WO2009132724A1 - Verfahren zum einrichten eines messpunktes für einen sensor - Google Patents

Verfahren zum einrichten eines messpunktes für einen sensor Download PDF

Info

Publication number
WO2009132724A1
WO2009132724A1 PCT/EP2009/000230 EP2009000230W WO2009132724A1 WO 2009132724 A1 WO2009132724 A1 WO 2009132724A1 EP 2009000230 W EP2009000230 W EP 2009000230W WO 2009132724 A1 WO2009132724 A1 WO 2009132724A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
quality
robot
varied
sensor position
Prior art date
Application number
PCT/EP2009/000230
Other languages
English (en)
French (fr)
Inventor
Roland Beyer
Hans Ramsperger
Uwe Reich
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2009132724A1 publication Critical patent/WO2009132724A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37008Calibration of measuring system, probe, sensor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39057Hand eye calibration, eye, camera on hand, end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40555Orientation and distance

Definitions

  • the invention relates to a method for setting up a measuring point for a sensor according to the preamble of claim 1.
  • sensors are needed to monitor the production.
  • the sensors are positioned at a large number of measuring points (today up to 1500).
  • the sensors Before the start of production of a new vehicle series, the sensors must be set up at the measuring points, that is, there must be an optimum positioning of the sensor with respect to the measuring point and a parameterization of the sensor.
  • the setup is done manually by staff with expert knowledge and experience. The time required for setup is significant. Even in serial operation already in progress, the change of measuring points or the inclusion of further measuring points still requires so much time that such tasks often take place at night or on weekends, which causes particularly high costs.
  • US 2006/0181236 A1 discloses a method and a system for programming an industrial robot in order to move it relative to defined positions on an object.
  • the robot is set up by temporarily placing a sensor on a tool on the robot.
  • the sensor is moved to a starting position and, starting from this starting position, a surface scanning program scans a surface of the object, whereby the surface scanning program automatically generates a path for the robot to follow later.
  • the object is achieved by a method having the features of claim 1.
  • the sensor In a method according to the invention for setting up a sensor guided by a robot, in particular an optical sensor, with respect to a measuring point on an object to be measured, the sensor first approaches a predetermined starting sensor position in relation to the measuring point. From this start sensor position, test measurements are carried out with different sensor parameters.
  • a variable sensor parameter may be, for example, a lighting of the measuring point.
  • a sensor position of the sensor In a cone around the start sensor position, the tip of which forms the measuring point, a sensor position of the sensor is varied. For each sensor position taken in the cone, in turn, the sensor parameters are varied and a corresponding number of test measurements are performed.
  • test measurements can be carried out at each sensor position with the same parameterization, the parameterization then changed and then the sensor positions are approached for the test measurements.
  • a sensor grade is determined that indicates how accurately the sensor measures, for example, a fidelity of a circle diameter of a bore or the distribution of points of a line taken with the sensor.
  • a translational position of the robot guiding the sensor and / or of the object, for example of a body shell or of a vehicle can be varied in at least one of the three spatial directions and the test measurements can be repeated for this displacement.
  • Such a displacement measurement can be used to determine how sensitively the sensor response responds to minor displacements in the range of, for example, a few millimeters, which can occur in a later production process.
  • sensor parameter and translational position further test measurements can be performed and the sensor quality can be determined.
  • Such repeat measurements may, for example, occur at a different time of day with different ambient light conditions to ensure the robustness of the sensor positions and parameters.
  • a combination of the most suitable due to the sensor quality is finally adopted for a production cycle. This does not necessarily have to be combined with the best individual sensor quality of all test measurements. It is also possible to determine a sum sensor quality from all test measurements at a sensor position and to parameterize all shift and repeat measurements and to base the decision on the suitable combination for the production process.
  • the commissioning of the production plant can be accelerated and accomplished with less personnel expenditure. In particular, night and weekend work can be reduced, which represents a significant cost factor. It is also easy to insert new measuring points during the operation of the production and measuring system so that the measuring system can be adapted more quickly to the current measuring requirements of the production. A review of the quality of the measuring system and the sensors for commissioning and series production is largely automated. Reliability and accuracy of the measuring system are maximized. Vehicles or body shells, for example, can be produced with a measuring system set up in this way.
  • Fig. 1 is a schematic representation of a measuring point of a to be measured
  • Fig. 3 is a schematic representation of the measuring point with the sensor in one of the sensor positions during a displacement measurement.
  • FIG. 1 shows a measuring point 1 of an object to be measured (not shown), for example of a vehicle or a body shell, and a sensor 2 in FIG various sensor positions 2.1, 2.2, 2.3 shown.
  • the sensor 2 first approaches a predetermined starting sensor position 2.1 in relation to the measuring point 1.
  • this start sensor position may be exported from a measurement point map created with a CAD program. From the start sensor position 2.1, a test measurement is performed and a sensor quality is determined.
  • the sensor position 2.1, 2.2, 2.3 is varied in a cone around the start sensor position 2.1, the point of which forms the measuring point 1, the test measurement is carried out for these sensor positions 2.2, 2.3 and the respective sensor quality is determined.
  • the variation of the sensor position 2.1 to 2.3 relates to both the spatial directions x, y, z and an angular orientation i, j, k of an optical axis of the sensor 2 with respect to the measuring point 1.
  • the number of sensor positions 2.1 to 2.3 can be significantly greater than three.
  • the measuring point 1 with the sensor 2 is shown by way of example in the sensor position 2.3.
  • sensor parameters for example an active illumination by means of laser light
  • further test measurements are carried out for each of these parameterizations at the respective sensor position 2.1 to 2.3.
  • the sensor quality is determined.
  • further test measurements can be carried out for each set combination of sensor position 2.1 to 2.3 and sensor parameters, and the sensor quality can be determined.
  • Such repeat measurements may, for example, take place at a different time of day with different ambient light conditions in order to ensure the robustness of the sensor positions 2.1 to 2.3 and parameters.
  • FIG. 3 shows the measuring point with the sensor 2 in one of the sensor positions 2.3 during a so-called displacement measurement.
  • a translational position of the robot 2 guiding the sensor 2 and / or of the object is varied in at least one of the three spatial directions x, y, z and the test measurement is repeated for this displacement.
  • a displacement of, for example, 1 mm it can then be checked how exactly the displacement in the sensor 2 is reproduced. Since the sensor position 2.3 remains unchanged in this case, the angle i, j, k of the optical axis of the sensor 2 with respect to the measuring point 1 does not change.
  • a combination which is particularly suitable on account of the sensor quality is finally taken over for a production cycle.
  • a sum sensor quality is preferred determined all test measurements at a sensor position 2.1, 2.2, 2.3 and a parameterization from all shift and repeat measurements and based on the decision on the appropriate combination for the production process.
  • Each sensor can approach several measurement points and perform test measurements.
  • the cone can be divided into segments and first a test measurement can be performed for each segment.
  • a finer variation of the sensor position 2.1 to 2.3 then takes place, for example, only in at least one of the segments selected on the basis of the sensor quality.
  • the selected segment can be further segmented in at least one further iteration. Segments in which the sensor quality was already too bad during a measurement can be discarded for further action in order to save time. It is also possible to iteratively search between the two segments whose first test measurements yielded the best sensor quality for further suitable sensor positions 2.1 to 2.3.
  • a collision probability of the sensor 2 or of the robot with the object can be taken into account in order to avoid collisions of the sensor 2 with the object.
  • Collision data required for this purpose may be available from models of the robots and the object.
  • the start sensor position 2.1 can also be specified manually.
  • the variation of the sensor parameters and the repeat measurements can be omitted if the sensor 2 has an automatic sensor optimization.
  • the displacement measurement can optionally be performed only if the previously determined sum sensor quality is above a predetermined limit.
  • Manual interventions and feedback can be provided in each part of the procedure, for example before a repeat measurement.
  • the number of sensor positions 2.1 to 2.3, the segmentation of the cone, the type and variation of the sensor parameters, the number of repeat measurements and number, direction and type of displacement vectors used for the displacement measurements can be predetermined by a user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Einrichten eines von einem Roboter geführten Sensors (2) bezüglich eines Messpunktes (1 ) an einem zu vermessenden Objekt, wobei mit dem Sensor (2) zunächst eine vorgegebene Start-Sensorposition (2.1 ) in Bezug zum Messpunkt (1 ) angefahren und eine Sensorposition (2.1 bis 2.3) des Sensors (2) in einem Kegel um die Start-Sensorposition (2.1 ) herum variiert wird, wobei für jede Sensorposition (2.1 bis 2.3) einschließlich der Start-Sensorposition (2.1 ) mindestens ein Sensorparameter variiert wird und/oder wobei eine translatorische Position des Roboters und/oder des Objekts variiert wird, wobei für jede eingestellte Kombination aus Sensorposition (2.1 bis 2.3), Sensorparameter und translatorischer Position mindestens eine Testmessung des Sensors (2) durchgeführt und eine Sensorgüte bestimmt wird, wobei eine aufgrund der Sensorgüte besonders geeignete der Kombinationen für einen Produktionszyklus übernommen wird.

Description

Verfahren zum Einrichten eines Messpunktes für einen Sensor
Die Erfindung betrifft ein Verfahren zum Einrichten eines Messpunktes für einen Sensor gemäß dem Oberbegriff des Anspruchs 1.
Für Fertigungs- und Messanlagen von Fahrzeugen werden Sensoren zur Überwachung der Fertigung benötigt. Die Sensoren werden an einer großen Anzahl von Messpunkten (heute bis zu 1500) positioniert. Vor Beginn der Fertigung einer neuen Fahrzeugbaureihe müssen die Sensoren an den Messpunkten eingerichtet werden, das heißt, es muss eine optimale Positionierung des Sensors bezüglich des Messpunktes und eine Parametrierung des Sensors erfolgen. Das Einrichten erfolgt bisher manuell durch Personal mit Expertenwissen und Erfahrung. Die für das Einrichten erforderliche Zeit ist erheblich. Auch im bereits laufenden Serienbetrieb erfordert die Änderung von Messpunkten oder die Aufnahme weiterer Messpunkte noch soviel Zeit, dass derartige Aufgaben häufig nachts oder am Wochenende erfolgen, wodurch besonders hohe Kosten verursacht werden.
Aus der US 2006/0181236 A1 ist ein Verfahren und ein System zum Programmieren eines Industrieroboters bekannt, um diesen relativ zu definierten Positionen an einem Objekt zu bewegen. Dabei wird der Roboter eingerichtet, indem ein Sensor vorübergehend an einem Werkzeug am Roboter angeordnet wird. Der Sensor wird in eine Startposition gefahren und ausgehend von dieser Startposition wird mittels eines Oberflächen-Scanning-Programms eine Oberfläche des Objekts gescannt, wobei vom Oberflächen-Scanning-Programm automatisch ein Pfad für den Roboter generiert wird, dem er später folgen soll.
Es ist daher eine Aufgabe der Erfindung, ein verbessertes Verfahren zum Einrichten eines Messpunktes für einen Sensor anzugeben. Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1.
Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.
Bei einem erfindungsgemäßen Verfahren zum Einrichten eines von einem Roboter geführten Sensors, insbesondere eines optischen Sensors, bezüglich eines Messpunktes an einem zu vermessenden Objekt, wird mit dem Sensor zunächst eine vorgegebene Start-Sensorposition in Bezug zum Messpunkt angefahren. Aus dieser Start- Sensorposition heraus werden mit verschiedenen Sensorparametern Testmessungen durchgeführt. Ein veränderlicher Sensorparameter kann beispielsweise eine Beleuchtung des Messpunktes sein. In einem Kegel um die Start-Sensorposition herum, dessen Spitze der Messpunkt bildet, wird eine Sensorposition des Sensors variiert. Für jede im Kegel eingenommene Sensorposition werden wiederum die Sensorparameter variiert und eine entsprechende Anzahl von Testmessungen durchgeführt.
Wahlweise können auch zunächst Testmessungen an jeder Sensorposition mit der gleichen Parametrisierung durchgeführt, die Parametrierung dann geändert und die Sensorpositionen dann für die Testmessungen angefahren werden. Aus jeder Testmessung wird eine Sensorgüte bestimmt, die angibt, wie genau der Sensor misst, beispielsweise anhand einer Wiedergabetreue eines Kreisdurchmessers einer Bohrung oder anhand der Verteilung von Punkten einer Linie, die mit dem Sensor aufgenommen wurden. Weiter kann eine translatorische Position des den Sensor führenden Roboters und/oder des Objekts, beispielsweise einer Rohkarosserie oder eines Fahrzeugs in mindestens einer der drei Raumrichtungen variiert und die Testmessungen für diese Verschiebung wiederholt werden. Durch eine solche Verschiebemessung kann ermittelt werden, wie empfindlich die Sensorgüte auf geringfügige Verschiebungen im Bereich von beispielsweise wenigen Millimetern reagiert, die in einem späteren Produktionsprozess auftreten können.
Schließlich können für jede eingestellte Kombination aus Sensorposition, Sensorparameter und translatorischer Position weitere Testmessungen durchgeführt und die Sensorgüte bestimmt werden. Solche Wiederholmessungen können beispielsweise zu einer anderen Tageszeit mit anderen Umgebungslichtverhältnissen stattfinden, um die Robustheit der Sensorpositionen und Parameter sicherzustellen. Eine aufgrund der Sensorgüte besonders geeignete der Kombinationen wird schließlich für einen Produktionszyklus übernommen. Dies muss nicht zwingend die Kombination mit der besten Einzel-Sensorgüte aller Testmessungen sein. Es kann auch eine Summen- Sensorgüte aus allen Testmessungen an einer Sensorposition und einer Parametrisierung aller Verschiebe- und Wiederholmessungen bestimmt und der Entscheidung über die geeignete Kombination für den Produktionsprozess zugrunde gelegt werden.
Durch die automatische Ermittlung der am besten geeigneten Position kann die Inbetriebnahme der Fertigungsanlage beschleunigt und mit geringerem Personalaufwand bewerkstelligt werden. Insbesondere kann Nacht- und Wochenendarbeit reduziert werden, was einen erheblichen Kostenfaktor darstellt. Ein Einfügen neuer Messpunkte während des Betriebs der Fertigungs- und Messanlage ist ebenfalls einfach möglich, so dass die Messanlage schneller an den aktuellen Messbedarf der Produktion angepasst werden kann. Eine Überprüfung der Qualität der Messanlage und der Sensoren für die Inbetriebnahme und Serienfertigung wird weitgehend automatisiert. Zuverlässigkeit und Genauigkeit der Messanlage werden maximiert. Mit einer so eingerichteten Messanlage sind beispielsweise Fahrzeuge oder Rohkarosserien herstellbar.
Im Folgenden werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 eine schematische Darstellung eines Messpunkts eines zu vermessenden
Objekts und einen Sensor in verschiedenen Sensorpositionen innerhalb eines Kegels,
Fig. 2 eine schematische Darstellung des Messpunkts mit dem Sensor in einer der Sensorpositionen, und
Fig. 3 eine schematische Darstellung des Messpunkts mit dem Sensor in einer der Sensorpositionen während einer Verschiebemessung.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
In Figur 1 ist ein Messpunkt 1 eines zu vermessenden Objekts (nicht dargestellt), beispielsweise eines Fahrzeugs oder einer Rohkarosserie, und ein Sensor 2 in verschiedenen Sensorpositionen 2.1, 2.2, 2.3 gezeigt. Bei einem Verfahren zum Einrichten des von einem Roboter (nicht gezeigt) geführten Sensors 2 bezüglich des Messpunkts 1 wird mit dem Sensor 2 zunächst eine vorgegebene Start-Sensorposition 2.1 in Bezug zum Messpunkt 1 angefahren. Diese Start-Sensorposition kann beispielsweise aus einem mit einem CAD-Programm erstellten Messpunktplan exportiert werden. Aus der Start-Sensorposition 2.1 heraus wird eine Testmessung durchgeführt und eine Sensorgüte bestimmt. Anschließend wird die Sensorposition 2.1 , 2.2, 2.3 in einem um die Start-Sensorposition 2.1 herum gedachten Kegel, dessen Spitze der Messpunkt 1 bildet, variiert, die Testmessung für diese Sensorpositionen 2.2, 2.3 durchgeführt und die jeweilige Sensorgüte ermittelt. Die Variierung der Sensorposition 2.1 bis 2.3 betrifft sowohl die Raumrichtungen x, y, z als auch eine Winkelausrichtung i, j, k einer optischen Achse des Sensors 2 bezüglich des Messpunkts 1. Die Anzahl der Sensorpositionen 2.1 bis 2.3 kann deutlich größer als drei sein.
In Figur 2 ist der Messpunkt 1 mit dem Sensor 2 exemplarisch in der Sensorposition 2.3 gezeigt. In dieser wie in allen Sensorpositionen 2.1 bis 2.3 werden Sensorparameter, beispielsweise eine aktive Beleuchtung mittels Laserlicht, variiert und weitere Testmessungen für jede dieser Parametrierungen an der jeweiligen Sensorposition 2.1 bis 2.3 durchgeführt. Auch hier wird jeweils die Sensorgüte bestimmt. Weiter können für jede eingestellte Kombination aus Sensorposition 2.1 bis 2.3 und Sensorparameter weitere Testmessungen durchgeführt und die Sensorgüte bestimmt werden. Solche Wiederholmessungen können beispielsweise zu einer anderen Tageszeit mit anderen Umgebungslichtverhältnissen stattfinden, um die Robustheit der Sensorpositionen 2.1 bis 2.3 und Parameter sicherzustellen.
In Figur 3 ist der Messpunkti mit dem Sensor 2 in einer der Sensorpositionen 2.3 während einer so genannten Verschiebemessung gezeigt. Hierbei wird eine translatorische Position des den Sensor 2 führenden Roboters und/oder des Objekts in mindestens einer der drei Raumrichtungen x, y, z variiert und die Testmessung für diese Verschiebung wiederholt. Bei einer Verschiebung um beispielsweise 1 mm kann daraufhin überprüft werden, wie genau die Verschiebung im Sensor 2 wiedergegeben wird. Da die Sensorposition 2.3 dabei unverändert bleibt ändert sich nicht der Winkel i, j, k der optischen Achse des Sensors 2 bezüglich des Messpunkts 1. Eine aufgrund der Sensorgüte besonders geeignete der Kombinationen wird schließlich für einen Produktionszyklus übernommen. Hierzu wird bevorzugt eine Summen-Sensorgüte aus allen Testmessungen an einer Sensorposition 2.1 , 2.2, 2.3 und einer Parametrisierung aus allen Verschiebe- und Wiederholmessungen bestimmt und der Entscheidung über die geeignete Kombination für den Produktionsprozess zugrunde gelegt.
Jeder Sensor kann mehrere Messpunkte anfahren und Testmessungen durchführen.
Der Kegel kann in Segmente unterteilt und zunächst für jedes Segment eine Testmessung durchgeführt werden. Eine feinere Variierung der Sensorposition 2.1 bis 2.3 erfolgt anschließend beispielsweise nur in mindestens einem aufgrund der Sensorgüte ausgewählten der Segmente. Hierzu kann das ausgewählte Segment in mindestens einer weiteren Iteration weiter segmentiert werden. Segmente, in denen die Sensorgüte bei einer Messung bereits zu schlecht war, können für das weitere Vorgehen verworfen werden, um Zeit zu sparen. Ebenso kann iterativ zwischen den zwei Segmenten, deren erste Testmessungen die jeweils beste Sensorgüte erbrachten nach weiteren geeigneten Sensorpositionen 2.1 bis 2.3 gesucht werden.
Bei der Positionierung des Sensors 2 kann eine Kollisionswahrscheinlichkeit des Sensors 2 oder des Roboters mit dem Objekt berücksichtigt werden um Kollisionen des Sensors 2 mit dem Objekt zu vermeiden. Hierfür erforderliche Kollisionsdaten können aus Modellen der Roboter und des Objekts zur Verfügung stehen.
Die Start-Sensorposition 2.1 kann auch manuell vorgegeben werden.
Die Variierung der Sensorparameter und die Wiederholmessungen können entfallen, wenn der Sensor 2 über eine automatische Sensoroptimierung verfügt.
Die Verschiebemessung kann optional nur dann durchgeführt werden, wenn die zuvor ermittelte Summen-Sensorgüte über einem vorgegebenen Grenzwert liegt.
Die Entscheidung darüber, welche der Kombinationen für den Produktionsprozess zu übernehmen ist, kann nach einem der folgenden Kriterien erfolgen:
- Übernahme des besten Sensorgüte-Wertes eines Messpunkts 1 ,
- Automatische Übernahme ab einem vorgegebenen Sensorgüte-Wert, woraufhin keine weiteren Testmessungen für den betreffenden Messpunkt 1 durchgeführt werden, um weiter Zeit zu sparen, - Iteratives Vorgehen, wobei zwischen zwei Segmenten des Kegels, deren erste Testmessungen die jeweils beste Sensorgüte erbrachten, nach weiteren geeigneten Sensorpositionen 2.1 bis 2.3 gesucht wird, während die übrigen Segmente verworfen werden,
- Manuelle Auswahl aus den besten Werten für den Messpunkt 1.
Manuelle Eingriffe und Rückmeldungen können in jedem Teil des Verfahrens vorgesehen sein, beispielsweise vor einer Wiederholmessung. Weiter können die Anzahl der Sensorpositionen 2.1 bis 2.3, die Segmentierung des Kegels, die Art und Variation der Sensorparameter, die Anzahl der Wiederholmessungen und Zahl, Richtung und Art von für die Verschiebemessungen verwendeten Verschiebevektoren von einem Nutzer vorgegeben sein.

Claims

Patentansprüche
1. Verfahren zum Einrichten eines von einem Roboter geführten Sensors (2) bezüglich eines Messpunktes (1) an einem zu vermessenden Objekt, dadurch gekennzeichnet, dass mit dem Sensor (2) zunächst eine vorgegebene Start-Sensorposition (2.1 ) in Bezug zum Messpunkt (1 ) angefahren und eine Sensorposition (2.1 bis 2.3) des Sensors (2) in einem Kegel um die Start- Sensorposition (2.1 ) herum variiert wird, wobei für jede Sensorposition (2.1 bis 2.3) einschließlich der Start-Sensorposition (2.1) mindestens ein Sensorparameter variiert wird und/oder wobei eine translatorische Position des Roboters und/oder des Objekts variiert wird, wobei für jede eingestellte Kombination aus Sensorposition (2.1 bis 2.3), Sensorparameter und/oder translatorischer Position mindestens eine Testmessung des Sensors (2) durchgeführt und eine Sensorgüte bestimmt wird, wobei eine aufgrund der Sensorgüte besonders geeignete der Kombinationen für einen Produktionszyklus übernommen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass für jede Kombination mindestens eine weitere Testmessung durchgeführt und die Sensorgüte bestimmt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine Vielzahl von Sensoren (2) für eine Vielzahl von Messpunkten (1) eingerichtet werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kegel in Segmente unterteilt und zunächst für jedes Segment eine Testmessung durchgeführt wird, wobei eine feinere Variierung der Sensorposition anschließend nur in mindestens einem der aufgrund der Sensorgüte ausgewählten Segmente erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das ausgewählte Segment in mindestens einer weiteren Iteration weiter segmentiert wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Positionierung des Sensors (2) eine Kollisionswahrscheinlichkeit des Sensors (2) oder des Roboters mit dem Objekt berücksichtigt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Summensensorgüte aus allen Testmessungen für die gleiche Kombination bestimmt und der Auswahl der für den Produktionsprozess geeigneten Kombination zugrunde gelegt wird.
8. Computerprogramm-Produkt, das auf einem von einem Computer lesbaren Medium gespeichert ist und das von einem Computer lesbare Programm-Mittel aufweist, die den Computer veranlassen, ein Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7 auszuführen.
9. Digitales Speichermedium mit elektronisch auslesbaren Steuersignalen, die so mit einer vorprogrammierbaren Datenverarbeitungsanlage zusammenwirken können, dass ein Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7 ausführbar ist.
PCT/EP2009/000230 2008-04-30 2009-01-16 Verfahren zum einrichten eines messpunktes für einen sensor WO2009132724A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810021624 DE102008021624A1 (de) 2008-04-30 2008-04-30 Verfahren zum Einrichten eines Messpunktes für einen Sensor
DE102008021624.0 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009132724A1 true WO2009132724A1 (de) 2009-11-05

Family

ID=39986338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/000230 WO2009132724A1 (de) 2008-04-30 2009-01-16 Verfahren zum einrichten eines messpunktes für einen sensor

Country Status (2)

Country Link
DE (1) DE102008021624A1 (de)
WO (1) WO2009132724A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198021B2 (en) 2009-12-04 2015-11-24 Interdigital Patent Holdings, Inc. Extended local IP access for a converged gateway in a hybrid network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012082A1 (en) * 1997-09-04 1999-03-11 Dynalog, Inc. Method for calibration of a robot inspection system
DE10242710A1 (de) * 2002-09-13 2004-04-08 Daimlerchrysler Ag Verfahren zum Herstellen eines Verbindungsbereiches auf einem Werkstück
EP1533671A1 (de) * 2003-11-18 2005-05-25 Fanuc Ltd Vorrichtung zur Korrektur einer gelernten Position
US20060181236A1 (en) * 2003-02-13 2006-08-17 Abb Ab Method and a system for programming an industrial robot to move relative to defined positions on an object, including generation of a surface scanning program
EP1875991A2 (de) * 2006-07-03 2008-01-09 Fanuc Ltd Messsystem und Kalibrierungsverfahren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012082A1 (en) * 1997-09-04 1999-03-11 Dynalog, Inc. Method for calibration of a robot inspection system
DE10242710A1 (de) * 2002-09-13 2004-04-08 Daimlerchrysler Ag Verfahren zum Herstellen eines Verbindungsbereiches auf einem Werkstück
US20060181236A1 (en) * 2003-02-13 2006-08-17 Abb Ab Method and a system for programming an industrial robot to move relative to defined positions on an object, including generation of a surface scanning program
EP1533671A1 (de) * 2003-11-18 2005-05-25 Fanuc Ltd Vorrichtung zur Korrektur einer gelernten Position
EP1875991A2 (de) * 2006-07-03 2008-01-09 Fanuc Ltd Messsystem und Kalibrierungsverfahren

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198021B2 (en) 2009-12-04 2015-11-24 Interdigital Patent Holdings, Inc. Extended local IP access for a converged gateway in a hybrid network

Also Published As

Publication number Publication date
DE102008021624A1 (de) 2008-12-18

Similar Documents

Publication Publication Date Title
EP1681111B1 (de) Verfahren zum Betrieb einer Fertigungseinrichtung
DE102007016056B4 (de) Verfahren und Vorrichtung zur Werkstückeinmessung und Werkstückbearbeitung
DE102013103137B4 (de) Normierung der Ausrichtung einer Roboter-Schweißzange
DE102015012150A1 (de) Messvorrichtung und Steuerverfahren
EP3403051B1 (de) Verfahren und vorrichtung zum vorgeben von vorgabedaten für eine vermessung eines zu vermessenden werkstücks durch ein koordinatenmessgerät und/oder für eine auswertung von messergebnissen einer vermessung eines vermessenen werkstücks durch ein koordinatenmessgerät
DE102010014386A1 (de) Verfahren und Vorrichtung zur Herstellung von Schraubenfedern durch Federwinden
DE102015013607A1 (de) Komponentenmesssystem mit Wellenlängenfilterung
EP1078305B1 (de) Koordinatenmessgerät und verfahren zur steuerung eines solchen
DE102019120633B4 (de) Verfahren zur automatischen Bewegung eines Arbeitsgeräts sowie Arbeitsgerät
EP3901563B1 (de) Verfahren und vorrichtung zur bestimmung einer messstrategie zur vermessung eines messobjekts und programm
EP1244895A1 (de) Verfahren zur festlegung von messpositionen und verfahren zur planung von messbahnen für die vermessung eines objektes oder eines teiles davon sowie verfahren und vorrichtung zur vermessung eines objektes oder eines teiles davon
WO2009132724A1 (de) Verfahren zum einrichten eines messpunktes für einen sensor
DE102013101931B4 (de) Verfahren und Vorrichtung zum Vermessen eines Werkstücks
DE102011051800B3 (de) Konturmessgerät und Verfahren zur Konturmessung eines Werkstücks mit tangential aneinander anschließenden Konturgeometrien
WO2022017785A1 (de) Verfahren und federwindemaschine zur herstellung von schraubenfedern
EP3875899B1 (de) Verfahren, computerprogrammprodukt und vorrichtung zur unterstützung eines benutzers bei einer erstellung eines messplans und/oder bei einer steuerung einer durchzuführenden messung
WO2009094983A1 (de) Verfahren zum einmessen von bauteilen
EP1850089B1 (de) Vorrichtung und Verfahren zum räumlichen Vermessen von Werkstücken an einer Werkzeugmaschine
DE102009039540A1 (de) Bearbeitungsverfahren
DE102017222818B4 (de) Verfahren zur automatischen Detektion von Fehlstellen und Abarbeitung von diesen Fehlstellen in einer Werkstückoberfläche
EP3623883B1 (de) Verfahren und werkzeugmaschine zur bearbeitung von werkstücken unbekannter werkstückgeometrie
EP3889890A1 (de) Verfahren zur messobjekterkennung auf basis von bilddaten
DE102004020004A1 (de) Verfahren zur Einmessung des Koordinatensystems einer Kamera eines Roboters gegenüber dem Koordinatensystem des Roboters oder umgekehrt
DE102010011841B4 (de) Verfahren zur Validierung eines Messergebnisses eines Koordinatenmessgeräts
EP3872447A1 (de) Optisches erfassen einer aufnahmeeinrichtung für einwechselbare komponenten eines koordinatenmessgeräts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09737768

Country of ref document: EP

Kind code of ref document: A1