WO2008066123A1 - Biosensor utilizing carbon nanotube - Google Patents

Biosensor utilizing carbon nanotube Download PDF

Info

Publication number
WO2008066123A1
WO2008066123A1 PCT/JP2007/073076 JP2007073076W WO2008066123A1 WO 2008066123 A1 WO2008066123 A1 WO 2008066123A1 JP 2007073076 W JP2007073076 W JP 2007073076W WO 2008066123 A1 WO2008066123 A1 WO 2008066123A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
boron
biosensor
detection electrode
carbon nanotube
Prior art date
Application number
PCT/JP2007/073076
Other languages
French (fr)
Japanese (ja)
Inventor
Fumiyo Kurusu
Masao Gotoh
Isao Karube
Haruki Tsunoda
Asami Saito
Toshiaki Tsubone
Hiroshi Yamamoto
Takuya Kadowaki
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Kyowa Medex Co., Ltd.
Jfe Engineering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Kyowa Medex Co., Ltd., Jfe Engineering Corporation filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2008066123A1 publication Critical patent/WO2008066123A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Definitions

  • the present invention relates to a biosensor using carbon nanotubes. More specifically, the present invention relates to a biosensor using carbon nanotubes that are suitably used as a biosensor excellent in selectivity for a measurement interfering substance having high catalyst activity.
  • CNT single-bonn nanotubes
  • a single-layer CNT is a single-walled CNT
  • a multi-walled CNT-type is a multi-walled CNT.
  • CNTs When an electric field is applied to CNTs, electric field concentration occurs at the end of the tube, and electrons can be easily extracted to the outside. When the extracted electrons are applied to the fluorescent screen, it emits light, so it can be used as a light source or display.
  • CNTs Compared with conventional electron emission sources, CNTs have a smaller cross-sectional size, so electric field concentration is effectively generated. As a result, the voltage required for electron emission is small, and a high vacuum environment is unnecessary, so that it can be widely used as an electron emission source for electron emission devices. Furthermore, it has excellent mechanical strength, thermal conductivity, flexibility, thermal stability, chemical stability, etc., and can be used widely as a composite composite material.
  • CNTs are expected to be applied to a wide range of fields from electronics to energy, and the application of CNTs to detection electrodes of biosensors is one of them.
  • CNTs used are single-walled CNT and multi-walled CNT, CNTs with functional groups, hollow_type CNTs, bamboo-type CNTs, CNTs doped with nitrogen Etc. Even when these CNTs are used as detection electrodes for biosensors, for example, the potential for the oxidation reaction of ascorbic acid, uric acid, and acetaminophen is lower! However, it is difficult to increase the CNT content in electrode formation, and thus has a problem in further improving the conductivity.
  • Patent Document 1 JP 2006-317360
  • An object of the present invention is to detect a test substance contained in a sample without being affected by an electrochemically active substance such as a reducing interfering substance and to improve the detection sensitivity of the test substance. It is an object of the present invention to provide a biosensor that is improved and whose structure is simplified.
  • the object of the present invention is achieved by a biosensor having a detection electrode, wherein the detection electrode material is a carbon nanotube containing boron.
  • the present invention specifically includes the following configurations (1) to (; 13).
  • the biosensor according to (1) wherein the carbon nanotube is a multi-walled carbon nanotube having a diameter of less than lOOnm.
  • the detection electrode is a cylindrical electrode in which a carbon nanotube prepared in a paste form is filled in a cylindrical container.
  • the detection electrode is a carbon electrode, platinum electrode, gold electrode, or silver electrode on which carbon nanotubes containing boron are arranged.
  • the biosensor as set forth in (6) which is a carbon nanotube disposed on an insulating substrate by a carbon nanotube force screen printing method containing boron.
  • the detection electrode is an electrode having an enzyme immobilized on the electrode!
  • the detection electrode is an electrode in which a single mediator molecule is held on the electrode.
  • the biosensor according to (0), wherein a mediator single molecular force S mediator molecular layer is formed (; L0). (12) By setting the inter-electrode voltage to a specific voltage, the effect of measurement interfering substances can be avoided, and the target substance can be selectively measured. (1) to (; 11)! / Sensor. (13)
  • (1) to (; 12)! A method for detecting or quantifying a test substance in a sample using the biosensor according to any one of the methods, wherein the electrode voltage is applied after contacting the sample with the detection electrode. Is set to a specific voltage and applied.
  • a biosensor having a simplified configuration is provided.
  • a specific substance contained in a sample is affected by an electrochemically active substance such as a reducing interfering substance. It is possible to measure and detect accurately without receiving it.
  • the CNT content can be increased when forming the electrode, it has an excellent effect that the conductivity can be further improved as compared with the conventional biosensor using CNT.
  • Such a biosensor can be effectively used as a biosensor for medical diagnosis or health diagnosis, particularly a biosensor for measuring a blood glucose level and a glycated protein that are indicators of diabetes.
  • FIG. 1 is a graph showing the response to a hydrogen peroxide sample using a detection electrode using boron-containing CNT, graphite powder, or glassy carbon.
  • FIG. 2 This is a graph of the response to a hydrogen peroxide sample using a sensing electrode that uses boron-containing CNTs and boron-free CNTs.
  • FIG. 3 Another graph showing the response to a hydrogen peroxide sample using a detection electrode using boron-containing CNT, graphite powder, or glassy carbon.
  • FIG. 4 A graph showing the response to hydrogen peroxide, ascorbic acid, uric acid, and acetaminophen samples when -0.2 V and +0.6 V are applied using a sensing electrode using boron-containing CNTs. is there.
  • boron-containing CNT a CNT containing boron
  • B boron
  • C carbon
  • boron atoms are incorporated into the skeleton (network) constituting CNT, such as those in which some carbon atoms are replaced by boron atoms, but are not limited to this, for example, in the CNT cavity and / or Alternatively, those having boron adsorbed on the surface are also included, and those having a boron content of 0.01 to 10% by weight, preferably 0.1 to 7% by weight are used.
  • the shape of the CNT is not particularly limited, and the force to use either a single layer or a multilayer is preferable.
  • graphene having a diameter of less than lOOnm, preferably 5 to 50 nm, a length force of 1 to 100 ⁇ m, preferably 1 to 1001, and 2 to 100 layers, preferably 5 to 20 graphenes Sheets that overlap are used.
  • boron-containing CNTs for example, known ones such as boron-containing CNTs described in Patent Documents 2 to 3 below can be used without particular limitation,
  • carbonaceous raw materials containing boron components such as simple boron, boron carbide, and compounds of boron and various metals are synthesized by an arc discharge method in a hydrogen gas atmosphere.
  • Patent Document 2 JP 2006-240932 A
  • Patent Document 3 JP 2006-188384 A
  • CNTs containing boron and boron have high dispersibility in solvents, etc., when CNTs are mixed in a solution or resin, they have excellent properties when they can be dispersed uniformly.
  • the state of the boron-containing CNT in the present invention at the time of electrode formation is not particularly limited.
  • mineral oil, ionic liquid, or tetra It is used by appropriately mixing with a high molecular weight binder resin such as fluoroethylene or naphthion, and by dispersing it appropriately in a solvent such as water or organic solvent by acid treatment or ultrasonic treatment.
  • a solvent such as water or organic solvent by acid treatment or ultrasonic treatment.
  • the method for producing a detection electrode using boron-containing CNTs in the present invention is not particularly limited.
  • Force S for example, a method of packing the paste in a cylindrical container such as a non-conductive substance such as plastic or a conductive metal, Method of placing paste or dispersion solution in the required size and shape on an insulating substrate such as silicon or polyethylene terephthalate (PET), paste or dispersion solution on the surface of commercially available electrodes such as carbon, platinum, gold, silver
  • a resin such as ethyl cellulose
  • the amount of the boron-containing CNT contained in the detection electrode is not particularly limited, but the content and the conductivity necessary for use as an electrode are ensured and the effect of the CNT is exhibited.
  • hydrogen peroxide is detected using a paste electrode prepared by mixing with mineral oil, about 40 to 95% by weight is desirable.
  • conventional CNTs that do not contain boron such as hollow CNTs or bamboo CNTs, cannot retain their shape as detection electrodes if the content is increased to 10% by weight or more.
  • the boron-containing CNT in the present invention can increase the content in the formation of the detection electrode and improve the conductivity as compared with the conventional boron-free CNT.
  • a biosensor is constructed by providing a counter electrode and, if necessary, a reference electrode.
  • the biosensor of the present invention can be used for detection and quantification of a test substance in a sample. Detection of the test substance in the sample can be performed by bringing the sample into contact with the detection electrode and then applying the electrode with a specific voltage set.
  • Detection of the test substance in the sample can be performed by bringing the sample into contact with the detection electrode and then applying the electrode with a specific voltage set.
  • the biosensor of the present invention it is possible to avoid the influence of measurement interfering substances and selectively detect a test substance. Can do. For example, when detecting sugar (glucose) in blood or urine, ascorbic acid, uric acid, acetoaminophene, etc., which are not obtained with hydrogen peroxide alone, react with the electrode when applied to the electrode.
  • Electrodes containing CNTs can be set in a state where they react only with hydrogen peroxide by selecting a voltage (referred to here as a specific voltage) and are not easily affected by these contaminants, and have excellent selectivity.
  • a biosensor can be formed.
  • Such a specific voltage varies depending on the test substance, but is generally about -0.5 to +0.4 IV when a silver / silver chloride electrode is used as a reference.
  • the determination of the test substance in the sample can also be performed according to the detection method of the test substance.
  • the voltage between the electrodes is set to a specific voltage and applied, and the obtained information amount (for example, current value) is calculated based on the test substance prepared in advance and the information amount.
  • the force S is used to quantify the test substance in the sample by comparing it with a calibration curve showing the relationship between and.
  • Enzymes and enzyme substrates that can generate substances that can be oxidized or reduced on the electrode from the test substance are used.
  • examples of the substance that can be oxidized or reduced on the electrode include hydrogen peroxide, potassium ferricyanide, potassium ferrocyanide, and the like. Specific examples are shown below.
  • test substance is glucose
  • glucose oxidase is allowed to act on glucose in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode to detect or quantify glucose. Can do.
  • test substance is a glycated protein such as glycated hemoglobin or glycated albumin
  • a glycated peptide and / or glycated amino acid is released by allowing a protease to act on the glycated protein in the sample, and then the glycated peptide generated.
  • the glycated protein can be detected or quantified.
  • test substance is lactic acid
  • lactic acid is allowed to act on lactic acid in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode to detect or quantify lactic acid.
  • the power S to do.
  • test substance is uric acid
  • uricase is allowed to act on uric acid in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode, whereby uric acid can be detected or quantified.
  • test substance is urea nitrogen
  • urease is allowed to act on urea in the sample, and the resulting ammonia is further added in the presence of ⁇ _ketoglutarate, NADH (reduced coenzyme) and potassium ferricyanide.
  • ⁇ _ketoglutarate NADH (reduced coenzyme)
  • potassium ferricyanide By reacting glutamate dehydrogenase and oxidizing the produced potassium ferrocyanide on the electrode, urea nitrogen can be detected or quantified.
  • test substance is creatine
  • creatininase, creatinase, and sarcosine oxidase are sequentially acted on creatine in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode. Creathun can be detected or quantified.
  • the test substance is sulfate-conjugated bile acid
  • the sulfate-conjugated bile acid in the sample was produced by sequentially reacting bile acid sulfate sulfatase and ⁇ -hydroxysteroid dehydrogenase in the presence of NAD + and potassium ferricyanide. By oxidizing potassium ferrocyanide on the electrode, sulfate-conjugated bile acids can be detected or quantified.
  • the test substance is glutamate oxalate acetate transaminase
  • glutamate oxalate acetate transaminase in the sample is allowed to act on ⁇ -ketoglutarate and aspartate, and the resulting glutamate is further reacted with glutamate oxidase.
  • glutamate oxalate acetic acid transaminase can be detected or quantified.
  • test substance is glutamate pyruvate transaminase
  • glutamate pyruvate transaminase for example, it was generated by allowing ⁇ -ketoglutarate and alanine to act on glutamate pyruvate transaminase in the sample, and further causing glutamate oxidase to act on the resulting glutamate
  • glutamate pyruvate transaminase can be detected or quantified.
  • test substance is cholesterol
  • cholesterol in the sample is allowed to act on cholesterol, and the generated hydrogen peroxide is reduced or oxidized on the electrode.
  • cholesterol can be detected or quantified.
  • test substance is neutral fat
  • lipoprotein lipase, glycerol kinase and glyce-3-phosphate oxidase are allowed to act on the neutral fat in the sample, and the generated hydrogen peroxide is reduced on the electrode.
  • it can be detected by the ability S to detect or quantify neutral fat by oxidation.
  • test substance is a fatty acid
  • a fatty acid in a sample is allowed to act on a fatty acid in a sample in the presence of adenosine-5'-triphosphate (ATP) and coenzyme A (CoA) to further generate a acyl-CoA synthase.
  • Fatty acid can be detected or quantified by reacting the acyl-CoA with acyl-CoA oxidase and reducing or oxidizing the generated hydrogen peroxide on the electrode.
  • test substance is ammonia
  • glutamate dehydrogenase is allowed to act on ammonia in the sample in the presence of ⁇ _ketoglutarate, NADH and potassium ferricyanide, and the generated potassium ferrocyanide is oxidized on the electrode.
  • force S to detect or quantify ammonia.
  • bilirubin can be obtained by oxidizing potassium ferrocyanide generated by, for example, acting bilirubin oxidase in the presence of potassium ferricyanide on the bilirubin in the sample on the electrode. Can be detected or quantified.
  • the enzymes described above are immobilized on the detection electrode and the force mixed in the boron-containing CNT.
  • the method for immobilizing the enzyme on the detection electrode is not particularly limited.
  • the detection electrode is immersed in water or a buffer solution in which the enzyme is dissolved, or the enzyme or the water is dissolved in the electrode.
  • a method for example, a method of immobilizing an enzyme or the like on a detection electrode using a cross-linking reagent such as dartalaldehyde or bovine serum albumin, or after forming a gel film of a hydrophilic polymer or the like on the detection electrode.
  • a cross-linking reagent such as dartalaldehyde or bovine serum albumin
  • examples thereof include a method of immobilizing an enzyme or the like, or a method of immobilizing an enzyme or the like in the membrane after a conductive polymer membrane such as polythiophene is formed on the detection electrode.
  • the reaction may be performed using a dissolved enzyme concentration. It is effective to use a single molecule of mediator for the purpose of expanding the detection range when the rate is limited and only a high concentration sample can be measured.
  • a single mediator molecule it is preferable to hold the single mediator molecule on the detection electrode in the immobilized membrane of the physiologically active substance of the enzyme formed on the detection electrode or separately from this.
  • the kind of mediator molecule is not particularly limited, and for example, at least one kind such as potassium ferricyanide, potassium ferrocyanide, pheucose and derivatives thereof, viologens and methylene blue is used.
  • the sample is not particularly limited as long as it contains a test substance indicating a disease or a health condition, and examples thereof include blood, urine, saliva, sweat, and tears.
  • a test substance indicating a disease or a health condition
  • examples thereof include blood, urine, saliva, sweat, and tears.
  • the sample itself may be collected or diluted with water or a buffer solution.
  • a potential step chronoamperometry or coulometry a cyclic voltammetry method for measuring an oxidation current or a reduction current is used.
  • a disposable (disposable) method is desirable, but other methods such as FIA (Flow Injection Analysis) and batch methods may be used.
  • CNT was obtained in (Part).
  • 200 mg of the obtained CNT and 5.0 g of boron oxide (B 0) were reacted in a nitrogen atmosphere containing about 2% hydrogen at about 1000 ° C. for several tens of seconds to synthesize boron-containing CNT.
  • This boron-containing CNT was a multi-wall CNT having a diameter of 5 to 35 nm and a length of 1 m or more, and contained about 5% by weight of boron.
  • Hydrogen peroxide 0 mmol / L, 1 mmol / L, 5 mmol / L, 10 mmo
  • a 50 mmol / L phosphate buffer solution (pH 7.4) dissolved to a concentration of 1 / L, 25 mmol / L, or 50 mmol / L was used as a measurement sample.
  • a calibration curve was created by applying -0.2 V to the working electrode with the reference electrode immersed, and plotting the current value obtained after 90 seconds against the hydrogen peroxide concentration.
  • Example 1 a detection electrode produced using the same amount of graphite powder instead of boron-containing CNTs was used.
  • Example 1 a detection electrode produced using the same amount of glassy carbon instead of boron-containing CNTs was used.
  • Example 1 (1 ⁇ 1)
  • a calibration curve with a high correlation coefficient of .992 can be created at a potential lower than the potential at which ascorbic acid, uric acid, and acetaminophen undergo oxidation. It was.
  • the graphite paste electrode (101) of Comparative Example 1 can only obtain a current value of about 1/30 compared to the detection electrode produced using the boron-containing CNT of Example 1, and Compared with the detection electrode produced using the boron-containing CNT of Example 1, the glassy carbon electrode (1 ⁇ 1) of Comparative Example 2 has a force that can obtain only a current value of about 1/50. .
  • the detection electrode fabricated using the boron-containing CNT of Example 1 can perform more accurate measurement than the case of using a graphite paste electrode or a glassy carbon electrode. It was suggested that the use of boron-containing CNTs as a material for the detection electrode for constructing a biosensor was extremely effective.
  • Example 1 instead of boron-containing CNTs, a detection electrode produced using the same amount of CNT synthesized by arc discharge without using boron oxide (B 0) was used.
  • Comparative Example 3 The results obtained in Comparative Example 3 are shown in Fig. 2 together with the measurement results of Example 1. Compared to the detection electrode made using the boron-containing CNT of Example 1, the detection electrode using boron-free CNT of Comparative Example 3 (one bite) can only obtain a current value of about 1/30. It was very good. Thus, the detection electrode fabricated using the boron-containing CNT of Example 1 is It was suggested that more accurate measurement would be possible compared to the case of using paste electrodes made using CNTs without containing silicon. Therefore, it was shown that it is extremely effective to use boron-containing CNT as the material of the detection electrode for constructing the biosensor.
  • Example 1 the detection electrode was produced by changing the amount of boron-containing CNTs to 60 mg and the amount of mineral oil to 40 mg.
  • Example 2 a detection electrode produced using the same amount of graphite powder instead of boron-containing CNTs was used.
  • Example 2 a detection electrode produced using the same amount of glassy carbon instead of boron-containing CNTs was used.
  • Example 2 (— • 1)
  • a linear calibration curve with a correlation coefficient of 0.95 could be created at a potential lower than the potential at which ascorbic acid, uric acid, and acetaminophen undergo oxidation reactions.
  • the graphite paste electrode (101) of Comparative Example 4 or the glassy carbon electrode (1 ⁇ 1) of Comparative Example 5 is compared with the detection electrode prepared using the boron-containing CNT of Example 2. The slope of the calibration curve was about the same.
  • the detection electrode fabricated using the boron-containing CNT of Example 2 can perform more accurate measurement than when using a graphite paste electrode or a glassy carbon electrode.
  • Example 1 it was shown that the use of boron-containing CNTs as a material for the detection electrode for constructing the biosensor was extremely effective.
  • Example 1 -0.2 V was applied to the detection electrode with the detection electrode, counter electrode, and reference electrode immersed in 50 mmol / L phosphate buffer (pH 7.4), and after 300 seconds, 5 mmol / L Hydrogen peroxide was added to a concentration of L. Furthermore, ascorbic acid was added after 480 seconds, uric acid was added after 660 seconds, and acetaminophen was added at a concentration of 0.5 mmol / L after 840 seconds. In addition, the current value change at that time was measured.
  • Example 3 the change in current when +0.6 V was applied to the detection electrode was measured.
  • Example 3 solid line
  • Example 3 by applying a potential lower than the potential at which oxidation of ascorbic acid, uric acid, and acetaminophen occurs, a large current value change based on the reduction reaction of hydrogen peroxide on the electrode takes precedence. Was observed.
  • +0.6 V in Comparative Example 6 was applied (dotted line)
  • the interfering substances ascorbic acid, uric acid, and the like were more effective than the change in the current value based on the oxidation reaction of the target hydrogen peroxide on the electrode.
  • the change in current value due to the oxidation reaction of acetoaminophen was more prominently observed.
  • fluorine can be used as a detection electrode material for constructing a biosensor capable of selectively measuring a test substance by simply selecting and applying an appropriate potential and avoiding the influence of interfering substances. It shows that the use of contained CNTs is extremely effective.
  • the biosensor of the present invention detects or detects a test substance contained in a sample without being affected by an electrochemically active substance such as a reducing interfering substance, as compared with a conventional biosensor. Since it can be quantified and has excellent detection sensitivity, it can be used as a biosensor for medical diagnosis or health diagnosis.

Abstract

Disclosed is a biosensor having a detection electrode, wherein the material for the detection electrode is a boron-containing carbon nanotube (CNT). In the biosensor, the detection electrode is formed, for example, by mixing the boron-containing CNT with a mineral oil, an ionic liquid or a polymeric binder resin to produce a paste-like material and filling the paste-like material into a cylindrical container. The biosensor can detect a substance contained in a sample without being affected by any electrochemically active substance including a reductive interfering substance, can improve the detection sensitivity for the substance, and has a simplified construction.

Description

明 細 書  Specification
カーボンナノチューブを用いたバイオセンサ  Biosensor using carbon nanotubes
技術分野  Technical field
[0001] 本発明は、カーボンナノチューブを用いたバイオセンサに関する。更に詳しくは、触 媒活性が高ぐ測定妨害物質に対する選択性にすぐれたバイオセンサなどとして好 適に用いられるカーボンナノチューブを用いたバイオセンサに関する。  [0001] The present invention relates to a biosensor using carbon nanotubes. More specifically, the present invention relates to a biosensor using carbon nanotubes that are suitably used as a biosensor excellent in selectivity for a measurement interfering substance having high catalyst activity.
背景技術  Background art
[0002] 電気化学的検出手段によるバイオセンサを使用して血液や尿等の液体生体試料 を測定するに際して、試料中に共存するァスコルビン酸、尿酸、ァセトァミノフェン等 の還元性の妨害物質が電気化学的あるいは化学的に与える妨害作用が常に問題と なっている。かかる問題に対する回避策としては、(1)妨害物質透過制限膜法、(2)電 解酸化法、(3)差分測定法などが挙げられ、バイオセンサを設計する上で、還元性の 妨害物質の影響を除去する対策を講じることは極めて重要な課題である。  [0002] When a liquid biological sample such as blood or urine is measured using a biosensor based on an electrochemical detection means, reducing interfering substances such as ascorbic acid, uric acid, and acetoaminophen coexist in the sample. Electrochemical or chemical interference is always a problem. Measures to avoid such problems include (1) interference substance permeation limiting membrane method, (2) electrolytic oxidation method, and (3) differential measurement method. In designing biosensors, reducing interference substances It is extremely important to take measures to eliminate the effects of
[0003] 一方、近年の新たな対策法として、バイオセンサを構築する際の検出電極への力 一ボンナノチューブ (CNT)の利用が注目されている。 CNTは、 1991年に発見され た新しいナノ材料であり、炭素原子が六角形に規則正しく並んだ六角網目状のダラ フェンシートが円筒状に丸まったものである。グラフエンシートの筒が一重のものを単 層 CNT、グラフエンシートの筒が円心状に幾重にも存在しているものを多層 CNTと 称している。  [0003] On the other hand, as a new countermeasure method in recent years, attention has been paid to the use of single-bonn nanotubes (CNTs) as a sensing electrode when constructing a biosensor. CNT is a new nanomaterial discovered in 1991. It is a hexagonal net-shaped dalafen sheet in which carbon atoms are regularly arranged in a hexagonal shape, rounded into a cylindrical shape. A single-layer CNT is a single-walled CNT, and a multi-walled CNT-type is a multi-walled CNT.
[0004] CNTに電界を加えると、管の端部などで電界集中が生じ、電子を外部に容易に引 き出すことが可能である。引き出された電子を蛍光板に当てると発光するため、光源 やディスプレイとして使用することができる。従来の電子放出源と比べると、 CNTはそ の断面サイズが小さいため、電界集中が効果的に生じる。その結果、電子放出に必 要とされる電圧が小さぐまた、高真空環境が不要であるなど、電子放出装置の電子 放出源として幅広く用いること力 Sできる。さらに、機械的強度、熱伝導性、柔軟性、熱 安定性、化学的安定性などに優れており、コンポジット複合材料として幅広く用いるこ と力 Sできる。 [0005] このこと力、ら、 CNTはエレクトロニクスからエネルギーまでの広範な分野への応用が 期待されており、 CNTのバイオセンサの検出電極への応用もその中の一つであると いえる。 [0004] When an electric field is applied to CNTs, electric field concentration occurs at the end of the tube, and electrons can be easily extracted to the outside. When the extracted electrons are applied to the fluorescent screen, it emits light, so it can be used as a light source or display. Compared with conventional electron emission sources, CNTs have a smaller cross-sectional size, so electric field concentration is effectively generated. As a result, the voltage required for electron emission is small, and a high vacuum environment is unnecessary, so that it can be widely used as an electron emission source for electron emission devices. Furthermore, it has excellent mechanical strength, thermal conductivity, flexibility, thermal stability, chemical stability, etc., and can be used widely as a composite composite material. [0005] CNTs are expected to be applied to a wide range of fields from electronics to energy, and the application of CNTs to detection electrodes of biosensors is one of them.
[0006] 現在までのところ、 CNTをバイオセンサの検出電極として利用することで、還元性 の妨害物質の影響を受けない低い電位での被検物質の検出が可能であるという報 告が多くなされてはいるものの、使用されている CNTは単層 CNTや多層 CNT、官 能基が導入された CNT、完全中空型 (hollow_type)CNT、竹型 (bamboo-type)CNT 、窒素がドープされた CNTなどであった。また、これらの CNTをバイオセンサの検出 電極として用いた場合であっても、例えばァスコルビン酸、尿酸、ァセトァミノフェンの 酸化反応が起こる電位よりも低!/、電位での検出感度は、未だ十分とはレ、えな!/、もの であったり、電極形成における CNT含量を増大させることが困難であるため、さらな る導電性の向上に課題を有しているものであった。  [0006] To date, there have been many reports that it is possible to detect a test substance at a low potential that is not affected by reducing interference substances by using CNT as a detection electrode of a biosensor. However, the CNTs used are single-walled CNT and multi-walled CNT, CNTs with functional groups, hollow_type CNTs, bamboo-type CNTs, CNTs doped with nitrogen Etc. Even when these CNTs are used as detection electrodes for biosensors, for example, the potential for the oxidation reaction of ascorbic acid, uric acid, and acetaminophen is lower! However, it is difficult to increase the CNT content in electrode formation, and thus has a problem in further improving the conductivity.
特許文献 1 :特開 2006— 317360  Patent Document 1: JP 2006-317360
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の目的は、試料中に含まれる被検物質を還元性の妨害物質を初めとする電 気化学活性物質の影響を受けることなく検出し得るとともに、被検物質の検出感度を 改善せしめ、その構成が簡素化されたバイオセンサを提供することにある。 [0007] An object of the present invention is to detect a test substance contained in a sample without being affected by an electrochemically active substance such as a reducing interfering substance and to improve the detection sensitivity of the test substance. It is an object of the present invention to provide a biosensor that is improved and whose structure is simplified.
課題を解決するための手段  Means for solving the problem
[0008] かかる本発明の目的は、検出電極を有するバイオセンサであって、検出電極材料 がホウ素を含有するカーボンナノチューブであるバイオセンサによって達成される。 [0008] The object of the present invention is achieved by a biosensor having a detection electrode, wherein the detection electrode material is a carbon nanotube containing boron.
[0009] すなわち、本発明は、具体的には次の(1)〜(; 13)構成からなる。 That is, the present invention specifically includes the following configurations (1) to (; 13).
(1)  (1)
検出電極を有するバイオセンサであって、検出電極材料がホウ素を含有するカー ボンナノチューブであるバイオセンサ。  A biosensor having a detection electrode, wherein the detection electrode material is a carbon nanotube containing boron.
(2)  (2)
カーボンナノチューブが直径 lOOnm未満の多層カーボンナノチューブである(1)に 記載のバイオセンサ。 ホウ素を含有するカーボンナノチューブがミネラルオイル、イオン性液体または高分 子バインダー樹脂と混合され、ペースト状で用いられた(1)または(2)に記載のバイ ォセンサ。 The biosensor according to (1), wherein the carbon nanotube is a multi-walled carbon nanotube having a diameter of less than lOOnm. The biosensor according to (1) or (2), wherein carbon nanotubes containing boron are mixed with mineral oil, ionic liquid, or polymer binder resin and used in a paste form.
(4) (Four)
ホウ素を含有するカーボンナノチューブが水または有機溶剤に分散された状態で 用いられた(1)または(2)に記載のバイオセンサ。  The biosensor according to (1) or (2), wherein carbon nanotubes containing boron are dispersed in water or an organic solvent.
(5) (Five)
検出電極がペースト状に調製されたカーボンナノチューブを筒状容器に充填した 筒状電極である(3)に記載のバイオセンサ。  The biosensor according to (3), wherein the detection electrode is a cylindrical electrode in which a carbon nanotube prepared in a paste form is filled in a cylindrical container.
(6) (6)
検出電極が絶縁性基板上にホウ素を含有するカーボンナノチューブを配置したも のである(3)または(4)に記載のバイオセンサ。  The biosensor according to (3) or (4), wherein the detection electrode is a carbon nanotube containing boron on an insulating substrate.
(7) (7)
検出電極がカーボン電極、白金電極、金電極または銀電極上にホウ素を含有する カーボンナノチューブを配置したものである(3)または(4)に記載のバイオセンサ。 (8)  The biosensor according to (3) or (4), wherein the detection electrode is a carbon electrode, platinum electrode, gold electrode, or silver electrode on which carbon nanotubes containing boron are arranged. (8)
ホウ素を含有するカーボンナノチューブ力スクリーン印刷法により絶縁性基板上に 配置されたカーボンナノチューブである(6)に記載のバイオセンサ。  The biosensor as set forth in (6), which is a carbon nanotube disposed on an insulating substrate by a carbon nanotube force screen printing method containing boron.
(9) (9)
検出電極が電極上に酵素が固定化されて!/、る電極である(1)〜(8)の!/、ずれかに 記載のバイオセンサ。  The biosensor according to any one of (1) to (8), wherein the detection electrode is an electrode having an enzyme immobilized on the electrode!
(10) (Ten)
検出電極がさらに電極上にメディエタ一分子が保持されている電極である(9)記載 のバイオセンサ。  The biosensor according to (9), wherein the detection electrode is an electrode in which a single mediator molecule is held on the electrode.
(11 ) (11)
メディエタ一分子力 Sメデイエター分子層を形成している(; L0)記載のバイオセンサ。 (12) 電極間電圧を特定電圧に設定することにより測定妨害物質の影響を避け、 目的物 質の選択的な測定を可能とする、(1)〜(; 11)の!/、ずれかに記載のバイオセンサ。 (13) The biosensor according to (0), wherein a mediator single molecular force S mediator molecular layer is formed (; L0). (12) By setting the inter-electrode voltage to a specific voltage, the effect of measurement interfering substances can be avoided, and the target substance can be selectively measured. (1) to (; 11)! / Sensor. (13)
(1)〜(; 12)の!/、ずれかに記載のバイオセンサを用いて試料中の被検物質を検出 または定量する方法であって、検出電極に試料を接触させた後、電極電圧を特定電 圧に設定して印加することを特徴とする方法。  (1) to (; 12)! A method for detecting or quantifying a test substance in a sample using the biosensor according to any one of the methods, wherein the electrode voltage is applied after contacting the sample with the detection electrode. Is set to a specific voltage and applied.
発明の効果  The invention's effect
[0010] 本発明により、構成が簡素化されたバイオセンサが提供され、かかるバイオセンサ により、試料中に含まれる特定物質を、還元性の妨害物質を始めとする電気化学活 性物質の影響を受けることなぐ正確に測定、検出すること力 S可能となる。また、電極 形成にあたって、 CNT含量を増大させることが可能であるため、従来の CNTを用い たバイオセンサと比べてさらなる導電性の向上を図ることができるといったすぐれた効 果を奏する。このようなバイオセンサは、医療診断用あるいは健康診断用バイオセン サ、特に糖尿病の指標となる血糖値および糖化タンパク質を測定するためのバイオ センサに効果的に用いることができる。  [0010] According to the present invention, a biosensor having a simplified configuration is provided. With such a biosensor, a specific substance contained in a sample is affected by an electrochemically active substance such as a reducing interfering substance. It is possible to measure and detect accurately without receiving it. In addition, since the CNT content can be increased when forming the electrode, it has an excellent effect that the conductivity can be further improved as compared with the conventional biosensor using CNT. Such a biosensor can be effectively used as a biosensor for medical diagnosis or health diagnosis, particularly a biosensor for measuring a blood glucose level and a glycated protein that are indicators of diabetes.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]ホウ素含有 CNT、グラフアイトパウダーまたはグラッシ一カーボンを使用した検 出電極を用いて、過酸化水素試料に対する応答性を測定したグラフである。  [0011] FIG. 1 is a graph showing the response to a hydrogen peroxide sample using a detection electrode using boron-containing CNT, graphite powder, or glassy carbon.
[図 2]ホウ素含有 CNT、ホウ素を含まない CNTを使用した検出電極を用いて、過酸 化水素試料に対する応答性を測定したグラフである。  [Fig. 2] This is a graph of the response to a hydrogen peroxide sample using a sensing electrode that uses boron-containing CNTs and boron-free CNTs.
[図 3]ホウ素含有 CNT、グラフアイトパウダーまたはグラッシ一カーボンを使用した検 出電極を用いて、過酸化水素試料に対する応答性を測定した他のグラフである。  [Fig. 3] Another graph showing the response to a hydrogen peroxide sample using a detection electrode using boron-containing CNT, graphite powder, or glassy carbon.
[図 4]ホウ素含有 CNTを使用した検出電極を用い、 -0.2 Vおよび +0.6 Vを印加した 場合の、過酸化水素、ァスコルビン酸、尿酸、ァセトァミノフェン試料に対する応答性 を測定したグラフである。  [Fig. 4] A graph showing the response to hydrogen peroxide, ascorbic acid, uric acid, and acetaminophen samples when -0.2 V and +0.6 V are applied using a sensing electrode using boron-containing CNTs. is there.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明における CNTとしては、ホウ素を含有する CNT (以下、「ホウ素含有 CNT」と する。)が用いられる。ホウ素含有 CNTとは、構成要素として炭素 (C)の他にホウ素 (B) を含むものをいう。例えば一部の炭素原子がホウ素原子に置換されたもののように、 CNTを構成する骨格 (ネットワーク)にホウ素原子が組み込まれたものが挙げられるが 、これに限られず、例えば CNTの空洞内および/または表面にホウ素が吸着されて いるものも包含され、ホウ素含有量が 0.01〜10重量%、好ましくは 0.1〜7重量%のも のが用いられる。 [0012] As the CNT in the present invention, a CNT containing boron (hereinafter referred to as "boron-containing CNT") is used. Boron-containing CNTs are composed of boron (B) in addition to carbon (C) Including For example, there are those in which boron atoms are incorporated into the skeleton (network) constituting CNT, such as those in which some carbon atoms are replaced by boron atoms, but are not limited to this, for example, in the CNT cavity and / or Alternatively, those having boron adsorbed on the surface are also included, and those having a boron content of 0.01 to 10% by weight, preferably 0.1 to 7% by weight are used.
[0013] また、 CNTの形状は特に限定されず、単層または多層のいずれのものも用いられ る力 好ましくは複数の筒状ダラフェンが入れ子状になって構成された直径 lOOnm未 満の多層 CNTが、具体的には直径が lOOnm未満、好ましくは 5〜50nm、長さ力 .1〜 100 ^ m,好ましくは 1〜10 01、層数が 2〜100層、好ましくは 5〜20層のグラフェンシ ートが重なってレ、るものが用いられる。  [0013] The shape of the CNT is not particularly limited, and the force to use either a single layer or a multilayer is preferable. A multilayer CNT having a diameter of less than lOOnm, preferably formed by nesting a plurality of cylindrical darafen. Specifically, graphene having a diameter of less than lOOnm, preferably 5 to 50 nm, a length force of 1 to 100 ^ m, preferably 1 to 1001, and 2 to 100 layers, preferably 5 to 20 graphenes Sheets that overlap are used.
[0014] かかるホウ素含有 CNTは、例えば下記特許文献 2〜3に記載のホウ素含有 CNTな ど、公知のものを特に制限なく用いることができ、その製造方法も、  [0014] As such boron-containing CNTs, for example, known ones such as boron-containing CNTs described in Patent Documents 2 to 3 below can be used without particular limitation,
(1) CNTに酸化ホウ素、ホウ酸などのホウ素化合物を混合し、不活性ガス雰囲気中 、高温下で加熱する  (1) Mix boron compounds such as boron oxide and boric acid with CNT and heat them under inert gas atmosphere at high temperature
(2)上記ホウ素化合物のほか、ホウ素単体、炭化ホウ素、ホウ素と種々の金属との化 合物などのホウ素成分を含む炭素質原料を水素ガス雰囲気中においてアーク放電 法などにより合成する  (2) In addition to the above boron compounds, carbonaceous raw materials containing boron components such as simple boron, boron carbide, and compounds of boron and various metals are synthesized by an arc discharge method in a hydrogen gas atmosphere.
など公知の方法を特に制限なく用いることができる。  Any known method can be used without particular limitation.
特許文献 2:特開 2006 - 240932  Patent Document 2: JP 2006-240932 A
特許文献 3:特開 2006 - 188384  Patent Document 3: JP 2006-188384 A
[0015] 力、かるホウ素含有 CNTは溶剤等への分散性が高いため、 CNTを溶液や樹脂等に 混合した場合、均一に分散させることが可能となるといつたすぐれた性質を有してい [0015] Because CNTs containing boron and boron have high dispersibility in solvents, etc., when CNTs are mixed in a solution or resin, they have excellent properties when they can be dispersed uniformly.
[0016] そのため、本発明におけるホウ素含有 CNTの電極形成時における状態は特に限 定はされないものの、粉末状の CNTを用いる場合であれば、電極に形成するために ミネラルオイル、イオン性液体あるいはテトラフルォロエチレン、ナフイオンなどの高分 子のバインダー樹脂と適宜混合させてペースト状とする力、、水や有機溶剤などの溶 媒中に酸処理あるいは超音波処理などにより適宜分散させて使用することが好まし い。 [0016] Therefore, the state of the boron-containing CNT in the present invention at the time of electrode formation is not particularly limited. However, when powdered CNT is used, mineral oil, ionic liquid, or tetra It is used by appropriately mixing with a high molecular weight binder resin such as fluoroethylene or naphthion, and by dispersing it appropriately in a solvent such as water or organic solvent by acid treatment or ultrasonic treatment. Preferably Yes.
[0017] 本発明におけるホウ素含有 CNTを用いた検出電極の作製法は特に限定されない 力 S、例えば上記ペーストをプラスチックなどの非導電性物質あるいは導電性の金属な どの筒状の容器に詰める方法、シリコンやポリエチレンテレフタレート (PET)などの絶 縁性基板上に必要な大きさおよび形状にペーストあるいは分散溶液を配置させる方 法、カーボン、白金、金、銀などの市販の電極表面にペーストまたは分散溶液を塗布 して配置させる方法、ある!/、はペーストまたは分散溶液を用いて PETなどの絶縁性基 板上にスクリーン印刷法により必要な大きさおよび形状の電極を形成させる方法など 力 S挙げられる。分散溶液を用いてスクリーン印刷により絶縁基板上に検出電極を形 成させる際には、分散溶液中にェチルセルロース等の樹脂を溶解させることが好まし い。  [0017] The method for producing a detection electrode using boron-containing CNTs in the present invention is not particularly limited. Force S, for example, a method of packing the paste in a cylindrical container such as a non-conductive substance such as plastic or a conductive metal, Method of placing paste or dispersion solution in the required size and shape on an insulating substrate such as silicon or polyethylene terephthalate (PET), paste or dispersion solution on the surface of commercially available electrodes such as carbon, platinum, gold, silver There is a method of applying and arranging, and there is !!, a method of forming electrodes of the required size and shape by screen printing on an insulating substrate such as PET using paste or dispersion solution. . When forming a detection electrode on an insulating substrate by screen printing using a dispersion solution, it is preferable to dissolve a resin such as ethyl cellulose in the dispersion solution.
[0018] 検出電極中に含まれるホウ素含有 CNTの量は特に限定されないが、電極として使 用するために必要な導電性および形状が確保され、かつ CNTの効果が発揮される 含有量とするのが好ましぐ分散媒体との合計量中、例えば過酸化水素を検出する 場合にあっては、電極の導電性の維持、加工容易性等の観点から、 10〜99重量% 程度用いるのが好ましい。また、ミネラルオイルと混合することで作製されるペースト 電極を用いて過酸化水素を検出する場合にあっては、 40〜95重量%程度が望まし い。また、従来のホウ素を含有しない (ホウ素非含有) CNT、例えば中空型 CNTある いは竹型 CNTでは、含量を 10重量%以上に増大させると検出電極として形状を保 持することができないのに対して、本発明におけるホウ素含有 CNTは従来のホウ素 非含有 CNTに比較して、検出電極形成において、含量を増大させることができ、導 電性を向上させることができる。  [0018] The amount of the boron-containing CNT contained in the detection electrode is not particularly limited, but the content and the conductivity necessary for use as an electrode are ensured and the effect of the CNT is exhibited. In the case of detecting hydrogen peroxide, for example, in the total amount with the dispersion medium that is preferred, it is preferable to use about 10 to 99% by weight from the viewpoint of maintaining the conductivity of the electrode and ease of processing. . In addition, when hydrogen peroxide is detected using a paste electrode prepared by mixing with mineral oil, about 40 to 95% by weight is desirable. Also, conventional CNTs that do not contain boron (boron-free), such as hollow CNTs or bamboo CNTs, cannot retain their shape as detection electrodes if the content is increased to 10% by weight or more. On the other hand, the boron-containing CNT in the present invention can increase the content in the formation of the detection electrode and improve the conductivity as compared with the conventional boron-free CNT.
[0019] 検出電極の他に、対極および必要に応じて参照極が設けられることによってバイオ センサが構築される。  [0019] In addition to the detection electrode, a biosensor is constructed by providing a counter electrode and, if necessary, a reference electrode.
[0020] 本願発明のバイオセンサは、試料中の被検物質の検出や定量に使用することがで きる。試料中の被検物質の検出は、検出電極に試料を接触させた後、電極間電圧を 特定の電圧に設定して印加することにより行うことができる。本願発明のバイオセンサ を用いることにより、測定妨害物質の影響を避け、被検物質を選択的に検出すること ができる。例えば、血液中、尿中の糖 (グルコース)を検出する場合、従来の電極では 電極への印加により、過酸化水素だけでなぐァスコルビン酸、尿酸、ァセトァミノフエ ンなども電極反応してしまうが、ホウ素含有 CNTを配合した電極は電圧を選択するこ とにより (ここでは特定電圧という)、過酸化水素にのみ電極反応し、これらの夾雑物質 の影響を受け難い状態を設定でき、選択性にすぐれたバイオセンサを形成できる。こ のような特定電圧は、被検物質によって異なるが、一般には銀/塩化銀電極を基準 とした場合に約- 0.5〜+0. IV程度である。 [0020] The biosensor of the present invention can be used for detection and quantification of a test substance in a sample. Detection of the test substance in the sample can be performed by bringing the sample into contact with the detection electrode and then applying the electrode with a specific voltage set. By using the biosensor of the present invention, it is possible to avoid the influence of measurement interfering substances and selectively detect a test substance. Can do. For example, when detecting sugar (glucose) in blood or urine, ascorbic acid, uric acid, acetoaminophene, etc., which are not obtained with hydrogen peroxide alone, react with the electrode when applied to the electrode. Electrodes containing CNTs can be set in a state where they react only with hydrogen peroxide by selecting a voltage (referred to here as a specific voltage) and are not easily affected by these contaminants, and have excellent selectivity. A biosensor can be formed. Such a specific voltage varies depending on the test substance, but is generally about -0.5 to +0.4 IV when a silver / silver chloride electrode is used as a reference.
[0021] また、試料中の被検物質の定量も、被検物質の検出方法に準じて行うことができる 。すなわち、検出電極に試料を接触させた後、電極間電圧を特定の電圧に設定して 印加し、得られた情報量 (例えば、電流値)を、予め作成した該被検物質と該情報量と の関係を示す検量線に照らし合わせることにより、該試料中の該被検物質を定量す ること力 Sでさる。 [0021] The determination of the test substance in the sample can also be performed according to the detection method of the test substance. In other words, after the sample is brought into contact with the detection electrode, the voltage between the electrodes is set to a specific voltage and applied, and the obtained information amount (for example, current value) is calculated based on the test substance prepared in advance and the information amount. The force S is used to quantify the test substance in the sample by comparing it with a calibration curve showing the relationship between and.
[0022] また、被検物質の検出または定量にお!/、ては、該被検物質を、電極上で酸化また は還元可能な物質に変換し得る酵素類や酵素の基質等や、該被検物質から、電極 上で酸化または還元可能な物質を生じさせ得る酵素類や酵素の基質等が用いられ る。ここで、電極上で酸化または還元可能な物質としては、例えば過酸化水素、フェリ シアン化カリウム、フエロシアン化カリウム等が挙げられる。具体例を以下に示す。  [0022] Further, for detection or quantification of a test substance! /, An enzyme that can convert the test substance into a substance that can be oxidized or reduced on an electrode, an enzyme substrate, etc. Enzymes and enzyme substrates that can generate substances that can be oxidized or reduced on the electrode from the test substance are used. Here, examples of the substance that can be oxidized or reduced on the electrode include hydrogen peroxide, potassium ferricyanide, potassium ferrocyanide, and the like. Specific examples are shown below.
[0023] 被検物質がグルコースの場合、例えば試料中のグルコースにグルコースォキシダ ーゼを作用させ、生成した過酸化水素を電極上で還元あるいは酸化することで、グ ルコースを検出または定量することができる。  [0023] When the test substance is glucose, for example, glucose oxidase is allowed to act on glucose in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode to detect or quantify glucose. Can do.
[0024] 被検物質が糖化ヘモグロビンや糖化アルブミンなどの糖化タンパク質の場合、例え ば試料中の糖化タンパク質にプロテアーゼを作用させて糖化ペプチドおよび/また は糖化アミノ酸を遊離させた後、生成した糖化ペプチドおよび/または糖化アミノ酸 に糖化ペプチドォキシダーゼおよび/または糖化アミノ酸ォキシダーゼを作用させ、 生成した過酸化水素を電極上で還元あるいは酸化することで、糖化タンパク質を検 出または定量することができる。  [0024] When the test substance is a glycated protein such as glycated hemoglobin or glycated albumin, for example, a glycated peptide and / or glycated amino acid is released by allowing a protease to act on the glycated protein in the sample, and then the glycated peptide generated. By allowing glycated peptide oxidase and / or glycated amino acid oxidase to act on the glycated amino acid and reducing or oxidizing the generated hydrogen peroxide on the electrode, the glycated protein can be detected or quantified.
[0025] 被検物質が乳酸の場合、例えば試料中の乳酸に乳酸ォキシダーゼを作用させ、生 成した過酸化水素を電極上で還元あるいは酸化することで、乳酸を検出または定量 すること力 Sでさる。 [0025] When the test substance is lactic acid, for example, lactic acid is allowed to act on lactic acid in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode to detect or quantify lactic acid. The power S to do.
[0026] 被検物質が尿酸の場合、例えば試料中の尿酸にゥリカーゼを作用させ、生成した 過酸化水素を電極上で還元あるいは酸化することで、尿酸を検出または定量するこ と力 Sできる。  [0026] When the test substance is uric acid, for example, uricase is allowed to act on uric acid in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode, whereby uric acid can be detected or quantified.
[0027] 被検物質が尿素窒素の場合、例えば試料中の尿素にゥレアーゼを作用させ、生じ たアンモニアに、さらに、 α _ケトグルタル酸、 NADH (還元型補酵素)およびフエリシ アン化カリウム存在下でグルタミン酸脱水素酵素を作用させ、生成したフエロシアン 化カリウムを電極上で酸化することで、尿素窒素を検出または定量することができる。  [0027] When the test substance is urea nitrogen, for example, urease is allowed to act on urea in the sample, and the resulting ammonia is further added in the presence of α_ketoglutarate, NADH (reduced coenzyme) and potassium ferricyanide. By reacting glutamate dehydrogenase and oxidizing the produced potassium ferrocyanide on the electrode, urea nitrogen can be detected or quantified.
[0028] 被検物質がクレアチュンの場合、例えば試料中のクレアチュンにクレアチニナーゼ 、クレアチナーゼおよびザルコシンォキシダーゼを順次作用させ、生成した過酸化水 素を電極上で還元あるいは酸化することで、クレアチュンを検出または定量すること ができる。  [0028] When the test substance is creatine, for example, creatininase, creatinase, and sarcosine oxidase are sequentially acted on creatine in the sample, and the generated hydrogen peroxide is reduced or oxidized on the electrode. Creathun can be detected or quantified.
[0029] 被検物質が硫酸抱合胆汁酸の場合、例えば試料中の硫酸抱合胆汁酸に胆汁酸 硫酸スルファターゼ、 β -ヒドロキシステロイドデヒドロゲナーゼを NAD+およびフエリシ アン化カリウム存在下で順次作用させ、生成したフエロシアン化カリウムを電極上で 酸化することで、硫酸抱合胆汁酸を検出または定量することができる。 [0029] When the test substance is sulfate-conjugated bile acid, for example, the sulfate-conjugated bile acid in the sample was produced by sequentially reacting bile acid sulfate sulfatase and β-hydroxysteroid dehydrogenase in the presence of NAD + and potassium ferricyanide. By oxidizing potassium ferrocyanide on the electrode, sulfate-conjugated bile acids can be detected or quantified.
[0030] 被検物質がグルタミン酸ォキサ口酢酸トランスアミナーゼの場合、例えば試料中の グルタミン酸ォキサ口酢酸トランスアミナーゼに α -ケトグルタル酸とァスパラギン酸を 作用させ、生成したグルタミン酸にさらにグルタミン酸ォキシダーゼを作用させ、生成 した過酸化水素を電極上で還元あるいは酸化することで、グルタミン酸ォキサ口酢酸 トランスアミナーゼを検出または定量することができる。  [0030] When the test substance is glutamate oxalate acetate transaminase, for example, the glutamate oxalate acetate transaminase in the sample is allowed to act on α-ketoglutarate and aspartate, and the resulting glutamate is further reacted with glutamate oxidase. By reducing or oxidizing hydrogen oxide on the electrode, glutamate oxalate acetic acid transaminase can be detected or quantified.
[0031] 被検物質がグルタミン酸ピルビン酸トランスアミナーゼの場合、例えば試料中のグ ルタミン酸ピルビン酸トランスアミナーゼに α -ケトグルタル酸とァラニンを作用させ、 生成したグルタミン酸に、さらにグルタミン酸ォキシダーゼを作用させることにより生成 した過酸化水素を電極上で還元あるいは酸化することで、グルタミン酸ピルビン酸トラ ンスァミナーゼを検出または定量することができる。  [0031] When the test substance is glutamate pyruvate transaminase, for example, it was generated by allowing α-ketoglutarate and alanine to act on glutamate pyruvate transaminase in the sample, and further causing glutamate oxidase to act on the resulting glutamate By reducing or oxidizing hydrogen peroxide on the electrode, glutamate pyruvate transaminase can be detected or quantified.
[0032] 被検物質がコレステロールの場合、例えば試料中のコレステロールにコレステロ一 ノレォキシダーゼを作用させ、生成した過酸化水素を電極上で還元あるいは酸化する ことで、コレステロールを検出または定量することができる。 [0032] When the test substance is cholesterol, for example, cholesterol in the sample is allowed to act on cholesterol, and the generated hydrogen peroxide is reduced or oxidized on the electrode. Thus, cholesterol can be detected or quantified.
[0033] 被検物質が中性脂肪の場合、例えば試料中の中性脂肪にリポプロテインリパーゼ 、グリセロールキナーゼおよびグリセ口- 3-リン酸ォキシダーゼを作用させ、生成した 過酸化水素を電極上で還元あるいは酸化することで、中性脂肪を検出または定量す ること力 Sでさる。 [0033] When the test substance is neutral fat, for example, lipoprotein lipase, glycerol kinase and glyce-3-phosphate oxidase are allowed to act on the neutral fat in the sample, and the generated hydrogen peroxide is reduced on the electrode. Alternatively, it can be detected by the ability S to detect or quantify neutral fat by oxidation.
[0034] 被検物質が脂肪酸の場合、例えば試料中の脂肪酸に、アデノシン- 5' -三リン酸 (A TP)およびコェンザィム A(CoA)存在下、ァシル -CoAシンターゼを作用させ、さらに 、生成したァシル -CoAにァシル CoAォキシダーゼを作用させ、生成した過酸化水 素を電極上で還元あるいは酸化することで、脂肪酸を検出または定量することができ  [0034] When the test substance is a fatty acid, for example, a fatty acid in a sample is allowed to act on a fatty acid in a sample in the presence of adenosine-5'-triphosphate (ATP) and coenzyme A (CoA) to further generate a acyl-CoA synthase. Fatty acid can be detected or quantified by reacting the acyl-CoA with acyl-CoA oxidase and reducing or oxidizing the generated hydrogen peroxide on the electrode.
[0035] 被検物質がアンモニアの場合、例えば試料中のアンモニアに、 α _ケトグルタル酸、 NADHおよびフェリシアン化カリウム存在下でグルタミン酸脱水素酵素を作用させ、 生成したフエロシアン化カリウムを電極上で酸化することで、アンモニアを検出または 定量すること力 Sでさる。 [0035] When the test substance is ammonia, for example, glutamate dehydrogenase is allowed to act on ammonia in the sample in the presence of α_ketoglutarate, NADH and potassium ferricyanide, and the generated potassium ferrocyanide is oxidized on the electrode. With force S to detect or quantify ammonia.
[0036] 被検物質がビリルビンの場合、例えば試料中のビリルビンに、例えばフェリシアン化 カリウム存在下でビリルビンォキシダーゼを作用させることにより生成したフエロシアン 化カリウムを電極上で酸化することで、ビリルビンを検出または定量することができる。  [0036] When the test substance is bilirubin, for example, bilirubin can be obtained by oxidizing potassium ferrocyanide generated by, for example, acting bilirubin oxidase in the presence of potassium ferricyanide on the bilirubin in the sample on the electrode. Can be detected or quantified.
[0037] 以上の酵素類は、ホウ素含有 CNT中に混合される力、、検出電極上に固定化される 。酵素類の検出電極上への固定化方法は特に限定されないが、例えば酵素類を溶 解させた水や緩衝液等中に検出電極を浸漬あるいは電極上に酵素類を溶解させた 水や緩衝液等を滴下することにより酵素などを物理的あるいは化学的に固定化する 方法、酸処理などにより CNTに例えばカルボキシル基ゃァミノ基などの官能基を導 入した後に酵素などを反応させて固定化する方法、例えばダルタルアルデヒドのよう な架橋試薬あるいはさらに牛血清アルブミンを用いて酵素などを検出電極上に固定 化する方法、親水性高分子などのゲル膜を検出電極上に形成させた後に膜中に酵 素などを固定化する方法またはポリチォフェンなどの導電性高分子膜を検出電極上 に形成させた後に膜中に酵素などを固定化する方法などが挙げられる。  [0037] The enzymes described above are immobilized on the detection electrode and the force mixed in the boron-containing CNT. The method for immobilizing the enzyme on the detection electrode is not particularly limited. For example, the detection electrode is immersed in water or a buffer solution in which the enzyme is dissolved, or the enzyme or the water is dissolved in the electrode. A method of physically or chemically immobilizing enzymes, etc. by dropping them, etc., introducing functional groups such as carboxyl groups and amino groups into CNTs by acid treatment, etc., and then immobilizing them by reacting them. A method, for example, a method of immobilizing an enzyme or the like on a detection electrode using a cross-linking reagent such as dartalaldehyde or bovine serum albumin, or after forming a gel film of a hydrophilic polymer or the like on the detection electrode. Examples thereof include a method of immobilizing an enzyme or the like, or a method of immobilizing an enzyme or the like in the membrane after a conductive polymer membrane such as polythiophene is formed on the detection electrode.
[0038] 被検物質の検出または定量においては必要に応じて、例えば反応が溶存酵素濃 度に律速され、高濃度の試料しか測定できない場合、検出範囲の拡大を目的として メディエタ一分子を利用することが有効である。メディエタ一分子を利用する場合に おいては、検出電極上に形成させた酵素類の生理活性物質の固定化膜中あるいは これとは分けて、メディエタ一分子を検出電極上に保持させることが好ましい。メディ エタ一分子の種類は特に限定されないが、例えばフェリシアン化カリウム、フエロシア ン化カリウム、フエ口センおよびその誘導体、ビオローゲン類およびメチレンブルーな どの少なくとも一種が用いられる。 [0038] In the detection or quantification of the test substance, for example, the reaction may be performed using a dissolved enzyme concentration. It is effective to use a single molecule of mediator for the purpose of expanding the detection range when the rate is limited and only a high concentration sample can be measured. When using a single mediator molecule, it is preferable to hold the single mediator molecule on the detection electrode in the immobilized membrane of the physiologically active substance of the enzyme formed on the detection electrode or separately from this. . The kind of mediator molecule is not particularly limited, and for example, at least one kind such as potassium ferricyanide, potassium ferrocyanide, pheucose and derivatives thereof, viologens and methylene blue is used.
[0039] 試料としては、疾病や健康状態を示す被検物質を含んでいれば特に限定されず、 例えば血液、尿、唾液、汗、涙などが挙げられる。また試料中の被検物質の検出また は定量において、試料は、採取したものそのものを用いても、水や緩衝溶液などで希 釈したものを用いてもよい。  [0039] The sample is not particularly limited as long as it contains a test substance indicating a disease or a health condition, and examples thereof include blood, urine, saliva, sweat, and tears. In detection or quantification of a test substance in a sample, the sample itself may be collected or diluted with water or a buffer solution.
[0040] 本発明のセンサを用いた測定法としては、酸化電流もしくは還元電流を測定するポ テンシャルステップクロノアンぺロメトリーまたはクーロメトリー、サイクリックボルタンメト リー法などが用いられる。測定方式としては、デスポーザブル (使い捨て)方式が望ま しいが、他に FIA(Flow Injection Analysis)方式やバッチ方式でもよい。  [0040] As a measuring method using the sensor of the present invention, a potential step chronoamperometry or coulometry, a cyclic voltammetry method for measuring an oxidation current or a reduction current is used. As the measurement method, a disposable (disposable) method is desirable, but other methods such as FIA (Flow Injection Analysis) and batch methods may be used.
実施例  Example
[0041] 次に実施例について本発明を説明する。  Next, the present invention will be described with reference to examples.
[0042] 実施例 1 [0042] Example 1
中空炭素陽極と炭素陰極を対向配置させた状態で、アーク溶接電源より、両炭素 電極間に電圧を印加させてアーク放電を行い、炭素陰極の放電発生部 (中空炭素陽 極中空孔の対面に当たる部分)にて CNTを得た。次いで、得られた CNT200mgと酸 化ホウ素 (B 0 )5.0gとを、約 2%の水素を含有した窒素雰囲気中にて約 1000°C、数十 秒間反応させてホウ素含有 CNTを合成した。このホウ素含有 CNTは、直径 5〜35nm 、長さ 1 m以上の多層 CNTであり、約 5重量%程度のホウ素を含有していた。  With the hollow carbon anode and the carbon cathode facing each other, the arc welding power source applies a voltage between the carbon electrodes to perform arc discharge, and the discharge part of the carbon cathode (spots the opposite side of the hollow carbon anode hollow hole). CNT was obtained in (Part). Next, 200 mg of the obtained CNT and 5.0 g of boron oxide (B 0) were reacted in a nitrogen atmosphere containing about 2% hydrogen at about 1000 ° C. for several tens of seconds to synthesize boron-containing CNT. This boron-containing CNT was a multi-wall CNT having a diameter of 5 to 35 nm and a length of 1 m or more, and contained about 5% by weight of boron.
[0043] このホウ素含有 CNT90mgおよびミネラルオイル (Aldrich社製品) 10mgを乳鉢中で 15 分間混練した後、カーボンペースト電極 (BAS社製品、直径 3mm)中へ詰め込み、検 出電極とした。対極としては白金線 (BAS社製品)を、また参照極としては銀/塩化銀 電極 (BAS社製品)を用いた。過酸化水素を 0 mmol/L、 1 mmol/L、 5 mmol/L、 10 mmo 1/L、 25 mmol/L、 50 mmol/Lの濃度となるように溶解させた 50 mmol/Lのリン酸緩衝 液 (pH 7.4)を測定サンプルとして用い、各測定サンプル中に検出電極、対極および 参照極を浸した状態で- 0.2Vを作用電極に対して印加して、 90秒後に得られた電流 値を過酸化水素濃度に対してプロットし検量線を作成した。 [0043] 90 mg of this boron-containing CNT and 10 mg of mineral oil (product of Aldrich) were kneaded in a mortar for 15 minutes and then packed into a carbon paste electrode (product of BAS, diameter 3 mm) to form a detection electrode. A platinum wire (BAS product) was used as the counter electrode, and a silver / silver chloride electrode (BAS product) was used as the reference electrode. Hydrogen peroxide 0 mmol / L, 1 mmol / L, 5 mmol / L, 10 mmo A 50 mmol / L phosphate buffer solution (pH 7.4) dissolved to a concentration of 1 / L, 25 mmol / L, or 50 mmol / L was used as a measurement sample. A calibration curve was created by applying -0.2 V to the working electrode with the reference electrode immersed, and plotting the current value obtained after 90 seconds against the hydrogen peroxide concentration.
[0044] 比較例 1 [0044] Comparative Example 1
実施例 1において、ホウ素含有 CNTの代わりに同量のグラフアイトパウダーを用い て作製された検出電極が用いられた。  In Example 1, a detection electrode produced using the same amount of graphite powder instead of boron-containing CNTs was used.
[0045] 比較例 2 [0045] Comparative Example 2
実施例 1において、ホウ素含有 CNTの代わりに同量のグラッシ一カーボンを用いて 作製された検出電極が用いられた。  In Example 1, a detection electrode produced using the same amount of glassy carbon instead of boron-containing CNTs was used.
[0046] 実施例 1および比較例 1〜2で得られた結果は、図 1に示される。実施例 1(一 ·一) では、ァスコルビン酸、尿酸、ァセトァミノフェンの酸化反応が起こる電位より低い電 位で、相関係数力 .992の直線性の高い検量線を作成できることが示された。一方、 比較例 1のグラフアイトペースト電極 (一〇一)では、実施例 1のホウ素含有 CNTを用い て作製された検出電極と比較して、 1/30程度の電流値しか得られず、また、比較例 2 のグラッシ一カーボン電極 (一△一)では、実施例 1のホウ素含有 CNTを用いて作製 された検出電極に比較して、 1/50程度の電流値しか得られな力、つた。  [0046] The results obtained in Example 1 and Comparative Examples 1 and 2 are shown in FIG. In Example 1 (1 · 1), it is shown that a calibration curve with a high correlation coefficient of .992 can be created at a potential lower than the potential at which ascorbic acid, uric acid, and acetaminophen undergo oxidation. It was. On the other hand, the graphite paste electrode (101) of Comparative Example 1 can only obtain a current value of about 1/30 compared to the detection electrode produced using the boron-containing CNT of Example 1, and Compared with the detection electrode produced using the boron-containing CNT of Example 1, the glassy carbon electrode (1 △ 1) of Comparative Example 2 has a force that can obtain only a current value of about 1/50. .
[0047] 以上の結果より、実施例 1のホウ素含有 CNTを用いて作製された検出電極では、グ ラフアイトペースト電極またはグラッシ一カーボン電極を用いた場合と比較して、より 正確な測定が可能となることが示唆され、バイオセンサを構築するための検出電極の 材料としてホウ素含有 CNTを使用することが極めて有効であることが示された。  [0047] From the above results, the detection electrode fabricated using the boron-containing CNT of Example 1 can perform more accurate measurement than the case of using a graphite paste electrode or a glassy carbon electrode. It was suggested that the use of boron-containing CNTs as a material for the detection electrode for constructing a biosensor was extremely effective.
[0048] 比較例 3  [0048] Comparative Example 3
実施例 1において、ホウ素含有 CNTの代わりに、酸化硼素 (B 0 )を用いることなくァ ーク放電により合成した CNTを同量用いて作製された検出電極が用いられた。  In Example 1, instead of boron-containing CNTs, a detection electrode produced using the same amount of CNT synthesized by arc discharge without using boron oxide (B 0) was used.
[0049] 比較例 3で得られた結果は、実施例 1の測定結果とともに図 2に示される。比較例 3 のホウ素を含有しない CNTを用いた検出電極 (一口一)では、実施例 1のホウ素含有 CNTを用いて作製された検出電極に比較して、 1/30程度の電流値しか得られなか つた。このことより、実施例 1のホウ素含有 CNTを用いて作製された検出電極では、ホ ゥ素を含有しなレ、CNTを用いて作製されたペースト電極を用いた場合に比較して、 より正確な測定が可能となることが示唆された。従って、バイオセンサを構築するため の検出電極の材料としてホウ素含有 CNTを使用することが極めて有効であることが 示された。 [0049] The results obtained in Comparative Example 3 are shown in Fig. 2 together with the measurement results of Example 1. Compared to the detection electrode made using the boron-containing CNT of Example 1, the detection electrode using boron-free CNT of Comparative Example 3 (one bite) can only obtain a current value of about 1/30. It was very good. Thus, the detection electrode fabricated using the boron-containing CNT of Example 1 is It was suggested that more accurate measurement would be possible compared to the case of using paste electrodes made using CNTs without containing silicon. Therefore, it was shown that it is extremely effective to use boron-containing CNT as the material of the detection electrode for constructing the biosensor.
[0050] 実施例 2 [0050] Example 2
実施例 1において、ホウ素含有 CNT量が 60mgに、またミネラルオイル量が 40mgに それぞれ変更されて検出電極が作製された。  In Example 1, the detection electrode was produced by changing the amount of boron-containing CNTs to 60 mg and the amount of mineral oil to 40 mg.
[0051] 比較例 4 [0051] Comparative Example 4
実施例 2において、ホウ素含有 CNTの代わりに同量のグラフアイトパウダーを用い て作製された検出電極が用いられた。  In Example 2, a detection electrode produced using the same amount of graphite powder instead of boron-containing CNTs was used.
[0052] 比較例 5 [0052] Comparative Example 5
実施例 2において、ホウ素含有 CNTの代わりに同量のグラッシ一カーボンを用いて 作製された検出電極が用いられた。  In Example 2, a detection electrode produced using the same amount of glassy carbon instead of boron-containing CNTs was used.
[0053] 実施例 2および比較例 4〜5で得られた結果は、図 3に示される。実施例 2(— ·一) では、ァスコルビン酸、尿酸、ァセトァミノフェンの酸化反応が起こる電位より低い電 位で、相関係数が 0.95の直線性の高い検量線を作成できることが示された。一方、 比較例 4のグラフアイトペースト電極 (一〇一)あるいは比較例 5のグラッシ一カーボン 電極 (一△一)では、実施例 2のホウ素含有 CNTを用いて作製された検出電極と比較 して、検量線の傾き力 程度であった。以上より、実施例 2のホウ素含有 CNTを用 いて作製された検出電極では、グラフアイトペースト電極またはグラッシ一カーボン電 極を用いた場合に比較して、より正確な測定が可能となることが示唆され、実施例 1と 同様にバイオセンサを構築するための検出電極の材料としてホウ素含有 CNTを使 用することが極めて有効であることが示された。  [0053] The results obtained in Example 2 and Comparative Examples 4 to 5 are shown in FIG. In Example 2 (— • 1), it was shown that a linear calibration curve with a correlation coefficient of 0.95 could be created at a potential lower than the potential at which ascorbic acid, uric acid, and acetaminophen undergo oxidation reactions. . On the other hand, the graphite paste electrode (101) of Comparative Example 4 or the glassy carbon electrode (1 △ 1) of Comparative Example 5 is compared with the detection electrode prepared using the boron-containing CNT of Example 2. The slope of the calibration curve was about the same. Based on the above, it is suggested that the detection electrode fabricated using the boron-containing CNT of Example 2 can perform more accurate measurement than when using a graphite paste electrode or a glassy carbon electrode. As in Example 1, it was shown that the use of boron-containing CNTs as a material for the detection electrode for constructing the biosensor was extremely effective.
[0054] 実施例 3  [0054] Example 3
実施例 1において、検出電極、対極および参照極を 50 mmol/Lのリン酸緩衝液 (pH 7.4)中に浸した状態で- 0.2Vを検出電極に対して印加し、 300秒後に 5 mmol/Lの濃 度になるように過酸化水素を添加した。さらに 480秒後にァスコルビン酸を、 660秒後 に尿酸を、 840秒後にァセトァミノフェンをいずれも 0.5 mmol/Lの濃度となるように添 加し、その際の電流値変化を計測した。 In Example 1, -0.2 V was applied to the detection electrode with the detection electrode, counter electrode, and reference electrode immersed in 50 mmol / L phosphate buffer (pH 7.4), and after 300 seconds, 5 mmol / L Hydrogen peroxide was added to a concentration of L. Furthermore, ascorbic acid was added after 480 seconds, uric acid was added after 660 seconds, and acetaminophen was added at a concentration of 0.5 mmol / L after 840 seconds. In addition, the current value change at that time was measured.
[0055] 比較例 6 [0055] Comparative Example 6
実施例 3において、検出電極に対して +0.6Vを印加したときの電流 変化を計測し た。  In Example 3, the change in current when +0.6 V was applied to the detection electrode was measured.
[0056] 実施例 3および比較例 6で得られた結果は、図 4に示される。実施例 3(実線)ではァ スコルビン酸、尿酸、ァセトァミノフェンの酸化反応が起こる電位より低い電位を印加 することで、過酸化水素の電極上での還元反応に基づく大きな電流値変化が優先的 に観測された。一方、比較例 6の +0.6Vを印加した場合 (点線)では、 目的とする過酸 化水素の電極上での酸化反応に基づく電流値変化よりも、妨害物質であるァスコル ビン酸、尿酸、ァセトァミノフェンの酸化反応に基づく電流値変化の方が顕著に観測 された。  [0056] The results obtained in Example 3 and Comparative Example 6 are shown in FIG. In Example 3 (solid line), by applying a potential lower than the potential at which oxidation of ascorbic acid, uric acid, and acetaminophen occurs, a large current value change based on the reduction reaction of hydrogen peroxide on the electrode takes precedence. Was observed. On the other hand, when +0.6 V in Comparative Example 6 was applied (dotted line), the interfering substances ascorbic acid, uric acid, and the like were more effective than the change in the current value based on the oxidation reaction of the target hydrogen peroxide on the electrode. The change in current value due to the oxidation reaction of acetoaminophen was more prominently observed.
[0057] このことは、適切な電位を選択して印加するだけで、妨害物質の影響を避け、被検 物質を選択的に測定できるバイオセンサを構築するための検出電極の材料としてホ ゥ素含有 CNTを使用することが極めて有効であることが示している。  [0057] This is because fluorine can be used as a detection electrode material for constructing a biosensor capable of selectively measuring a test substance by simply selecting and applying an appropriate potential and avoiding the influence of interfering substances. It shows that the use of contained CNTs is extremely effective.
産業上の利用可能性  Industrial applicability
[0058] 本発明のバイオセンサは、従来のバイオセンサと比較して、試料中に含まれる被検 物質を還元性の妨害物質を初めとする電気化学活性物質の影響を受けることなく検 出または定量することができ、検出感度にも優れているため、医療診断用あるいは健 康診断用バイオセンサとして用いることができる。 [0058] The biosensor of the present invention detects or detects a test substance contained in a sample without being affected by an electrochemically active substance such as a reducing interfering substance, as compared with a conventional biosensor. Since it can be quantified and has excellent detection sensitivity, it can be used as a biosensor for medical diagnosis or health diagnosis.

Claims

請求の範囲 The scope of the claims
[I] 検出電極を有するバイオセンサであって、検出電極材料がホウ素を含有するカー ボンナノチューブであるバイオセンサ。  [I] A biosensor having a detection electrode, wherein the detection electrode material is a carbon nanotube containing boron.
[2] カーボンナノチューブが直径 lOOnm未満の多層カーボンナノチューブである請求項  [2] The carbon nanotube is a multi-walled carbon nanotube having a diameter of less than lOOnm.
1に記載のバイオセンサ。  The biosensor according to 1.
[3] ホウ素を含有するカーボンナノチューブ力 Sミネラルオイル、イオン性液体または高分 子バインダー樹脂と混合され、ペースト状で用いられた請求項 1または 2に記載のバ ィォセンサ。 [3] The biosensor according to claim 1 or 2, wherein the biosensor is used in the form of a paste mixed with boron-containing carbon nanotube force S mineral oil, ionic liquid, or polymer binder resin.
[4] ホウ素を含有するカーボンナノチューブが水または有機溶剤に分散された状態で 用いられた請求項 1または 2に記載のバイオセンサ。  [4] The biosensor according to claim 1 or 2, wherein the carbon nanotube containing boron is used in a state dispersed in water or an organic solvent.
[5] 検出電極がペースト状に調製されたカーボンナノチューブを筒状容器に充填した 筒状電極である請求項 3に記載のバイオセンサ。 5. The biosensor according to claim 3, wherein the detection electrode is a cylindrical electrode filled with a carbon nanotube prepared in a paste form in a cylindrical container.
[6] 検出電極が絶縁性基板上にホウ素を含有するカーボンナノチューブを配置したも のである請求項 3または 4に記載のバイオセンサ。 6. The biosensor according to claim 3 or 4, wherein the detection electrode comprises a carbon nanotube containing boron on an insulating substrate.
[7] 検出電極がカーボン電極、白金電極、金電極または銀電極上にホウ素を含有する カーボンナノチューブを配置したものである請求項 3または 4に記載のバイオセンサ。 7. The biosensor according to claim 3 or 4, wherein the detection electrode is a carbon electrode, platinum electrode, gold electrode or silver electrode on which carbon nanotubes containing boron are arranged.
[8] ホウ素を含有するカーボンナノチューブ力 Sスクリーン印刷法により絶縁性基板上に 配置されたカーボンナノチューブである請求項 6に記載のバイオセンサ。 [8] The biosensor according to [6], which is a carbon nanotube disposed on an insulating substrate by S-screen printing using boron-containing carbon nanotube force.
[9] 検出電極が電極上に酵素が固定化されている電極である請求項 1〜8のいずれか に記載のバイオセンサ。 9. The biosensor according to any one of claims 1 to 8, wherein the detection electrode is an electrode in which an enzyme is immobilized on the electrode.
[10] 検出電極がさらに電極上にメディエタ一分子が保持されている電極である請求項 9 記載のバイオセンサ。  10. The biosensor according to claim 9, wherein the detection electrode is an electrode in which a single mediator molecule is held on the electrode.
[I I] メディエタ一分子カ^ディエタ一分子層を形成している請求項 10記載のバイオセン サ。  11. The biosensor according to claim 10, wherein [I I] is a mediator monomolecular molecule monolayer.
[12] 電極間電圧を特定電圧に設定することにより測定妨害物質の影響を避け、 目的物 質の選択的な測定を可能とする、請求項;!〜 11の!/、ずれかに記載のバイオセンサ。  [12] Claims;! To 11 of! / 11, which avoid the influence of measurement interfering substances by setting the interelectrode voltage to a specific voltage, and enable selective measurement of the target substance. Biosensor.
[13] 請求項 1〜; 12のいずれかに記載のバイオセンサを用いて試料中の被検物質を検 出または定量する方法であって、検出電極に試料を接触させた後、電極電圧を特定 電圧に設定して印加することを特徴とする方法。 [13] A method for detecting or quantifying a test substance in a sample using the biosensor according to any one of claims 1 to 12, wherein the electrode voltage is applied after the sample is brought into contact with the detection electrode. specific A method characterized in that the voltage is set and applied.
PCT/JP2007/073076 2006-11-30 2007-11-29 Biosensor utilizing carbon nanotube WO2008066123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006322710 2006-11-30
JP2006-322710 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008066123A1 true WO2008066123A1 (en) 2008-06-05

Family

ID=39467911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073076 WO2008066123A1 (en) 2006-11-30 2007-11-29 Biosensor utilizing carbon nanotube

Country Status (2)

Country Link
JP (1) JP4863398B2 (en)
WO (1) WO2008066123A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133679A1 (en) * 2008-04-30 2009-11-05 日本電気株式会社 Biosensor electrode manufacturing method and biosensor manufacturing method
WO2009151306A1 (en) * 2008-06-12 2009-12-17 Hicham El Bakouri Electrode made of carbon paste modified by c18/hydroxyapatite, and related production method and applications
CN102645476A (en) * 2012-05-16 2012-08-22 西北师范大学 Modified electrode based on multi-wall carbon nanotube/coenzyme Q10/ionic liquid gel
CN103884761A (en) * 2012-12-20 2014-06-25 西北师范大学 Method for simultaneously detecting three isomers of resorcinol by using MWNTs-IL/GCE electrochemical sensor
CN105466988A (en) * 2015-11-20 2016-04-06 河南理工大学 An amino-functionalized ionic liquid-carbon nanotube based copper ion selective electrode and a preparing method thereof
CN106226373A (en) * 2016-07-11 2016-12-14 天津理工大学 The preparation method of a kind of gold/titanium dioxide/carbon nano tube sensor and the method for synchronous detecting biological micromolecule thereof
WO2022140379A1 (en) * 2020-12-21 2022-06-30 Mig Usa, Llc Methods, devices and systems for detection of biomarkers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945571B1 (en) * 2009-07-02 2010-03-08 주식회사 아이센스 Protein detecting biosensor
MX2010013211A (en) * 2010-12-01 2012-06-08 Urbanizaciones Inmobiliarias Del Ct S A De C V Compound material based on rice husk and binder, modified with carbon nanostructures.
KR102190084B1 (en) * 2018-12-24 2020-12-11 한국산업기술대학교산학협력단 Fbrication method of mems gas sensor and mems gas sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325012A (en) * 2004-04-15 2005-11-24 Toray Ind Inc Method for processing carbonaceous material, carbonaceous material with improved graphitic property, electron emitting material using it, and battery electrode material
JP2006282408A (en) * 2005-03-31 2006-10-19 Shinshu Univ Boron-doped double wall carbon nanotube, and method for manufacturing the same
JP2006308463A (en) * 2005-04-28 2006-11-09 National Institute Of Advanced Industrial & Technology Nano-carbon sensor
JP2006317360A (en) * 2005-05-16 2006-11-24 National Institute Of Advanced Industrial & Technology Biosensor using bamboo-shaped carbon nanotube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325012A (en) * 2004-04-15 2005-11-24 Toray Ind Inc Method for processing carbonaceous material, carbonaceous material with improved graphitic property, electron emitting material using it, and battery electrode material
JP2006282408A (en) * 2005-03-31 2006-10-19 Shinshu Univ Boron-doped double wall carbon nanotube, and method for manufacturing the same
JP2006308463A (en) * 2005-04-28 2006-11-09 National Institute Of Advanced Industrial & Technology Nano-carbon sensor
JP2006317360A (en) * 2005-05-16 2006-11-24 National Institute Of Advanced Industrial & Technology Biosensor using bamboo-shaped carbon nanotube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133679A1 (en) * 2008-04-30 2009-11-05 日本電気株式会社 Biosensor electrode manufacturing method and biosensor manufacturing method
WO2009151306A1 (en) * 2008-06-12 2009-12-17 Hicham El Bakouri Electrode made of carbon paste modified by c18/hydroxyapatite, and related production method and applications
CN102645476A (en) * 2012-05-16 2012-08-22 西北师范大学 Modified electrode based on multi-wall carbon nanotube/coenzyme Q10/ionic liquid gel
CN103884761A (en) * 2012-12-20 2014-06-25 西北师范大学 Method for simultaneously detecting three isomers of resorcinol by using MWNTs-IL/GCE electrochemical sensor
CN103884761B (en) * 2012-12-20 2016-06-15 西北师范大学 A kind of MWNTs-IL/GCE electrochemical sensor detects the method for three kinds of isomerss of Benzodiazepines simultaneously
CN105466988A (en) * 2015-11-20 2016-04-06 河南理工大学 An amino-functionalized ionic liquid-carbon nanotube based copper ion selective electrode and a preparing method thereof
CN106226373A (en) * 2016-07-11 2016-12-14 天津理工大学 The preparation method of a kind of gold/titanium dioxide/carbon nano tube sensor and the method for synchronous detecting biological micromolecule thereof
CN106226373B (en) * 2016-07-11 2018-10-16 天津理工大学 A kind of method of the preparation method of gold/titanium dioxide/carbon nano tube sensor and its synchronous detection biological micromolecule
WO2022140379A1 (en) * 2020-12-21 2022-06-30 Mig Usa, Llc Methods, devices and systems for detection of biomarkers

Also Published As

Publication number Publication date
JP4863398B2 (en) 2012-01-25
JP2008157930A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4863398B2 (en) Biosensor using carbon nanotubes
Mazloum-Ardakani et al. Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode
Rahman et al. Development of amperometric glucose biosensor based on glucose oxidase co-immobilized with multi-walled carbon nanotubes at low potential
Salimi et al. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron (III)-porphyrin film: application to chlorate, bromate and iodate detection
Li et al. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood
Lin et al. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film
Yamamoto et al. Study of carbon nanotubes–HRP modified electrode and its application for novel on-line biosensors
Alhans et al. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards
Lin et al. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode
JP4374464B2 (en) Biosensor
Mazloum-Ardakani et al. Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, uric acid and d-penicillamine
Li et al. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes
Karadeniz et al. Electrochemical monitoring of DNA hybridization by multiwalled carbon nanotube based screen printed electrodes
Huang et al. A sensitive H2O2 biosensor based on carbon nanotubes/tetrathiafulvalene and its application in detecting NADH
Baş et al. Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection
Chen et al. Glucose biosensor based on multiwalled carbon nanotubes grown directly on Si
Liu et al. Enzymes immobilized on amine-terminated ionic liquid-functionalized carbon nanotube for hydrogen peroxide determination
Muti et al. Single-walled carbon nanotubes-polymer modified graphite electrodes for DNA hybridization
JP4566064B2 (en) Biosensor using bamboo carbon nanotube
Lou et al. A 3D bio-platform constructed by glucose oxidase adsorbed on Au nanoparticles assembled polyaniline nanowires to sensitively detect glucose by electrochemiluminescence
Xiao et al. Non-enzymatic lactic acid sensor based on AuPtNPs functionalized MoS2 nanosheet as electrode modified materials
Zeng et al. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes
JP2006308463A (en) Nano-carbon sensor
Saikrithika et al. A selective voltammetric pH sensor using graphitized mesoporous carbon/polyaniline hybrid system
Salimi et al. Electrocatalytic reduction of H2O2 and oxygen on the surface of thionin incorporated onto MWCNTs modified glassy carbon electrode: application to glucose detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832791

Country of ref document: EP

Kind code of ref document: A1