree of the expansion valve (22) is appropriately adjusted.
  圧縮機(20)で圧縮された冷媒が高圧冷媒となって吐出管(11a)を流通し、四路切換弁(24)を介して室内熱交換器(21)を流れる。室内熱交換器(21)では、冷媒が室内空気へ放熱する。その結果、室内の暖房が行われる。 The refrigerant compressed by the compressor (20) becomes high-pressure refrigerant, flows through the discharge pipe (11a), and flows through the indoor heat exchanger (21) via the four-way switching valve (24). In the indoor heat exchanger (21), the refrigerant radiates heat to the indoor air. As a result, the room is heated.
  室内熱交換器(21)で放熱した後の冷媒は、膨張弁(22)を通過する際に減圧される。パワーモジュール(62)で発生した熱は、伝熱部材(64)を介して主冷媒配管(11)を流れる冷媒へ付与される。その結果、パワーモジュール(62)が冷却される。 The refrigerant after radiating heat in the indoor heat exchanger (21) is depressurized when passing through the expansion valve (22). The heat generated in the power module (62) is applied to the refrigerant flowing through the main refrigerant pipe (11) via the heat transfer member (64). As a result, the power module (62) is cooled.
  ここで、主制御弁(13)により主冷媒配管(11)の冷媒の流通が遮断されているから、パワーモジュール(62)の排熱が付与された冷媒は、バイパス配管(12)を流通する。電装品(63)で発生した熱は、伝熱部材(64)を介してバイパス配管(12)を流れる冷媒へ付与される。その結果、電装品(63)が冷却される。電装品(63)の排熱が付与された冷媒は、バイパス制御弁(14)を通って室外熱交換器(23)を流れる。室外熱交換器(23)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(23)で蒸発した冷媒は、吸入管(11b)を介して圧縮機(20)の圧縮機構内へ吸入される。 Here, since the circulation of the refrigerant in the main refrigerant pipe (11) is blocked by the main control valve (13), the refrigerant to which the exhaust heat of the power module (62) is given flows through the bypass pipe (12). . The heat generated in the electrical component (63) is applied to the refrigerant flowing through the bypass pipe (12) via the heat transfer member (64). As a result, the electrical component (63) is cooled. The refrigerant to which the exhaust heat of the electrical component (63) is applied flows through the outdoor heat exchanger (23) through the bypass control valve (14). In the outdoor heat exchanger (23), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (23) is sucked into the compression mechanism of the compressor (20) through the suction pipe (11b).
  以上のように、本実施形態に係るヒートポンプ装置(1)によれば、冷房運転時及び暖房運転時に、主冷媒配管(11)を流通する冷媒とパワーモジュール(62)とを熱交換させることで、パワーモジュール(62)を十分に冷媒冷却して熱による破損や熱暴走が生じることを抑制して信頼性を確保することができる。 As described above, according to the heat pump device (1) of the present embodiment, heat exchange is performed between the refrigerant flowing through the main refrigerant pipe (11) and the power module (62) during the cooling operation and the heating operation. Further, the power module (62) can be sufficiently cooled with the refrigerant to suppress the occurrence of breakage or thermal runaway due to heat, thereby ensuring reliability.
  また、暖房運転時に、パワーモジュール(62)以外の発熱源である電解コンデンサ、リアクトル、制御回路用のIC等の電装品(63)と、バイパス配管(12)を流通する冷媒とを熱交換させることで、電装品(63)の排熱を利用して冷媒を加熱し、暖房運転時の熱交換量を増大させることができるため、暖房能力が向上する。 Further, during heating operation, heat exchange is performed between the electric components (63) such as an electrolytic capacitor, a reactor, and an IC for a control circuit, which are heat sources other than the power module (62), and the refrigerant flowing through the bypass pipe (12). Thus, since the refrigerant is heated using the exhaust heat of the electrical component (63) and the amount of heat exchange during the heating operation can be increased, the heating capacity is improved.
  -その他の実施形態-
  本実施形態では、主冷媒配管(11)におけるバイパス配管(12)の接続端間に主制御弁(13)を取り付け、冷房運転時に冷媒の流通を許可する一方、暖房運転時に冷媒の流通を遮断して、主冷媒配管(11)を流通する全ての冷媒がバイパス配管(12)に流れ込むようにしたが、この形態に限定するものではなく、例えば、図3に示すように、主冷媒配管(11)に主制御弁(13)を取り付けることなく、バイパス配管(12)にバイパス制御弁(14)のみを取り付けておき、暖房運転時に、主冷媒配管(11)を流通する冷媒の一部をバイパス配管(12)に分岐させ、バイパス配管(12)を流通する冷媒と電装品(63)とを熱交換させて電装品(63)を冷却するようにしても構わない。
-Other embodiments-
In the present embodiment, the main control valve (13) is installed between the connection ends of the bypass pipe (12) in the main refrigerant pipe (11) to allow the refrigerant to flow during the cooling operation, while blocking the refrigerant flow during the heating operation. Then, all the refrigerants flowing through the main refrigerant pipe (11) flow into the bypass pipe (12). However, the present invention is not limited to this mode. For example, as shown in FIG. Without attaching the main control valve (13) to 11), only the bypass control valve (14) is attached to the bypass pipe (12), and part of the refrigerant flowing through the main refrigerant pipe (11) can be removed during heating operation. You may make it branch to a bypass piping (12), heat-exchange the refrigerant | coolant and electrical equipment (63) which distribute | circulate the bypass piping (12), and may cool an electrical equipment (63).
  なお、本実施形態では、ロータリー型の圧縮機について、本発明を適用している。しかしながら、例えばスクロール型の圧縮機や、揺動スイング型の圧縮機、さらに他の型式の圧縮機に本発明を適用しても良い。 In this embodiment, the present invention is applied to a rotary type compressor. However, the present invention may be applied to, for example, a scroll type compressor, a swing swing type compressor, and other types of compressors.
  また、本実施形態では、パワーモジュール(62)や電装品(63)の取付位置を膨張弁(22)と室外熱交換器(23)との間に設定しているが、この形態に限定するものではなく、暖房運転時に電装品(63)の温度よりも低温の冷媒が流通する箇所であればよい。 Moreover, in this embodiment, although the attachment position of a power module (62) or an electrical component (63) is set between the expansion valve (22) and the outdoor heat exchanger (23), it is limited to this form. It is not a thing, What is necessary is just a location where the refrigerant | coolant lower than the temperature of an electrical component (63) distribute | circulates at the time of heating operation.
  以上説明したように、本発明は、パワーモジュールの冷却能力を十分に確保しつつ、暖房運転時の熱交換量を増大することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 As described above, the present invention is extremely useful because it provides a highly practical effect that the amount of heat exchange during heating operation can be increased while sufficiently securing the cooling capacity of the power module. Industrial applicability is high.
   1    空気調和装置(ヒートポンプ装置)
  10    冷媒回路
  11    主冷媒配管(主冷却機構)
  12    バイパス配管
  13    主制御弁
  14    バイパス制御弁
  15    副冷却機構
  20    圧縮機(冷凍機器)
  60    インバータ装置(制御装置)
  62    パワーモジュール
  63    電装品
1 Air conditioner (heat pump device)
10 Refrigerant circuit 11 Main refrigerant piping (main cooling mechanism)
12 Bypass piping 13 Main control valve 14 Bypass control valve 15 Sub cooling mechanism 20 Compressor (refrigeration equipment)
60 Inverter device (control device)
62 Power module 63 Electrical components

Claims (5)

  1.   冷媒を循環させて冷凍サイクルを行う冷媒回路(10)と、該冷媒回路(10)に接続された冷凍機器(20)を駆動制御するパワーモジュール(62)及び電装品(63)を有する制御装置(60)とを備え、冷媒の循環方向を変更することで冷房運転と暖房運転とを切り替えるヒートポンプ装置であって、
      前記パワーモジュール(62)を冷却する主冷却機構(11)と、
      前記冷媒回路(10)を流通する冷媒と前記電装品(63)とを暖房運転時にのみ熱交換させて前記電装品(63)を冷却する副冷却機構(15)とを備えている
    ことを特徴とするヒートポンプ装置。
    Control device having a refrigerant circuit (10) that circulates a refrigerant to perform a refrigeration cycle, a power module (62) that drives and controls a refrigeration device (20) connected to the refrigerant circuit (10), and an electrical component (63) (60), and a heat pump device that switches between a cooling operation and a heating operation by changing the circulation direction of the refrigerant,
    A main cooling mechanism (11) for cooling the power module (62);
    A sub-cooling mechanism (15) that cools the electrical component (63) by exchanging heat between the refrigerant flowing through the refrigerant circuit (10) and the electrical component (63) only during heating operation. Heat pump device.
  2.   請求項1において、
      前記主冷却機構(11)は、冷房運転時及び暖房運転時に、前記冷媒回路(10)を流通する冷媒と前記パワーモジュール(62)とを熱交換させて前記パワーモジュール(62)を冷却するように構成されている
    ことを特徴とするヒートポンプ装置。
    In claim 1,
    The main cooling mechanism (11) cools the power module (62) by exchanging heat between the refrigerant flowing through the refrigerant circuit (10) and the power module (62) during cooling operation and heating operation. It is comprised in the heat pump apparatus characterized by the above-mentioned.
  3.   請求項1又は2において、
      前記副冷却機構(15)は、前記冷媒回路(10)を構成する主冷媒配管(11)に接続され且つ前記電装品(63)が取り付けられたバイパス配管(12)と、該バイパス配管(12)に取り付けられ、冷房運転時に前記バイパス配管(12)の冷媒の流通を遮断する一方、暖房運転時に前記バイパス配管(12)の冷媒の流通を許可するバイパス制御弁(14)とを備えている
    ことを特徴とするヒートポンプ装置。
    In claim 1 or 2,
    The sub-cooling mechanism (15) includes a bypass pipe (12) connected to a main refrigerant pipe (11) constituting the refrigerant circuit (10) and having the electrical component (63) attached thereto, and the bypass pipe (12 And a bypass control valve (14) that blocks the flow of refrigerant in the bypass pipe (12) during cooling operation and permits the flow of refrigerant in the bypass pipe (12) during heating operation. A heat pump device characterized by that.
  4.   請求項3において、
      前記主冷媒配管(11)における前記バイパス配管(12)の両端の接続部の間には、冷房運転時に冷媒の流通を許可する一方、暖房運転時に冷媒の流通を遮断して該バイパス配管(12)に冷媒を流通させる主制御弁(13)が取り付けられている
    ことを特徴とするヒートポンプ装置。
    In claim 3,
    Between the connecting portions at both ends of the bypass pipe (12) in the main refrigerant pipe (11), the refrigerant is allowed to flow during the cooling operation, while the refrigerant is blocked during the heating operation. ) Is attached with a main control valve (13) for circulating the refrigerant.
  5.   請求項1乃至4のうち何れか1項において、
      前記電装品(63)は、少なくともリアクトルを含む
    ことを特徴とするヒートポンプ装置。
    In any one of Claims 1 thru | or 4,
    The electric component (63) includes at least a reactor, and the heat pump device is characterized in that
PCT/JP2009/001954 2008-04-30 2009-04-30 Heat pump device WO2009133707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008118131A JP2009264710A (en) 2008-04-30 2008-04-30 Heat pump device
JP2008-118131 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009133707A1 true WO2009133707A1 (en) 2009-11-05

Family

ID=41254931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001954 WO2009133707A1 (en) 2008-04-30 2009-04-30 Heat pump device

Country Status (2)

Country Link
JP (1) JP2009264710A (en)
WO (1) WO2009133707A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172917A (en) * 2011-02-22 2012-09-10 Nippon Soken Inc Cooling device
WO2013047488A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Vehicle temperature regulation system
WO2021245789A1 (en) * 2020-06-02 2021-12-09 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5815284B2 (en) * 2011-05-20 2015-11-17 株式会社日本自動車部品総合研究所 Cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375424A (en) * 1989-08-17 1991-03-29 Daikin Ind Ltd Heat pump apparatus and its operation method
JP2002156149A (en) * 2000-11-20 2002-05-31 Fujitsu General Ltd Air conditioner
JP2006170469A (en) * 2004-12-13 2006-06-29 Daikin Ind Ltd Electrical component unit and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375424A (en) * 1989-08-17 1991-03-29 Daikin Ind Ltd Heat pump apparatus and its operation method
JP2002156149A (en) * 2000-11-20 2002-05-31 Fujitsu General Ltd Air conditioner
JP2006170469A (en) * 2004-12-13 2006-06-29 Daikin Ind Ltd Electrical component unit and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172917A (en) * 2011-02-22 2012-09-10 Nippon Soken Inc Cooling device
WO2013047488A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Vehicle temperature regulation system
JP2013075650A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Vehicle temperature control system
WO2021245789A1 (en) * 2020-06-02 2021-12-09 三菱電機株式会社 Refrigeration cycle device
EP4160110A4 (en) * 2020-06-02 2023-09-20 Mitsubishi Electric Corporation Refrigeration cycle device
JP7367213B2 (en) 2020-06-02 2023-10-23 三菱電機株式会社 Control method for refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2009264710A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP2009264699A (en) Heat pump device
JP4488093B2 (en) Air conditioner
KR100442392B1 (en) Heating and cooling air conditioner with dual out door heat exchanger
JP5125355B2 (en) Air conditioner
JP2009281602A (en) Heat pump device
KR101034204B1 (en) Cooling and heating system
KR20070071213A (en) Air conditioner
WO2013135048A1 (en) Heat exchanger and cabinet
KR20040050477A (en) An air-condition system
JP2009299957A (en) Air conditioner
JPWO2019069470A1 (en) Air conditioner
JP2015068610A (en) Air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2009133707A1 (en) Heat pump device
JP2008061372A (en) Refrigerating device
JP2009085526A (en) Air conditioner
JP2012247136A (en) Booster unit, and air conditioning apparatus combined with water heater including the same
JP2015031450A (en) Air conditioning device
JP2009299974A (en) Air conditioner
JP2008057852A (en) Refrigerating device
JP2011112254A (en) Refrigeration device
KR100528292B1 (en) Heat-pump type air conditioner
JP2010085054A (en) Outdoor unit for air-conditioning apparatus
JP2008057851A (en) Refrigerating device
JP2010032167A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738644

Country of ref document: EP

Kind code of ref document: A1