WO2009133679A1 - Biosensor electrode manufacturing method and biosensor manufacturing method - Google Patents

Biosensor electrode manufacturing method and biosensor manufacturing method Download PDF

Info

Publication number
WO2009133679A1
WO2009133679A1 PCT/JP2009/001881 JP2009001881W WO2009133679A1 WO 2009133679 A1 WO2009133679 A1 WO 2009133679A1 JP 2009001881 W JP2009001881 W JP 2009001881W WO 2009133679 A1 WO2009133679 A1 WO 2009133679A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
biosensor
substrate
manufacturing
nanocarbon
Prior art date
Application number
PCT/JP2009/001881
Other languages
French (fr)
Japanese (ja)
Inventor
松本達
二瓶史行
成田薫
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010510028A priority Critical patent/JPWO2009133679A1/en
Publication of WO2009133679A1 publication Critical patent/WO2009133679A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Definitions

  • the present invention relates to a biosensor electrode manufacturing method and a biosensor manufacturing method.
  • Patent Document 1 discloses a method in which a carbon nanotube is micelleed with a mixture of a surfactant and a polymer electrolyte solution, dispersed in an aqueous solvent, and then the micelle is decomposed to form a thin film of the carbon nanotube. It is disclosed.
  • Patent Document 2 discloses that carbon nanotubes are dispersed in an optical modeling resin, and the optical modeling resin is cured by light irradiation to form an electrode.
  • Patent Document 3 discloses a method of forming a carbon nanotube film by a dry method. Specifically, a raw material gas is sprayed on the catalyst supporting surface of the substrate to grow carbon nanotubes on the catalyst supporting surface.
  • the present invention provides a method for producing a biosensor electrode and a method for producing a biosensor that can improve the performance of the biosensor.
  • a method for producing an electrode for a biosensor comprising the step of immobilizing an antibody or an enzyme on the nanocarbon layer.
  • nanocarbon is any of carbon nanotubes, carbon nanohorns, carbon nanocones, carbon nanofilaments, and fullerenes.
  • a biosensor manufacturing method including the above-described biosensor electrode manufacturing method, wherein an alignment mark is formed at a position below the nanocarbon layer of the substrate.
  • a step of mounting the biosensor electrode on a mounting substrate, and the step of mounting the biosensor electrode on the mounting substrate includes forming an alignment mark on the biosensor electrode substrate on the mounting substrate.
  • a biosensor manufacturing method can be provided in which alignment is performed using the alignment mark and the biosensor electrode is mounted on the mounting substrate.
  • the manufacturing method of the electrode for biosensors and the manufacturing method of a biosensor which can improve the performance of a biosensor are provided.
  • FIG. 1 discloses a biosensor 1 of the present embodiment.
  • the biosensor 1 includes a biosensor body 11 including a substrate 12, a working electrode 13 formed on the substrate 12, a counter electrode 14, and a reference electrode 15, and a mounting substrate 16.
  • the substrate 12 and the working electrode 13 constitute a carbon electrode for the biosensor of the present invention.
  • the substrate 12 is an insulating substrate and is a light transmissive substrate.
  • the substrate 12 is glass, plastic, or the like, and the material is not particularly limited, but glass having high strength and high light transmission is preferable.
  • light-transmitting means transmitting visible light, and it is only necessary to transmit light through the light-transmitting object to such an extent that the opposite side can be visually recognized by the naked eye.
  • the light transmittance of visible light is preferably 70% or more.
  • the working electrode 13 includes a carbon nanotube thin film (nanocarbon layer) 131 formed on the substrate 12, a layer 132 containing an antibody and an enzyme provided so as to cover the thin film 131, and a thin film 131 provided on the layer 132. And a polymer film 134 provided so as to cover the surface.
  • the thin film 131 is formed by depositing carbon nanotubes. As shown in FIG. 2, the carbon nanotubes intersect each other so as to be in direct contact with each other.
  • reference numeral 131A indicates a carbon nanotube
  • a dotted line A indicates an intersection of the carbon nanotubes 131A. Since the polymer film 134 is provided on the thin film 131, a polymer may be interposed between some of the carbon nanotubes 131A (less than 1% of all the carbon nanotubes). The carbon nanotubes 131A (99% or more of all carbon nanotubes) are in direct contact with each other.
  • the carbon nanotube 131A is in direct contact with the substrate 12, and the thin film 131 is physically fixed (adsorbed) to the substrate 12 (see dotted line B in FIG. 2). Since the polymer film 134 is provided on the thin film 131, a polymer may be interposed between some of the carbon nanotubes 131A and the substrate 12, but most of the carbon nanotubes 131A are in direct contact with the substrate 12. is doing.
  • Various types of carbon nanotubes can be used. For example, they are produced by a laser ablation method, a CoMoCAT method (a method of the University of Oklahoma, USA), a direct-injection pyrolysis synthesis method, or a high pressure carbon monoxide process method. Kinds are preferably used.
  • the laser ablation method is more preferable from the viewpoint of cost.
  • the thin film 131 is light-transmitting, and it is sufficient that the thin film 131 has such a transparency that the substrate 12 can be visually recognized through the thin film 131. Specifically, the light transmittance of visible light is preferably 70% or more.
  • Carbon nanotubes having a diameter of 0.8 to 1.3 nm and a length of several ⁇ m are preferably used from the viewpoints of quality, difficulty of peeling from the substrate 12, and the like.
  • the thickness of the thin film 131 is preferably 10 nm or more and 1 ⁇ m or less. More preferably, it is 20 nm or more and 50 nm or less. If the thickness of the thin film 131 is too thin, the electrical conductivity decreases, which is not preferable from the viewpoint of reducing the amount of antibody or enzyme immobilized. On the other hand, if it is too thick, the light transmittance is lowered, which is not preferable.
  • the layer 132 containing an antibody and an enzyme shown in FIG. 1 is obtained by fixing an antibody and an enzyme on a thin film 131.
  • the carbon nanotube thin film 131 is preliminarily treated with an immobilized protein, and then a solution containing the antibody is brought into contact therewith.
  • the antibody 132A is immobilized on the carbon nanotube 131A via the immobilized protein 132C.
  • the immobilized protein has a function for immobilizing the antibody on the carbon nanotube.
  • proteins containing electrochemically active amino acids such as tryptophan and tyrosine may be used, and streptavidin, protein A, protein G and the like are preferably used.
  • electrochemically active amino acid if the above-mentioned electrochemically active amino acid is contained in the measurement target substance, these amino acids may not be contained in the immobilized protein. Moreover, even if it is not contained in both the substance to be measured and the immobilized protein, the solution used at the time of measurement may contain an electrochemically active amino acid. These selections can be appropriately changed depending on the substance to be measured.
  • an antibody to be used it is possible to apply a wide range of antigens, such as human chorionic gonadotropin antibody and trinitrotoluene antibody, from an antigen having a large molecular weight to a small antigen.
  • an enzyme immobilization method a method using a crosslinking reaction between albumin and glutaraldehyde is preferably used because it can be produced at low cost.
  • an oxidase such as glucose oxidase, lactate oxidase, or urate oxidase is mainly used, but a dehydrogenase can also be used using a mediator or the like.
  • the layer 132 is a layer containing an antibody and an enzyme, but may be a layer having only one of an antibody and an enzyme.
  • the polymer film 134 covers the layer 132 and the thin film 131 from the upper surface side, and is provided to firmly fix the thin film 131 to the substrate 12.
  • the polymer film 134 also serves to reinforce that the antibody or the like is immobilized on the thin film 131.
  • the polymer film 134 include polyvinyl alcohol, polyacetylene, polythiophene, proteins such as albumin and gelatin, and the like. Of these, polyvinyl alcohol is preferably used because it is inexpensive and the solution can be easily adjusted.
  • the counter electrode 14 is disposed so as to face the working electrode 13 and includes, for example, platinum.
  • the reference electrode 15 includes, for example, silver. Both the counter electrode 14 and the reference electrode 15 are formed on the substrate 12.
  • the biosensor body 11 having the above configuration is mounted on a mounting substrate 16.
  • the mounting substrate 16 is an insulating substrate, for example, a flexible substrate.
  • the mounting substrate 16 is preferably made of a material excellent in water resistance, heat resistance, and chemical resistance, and plastics that can be manufactured at low cost are preferable.
  • a wiring (not shown) is formed on the mounting substrate 16, and the biosensor body 11 is connected to the wiring via a bonding wire W. Sealing agent E is provided on the bonding wire portion.
  • the sealant E is not particularly limited as long as it uses a material that waterproofs the bonding wire W and further the connection portion between the bonding wire W and the biosensor main body 11 and protects it from breakage.
  • a silicone resin is preferably used from the viewpoint of reliability.
  • the biosensor body 11 is connected to the electrochemical measurement device via the mounting substrate 16.
  • the manufacturing method of the biosensor 1 of the present embodiment includes a step of manufacturing the biosensor main body 11 and a step of mounting the biosensor main body 11 on the mounting substrate 16.
  • the manufacturing method of the biosensor body 11 includes a step of manufacturing a carbon electrode including the working electrode 13 and the substrate 12, and a step of manufacturing the counter electrode 14 and the reference electrode 15.
  • the steps of manufacturing the carbon electrode include adding a nanocarbon (carbon nanotube) to a solvent that does not contain a binder agent to create a dispersed liquid (carbon nanotube dispersion), and the above-mentioned liquid in which nanocarbon is dispersed. And a step of coating on the substrate 12 to form a nanocarbon layer (thin film 131), and a step of immobilizing an antibody or an enzyme on the nanocarbon layer.
  • the binder agent is for adhering nanocarbons to each other, and is, for example, a polymer material such as a polymer resin.
  • carbon nanotubes are prepared, and the carbon nanotubes are washed using an acid or alkali solution.
  • carbon nanotubes are dispersed in an acid or alkali solution and washed.
  • the acid solution preferably has a pH of 4 or less, and examples thereof include nitric acid and hydrochloric acid.
  • the concentration of nitric acid, hydrochloric acid, etc. in the acid solution is preferably 0.01M or more and 1M or less.
  • As an alkaline solution it is preferable that pH is 8 or more, for example, ammonia, sodium hydroxide, potassium hydroxide etc. are mentioned.
  • the concentration is preferably 0.01M or more and 3M or less.
  • the used catalyst may be slightly attached to the carbon nanotube. Such a catalyst may affect the sensitivity of the biosensor. Therefore, by providing this step, the catalyst adhering to the carbon nanotube is removed, and the sensitivity of the biosensor can be prevented from being lowered. Whether or not the catalyst has been removed can be confirmed by, for example, EDX (energy dispersive X-ray spectrometry).
  • EDX energy dispersive X-ray spectrometry
  • the carbon nanotubes are dispersed in a solvent that does not contain a binder agent for bonding the carbon nanotubes together to create a carbon nanotube dispersion.
  • a solvent an organic solvent can be used.
  • the organic solvent dichloroethane, dimethylsulfone, acetone, ether, DMF (dimethylformamide) and the like are preferable. Of these, it is preferable to use dichloroethane having good dispersibility of carbon nanotubes.
  • the solvent may be stirred with a stirrer.
  • the carbon nanotubes are efficiently dissolved in the solvent. Can be dispersed. Among these, carbon nanotubes can be more effectively dispersed in the solvent by using dichloroethane and further stirring with ultrasonic waves.
  • the carbon nanotube dispersion liquid is composed only of carbon nanotubes and a solvent, and does not contain a binder agent, a surfactant or the like.
  • a solvent in which nanocarbon is dispersed (carbon nanotube dispersion) is applied on the substrate 12 to form a carbon nanotube thin film 131.
  • a spin coating method or a dip coating method is preferably used as the coating method, but the dip coating method is preferable from the viewpoint that the thickness of the thin film 131 can be increased efficiently. Even when the spin coating method is applied, it is possible to increase the thickness of the carbon nanotube thin film 131 by increasing the number of coatings as in the case of the dip coating method.
  • a polymer film 134 is formed. Specifically, a solution containing a polymer (for example, a polyvinyl alcohol solution) is applied on the layer 132. Thereafter, the counter electrode 14 and the reference electrode 15 are formed on the substrate 12. The biosensor body 11 is manufactured through the above steps.
  • a polymer for example, a polyvinyl alcohol solution
  • an alignment mark is formed on the substrate 12 of the biosensor body 11 in advance.
  • a metal such as gold or silver may be formed in advance by sputtering or the like and patterned, or may be scratched with a glass cutter or the like.
  • the former is preferable when the size of the substrate 12 is small, and the latter is preferable when the size of the substrate 12 is large.
  • the step of forming the alignment mark M1 is performed on the substrate 12 before the electrode is formed. In the state where the electrode is formed, the alignment mark M1 is covered with the carbon nanotube thin film 131 of the working electrode 13 or the like.
  • the alignment mark M2 is also formed on the mounting substrate 16.
  • the wiring is formed on the mounting substrate 16, it is preferable to pattern the alignment mark with the same material as the wiring, but the alignment mark M2 is not limited to this.
  • the alignment mark M2 formed on the surface of the mounting substrate 16 is aligned with the alignment mark M1 formed on the substrate 12, and the biosensor body 11 is placed on the mounting substrate 16.
  • the substrate 12 is light transmissive, and the carbon nanotube thin film 131 and the polymer film 134 are also light transmissive, in this embodiment, alignment can be easily performed.
  • the mounting substrate 16 and the biosensor main body 11 are electrically connected using the bonding wire W, and the connection portion is sealed with a sealant.
  • the effect of this embodiment is demonstrated.
  • carbon nanotubes are dispersed in a polymer material such as a resin, and this polymer material is applied onto a substrate. Resistance value becomes high.
  • the thin film 131 is formed by dispersing the carbon nanotubes in a solvent that does not contain the binder agent and applying the solvent onto the substrate 12. Therefore, the carbon nanotubes in the thin film 131 are easily brought into direct contact with each other, and it is possible to prevent the resistance value between the carbon nanotubes from increasing. Thereby, the performance of the biosensor using the carbon electrode of this embodiment can be improved.
  • a catalyst is supported on a substrate to form a carbon nanotube thin film.
  • iron, cobalt, nickel or the like is generally used as a catalyst, but such a catalyst reduces the sensitivity of the biosensor. This is because the catalyst generates an interference current in current-potential measurement or constant potential measurement (for example, Fe ⁇ Fe2 ++ 2e ⁇ ).
  • a catalyst is supported on a substrate to form a carbon nanotube thin film. After forming a carbon nanotube thin film, even if an attempt is made to remove the catalyst with an acid or alkali solution, the carbon nanotube This thin film makes it difficult for an acid or alkali solution to penetrate to the substrate surface. Therefore, it is difficult to remove the catalyst.
  • the thin film 131 is formed by applying a solvent in which carbon nanotubes are dispersed on the substrate 12, and the catalyst is supported on the substrate as in the conventional case, and the carbon nanotube thin film is formed. Does not form. Therefore, the performance of the biosensor can be improved.
  • the carbon nanotubes are washed with an acid or alkali solution, and the catalyst adhered in the carbon nanotube production process is removed, so that the catalyst can be reliably removed, and the performance of the biosensor is further improved. Can be improved.
  • the polymer film 134 is formed so as to cover the thin film 131 of carbon nanotubes.
  • the polymer film 134 can prevent the thin film 131 from peeling off the substrate 12. Since the polymer film 134 is applied on the thin film 131 after the thin film 131 is formed, the polymer hardly enters between the carbon nanotubes.
  • the thin film 131 is light transmissive.
  • the substrate 12 is also light transmissive. Therefore, the position of the biosensor body 11 with respect to the mounting substrate 16 is accurately determined by using the alignment mark M1 formed on the portion below the thin film 131 of the substrate 12 and the alignment mark M2 formed on the mounting substrate 16. Can be adapted.
  • one working electrode 13, one counter electrode 14, and one reference electrode 15 are formed on one substrate 12.
  • the present invention is not limited to this, and a large-sized substrate is prepared, and the working electrode, the counter electrode, After forming many sets of reference electrodes, the biosensor body 11 may be manufactured by cutting the substrate.
  • the carbon nanotubes are washed with an acid or alkali solution to remove the catalyst, but this step may be omitted. By doing in this way, the manufacturing process of a biosensor can be simplified.
  • the carbon nanotube was used for the thin film 131 which comprises a carbon electrode
  • the carbon used for a carbon electrode should just be nanocarbon, carbon nanohorn, carbon nanocone, carbon nanofilament, It may be fullerene.
  • Example 1 A 10 ⁇ 10 ⁇ 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material of the alignment mark is platinum, and the size of the alignment mark is 200 ⁇ m square. Subsequently, CoMoCAT carbon nanotubes were dispersed in 1,2-dichloroethane. In dispersion, ultrasonic treatment was performed for 2 hours to prepare a solution having a carbon nanotube concentration of 10 ppm.
  • the carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several ⁇ m.
  • the solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
  • the glass substrate was immersed in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface. This pulling operation was performed 10 times and 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 10 nm was manufactured.
  • a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film.
  • the alignment mark formed on the glass substrate was covered with the carbon nanotube thin film, it could be visually confirmed, and the carbon nanotube thin film was light-transmitting.
  • a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured. Thereafter, a printed board (mounting board) made of polyimide resin of 15 ⁇ 100 ⁇ 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
  • the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin. Using the biosensor thus produced, glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
  • Example 2 A 10 ⁇ 10 ⁇ 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material is platinum and the size is 200 ⁇ m square. Subsequently, laser ablation carbon nanotubes were dispersed in 1,2-dichloroethane. As a dispersion method, ultrasonic treatment was performed for 2 hours. And the solution whose density
  • the carbon nanotube has a diameter of about 1.3 nm and a length of several ⁇ m.
  • the solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
  • the glass substrate was dipped in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface. This pulling operation was performed 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 16 nm was manufactured.
  • the carbon electrode was immersed in a solution of 1 mg / 0.2 ml of human chorionic gonadotropin antibody (mouse immunized monoclonal antibody manufactured by Hitest) for 1 hour. Then, it is immersed in 3 mM 1,3-diaminobenzene (Aldrich Co., USA, containing phosphate buffer solution of pH 7.4 and 0.1 M sodium chloride), and 0 to 0.8 V is 2 mV. Swept 100 times at / s and applied for 5 hours at 0.65 V to immobilize the antibody described above.
  • human chorionic gonadotropin antibody mouse immunized monoclonal antibody manufactured by Hitest
  • the alignment mark formed on the glass substrate was covered with a carbon nanotube thin film, an antibody layer, and a polyvinyl alcohol layer, but it can be visually confirmed, and the carbon nanotube thin film is light-transmitting. I understand. Thereafter, a printed board (mounting board) made of polyimide resin of 15 ⁇ 100 ⁇ 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
  • the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
  • the carbon electrode thus produced as a working electrode the chorionic gonadotropin concentration (30 nM) in the solution was measured by a square wave voltammetry method using a glass reference electrode and a platinum counter electrode. The measurement conditions are 0.1-1.2 V sweep range, 40 mV pulse potential, 4 Hz frequency, 10 mV step potential.
  • Example 3 A 10 ⁇ 10 ⁇ 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material of the alignment mark is platinum, and the size of the alignment mark is 200 ⁇ m square. Subsequently, CoMoCAT carbon nanotubes were placed in a 1 M hydrochloric acid solution and subjected to ultrasonic cleaning treatment for 1 hour.
  • the carbon nanotube was scooped up with the glass filter, the carbon nanotube was rinsed fully with the pure water, and hydrochloric acid was removed completely. Thereby, the catalyst adhering to the carbon nanotube was removed. Subsequently, the above-mentioned carbon nanotubes were put in 1,2-dichloroethane and sufficiently dispersed by ultrasonic treatment for 2 hours to prepare a solution having a carbon nanotube concentration of 10 ppm.
  • the carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several ⁇ m.
  • the solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
  • the glass substrate was immersed in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface.
  • This pulling operation was performed 10 times and 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 10 nm was manufactured.
  • a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film.
  • the alignment mark formed on the glass substrate was covered with the carbon nanotube thin film, it could be visually confirmed, and the carbon nanotube thin film was light-transmitting.
  • a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured. Thereafter, a printed board (mounting board) made of polyimide resin of 15 ⁇ 100 ⁇ 0.2 mm in which two rhombus alignment marks were formed with copper was prepared. Next, the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin. Using the biosensor thus produced, glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
  • Example 4 A 10 ⁇ 10 ⁇ 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material of the alignment mark is platinum, and the size of the alignment mark is 200 ⁇ m square. Subsequently, CoMoCAT carbon nanotubes were placed in a 0.5 M sodium hydroxide solution and subjected to ultrasonic cleaning treatment for 1 hour. And the carbon nanotube was scooped up with the glass filter, the carbon nanotube was rinsed fully with the pure water, and the sodium hydroxide solution was removed completely.
  • the catalyst adhering to the carbon nanotube was removed.
  • the above-mentioned carbon nanotubes were put in 1,2-dichloroethane and sufficiently dispersed by ultrasonic treatment for 2 hours to prepare a solution having a carbon nanotube concentration of 10 ppm.
  • the carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several ⁇ m.
  • the solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
  • the glass substrate was immersed in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface.
  • This pulling operation was performed 10 times and 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 10 nm was manufactured.
  • a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film.
  • the alignment mark formed on the glass substrate was covered with the carbon nanotube thin film, it could be visually confirmed, and the carbon nanotube thin film was light-transmitting.
  • a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
  • a printed board (mounting board) made of polyimide resin of 15 ⁇ 100 ⁇ 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
  • the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped.
  • the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
  • glucose in the solution glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
  • a glass substrate of 10 ⁇ 10 ⁇ 0.7 mm was prepared and subjected to ultrasonic cleaning for 5 minutes in a nitric acid-hydrogen peroxide solution. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations.
  • the material of the alignment mark is platinum, and the size of the alignment mark is 200 ⁇ m square.
  • CoMoCAT carbon nanotubes were dispersed in 1,2-dichloroethane, and further dispersed by ultrasonic treatment for 2 hours.
  • carbon nanotubes were placed in a 5 w / v% Nafion (registered trademark) solution manufactured by DuPont, which is a polymer electrolyte solution, and further subjected to ultrasonic cleaning treatment for 2 hours, and Nafion (registered trademark) having a concentration of 10 ppm.
  • -A carbon nanotube solution was prepared.
  • the carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several ⁇ m.
  • the glass substrate was immersed in the solution and pulled up by a dip coater (pickup speed: 0.2 mm / sec) to coat Nafion (registered trademark) -carbon nanotubes on the substrate surface.
  • This pulling operation was performed 10 times and 20 times, and a carbon electrode of a thin film of Nafion (registered trademark) -carbon nanotubes having a thickness of about 1 ⁇ m was manufactured.
  • a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm, and the enzyme was immobilized on the Nafion (registered trademark) -carbon nanotube thin film. .
  • a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
  • a printed board (mounting board) made of polyimide resin of 15 ⁇ 100 ⁇ 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
  • the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped.
  • the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
  • glucose in the solution glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
  • a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film.
  • a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
  • the side surface of the substrate was aligned with the alignment mark of the polyimide resin described above, and the substrate was mounted on the polyimide resin.
  • the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped.
  • the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
  • glucose in the solution glucose concentration 1 mM was measured by the three-electrode method.
  • Example 1 The results from Example 1 to Comparative Example 2 are shown in Table 1.
  • the items evaluated were as follows, and each item was evaluated on a 5-point scale.
  • (1) Base current value indicating the background current output value When the base current value exceeds 1 ⁇ A When the one-point base current value exceeds 500 nA and below 1 ⁇ A When the two-point base current value exceeds 200 nA and below 500 nA When the 3-point base current value exceeds 50 nA and is 200 nA or less 4-point base current value is 50 nA or less 5 points
  • (2) Indicates the current output value against noise when measuring 1 mM glucose or 30 nM chorionic gonadotropin Signal / noise average value Signal / noise average value is less than 1 1 point Signal / noise average value is 1 or more and less than 2 2 points Signal / noise average value is 2 or more and less than 5 3 Point When the average value of signal / noise is 5 or more and less than 20 4 points When the average value of signal / noise is 20 or more Total 5 points

Abstract

A step for manufacturing a carbon electrode includes: a substep for adding nanocarbon to a solvent containing no binder agent so as to prepare a dispersed liquid (carbon nanotubes dispersion liquid); a substep for applying the nanocarbon-dispersed liquid to a substrate (12) so as to form a nanocarbon layer; and a substep for solidifying an antibody or a catalyst to the nanocarbon layer.

Description

バイオセンサ用電極の製造方法およびバイオセンサの製造方法Biosensor electrode manufacturing method and biosensor manufacturing method
 本発明は、バイオセンサ用電極の製造方法およびバイオセンサの製造方法に関する。 The present invention relates to a biosensor electrode manufacturing method and a biosensor manufacturing method.
  従来、カーボン電極には、カーボンナノチューブ(CNT)等のナノカーボンが使用されている。ナノカーボンは、優れた電気伝導性を有するとともに、ナノ構造に由来して生体分子との電子移動反応が促進されることから、バイオセンサの高感度化を図る点で期待されている。
 このようなカーボン電極は、以下のような製造方法により製造されている。
 特許文献1には、界面活性剤と、高分子電解質溶液との混合物により、カーボンナノチューブをミセル化して、水溶媒中に分散させた後、ミセルを分解して、カーボンナノチューブを薄膜化する方法が開示されている。
 また、特許文献2には、カーボンナノチューブを光造形用樹脂に分散させて、この光造形用樹脂を光照射により、硬化させて、電極を形成する点が開示されている。
 さらに、特許文献3には、乾式法により、カーボンナノチューブの膜を形成する方法が開示されている。具体的には、基板の触媒担持面に原料ガスを吹き付けて、カーボンナノチューブを触媒担持面において成長させる。
Conventionally, nanocarbons such as carbon nanotubes (CNT) have been used for carbon electrodes. Nanocarbon is expected in terms of increasing the sensitivity of a biosensor because it has excellent electrical conductivity and promotes an electron transfer reaction with a biomolecule derived from the nanostructure.
Such a carbon electrode is manufactured by the following manufacturing method.
Patent Document 1 discloses a method in which a carbon nanotube is micelleed with a mixture of a surfactant and a polymer electrolyte solution, dispersed in an aqueous solvent, and then the micelle is decomposed to form a thin film of the carbon nanotube. It is disclosed.
Patent Document 2 discloses that carbon nanotubes are dispersed in an optical modeling resin, and the optical modeling resin is cured by light irradiation to form an electrode.
Further, Patent Document 3 discloses a method of forming a carbon nanotube film by a dry method. Specifically, a raw material gas is sprayed on the catalyst supporting surface of the substrate to grow carbon nanotubes on the catalyst supporting surface.
特開2007-136645号公報JP 2007-136645 A 特開2006-260938号公報JP 2006-260938 A 特開2007-126318号公報JP 2007-126318 A
 近年、バイオセンサの性能向上(たとえば、測定精度の向上)が求められているが、特許文献1~3で開示された方法により製造された電極を用いた場合、このような要求に応えることが難しい。
 これは、以下のような理由によるものと考えられる。
 特許文献1,2で開示された製造方法では、カーボンナノチューブを樹脂等の高分子材料中に分散させている。この高分子材料は、カーボンナノチューブ同士を固定化するためのバインダ材としての役割を果たす。しかしながら、各カーボンナノチューブ間に高分子材料が入り込んだ構造となるため、カーボンナノチューブ間の抵抗値が高くなってしまう。その結果、バイオセンサの感度が低下してしまう。
 一方、特許文献3に開示された製造方法では、高分子材料を使用しないものの、基板に担持された触媒がバイオセンサの感度に悪影響を及ぼす。
In recent years, improvement in the performance of biosensors (for example, improvement in measurement accuracy) has been demanded. However, when electrodes manufactured by the methods disclosed in Patent Documents 1 to 3 are used, such demands can be met. difficult.
This is considered to be due to the following reasons.
In the production methods disclosed in Patent Documents 1 and 2, carbon nanotubes are dispersed in a polymer material such as a resin. This polymer material serves as a binder material for immobilizing the carbon nanotubes. However, since a polymer material is inserted between the carbon nanotubes, the resistance value between the carbon nanotubes is increased. As a result, the sensitivity of the biosensor decreases.
On the other hand, in the manufacturing method disclosed in Patent Document 3, although a polymer material is not used, the catalyst supported on the substrate adversely affects the sensitivity of the biosensor.
 本発明は、バイオセンサの性能を向上させることができるバイオセンサ用電極の製造方法およびバイオセンサの製造方法を提供するものである。 The present invention provides a method for producing a biosensor electrode and a method for producing a biosensor that can improve the performance of the biosensor.
 本発明によれば、バインダ剤を含まない溶媒に、ナノカーボンを添加した液体を作成する工程と、前記ナノカーボンを含有する前記液体を、基板上に塗布して、ナノカーボン層を形成する工程と、前記ナノカーボン層に対して、抗体または酵素を固定化する工程とを含むバイオセンサ用電極の製造方法が提供される。
 ここで、ナノカーボンとは、カーボンナノチューブ、カーボンナノホーン、カーボンナノコーン、カーボンナノフィラメント、フラーレンのいずれかである。
 また、本発明によれば、上述したバイオセンサ用電極の製造方法を含むバイオセンサの製造方法であり、前記基板の前記ナノカーボン層の下方の位置には、位置あわせ用のマークが形成されており、前記バイオセンサ用電極を実装基板に実装する工程を含み、前記バイオセンサ用電極を実装基板に実装する前記工程では、前記バイオセンサ用電極の基板の位置あわせマークと、前記実装基板に形成された位置あわせマークとを用いて位置あわせを行い、前記バイオセンサ用電極を前記実装基板に実装するバイオセンサの製造方法も提供できる。
According to the present invention, a step of creating a liquid in which nanocarbon is added to a solvent not containing a binder agent, and a step of applying the liquid containing the nanocarbon on a substrate to form a nanocarbon layer. And a method for producing an electrode for a biosensor comprising the step of immobilizing an antibody or an enzyme on the nanocarbon layer.
Here, nanocarbon is any of carbon nanotubes, carbon nanohorns, carbon nanocones, carbon nanofilaments, and fullerenes.
Further, according to the present invention, there is provided a biosensor manufacturing method including the above-described biosensor electrode manufacturing method, wherein an alignment mark is formed at a position below the nanocarbon layer of the substrate. A step of mounting the biosensor electrode on a mounting substrate, and the step of mounting the biosensor electrode on the mounting substrate includes forming an alignment mark on the biosensor electrode substrate on the mounting substrate. A biosensor manufacturing method can be provided in which alignment is performed using the alignment mark and the biosensor electrode is mounted on the mounting substrate.
本発明によれば、バイオセンサの性能を向上させることができるバイオセンサ用電極の製造方法およびバイオセンサの製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrode for biosensors and the manufacturing method of a biosensor which can improve the performance of a biosensor are provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明の一実施形態にかかるバイオセンサを示す断面図である。It is sectional drawing which shows the biosensor concerning one Embodiment of this invention. カーボンナノチューブ、抗体の状態を模式的に示す図である。It is a figure which shows typically the state of a carbon nanotube and an antibody. バイオセンサ本体と、実装基板とを示す平面図である。It is a top view which shows a biosensor main body and a mounting substrate.
 以下、本発明の実施形態を図面に基づいて説明する。
 図1~図3を用いて、本実施形態について説明する。
 図1には、本実施形態のバイオセンサ1が開示されている。
 このバイオセンサ1は、基板12、この基板12上に形成された作用極13、対極14、および参照極15を備えるバイオセンサ本体11と、実装基板16とを有する。
 なお、基板12と、作用極13とで本発明のバイオセンサ用のカーボン電極が構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The present embodiment will be described with reference to FIGS.
FIG. 1 discloses a biosensor 1 of the present embodiment.
The biosensor 1 includes a biosensor body 11 including a substrate 12, a working electrode 13 formed on the substrate 12, a counter electrode 14, and a reference electrode 15, and a mounting substrate 16.
The substrate 12 and the working electrode 13 constitute a carbon electrode for the biosensor of the present invention.
 基板12は、絶縁基板であり、光透過性の基板である。基板12としては、ガラス、プラスチック等であり、材質は特に限定されないが、強度と光透過性の高いガラスが好ましい。本実施形態において、光透過性とは可視光を透過することをいい、この光透過性の物体を介して反対側が肉眼で視認できる程度に光を透過すればよい。具体的には、可視光の光線透過率が70%以上であることが好ましい。 The substrate 12 is an insulating substrate and is a light transmissive substrate. The substrate 12 is glass, plastic, or the like, and the material is not particularly limited, but glass having high strength and high light transmission is preferable. In the present embodiment, light-transmitting means transmitting visible light, and it is only necessary to transmit light through the light-transmitting object to such an extent that the opposite side can be visually recognized by the naked eye. Specifically, the light transmittance of visible light is preferably 70% or more.
 作用極13は、基板12上に形成されたカーボンナノチューブの薄膜(ナノカーボン層)131と、薄膜131を覆うように設けられた抗体および酵素を含む層132と、層132上に設けられ薄膜131を被覆するように設けられた高分子膜134とを備える。 The working electrode 13 includes a carbon nanotube thin film (nanocarbon layer) 131 formed on the substrate 12, a layer 132 containing an antibody and an enzyme provided so as to cover the thin film 131, and a thin film 131 provided on the layer 132. And a polymer film 134 provided so as to cover the surface.
 薄膜131は、カーボンナノチューブが堆積することで成膜されたものである。カーボンナノチューブ同士は、図2に示すように、直接接触するようにして交差している。図2においては、符号131Aがカーボンナノチューブを示しており、点線Aは、カーボンナノチューブ131Aの交点を示している。
 なお、薄膜131上に高分子膜134を設けているため、一部のカーボンナノチューブ131A間(全カーボンナノチューブのうち、1%未満のカーボンナノチューブ)に高分子が介在することがあるが、ほとんどのカーボンナノチューブ131A(全カーボンナノチューブのうち、99%以上のカーボンナノチューブ)同士は直接接触している。
 また、カーボンナノチューブ131Aは、基板12に対し直接接触しており、薄膜131は物理的に基板12に固定された(吸着した)状態となっている(図2の点線B参照)。
 なお、薄膜131上に高分子膜134を設けているため、一部のカーボンナノチューブ131Aと基板12との間に高分子が介在することがあるが、ほとんどのカーボンナノチューブ131Aは基板12に直接接触している。
The thin film 131 is formed by depositing carbon nanotubes. As shown in FIG. 2, the carbon nanotubes intersect each other so as to be in direct contact with each other. In FIG. 2, reference numeral 131A indicates a carbon nanotube, and a dotted line A indicates an intersection of the carbon nanotubes 131A.
Since the polymer film 134 is provided on the thin film 131, a polymer may be interposed between some of the carbon nanotubes 131A (less than 1% of all the carbon nanotubes). The carbon nanotubes 131A (99% or more of all carbon nanotubes) are in direct contact with each other.
Further, the carbon nanotube 131A is in direct contact with the substrate 12, and the thin film 131 is physically fixed (adsorbed) to the substrate 12 (see dotted line B in FIG. 2).
Since the polymer film 134 is provided on the thin film 131, a polymer may be interposed between some of the carbon nanotubes 131A and the substrate 12, but most of the carbon nanotubes 131A are in direct contact with the substrate 12. is doing.
 カーボンナノチューブとしては、種々のものが使用できるが、たとえば、レーザアブレーション法、CoMoCAT法(アメリカ合衆国オクラホマ大学の手法)、直噴熱分解合成法、ハイ・プレッシャー・カーボン・モノキシド・プロセス法で生成される種類が好ましく用いられる。コストの面からレーザアブレーション法がより好ましい。
 この薄膜131は、光透過性であり、薄膜131を介して基板12を視認することができる程度の透過性があればよい。具体的には、可視光の光線透過率が70%以上であることが好ましい。
Various types of carbon nanotubes can be used. For example, they are produced by a laser ablation method, a CoMoCAT method (a method of the University of Oklahoma, USA), a direct-injection pyrolysis synthesis method, or a high pressure carbon monoxide process method. Kinds are preferably used. The laser ablation method is more preferable from the viewpoint of cost.
The thin film 131 is light-transmitting, and it is sufficient that the thin film 131 has such a transparency that the substrate 12 can be visually recognized through the thin film 131. Specifically, the light transmittance of visible light is preferably 70% or more.
 カーボンナノチューブとしては、直径0.8~1.3nmの直径、長さ数μmのものが、品質、基板12からのはがれにくさ等の観点から好ましく用いられる。 Carbon nanotubes having a diameter of 0.8 to 1.3 nm and a length of several μm are preferably used from the viewpoints of quality, difficulty of peeling from the substrate 12, and the like.
 薄膜131の厚みは、10nm以上、1μm以下が好ましい。より好ましくは20nm以上、50nm以下である。薄膜131の厚みが薄すぎると、導電率が低下するため、抗体や酵素の固定化量が低くなるなどの観点から好ましくはない。また、厚すぎると、光の透過率が低下するため、好ましくはない。 The thickness of the thin film 131 is preferably 10 nm or more and 1 μm or less. More preferably, it is 20 nm or more and 50 nm or less. If the thickness of the thin film 131 is too thin, the electrical conductivity decreases, which is not preferable from the viewpoint of reducing the amount of antibody or enzyme immobilized. On the other hand, if it is too thick, the light transmittance is lowered, which is not preferable.
 図1に示す抗体および酵素を含む層132は、抗体および酵素を薄膜131上に固定したものである。
 抗体の固定化方法はカーボンナノチューブの薄膜131に予め固定化タンパク質の処理を施しておき、続いて抗体を含む溶液を接触させればよい。たとえば、図2に示すように固定化タンパク質132Cを介して、抗体132Aがカーボンナノチューブ131Aに固定化される。
 固定化タンパク質は抗体をカーボンナノチューブに固定化するための機能を有する。
 具体的な固定化タンパク質としては、電気化学的に活性なアミノ酸であるトリプトファンやチロシンを含むタンパク質を用いればよく、ストレプトアビジン、プロテインA、プロテインG等が好ましく用いられる。また、測定対象物質に前述の電気化学的に活性なアミノ酸が含まれていれば、固定化タンパク質にこれらのアミノ酸が含まれなくてもよいことはいうまでもない。また、測定対象物質および固定化タンパク質の両者に含まれなくても、測定時に用いる溶液中に電気化学的に活性なアミノ酸が含まれていてもよい。これらの選択は適宜、測定対象物質によって変えることが可能である。用いる抗体としては、ヒト絨毛性ゴナドトロピン抗体、トリニトロトルエン抗体など、測定対象物質の分子量が大きい抗原から小さい抗原まで幅広く適用することが可能である。
The layer 132 containing an antibody and an enzyme shown in FIG. 1 is obtained by fixing an antibody and an enzyme on a thin film 131.
In the antibody immobilization method, the carbon nanotube thin film 131 is preliminarily treated with an immobilized protein, and then a solution containing the antibody is brought into contact therewith. For example, as shown in FIG. 2, the antibody 132A is immobilized on the carbon nanotube 131A via the immobilized protein 132C.
The immobilized protein has a function for immobilizing the antibody on the carbon nanotube.
As specific immobilized proteins, proteins containing electrochemically active amino acids such as tryptophan and tyrosine may be used, and streptavidin, protein A, protein G and the like are preferably used. Needless to say, if the above-mentioned electrochemically active amino acid is contained in the measurement target substance, these amino acids may not be contained in the immobilized protein. Moreover, even if it is not contained in both the substance to be measured and the immobilized protein, the solution used at the time of measurement may contain an electrochemically active amino acid. These selections can be appropriately changed depending on the substance to be measured. As an antibody to be used, it is possible to apply a wide range of antigens, such as human chorionic gonadotropin antibody and trinitrotoluene antibody, from an antigen having a large molecular weight to a small antigen.
 酵素の固定化方法は、アルブミンとグルタルアルデヒドの架橋反応を利用した方法が、低コストで製作可能であることから好ましく用いられる。用いる酵素としてはグルコース酸化酵素、乳酸酸化酵素、尿酸酸化酵素など主として酸化酵素が用いられるが、メデエーター等を用いて脱水素酵素を用いることも可能である。
 なお、層132は、抗体および酵素を含む層であるとしたが、抗体あるいは酵素のいずれか一方のみを有する層であってもよい。
As an enzyme immobilization method, a method using a crosslinking reaction between albumin and glutaraldehyde is preferably used because it can be produced at low cost. As an enzyme to be used, an oxidase such as glucose oxidase, lactate oxidase, or urate oxidase is mainly used, but a dehydrogenase can also be used using a mediator or the like.
The layer 132 is a layer containing an antibody and an enzyme, but may be a layer having only one of an antibody and an enzyme.
 図1、図2に示すように、高分子膜134は、層132および薄膜131を上面側から覆うものであり、薄膜131を基板12に対し、強固に固定するために設けられている。また高分子膜134は、抗体等が薄膜131に対し固定化するのを補強するための役割も果たす。
 高分子膜134としては、たとえば、ポリビニルアルコール、ポリアセチレン、ポリチオフェン、アルブミンやゼラチンなどのタンパク質等があげられる。
 なかでも、安価であり、また溶液の調整が容易であるという点から、ポリビニルアルコールを使用することが好ましい。
As shown in FIGS. 1 and 2, the polymer film 134 covers the layer 132 and the thin film 131 from the upper surface side, and is provided to firmly fix the thin film 131 to the substrate 12. The polymer film 134 also serves to reinforce that the antibody or the like is immobilized on the thin film 131.
Examples of the polymer film 134 include polyvinyl alcohol, polyacetylene, polythiophene, proteins such as albumin and gelatin, and the like.
Of these, polyvinyl alcohol is preferably used because it is inexpensive and the solution can be easily adjusted.
 対極14は、作用極13に対向するように配置され、たとえば、白金を含んで構成される。参照極15は、たとえば、銀を含んで構成される。対極14、参照極15はいずれも基板12上に形成されている。 The counter electrode 14 is disposed so as to face the working electrode 13 and includes, for example, platinum. The reference electrode 15 includes, for example, silver. Both the counter electrode 14 and the reference electrode 15 are formed on the substrate 12.
 図1に示すように、以上のような構成のバイオセンサ本体11は、実装基板16に実装されている。
 実装基板16は、絶縁性基板であり、たとえば、フレキシブル基板である。この実装基板16は、耐水性、耐熱性、耐薬品性に優れた材料であることが好ましく、低コストで製作できるプラスチックスが好ましい。
As shown in FIG. 1, the biosensor body 11 having the above configuration is mounted on a mounting substrate 16.
The mounting substrate 16 is an insulating substrate, for example, a flexible substrate. The mounting substrate 16 is preferably made of a material excellent in water resistance, heat resistance, and chemical resistance, and plastics that can be manufactured at low cost are preferable.
 実装基板16上には配線(図示略)が形成され、バイオセンサ本体11は、ボンディングワイヤWを介して前記配線に接続される。ボンディングワイヤ部分には、封止剤Eが設けられる。 A wiring (not shown) is formed on the mounting substrate 16, and the biosensor body 11 is connected to the wiring via a bonding wire W. Sealing agent E is provided on the bonding wire portion.
 ボンディングワイヤWの材料は白金、金、アルミニウムが適宜選択され、安価なアルミニウムが好ましく用いられる。
 封止剤Eは、ボンディングワイヤW、さらには、ボンディングワイヤWおよびバイオセンサ本体11の接続部分を、防水し、破損から保護できる材料を用いれば特に限定されない。信頼性の観点からシリコーン樹脂が好ましく用いられる。
 バイオセンサ本体11は実装基板16を介して電気的化学測定装置に接続されることとなる。
Platinum, gold, and aluminum are appropriately selected as the material of the bonding wire W, and inexpensive aluminum is preferably used.
The sealant E is not particularly limited as long as it uses a material that waterproofs the bonding wire W and further the connection portion between the bonding wire W and the biosensor main body 11 and protects it from breakage. A silicone resin is preferably used from the viewpoint of reliability.
The biosensor body 11 is connected to the electrochemical measurement device via the mounting substrate 16.
 次に、以上のようなバイオセンサ1の製造方法について説明する。
 本実施形態のバイオセンサ1の製造方法は、バイオセンサ本体11を製造する工程と、バイオセンサ本体11を実装基板16上に実装する工程とを含んでいる。
 バイオセンサ本体11の製造方法は、作用極13および基板12を備えるカーボン電極を製造する工程と、対極14および参照極15を製造する工程を含む。
Next, the manufacturing method of the above biosensor 1 is demonstrated.
The manufacturing method of the biosensor 1 of the present embodiment includes a step of manufacturing the biosensor main body 11 and a step of mounting the biosensor main body 11 on the mounting substrate 16.
The manufacturing method of the biosensor body 11 includes a step of manufacturing a carbon electrode including the working electrode 13 and the substrate 12, and a step of manufacturing the counter electrode 14 and the reference electrode 15.
 はじめに、カーボン電極を製造する工程の概要について説明する。
 カーボン電極を製造する工程は、バインダ剤を含まない溶媒に、ナノカーボン(カーボンナノチューブ)を添加し、分散させた液体(カーボンナノチューブ分散液)を作成する工程と、ナノカーボンが分散した前記液体を、基板12上に塗布して、ナノカーボン層(薄膜131)を形成する工程と、ナノカーボン層に対して、抗体または酵素を固定化する工程とを含む。
 ここで、バインダ剤とは、ナノカーボン同士を接着するためのものであり、たとえば、高分子樹脂等の高分子材料である。
First, an outline of a process for manufacturing a carbon electrode will be described.
The steps of manufacturing the carbon electrode include adding a nanocarbon (carbon nanotube) to a solvent that does not contain a binder agent to create a dispersed liquid (carbon nanotube dispersion), and the above-mentioned liquid in which nanocarbon is dispersed. And a step of coating on the substrate 12 to form a nanocarbon layer (thin film 131), and a step of immobilizing an antibody or an enzyme on the nanocarbon layer.
Here, the binder agent is for adhering nanocarbons to each other, and is, for example, a polymer material such as a polymer resin.
 次に、カーボン電極を製造する工程について、詳細に説明する。
 まず、カーボンナノチューブを用意し、酸またはアルカリ溶液を用いて、カーボンナノチューブを洗浄する。具体的には、カーボンナノチューブを酸またはアルカリの溶液中に分散させて、洗浄する。
  酸溶液としては、pHが4以下であるものが好ましく、たとえば、硝酸や、塩酸等があげられる。酸溶液の硝酸、塩酸等の濃度としては0.01M以上1M以下が好ましい。アルカリ溶液としては、pHが8以上であることが好ましく、たとえば、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。濃度としては0.01M以上3M以下が好ましい。
 カーボンナノチューブには、カーボンナノチューブの製造過程において、使用した触媒がわずかながら付着していることがある。このような触媒は、バイオセンサの感度に影響を及ぼす場合がある。
 そこで、本工程を設けることで、カーボンナノチューブに付着した触媒が除去され、バイオセンサの感度の低下を防止することができる。
 なお、触媒が除去されているかどうかの確認は、たとえば、EDX(energy dispersive X-ray spectrometry)で確認することができる。
Next, the process for manufacturing the carbon electrode will be described in detail.
First, carbon nanotubes are prepared, and the carbon nanotubes are washed using an acid or alkali solution. Specifically, carbon nanotubes are dispersed in an acid or alkali solution and washed.
The acid solution preferably has a pH of 4 or less, and examples thereof include nitric acid and hydrochloric acid. The concentration of nitric acid, hydrochloric acid, etc. in the acid solution is preferably 0.01M or more and 1M or less. As an alkaline solution, it is preferable that pH is 8 or more, for example, ammonia, sodium hydroxide, potassium hydroxide etc. are mentioned. The concentration is preferably 0.01M or more and 3M or less.
In the carbon nanotube production process, the used catalyst may be slightly attached to the carbon nanotube. Such a catalyst may affect the sensitivity of the biosensor.
Therefore, by providing this step, the catalyst adhering to the carbon nanotube is removed, and the sensitivity of the biosensor can be prevented from being lowered.
Whether or not the catalyst has been removed can be confirmed by, for example, EDX (energy dispersive X-ray spectrometry).
 次に、カーボンナノチューブ同士を接着するためのバインダ剤を含まない溶媒に、カーボンナノチューブを分散させ、カーボンナノチューブ分散液を作成する。
 溶媒としては、有機溶媒が使用でき、有機溶媒としては、ジクロロエタン、ジメチルスルホン、アセトン、エーテル、DMF(ジメチルホルムアミド)等が好ましい。なかでも、カーボンナノチューブの分散性が良好なジクロロエタンを使用することが好ましい。
 溶媒中にカーボンナノチューブを分散させる方法としては、スターラーで溶媒を撹拌しても良いが、超音波で処理することによって分散させる方法(超音波による攪拌)を使用すれば効率よくカーボンナノチューブを溶媒中に分散させることができる。なかでも、ジクロロエタンを使用し、さらに、超音波での攪拌を行うことで、より効果的にカーボンナノチューブを溶媒中に分散させることができる。
 ここで、カーボンナノチューブ分散液は、カーボンナノチューブと、溶媒とのみからなるものであり、バインダ剤、さらには、界面活性剤等を含まない。
Next, the carbon nanotubes are dispersed in a solvent that does not contain a binder agent for bonding the carbon nanotubes together to create a carbon nanotube dispersion.
As the solvent, an organic solvent can be used. As the organic solvent, dichloroethane, dimethylsulfone, acetone, ether, DMF (dimethylformamide) and the like are preferable. Of these, it is preferable to use dichloroethane having good dispersibility of carbon nanotubes.
As a method of dispersing the carbon nanotubes in the solvent, the solvent may be stirred with a stirrer. However, if the method of dispersing by treating with ultrasonic waves (stirring by ultrasonic waves) is used, the carbon nanotubes are efficiently dissolved in the solvent. Can be dispersed. Among these, carbon nanotubes can be more effectively dispersed in the solvent by using dichloroethane and further stirring with ultrasonic waves.
Here, the carbon nanotube dispersion liquid is composed only of carbon nanotubes and a solvent, and does not contain a binder agent, a surfactant or the like.
 次に、ナノカーボンが分散した溶媒(カーボンナノチューブ分散液)を、基板12上に塗布して、カーボンナノチューブの薄膜131を形成する。塗布方法はスピンコート法、デップコート法が好ましく用いられるが、薄膜131の膜厚を効率よく厚くできる点からデップコート法が好ましい。スピンコート法を適用する場合でも、塗布回数を増やすことでデップコート法と同様にカーボンナノチューブの薄膜131を厚くすることが可能である。 Next, a solvent in which nanocarbon is dispersed (carbon nanotube dispersion) is applied on the substrate 12 to form a carbon nanotube thin film 131. A spin coating method or a dip coating method is preferably used as the coating method, but the dip coating method is preferable from the viewpoint that the thickness of the thin film 131 can be increased efficiently. Even when the spin coating method is applied, it is possible to increase the thickness of the carbon nanotube thin film 131 by increasing the number of coatings as in the case of the dip coating method.
 その後、溶媒を蒸発させ、カーボンナノチューブの薄膜131に対して、酵素、抗体を固定化し、層132を形成する。
 酵素、抗体の固定化方法は前述した通りである。
Thereafter, the solvent is evaporated, and the enzyme and the antibody are immobilized on the carbon nanotube thin film 131 to form the layer 132.
Enzyme and antibody immobilization methods are as described above.
 次に、高分子膜134を成膜する。
 具体的には、高分子を含む溶液(たとえば、ポリビニルアルコール溶液)を層132上に塗布する。
 その後、基板12上に対極14および参照極15を形成する。
 以上の工程により、バイオセンサ本体11が製造される。
Next, a polymer film 134 is formed.
Specifically, a solution containing a polymer (for example, a polyvinyl alcohol solution) is applied on the layer 132.
Thereafter, the counter electrode 14 and the reference electrode 15 are formed on the substrate 12.
The biosensor body 11 is manufactured through the above steps.
 次に、図3を参照して、バイオセンサ本体11を実装基板16に実装する工程について説明する。
 まず、あらかじめ、バイオセンサ本体11の基板12に位置あわせ用のマークを形成しておく。位置合わせマークM1を形成する方法としては、予め金や銀などの金属をスパッタリングなどで形成し、パターニングをしてもよいが、ガラスカッターなどで傷を付けておいてもよい。基板12のサイズが小さい場合には前者が好ましく、基板12のサイズが大きい場合には後者が好ましい。
 なお、位置合わせマークM1を形成する工程は、基板12に対し、電極を形成する前段で行う。電極を形成した状態においては、位置合わせマークM1は、作用極13のカーボンナノチューブの薄膜131等に覆われた状態となる。
Next, with reference to FIG. 3, the process of mounting the biosensor body 11 on the mounting substrate 16 will be described.
First, an alignment mark is formed on the substrate 12 of the biosensor body 11 in advance. As a method of forming the alignment mark M1, a metal such as gold or silver may be formed in advance by sputtering or the like and patterned, or may be scratched with a glass cutter or the like. The former is preferable when the size of the substrate 12 is small, and the latter is preferable when the size of the substrate 12 is large.
Note that the step of forming the alignment mark M1 is performed on the substrate 12 before the electrode is formed. In the state where the electrode is formed, the alignment mark M1 is covered with the carbon nanotube thin film 131 of the working electrode 13 or the like.
 一方で、実装基板16にも位置合わせマークM2を形成しておく。実装基板16に配線を形成する際に、配線と同じ材料で位置合わせマークをパターニングすることが好ましいが、位置合わせマークM2としては、これに限られるものではない。 On the other hand, the alignment mark M2 is also formed on the mounting substrate 16. When the wiring is formed on the mounting substrate 16, it is preferable to pattern the alignment mark with the same material as the wiring, but the alignment mark M2 is not limited to this.
 次に、実装基板16表面に形成された位置合わせマークM2と、基板12に形成された位置合わせマークM1とを一致させて、実装基板16上にバイオセンサ本体11を設置する。
 ここで、基板12は光透過性であり、また、カーボンナノチューブの薄膜131、さらには、高分子膜134も光透過性であるため、本実施形態では、位置あわせを容易に実施することができる。
 その後、ボンディングワイヤWを用いて実装基板16とバイオセンサ本体11とを電気的に接続するとともに、接続箇所を封止剤で封止する。
Next, the alignment mark M2 formed on the surface of the mounting substrate 16 is aligned with the alignment mark M1 formed on the substrate 12, and the biosensor body 11 is placed on the mounting substrate 16.
Here, since the substrate 12 is light transmissive, and the carbon nanotube thin film 131 and the polymer film 134 are also light transmissive, in this embodiment, alignment can be easily performed. .
Thereafter, the mounting substrate 16 and the biosensor main body 11 are electrically connected using the bonding wire W, and the connection portion is sealed with a sealant.
 次に、本実施形態の作用効果について説明する。
 従来のカーボン電極の製造方法では、カーボンナノチューブを樹脂等の高分子材料中に分散させ、この高分子材料を基板上に塗布していたため、カーボンナノチューブ間に高分子材料が入り込み、カーボンナノチューブ間の抵抗値が高くなってしまう。
 これに対し、本実施形態では、バインダ剤を含まない溶媒中にカーボンナノチューブを分散させて、この溶媒を基板12上に塗布することで、薄膜131を形成している。
 従って、薄膜131中のカーボンナノチューブ同士が、直接接触しやすくなり、カーボンナノチューブ間の抵抗値が高くなってしまうことを防止できる。これにより、本実施形態のカーボン電極を用いたバイオセンサの性能を向上させることができる。
Next, the effect of this embodiment is demonstrated.
In the conventional method for producing a carbon electrode, carbon nanotubes are dispersed in a polymer material such as a resin, and this polymer material is applied onto a substrate. Resistance value becomes high.
On the other hand, in the present embodiment, the thin film 131 is formed by dispersing the carbon nanotubes in a solvent that does not contain the binder agent and applying the solvent onto the substrate 12.
Therefore, the carbon nanotubes in the thin film 131 are easily brought into direct contact with each other, and it is possible to prevent the resistance value between the carbon nanotubes from increasing. Thereby, the performance of the biosensor using the carbon electrode of this embodiment can be improved.
 また、従来のカーボン電極の製造方法では、基板に触媒を担持させて、カーボンナノチューブの薄膜を形成している。この方法においては、触媒として、一般に、鉄、コバルト、ニッケル等が使用されるが、このような触媒はバイオセンサの感度を低下させる。これは、電流-電位測定、もしくは定電位測定において、触媒が干渉電流を発生させるためである(例えば、Fe→Fe2+ + 2e-)。このようなカーボン電極では、基板に触媒を担持させて、カーボンナノチューブの薄膜を形成しているため、カーボンナノチューブの薄膜を形成した後、酸やアルカリの溶液で触媒を除去しようとしても、カーボンナノチューブの薄膜により、酸やアルカリの溶液が基板表面まで浸透しにくい。そのため、触媒を除去することは困難である。
 これに対し、本実施形態では、基板12上にカーボンナノチューブを分散させた溶媒を塗布することで、薄膜131を形成しており、従来のように基板に触媒を担持させて、カーボンナノチューブの薄膜を形成していない。そのため、バイオセンサの性能を向上させることができる。
 特に、本実施形態では、カーボンナノチューブを、酸あるいはアルカリの溶液にて洗浄し、カーボンナノチューブの製造工程で付着した触媒を除去しているので、確実に触媒を除去でき、より一層バイオセンサの性能を向上させることができる。
In the conventional carbon electrode manufacturing method, a catalyst is supported on a substrate to form a carbon nanotube thin film. In this method, iron, cobalt, nickel or the like is generally used as a catalyst, but such a catalyst reduces the sensitivity of the biosensor. This is because the catalyst generates an interference current in current-potential measurement or constant potential measurement (for example, Fe → Fe2 ++ 2e−). In such a carbon electrode, a catalyst is supported on a substrate to form a carbon nanotube thin film. After forming a carbon nanotube thin film, even if an attempt is made to remove the catalyst with an acid or alkali solution, the carbon nanotube This thin film makes it difficult for an acid or alkali solution to penetrate to the substrate surface. Therefore, it is difficult to remove the catalyst.
On the other hand, in this embodiment, the thin film 131 is formed by applying a solvent in which carbon nanotubes are dispersed on the substrate 12, and the catalyst is supported on the substrate as in the conventional case, and the carbon nanotube thin film is formed. Does not form. Therefore, the performance of the biosensor can be improved.
In particular, in the present embodiment, the carbon nanotubes are washed with an acid or alkali solution, and the catalyst adhered in the carbon nanotube production process is removed, so that the catalyst can be reliably removed, and the performance of the biosensor is further improved. Can be improved.
 さらに、本実施形態では、カーボンナノチューブの薄膜131を覆うように高分子膜134を形成している。この高分子膜134により薄膜131が基板12からはがれてしまうことを防止できる。なお、高分子膜134は、薄膜131を形成した後、薄膜131上に塗布しているため、カーボンナノチューブ間に高分子が入り込んでしまうことはほとんどない。 Furthermore, in this embodiment, the polymer film 134 is formed so as to cover the thin film 131 of carbon nanotubes. The polymer film 134 can prevent the thin film 131 from peeling off the substrate 12. Since the polymer film 134 is applied on the thin film 131 after the thin film 131 is formed, the polymer hardly enters between the carbon nanotubes.
 また、本実施形態では、カーボンナノチューブの薄膜131を湿式法により成膜しているため、薄膜131は光透過性である。また、本実施形態では、基板12も光透過性である。そのため、基板12の薄膜131の下方となる部分に形成された位置合わせマークM1と、実装基板16に形成された位置合わせマークM2とを用いて、実装基板16に対するバイオセンサ本体11の位置を正確にあわせることができる。 In this embodiment, since the carbon nanotube thin film 131 is formed by a wet method, the thin film 131 is light transmissive. In the present embodiment, the substrate 12 is also light transmissive. Therefore, the position of the biosensor body 11 with respect to the mounting substrate 16 is accurately determined by using the alignment mark M1 formed on the portion below the thin film 131 of the substrate 12 and the alignment mark M2 formed on the mounting substrate 16. Can be adapted.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 たとえば、前記実施形態では、一つの基板12上に、作用極13、対極14、参照極15をそれぞれ1つずつ形成したが、これに限らず、大判の基板を用意し、作用極、対極、参照極のセットを多数形成した後、基板を切断することで、バイオセンサ本体11を製造してもよい。
 さらには、前記実施形態では、カーボンナノチューブを酸あるいはアルカリの溶液で洗浄して、触媒を除去していたが、この工程はなくてもよい。このようにすることで、バイオセンサの製造工程を簡略化することができる。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiment, one working electrode 13, one counter electrode 14, and one reference electrode 15 are formed on one substrate 12. However, the present invention is not limited to this, and a large-sized substrate is prepared, and the working electrode, the counter electrode, After forming many sets of reference electrodes, the biosensor body 11 may be manufactured by cutting the substrate.
Furthermore, in the above embodiment, the carbon nanotubes are washed with an acid or alkali solution to remove the catalyst, but this step may be omitted. By doing in this way, the manufacturing process of a biosensor can be simplified.
 また、前記実施形態では、カーボン電極を構成する薄膜131に、カーボンナノチューブを使用したが、カーボン電極に使用されるカーボンは、ナノカーボンであればよく、カーボンナノホーン、カーボンナノコーン、カーボンナノフィラメント、フラーレンであってもよい。
 この出願は、2008年4月30日に出願された日本出願特願2008-118483号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Moreover, in the said embodiment, although the carbon nanotube was used for the thin film 131 which comprises a carbon electrode, the carbon used for a carbon electrode should just be nanocarbon, carbon nanohorn, carbon nanocone, carbon nanofilament, It may be fullerene.
This application claims priority based on Japanese Patent Application No. 2008-118483 filed on Apr. 30, 2008, the entire disclosure of which is incorporated herein.
 次に、本発明の実施例について説明する。
(実施例1)
 10×10×0.7mmのガラス基板(光透過性の基板)を用意し、硝酸-過酸化水素の溶液中で5分間の超音波洗浄を行った。つづいて、ガラス基板の中心に菱形の印を位置あわせマークとして2箇所スパッタリングで形成した。位置あわせマークの材料は白金であり、位置あわせマークのサイズ200μm四方である。
 続いて、CoMoCAT製カーボンナノチューブを1,2-ジクロロエタン中に分散させた。分散にあたっては、2時間の超音波処理を行い、カーボンナノチューブ濃度10ppmの溶液を作成した。カーボンナノチューブのサイズは0.8~1.6nmの直径、数μmの長さである。
 このカーボンナノチューブが分散した溶液は、バインダ剤や、界面活性剤を含まず、カーボンナノチューブと、溶媒とからなるものである。
 つぎに、ガラス基板を前記溶液に浸し、ディップコーターにて引き上げて(引き上げ速度:0.2mm/sec)基板表面にカーボンナノチューブをコーティングした。この引き上げ作業を10回と20回実施し、厚さが約10nmのカーボンナノチューブの薄膜のカーボン電極を製作した。
 次に、グルコース酸化酵素と1v/v%のグルタルアルデヒドを含む22.5w/v%のアルブミン溶液を3000rpmでスピンコートし、カーボンナノチューブの薄膜に対し、酵素を固定化した。ここで、ガラス基板上に形成された位置あわせマークは、カーボンナノチューブの薄膜により被覆されていたが、目視で確認でき、カーボンナノチューブの薄膜は光透過性であった。
 また、基板上に参照極と、白金対極とを形成し、グルコースバイオセンサ本体を製作した。
 その後、菱形の位置あわせマークを銅で2箇所形成した15×100×0.2mmのポリイミド樹脂製のプリント基板(実装基板)を用意した。
 次に、実態顕微鏡を用いて両方の目合わせの印が重なるように前述のバイオセンサ本体をプリント基板に実装した。つづいて、ワイヤーボンディングで実装基板とバイオセンサ本体とを接続し、接続部分およびワイヤーボンディング全体をシリコーン樹脂で封止した。
 このようにして製造されたバイオセンサを用いて、3電極法で溶液(グルコース濃度1mM)中のグルコース測定を行った。
Next, examples of the present invention will be described.
Example 1
A 10 × 10 × 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material of the alignment mark is platinum, and the size of the alignment mark is 200 μm square.
Subsequently, CoMoCAT carbon nanotubes were dispersed in 1,2-dichloroethane. In dispersion, ultrasonic treatment was performed for 2 hours to prepare a solution having a carbon nanotube concentration of 10 ppm. The carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several μm.
The solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
Next, the glass substrate was immersed in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface. This pulling operation was performed 10 times and 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 10 nm was manufactured.
Next, a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film. Here, although the alignment mark formed on the glass substrate was covered with the carbon nanotube thin film, it could be visually confirmed, and the carbon nanotube thin film was light-transmitting.
Moreover, a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
Thereafter, a printed board (mounting board) made of polyimide resin of 15 × 100 × 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
Next, the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
Using the biosensor thus produced, glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
(実施例2)
 10×10×0.7mmのガラス基板(光透過性の基板)を用意し、硝酸-過酸化水素の溶液中で5分間の超音波洗浄を行った。つづいて、ガラス基板の中心に菱形の印を位置あわせマークとして2箇所スパッタリングで形成した。材料は白金、サイズ200μm四方である。
 続いて、レーザーアブレーション製カーボンナノチューブを1,2-ジクロロエタン中に分散させた。分散方法としては、2時間、超音波処理を施した。そして、カーボンナノチューブの濃度が10ppmの溶液を作成した。カーボンナノチューブのサイズは約1.3nmの直径、数μmの長さである。このカーボンナノチューブが分散した溶液は、バインダ剤や、界面活性剤を含まず、カーボンナノチューブと、溶媒とからなるものである。
 つづいて、ガラス基板を溶液に浸し、ディップコーターにて引き上げて(引き上げ速度:0.2mm/sec)基板表面にカーボンナノチューブをコーティングした。この引き上げ作業を20回実施し、厚さが約16nmのカーボンナノチューブの薄膜のカーボン電極を製作した。
 つぎに、カーボン電極を1 mg/0.2mlのヒト絨毛性ゴナドトロピン抗体(ハイテスト社製のマウス免疫のモノクローナル抗体)の溶液に1時間浸漬した。そして、3mMの1,3-ジアミノベンゼン(アルドリッチ(株)社製、USA、pH7.4のリン酸緩衝液および0.1Mの塩化ナトリウムを含む)中に浸漬し、0から0.8Vを2mV/sで100回掃引し、そして0.65Vで5時間印加し、前述の抗体を固定化した。つづいて、1w/v%のポリビニルアルコール中に1時間浸漬し、抗体の表面をポリビニルアルコールで被覆した(カーボンナノチューブの薄膜は抗体の層を介してポリビニルアルコールで被覆されることとなる)。ここで、ガラス基板上に形成された位置あわせマークは、カーボンナノチューブの薄膜、抗体の層、ポリビニルアルコール層により被覆されていたが、目視で確認でき、カーボンナノチューブの薄膜は光透過性であることがわかる。
 その後、菱形の位置あわせマークを銅で2箇所形成した15×100×0.2mmのポリイミド樹脂製のプリント基板(実装基板)を用意した。
 次に、実態顕微鏡を用いて両方の目合わせの印が重なるように前述のバイオセンサ本体をプリント基板に実装した。つづいて、ワイヤーボンディングで実装基板とバイオセンサ本体とを接続し、接続部分およびワイヤーボンディング全体をシリコーン樹脂で封止した。
 このようにして製造されたカーボン電極を作用極として、ガラス参照極と白金対極を用いて、方形波ボルタンメトリ法で溶液中の絨毛性ゴナドトロピン濃度(30nM)を測定した。測定条件は0.1-1.2 V掃引範囲、40 mVのパルス電位、4 Hzの周波数、10 mVのステップ電位である。
(Example 2)
A 10 × 10 × 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material is platinum and the size is 200 μm square.
Subsequently, laser ablation carbon nanotubes were dispersed in 1,2-dichloroethane. As a dispersion method, ultrasonic treatment was performed for 2 hours. And the solution whose density | concentration of a carbon nanotube is 10 ppm was created. The carbon nanotube has a diameter of about 1.3 nm and a length of several μm. The solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
Subsequently, the glass substrate was dipped in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface. This pulling operation was performed 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 16 nm was manufactured.
Next, the carbon electrode was immersed in a solution of 1 mg / 0.2 ml of human chorionic gonadotropin antibody (mouse immunized monoclonal antibody manufactured by Hitest) for 1 hour. Then, it is immersed in 3 mM 1,3-diaminobenzene (Aldrich Co., USA, containing phosphate buffer solution of pH 7.4 and 0.1 M sodium chloride), and 0 to 0.8 V is 2 mV. Swept 100 times at / s and applied for 5 hours at 0.65 V to immobilize the antibody described above. Subsequently, it was immersed in 1 w / v% polyvinyl alcohol for 1 hour, and the surface of the antibody was coated with polyvinyl alcohol (the carbon nanotube thin film would be coated with polyvinyl alcohol through the antibody layer). Here, the alignment mark formed on the glass substrate was covered with a carbon nanotube thin film, an antibody layer, and a polyvinyl alcohol layer, but it can be visually confirmed, and the carbon nanotube thin film is light-transmitting. I understand.
Thereafter, a printed board (mounting board) made of polyimide resin of 15 × 100 × 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
Next, the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
Using the carbon electrode thus produced as a working electrode, the chorionic gonadotropin concentration (30 nM) in the solution was measured by a square wave voltammetry method using a glass reference electrode and a platinum counter electrode. The measurement conditions are 0.1-1.2 V sweep range, 40 mV pulse potential, 4 Hz frequency, 10 mV step potential.
(実施例3) 
 10×10×0.7mmのガラス基板(光透過性の基板)を用意し、硝酸-過酸化水素の溶液中で5分間の超音波洗浄を行った。つづいて、ガラス基板の中心に菱形の印を位置あわせマークとして2箇所スパッタリングで形成した。位置あわせマークの材料は白金であり、位置あわせマークのサイズ200μm四方である。 
 続いて、CoMoCAT製カーボンナノチューブを1 Mの塩酸溶液中に入れ、1時間の超音波洗浄処理を行った。そして、ガラスフィルターでカーボンナノチューブをすくい上げ、純水で十分にカーボンナノチューブをすすぎ、塩酸を完全に取り除いた。これにより、カーボンナノチューブに付着していた触媒が除去された。
 続いて、1,2-ジクロロエタン中に前述のカーボンナノチューブを入れ、2時間の超音波処理で十分に分散させ、カーボンナノチューブ濃度10ppmの溶液を作成した。カーボンナノチューブのサイズは0.8~1.6nmの直径、数μmの長さである。このカーボンナノチューブが分散した溶液は、バインダ剤や、界面活性剤を含まず、カーボンナノチューブと、溶媒とからなるものである。
 つぎに、ガラス基板を前記溶液に浸し、ディップコーターにて引き上げて(引き上げ速度:0.2mm/sec)基板表面にカーボンナノチューブをコーティングした。この引き上げ作業を10回と20回実施し、厚さが約10nmのカーボンナノチューブの薄膜のカーボン電極を製作した。 
 次に、グルコース酸化酵素と1v/v%のグルタルアルデヒドを含む22.5w/v%のアルブミン溶液を3000rpmでスピンコートし、カーボンナノチューブの薄膜に対し、酵素を固定化した。ここで、ガラス基板上に形成された位置あわせマークは、カーボンナノチューブの薄膜により被覆されていたが、目視で確認でき、カーボンナノチューブの薄膜は光透過性であった。
 また、基板上に参照極と、白金対極とを形成し、グルコースバイオセンサ本体を製作した。
 その後、菱形の位置あわせマークを銅で2箇所形成した15×100×0.2mmのポリイミド樹脂製のプリント基板(実装基板)を用意した。 
 次に、実態顕微鏡を用いて両方の目合わせの印が重なるように前述のバイオセンサ本体をプリント基板に実装した。つづいて、ワイヤーボンディングで実装基板とバイオセンサ本体とを接続し、接続部分およびワイヤーボンディング全体をシリコーン樹脂で封止した。 
 このようにして製造されたバイオセンサを用いて、3電極法で溶液(グルコース濃度1mM)中のグルコース測定を行った。
(Example 3)
A 10 × 10 × 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material of the alignment mark is platinum, and the size of the alignment mark is 200 μm square.
Subsequently, CoMoCAT carbon nanotubes were placed in a 1 M hydrochloric acid solution and subjected to ultrasonic cleaning treatment for 1 hour. And the carbon nanotube was scooped up with the glass filter, the carbon nanotube was rinsed fully with the pure water, and hydrochloric acid was removed completely. Thereby, the catalyst adhering to the carbon nanotube was removed.
Subsequently, the above-mentioned carbon nanotubes were put in 1,2-dichloroethane and sufficiently dispersed by ultrasonic treatment for 2 hours to prepare a solution having a carbon nanotube concentration of 10 ppm. The carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several μm. The solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
Next, the glass substrate was immersed in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface. This pulling operation was performed 10 times and 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 10 nm was manufactured.
Next, a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film. Here, although the alignment mark formed on the glass substrate was covered with the carbon nanotube thin film, it could be visually confirmed, and the carbon nanotube thin film was light-transmitting.
Moreover, a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
Thereafter, a printed board (mounting board) made of polyimide resin of 15 × 100 × 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
Next, the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
Using the biosensor thus produced, glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
(実施例4) 
 10×10×0.7mmのガラス基板(光透過性の基板)を用意し、硝酸-過酸化水素の溶液中で5分間の超音波洗浄を行った。つづいて、ガラス基板の中心に菱形の印を位置あわせマークとして2箇所スパッタリングで形成した。位置あわせマークの材料は白金であり、位置あわせマークのサイズ200μm四方である。 
 続いて、CoMoCAT製カーボンナノチューブを0.5 Mの水酸化ナトリウム溶液中に入れ、1時間の超音波洗浄処理を行った。そして、ガラスフィルターでカーボンナノチューブをすくい上げ、純水で十分にカーボンナノチューブをすすぎ、水酸化ナトリウム溶液を完全に取り除いた。これにより、カーボンナノチューブに付着していた触媒が除去された。
 続いて、1,2-ジクロロエタン中に前述のカーボンナノチューブを入れ、2時間の超音波処理で十分に分散させ、カーボンナノチューブ濃度10ppmの溶液を作成した。カーボンナノチューブのサイズは0.8~1.6nmの直径、数μmの長さである。このカーボンナノチューブが分散した溶液は、バインダ剤や、界面活性剤を含まず、カーボンナノチューブと、溶媒とからなるものである。
 つぎに、ガラス基板を前記溶液に浸し、ディップコーターにて引き上げて(引き上げ速度:0.2mm/sec)基板表面にカーボンナノチューブをコーティングした。この引き上げ作業を10回と20回実施し、厚さが約10nmのカーボンナノチューブの薄膜のカーボン電極を製作した。 
 次に、グルコース酸化酵素と1v/v%のグルタルアルデヒドを含む22.5w/v%のアルブミン溶液を3000rpmでスピンコートし、カーボンナノチューブの薄膜に対し、酵素を固定化した。ここで、ガラス基板上に形成された位置あわせマークは、カーボンナノチューブの薄膜により被覆されていたが、目視で確認でき、カーボンナノチューブの薄膜は光透過性であった。
 また、基板上に参照極と、白金対極とを形成し、グルコースバイオセンサ本体を製作した。 
 その後、菱形の位置あわせマークを銅で2箇所形成した15×100×0.2mmのポリイミド樹脂製のプリント基板(実装基板)を用意した。 
 次に、実態顕微鏡を用いて両方の目合わせの印が重なるように前述のバイオセンサ本体をプリント基板に実装した。つづいて、ワイヤーボンディングで実装基板とバイオセンサ本体とを接続し、接続部分およびワイヤーボンディング全体をシリコーン樹脂で封止した。 
 このようにして製造されたバイオセンサを用いて、3電極法で溶液(グルコース濃度1mM)中のグルコース測定を行った。 
Example 4
A 10 × 10 × 0.7 mm glass substrate (light-transmitting substrate) was prepared, and ultrasonic cleaning was performed in a nitric acid-hydrogen peroxide solution for 5 minutes. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material of the alignment mark is platinum, and the size of the alignment mark is 200 μm square.
Subsequently, CoMoCAT carbon nanotubes were placed in a 0.5 M sodium hydroxide solution and subjected to ultrasonic cleaning treatment for 1 hour. And the carbon nanotube was scooped up with the glass filter, the carbon nanotube was rinsed fully with the pure water, and the sodium hydroxide solution was removed completely. Thereby, the catalyst adhering to the carbon nanotube was removed.
Subsequently, the above-mentioned carbon nanotubes were put in 1,2-dichloroethane and sufficiently dispersed by ultrasonic treatment for 2 hours to prepare a solution having a carbon nanotube concentration of 10 ppm. The carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several μm. The solution in which the carbon nanotubes are dispersed does not include a binder agent or a surfactant, and includes carbon nanotubes and a solvent.
Next, the glass substrate was immersed in the solution and pulled up with a dip coater (pickup speed: 0.2 mm / sec) to coat the carbon nanotubes on the substrate surface. This pulling operation was performed 10 times and 20 times, and a carbon electrode of a carbon nanotube thin film having a thickness of about 10 nm was manufactured.
Next, a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film. Here, although the alignment mark formed on the glass substrate was covered with the carbon nanotube thin film, it could be visually confirmed, and the carbon nanotube thin film was light-transmitting.
Moreover, a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
Thereafter, a printed board (mounting board) made of polyimide resin of 15 × 100 × 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
Next, the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
Using the biosensor thus produced, glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
(比較例1) 
 10×10×0.7mmのガラス基板を用意し、硝酸-過酸化水素の溶液中で5分間の超音波洗浄を行った。つづいて、ガラス基板の中心に菱形の印を位置あわせマークとして2箇所スパッタリングで形成した。位置あわせマークの材料は白金であり、位置あわせマークのサイズ200μm四方である。 
 続いて、CoMoCAT製カーボンナノチューブを1,2-ジクロロエタン中に分散させ、さらに、2時間の超音波処理で分散させた。続いて、高分子電解質溶液であるデュポン社製の5 w/v%のNafion(登録商標)溶液中にカーボンナノチューブを入れ、さらに2時間の超音波洗浄処理を行い、濃度10ppmのNafion(登録商標)-カーボンナノチューブ溶液を作成した。カーボンナノチューブのサイズは0.8~1.6nmの直径、数μmの長さである。 
 つぎに、ガラス基板を前記溶液に浸し、ディップコーターにて引き上げて(引き上げ速度:0.2mm/sec)基板表面にNafion(登録商標)-カーボンナノチューブをコーティングした。この引き上げ作業を10回と20回実施し、厚さが約1μmのNafion(登録商標)-カーボンナノチューブの薄膜のカーボン電極を製作した。 
 次に、グルコース酸化酵素と1v/v%のグルタルアルデヒドを含む22.5w/v%のアルブミン溶液を3000rpmでスピンコートし、Nafion(登録商標)-カーボンナノチューブの薄膜に対し、酵素を固定化した。 
 また、基板上に参照極と、白金対極とを形成し、グルコースバイオセンサ本体を製作した。 
 その後、菱形の位置あわせマークを銅で2箇所形成した15×100×0.2mmのポリイミド樹脂製のプリント基板(実装基板)を用意した。 
 次に、実態顕微鏡を用いて両方の目合わせの印が重なるように前述のバイオセンサ本体をプリント基板に実装した。つづいて、ワイヤーボンディングで実装基板とバイオセンサ本体とを接続し、接続部分およびワイヤーボンディング全体をシリコーン樹脂で封止した。 
 このようにして製造されたバイオセンサを用いて、3電極法で溶液(グルコース濃度1mM)中のグルコース測定を行った。 
(Comparative Example 1)
A glass substrate of 10 × 10 × 0.7 mm was prepared and subjected to ultrasonic cleaning for 5 minutes in a nitric acid-hydrogen peroxide solution. Subsequently, a diamond-shaped mark was formed at the center of the glass substrate as an alignment mark by sputtering at two locations. The material of the alignment mark is platinum, and the size of the alignment mark is 200 μm square.
Subsequently, CoMoCAT carbon nanotubes were dispersed in 1,2-dichloroethane, and further dispersed by ultrasonic treatment for 2 hours. Subsequently, carbon nanotubes were placed in a 5 w / v% Nafion (registered trademark) solution manufactured by DuPont, which is a polymer electrolyte solution, and further subjected to ultrasonic cleaning treatment for 2 hours, and Nafion (registered trademark) having a concentration of 10 ppm. -A carbon nanotube solution was prepared. The carbon nanotubes have a diameter of 0.8 to 1.6 nm and a length of several μm.
Next, the glass substrate was immersed in the solution and pulled up by a dip coater (pickup speed: 0.2 mm / sec) to coat Nafion (registered trademark) -carbon nanotubes on the substrate surface. This pulling operation was performed 10 times and 20 times, and a carbon electrode of a thin film of Nafion (registered trademark) -carbon nanotubes having a thickness of about 1 μm was manufactured.
Next, a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm, and the enzyme was immobilized on the Nafion (registered trademark) -carbon nanotube thin film. .
Moreover, a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
Thereafter, a printed board (mounting board) made of polyimide resin of 15 × 100 × 0.2 mm in which two rhombus alignment marks were formed with copper was prepared.
Next, the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
Using the biosensor thus produced, glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
(比較例2)
 10×10×0.7mmのガラス基板を用意し、硝酸-過酸化水素の溶液中で5分間の超音波洗浄を行った。つづいて、鉄/コバルトの微粒子からなる合成触媒をスパッタリングで基板表面に形成した。 
 続いて、カーボンナノチューブの原料ガスとしてエタノールを前述の基板表面に噴霧してカーボンナノチューブを成長させた。このときの反応条件はカーボンナノチューブ成長雰囲気が850℃、原料ガスが50℃、噴霧速度が500ml/分、反応時間が10秒、である。そして、1μmのカーボンナノチューブの薄膜のカーボン電極を製作した。 
 次に、グルコース酸化酵素と1v/v%のグルタルアルデヒドを含む22.5w/v%のアルブミン溶液を3000rpmでスピンコートし、カーボンナノチューブの薄膜に対し、酵素を固定化した。 
 また、基板上に参照極と、白金対極とを形成し、グルコースバイオセンサ本体を製作した。 
 つづいて、基板の側面を前述のポリイミド樹脂の位置合わせマークに合わせ、基板をポリイミド樹脂に実装した。 
 次に、実態顕微鏡を用いて両方の目合わせの印が重なるように前述のバイオセンサ本体をプリント基板に実装した。つづいて、ワイヤーボンディングで実装基板とバイオセンサ本体とを接続し、接続部分およびワイヤーボンディング全体をシリコーン樹脂で封止した。 
 このようにして製造されたバイオセンサを用いて、3電極法で溶液(グルコース濃度1mM)中のグルコース測定を行った。
(Comparative Example 2)
A glass substrate of 10 × 10 × 0.7 mm was prepared and subjected to ultrasonic cleaning for 5 minutes in a nitric acid-hydrogen peroxide solution. Subsequently, a synthetic catalyst composed of fine particles of iron / cobalt was formed on the substrate surface by sputtering.
Subsequently, ethanol was sprayed on the substrate surface as a carbon nanotube source gas to grow carbon nanotubes. The reaction conditions at this time are 850 ° C. for the carbon nanotube growth atmosphere, 50 ° C. for the source gas, a spray rate of 500 ml / min, and a reaction time of 10 seconds. Then, a carbon electrode having a thin film of 1 μm carbon nanotubes was manufactured.
Next, a 22.5 w / v% albumin solution containing glucose oxidase and 1 v / v% glutaraldehyde was spin-coated at 3000 rpm to immobilize the enzyme on the carbon nanotube thin film.
Moreover, a reference electrode and a platinum counter electrode were formed on the substrate, and a glucose biosensor main body was manufactured.
Subsequently, the side surface of the substrate was aligned with the alignment mark of the polyimide resin described above, and the substrate was mounted on the polyimide resin.
Next, the biosensor main body was mounted on a printed circuit board using an actual microscope so that the marks of both the alignments overlapped. Subsequently, the mounting substrate and the biosensor main body were connected by wire bonding, and the connection portion and the entire wire bonding were sealed with silicone resin.
Using the biosensor thus produced, glucose in the solution (glucose concentration 1 mM) was measured by the three-electrode method.
(結果)
 実施例1から比較例2までの結果を表1に示す。
 評価した項目は、以下の通りであり、各項目を5点満点で評価した。
(1)バックグラウンドの電流出力値を示すベース電流値
ベース電流値が1μAを超える場合           1点
ベース電流値が500nAを超え、1μA以下の場合   2点
ベース電流値が200nAを超え、500nA以下の場合 3点
ベース電流値が50nAを超え、200nA以下の場合  4点
ベース電流値が50nA以下の場合           5点
(2)1 mMグルコースあるいは30 nM絨毛性ゴナドトロピンを測定する際のノイズに対する電流出力値を示すシグナル/ノイズの平均値
 シグナル/ノイズの平均値が1未満の場合       1点
 シグナル/ノイズの平均値が1以上、2未満の場合   2点
 シグナル/ノイズの平均値が2以上、5未満の場合   3点
 シグナル/ノイズの平均値が5以上、20未満の場合  4点
 シグナル/ノイズの平均値が20以上の場合      5点
(3)1mMグルコースあるいは30 nM絨毛性ゴナドトロピンの各溶液をそれぞれ10回繰り返して測定したときのばらつきを示す測定精度(C.V.(%))
 ただし、絨毛性ゴナドトロピンの測定ではスターラーで撹拌中の10mMのグリシン溶液中にセンサを30秒間浸漬してから再測定する操作を10回繰り返した。
 測定精度(C.V.(%))は、以下のようにして算出される。
 C.V.(%)=(電流値の標準偏差/電流値の平均値)×100
 測定精度が15%を超える場合            1点
 測定精度が10%以上、15%以下の場合       2点
 測定精度が6%以上、10%未満の場合        3点
 測定精度が3%以上、6%未満の場合         4点
 測定精度が3%未満の場合              5点
(result)
The results from Example 1 to Comparative Example 2 are shown in Table 1.
The items evaluated were as follows, and each item was evaluated on a 5-point scale.
(1) Base current value indicating the background current output value When the base current value exceeds 1 μA When the one-point base current value exceeds 500 nA and below 1 μA When the two-point base current value exceeds 200 nA and below 500 nA When the 3-point base current value exceeds 50 nA and is 200 nA or less 4-point base current value is 50 nA or less 5 points (2) Indicates the current output value against noise when measuring 1 mM glucose or 30 nM chorionic gonadotropin Signal / noise average value Signal / noise average value is less than 1 1 point Signal / noise average value is 1 or more and less than 2 2 points Signal / noise average value is 2 or more and less than 5 3 Point When the average value of signal / noise is 5 or more and less than 20 4 points When the average value of signal / noise is 20 or more Total 5 points (3) Measurement accuracy (CV (%)) showing variation when each solution of 1 mM glucose or 30 nM chorionic gonadotropin is measured 10 times.
However, for the measurement of chorionic gonadotropin, the operation of immersing the sensor in a 10 mM glycine solution being stirred with a stirrer for 30 seconds and then performing the measurement again was repeated 10 times.
The measurement accuracy (CV (%)) is calculated as follows.
C. V. (%) = (Standard deviation of current value / average value of current value) × 100
When the measurement accuracy exceeds 15% 1 point When the measurement accuracy is 10% or more and 15% or less 2 points When the measurement accuracy is 6% or more and less than 10% 3 points When the measurement accuracy is 3% or more and less than 6% 4 points Measurement accuracy is less than 3% 5 points
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明によるセンサの優位性が確認された。なお、実施例1,3,4ではポリビニルアルコール溶液によるカーボンナノチューブの薄膜の被覆を行っていないが、カーボンナノチューブの薄膜が基板からはがれてしまうことはなかった。 From Table 1, the superiority of the sensor according to the present invention was confirmed. In Examples 1, 3 and 4, the carbon nanotube thin film was not coated with the polyvinyl alcohol solution, but the carbon nanotube thin film was not peeled off from the substrate.

Claims (8)

  1.  バインダ剤を含まない溶媒に対し、ナノカーボンを添加して、ナノカーボンを含有する液体を作成する工程と、
     前記ナノカーボンを含有する前記液体を、基板上に塗布して、ナノカーボン層を形成する工程と、
     前記ナノカーボン層に対して、抗体または酵素を固定化する工程とを含むバイオセンサ用電極の製造方法。
    A step of adding a nanocarbon to a solvent not containing a binder agent to create a liquid containing nanocarbon,
    Applying the liquid containing the nanocarbon on a substrate to form a nanocarbon layer;
    A method for producing an electrode for a biosensor comprising a step of immobilizing an antibody or an enzyme on the nanocarbon layer.
  2.  請求項1に記載のバイオセンサ用電極の製造方法において、
     前記液体は、前記ナノカーボンと、前記溶媒とからなるバイオセンサ用電極の製造方法。
    In the manufacturing method of the electrode for biosensors of Claim 1,
    The said liquid is a manufacturing method of the electrode for biosensors which consists of the said nanocarbon and the said solvent.
  3.  請求項1または2に記載のバイオセンサ用電極の製造方法において、
     前記ナノカーボンを前記溶媒に添加する工程の前段で、
     酸またはアルカリ溶液を用いて、前記ナノカーボンを洗浄する工程を実施するバイオセンサ用電極の製造方法。
    In the manufacturing method of the electrode for biosensors of Claim 1 or 2,
    Before the step of adding the nanocarbon to the solvent,
    The manufacturing method of the electrode for biosensors which implements the process which wash | cleans the said nano carbon using an acid or an alkali solution.
  4.  請求項1乃至3のいずれかに記載のバイオセンサ用電極の製造方法において、
     抗体または酵素を固定化する前記工程の後段で、
     前記ナノカーボン層を高分子膜で被覆する工程を実施するバイオセンサ用電極の製造方法。
    In the manufacturing method of the electrode for biosensors in any one of Claims 1 thru | or 3,
    After the step of immobilizing the antibody or enzyme,
    The manufacturing method of the electrode for biosensors which implements the process of coat | covering the said nanocarbon layer with a polymer film.
  5.  請求項1乃至4のいずれかに記載のバイオセンサ用電極の製造方法において、
     前記ナノカーボンは、カーボンナノチューブであるバイオセンサ用電極の製造方法。
    In the manufacturing method of the electrode for biosensors in any one of Claims 1 thru | or 4,
    The said nano carbon is a manufacturing method of the electrode for biosensors which is a carbon nanotube.
  6.  請求項1乃至5のいずれかに記載のバイオセンサ用電極の製造方法において、
     前記基板および前記ナノカーボン層が光透過性であるバイオセンサ用電極の製造方法。
    In the manufacturing method of the electrode for biosensors in any one of Claims 1 thru | or 5,
    A method for producing an electrode for a biosensor, wherein the substrate and the nanocarbon layer are light transmissive.
  7.  請求項6に記載のバイオセンサ用電極の製造方法を含むバイオセンサの製造方法であり、
     前記基板の前記ナノカーボン層の下方の位置には、位置あわせ用のマークが形成されており、
     前記バイオセンサ用電極を実装基板に実装する工程を含み、
     前記バイオセンサ用電極を実装基板に実装する前記工程では、前記バイオセンサ用電極の基板の位置あわせマークと、前記実装基板に形成された位置あわせマークとを用いて位置あわせを行い、前記バイオセンサ用電極を前記実装基板に実装するバイオセンサの製造方法。
    A biosensor manufacturing method comprising the biosensor electrode manufacturing method according to claim 6,
    An alignment mark is formed at a position below the nanocarbon layer of the substrate,
    Including a step of mounting the biosensor electrode on a mounting substrate,
    In the step of mounting the biosensor electrode on a mounting substrate, the biosensor electrode is aligned using an alignment mark on the substrate of the biosensor electrode and an alignment mark formed on the mounting substrate, and the biosensor A biosensor manufacturing method for mounting an electrode for mounting on the mounting substrate.
  8.  請求項7に記載のバイオセンサの製造方法において、
     前記ナノカーボン層を作用極とし、
     前記基板上に、参照電極および対極を形成する工程を含むバイオセンサの製造方法。
    In the manufacturing method of the biosensor according to claim 7,
    The nanocarbon layer as a working electrode,
    A biosensor manufacturing method comprising a step of forming a reference electrode and a counter electrode on the substrate.
PCT/JP2009/001881 2008-04-30 2009-04-24 Biosensor electrode manufacturing method and biosensor manufacturing method WO2009133679A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010510028A JPWO2009133679A1 (en) 2008-04-30 2009-04-24 Biosensor electrode manufacturing method, biosensor manufacturing method, and biosensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-118483 2008-04-30
JP2008118483 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009133679A1 true WO2009133679A1 (en) 2009-11-05

Family

ID=41254904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001881 WO2009133679A1 (en) 2008-04-30 2009-04-24 Biosensor electrode manufacturing method and biosensor manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2009133679A1 (en)
WO (1) WO2009133679A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002999A1 (en) * 2012-06-25 2014-01-03 合同会社バイオエンジニアリング研究所 Enzyme electrode
WO2020175526A1 (en) * 2019-02-27 2020-09-03 国立研究開発法人産業技術総合研究所 Microstructure, method for manufacturing same, and molecule detection method using same
JP2020528950A (en) * 2017-07-27 2020-10-01 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Electrically conductive antifouling coating composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177237A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor ion sensor
JP2006308463A (en) * 2005-04-28 2006-11-09 National Institute Of Advanced Industrial & Technology Nano-carbon sensor
JP2006317360A (en) * 2005-05-16 2006-11-24 National Institute Of Advanced Industrial & Technology Biosensor using bamboo-shaped carbon nanotube
WO2008066123A1 (en) * 2006-11-30 2008-06-05 National Institute Of Advanced Industrial Science And Technology Biosensor utilizing carbon nanotube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177237A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor ion sensor
JP2006308463A (en) * 2005-04-28 2006-11-09 National Institute Of Advanced Industrial & Technology Nano-carbon sensor
JP2006317360A (en) * 2005-05-16 2006-11-24 National Institute Of Advanced Industrial & Technology Biosensor using bamboo-shaped carbon nanotube
WO2008066123A1 (en) * 2006-11-30 2008-06-05 National Institute Of Advanced Industrial Science And Technology Biosensor utilizing carbon nanotube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002999A1 (en) * 2012-06-25 2014-01-03 合同会社バイオエンジニアリング研究所 Enzyme electrode
CN104520700A (en) * 2012-06-25 2015-04-15 日本生物工程研究所有限责任公司 Enzyme electrode
JPWO2014002999A1 (en) * 2012-06-25 2016-06-02 合同会社バイオエンジニアリング研究所 Enzyme electrode
JP2020528950A (en) * 2017-07-27 2020-10-01 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Electrically conductive antifouling coating composition
JP7365330B2 (en) 2017-07-27 2023-10-19 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Electrically conductive antifouling coating composition
WO2020175526A1 (en) * 2019-02-27 2020-09-03 国立研究開発法人産業技術総合研究所 Microstructure, method for manufacturing same, and molecule detection method using same
JPWO2020175526A1 (en) * 2019-02-27 2020-09-03
JP7291422B2 (en) 2019-02-27 2023-06-15 国立研究開発法人産業技術総合研究所 MICROSTRUCTURE, PRODUCTION METHOD THEREOF, AND MOLECULE DETECTION METHOD USING THE SAME

Also Published As

Publication number Publication date
JPWO2009133679A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
Zhang et al. Graphene‐based electrochemical glucose sensors: Fabrication and sensing properties
Bollella et al. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection
Sedaghat et al. Laser-induced mesoporous nickel oxide as a highly sensitive nonenzymatic glucose sensor
Chen et al. Functional channel of SWCNTs/Cu2O/ZnO NRs/graphene hybrid electrodes for highly sensitive nonenzymatic glucose sensors
Anusha et al. Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor
Xie et al. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing
KR101713480B1 (en) Electrochemical sensor utilizing nanocomposite comprising reduced graphene oxide and cyclodextrin
Huang et al. Direct electrochemistry of uric acid at chemically assembled carboxylated single-walled carbon nanotubes netlike electrode
Isoaho et al. Carbon nanostructure based platform for enzymatic glutamate biosensors
Zhou et al. Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors
Pak et al. Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose
Simsek et al. Carbon nanomaterial hybrids via laser writing for high-performance non-enzymatic electrochemical sensors: a critical review
Paul et al. PEDOT: PSS‐grafted graphene oxide‐titanium dioxide nanohybrid‐based conducting paper for glucose detection
WO2009133679A1 (en) Biosensor electrode manufacturing method and biosensor manufacturing method
KR102235310B1 (en) Chitosan-carbon nanotube core-shell nanohybrid based electrochemical glucose sensor
Hasanzadeh et al. Non-enzymatic determination of L-Proline amino acid in unprocessed human plasma sample using hybrid of graphene quantum dots decorated with gold nanoparticles and poly cysteine: a novel signal amplification strategy
Yang et al. Determination of hydrogen peroxide using a Prussian blue modified macroporous gold electrode
Li et al. One-step solvothermal preparation of silver-ZnO hybrid nanorods for use in enzymatic and direct electron-transfer based biosensing of glucose
Singh et al. In-situ electrosynthesized nanostructured Mn3O4-polyaniline nanofibers-biointerface for endocrine disrupting chemical detection
Han et al. A performance improvement of enzyme-based electrochemical lactate sensor fabricated by electroplating novel PdCu mediator on a laser induced graphene electrode
Hossain et al. An enzymatic hybrid electrode platform based on chemically modified reduced graphene oxide decorated with palladium and platinum alloy nanoparticles for biosensing applications
Huynh Chemical and biological sensing with nanocomposites prepared from nanostructured copper sulfides
Huang et al. Controllable surface engineered three-dimensional porous graphene based electrode for ultrasensitive flexible electrochemical sensing
Ramachandran et al. High electroactive electrode catalysts and highly sensitive electro analytical techniques for hydrogen peroxide detection
Thota et al. Chemically modified flexible strips as electrochemical biosensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510028

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738616

Country of ref document: EP

Kind code of ref document: A1