WO2009131168A1 - Press forming device for optical element - Google Patents

Press forming device for optical element Download PDF

Info

Publication number
WO2009131168A1
WO2009131168A1 PCT/JP2009/058051 JP2009058051W WO2009131168A1 WO 2009131168 A1 WO2009131168 A1 WO 2009131168A1 JP 2009058051 W JP2009058051 W JP 2009058051W WO 2009131168 A1 WO2009131168 A1 WO 2009131168A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pressure
optical element
cylinder
press molding
Prior art date
Application number
PCT/JP2009/058051
Other languages
French (fr)
Japanese (ja)
Inventor
直 宮崎
啓介 吉國
栄治 山本
公之 境
正敏 大山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010509212A priority Critical patent/JPWO2009131168A1/en
Publication of WO2009131168A1 publication Critical patent/WO2009131168A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/005Transporting hot solid glass products other than sheets or rods, e.g. lenses, prisms, by suction or floatation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/60Aligning press die axes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/61Positioning the glass to be pressed with respect to the press dies or press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an optical element press molding apparatus, and more particularly to an optical element press molding apparatus used for press molding a highly accurate optical element such as an aspheric lens.
  • the first method is to press a plurality of molds using a pressing member such as a flat plate fixed to a single pressing shaft perpendicular to the sliding direction of the mold.
  • a pressing member such as a flat plate fixed to a single pressing shaft perpendicular to the sliding direction of the mold.
  • the strokes of all the molds are determined based on the mold having the shortest stroke among a plurality of molds. For this reason, in order to mold optical elements that require wall thickness and surface tilt accuracy in units of microns, the dimensions of each mold, the dimensions of the pressing member, and the pressing member so that all strokes are within the standard.
  • the pressing start position and the molding speed differ between molds due to variations in the dimensions of the molding material and subtle temperature differences between the molds during pressing.
  • the member is pressurized while being tilted with respect to the sliding direction of the mold.
  • the pressing force acts in directions other than the sliding direction of the mold, and the mold tends to be galled or damaged.
  • the contact portion between the mold and the pressing member is always rubbed and easily worn. In this state, the wear becomes intense, and as a result of the wear, a vicious circle is repeated in which mold galling and breakage are further promoted.
  • the body mold, the upper mold, and the lower mold are made of materials having substantially the same thermal expansion coefficient, and a clearance is provided to ensure sliding of the upper mold and the lower mold with respect to the cylinder mold.
  • the clearance of the sliding part between the body mold and the upper mold is as small as 10 ⁇ m or less under the conditions of actual use. The environment is prone to occur.
  • the molding apparatus disclosed in Japanese Patent No. 2815037 has a problem that the disc spring is exposed to a high temperature and sags because the disc spring is located near the upper die.
  • the distance between each set of molds is usually a few tens of millimeters at most, and it is necessary to provide a disc spring on each of the shafts corresponding to this distance.
  • the pressure required for press molding of glass is around 4.9 kN with a ⁇ 18 mold, so the strength of the spring used for the disc spring needs to be 4.9 kN or more.
  • an object of the present invention is to provide an optical element press molding apparatus that solves the above-described problems.
  • an optical element press molding apparatus for molding an optical element by pressing a glass material between a plurality of upper molds and a plurality of lower molds paired with the upper mold,
  • Lower mold pressure applying means for applying pressure to a plurality of lower molds, the plurality of pairs of upper molds are inserted from above, the plurality of pairs of lower molds are inserted from below, and the relative positions of the upper mold and the lower molds
  • a cylinder mold for guiding the cylinder mold, pressure generating means for pressing the cylinder mold upward, and pressing the upper molds downward as the cylinder mold is moved upward by the pressing force of the pressure generating means.
  • an upper mold pressure distribution means for applying pressure to each upper mold independently, the upper mold pressure distribution means comprising an upper cylinder for receiving a load due to pressure acting on the upper mold, and a fulcrum And one end is in contact with the upper end of the upper mold.
  • An upper swinging member having the other end connected to the upper cylinder, and in the process of moving the barrel mold upward by the pressure generating means, the upper swinging member is attached to each upper mold via the upper swinging member.
  • the press molding apparatus in the second embodiment, includes a housing that accommodates at least the upper mold, the lower mold, and the body mold, and the upper cylinder and the The upper swinging member is disposed on the upper surface of the casing, thereby solving the above-described problem.
  • the lower mold pressure applying means moves the barrel mold upward by a pressing force by the pressure generating means. Accordingly, the above problems are solved by pressing the plurality of lower molds upward.
  • the press molding apparatus includes a lower cylinder that receives a load due to pressure acting on the lower mold, and a lower cylinder pressure applying means via a fulcrum.
  • a lower swinging member disposed at one end in contact with the lower end of the lower mold and connected at the other end to the lower cylinder.
  • the lower swinging member is centered on the fulcrum.
  • or 4th embodiment is a process with respect to the said cylinder mold in the process of moving up the said cylinder mold with the pressing force by the said pressure generation means.
  • a plurality of alignment means for aligning the position of the upper mold, and each of the plurality of alignment means is configured to press the upper mold with respect to the movement axis of the upper mold when the upper mold is pressed upward.
  • the upper mold pressure distribution means connects the fulcrum to the longitudinal direction of the upper swing member.
  • the position is variable, and the above-described problem is solved by adjusting the pressure acting on the upper mold according to the ratio between the connection position of the fulcrum and the total length of the upper swing member.
  • the lower mold pressure applying means can change the connecting position of the fulcrum with respect to the longitudinal direction of the lower swing member.
  • the above-described problem is solved by adjusting the pressure acting on the lower mold according to the ratio between the connection position of the fulcrum and the total length of the lower swing member.
  • the upper die pressure distribution means can change a filling pressure in the upper cylinder, The above problem is solved by adjusting the pressure acting on the upper mold by the filling pressure.
  • the lower mold pressure applying means can change a filling pressure in the lower cylinder, and the lower pressure is changed by the filling pressure.
  • the said subject is solved by adjusting the pressure which acts on a type
  • the upper cylinder is an air cylinder filled with a gas of a predetermined pressure.
  • the lower cylinder is an air cylinder filled with a gas having a predetermined pressure.
  • the press molding apparatus according to any one of the first to eleventh embodiments is inserted between the upper mold and the lower mold before pressing, and the lower side A centering member that centers the position of the glass material placed on the center of the lower mold from both sides, and the centering member lowers the body mold after pressing the glass material to form an optical element.
  • the press molding apparatus according to any one of the first to twelfth embodiments moves the inside of the casing to move the glass material into the lower mold in the barrel mold.
  • the hand holding mechanism solves the above-described problem by holding the suction hand by a plurality of elastic rubber members.
  • the press molding apparatus according to any one of the first to twelfth embodiments moves the inside of the casing to move the glass material into the lower mold in the barrel mold.
  • the pressure on each upper mold by the upper cylinder is adjusted via the upper swing member in the process of moving the barrel mold upward by the pressure generating means, and the lower mold is pressed upward by the lower mold pressure applying means. Therefore, it is possible to reduce the pressure acting on the upper cylinder by reducing the pressure acting on the upper cylinder as compared with the conventional one in which a plurality of disc springs are stacked, and to reduce the size of the upper cylinder, and to eliminate the need for a cooling mechanism for water cooling. No measures are taken to prevent corrosion of the mold in case of leakage.
  • the barrel die having a plurality of guide holes is slid with respect to the plurality of upper molds.
  • all upper molds can be pushed completely, and due to variations in the dimensions of the molding material, subtle temperature differences between the molds during pressing, etc. Even if the pressure start position and molding speed (glass deformation speed) differ between the molds, it can be easily adjusted to cope with these, so the accuracy of the molded product is improved and productivity is improved. Many effects can be obtained.
  • the aligning means when simultaneously performing press molding with a plurality of upper molds and lower molds, a force applied to the upper mold is always applied to each upper mold Can be made to act toward the center of the axis of movement of the body mold when pushing up the body mold, there is no trouble such as galling, and the optical function surface is accurately positioned with respect to the optical axis. Therefore, it is possible to efficiently manufacture a highly accurate optical element.
  • FIG. 3 is a block diagram showing a configuration of a control system of the press forming apparatus 10.
  • FIG. 19 is a diagram showing procedures 1 to 19 of each step performed in the press molding apparatus 10.
  • FIG. 3 is a diagram showing procedures 20 to 32 of each step performed in the press molding apparatus 10.
  • 2 is a longitudinal sectional view showing the configuration of a molding die unit 40, an alignment means 90, and an upper mold pressure distribution means 100.
  • FIG. It is the figure which looked at the internal structure of the molding space 42c of the trunk
  • FIG. 3 is a perspective view showing a configuration of an in-furnace hand mechanism 50.
  • FIG. It is a side view which shows the horizontal holding mechanism 56 of the in-furnace hand mechanism 50. It is a figure which shows the suction piping path
  • FIG. It is a front view which expands and shows the structure of the lower mold
  • FIG. 4 is a plan view showing a state before the operation of the centering / scraper mechanism 60.
  • FIG. 6 is a plan view showing a state in which the centering / scraper mechanism 60 is operating. It is a side view which shows the state in operation
  • 5 is a plan view showing a centering operation of the centering / scraper mechanism 60.
  • FIG. It is a longitudinal cross-sectional view which expands and shows the state of the glass raw material before the centering operation
  • 4 is a plan view showing a state before the operation of the heater unit 70.
  • FIG. 6 is a plan view showing a state in which the heater unit 70 is operating. It is a longitudinal cross-sectional view which expands and shows the state which heats a glass raw material with the heater unit. It is a longitudinal cross-sectional view which expands and shows the state which press-molds the heated glass raw material. It is a longitudinal cross-sectional view which expands and shows the state which inserted the insertion lever 700 of the centering scraper mechanism 60 above the glass raw material.
  • FIG. 6 is an enlarged longitudinal sectional view showing a state in which a glass material is separated from an upper mold 46 by lowering an insertion lever 700 of the centering / scraper mechanism 60. 6 is a longitudinal sectional view showing a modification of the upper die pressure distribution means 100.
  • FIG. 1 It is a side view which shows the modification 1 of the adsorption
  • FIG. It is a top view which shows the modification 1 of the adsorption
  • FIG. 2 It is a side view which shows the modification 2 of the adsorption
  • FIG. It is a top view which shows the modification 2 of the adsorption
  • FIG. 1 is a diagram illustrating an overall configuration of a press molding apparatus according to an embodiment.
  • a press molding apparatus 10 includes a vacuum chamber (housing) 20 for molding an optical element, a stocker chamber for supplying a glass material to the vacuum chamber 20 and taking out the molded optical element. 30.
  • the vacuum chamber 20 includes a molding die unit 40, an in-furnace hand mechanism 50 for taking in a glass material and taking out the molded optical element, centering of the glass material carried in the molding die unit 40, and an optical element.
  • the vacuum chamber 20 is supported by the vacuum chamber base 22, and the vacuum chamber base 22 includes pressure generating means 80 that presses the body mold 42 and the lower mold 44 of the molding die unit 40 upward, and an upper mold.
  • An aligning means 90 for aligning the axis and an upper mold pressure distributing means (upper mold pressure adjusting mechanism) 100 for distributing the pressure of the upper mold 46 at the time of molding are provided.
  • the pressure generating means 80 has a booster cylinder 81 supported by a support base 82 fixed to the lower surface of the vacuum chamber 20.
  • a lifting drive shaft 84 that moves up and down by the pressure of the booster cylinder 81 is connected to a lifting base 43 that supports the body mold 42 via a support member 85, and a lower mold pressure applying means 370 is mounted on the lifting base 43. ing.
  • the stocker chamber 30 also includes a pallet table 110 on which a glass material is placed, a SCARA robot 120 that sucks and transfers the glass material on the pallet table 110, and a glass material and an optical element for loading and unloading. It has a replacement chamber 130, a shifter moving means 150 that moves the shifter 140 of the replacement chamber 130, and a gate valve 160 that opens and closes the communication path 132 that communicates between the replacement chamber 130 and the vacuum chamber 20. Further, a vacuum pump unit 170 is provided below the stocker chamber frame 32 that supports the stocker chamber 30, and a filter unit 180 that supplies clean air to the stocker chamber 30 is provided on the upper surface of the stocker chamber 30. Yes.
  • the vacuum chamber 20 is connected to an air pipe 190 for supplying high-pressure air, a nitrogen pipe 200 for supplying nitrogen gas, a cooling nitrogen pipe 210, and a vacuum pipe 220 for sucking air by vacuum, and is connected to a stocker.
  • An air pipe 190 and a vacuum pipe 220 for supplying high-pressure air are connected to the chamber 30.
  • solenoid valves V21 to V25 for controlling the supply of high-pressure air are arranged.
  • the nitrogen pipe 200 is provided with an electromagnetic valve V14 that controls the supply of nitrogen gas
  • the cooling nitrogen pipe 210 is provided with electromagnetic valves V19 and V20 that control the supply of cooling nitrogen.
  • the vacuum piping 220 is provided with solenoid valves V1 to V9, V11 to V16, V18, and V26.
  • the electromagnetic valve V10 is provided in a pipe line 136 that bypasses between the vacuum chamber 20 and the replacement chamber 130, and equalizes the pressure in the vacuum chamber 20 and the pressure in the replacement chamber 130 by opening the valve.
  • exhaust solenoid valves V17 and V27 are connected to the side wall and the bottom of the vacuum chamber 20, respectively.
  • Each of the solenoid valves V1 to V27 is formed of, for example, a normally closed two-port two-position valve that opens by excitation of a solenoid and closes by demagnetization of the solenoid.
  • a lifter unit 250 that lifts the glass material carried into the vacuum chamber 20 and an adsorption control unit 260 that performs vacuum suction to the adsorption hand 52 of the in-furnace hand mechanism 50 are arranged below the vacuum chamber 20.
  • a lifter unit 250 that lifts the glass material carried into the vacuum chamber 20 and an adsorption control unit 260 that performs vacuum suction to the adsorption hand 52 of the in-furnace hand mechanism 50 are arranged below the vacuum chamber 20.
  • the press molding apparatus 10 is configured to perform press molding by loading a glass material (glass blank) into the molding die unit 40 and pushing up the body die 42 by the pressure generating means 80.
  • the press molding is preferably performed in an inert gas atmosphere by filling the inside of the vacuum chamber 20 having an airtight structure with an inert gas such as nitrogen gas.
  • FIG. 2 is a block diagram showing the configuration of the control system of the press molding apparatus 10.
  • the control device 300 of the press molding apparatus 10 includes the above-mentioned in-furnace hand mechanism 50, centering / scraper mechanism 60, heater unit 70, pressure generating means 80, upper mold pressure distributing means 100, SCARA robot. 120, the vacuum pump unit 170 and the high pressure air solenoid valves V21 to V25, the vacuum solenoid valves V1 to V16, V18 and V26, and the exhaust solenoid valves V17 and V27 are controlled.
  • control device 300 includes a high-pressure air supply unit 310, a gate valve opening / closing mechanism 320, a replacement chamber pressure adjustment unit 330, a chamber internal pressure adjustment unit 340, a nitrogen supply unit 350, a nitrogen cooling unit 360, a lower mold pressure.
  • the giving means 370 is controlled.
  • the high-pressure air supply unit 310 has an air compressor and supplies high-pressure air to the air pipe 190.
  • the gate valve opening / closing mechanism 320 includes an air cylinder 322 that drives the gate valve 160 to move up and open the communication passage 132 of the replacement chamber 130 when high-pressure air is supplied by opening the electromagnetic valve V21.
  • the replacement chamber pressure adjusting unit 330 introduces the vacuum generated by the vacuum pump unit 170 by opening the electromagnetic valve V9 into the replacement chamber 130, and operates so that air does not enter the chamber 20 when the glass material is carried in. To do.
  • the nitrogen supply unit 350 supplies nitrogen gas into the chamber 20 by opening the electromagnetic valve V14 when the glass material is press-molded.
  • the nitrogen cooling unit 360 supplies low-temperature nitrogen gas that cools the upper mold and the lower mold of the molding mold unit 40 by opening the electromagnetic valves V19 and V20 when the glass material is press-molded.
  • the lower mold pressure applying means 370 is composed of a lower mold pressure adjusting mechanism that pressurizes each lower mold 44 upward when the body mold 42 is moved upward by the pressure generated by the pressure generating means 80 to perform press molding.
  • the lower mold pressure applying means 370 has a lower lever means and a lower cylinder made of an air cylinder, and the air pressure is generated so as to generate pressurization corresponding to the pressure acting on the lower mold 44. Be controlled.
  • FIGS. 3A and 3B are diagrams showing the procedure of each process performed in the press molding apparatus 10.
  • a method of manufacturing an optical element will be described with reference to FIGS. 3A and 3B.
  • the horizontal moving table 152 of the shifter moving means 150 moves to open the replacement chamber 130, and the shifter 140 is moved from the vacuum chamber 20 to the replacement chamber 130 by the air cylinder 154 of the shifter moving means 150. I am letting.
  • the replacement chamber 130 is closed by the shifter moving means 150.
  • the vacuum pump unit 170 is started, and the electromagnetic valve V9 is opened to evacuate the vacuum chamber 20 through the replacement chamber 130.
  • step 2 nitrogen gas is supplied into the vacuum chamber 20 that is evacuated by opening the solenoid valve V14.
  • the gate valve 160 is closed to block between the replacement chamber 130 and the vacuum chamber 20.
  • step 3 the pallet 112 on which a plurality of glass materials are placed is carried into the pallet stand 110 in the stocker chamber 30. This pallet loading may be performed simultaneously with the procedure 2.
  • step 4 the SCARA robot 120 in the stocker chamber 30 is driven to move the vacuum chuck 122 onto the pallet 112, and the electromagnetic valve 11 is opened to adsorb the glass material on the pallet 112.
  • step 5 the replacement chamber 130 is opened and the arm 124 of the SCARA robot 120 is turned to move the vacuum chuck 122 above the shifter 140 housed in the replacement chamber 130. Then, the electromagnetic valve V11 is closed to release the suction by the vacuum chuck 122, and the glass material is placed at predetermined positions (four locations in the present embodiment) on the shifter 140.
  • step 6 the replacement chamber 130 is sealed, the solenoid valve V9 is opened, and the replacement chamber 130 is evacuated.
  • the solenoid valve V10 is opened to introduce nitrogen in the vacuum chamber 20 into the replacement chamber 130, to replace the replacement chamber 130 with nitrogen, and to equalize the pressure in the vacuum chamber 20 and the pressure in the replacement chamber 130. To do.
  • step 7 the solenoid valve V21 is opened and the gate valve 160 is opened by supplying air pressure.
  • step 7 the horizontal moving table 152 and the air cylinder 154 of the shifter moving means 150 are operated to move the shifter 140 horizontally into the vacuum chamber 20.
  • step 8 the in-furnace hand mechanism 50 is driven to move the suction hand 52 above the shifter 140.
  • the suction hand 52 is provided with four suction pads, and simultaneously sucks the four glass materials on the shifter 140 by opening the electromagnetic valves V1 to V4.
  • the lifter unit 250 is driven by opening the electromagnetic valve V25, and the shifter 140 is raised so that the glass material of the shifter 140 approaches the suction hand 52.
  • step 9 the cylinder mold 42 is moved up by the pressure-increasing cylinder 81 of the pressure generating means 80, and the height position of the side opening of the cylinder mold 42 is adjusted to an optimum position for the suction hand 52 to be inserted. Further, when the suction hand 52 is inserted into the body mold 42, the glass material sucked on the lower surface side of the suction hand 52 is at a height position suitable for placing on the upper end of each lower mold. The height of the body mold 42 is adjusted.
  • the suction hands 52 of the in-furnace hand mechanism 50 inserted into the body mold 42 are closed by the electromagnetic valves V1 to V4 to release the suction to the four glass materials.
  • each glass material carried in by the suction hand 52 is placed on the lower mold 44 in the body mold 42.
  • the upper mold 46 and the lower mold 44 are preheated to a temperature of about 10 16 dPa ⁇ s, for example, in terms of glass viscosity.
  • step 11 the suction hand 52 of the in-furnace hand mechanism 50 is returned to the shifter 140 side.
  • step 12 the solenoid valves V15, V16, V26 are opened, and the centering / scraper mechanism 60 is inserted into the body mold 42 of the molding die unit 40 from the side and placed on the lower mold 44.
  • the placement position of each glass material is centered on the center (on the axis) of the lower mold 44.
  • step 13 the centering / scraper mechanism 60 is detached from the molding die unit 40.
  • step 14 the electromagnetic valve V18 is opened, and the heater unit 70 whose heating temperature is set to 900 ° C. is inserted into the body mold 42 of the molding die unit 40 from the side, and the lower mold 44 is attached to the lower mold 44.
  • the mounted glass material is heated.
  • the body mold 42 is heated by another heating means, and the lower mold 44 and the upper mold 46 are indirectly heated by heat conduction from the body mold 42.
  • step 15 when the viscosity of the glass material heated by the heater unit 70 becomes, for example, 10 7 dPa ⁇ s, the heating by the heater unit 70 is stopped and the heater unit 70 is detached from the body mold of the molding die unit 40.
  • step 16 the pressure-increasing cylinder 81 of the pressure generating means 80 is operated to raise the body mold 42 and the lower mold 44 of the molding die unit 40. Thereby, the glass material is pressed between the upper mold 46 and the lower mold 44.
  • the upper mold 46 is supported by a spherical bearing of the alignment means 90 so as to be aligned with respect to the vertical axis.
  • step 17 during the pressing step, the axis of the upper mold 46 is aligned by the spherical bearing of the aligning means 90 so that it matches the axis of the lower mold 44.
  • step 18 the glass material is pressed between the lower mold 44 and the upper mold 46 for a predetermined time to be molded into an optical element (aspheric lens).
  • step 19 the press pressure is transmitted to the upper air cylinder 104 via the upper lever means 102 of the upper die pressure distribution means 100, and a compression load acts on the air cylinder 104, and the upper pressure is increased by an increase in air pressure in the upper air cylinder 104.
  • the pressure in the mold 46 is buffered.
  • the air pressure in the upper air cylinder 104 is controlled in accordance with the increase / decrease of the press pressure with respect to the upper mold 46 by switching the three-way valve V30.
  • the press pressure of the booster cylinder 81 that presses the body mold 42 upward is controlled to be constant.
  • the solenoid valves V19 and V20 are opened, cooling nitrogen is supplied to the lower mold 44 and the upper mold 46, and the optical element molded together with the lower mold 44 and the upper mold 46 is cooled.
  • step 21 since the glass material contracts due to cooling and the pressure applied to the glass material is released, the lower cylinder 44 of the lower mold pressure applying unit 370 (see FIG. 10) is operated to slightly raise the lower mold 44. . Thereby, the shape of the optical element can be stabilized.
  • step 22 the solenoid valves V15, V16, V26 are opened, and the centering / scraper mechanism 60 is inserted into the body mold 42 of the molding die unit 40 from the side. At this time, the insertion height position of the centering / scraper mechanism 60 is set above the peripheral edge of the optical element.
  • step 23 when the temperature of the lower mold 44 and the upper mold 46 is lowered to a predetermined temperature, the lower cylinder 610 (see FIG. 10) of the lower mold pressure applying means 370 is operated to move the lower mold 44 of the mold unit 40 for molding. Lower.
  • step 24 the booster cylinder 81 of the pressure generating means 80 is operated to lower the body mold 42 and the centering / scraper mechanism 60. Accordingly, the lower mold 44 is separated from the upper mold 46, and the optical element (molded product) attached to the upper mold 46 is separated from the upper mold 46 by the centering / scraper mechanism 60 and placed on the lower mold 44.
  • step 25 the centering / scraper mechanism 60 is detached from the molding die unit 40.
  • step 26 the suction hand 52 of the in-furnace hand mechanism 50 is inserted into the body mold 42 of the molding die unit 40, and the body mold 42 is moved up and down by the pressure-increasing cylinder 81 of the pressure generating means 80. The height position is adjusted to an optimal position for sucking the pressed optical element.
  • the electromagnetic valves V 1 to V 4 are opened, and the four optical elements that are press-molded are sucked to the suction pads 53 of the suction hand 52.
  • the suction hand 52 is moved to the shifter 140 side.
  • the electromagnetic valve 25 is opened, the lifter unit 250 is driven to bring the upper surface of the shifter 140 closer to the optical element sucked by the suction hand 52.
  • step 27 the electromagnetic valves V1 to V4 are closed to release the adsorption to the four optical elements. Accordingly, each optical element transferred by the suction hand 52 is placed on the shifter 140.
  • step 28 the shifter 140 is slid by the air cylinder 154 of the shifter moving means 150 and returned to the replacement chamber 130, and the gate valve 160 is closed to block the communication path 132 between the replacement chamber 130 and the vacuum chamber 20. To do.
  • step 29 the replacement chamber 130 is opened and air is introduced into the replacement chamber 130.
  • step 30 the SCARA robot 120 is driven to move the vacuum chuck 122 above the shifter 140 in the replacement chamber 130, and the electromagnetic valve V11 is opened, so that the four optical elements (molded products) on the shifter 140 are opened. Adsorbed by the vacuum chuck 122.
  • step 31 the SCARA robot 120 is driven to move the vacuum chuck 122 above the pallet 112, the electromagnetic valve V ⁇ b> 11 is closed to release the adsorption to each optical element, and each optical element is placed on the pallet 112. To do.
  • the press molding apparatus 10 it is possible to efficiently mass-produce optical elements by repeating the above steps 1 to 31.
  • FIG. 4 is a longitudinal sectional view showing the configuration of the molding die unit 40, the alignment means 90, and the upper mold pressure distribution means 100.
  • the molding die unit 40 is configured to guide the lower die 44 and the upper die 46 by the body die 42.
  • the body mold 42 has four lower guide holes 42a through which four lower molds 44 are inserted, and four upper guide holes 42b through which four upper molds 46 are inserted.
  • the body mold 42 is provided with a molding space 42c into which the upper end (lower molding part) 44a of the lower mold 44 and the lower end (upper molding part) 46a of the upper mold 46 are inserted at the center.
  • the molding space 42c communicates with 42d that opens on the left and right side surfaces of the body mold 42.
  • the suction hand 52 or the heater unit 70 of the in-furnace hand mechanism 50 is inserted from the left opening 42d, and the centering is performed from the right opening 42d.
  • the scraper mechanism 60 is inserted.
  • the lower guide hole 42 a and the upper guide hole 42 b of the body mold 42 are arranged in parallel in the X and Y directions, and are arranged so as to be symmetrical in any direction from the axis. ing.
  • the four lower molds 44 and the upper mold 46 each conduct heat uniformly generated during press molding, and variations in each mold due to temperature are suppressed.
  • a cooling groove 48 for allowing cooling nitrogen gas to pass therethrough is provided on the upper and lower surfaces of the body mold 42. At the time of press molding, the cylinder die 42 is cooled by supplying cooling nitrogen gas to the cooling groove 48.
  • the lower mold 44 is obtained by processing a round bar made of a cemented carbide, and has a molding recess for pressing an optical element on an upper end 44a.
  • the glass material for example, glass ball
  • the shape of the concave portion for molding is processed into an R shape corresponding to the surface shape of the aspheric lens to be molded.
  • the lower mold 44 has a large-diameter portion 44b protruding in the radial direction at the lower portion.
  • a heat insulating material 438 and a bottom plate 439 are laminated on the upper portion of the barrel base plate 437 disposed below the barrel mold 42, and the barrel mold 42 is fastened on the bottom plate 439. Further, the bottom plate 439 is provided with a groove (hidden in FIG. 4 and not visible) for allowing the nitrogen gas to escape when the cooling nitrogen gas flows.
  • a notch 42h is formed in the bottom 42g of the body mold 42, and a spacer member 400 is disposed in the notch 42h.
  • Each lower mold 44 is placed on each spacer member 400.
  • Each spacer member 400 adjusts variation in dimensional accuracy in the axial direction of each lower mold 44. That is, the spacer member 400 is in contact with the lower surface of the large-diameter portion 44b of each lower mold 44, and is configured such that the molding surface height of each lower mold 44 matches.
  • each lower mold pressure rod 602 is inserted into each through hole 603a.
  • Each lower mold pressure rod 602 is pressurized upward by lower mold pressure applying means 370 (see FIG. 10) disposed on the lower surface side of the bottom plate 20a of the vacuum chamber 20 during press molding.
  • a passage 49 for supplying cooling nitrogen gas to the cooling groove 48 is provided in the center of the body-type base plate 437, the heat insulating material 438, and the bottom plate 439.
  • a nitrogen supply pipe 435 that supplies cooling nitrogen gas is connected to the passage 49, and an electromagnetic valve V ⁇ b> 19 is disposed in the nitrogen supply pipe 435.
  • a cooling groove 48 is also provided on the upper surface of the body mold 42 that guides the upper mold 46.
  • the cooling groove 48 is supplied with cooling nitrogen gas from a nitrogen supply pipe 436, and the nitrogen supply pipe 436. Is provided with a solenoid valve V20. Therefore, the body mold 42 is cooled by supplying the cooling nitrogen gas to the cooling grooves 40 formed on the upper and lower surfaces.
  • the alignment means 90 includes a spherical bearing 92 that supports the upper end of the upper mold 46 so as to freely swing, and a bearing holding member 94 that holds the outer periphery of the spherical bearing 92.
  • the bearing holding member 94 is placed on a suspension member 312 having a peripheral edge portion 94 a suspended from the top plate 20 b of the vacuum chamber 20.
  • the upper mold 46 is obtained by processing a round bar made of cemented carbide, and has a molding recess or molding projection for pressing the optical element at the lower end 46a.
  • the shape of the molding concave portion and the molding convex portion is processed into a curved surface shape corresponding to the surface shape of the aspheric lens to be molded.
  • a large diameter portion 46b protrudes in the radial direction in the vicinity of the upper end, and a lower portion 46c extending below the large diameter portion 46b is inserted into the upper guide hole 42b of the trunk mold 42.
  • the upper mold 46 has an upper portion 46d extending above the large-diameter portion 46b. The upper portion 46d is inserted into the spherical bearing 92 and is held so as to be swingable in any direction.
  • a stopper ring 47 that prevents the spherical bearing 92 from falling off is engaged with the outer periphery of the upper portion 46d of the upper mold 46.
  • a rivet-shaped pressure transmission member 49 having a head having a diameter larger than the outer diameter of the upper portion 46d is inserted into the shaft hole 46e opened at the upper end of the upper portion 46d of the upper mold 46.
  • the pressure transmission member 49 is made of a cemented carbide and receives a load on the upper die 46, so that it is periodically replaced before being deformed or worn.
  • the spherical bearing 92 includes a sphere (inner ring) 95 that fits on the outer periphery of the upper portion 46 d of the upper mold 46, and a sphere receiving portion (outer ring) 96 having a spherical concave portion on which the outer periphery of the sphere 95 slides.
  • the spherical body 95 is in sliding contact with the spherical concave portion of the spherical body receiving portion 96 without any gap, and sliding resistance is reduced.
  • the upper mold 46 can perform the alignment operation so that the axis coincides with the axis of the upper guide hole 42b of the body mold 42.
  • the upper mold 46 on the left shows a state during the alignment operation inclined at an angle ⁇ with respect to the axis
  • the upper mold 46 on the right shows a state where the alignment is completed.
  • the spherical body 95 can be rotated in any direction.
  • FIG. 7 is a longitudinal sectional view showing a press-molded state in which the body mold is moved up.
  • the upper mold 46 has a circular cross section, and a pressure transmission member 49 is attached to the upper end 46 d of the upper mold 46.
  • the upper mold 46 is centered on the head of the pressure transmission member 49. It comes to receive press pressure.
  • the suspension member 312 is a member for suspending the bearing holding member 94 in the vacuum chamber 20, and the lower end hook portion 312 a is engaged with a peripheral portion 94 a protruding like a bowl from the outer periphery of the bearing holding member 94,
  • the upper end hook portion 312 b is configured to be able to engage with a support member 303 attached to the top plate 20 b of the vacuum chamber 20.
  • the support member 303 is omitted in FIG.
  • the body mold 42 is moved upward by the pressing force of the pressure increasing cylinder 81 of the pressure generating means 80, and the upper end 44a of the lower mold 44 is in contact with the lower end 46a of the upper mold 46.
  • the glass material is pressurized by lifting it slightly (for example, several mm).
  • the bearing holding member 94 upper mold support member
  • the peripheral edge portion 94a of the bearing holding member 94 is spaced above the lower end hook portion 312a. Thereby, it changes to the state where the restraint with respect to the spherical bearing 92 is released, and a free operation state in which the alignment operation between the sphere 95 and the sphere receiver 96 is not hindered.
  • the pressure that presses the upper die 46 is received by the annular spacer 91 interposed between the upper surface 42f of the body die 42 and the large-diameter portion 46b of the upper die 46, so that it is screwed into the upper end of the upper die 46.
  • the pressure is transmitted to the upper mold pressure rod 302 that contacts the head of the pressure transmission member 49. Therefore, the spherical bearing 92 is configured such that no press pressure acts on it.
  • the body die 42 is lowered and the molded product is taken out, and then the glass material G is again placed on each lower die 44 and pressure-molded again.
  • the body mold 42 is raised with the upper mold 46 held by the suspension member 312.
  • the body mold 42 is raised through the bearing holding member 94 and the spherical bearing 92 while the guide hole is in sliding contact with the upper mold 46 as a guide.
  • the upper mold 46 does not operate, and is almost fixed in place. In this case, it is necessary to slide and move the barrel die 42 without causing “galling” between the four upper dies 46 and the barrel die 42, but this is possible by the action of the spherical bearing 92 described above.
  • the upper mold 46 keeps the horizontal plane with respect to the axis orthogonal to each other by the bearing holding member 94 and the spherical bearing 92.
  • the upper mold 46, the bearing holding member 94, and the spherical bearing 92 are held substantially in place by their own weight, and the above-described orthogonal state is maintained when the body mold 42 is raised. It can prevent galling.
  • the suspension member 312 is suspended so that at least the pressing force parallel to the sliding surface with the body die 42 acts at the center of the upper die 46 and the pulling force acts at the center of the upper die 46.
  • the upper mold pressure distribution means 100 is a pressure adjustment mechanism for the upper mold 46 provided on the upper surface of the top plate 20 b of the vacuum chamber 20, and has four upper lever means 102 arranged corresponding to each of the upper molds 46. And four upper cylinders 104. In FIG. 4, two are shown.
  • the upper lever means 102 includes an upper fulcrum member 105 that is fastened to the top plate 20b of the vacuum chamber 20 by a bolt or the like, and an upper swing member 106 that is connected to the upper end of the upper fulcrum member 105 via a connecting pin 105a.
  • the upper fulcrum member 105 is slidably fastened to the attachment member 108 on the upper surface of the top plate 20b. Therefore, by changing the insertion position of the connecting pin 105a with respect to the plurality of holes 106a provided in the upper swinging member 106 and changing the fastening position of the upper fulcrum member 105 with respect to the mounting member 108, the pressure of the upper lever means 102 is changed. Can be adjusted.
  • the upper mold pressure rod 302 extending in the vertical direction so as to penetrate the top plate 20 b of the vacuum chamber 20 has an upper end connected to one end of the upper swinging member 106 via a connection pin 109.
  • the other end of the upper swinging member 106 is connected to the piston rod 104 a of the upper cylinder 104 through a connecting pin 107. Therefore, when the upper mold 46 is pressed upward during the press molding described above, the pressure due to the upward movement is transmitted to the upper swing member 106 via the upper mold pressure rod 302, and the upper fulcrum member 105 is centered.
  • the upper swing member 106 swings to drive the piston rod 104a of the upper cylinder 104 in the compression direction.
  • the upper cylinder 104 is an air cylinder, and the cylinder is filled with high-pressure air. Therefore, when a compressive load is applied to the piston rod 104a, the piston rod 104a slides downward, and the pressure by which the air is compressed and pushes the piston rod 104a upward increases. This pressure is increased by a ratio corresponding to each distance of the connecting pins 107, 105a, 109 determined by the connecting position of the upper swing member 106 and the upper fulcrum member 105.
  • the pressure generated in the upper cylinder 104 is increased by the upper lever means 102 and transmitted to the upper mold 46 via the upper mold pressure rod 302.
  • the upper die 46 receives pressure pressed upward by the lower die 44 and is pressed downward by the pressure generated in the upper cylinder 104, and is held in a stable state in which the pressures in both directions are balanced. Therefore, the glass material press-formed between the lower mold 44 and the upper mold 46 is pressed in a state in which the glass material is in close contact with the surfaces of the upper end 44a of the lower mold 44 and the lower end 46a of the upper mold 46, and the upper end 44a It is molded into an aspheric lens according to the space shape formed between the lower end 46a.
  • the pressing force of the pressure generating means 80 (for example, the total load is 19.6 kN) is applied to each upper mold 46 equally so that a load of 4.9 kN is applied to each upper mold 46. If there is a variation in the distribution load, the quality of the four molded products (optical elements) (for example, variation in lens thickness due to pressing, variation in shape and accuracy) is affected. In addition, there are naturally variations in the dimensions of the four lower molds 44, the upper mold 46, the upper mold pressure rod 302, and the like, so that there is a difference in the pressing stroke of each mold due to the pressing force of the pressure generating means 80. Arise.
  • the upper mold 46 is formed by the upper mold pressure rod 302 and the rising barrel mold 42 shown in FIG. , The upper surface 42f of the body mold 42 is pressed against the lower end surface of the large-diameter portion 46b of the upper mold 46 through the spacer 91, and the moving position of the body mold 42 is restricted, so that the wall thickness of the molded product Is determined.
  • the pressure generated by the upper cylinder 104 disposed on the top plate 20b of the vacuum chamber 20 is increased by the upper insulator means 102 to cause the upper mold 46 to act on the upper mold 46.
  • a sufficient pressing force against the upper mold 46 can be obtained.
  • the vacuum chamber 20 can be reduced in size by disposing the upper cylinder 104 outside the vacuum chamber 20, and the upper cylinder 104 can be obtained by using the upper insulator means 102. The size of the device itself can be reduced.
  • the configuration in which the air cylinder is applied to the upper cylinder 104 has been described as an example.
  • the present invention is not limited to this, and a cylinder device that fills a gas other than air may be used.
  • a pressure means (such as an accumulator) may be provided.
  • the upper die 46 moves while slidingly contacting the guide holes 42b of the barrel die 42, and until the spacer 91 placed on the upper surface 42f of the barrel die 42 contacts the large diameter portion 46b of the upper die 46.
  • the mold 2 is moved.
  • the spacers 91 are in contact with the large diameter portions 46b of the three upper molds 46, the spacers 91 are disposed on the large diameter portions 46b of the other upper molds 46.
  • the spacer 91 can be pressed against the non-contact upper die 46 by compressing the upper cylinder 104 via the upper die pressure rod 302 by the pressure from the pressure generating means 80.
  • all the positions of the four upper molds 46 can always be secured at a fixed position, so that the thickness of all the molded products can be maintained.
  • the upper die pressure distribution means 100 When an air cylinder having a maximum load of 568 N is used as the upper cylinder 104, the position of the upper fulcrum member 105 that supports the swing member 106 is the ratio of the distance to the upper mold pressure rod 302 and the distance to the upper cylinder 104. Will be described in a configuration in which the members are assembled so as to be 1:10. As a result, a pressure adjusting mechanism that can withstand a load that is ten times the maximum load of the upper cylinder 104 (5.68 kN in this case) can be configured based on the principle of the lever.
  • the thrust of the pressure increasing cylinder 81 of the pressure generating means 80 was set to 19.6 kN, and the pressure variation between the upper mold pressure rods 302 was measured. It was confirmed that it would fit in the variation of 98N in the range.
  • the finished size is ⁇ 10 mm
  • the center size is 19.6 kN, which is one of the molding conditions.
  • the molded product completely matched the cavity space formed by each mold, and a molded product that sufficiently satisfied the thickness accuracy and the allowable value of the optical surface inclination was obtained.
  • the configuration of the in-furnace hand mechanism 50 will be described with reference to FIGS. 8A and 8B.
  • the in-furnace hand mechanism 50 has a horizontal holding mechanism 56 that holds the suction hand 52 horizontally at the tip of the arm 54.
  • the in-furnace hand mechanism 50 has an air cylinder 50a on the top surface of the top plate 20b of the vacuum chamber 20, and the rotary shaft 50b is driven to rotate by the air cylinder 50a.
  • An arm 54 is connected to the lower end of the rotary shaft 50 b, and the suction hand 52 rotates together with the arm 54. Further, the suction hand 52 is provided with four vacuum suction pads 53 on the lower surface side. The interval between the vacuum suction pads 53 is the same as the interval between the lower molds 44.
  • a pair of positioning holes 51 into which a pair of positioning pins 43 provided in the body mold 42 are fitted is provided on the lower surface of the suction hand 52.
  • the four vacuum suction pads 53 are positioned at positions facing the lower molds 44 in the body mold 42.
  • the horizontal holding mechanism 56 is connected between a pair of plate members 57 connected to side surfaces of the upper base 55a and the intermediate base 55b fixed to the lower surface of the front end of the arm 54, and the intermediate base 55b and the lower base 55c.
  • the lower base 55 c is fixed to the base 52 a of the suction hand 52 and is held in a horizontal state by the spring force of the four coil springs 59.
  • the suction hand 52 has a lower base 55c fastened to the upper surface of the base, and is held in a horizontal state together with the lower base 55c.
  • the intermediate base 55b is horizontally held by a pair of plate members 57, and the lower base 55c is moved in the Z direction and X by the compression deformation of the four coil springs 59 arranged on the lower surface side of the intermediate base 55b. It is held so that it can be displaced around the axis and around the Y axis.
  • Each bolt 58 passes through the intermediate base 55b and is screwed into the lower base 55c, and the head is larger than the hole diameter of the intermediate base 55b, and is attached so as not to drop off from the intermediate base 55b. Further, when an upward external force acts on the lower base 55c, the bolt 58 operates so as to protrude above the intermediate base 55b, and the coil spring 59 is compressed, so that the lower base 55c can be displaced upward. When the external force disappears, the lower base 55 c returns to the horizontal state by the spring force of each coil spring 59.
  • any of the four bolts 58 protrudes upward from the intermediate base 55b and absorbs the tilt.
  • the spring force of the coil spring 59 returns to the original horizontal state, and the suction hand 52 is held horizontally.
  • the suction pad 53 is made of a material having low thermal conductivity for the purpose of preventing the molded product from being broken by heat shock, and is made of a heat-resistant material for adsorbing a high-temperature molded product. .
  • One example is polyimide resin.
  • the in-furnace hand mechanism 50 is configured such that, while the glass material G is adsorbed to the suction pad 53, the suction pad 53 is moved by the rotation operation of the rotary shaft 50a based on the rotation control of the air cylinder 50b and the barrel-type vertical positioning mechanism. Introduced into the mold 42, and in a state where the molded product is adsorbed by the suction force of the suction pad 53, it is taken out from the cylinder mold 42 by the upward / downward positioning mechanism of the cylinder mold 42 and the rotation of the rotating shaft 50b in the reverse direction. To work. [Suction piping system of the in-furnace hand mechanism 50] FIG.
  • each suction pad 53 is connected to each suction pipe 501 to 504 of the suction control unit 260, and each suction pipe 501 to 504 is connected to two branch pipes 506 and 507.
  • pressure sensors 511 to 514 and suction electromagnetic valves V1 to V4 are arranged in each of the suction pipes 501 to 504.
  • variable throttles 516 and 517 for adjusting the flow rate are arranged in the branch pipes 506 and 507. Further, the nitrogen pipes 521 to 524 are provided with variable throttles 531 to 534 for adjusting the flow rate and electromagnetic valves V5 to V8.
  • Each suction pad 53 is configured to be able to independently suck or release the suction corresponding to each of the four lower molds 44 by opening the electromagnetic valves V1 to V4.
  • the suction source is a vacuum pump unit 170. is there.
  • the suction pipes 501 to 504 branched from the vacuum pump unit 170 are connected to the suction pads 53, and variable throttles 516 and 517 for adjusting the flow rate at a ratio of one for two of the four suction pipes 501 to 504 are arranged.
  • the suction pressures of the four suction pipes 501 to 504 are controlled semi-independently.
  • the holding pressure can be controlled without any problem even if the suction pressure is semi-independent.
  • a mechanism for reverse injection of nitrogen is provided, and variable throttles 531 are provided in the four nitrogen pipes 521 to 524 so that the reverse injection force can be controlled independently in each line. 532, 533, and 534 are arranged, respectively.
  • FIG. 10 is a diagram showing the configuration of the lower mold pressure applying means (lower mold pressure adjusting mechanism) 370.
  • the lower mold pressure applying means 370 shown in FIG. 10 is provided on the support member 85 that transmits the pressure generated by the pressure increasing cylinder 81 of the pressure generating means 80 to the body mold 42.
  • the support member 85 is formed in a rectangular shape, and includes a lower base 85a to which the raising / lowering drive shaft 84 of the booster cylinder 81 is connected, a support 85b extending above both sides of the lower base 85a, and an upper end of the support 85b. And an upper base 85c connected thereto.
  • the lower mold pressure applying means 370 includes four lower lever means 600 attached to the lower surface of the upper base 85c of the support member 85 and four lower cylinders 610. Each lower lever means 600 and each lower cylinder 610 are arranged corresponding to each lower mold 44.
  • the lower lever means 600 includes four lower mold pressure rods 602 that press each lower mold 44 from below, a lower fulcrum member 604 fastened to the lower surface of the upper base 85c, and a connecting pin 604a of the lower fulcrum member 604.
  • the lower swinging member 606 is swingably supported at the center.
  • the lower fulcrum member 604 is slidably fastened to the attachment member 608 on the lower surface of the upper base 85c. Therefore, the pressure of the lower lever means 600 is changed by changing the insertion position of the connecting pin 604a with respect to the plurality of holes 606a provided in the lower swinging member 606 and changing the fastening position of the lower fulcrum member 604 with respect to the mounting member 608. Can be adjusted.
  • the lower cylinder 610 is an air cylinder, and the cylinder is filled with high-pressure air.
  • the piston rod 610a slides downward, and the pressure by which the air is compressed and pushes the piston rod 610a upward increases. This pressure is increased by a ratio corresponding to each distance between the connection pins 607 and 604a and the recess 606b determined by the connection position between the lower swing member 606 and the lower fulcrum member 604.
  • the lower mold pressure rod 602 has a lower end fitted in a recess 606 b provided at one end of the lower swinging member 606.
  • the other end of the lower swing member 606 is connected to the lower end portion of the piston rod 610 a of the lower cylinder 610 via a connecting pin 607.
  • the lower mold pressure applying means 370 is pressed upward together with the support member 85, the lifting base 43, and the body mold 42.
  • the lower mold pressure applying means 370 increases the pressure applied to the lower cylinder 610 in a state where the lower mold 44 is close to the upper mold 46 by the upward movement of the body mold 42.
  • the lower cylinder 610 drives the piston rod 610a downward, and moves the lower mold pressure rod 602 upward via the lower swing member 606.
  • the lower mold pressure rod 602 presses the lower mold 44 upward.
  • the pressure due to the upward movement of the lower mold pressure rod 602 becomes the press pressure of the lower mold 44 against the glass material placed between the lower mold 44 and the upper mold 46.
  • FIG. 11A is a plan view showing a state before the operation of the centering / scraper mechanism 60.
  • FIG. 11B is a side view showing a state before the operation of the centering / scraper mechanism 60. As shown in FIGS.
  • the centering / scraper mechanism 60 supports two sets of insertion portions 710 each having four insertion levers 700 extending in the horizontal direction (Y direction), and the insertion portion 710.
  • a lever support portion 720 that vibrates each insertion lever 700 in the X direction
  • a Z-axis drive portion 730 that moves the lever support portion 720 in the Z direction
  • a moving base 740 that supports the Z-axis driving portion 730
  • a moving stand 740 Has a Y-axis direction drive unit 750 that moves the Y-axis direction drive unit 750 and a mounting base 760 that supports the Y-axis direction drive unit 750.
  • the mounting base 760 is fastened to a trunk base plate 437 on which the trunk mold 42 is placed and fixed.
  • the insertion lever 700 of the insertion portion 710 is inserted into the molding space 42 c of the body mold 42 from the horizontal direction.
  • a pair of insertion levers 700 arranged in parallel in the Y direction are arranged as a pair, and the lever support portion 720 opens and closes the pair of insertion levers 700 in the proximity direction or the separation direction when centering.
  • Lever driving means for driving is provided.
  • the lever driving means an air cylinder driven by air pressure may be used, or a swinging actuator driven by air pressure may be used.
  • the pair of insertion levers 700 can simultaneously press the glass material placed on the lower mold 44 from both sides by vibrating so as to approach and separate from each other like scissors.
  • concave portions 700a and 700b corresponding to the diameter of the glass material are provided on the side surfaces of the pair of insertion levers 700 that are close to each other.
  • the distance between the centers of the recesses 700a and 700b is set to the same distance as the distance between the lower molds 44 in the Y direction.
  • FIG. 12A is a plan view showing the centering / scraper mechanism 60 during operation.
  • FIG. 12B is a side view showing the centering / scraper mechanism 60 during operation.
  • the centering / scraper mechanism 60 is mounted on an elevating base 43 that supports the body mold 42, and the height position of the insertion lever 700 with respect to the body mold 42 by the Z-axis drive unit 730. Is adjusted, and the insertion lever 700 is inserted into the molding space 42 c of the body mold 42 by the Y-axis direction drive unit 750.
  • FIG. 13 is a plan view showing the centering operation of the centering / scraper mechanism 60.
  • each insertion lever 700 is inserted into the molding space 42 c of the trunk mold 42. Then, the recesses 700 a and 700 b of each insertion lever 700 are lowered so as to be positioned on both sides of the glass material G placed on the upper end of the lower mold 44.
  • the glass material G before pressing is not spherical and is formed in advance in an elliptical shape close to the optical element to be molded, and therefore, it is difficult to roll.
  • each insertion lever 700 when each insertion lever 700 is vibrated in the X direction, the recesses 700a and 700b of each insertion lever 700 are repeatedly moved in the proximity direction (closing direction) a plurality of times.
  • a position indicated by a solid line
  • the center position indicated by a one-dot chain line
  • the forming surface the forming recess
  • FIG. 14B shows a state after adjustment in which the glass material G is centered at the center of the molding surface (molding recess) by the reciprocating motion of each of the insertion levers 700.
  • FIG. 15A is a plan view showing a state before the heater unit 70 operates.
  • FIG. 15B is a plan view showing the heater unit 70 during operation.
  • the heater unit 70 includes a glass heater 800 and a drive unit 804.
  • the glass heater 800 includes a plurality of cartridge heaters 802 and is connected to an independent temperature controller, and the heating temperature at which the temperature is detected is controlled by a thermocouple 803 inserted into the glass heater 800.
  • the plurality of cartridge heaters 802 are each formed in a cylindrical shape, and are arranged in parallel in the flat heater portion 801 so as to extend in the same direction.
  • the glass heater 800 is set to a high temperature (for example, 900 ° C.), it is made of a material that can withstand the high temperature (for example, SKD61, SKD62, Hastelloy, more preferably Ambiloy, cemented carbide).
  • the driving unit 804 and the heater unit 801 are connected by a connecting unit 805.
  • the drive unit 804 is formed of, for example, an air cylinder, and the glass heater 800 is inserted from the side surface opening 42d of the trunk mold 42 by air pressure supplied by opening the electromagnetic valve V18.
  • the plurality of cartridge heaters 802 heat the heater unit 801 in a state of being energized and generate heat, and the heater unit 801 maintained at a constant temperature (heating temperature) It is inserted into the molding space 42c.
  • the viscosity of the glass is, for example, 10 by the heat radiated from the heater unit 801. Heated to 7 dPa ⁇ s.
  • the heater portion 801 held at 900 ° C. by the cartridge heater 802 is inserted between the lower mold 44 and the glass material G and below the upper mold 46 from the opening 42 d of the body mold 42.
  • the distance between the glass heater 800 and the glass material G can be freely set by adjusting the rising position of the body mold 42.
  • the upper mold 46 and the lower mold 44 are heated to, for example, a glass viscosity of about 10 9 dPa ⁇ s by a cartridge heater inserted into the body mold 42.
  • the glass material G is heated by the glass heater 800 to a temperature of, for example, about 10 7 dPa ⁇ s in terms of glass viscosity.
  • the cylinder mechanism 72 see FIG. 1 of the heater unit 70 is operated to make the glass heater 800 a barrel mold. Pull out from 42.
  • the body mold 42 is raised by the pressure of the pressure-increasing cylinder 81 of the pressure generating means 80 and press-molded.
  • a cooling medium for example, nitrogen gas
  • the pressure of the lower cylinder 610 presses the lower mold 44 upward via the lower lever means 600 to lower the lower mold 44. Press pressure is applied (eg 3KN at total pressure).
  • the glass material G is formed on the molding surface. It is formed into a shape corresponding to a predetermined shape (for example, an elliptical shape).
  • the upper mold 46 has a small-diameter step 46c formed on the outer periphery of the lower end 46a.
  • the insertion lever 700 is inserted into the small diameter step 46c formed at the lower end of the upper mold 46 of the centering / scraper mechanism 60 described above.
  • the insertion height of the insertion lever 700 is adjusted to the height position of the small-diameter step portion 46c by the Y-axis direction drive unit 750 (see FIG. 12B). Therefore, the insertion lever 700 is inserted at a height that does not contact the glass material G, and is inserted so as not to damage the glass material G.
  • each insertion lever 700 is driven in the X direction in which a pair of levers are close to each other, and the recesses 700a and 700b are close to the small diameter step 46c. In this insertion state, each insertion lever 700 is not in contact with the peripheral edge portion of the glass material G (optical element) formed in an elliptical shape.
  • the insertion lever 700 of the centering / scraper mechanism 60 mounted on the lifting base 43 is also lowered. Therefore, the lower surface of the insertion lever 700 comes into contact with the peripheral edge of the molded optical element G and presses the optical element G downward. Since the optical element G is press-molded in the heated state, the optical element G is in close contact with the molding surface of the upper mold 46 and may not be dropped by its own weight alone.
  • the insertion lever 700 of the centering / scraper mechanism 60 is released from the small-diameter step portion 46c of the upper mold 46, so that the insertion lever 700 is lowered together with the body mold 42, so that the optical element is placed on the lower mold 44. Can be made.
  • the suction hand 52 attached to the tip of the arm 54 is driven into the molding space 42 c of the trunk mold 42 by driving the in-furnace hand mechanism 50. Inserted.
  • the electromagnetic valves V1 to V4 are opened, and vacuum pumps are provided to the suction pads 53 of the suction hand 52.
  • the vacuum generated by unit 170 is supplied.
  • each suction pad 53 of the suction hand 52 sucks the optical element placed on the lower mold 44, and takes out the optical element formed by the rotation of the arm 54 from the barrel mold 42. Then, the optical element is transferred to the shifter 140 by the operation of the in-furnace hand mechanism 50, and when the optical element moves to a predetermined position on the shifter 140, the suction by the suction pad 53 is released and is placed on the shifter 140.
  • the subsequent optical elements are collected in the replacement chamber 130 together with the shifter 140 by driving the shifter moving means 150, and further transferred to the pallet 112 in the stocker chamber 30 by the collecting operation of the SCARA robot 120.
  • FIG. 18 is a longitudinal sectional view showing a modification of the upper die pressure distribution means 100.
  • the end of the main body 104 b of the upper cylinder 104 is connected to the other end of the upper swing member 106.
  • the piston rod 104 a of the upper cylinder 104 extends downward from the end of the main body 104 b and is fixed to the top plate 20 b of the vacuum chamber 20 by a fixing member 101.
  • the upper swing member 106 swings around the upper fulcrum member 105, the main body 104b moves up and down relative to the piston rod 104a, and a load is applied to the upper cylinder 104.
  • the pressure generated in the upper cylinder 104 is applied to the upper mold pressure rod 302 via the upper swing member 106. Therefore, the upper die 46 is buffered with a pressing force from below the lower die 44 by the pressure of the upper cylinder 104 and is given a pressing force against the lower die 44.
  • FIG. 19A is a side view showing Modification 1 of the suction hand 52 of the in-furnace hand mechanism 50.
  • FIG. 19B is a plan view showing Modification 1 of the suction hand 52 of the in-furnace hand mechanism 50.
  • the base 52a of the suction hand 52 is held so as to be always kept horizontal by a horizontal holding mechanism 900 disposed between the upper base 55a fixed to the lower surface of the arm 54.
  • the horizontal holding mechanism 900 is also referred to as a so-called wrist compliance, and includes a central shaft 910 between the upper mounting portion 902 and the lower mounting portion 904, and three elastic members 920 around the center shaft 910 in the circumferential direction. It is arranged at intervals of degrees.
  • the three elastic members 920 are attached such that each lower end is inclined with respect to the central axis 910. Therefore, when the suction hand 52 receives an external force and tilts around the X axis or the Y axis, one of the three elastic members 920 receives a compressive load, and each elastic member 920 has an equal force. Thus, the suction hand 52 can be returned to the direction in which the suction hand 52 is urged, that is, in a horizontal state.
  • FIG. 20A is a side view showing a second modification of the suction hand 52 of the in-furnace hand mechanism 50.
  • FIG. 20B is a plan view showing Modification Example 2 of the suction hand 52 of the in-furnace hand mechanism 50.
  • the base portion 52a of the suction hand 52 is supported by a linear guide 950 so as to be movable up and down.
  • the linear guide 950 is formed in a U-shape (a shape seen from above) so as to surround the guide rail 952 extending in the vertical direction from the lower surface of the arm 54 and the three surfaces (front and left and right side surfaces) of the guide rail 952.
  • a slider 954 is formed in a U-shape (a shape seen from above) so as to surround the guide rail 952 extending in the vertical direction from the lower surface of the arm 54 and the three surfaces (front and left and right side surfaces) of the guide rail 952.
  • a slider 954 is formed in a U-shape (a shape seen from above) so
  • the guide rail 952 is provided with Z-axis driving means for driving the slider 954 in the vertical direction.
  • the Z-axis driving means includes, for example, a ball screw or a linear motor, and can be selected as appropriate.
  • the base 52 a of the suction hand 52 is coupled to the slider 954, it can move only in the vertical direction (Z direction) that is the driving direction of the slider 954. Further, the suction hand 52 can be rotated in the horizontal direction by the turning operation of the arm 54.
  • the suction hand 52 when the glass material G is attracted to the suction pad 53, the suction hand 52 can be lowered in a horizontal state by lowering the slider 954. It is possible to perform the suction operation so that the positional deviation from G does not occur. Also, since the arm 54 can be raised and lowered, and only the suction hand 52 can be raised and lowered, the suction hand 52 can be quickly raised and lowered to shorten the suction operation time.
  • the present invention it is possible to provide a mold for optical glass suitable for a precision press molding method excellent in durability and releasability from optical glass.
  • various optical elements can be manufactured without being polished after molding by press molding optical glass using this mold, an optical element manufacturing method that is mass-productive and advantageous in terms of cost can be provided. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A press forming device for an optical element for forming an optical element by pressing a glass material between a plurality of upper dies and a plurality of lower dies forming pairs with the upper dies, the device comprising a means for imparting a pressure to the plurality of lower dies, a body mold into which the plurality of pairs of upper dies are inserted from above and the plurality of pairs of lower dies are inserted from below and which guides the relative position of the upper and lower dies, a pressure generating means for pressing the body mold upward, and an upper die pressure distribution means for pressing each upper die downward as the body mold is moved upward by a pressing force generated by the pressure generation means and applying a pressure independently to each upper die, characterized in that the upper die pressure distribution means; comprises an upper cylinder receiving a load by a pressure acting on an upper die, and an upper rocking member arranged to be able to rock on a fulcrum and having one end abutting on the upper end of the upper die and the other end coupled with the upper cylinder; regulates a pressure being applied from the upper cylinder to each upper die through the upper rocking member in a process for moving the body mold upward by the pressure generation means; and presses the lower die upward by the means for imparting a pressure to the lower dies.

Description

光学素子のプレス成形装置Optical element press molding equipment
 本発明は光学素子のプレス成形装置に係り、特に非球面レンズなどの高精度な光学素子をプレス成形する場合に使用される光学素子のプレス成形装置に関する。 The present invention relates to an optical element press molding apparatus, and more particularly to an optical element press molding apparatus used for press molding a highly accurate optical element such as an aspheric lens.
 近年、ガラスレンズなどの光学ガラス素子をプレス成形し、成形面を研磨加工等することなく、そのまま使用する精密プレス成形法が注目されている。通常、この種の成形には、胴型内で、胴型に対して摺動する成形用型(上型、下型)を用いて、軟化状態にあるガラス素材を上型、下型間でプレスし、型の成形面に対応した光学機能面をガラス素材に形成するようにした光学素子のプレス成形装置が用いられる。ここで重要なことは、製品が比較的小型の場合、1台のプレス成形機によって1組の型により成形するのでは、生産性が低いということである。そこで、複数個の型を、1台のプレス成形機に装着して、同時に、複数個の光学素子を生産する方式が提唱された(特許第2815037号公報参照)。 In recent years, attention has been paid to a precision press molding method in which an optical glass element such as a glass lens is press-molded and used as it is without polishing the molding surface. Usually, this type of molding uses a molding die (upper die, lower die) that slides against the barrel die within the barrel die, and the glass material in a softened state is placed between the upper die and the lower die. An optical element press molding apparatus is used that is pressed to form an optical functional surface corresponding to the molding surface of a mold on a glass material. What is important here is that, when the product is relatively small, if a single press molding machine is used to mold with a set of molds, the productivity is low. Therefore, a method has been proposed in which a plurality of dies are mounted on a single press molding machine and a plurality of optical elements are produced simultaneously (see Japanese Patent No. 2815037).
 複数個の型を同時に加圧する場合、成形精度の高い光学素子を得るための工夫が必要である。この方法としては、一本の加圧軸に型の摺動方向に直交して固定された平板などの押圧部材を用いて複数の型を加圧する方法が第一に考えられる。この方法であると、複数個の型のうち最もストロークが短い型を基準に全ての型のストロークが決定されることになる。このため、肉厚寸法や面の傾きの精度がミクロン単位で要求される光学素子を成形するには、ストロークが全て規格内に納まるように各型の寸法や、押圧部材の寸法や、押圧部材の取り付けや加圧時の傾き、押圧部材の型との接触部の摩耗、変形を十分に管理する必要があるが、数百℃の成形条件下では成形機の変形をも含めほとんど管理不可能に近い。そのために、胴型に成形用金型である上型をつき当て、上型と胴型、及びその他の型の構成部材の精度で、上記の様な精度を保証する必要が生じる。 When pressurizing a plurality of molds simultaneously, it is necessary to devise to obtain an optical element with high molding accuracy. As this method, the first method is to press a plurality of molds using a pressing member such as a flat plate fixed to a single pressing shaft perpendicular to the sliding direction of the mold. With this method, the strokes of all the molds are determined based on the mold having the shortest stroke among a plurality of molds. For this reason, in order to mold optical elements that require wall thickness and surface tilt accuracy in units of microns, the dimensions of each mold, the dimensions of the pressing member, and the pressing member so that all strokes are within the standard. It is necessary to fully manage the mounting and pressurization inclination, the wear of the contact part with the pressing member mold, and the deformation, but it is almost impossible to control under the molding conditions of several hundred degrees Celsius, including the deformation of the molding machine. Close to. Therefore, it is necessary to apply the upper die, which is a molding die, to the barrel die, and to guarantee the accuracy as described above with the accuracy of the upper die, the barrel die, and other component members.
 しかし、上記のような加圧方法では、ストロークが全ての型に対して同一であるため、上記と同様の理由により、常に全ての型を押しきることは、同様に不可能に近い。また、押圧部材を固定することなくストロークに追従するように、ある程度の自由度を持たせた状態で加圧する方法も考えられるが、複数個の型、特に4個以上の型を同時に加圧する際には、押しきった時の各型の高さが全て同一平面上になければ、全ての型を押しきることはできない。 However, in the pressurizing method as described above, since the stroke is the same for all the molds, it is almost impossible to always push all the molds for the same reason as described above. A method of applying pressure with a certain degree of freedom so as to follow the stroke without fixing the pressing member is also conceivable. However, when simultaneously pressing a plurality of dies, particularly four or more dies. If all the mold heights are not on the same plane, all the molds cannot be pushed.
 また、成形素材の寸法のばらつきや、加圧時における、各型間の微妙な温度差等により、加圧開始の位置や成形のスピード(ガラスの変形速度)が各型間で異なるため、押圧部材が型の摺動方向に対して傾いた状態で加圧されることが頻繁に発生する。このため、加圧力が型の摺動方向以外にも作用し、型のかじりや破損を招きやすく、更に型と押圧部材との接触部が常に擦り合わされて摩耗し易く、特にこのような高温下の状態では摩耗が激しくなり、その摩耗の結果、型のかじりや破損が更に助長されるという悪循環を繰り返す。 In addition, the pressing start position and the molding speed (glass deformation speed) differ between molds due to variations in the dimensions of the molding material and subtle temperature differences between the molds during pressing. Frequently, the member is pressurized while being tilted with respect to the sliding direction of the mold. For this reason, the pressing force acts in directions other than the sliding direction of the mold, and the mold tends to be galled or damaged. Further, the contact portion between the mold and the pressing member is always rubbed and easily worn. In this state, the wear becomes intense, and as a result of the wear, a vicious circle is repeated in which mold galling and breakage are further promoted.
 また、上記成形装置では、プレス成形過程におけるガラス素材の温度制御のために、胴型、上型、及び下型をかなりの高低温度差で加熱・冷却する必要がある。そこで胴型、上型、及び下型を、ほぼ同じ熱膨張係数の材料で構成するとともに、胴型に対する上型、下型の摺動を確保するためのクリアランスを設けている。 In the above molding apparatus, it is necessary to heat and cool the body mold, the upper mold, and the lower mold at a considerably high and low temperature difference in order to control the temperature of the glass material in the press molding process. Therefore, the body mold, the upper mold, and the lower mold are made of materials having substantially the same thermal expansion coefficient, and a clearance is provided to ensure sliding of the upper mold and the lower mold with respect to the cylinder mold.
 このため、例えば、上型を降下して下型との間で、ガラス素材をプレス成形する場合、上型の中心にプレス圧力を掛けなければ、上型は胴型内で摺動する間に傾き、上型と下型の成形面を互いに正しく対応した状態で、ガラス素材に対してプレス成形できない。更に、極端な場合には、胴型と上型との間でかじりが生じ、上型を胴型に対して完全に閉じることができなくなり、正常なプレスが行われなくなる。換言すれば、結果として、成形された光学素子の光学機能面の中心が光軸に一致しなくなる。また、成形品を型から取り出すために、上型を引き上げる際、引き上げ力が上型の中心から外れていると、上型が傾き、胴型と上型とにかじりが生じ、上型の開閉ができなくなる。このような成形装置は、実際に使用される条件では、特に、胴型と上型との摺動部のクリアランスが10μm以下と小さく、しかも、熱間で使用される関係で、前記かじりがより発生しやすい環境にある。 For this reason, for example, when a glass material is pressed between the lower mold by lowering the upper mold, if the pressing pressure is not applied to the center of the upper mold, the upper mold is slid in the barrel mold. The glass material cannot be press-molded in a state where the molding surfaces of the upper mold and the lower mold correspond to each other correctly. Further, in an extreme case, galling occurs between the body mold and the upper mold, and the upper mold cannot be completely closed with respect to the body mold, and normal pressing cannot be performed. In other words, as a result, the center of the optical function surface of the molded optical element does not coincide with the optical axis. Also, when pulling up the upper mold to remove the molded product from the mold, if the lifting force is off the center of the upper mold, the upper mold is tilted and the upper mold and the upper mold are galling, and the upper mold is opened and closed. Can not be. In such a molding apparatus, the clearance of the sliding part between the body mold and the upper mold is as small as 10 μm or less under the conditions of actual use. The environment is prone to occur.
 上述の従来技術の欠点をある程度解決した例として特許第2815037号公報に記載された成形装置がある。特許第2815037号公報の成形装置では、上型にプレス圧力を加えるプレス軸と上型との間に、複数の皿バネを積み重ねて配置することで加圧時の型の高さが異なっても、皿バネの変形でその高さの差を吸収することにより、各型に均一にプレス圧力がかかるようにしている。 There is a molding apparatus described in Japanese Patent No. 2815037 as an example in which the above-mentioned drawbacks of the prior art are solved to some extent. In the molding apparatus disclosed in Japanese Patent No. 2815037, even if the die height during pressurization is different by stacking and arranging a plurality of disc springs between a press shaft that applies press pressure to the upper die and the upper die. By absorbing the difference in height by the deformation of the disc spring, the pressing pressure is uniformly applied to each die.
 しかしながら、特許第2815037号公報の成形装置では、皿バネが上型に近い部分にあるため、皿バネが高温にさらされ、へたるという問題があった。 However, the molding apparatus disclosed in Japanese Patent No. 2815037 has a problem that the disc spring is exposed to a high temperature and sags because the disc spring is located near the upper die.
 また、この欠点を補うために皿バネの部分を水冷する必要があるが、水冷のため部材が大型化し、複雑化するという問題が新たに生じる。 Also, in order to make up for this drawback, it is necessary to cool the disc spring part with water, but a new problem arises that the member becomes larger and complicated due to water cooling.
 更に、水冷された部材が成形時に上型に接触するため上型の温度が急激に低下し、成形されたガラス温度が不安定になるという欠点もあった。 Furthermore, since the water-cooled member contacts the upper mold at the time of molding, there is also a drawback that the temperature of the upper mold rapidly decreases and the temperature of the molded glass becomes unstable.
 また、コストダウンが目的で複数の上型、下型を1台の胴型にセットするので、各型セット間の距離を大きくとることは経済的にありえない。このため、各型セット間の距離は大きくても十数ミリであるのが通常で、この間隔に対応する軸の1本1本に皿バネを設ける必要がある。通常、ガラスのプレス成形に必要な圧力はφ18の金型で4.9kN前後であるから、皿バネに用いられるバネの強さは4.9kN以上である必要がある。十数ミリの空間に収まる4.9kNの巻きバネは、通常存在しない。 Also, since multiple upper molds and lower molds are set in one body mold for the purpose of cost reduction, it is economically impossible to increase the distance between each mold set. For this reason, the distance between each set of molds is usually a few tens of millimeters at most, and it is necessary to provide a disc spring on each of the shafts corresponding to this distance. Usually, the pressure required for press molding of glass is around 4.9 kN with a φ18 mold, so the strength of the spring used for the disc spring needs to be 4.9 kN or more. There is usually no 4.9 kN wound spring that fits in a space of a few dozen millimeters.
 そのため、特許第2815037号公報では、皿バネを用いているが、皿バネにしても狭い空間に4.9kNの容量のものとなると複数の皿バネを大量に積み重ねる必要があり、バネ機構の部分の長さが非常に長くなるという欠陥が生じ、成形装置が大型化するという問題があった。 Therefore, in Japanese Patent No. 2815037, a disc spring is used. However, if the disc spring has a capacity of 4.9 kN in a narrow space, it is necessary to stack a plurality of disc springs in large quantities. There is a problem that the length of the molding apparatus becomes very long and the molding apparatus becomes large.
 また、プレスするレンズの大きさが当初の予定と変わりプレス圧力を大きく変更する必要が生じた場合には、皿バネを交換してバネ定数を変える必要があるが、積み上げた皿バネを収めた部品を分解し、中の皿バネを交換するのは、大変な労力と手間がかかる。このように、特許第2815037号公報の成形装置においても依然として上記のような問題がある。 Also, if the size of the lens to be pressed changes from the original schedule and the press pressure needs to be changed significantly, it is necessary to change the spring constant by replacing the disc spring. It takes a lot of labor and labor to disassemble the parts and replace the disc spring inside. Thus, the molding apparatus disclosed in Japanese Patent No. 2815037 still has the above-described problems.
 なお、特許第2815037号公報では、下型が胴型内を摺動しプレスする場合の圧力分配についての記載がなく、下型でプレスする場合には圧力分配しない機構であると推察される。 In Japanese Patent No. 2815037, there is no description of pressure distribution when the lower die slides and presses within the body die, and it is assumed that the mechanism does not perform pressure distribution when pressing with the lower die.
 本発明は、上記事情に鑑み、上記課題を解決した光学素子のプレス成形装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an optical element press molding apparatus that solves the above-described problems.
 本発明の第1の実施様態において、複数の上型と該上型と対をなす複数の下型との間でガラス素材をプレスして光学素子を成形する光学素子のプレス成形装置は、前記複数の下型に圧力を付与する下型圧力付与手段と、前記複数対の上型が上方から挿入され、前記複数対の下型が下方から挿入され、前記上型と前記下型の相対位置をガイドする胴型と、前記胴型を上方に押圧する圧力発生手段と、該圧力発生手段による押圧力で前記胴型を上動させるのに伴い、前記各上型を下方に向けて押圧すると共に前記各上型に独立的に圧力を付加させるための上型圧力分配手段と、を有し、前記上型圧力分配手段は、前記上型に作用する圧力による荷重を受ける上部シリンダと、支点を介して揺動自在に配置され、一端が前記上型の上端部と当接され、他端部が前記上部シリンダに連結される上部揺動部材と、を備え、前記圧力発生手段により前記胴型を上動させる過程で前記上部揺動部材を介して前記上部シリンダによる各上型に対する圧力を調整すると共に、前記下型圧力付与手段により前記下型を上方に押圧することにより、上記課題を解決する。
 本発明の第2の実施様態において、前記第1の実施様態における前記プレス成形装置は、少なくとも前記上型、前記下型及び前記胴型を内部に収納する筐体を備え、前記上部シリンダ及び前記上部揺動部材は、前記筐体の上面に配置されることにより、上記課題を解決する。
 本発明の第3の実施様態において、前記第1又は第2の実施様態における前記プレス成形装置は、前記下型圧力付与手段が、前記圧力発生手段による押圧力で前記胴型を上動させるのに伴い、前記複数の下型を上方に向けて押圧することにより、上記課題を解決する。
 本発明の第4の実施様態において、前記第3の実施様態における前記プレス成形装置は、前記下型圧力付与手段が、前記下型に作用する圧力による荷重を受ける下部シリンダと、支点を介して揺動自在に配置され、一端が前記下型の下端部と当接され、他端部が前記下部シリンダに連結される下部揺動部材と、を備え、前記下部揺動部材が前記支点を中心に揺動することにより前記下部シリンダによる各下型に対する圧力を調整することにより、上記課題を解決する。
 本発明の第5の実施様態において、前記第1乃至第4の何れかの実施様態における前記プレス成形装置は、前記圧力発生手段による押圧力で前記胴型を上動させる過程で前記胴型に対する前記上型の位置を調芯する複数の調芯手段を備え、前記複数の各調芯手段は、前記胴型を上方に押圧動作する際に前記胴型の移動軸線に対して前記上型の軸線を一致させるように前記上型を回動可能とする球面軸受と、前記球面軸受の外側を支持するように形成され、前記上方への押圧動作により前記球面軸受が離間する上型支持部材と、を有することを特徴とすることにより、上記課題を解決する。
 本発明の第6の実施様態において、前記第1乃至第5の何れかの実施様態における前記プレス成形装置は、前記上型圧力分配手段が、前記上部揺動部材の長手方向に対する前記支点の連結位置が可変可能であり、前記支点の連結位置と前記上部揺動部材の全長との比率により前記上型に作用する圧力が調整されることにより、上記課題を解決する。
 本発明の第7の実施様態において、前記第4の実施様態における前記プレス成形装置は、前記下型圧力付与手段が、前記下部揺動部材の長手方向に対する前記支点の連結位置が可変可能であり、前記支点の連結位置と前記下部揺動部材の全長との比率により前記下型に作用する圧力が調整されることを特徴とすることにより、上記課題を解決する。
 本発明の第8の実施様態において、前記第1乃至第5の何れかの実施様態における前記プレス成形装置は、前記上型圧力分配手段が、前記上部シリンダ内の充填圧力が可変可能であり、前記充填圧力によって前記上型に作用する圧力が調整されることにより、上記課題を解決する。
 本発明の第9の実施様態において、前記第4の実施様態における前記プレス成形装置は、前記下型圧力付与手段が、前記下部シリンダ内の充填圧力が可変可能であり、前記充填圧力によって前記下型に作用する圧力が調整されることにより、上記課題を解決する。
 本発明の第10の実施様態において、前記第1、第2、第8の何れかの実施様態における前記プレス成形装置は、前記上部シリンダが、内部に所定圧の気体が充填されたエアシリンダであることにより、上記課題を解決する。
 本発明の第11の実施様態において、前記第4又は第9の実施様態における前記プレス成形装置は、前記下部シリンダが、内部に所定圧の気体が充填されたエアシリンダであることにより、上記課題を解決する。
 本発明の第12の実施様態において、前記第1乃至第11の何れかの実施様態における前記プレス成形装置は、プレスする前に前記上型と前記下型との間に挿入され、前記下側に載置された前記ガラス素材の位置を両側より前記下型の中心にセンタリングするセンタリング部材を備え、前記センタリング部材は、前記ガラス素材をプレスして光学素子を成形した後に前記胴型を降下させると共に、前記光学素子の周縁部を下方に押圧することにより、上記課題を解決する。
 本発明の第13の実施様態において、前記第1乃至第12の何れかの実施様態における前記プレス成形装置は、前記筐体の内部を移動して前記ガラス素材を前記胴型内の前記下型の成形面に載置し、プレス後の前記光学素子を前記胴型から取り出す吸着ハンドと、前記吸着ハンドを水平状態に保持するハンド保持機構と、前記ハンド保持機構を介して前記吸着ハンドを駆動する駆動部と、を備え、前記ハンド保持機構は、弾性を有する複数のゴム部材により前記吸着ハンドを保持することにより、上記課題を解決する。
 本発明の第14の実施様態において、前記第1乃至第12の何れかの実施様態における前記プレス成形装置は、前記筐体の内部を移動して前記ガラス素材を前記胴型内の前記下型の成形面に載置し、プレス後の前記光学素子を前記胴型から取り出す吸着ハンドと、前記吸着ハンドを水平状態に保持するハンド保持機構と、前記ハンド保持機構を介して前記吸着ハンドを駆動する駆動部と、を備え、前記ハンド保持機構が、リニアガイドにより上下方向にガイドされることにより、上記課題を解決する。
In the first embodiment of the present invention, an optical element press molding apparatus for molding an optical element by pressing a glass material between a plurality of upper molds and a plurality of lower molds paired with the upper mold, Lower mold pressure applying means for applying pressure to a plurality of lower molds, the plurality of pairs of upper molds are inserted from above, the plurality of pairs of lower molds are inserted from below, and the relative positions of the upper mold and the lower molds A cylinder mold for guiding the cylinder mold, pressure generating means for pressing the cylinder mold upward, and pressing the upper molds downward as the cylinder mold is moved upward by the pressing force of the pressure generating means. And an upper mold pressure distribution means for applying pressure to each upper mold independently, the upper mold pressure distribution means comprising an upper cylinder for receiving a load due to pressure acting on the upper mold, and a fulcrum And one end is in contact with the upper end of the upper mold. An upper swinging member having the other end connected to the upper cylinder, and in the process of moving the barrel mold upward by the pressure generating means, the upper swinging member is attached to each upper mold via the upper swinging member. The above problem is solved by adjusting the pressure and pressing the lower mold upward by the lower mold pressure applying means.
In the second embodiment of the present invention, the press molding apparatus according to the first embodiment includes a housing that accommodates at least the upper mold, the lower mold, and the body mold, and the upper cylinder and the The upper swinging member is disposed on the upper surface of the casing, thereby solving the above-described problem.
In the third embodiment of the present invention, in the press molding apparatus according to the first or second embodiment, the lower mold pressure applying means moves the barrel mold upward by a pressing force by the pressure generating means. Accordingly, the above problems are solved by pressing the plurality of lower molds upward.
In the fourth embodiment of the present invention, the press molding apparatus according to the third embodiment includes a lower cylinder that receives a load due to pressure acting on the lower mold, and a lower cylinder pressure applying means via a fulcrum. A lower swinging member disposed at one end in contact with the lower end of the lower mold and connected at the other end to the lower cylinder. The lower swinging member is centered on the fulcrum. The above-mentioned problem is solved by adjusting the pressure applied to each lower mold by the lower cylinder by swinging in the vertical direction.
5th Embodiment of this invention WHEREIN: The said press molding apparatus in the said any one of the 1st thru | or 4th embodiment is a process with respect to the said cylinder mold in the process of moving up the said cylinder mold with the pressing force by the said pressure generation means. A plurality of alignment means for aligning the position of the upper mold, and each of the plurality of alignment means is configured to press the upper mold with respect to the movement axis of the upper mold when the upper mold is pressed upward. A spherical bearing capable of rotating the upper mold so as to coincide with the axis, and an upper mold support member formed so as to support the outer side of the spherical bearing and separating the spherical bearing by the upward pressing operation; By solving this problem, the above-described problems are solved.
In the sixth embodiment of the present invention, in the press molding apparatus according to any one of the first to fifth embodiments, the upper mold pressure distribution means connects the fulcrum to the longitudinal direction of the upper swing member. The position is variable, and the above-described problem is solved by adjusting the pressure acting on the upper mold according to the ratio between the connection position of the fulcrum and the total length of the upper swing member.
In the seventh embodiment of the present invention, in the press molding apparatus according to the fourth embodiment, the lower mold pressure applying means can change the connecting position of the fulcrum with respect to the longitudinal direction of the lower swing member. The above-described problem is solved by adjusting the pressure acting on the lower mold according to the ratio between the connection position of the fulcrum and the total length of the lower swing member.
In the eighth embodiment of the present invention, in the press molding apparatus according to any one of the first to fifth embodiments, the upper die pressure distribution means can change a filling pressure in the upper cylinder, The above problem is solved by adjusting the pressure acting on the upper mold by the filling pressure.
In the ninth embodiment of the present invention, in the press molding apparatus according to the fourth embodiment, the lower mold pressure applying means can change a filling pressure in the lower cylinder, and the lower pressure is changed by the filling pressure. The said subject is solved by adjusting the pressure which acts on a type | mold.
In the tenth embodiment of the present invention, in the press molding apparatus according to any one of the first, second, and eighth embodiments, the upper cylinder is an air cylinder filled with a gas of a predetermined pressure. The problem is solved by being.
In the eleventh embodiment of the present invention, in the press molding apparatus according to the fourth or ninth embodiment, the lower cylinder is an air cylinder filled with a gas having a predetermined pressure. To solve.
In a twelfth embodiment of the present invention, the press molding apparatus according to any one of the first to eleventh embodiments is inserted between the upper mold and the lower mold before pressing, and the lower side A centering member that centers the position of the glass material placed on the center of the lower mold from both sides, and the centering member lowers the body mold after pressing the glass material to form an optical element. At the same time, the above-mentioned problem is solved by pressing the peripheral edge of the optical element downward.
In a thirteenth embodiment of the present invention, the press molding apparatus according to any one of the first to twelfth embodiments moves the inside of the casing to move the glass material into the lower mold in the barrel mold. A suction hand that is placed on the molding surface and takes out the pressed optical element from the barrel mold, a hand holding mechanism that holds the suction hand in a horizontal state, and the suction hand is driven via the hand holding mechanism The hand holding mechanism solves the above-described problem by holding the suction hand by a plurality of elastic rubber members.
In the fourteenth embodiment of the present invention, the press molding apparatus according to any one of the first to twelfth embodiments moves the inside of the casing to move the glass material into the lower mold in the barrel mold. A suction hand that is placed on the molding surface and takes out the pressed optical element from the barrel mold, a hand holding mechanism that holds the suction hand in a horizontal state, and the suction hand is driven via the hand holding mechanism And the hand holding mechanism is guided in a vertical direction by a linear guide to solve the above-described problem.
 本発明によれば、圧力発生手段により胴型を上動させる過程で上部揺動部材を介して上部シリンダによる各上型に対する圧力を調整すると共に、下型圧力付与手段により下型を上方に押圧するため、従来のように複数の皿バネを重ね合わすものよりも上部シリンダに作用する圧力を軽減して上部シリンダを小型化できると共に、水冷のための冷却機構を設けずに済み、冷却水が漏れた場合の型の腐食防止などの対策を講じることもない。 According to the present invention, the pressure on each upper mold by the upper cylinder is adjusted via the upper swing member in the process of moving the barrel mold upward by the pressure generating means, and the lower mold is pressed upward by the lower mold pressure applying means. Therefore, it is possible to reduce the pressure acting on the upper cylinder by reducing the pressure acting on the upper cylinder as compared with the conventional one in which a plurality of disc springs are stacked, and to reduce the size of the upper cylinder, and to eliminate the need for a cooling mechanism for water cooling. No measures are taken to prevent corrosion of the mold in case of leakage.
 また、上部シリンダの圧力を調整することにより、上型に対する加圧力の変化にも容易に対応することが可能であり、従来のように皿バネの枚数を変更する作業を行なう場合よりも圧力の変更が容易に行える。 In addition, by adjusting the pressure of the upper cylinder, it is possible to easily cope with changes in the applied pressure with respect to the upper die, and the pressure is higher than in the case where the number of disc springs is changed as in the prior art. Easy to change.
 さらに、上型の圧力が支点を中心に揺動する揺動部材を介してシリンダに伝える梃子手段を有しているので、複数の上型に対して複数のガイド孔を有する胴型を摺動動作し、ガラス素材に対してプレス成形する場合、全ての上型を完全に押しきることができ、しかも、成形素材の寸法のばらつきや、加圧時における各型間の微妙な温度差等により、加圧開始の位置や成形のスピード(ガラスの変形速度)が各型間で異なっても、これらに対応して、容易に調整できるので、成形品の精度が良く、生産性も向上するなどの多くの効果が得られる。 Further, since there is an insulator means for transmitting the pressure of the upper die to the cylinder via a swinging member that swings around a fulcrum, the barrel die having a plurality of guide holes is slid with respect to the plurality of upper molds. When operating and press-molding glass material, all upper molds can be pushed completely, and due to variations in the dimensions of the molding material, subtle temperature differences between the molds during pressing, etc. Even if the pressure start position and molding speed (glass deformation speed) differ between the molds, it can be easily adjusted to cope with these, so the accuracy of the molded product is improved and productivity is improved. Many effects can be obtained.
 本発明に係る光学素子のプレス成形装置によれば、調芯手段を有しているので、複数の上型、下型で同時にプレス成形する場合、上型に対して加わる力が常に各上型をその場に支持し、胴型を押し上げ動作する際に胴型の移動軸線の中心に向けて作用させることができ、かじり等の不具合がなく、光学機能面が光軸に対して正確に位置する、精度の高い光学素子を効率よく製造できる。 According to the optical element press molding apparatus according to the present invention, since the aligning means is provided, when simultaneously performing press molding with a plurality of upper molds and lower molds, a force applied to the upper mold is always applied to each upper mold Can be made to act toward the center of the axis of movement of the body mold when pushing up the body mold, there is no trouble such as galling, and the optical function surface is accurately positioned with respect to the optical axis. Therefore, it is possible to efficiently manufacture a highly accurate optical element.
本実施の形態のプレス成形装置の全体構成を示す図である。It is a figure which shows the whole structure of the press molding apparatus of this Embodiment. プレス成形装置10の制御系の構成を示すブロック図である。3 is a block diagram showing a configuration of a control system of the press forming apparatus 10. FIG. プレス成形装置10において行なわれる各工程の手順1~19を示す図である。FIG. 19 is a diagram showing procedures 1 to 19 of each step performed in the press molding apparatus 10. プレス成形装置10において行なわれる各工程の手順20~32を示す図である。FIG. 3 is a diagram showing procedures 20 to 32 of each step performed in the press molding apparatus 10. 成型用金型ユニット40、調芯手段90、上型圧力分配手段100の構成を示す縦断面図である。2 is a longitudinal sectional view showing the configuration of a molding die unit 40, an alignment means 90, and an upper mold pressure distribution means 100. FIG. 胴型42の成形空間42cの内部構造を上方からみた図である。It is the figure which looked at the internal structure of the molding space 42c of the trunk | drum 42 from upper direction. 調芯手段90の構成を拡大して示す縦断面図である。4 is an enlarged longitudinal sectional view showing the configuration of the alignment means 90. FIG. 胴型が上動したプレス成形状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the press molding state which the cylinder mold moved up. 炉内ハンド機構50の構成を示す斜視図である。3 is a perspective view showing a configuration of an in-furnace hand mechanism 50. FIG. 炉内ハンド機構50の水平保持機構56を示す側面図である。It is a side view which shows the horizontal holding mechanism 56 of the in-furnace hand mechanism 50. 各吸着パッド53に接続される吸着配管経路を示す図である。It is a figure which shows the suction piping path | route connected to each suction pad 53. FIG. 下型圧力付与手段370の構成を拡大して示す正面図である。It is a front view which expands and shows the structure of the lower mold | type pressure provision means 370. FIG. センタリング・スクレーバ機構60の動作前の状態を示す平面図である。4 is a plan view showing a state before the operation of the centering / scraper mechanism 60. FIG. センタリング・スクレーバ機構60の動作前の状態を示す側面図である。It is a side view which shows the state before operation | movement of the centering scraper mechanism 60. FIG. センタリング・スクレーバ機構60の動作中の状態を示す平面図である。FIG. 6 is a plan view showing a state in which the centering / scraper mechanism 60 is operating. センタリング・スクレーバ機構60の動作中の状態を示す側面図である。It is a side view which shows the state in operation | movement of the centering scraper mechanism. センタリング・スクレーバ機構60のセンタリング動作を示す平面図である。5 is a plan view showing a centering operation of the centering / scraper mechanism 60. FIG. センタリング・スクレーバ機構60のセンタリング動作前のガラス素材の状態を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the state of the glass raw material before the centering operation | movement of the centering / scraper mechanism 60. FIG. センタリング・スクレーバ機構60のセンタリング動作後のガラス素材の状態を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the state of the glass raw material after the centering operation | movement of the centering / scraper mechanism 60. ヒータユニット70の動作前の状態を示す平面図である。4 is a plan view showing a state before the operation of the heater unit 70. FIG. ヒータユニット70の動作中の状態を示す平面図である。FIG. 6 is a plan view showing a state in which the heater unit 70 is operating. ヒータユニット70によりガラス素材を加熱する状態を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the state which heats a glass raw material with the heater unit. 加熱されたガラス素材をプレス成形する状態を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the state which press-molds the heated glass raw material. センタリング・スクレーバ機構60の挿入レバー700をガラス素材の上方に挿入した状態を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the state which inserted the insertion lever 700 of the centering scraper mechanism 60 above the glass raw material. センタリング・スクレーバ機構60の挿入レバー700を降下させてガラス素材を上型46から離間させた状態を拡大して示す縦断面図である。FIG. 6 is an enlarged longitudinal sectional view showing a state in which a glass material is separated from an upper mold 46 by lowering an insertion lever 700 of the centering / scraper mechanism 60. 上型圧力分配手段100の変形例を示す縦断面図である。6 is a longitudinal sectional view showing a modification of the upper die pressure distribution means 100. FIG. 炉内ハンド機構50の吸着ハンド52の変形例1を示す側面図である。It is a side view which shows the modification 1 of the adsorption | suction hand 52 of the in-furnace hand mechanism 50. FIG. 炉内ハンド機構50の吸着ハンド52の変形例1を示す平面図である。It is a top view which shows the modification 1 of the adsorption | suction hand 52 of the in-furnace hand mechanism 50. FIG. 炉内ハンド機構50の吸着ハンド52の変形例2を示す側面図である。It is a side view which shows the modification 2 of the adsorption | suction hand 52 of the in-furnace hand mechanism 50. FIG. 炉内ハンド機構50の吸着ハンド52の変形例2を示す平面図である。It is a top view which shows the modification 2 of the adsorption | suction hand 52 of the in-furnace hand mechanism 50. FIG.
 以下、本発明の好ましい実施の形態を、添付図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、実施の形態のプレス成形装置の全体構成を示す図である。図1に示されるように、プレス成形装置10は、光学素子を成形するための真空チャンバ(筐体)20と、真空チャンバ20にガラス素材を供給、成形された光学素子を取り出すためのストッカ室30とを有する。 FIG. 1 is a diagram illustrating an overall configuration of a press molding apparatus according to an embodiment. As shown in FIG. 1, a press molding apparatus 10 includes a vacuum chamber (housing) 20 for molding an optical element, a stocker chamber for supplying a glass material to the vacuum chamber 20 and taking out the molded optical element. 30.
 真空チャンバ20は、成型用金型ユニット40と、ガラス素材を搬入し、成形された光学素子を取り出す炉内ハンド機構50と、成型用金型ユニット40に搬入されたガラス素材のセンタリング及び光学素子を上型から離間させる行なうセンタリング・スクレーバ機構60と、成形前にガラス素材を加熱するヒータユニット70とを有する。 The vacuum chamber 20 includes a molding die unit 40, an in-furnace hand mechanism 50 for taking in a glass material and taking out the molded optical element, centering of the glass material carried in the molding die unit 40, and an optical element. A centering and scraper mechanism 60 for separating the glass material from the upper mold and a heater unit 70 for heating the glass material before molding.
 真空チャンバ20は、真空チャンバ架台22に支持されており、真空チャンバ架台22には、成型用金型ユニット40の胴型42及び下型44を上方に押圧する圧力発生手段80と、上型の軸線を調芯する調芯手段90と、成形時に上型46の圧力を分配する上型圧力分配手段(上型加圧調整機構)100とが設けられている。 The vacuum chamber 20 is supported by the vacuum chamber base 22, and the vacuum chamber base 22 includes pressure generating means 80 that presses the body mold 42 and the lower mold 44 of the molding die unit 40 upward, and an upper mold. An aligning means 90 for aligning the axis and an upper mold pressure distributing means (upper mold pressure adjusting mechanism) 100 for distributing the pressure of the upper mold 46 at the time of molding are provided.
 圧力発生手段80は、真空チャンバ20の下面に固定された支持ベース82に支持された昇圧シリンダ81を有する。昇圧シリンダ81の圧力により昇降する昇降駆動軸84は、胴型42を支持する昇降ベース43に支持部材85を介して連結されており、昇降ベース43には、下型圧力付与手段370が搭載されている。 The pressure generating means 80 has a booster cylinder 81 supported by a support base 82 fixed to the lower surface of the vacuum chamber 20. A lifting drive shaft 84 that moves up and down by the pressure of the booster cylinder 81 is connected to a lifting base 43 that supports the body mold 42 via a support member 85, and a lower mold pressure applying means 370 is mounted on the lifting base 43. ing.
 また、ストッカ室30は、ガラス素材が載置されたパレット台110と、パレット台110上のガラス素材を吸着して移送するスカラ型ロボット120と、ガラス素材及び光学素子を搬入・搬出するための置換室130と、置換室130のシフタ140を移動させるシフタ移動手段150と、置換室130と真空チャンバ20との間を連通する連通路132を開閉するゲート弁160とを有する。さらに、ストッカ室30を支持するストッカ室架台32の下部には、真空ポンプユニット170が設けられ、ストッカ室30の上面には、ストッカ室30に清浄な空気を供給するフィルタユニット180が設けられている。 The stocker chamber 30 also includes a pallet table 110 on which a glass material is placed, a SCARA robot 120 that sucks and transfers the glass material on the pallet table 110, and a glass material and an optical element for loading and unloading. It has a replacement chamber 130, a shifter moving means 150 that moves the shifter 140 of the replacement chamber 130, and a gate valve 160 that opens and closes the communication path 132 that communicates between the replacement chamber 130 and the vacuum chamber 20. Further, a vacuum pump unit 170 is provided below the stocker chamber frame 32 that supports the stocker chamber 30, and a filter unit 180 that supplies clean air to the stocker chamber 30 is provided on the upper surface of the stocker chamber 30. Yes.
 また、真空チャンバ20には、高圧空気を供給する空気配管190と、窒素ガスを供給する窒素配管200と、冷却用窒素配管210と、真空による空気吸引を行なう真空配管220とが接続され、ストッカ室30には、高圧空気を供給する空気配管190及び真空配管220が接続されている。 The vacuum chamber 20 is connected to an air pipe 190 for supplying high-pressure air, a nitrogen pipe 200 for supplying nitrogen gas, a cooling nitrogen pipe 210, and a vacuum pipe 220 for sucking air by vacuum, and is connected to a stocker. An air pipe 190 and a vacuum pipe 220 for supplying high-pressure air are connected to the chamber 30.
 そして、空気配管190には、高圧空気の供給を制御する電磁弁V21~V25が配されている。また、窒素配管200には、窒素ガスの供給を制御する電磁弁V14が配され、冷却用窒素配管210には、冷却用窒素の供給を制御する電磁弁V19,V20が配されている。また、真空配管220には、電磁弁V1~V9,V11~V16,V18,V26が配されている。尚、電磁弁V10は、真空チャンバ20と置換室130との間をバイパスする管路136に設けられており、開弁により真空チャンバ20の圧力と置換室130の圧力とを均圧化する。 And, in the air pipe 190, solenoid valves V21 to V25 for controlling the supply of high-pressure air are arranged. The nitrogen pipe 200 is provided with an electromagnetic valve V14 that controls the supply of nitrogen gas, and the cooling nitrogen pipe 210 is provided with electromagnetic valves V19 and V20 that control the supply of cooling nitrogen. The vacuum piping 220 is provided with solenoid valves V1 to V9, V11 to V16, V18, and V26. The electromagnetic valve V10 is provided in a pipe line 136 that bypasses between the vacuum chamber 20 and the replacement chamber 130, and equalizes the pressure in the vacuum chamber 20 and the pressure in the replacement chamber 130 by opening the valve.
 また、真空チャンバ20の側壁及び底部には、排気用の電磁弁V17,V27が接続されている。各電磁弁V1~V27は、例えば、ソレノイドの励磁により開弁し、ソレノイドの消磁により閉弁するノーマルクローズ型の2ポート2位置弁からなる。 Further, exhaust solenoid valves V17 and V27 are connected to the side wall and the bottom of the vacuum chamber 20, respectively. Each of the solenoid valves V1 to V27 is formed of, for example, a normally closed two-port two-position valve that opens by excitation of a solenoid and closes by demagnetization of the solenoid.
 また、真空チャンバ20の下方には、真空チャンバ20内に搬入されたガラス素材を持ち上げるリフタユニット250と、炉内ハンド機構50の吸着ハンド52に真空による空気吸引を行なう吸着制御ユニット260とが配されている。 Also, below the vacuum chamber 20, a lifter unit 250 that lifts the glass material carried into the vacuum chamber 20 and an adsorption control unit 260 that performs vacuum suction to the adsorption hand 52 of the in-furnace hand mechanism 50 are arranged. Has been.
 プレス成形装置10は、ガラス素材(ガラスブランク)を成型用金型ユニット40内に装填し、圧力発生手段80によっての胴型42を押し上げることにより、プレス成形するように構成されている。また、プレス成形は、好ましくは、気密構造とされた真空チャンバ20の内部に窒素ガスなどの不活性ガスを充填し、不活性ガス雰囲気中で行われる。 The press molding apparatus 10 is configured to perform press molding by loading a glass material (glass blank) into the molding die unit 40 and pushing up the body die 42 by the pressure generating means 80. The press molding is preferably performed in an inert gas atmosphere by filling the inside of the vacuum chamber 20 having an airtight structure with an inert gas such as nitrogen gas.
 図2はプレス成形装置10の制御系の構成を示すブロック図である。図2に示されるように、プレス成形装置10の制御装置300は、上記炉内ハンド機構50、センタリング・スクレーバ機構60、ヒータユニット70、圧力発生手段80、上型圧力分配手段100、スカラ型ロボット120、真空ポンプユニット170及び高圧空気用の電磁弁V21~V25、真空用の電磁弁V1~V16,V18,V26、排気用の電磁弁V17,V27を制御する。 FIG. 2 is a block diagram showing the configuration of the control system of the press molding apparatus 10. As shown in FIG. 2, the control device 300 of the press molding apparatus 10 includes the above-mentioned in-furnace hand mechanism 50, centering / scraper mechanism 60, heater unit 70, pressure generating means 80, upper mold pressure distributing means 100, SCARA robot. 120, the vacuum pump unit 170 and the high pressure air solenoid valves V21 to V25, the vacuum solenoid valves V1 to V16, V18 and V26, and the exhaust solenoid valves V17 and V27 are controlled.
 また、制御装置300は、上記以外にも高圧空気供給ユニット310、ゲート弁開閉機構320、置換室内圧力調整ユニット330、チャンバ内圧力調整ユニット340、窒素供給ユニット350、窒素冷却ユニット360、下型圧力付与手段370を制御する。 In addition to the above, the control device 300 includes a high-pressure air supply unit 310, a gate valve opening / closing mechanism 320, a replacement chamber pressure adjustment unit 330, a chamber internal pressure adjustment unit 340, a nitrogen supply unit 350, a nitrogen cooling unit 360, a lower mold pressure. The giving means 370 is controlled.
 高圧空気供給ユニット310は、空気圧縮機を有しており、空気配管190に高圧空気を供給している。ゲート弁開閉機構320は、電磁弁V21の開弁により高圧空気が供給されると、ゲート弁160を上動させて置換室130の連通路132を開くように駆動するエアシリンダ322を有する。 The high-pressure air supply unit 310 has an air compressor and supplies high-pressure air to the air pipe 190. The gate valve opening / closing mechanism 320 includes an air cylinder 322 that drives the gate valve 160 to move up and open the communication passage 132 of the replacement chamber 130 when high-pressure air is supplied by opening the electromagnetic valve V21.
 また、置換室内圧力調整ユニット330は、電磁弁V9の開弁により真空ポンプユニット170で生成された真空を置換室130に導入し、ガラス素材の搬入時に空気がチャンバ20内に進入しないように作動する。 Further, the replacement chamber pressure adjusting unit 330 introduces the vacuum generated by the vacuum pump unit 170 by opening the electromagnetic valve V9 into the replacement chamber 130, and operates so that air does not enter the chamber 20 when the glass material is carried in. To do.
 窒素供給ユニット350は、ガラス素材をプレス成形する際に電磁弁V14の開弁によりチャンバ20内に窒素ガスを供給する。 The nitrogen supply unit 350 supplies nitrogen gas into the chamber 20 by opening the electromagnetic valve V14 when the glass material is press-molded.
 窒素冷却ユニット360は、ガラス素材のプレス成形時に電磁弁V19,V20の開弁により成型用金型ユニット40の上型及び下型を冷却する低温の窒素ガスを供給する。 The nitrogen cooling unit 360 supplies low-temperature nitrogen gas that cools the upper mold and the lower mold of the molding mold unit 40 by opening the electromagnetic valves V19 and V20 when the glass material is press-molded.
 下型圧力付与手段370は、圧力発生手段80による圧力によって胴型42を上動させてプレス成形する際に各下型44を上方に加圧する下型加圧調整機構よりなる。下型圧力付与手段370は、後述するように、下部梃子手段と、エアシリンダからなる下部シリンダとを有しており、下型44に作用する圧力に応じた加圧を発生するように空気圧が制御される。 The lower mold pressure applying means 370 is composed of a lower mold pressure adjusting mechanism that pressurizes each lower mold 44 upward when the body mold 42 is moved upward by the pressure generated by the pressure generating means 80 to perform press molding. As will be described later, the lower mold pressure applying means 370 has a lower lever means and a lower cylinder made of an air cylinder, and the air pressure is generated so as to generate pressurization corresponding to the pressure acting on the lower mold 44. Be controlled.
 図3A及び図3Bはプレス成形装置10において行なわれる各工程の手順を示す図である。ここで、図3A及び図3Bを参照して光学素子の製造方法について説明する。尚、前回の最終工程では、シフタ移動手段150の水平移動台152が移動して置換室130を開放すると共に、シフタ移動手段150のエアシリンダ154によりシフタ140を真空チャンバ20から置換室130に移動させている。 FIGS. 3A and 3B are diagrams showing the procedure of each process performed in the press molding apparatus 10. Here, a method of manufacturing an optical element will be described with reference to FIGS. 3A and 3B. In the last final process, the horizontal moving table 152 of the shifter moving means 150 moves to open the replacement chamber 130, and the shifter 140 is moved from the vacuum chamber 20 to the replacement chamber 130 by the air cylinder 154 of the shifter moving means 150. I am letting.
 図3Aに示す手順1では、シフタ移動手段150により置換室130を閉じる。次いで、真空ポンプユニット170を起動すると共に、電磁弁V9を開弁して置換室130を介して真空チャンバ20内を真空にする。 In the procedure 1 shown in FIG. 3A, the replacement chamber 130 is closed by the shifter moving means 150. Next, the vacuum pump unit 170 is started, and the electromagnetic valve V9 is opened to evacuate the vacuum chamber 20 through the replacement chamber 130.
 手順2では、電磁弁V14を開弁させて真空になった真空チャンバ20内に窒素ガスを供給する。ゲート弁160を閉じて置換室130と真空チャンバ20との間を遮断する。 In step 2, nitrogen gas is supplied into the vacuum chamber 20 that is evacuated by opening the solenoid valve V14. The gate valve 160 is closed to block between the replacement chamber 130 and the vacuum chamber 20.
 手順3では、複数のガラス素材が載置されたパレット112をストッカ室30内のパレット台110に搬入する。尚、このパレット搬入は上記手順2と同時に行なっても良い。 In step 3, the pallet 112 on which a plurality of glass materials are placed is carried into the pallet stand 110 in the stocker chamber 30. This pallet loading may be performed simultaneously with the procedure 2.
 手順4では、ストッカ室30内のスカラ型ロボット120を駆動して真空チャック122をパレット112上に移動させ、電磁弁11を開弁させてパレット112上のガラス素材を吸着する。 In step 4, the SCARA robot 120 in the stocker chamber 30 is driven to move the vacuum chuck 122 onto the pallet 112, and the electromagnetic valve 11 is opened to adsorb the glass material on the pallet 112.
 手順5では、置換室130を開放すると共に、スカラ型ロボット120のアーム124を旋回させて真空チャック122を置換室130内に収納されたシフタ140の上方に移動させる。そして、電磁弁V11を閉弁させて真空チャック122による吸着を解除してガラス素材をシフタ140上の所定位置(本実施の形態では、4箇所)に載置する。 In step 5, the replacement chamber 130 is opened and the arm 124 of the SCARA robot 120 is turned to move the vacuum chuck 122 above the shifter 140 housed in the replacement chamber 130. Then, the electromagnetic valve V11 is closed to release the suction by the vacuum chuck 122, and the glass material is placed at predetermined positions (four locations in the present embodiment) on the shifter 140.
 手順6では、置換室130を密閉させ、電磁弁V9を開弁させて置換室130を真空にする。次いで、電磁弁V10を開弁させて真空チャンバ20内の窒素を置換室130に導入し、置換室130を窒素に置換すると共に、真空チャンバ20の圧力と置換室130の圧力とを均圧化する。 In step 6, the replacement chamber 130 is sealed, the solenoid valve V9 is opened, and the replacement chamber 130 is evacuated. Next, the solenoid valve V10 is opened to introduce nitrogen in the vacuum chamber 20 into the replacement chamber 130, to replace the replacement chamber 130 with nitrogen, and to equalize the pressure in the vacuum chamber 20 and the pressure in the replacement chamber 130. To do.
 手順7では、電磁弁V21を開弁して空気圧の供給によりゲート弁160を開く。次いで、シフタ移動手段150の水平移動台152及びエアシリンダ154を作動させてシフタ140を真空チャンバ20の内部に水平移動させる。 In step 7, the solenoid valve V21 is opened and the gate valve 160 is opened by supplying air pressure. Next, the horizontal moving table 152 and the air cylinder 154 of the shifter moving means 150 are operated to move the shifter 140 horizontally into the vacuum chamber 20.
 手順8では、炉内ハンド機構50を駆動して吸着ハンド52をシフタ140の上方に移動させる。吸着ハンド52は、4個の吸着パッドが設けられており、電磁弁V1~V4の開弁によりシフタ140上の4個のガラス素材を同時に吸着する。このとき、電磁弁V25の開弁によりリフタユニット250が駆動されてシフタ140のガラス素材を吸着ハンド52に接近するようにシフタ140を上昇させる。 In step 8, the in-furnace hand mechanism 50 is driven to move the suction hand 52 above the shifter 140. The suction hand 52 is provided with four suction pads, and simultaneously sucks the four glass materials on the shifter 140 by opening the electromagnetic valves V1 to V4. At this time, the lifter unit 250 is driven by opening the electromagnetic valve V25, and the shifter 140 is raised so that the glass material of the shifter 140 approaches the suction hand 52.
 手順9では、圧力発生手段80の昇圧シリンダ81により胴型42を上動させて胴型42の側面開口部の高さ位置を吸着ハンド52が挿入するのに最適な位置に調整する。また、吸着ハンド52が胴型42の内部に挿入されると、吸着ハンド52の下面側に吸着された各ガラス素材を各下型の上端に載置するのに適した高さ位置となるように胴型42の高さを調整する。 In step 9, the cylinder mold 42 is moved up by the pressure-increasing cylinder 81 of the pressure generating means 80, and the height position of the side opening of the cylinder mold 42 is adjusted to an optimum position for the suction hand 52 to be inserted. Further, when the suction hand 52 is inserted into the body mold 42, the glass material sucked on the lower surface side of the suction hand 52 is at a height position suitable for placing on the upper end of each lower mold. The height of the body mold 42 is adjusted.
 手順10では、胴型42の内部に挿入された炉内ハンド機構50の吸着ハンド52を、電磁弁V1~V4を閉弁して4個のガラス素材に対する吸着を解除する。これにより、吸着ハンド52によって搬入された各ガラス素材が胴型42内の下型44に載置される。このとき、上型46及び下型44は、予め例えば、ガラス粘度で1016dPa・s程度の温度に加温されている。 In the procedure 10, the suction hands 52 of the in-furnace hand mechanism 50 inserted into the body mold 42 are closed by the electromagnetic valves V1 to V4 to release the suction to the four glass materials. Thereby, each glass material carried in by the suction hand 52 is placed on the lower mold 44 in the body mold 42. At this time, the upper mold 46 and the lower mold 44 are preheated to a temperature of about 10 16 dPa · s, for example, in terms of glass viscosity.
 手順11では、炉内ハンド機構50の吸着ハンド52をシフタ140側に戻す。 In step 11, the suction hand 52 of the in-furnace hand mechanism 50 is returned to the shifter 140 side.
 手順12では、電磁弁V15,V16,V26を開弁させて、センタリング・スクレーバ機構60を成型用金型ユニット40の胴型42内に側方から挿入させると共に、下型44に載置された各ガラス素材の載置位置を下型44の中心(軸線上)にセンタリングする。 In step 12, the solenoid valves V15, V16, V26 are opened, and the centering / scraper mechanism 60 is inserted into the body mold 42 of the molding die unit 40 from the side and placed on the lower mold 44. The placement position of each glass material is centered on the center (on the axis) of the lower mold 44.
 手順13では、センタリング・スクレーバ機構60を成型用金型ユニット40から離脱させる。 In step 13, the centering / scraper mechanism 60 is detached from the molding die unit 40.
 手順14では、電磁弁V18を開弁させて、加熱温度が900°Cに設定されたヒータユニット70を成型用金型ユニット40の胴型42内に側方から挿入させると共に、下型44に載置されたガラス素材を加熱する。尚、胴型42は別の加熱手段により加熱されており、下型44、上型46は、胴型42からの熱伝導により間接的に加熱される。 In step 14, the electromagnetic valve V18 is opened, and the heater unit 70 whose heating temperature is set to 900 ° C. is inserted into the body mold 42 of the molding die unit 40 from the side, and the lower mold 44 is attached to the lower mold 44. The mounted glass material is heated. The body mold 42 is heated by another heating means, and the lower mold 44 and the upper mold 46 are indirectly heated by heat conduction from the body mold 42.
 手順15では、ヒータユニット70により加熱されたガラス素材の粘度が例えば、10dPa・sになると、ヒータユニット70による加熱をやめてヒータユニット70を成型用金型ユニット40の胴型から離脱させる。 In step 15, when the viscosity of the glass material heated by the heater unit 70 becomes, for example, 10 7 dPa · s, the heating by the heater unit 70 is stopped and the heater unit 70 is detached from the body mold of the molding die unit 40.
 手順16では、圧力発生手段80の昇圧シリンダ81を作動させて成型用金型ユニット40の胴型42及び下型44を上昇させる。これにより、ガラス素材は、上型46と下型44との間でプレスされる。上型46は、上下方向の軸線に対して調芯手段90の球面軸受により調芯可能に支持されている。 In step 16, the pressure-increasing cylinder 81 of the pressure generating means 80 is operated to raise the body mold 42 and the lower mold 44 of the molding die unit 40. Thereby, the glass material is pressed between the upper mold 46 and the lower mold 44. The upper mold 46 is supported by a spherical bearing of the alignment means 90 so as to be aligned with respect to the vertical axis.
 手順17では、上記プレス工程時において、上型46の軸線が調芯手段90の球面軸受により下型44の軸線と一致するように調芯される。 In step 17, during the pressing step, the axis of the upper mold 46 is aligned by the spherical bearing of the aligning means 90 so that it matches the axis of the lower mold 44.
 手順18では、下型44と上型46との間でガラス素材が所定時間プレスされて光学素子(非球面レンズ)に成形される。 In step 18, the glass material is pressed between the lower mold 44 and the upper mold 46 for a predetermined time to be molded into an optical element (aspheric lens).
 手順19では、プレス圧が上型圧力分配手段100の上部梃子手段102を介して上部エアシリンダ104に伝達されてエアシリンダ104に圧縮荷重が作用し、上部エアシリンダ104内のエア圧上昇によって上型46の圧力を緩衝する。また、三方弁V30の切り替えによって上部エアシリンダ104内のエア圧を上型46に対するプレス圧力の増減に応じて制御する。また、胴型42を上方に押圧する昇圧シリンダ81のプレス圧力が一定となるように制御する。 In step 19, the press pressure is transmitted to the upper air cylinder 104 via the upper lever means 102 of the upper die pressure distribution means 100, and a compression load acts on the air cylinder 104, and the upper pressure is increased by an increase in air pressure in the upper air cylinder 104. The pressure in the mold 46 is buffered. Further, the air pressure in the upper air cylinder 104 is controlled in accordance with the increase / decrease of the press pressure with respect to the upper mold 46 by switching the three-way valve V30. In addition, the press pressure of the booster cylinder 81 that presses the body mold 42 upward is controlled to be constant.
 図3Bに示す手順20では、電磁弁V19,V20を開弁し、下型44及び上型46に冷却窒素を供給して下型44及び上型46と共に成形された光学素子を冷却する。 3B, the solenoid valves V19 and V20 are opened, cooling nitrogen is supplied to the lower mold 44 and the upper mold 46, and the optical element molded together with the lower mold 44 and the upper mold 46 is cooled.
 手順21では、冷却によってガラス素材が収縮し、ガラス素材にかかる圧力が抜けてくるので、下型圧力付与手段370の下部シリンダ610(図10参照)を作動させて下型44を僅かに上昇させる。これにより、光学素子の形状を安定化させることができる。 In step 21, since the glass material contracts due to cooling and the pressure applied to the glass material is released, the lower cylinder 44 of the lower mold pressure applying unit 370 (see FIG. 10) is operated to slightly raise the lower mold 44. . Thereby, the shape of the optical element can be stabilized.
 手順22では、電磁弁V15,V16,V26を開弁させて、センタリング・スクレーバ機構60を成型用金型ユニット40の胴型42内に側方から挿入させる。このとき、センタリング・スクレーバ機構60の挿入高さ位置は、光学素子の周縁部の上方に設定される。 In step 22, the solenoid valves V15, V16, V26 are opened, and the centering / scraper mechanism 60 is inserted into the body mold 42 of the molding die unit 40 from the side. At this time, the insertion height position of the centering / scraper mechanism 60 is set above the peripheral edge of the optical element.
 手順23では、下型44及び上型46の温度が所定温度に低下すると、下型圧力付与手段370の下部シリンダ610(図10参照)を作動させて成型用金型ユニット40の下型44を降下させる。 In step 23, when the temperature of the lower mold 44 and the upper mold 46 is lowered to a predetermined temperature, the lower cylinder 610 (see FIG. 10) of the lower mold pressure applying means 370 is operated to move the lower mold 44 of the mold unit 40 for molding. Lower.
 手順24では、圧力発生手段80の昇圧シリンダ81を作動させ胴型42とセンタリング・スクレーバ機構60を降下させる。これにより、下型44は、上型46から離間し、上型46に付着した光学素子(成形品)は、センタリング・スクレーバ機構60により上型46から離間し、下型44に載置する。 In step 24, the booster cylinder 81 of the pressure generating means 80 is operated to lower the body mold 42 and the centering / scraper mechanism 60. Accordingly, the lower mold 44 is separated from the upper mold 46, and the optical element (molded product) attached to the upper mold 46 is separated from the upper mold 46 by the centering / scraper mechanism 60 and placed on the lower mold 44.
 手順25では、センタリング・スクレーバ機構60を成型用金型ユニット40から離脱させる。 In step 25, the centering / scraper mechanism 60 is detached from the molding die unit 40.
 手順26では、炉内ハンド機構50の吸着ハンド52を成型用金型ユニット40の胴型42内に挿入させ、圧力発生手段80の昇圧シリンダ81により胴型42を上下動させて下型44の高さ位置を吸着ハンド52がプレスされた光学素子を吸着するのに最適な位置に調整する。次いで、電磁弁V1~V4を開弁してプレス成形された4個の光学素子を吸着ハンド52の各吸着パッド53に吸着する。そして、吸着ハンド52をシフタ140側に移動させる。電磁弁25の開弁によりリフタユニット250が駆動されてシフタ140の上面を吸着ハンド52に吸着された光学素子に接近させる。 In step 26, the suction hand 52 of the in-furnace hand mechanism 50 is inserted into the body mold 42 of the molding die unit 40, and the body mold 42 is moved up and down by the pressure-increasing cylinder 81 of the pressure generating means 80. The height position is adjusted to an optimal position for sucking the pressed optical element. Next, the electromagnetic valves V 1 to V 4 are opened, and the four optical elements that are press-molded are sucked to the suction pads 53 of the suction hand 52. Then, the suction hand 52 is moved to the shifter 140 side. When the electromagnetic valve 25 is opened, the lifter unit 250 is driven to bring the upper surface of the shifter 140 closer to the optical element sucked by the suction hand 52.
 手順27では、電磁弁V1~V4を閉弁して4個の光学素子に対する吸着を解除する。
これにより、吸着ハンド52によって移送された各光学素子がシフタ140に載置される。
In step 27, the electromagnetic valves V1 to V4 are closed to release the adsorption to the four optical elements.
Accordingly, each optical element transferred by the suction hand 52 is placed on the shifter 140.
 手順28では、シフタ移動手段150のエアシリンダ154によりシフタ140を摺動させて置換室130に戻し、ゲート弁160を閉止動作させて置換室130と真空チャンバ20との間の連通路132を遮蔽する。 In step 28, the shifter 140 is slid by the air cylinder 154 of the shifter moving means 150 and returned to the replacement chamber 130, and the gate valve 160 is closed to block the communication path 132 between the replacement chamber 130 and the vacuum chamber 20. To do.
 手順29では、置換室130を開放して空気を置換室130に導入する。 In step 29, the replacement chamber 130 is opened and air is introduced into the replacement chamber 130.
 手順30では、スカラ型ロボット120を駆動して真空チャック122を置換室130のシフタ140の上方に移動させ、電磁弁V11を開弁してシフタ140上の4個の光学素子(成型品)を真空チャック122により吸着する。 In step 30, the SCARA robot 120 is driven to move the vacuum chuck 122 above the shifter 140 in the replacement chamber 130, and the electromagnetic valve V11 is opened, so that the four optical elements (molded products) on the shifter 140 are opened. Adsorbed by the vacuum chuck 122.
 手順31では、スカラ型ロボット120を駆動して真空チャック122をパレット112の上方に移動させ、電磁弁V11を閉弁させて各光学素子に対する吸着を解除し、各光学素子をパレット112に載置する。これで、プレス成形装置10による光学素子のプレス成形の製造工程が終了する。プレス成形装置10においては、上記手順1~31を繰り返すことにより、光学素子を効率良く量産することが可能になる。 In step 31, the SCARA robot 120 is driven to move the vacuum chuck 122 above the pallet 112, the electromagnetic valve V <b> 11 is closed to release the adsorption to each optical element, and each optical element is placed on the pallet 112. To do. This completes the press molding manufacturing process of the optical element by the press molding apparatus 10. In the press molding apparatus 10, it is possible to efficiently mass-produce optical elements by repeating the above steps 1 to 31.
 次に、上記のように光学素子をプレス成形するプレス成形装置10の各部の構成について説明する。
〔成型用金型ユニット40の構成〕
 図4は成型用金型ユニット40、調芯手段90、上型圧力分配手段100の構成を示す縦断面図である。図4に示されるように、成型用金型ユニット40は、胴型42により下型44と、上型46とをガイドするように構成されている。胴型42は、下部に4本の下型44が挿通される4つの下部ガイド孔42aを有し、上部に4本の上型46が挿通される4つの上部ガイド孔42bを有する。また、胴型42は、中央部に下型44の上端(下成形部)44aと上型46の下端(上成形部)46aが挿入される成形空間42cが設けられている。この成形空間42cは、胴型42の左右側面に開口する42dに連通されており、左側の開口42dから炉内ハンド機構50の吸着ハンド52またはヒータユニット70が挿入され、右側の開口42dからセンタリング・スクレーバ機構60が挿入される。
Next, the structure of each part of the press molding apparatus 10 which press-molds an optical element as mentioned above is demonstrated.
[Configuration of Mold Unit 40 for Molding]
FIG. 4 is a longitudinal sectional view showing the configuration of the molding die unit 40, the alignment means 90, and the upper mold pressure distribution means 100. As shown in FIG. 4, the molding die unit 40 is configured to guide the lower die 44 and the upper die 46 by the body die 42. The body mold 42 has four lower guide holes 42a through which four lower molds 44 are inserted, and four upper guide holes 42b through which four upper molds 46 are inserted. Further, the body mold 42 is provided with a molding space 42c into which the upper end (lower molding part) 44a of the lower mold 44 and the lower end (upper molding part) 46a of the upper mold 46 are inserted at the center. The molding space 42c communicates with 42d that opens on the left and right side surfaces of the body mold 42. The suction hand 52 or the heater unit 70 of the in-furnace hand mechanism 50 is inserted from the left opening 42d, and the centering is performed from the right opening 42d. -The scraper mechanism 60 is inserted.
 図5に示されるように、胴型42の下部ガイド孔42a及び上部ガイド孔42bは、X,Y方向に2つずつ並設されており、軸線からどの方向にも対称となるように配置されている。これにより、4本の下型44及び上型46は、夫々がプレス成形時に発生する熱が均等に伝導することになり、温度による各型のばらつきが抑制される。 As shown in FIG. 5, the lower guide hole 42 a and the upper guide hole 42 b of the body mold 42 are arranged in parallel in the X and Y directions, and are arranged so as to be symmetrical in any direction from the axis. ing. As a result, the four lower molds 44 and the upper mold 46 each conduct heat uniformly generated during press molding, and variations in each mold due to temperature are suppressed.
 また、胴型42の上下面には、冷却用窒素ガスを通すための冷却用溝48が設けられている。プレス成形時には、冷却用溝48に冷却窒素ガスが供給されることで、胴型42が冷却される。 Further, a cooling groove 48 for allowing cooling nitrogen gas to pass therethrough is provided on the upper and lower surfaces of the body mold 42. At the time of press molding, the cylinder die 42 is cooled by supplying cooling nitrogen gas to the cooling groove 48.
 図4に戻って説明する。下型44は、超硬合金からなる丸棒材を加工したものであり、上端44aに光学素子をプレスするための成形用凹部が形成されている。この成形用凹部には、前述したガラス素材(例えば、ガラス玉)が載置される。尚、成形用凹部の形状は、成形される非球面レンズの表面形状に応じたR形状に加工されている。 Referring back to FIG. The lower mold 44 is obtained by processing a round bar made of a cemented carbide, and has a molding recess for pressing an optical element on an upper end 44a. The glass material (for example, glass ball) described above is placed in the molding recess. In addition, the shape of the concave portion for molding is processed into an R shape corresponding to the surface shape of the aspheric lens to be molded.
 また、下型44は、下部に半径方向に突出する大径部44bを有する。 The lower mold 44 has a large-diameter portion 44b protruding in the radial direction at the lower portion.
 胴型42の下方に配置された胴型ベースプレート437の上部には、断熱材438、底板439が積層されており、底板439上には、胴型42が締結されている。また、底板439には、冷却窒素ガスを流した際の窒素ガスを逃がすための溝(図4中隠れて見えない)が設けられている。 A heat insulating material 438 and a bottom plate 439 are laminated on the upper portion of the barrel base plate 437 disposed below the barrel mold 42, and the barrel mold 42 is fastened on the bottom plate 439. Further, the bottom plate 439 is provided with a groove (hidden in FIG. 4 and not visible) for allowing the nitrogen gas to escape when the cooling nitrogen gas flows.
 胴型42の底部42gには切欠部42hが形成され、切欠部42h内にスペーサ部材400がそれぞれ配されている。各スペーサ部材400の上に各下型44が載置されている。各スペーサ部材400は、各下型44の軸線方向の寸法精度のバラツキを調整するものである。すなわち、スペーサ部材400は、各下型44の大径部44bの下面に当接しており、各下型44の成形面の高さが一致するように構成される。 A notch 42h is formed in the bottom 42g of the body mold 42, and a spacer member 400 is disposed in the notch 42h. Each lower mold 44 is placed on each spacer member 400. Each spacer member 400 adjusts variation in dimensional accuracy in the axial direction of each lower mold 44. That is, the spacer member 400 is in contact with the lower surface of the large-diameter portion 44b of each lower mold 44, and is configured such that the molding surface height of each lower mold 44 matches.
 真空チャンバ20の底板20aには4つの貫通孔603aが形成され、各下型加圧ロッド602が各貫通孔603aに挿通されている。各下型加圧ロッド602は、プレス成形時に真空チャンバ20の底板20aの下面側に配された下型圧力付与手段370(図10参照)によって上方に加圧される。 Four through holes 603a are formed in the bottom plate 20a of the vacuum chamber 20, and each lower mold pressure rod 602 is inserted into each through hole 603a. Each lower mold pressure rod 602 is pressurized upward by lower mold pressure applying means 370 (see FIG. 10) disposed on the lower surface side of the bottom plate 20a of the vacuum chamber 20 during press molding.
 一方、胴型ベースプレート437、断熱材438、底板439の中央には、冷却用溝48に冷却用窒素ガスを供給する通路49が設けられている。この通路49には、冷却窒素ガスを供給する窒素供給管435が接続されており、窒素供給管435には電磁弁V19が配されている。 On the other hand, a passage 49 for supplying cooling nitrogen gas to the cooling groove 48 is provided in the center of the body-type base plate 437, the heat insulating material 438, and the bottom plate 439. A nitrogen supply pipe 435 that supplies cooling nitrogen gas is connected to the passage 49, and an electromagnetic valve V <b> 19 is disposed in the nitrogen supply pipe 435.
 また、上型46をガイドする胴型42の上面にも冷却用溝48が設けられており、この冷却用溝48には窒素供給管436からの冷却用窒素ガスが供給され、窒素供給管436には電磁弁V20が配されている。従って、胴型42は、上下面に形成された冷却用溝40に冷却用窒素ガスが供給されて冷却される。
〔調芯手段90の構成〕
 次に上型46の調芯手段90の構成について図6を参照して説明する。
A cooling groove 48 is also provided on the upper surface of the body mold 42 that guides the upper mold 46. The cooling groove 48 is supplied with cooling nitrogen gas from a nitrogen supply pipe 436, and the nitrogen supply pipe 436. Is provided with a solenoid valve V20. Therefore, the body mold 42 is cooled by supplying the cooling nitrogen gas to the cooling grooves 40 formed on the upper and lower surfaces.
[Configuration of alignment means 90]
Next, the configuration of the alignment means 90 of the upper mold 46 will be described with reference to FIG.
 図6に示されるように、調芯手段90は、上型46の上端を自在に揺動可能に支持する球面軸受92と、球面軸受92の外周を保持する軸受保持部材94とを有する。軸受保持部材94は、周縁部94aが真空チャンバ20の天板20bから吊り下げられた吊下部材312に載置されている。 As shown in FIG. 6, the alignment means 90 includes a spherical bearing 92 that supports the upper end of the upper mold 46 so as to freely swing, and a bearing holding member 94 that holds the outer periphery of the spherical bearing 92. The bearing holding member 94 is placed on a suspension member 312 having a peripheral edge portion 94 a suspended from the top plate 20 b of the vacuum chamber 20.
 上型46は、超硬合金からなる丸棒材を加工したものであり、下端46aに光学素子をプレスするための成形用凹部または成型用凸部が形成されている。尚、成形用凹部及び成型用凸部の形状は、成形される非球面レンズの表面形状に応じた曲面形状に加工されている。 The upper mold 46 is obtained by processing a round bar made of cemented carbide, and has a molding recess or molding projection for pressing the optical element at the lower end 46a. In addition, the shape of the molding concave portion and the molding convex portion is processed into a curved surface shape corresponding to the surface shape of the aspheric lens to be molded.
 また、上型46は、上端近傍に大径部46bが半径方向に突出しており、大径部46bの下方に延在する下部46cが胴型42の上部ガイド孔42bに挿通される。また、上型46は、大径部46bの上方に延在する上部46dを有しており、この上部46dが球面軸受92に挿通されてどの方向にも揺動自在に保持されている。 Further, in the upper mold 46, a large diameter portion 46b protrudes in the radial direction in the vicinity of the upper end, and a lower portion 46c extending below the large diameter portion 46b is inserted into the upper guide hole 42b of the trunk mold 42. The upper mold 46 has an upper portion 46d extending above the large-diameter portion 46b. The upper portion 46d is inserted into the spherical bearing 92 and is held so as to be swingable in any direction.
 さらに、上型46の上部46dの外周には、球面軸受92からの脱落を防止するストッパリング47が係止されている。また、上型46の上部46dの上端に開口する軸孔46eには、上部46dの外径より大径な頭部を有するリベット形状の圧力伝達部材49が挿入されている。この圧力伝達部材49は、超硬合金により形成されており、上型46に対する荷重を受けるため、変形あるいは摩耗する前に定期的に交換される。 Furthermore, a stopper ring 47 that prevents the spherical bearing 92 from falling off is engaged with the outer periphery of the upper portion 46d of the upper mold 46. In addition, a rivet-shaped pressure transmission member 49 having a head having a diameter larger than the outer diameter of the upper portion 46d is inserted into the shaft hole 46e opened at the upper end of the upper portion 46d of the upper mold 46. The pressure transmission member 49 is made of a cemented carbide and receives a load on the upper die 46, so that it is periodically replaced before being deformed or worn.
 球面軸受92は、上型46の上部46dの外周に嵌合する球体(内輪)95と、球体95の外周が摺動する球面凹部を有する球体受部(外輪)96とを有する。球体95は、球体受部96の球面凹部に対して隙間無く摺接しており、且つ摺動抵抗が軽減されている。
そのため、例えば、上型46の軸線が胴型42の上部ガイド孔42bに対してずれている場合、上型46の下部46cが半径方向の外力が上型46に作用すると、球体95は負荷の小さい方向に回動する。
The spherical bearing 92 includes a sphere (inner ring) 95 that fits on the outer periphery of the upper portion 46 d of the upper mold 46, and a sphere receiving portion (outer ring) 96 having a spherical concave portion on which the outer periphery of the sphere 95 slides. The spherical body 95 is in sliding contact with the spherical concave portion of the spherical body receiving portion 96 without any gap, and sliding resistance is reduced.
Therefore, for example, when the axis of the upper mold 46 is shifted with respect to the upper guide hole 42b of the body mold 42, when the lower force 46c of the upper mold 46 acts on the upper mold 46 in the radial direction, the sphere 95 is loaded. Rotate in a small direction.
 これにより、上型46は、軸線が胴型42の上部ガイド孔42bの軸線と一致するように調芯動作を行なうことができる。図6において、左側の上型46は、軸線に対して角度θ傾いた調芯動作中の状態を示しており、右側の上型46は、調芯完了した状態を示している。 Thereby, the upper mold 46 can perform the alignment operation so that the axis coincides with the axis of the upper guide hole 42b of the body mold 42. In FIG. 6, the upper mold 46 on the left shows a state during the alignment operation inclined at an angle θ with respect to the axis, and the upper mold 46 on the right shows a state where the alignment is completed.
 また、球体95と球体受部96の球面凹部とは、同じ曲率の球面同士が摺接するため、球体95はどの方向にも回動することが可能である。 Further, since the spherical surface of the spherical body 95 and the spherical concave portion of the spherical body receiving portion 96 are in sliding contact with each other, the spherical body 95 can be rotated in any direction.
 図7は胴型が上動したプレス成形状態を示す縦断面図である。図7に示されるように、上型46は、円形断面であり、その上端46dに圧力伝達部材49が装着されており、胴型42を上昇させた時、圧力伝達部材49の頭部中心でプレス圧を受けるようになっている。 FIG. 7 is a longitudinal sectional view showing a press-molded state in which the body mold is moved up. As shown in FIG. 7, the upper mold 46 has a circular cross section, and a pressure transmission member 49 is attached to the upper end 46 d of the upper mold 46. When the body mold 42 is raised, the upper mold 46 is centered on the head of the pressure transmission member 49. It comes to receive press pressure.
 吊下部材312は、軸受保持部材94を真空チャンバ20内で吊り下げるための部材であり、下端フック部312aは、軸受保持部材94の外周から鍔状に突出する周縁部94aに係合され、上端フック部312bは真空チャンバ20の天板20bに取り付けられた支持部材303と係合可能に構成されている。尚、支持部材303は、図4においては、省略している。 The suspension member 312 is a member for suspending the bearing holding member 94 in the vacuum chamber 20, and the lower end hook portion 312 a is engaged with a peripheral portion 94 a protruding like a bowl from the outer periphery of the bearing holding member 94, The upper end hook portion 312 b is configured to be able to engage with a support member 303 attached to the top plate 20 b of the vacuum chamber 20. The support member 303 is omitted in FIG.
 また、プレス成形時は、圧力発生手段80の昇圧シリンダ81の押圧力により胴型42が上動して下型44の上端44aが上型46の下端46aに当接しており、上型46を僅かに(例えば、数mm)上方に持ち上げることで、ガラス素材を加圧する。このとき、軸受保持部材94(上型支持部材)も上動しているので、軸受保持部材94の周縁部94aが下端フック部312aの上方に離間している。これにより、球面軸受92に対する拘束が解除された状態に変化し、球体95と球体受部96との調芯動作が阻害されないフリー動作状態になる。 At the time of press molding, the body mold 42 is moved upward by the pressing force of the pressure increasing cylinder 81 of the pressure generating means 80, and the upper end 44a of the lower mold 44 is in contact with the lower end 46a of the upper mold 46. The glass material is pressurized by lifting it slightly (for example, several mm). At this time, since the bearing holding member 94 (upper mold support member) is also moved upward, the peripheral edge portion 94a of the bearing holding member 94 is spaced above the lower end hook portion 312a. Thereby, it changes to the state where the restraint with respect to the spherical bearing 92 is released, and a free operation state in which the alignment operation between the sphere 95 and the sphere receiver 96 is not hindered.
 また、上型46を押圧する圧力は、胴型42の上面42fと上型46の大径部46bとの間に介在する環状のスペーサ91で受けるため、上型46の上端に螺入された圧力伝達部材49の頭部に当接する上型加圧ロッド302に伝達される。そのため、球面軸受92には、プレス圧が作用しない構成になっている。 Further, the pressure that presses the upper die 46 is received by the annular spacer 91 interposed between the upper surface 42f of the body die 42 and the large-diameter portion 46b of the upper die 46, so that it is screwed into the upper end of the upper die 46. The pressure is transmitted to the upper mold pressure rod 302 that contacts the head of the pressure transmission member 49. Therefore, the spherical bearing 92 is configured such that no press pressure acts on it.
 この状態において、上型46の軸線が胴型42の上部ガイド孔42bに対してずれていると、球面軸受92の回動動作によりスムーズな調芯動作が行える。このように、軸受保持部材94は胴型42が上下動する際に、上型46は球面軸受92の調芯作用により、自在に動くので胴型42の動きに合わせて軸線に対する傾きを自動補正できる。これにより、胴型42を上下動する際に、胴型42の軸線に対する上型46の傾きを防ぐことができ、胴型42の摺動時の「かじり」を防ぐことができる。 In this state, if the axis of the upper mold 46 is displaced with respect to the upper guide hole 42b of the body mold 42, a smooth alignment operation can be performed by the rotation of the spherical bearing 92. In this manner, the bearing holding member 94 is free to move by the aligning action of the spherical bearing 92 when the body mold 42 moves up and down, so that the inclination with respect to the axis is automatically corrected according to the movement of the body mold 42. it can. Accordingly, when the body mold 42 is moved up and down, it is possible to prevent the upper mold 46 from being inclined with respect to the axis of the body mold 42 and to prevent “galling” when the body mold 42 is slid.
 また、吊下部材312により上型46を保持した状態で胴型42を下降させ、成形品を取り出した後に、再びガラス素材Gを各下型44の上に載置して再び加圧成形する場合は、吊下部材312により上型46を保持した状態で胴型42を上昇させる。これにより、胴型42は、そのガイド孔が上型46をガイドとして摺接しながら、軸受保持部材94、球面軸受92を介して上昇する。このとき、上型46は動作せず、ほぼその場に固定される。この場合、4個の上型46と胴型42との「かじり」を生じさせることなく胴型42を摺動移動させる必要があるが、球面軸受92の前述した作用により可能となる。 Further, after the upper die 46 is held by the suspension member 312, the body die 42 is lowered and the molded product is taken out, and then the glass material G is again placed on each lower die 44 and pressure-molded again. In this case, the body mold 42 is raised with the upper mold 46 held by the suspension member 312. As a result, the body mold 42 is raised through the bearing holding member 94 and the spherical bearing 92 while the guide hole is in sliding contact with the upper mold 46 as a guide. At this time, the upper mold 46 does not operate, and is almost fixed in place. In this case, it is necessary to slide and move the barrel die 42 without causing “galling” between the four upper dies 46 and the barrel die 42, but this is possible by the action of the spherical bearing 92 described above.
 胴型42を引き下げた状態では、軸受保持部材94、球面軸受92によって、各上型46は、軸線に対する水平面を直交状態に保っている。この状態から胴型42を上昇させると、上型46、軸受保持部材94、球面軸受92が自重によって略その場に保持され、胴型42の上昇時に前述の直交状態が保たれるので、「かじり」を防ぐことができる。 
 このように、少なくとも、上型46の中心で胴型42との摺動面と平行なプレス圧が働くと共に、上記上型46の中心で引き下げ力が働くように、吊下部材312に吊り下げ支持される軸受保持部材94が調芯手段90の球面軸受92を介して連動される構成にしたので、ガラス素材Gに対してプレス成形する場合、及び成形された光学素子成形品を離型する際、上型46に対して加える胴型上下部材の力が、常に、上型46の中心を通るように作用させることができ、光学機能面が光軸に対して正確に位置する、精度の高い光学素子を、効率的に製造できる。
〔上型圧力分配手段(上型加圧調整機構)100の構成〕
 次に、上型圧力分配手段100の構成について図4を参照して説明する。上型圧力分配手段100は、真空チャンバ20の天板20b上面に設けられた上型46の加圧調整機構であり、各上型46の夫々に対応して配された4つの上部梃子手段102と、4つの上部シリンダ104とから構成されている。尚、図4においては、2つずつが示してある。
When the body mold 42 is pulled down, the upper mold 46 keeps the horizontal plane with respect to the axis orthogonal to each other by the bearing holding member 94 and the spherical bearing 92. When the body mold 42 is raised from this state, the upper mold 46, the bearing holding member 94, and the spherical bearing 92 are held substantially in place by their own weight, and the above-described orthogonal state is maintained when the body mold 42 is raised. It can prevent galling.
In this way, the suspension member 312 is suspended so that at least the pressing force parallel to the sliding surface with the body die 42 acts at the center of the upper die 46 and the pulling force acts at the center of the upper die 46. Since the bearing holding member 94 to be supported is configured to be interlocked via the spherical bearing 92 of the alignment means 90, when the glass material G is press-molded, and the molded optical element molded product is released. At this time, the force of the upper and lower body members applied to the upper die 46 can always be caused to pass through the center of the upper die 46, and the optical functional surface is accurately positioned with respect to the optical axis. High optical elements can be manufactured efficiently.
[Configuration of Upper Mold Pressure Distribution Unit (Upper Mold Pressure Adjustment Mechanism) 100]
Next, the structure of the upper mold | type pressure distribution means 100 is demonstrated with reference to FIG. The upper mold pressure distribution means 100 is a pressure adjustment mechanism for the upper mold 46 provided on the upper surface of the top plate 20 b of the vacuum chamber 20, and has four upper lever means 102 arranged corresponding to each of the upper molds 46. And four upper cylinders 104. In FIG. 4, two are shown.
 上部梃子手段102は、真空チャンバ20の天板20bにボルトなどにより締結される上部支点部材105と、上部支点部材105の上端に連結ピン105aを介して連結された上部揺動部材106とから構成されている。上部支点部材105は、天板20bの上面の取付け部材108に対して摺動可能に締結されている。そのため、上部揺動部材106に設けられた複数の孔106aに対する連結ピン105aの挿通位置を変更すると共に、取付け部材108に対する上部支点部材105の締結位置を変更することにより、上部梃子手段102の圧力を調整することが可能である。 The upper lever means 102 includes an upper fulcrum member 105 that is fastened to the top plate 20b of the vacuum chamber 20 by a bolt or the like, and an upper swing member 106 that is connected to the upper end of the upper fulcrum member 105 via a connecting pin 105a. Has been. The upper fulcrum member 105 is slidably fastened to the attachment member 108 on the upper surface of the top plate 20b. Therefore, by changing the insertion position of the connecting pin 105a with respect to the plurality of holes 106a provided in the upper swinging member 106 and changing the fastening position of the upper fulcrum member 105 with respect to the mounting member 108, the pressure of the upper lever means 102 is changed. Can be adjusted.
 真空チャンバ20の天板20bを貫通するように上下方向に延在する上型加圧ロッド302は、上端が連結ピン109を介して上部揺動部材106の一端に連結されている。また、上部揺動部材106の他端は、連結ピン107を介して上部シリンダ104のピストンロッド104aに連結されている。そのため、前述したプレス成形時に、上型46が上方に押圧されると、その上動による圧力が上型加圧ロッド302を介して上部揺動部材106に伝達され、上部支点部材105を中心に上部揺動部材106が揺動して上部シリンダ104のピストンロッド104aを圧縮方向に駆動する。 The upper mold pressure rod 302 extending in the vertical direction so as to penetrate the top plate 20 b of the vacuum chamber 20 has an upper end connected to one end of the upper swinging member 106 via a connection pin 109. The other end of the upper swinging member 106 is connected to the piston rod 104 a of the upper cylinder 104 through a connecting pin 107. Therefore, when the upper mold 46 is pressed upward during the press molding described above, the pressure due to the upward movement is transmitted to the upper swing member 106 via the upper mold pressure rod 302, and the upper fulcrum member 105 is centered. The upper swing member 106 swings to drive the piston rod 104a of the upper cylinder 104 in the compression direction.
 上部シリンダ104は、エアシリンダからなり、シリンダ内部には高圧空気が充填されている。そのため、圧縮荷重がピストンロッド104aに印加されると、ピストンロッド104aが下方に摺動すると共に、空気が圧縮されてピストンロッド104aを上方に押圧する圧力が増大する。この圧力は、上部揺動部材106と上部支点部材105との連結位置によって決まる連結ピン107,105a,109の各距離に応じた比率によって増大される。 The upper cylinder 104 is an air cylinder, and the cylinder is filled with high-pressure air. Therefore, when a compressive load is applied to the piston rod 104a, the piston rod 104a slides downward, and the pressure by which the air is compressed and pushes the piston rod 104a upward increases. This pressure is increased by a ratio corresponding to each distance of the connecting pins 107, 105a, 109 determined by the connecting position of the upper swing member 106 and the upper fulcrum member 105.
 そのため、上部シリンダ104で発生した圧力は、上部梃子手段102によって増大されて上型加圧ロッド302を介して上型46に伝達される。これにより、上型46は、下型44により上方に押圧される圧力を受けると共に、上部シリンダ104で発生した圧力によって下方に押圧され、両方向の圧力が釣り合った安定状態に保持される。よって、下型44と上型46との間でプレス成形されたガラス素材は、下型44の上端44aと上型46の下端46aの表面に隙間無く密着した状態で加圧され、上端44aと下端46aとの間に形成された空間形状に応じた非球面レンズに成形される。 Therefore, the pressure generated in the upper cylinder 104 is increased by the upper lever means 102 and transmitted to the upper mold 46 via the upper mold pressure rod 302. As a result, the upper die 46 receives pressure pressed upward by the lower die 44 and is pressed downward by the pressure generated in the upper cylinder 104, and is held in a stable state in which the pressures in both directions are balanced. Therefore, the glass material press-formed between the lower mold 44 and the upper mold 46 is pressed in a state in which the glass material is in close contact with the surfaces of the upper end 44a of the lower mold 44 and the lower end 46a of the upper mold 46, and the upper end 44a It is molded into an aspheric lens according to the space shape formed between the lower end 46a.
 この場合に、圧力発生手段80の押圧力(例えば、総荷重を19.6kN)を各上型46に均等に4.9kNの荷重を作用させるように構成することが望ましく、各上型46への分布荷重のばらつきが生じると4個の成形品(光学素子)の品質(例えば押圧によるレンズ肉厚のばらつきや、形状、精度のばらつき)への影響を生ずる。また、4つの各組の下型44、上型46、上型加圧ロッド302等の寸法上のばらつきも当然有り、これにより圧力発生手段80の押圧力による各型の押切りストロークに差が生じる。 In this case, it is desirable that the pressing force of the pressure generating means 80 (for example, the total load is 19.6 kN) is applied to each upper mold 46 equally so that a load of 4.9 kN is applied to each upper mold 46. If there is a variation in the distribution load, the quality of the four molded products (optical elements) (for example, variation in lens thickness due to pressing, variation in shape and accuracy) is affected. In addition, there are naturally variations in the dimensions of the four lower molds 44, the upper mold 46, the upper mold pressure rod 302, and the like, so that there is a difference in the pressing stroke of each mold due to the pressing force of the pressure generating means 80. Arise.
 ガラス材料を加熱圧力して高精度光学素子を成形するためには、各上型46に高い圧力(3.92~5.88kN)を作用させる必要がある。更に、ガラス材料を型内で所定温度(400~800℃)に加熱して、加圧成形後、成形品(光学素子)を取り出すプロセスを繰り返す方法の装置においては、成形品、型部材、胴型等の加熱・冷却を繰り返すために加熱-冷却-加熱サイクルの短縮を要求されるので、型装置全体の熱容量を小さくする必要があり、そのため装置の小型化を図る必要がある。 In order to mold a high-precision optical element by heating the glass material, it is necessary to apply a high pressure (3.92 to 5.88 kN) to each upper mold 46. Further, in an apparatus of a method of repeating a process of heating a glass material to a predetermined temperature (400 to 800 ° C.) in a mold, pressing and then taking out the molded product (optical element), the molded product, mold member, barrel Since it is required to shorten the heating-cooling-heating cycle in order to repeat heating and cooling of the mold and the like, it is necessary to reduce the heat capacity of the entire mold apparatus, and therefore it is necessary to reduce the size of the apparatus.
 更に、実施例の装置において、4つの型部材によって同じ成形品、例えば同一肉厚寸法のレンズを得るためには、図7に示す上型加圧ロッド302と上昇する胴型42によって上型46を押圧し、上型46の大径部46bの下端面に胴型42の上面42fを、スペーサ91を介して押し当て、胴型42の移動位置が規制されることにより成形品の肉厚寸法は定まる。 Further, in the apparatus of the embodiment, in order to obtain the same molded product, for example, a lens having the same thickness, by using the four mold members, the upper mold 46 is formed by the upper mold pressure rod 302 and the rising barrel mold 42 shown in FIG. , The upper surface 42f of the body mold 42 is pressed against the lower end surface of the large-diameter portion 46b of the upper mold 46 through the spacer 91, and the moving position of the body mold 42 is restricted, so that the wall thickness of the molded product Is determined.
 換言すれば、4つの上型46に全ての胴型42の上面42fがスペーサ91を介して突き当たることが4つの成形品の肉厚寸法を得ることの必要な条件である。そのためには4つの上型46の夫々に独立的に押圧力を作用させ、かつ各上型46に完全に胴型42の上面42fが突き当たり、更に、充分な押圧力を上型46に作用させる必要がある。 In other words, it is a necessary condition for obtaining the thickness dimensions of the four molded products that the upper surfaces 42f of all the barrel dies 42 abut against the four upper dies 46 via the spacers 91. For this purpose, a pressing force is applied independently to each of the four upper molds 46, and the upper surface 42 f of the barrel mold 42 completely abuts on each upper mold 46, and a sufficient pressing force is applied to the upper mold 46. There is a need.
 本実施の形態では、胴型42の押圧力を真空チャンバ20の天板20b上に配された上部シリンダ104によって発生した圧力を上部梃子手段102によって増大させて上型46に作用させることで、上型46に対する十分な押圧力を得ることができる。また、上型圧力分配手段100では、上部シリンダ104を真空チャンバ20の外側に配置することにより、真空チャンバ20を小型化することが可能になり、且つ上部梃子手段102を用いることにより上部シリンダ104自体の小型化が図れる。 In the present embodiment, the pressure generated by the upper cylinder 104 disposed on the top plate 20b of the vacuum chamber 20 is increased by the upper insulator means 102 to cause the upper mold 46 to act on the upper mold 46. A sufficient pressing force against the upper mold 46 can be obtained. Further, in the upper mold pressure distribution means 100, the vacuum chamber 20 can be reduced in size by disposing the upper cylinder 104 outside the vacuum chamber 20, and the upper cylinder 104 can be obtained by using the upper insulator means 102. The size of the device itself can be reduced.
 尚、本実施の形態では、エアシリンダを上部シリンダ104に適用した構成を例に挙げて説明したが、これに限らず、空気以外の気体を充填するシリンダ装置でも良いし、あるいは油圧シリンダの加圧手段(アキュムレータなど)を設けたものでも良い。 In the present embodiment, the configuration in which the air cylinder is applied to the upper cylinder 104 has been described as an example. However, the present invention is not limited to this, and a cylinder device that fills a gas other than air may be used. A pressure means (such as an accumulator) may be provided.
 圧力発生手段80の昇圧シリンダ81から押圧力が胴型42に作用すると、胴型42とともに上昇する下型44と上型46との間でプレス成形が開始される。この押圧動作により上型46を介して上型加圧ロッド302が押し上げられるとともに、上部梃子手段102の揺動部材106の一端が押し上げられる。これにより、上部シリンダ104が圧縮される。 When a pressing force is applied to the body mold 42 from the pressure increasing cylinder 81 of the pressure generating means 80, press molding is started between the lower mold 44 and the upper mold 46 that rise together with the body mold 42. By this pressing operation, the upper die pressure rod 302 is pushed up through the upper die 46 and one end of the swing member 106 of the upper lever means 102 is pushed up. Thereby, the upper cylinder 104 is compressed.
 プレスが進むにつれて胴型42のガイド孔42bに上型46が摺接しつつ移動し、上型46の大径部46bに胴型42の上面42fに載置されたスペーサ91が当接するまで、胴型2の移動が行なわれる。ここで、各4つの金型セットにおいて、その中の3つの上型46の大径部46bに、スペーサ91が当接した状態の時に、他の上型46の大径部46bに、スペーサ91が当接しない状態を考えてみる。この場合、圧力発生手段80からの押圧により上型加圧ロッド302を介して上部シリンダ104が圧縮されることにより前記未当接の上型46にもスペーサ91を押し当てることができる。これにより4つの上型46の全ての位置は常に定位置に保障できるので、全ての成形品の肉厚寸法を保てる。 As the press progresses, the upper die 46 moves while slidingly contacting the guide holes 42b of the barrel die 42, and until the spacer 91 placed on the upper surface 42f of the barrel die 42 contacts the large diameter portion 46b of the upper die 46. The mold 2 is moved. Here, in each of the four mold sets, when the spacers 91 are in contact with the large diameter portions 46b of the three upper molds 46, the spacers 91 are disposed on the large diameter portions 46b of the other upper molds 46. Let's consider the state in which does not contact. In this case, the spacer 91 can be pressed against the non-contact upper die 46 by compressing the upper cylinder 104 via the upper die pressure rod 302 by the pressure from the pressure generating means 80. As a result, all the positions of the four upper molds 46 can always be secured at a fixed position, so that the thickness of all the molded products can be maintained.
 次に、上型圧力分配手段100の具体例について説明する。上部シリンダ104に一本の最大荷重が568Nのエアシリンダを用いた場合、揺動部材106を支える上部支点部材105の位置を上型加圧ロッド302までの距離と上部シリンダ104までの距離の比が1:10になるように設定し各部材を組んだ構成について説明する。この結果、梃子の原理により上部シリンダ104の最大荷重の10倍の荷重に耐える(今回の場合は5.68kN)加圧調整機構を構成できた。これを各上型46に対応するように4個分組むことにより、4個取り用の加圧調整機構が完成する(全圧で22.7kNまで耐える)。よって、真空チャンバ20内に皿ばねを組み込む特許第2815037号公報の成形装置と比較して、大量の皿バネを組む必要がないためばね調整作業の必要が無く、また真空チャンバ20の外側に設置するのでスペースに余裕があり設計が容易になる。 Next, a specific example of the upper die pressure distribution means 100 will be described. When an air cylinder having a maximum load of 568 N is used as the upper cylinder 104, the position of the upper fulcrum member 105 that supports the swing member 106 is the ratio of the distance to the upper mold pressure rod 302 and the distance to the upper cylinder 104. Will be described in a configuration in which the members are assembled so as to be 1:10. As a result, a pressure adjusting mechanism that can withstand a load that is ten times the maximum load of the upper cylinder 104 (5.68 kN in this case) can be configured based on the principle of the lever. By assembling the four pieces so as to correspond to each upper mold 46, a pressure adjusting mechanism for taking four pieces is completed (withstands up to 22.7 kN at the total pressure). Therefore, compared with the molding apparatus disclosed in Japanese Patent No. 2815037 in which a disc spring is incorporated in the vacuum chamber 20, there is no need for a large amount of disc springs, so there is no need for spring adjustment work, and it is installed outside the vacuum chamber 20. As a result, there is enough space and the design becomes easy.
 また、上記皿ばねを用いた従来装置のように、上部シリンダ104を冷却する必要もないので、冷却水を供給するための配管等を設ける必要もない。すなわち、本実施の形態では、上部シリンダ104を冷却するための冷却機構を設けずに済み、且つ冷却水が漏れた場合の超硬合金により製作された上型46,下型44の腐食防止などの対策を講じる必要もない。 Further, unlike the conventional device using the disc spring, it is not necessary to cool the upper cylinder 104, so that it is not necessary to provide piping for supplying cooling water. That is, in this embodiment, it is not necessary to provide a cooling mechanism for cooling the upper cylinder 104, and corrosion prevention of the upper die 46 and the lower die 44 made of cemented carbide when cooling water leaks, etc. There is no need to take any measures.
 更に、上部シリンダ104に供給するエア圧力を変更するだけで、さまざまなプレス圧力に対応することが可能であり、特許第2815037号公報のように皿ばね部分を分解して調整する必要がなくなる。上部シリンダ104へのエア供給圧力を変更する代わりに上部支点部材105の位置を変更することでも、さまざまなプレス圧力に対応することが可能であり、この方法でも特許第2815037号公報よりも容易に調整が可能である。 Furthermore, it is possible to cope with various press pressures only by changing the air pressure supplied to the upper cylinder 104, and there is no need to disassemble and adjust the disc spring portion as in Japanese Patent No. 2815037. By changing the position of the upper fulcrum member 105 instead of changing the air supply pressure to the upper cylinder 104, it is possible to cope with various press pressures, and this method is also easier than in Japanese Patent No. 2815037. Adjustment is possible.
 この状態で、圧力発生手段80の昇圧シリンダ81の推力(4つの上型46に加わる総加圧力)を19.6kNに設定し、各上型加圧ロッド302間の圧力ばらつきを測定したところ、レンジで98Nのばらつきに納まる事を確認した。その後に、スペーサ91迄の高さのばらつきが、0.2mm以内に調整された型セットを用いて、成形条件の一つである19.6kNの胴型上昇圧力で、出来上がり寸法がφ10mm、中心肉厚が3.5mm、レンズ面の曲率が、それぞれ15、20mmであるビデオカメラ用のレンズを成形したところ、4台の型ともほぼ同時にかじり等の不都合を生じることなく、完全に押し切り、出来上がった成形品も各型で形成されるキャビ空間と完全に一致し、肉厚精度と光学的な面の傾きの許容値を十分に満足する成形品が得られた。
〔炉内ハンド機構50の構成〕
 次に、炉内ハンド機構50の構成について図8A、図8Bを参照して説明する。図8A、図8Bに示されるように、炉内ハンド機構50は、アーム54の先端に吸着ハンド52を水平に保持する水平保持機構56を有する。また、炉内ハンド機構50は、真空チャンバ20の天板20bの上面にエアシリンダ50aを有し、エアシリンダ50aによって回転軸50bを回転駆動する。回転軸50bに下端には、アーム54が連結されており、吸着ハンド52はアーム54と共に回動する。さらに、吸着ハンド52は、下面側に4つの真空吸着パッド53が設けられている。各真空吸着パッド53の間隔は、下型44の間隔と同じである。
In this state, the thrust of the pressure increasing cylinder 81 of the pressure generating means 80 (total applied pressure applied to the four upper molds 46) was set to 19.6 kN, and the pressure variation between the upper mold pressure rods 302 was measured. It was confirmed that it would fit in the variation of 98N in the range. After that, using a die set in which the height variation up to the spacer 91 is adjusted to within 0.2 mm, the finished size is φ10 mm, the center size is 19.6 kN, which is one of the molding conditions. When a lens for a video camera with a wall thickness of 3.5 mm and a lens surface curvature of 15 and 20 mm was molded, all four molds were completely pushed through without any inconvenience such as galling. Also, the molded product completely matched the cavity space formed by each mold, and a molded product that sufficiently satisfied the thickness accuracy and the allowable value of the optical surface inclination was obtained.
[Configuration of in-furnace hand mechanism 50]
Next, the configuration of the in-furnace hand mechanism 50 will be described with reference to FIGS. 8A and 8B. As shown in FIGS. 8A and 8B, the in-furnace hand mechanism 50 has a horizontal holding mechanism 56 that holds the suction hand 52 horizontally at the tip of the arm 54. The in-furnace hand mechanism 50 has an air cylinder 50a on the top surface of the top plate 20b of the vacuum chamber 20, and the rotary shaft 50b is driven to rotate by the air cylinder 50a. An arm 54 is connected to the lower end of the rotary shaft 50 b, and the suction hand 52 rotates together with the arm 54. Further, the suction hand 52 is provided with four vacuum suction pads 53 on the lower surface side. The interval between the vacuum suction pads 53 is the same as the interval between the lower molds 44.
 また、吸着ハンド52の下面には、胴型42に設けられた一対の位置決めピン43が嵌合する一対の位置決め孔51が設けられている。この一対の位置決め孔51を一対の位置決めピン43に嵌合させることにより、4つの真空吸着パッド53は、胴型42内の各下型44に対向する位置に位置決めされる。 Further, a pair of positioning holes 51 into which a pair of positioning pins 43 provided in the body mold 42 are fitted is provided on the lower surface of the suction hand 52. By fitting the pair of positioning holes 51 to the pair of positioning pins 43, the four vacuum suction pads 53 are positioned at positions facing the lower molds 44 in the body mold 42.
 水平保持機構56は、アーム54の先端下面に固定された上部ベース55aと中間ベース55bとの側面に連結された一対の板部材57と、中間ベース55bと下部ベース55cとの間に連結された4本のボルト58と、各ボルト58の外周に巻装された4本のコイルバネ59とを有する。下部ベース55cは、吸着ハンド52の基部52aに固定され、4本のコイルバネ59のばね力により、水平状態に保持される。吸着ハンド52は、基部上面に下部ベース55cが締結されており、下部ベース55cと共に水平状態に保持される。 The horizontal holding mechanism 56 is connected between a pair of plate members 57 connected to side surfaces of the upper base 55a and the intermediate base 55b fixed to the lower surface of the front end of the arm 54, and the intermediate base 55b and the lower base 55c. There are four bolts 58 and four coil springs 59 wound around the outer periphery of each bolt 58. The lower base 55 c is fixed to the base 52 a of the suction hand 52 and is held in a horizontal state by the spring force of the four coil springs 59. The suction hand 52 has a lower base 55c fastened to the upper surface of the base, and is held in a horizontal state together with the lower base 55c.
 また、水平保持機構56は、一対の板部材57により中間ベース55bが水平に保持され、中間ベース55bの下面側に配された4本のコイルバネ59の圧縮変形により下部ベース55cがZ方向及びX軸回り、Y軸回りに変位可能に保持されている。 Further, in the horizontal holding mechanism 56, the intermediate base 55b is horizontally held by a pair of plate members 57, and the lower base 55c is moved in the Z direction and X by the compression deformation of the four coil springs 59 arranged on the lower surface side of the intermediate base 55b. It is held so that it can be displaced around the axis and around the Y axis.
 各ボルト58は、中間ベース55bを貫通して下部ベース55cに螺入され、頭部が中間ベース55bの孔径よりも大きくなっており、中間ベース55bから脱落しないように取り付けられている。また、下部ベース55cに上方への外力が作用した場合、ボルト58が中間ベース55bの上方に突出するように動作すると共にコイルバネ59が圧縮されて下部ベース55cは上方に変位することができる。そして、外力が無くなると、下部ベース55cは、各コイルバネ59のばね力により水平状態に復帰する。 Each bolt 58 passes through the intermediate base 55b and is screwed into the lower base 55c, and the head is larger than the hole diameter of the intermediate base 55b, and is attached so as not to drop off from the intermediate base 55b. Further, when an upward external force acts on the lower base 55c, the bolt 58 operates so as to protrude above the intermediate base 55b, and the coil spring 59 is compressed, so that the lower base 55c can be displaced upward. When the external force disappears, the lower base 55 c returns to the horizontal state by the spring force of each coil spring 59.
 また、吸着ハンド52に傾く方向の外力が加わると4本のボルト58の何れかが中間ベース55bより上方に突出してその傾きを吸収する。そして、外力が無くなれば、コイルバネ59のバネ力で元の水平状態に戻り、吸着ハンド52は水平に保持される。 Further, when an external force in a tilting direction is applied to the suction hand 52, any of the four bolts 58 protrudes upward from the intermediate base 55b and absorbs the tilt. When the external force disappears, the spring force of the coil spring 59 returns to the original horizontal state, and the suction hand 52 is held horizontally.
 また、上記吸着ハンド52と位置決めピン43との間には、上下動作量を規制する突き当て部材が配置されている。なお、吸着パッド53は、ヒートショックで成形品が割れることを防ぐ目的で熱伝導率の低い材料で製造されており、かつ高温の成形品を吸着するため耐熱性のある材料で製造されている。一例を上げるとポリイミド樹脂である。 Further, an abutting member for regulating the vertical movement amount is disposed between the suction hand 52 and the positioning pin 43. The suction pad 53 is made of a material having low thermal conductivity for the purpose of preventing the molded product from being broken by heat shock, and is made of a heat-resistant material for adsorbing a high-temperature molded product. . One example is polyimide resin.
 また、炉内ハンド機構50は、吸着パッド53にガラス素材Gを吸着した状態で、エアシリンダ50bの回転制御に基づく回転軸50aの回動動作及び胴型の上下位置決め機構で吸着パッド53を胴型42内に導入し、また、吸着パッド53の吸引力で成形品を吸着した状態で、胴型42の上下位置決め機構及び回転軸50bの逆方向の回動動作で胴型42内から取り出すように機能する。
〔炉内ハンド機構50の吸着配管系路〕
 図9は各吸着パッド53に接続される吸着制御ユニット260の配管経路を示す図である。図9に示されるように、各吸着パッド53には、吸着制御ユニット260の各吸引配管501~504が接続されており、各吸引配管501~504は、2本の分岐配管506,507に接続されている。各吸引配管501~504には、圧力センサ511~514と吸着用の電磁弁V1~V4が配されている。
In addition, the in-furnace hand mechanism 50 is configured such that, while the glass material G is adsorbed to the suction pad 53, the suction pad 53 is moved by the rotation operation of the rotary shaft 50a based on the rotation control of the air cylinder 50b and the barrel-type vertical positioning mechanism. Introduced into the mold 42, and in a state where the molded product is adsorbed by the suction force of the suction pad 53, it is taken out from the cylinder mold 42 by the upward / downward positioning mechanism of the cylinder mold 42 and the rotation of the rotating shaft 50b in the reverse direction. To work.
[Suction piping system of the in-furnace hand mechanism 50]
FIG. 9 is a diagram showing a piping path of the suction control unit 260 connected to each suction pad 53. As shown in FIG. 9, each suction pad 53 is connected to each suction pipe 501 to 504 of the suction control unit 260, and each suction pipe 501 to 504 is connected to two branch pipes 506 and 507. Has been. In each of the suction pipes 501 to 504, pressure sensors 511 to 514 and suction electromagnetic valves V1 to V4 are arranged.
 また、分岐配管506,507には、流量調整用の可変絞り516,517が配されている。さらに、窒素配管521~524には、流量調整用の可変絞り531~534と電磁弁V5~V8が配されている。 Further, variable throttles 516 and 517 for adjusting the flow rate are arranged in the branch pipes 506 and 507. Further, the nitrogen pipes 521 to 524 are provided with variable throttles 531 to 534 for adjusting the flow rate and electromagnetic valves V5 to V8.
 各吸着パッド53は、電磁弁V1~V4の開弁により4個の下型44それぞれに対応して独立に吸着、又は吸着解除できるように構成されており、吸着源は、真空ポンプユニット170である。真空ポンプユニット170から分岐した吸引配管501~504を各吸着パッド53に連通し、4本の各吸引配管501~504の2本につき1個の割合で流量調整する可変絞り516,517を配置し、4本の各吸引配管501~504の吸引圧力を半独立に制御する構成となっている。4本の吸引配管501~504に圧力センサ511~514をそれぞれ装備しているので、吸引圧力が半独立でも問題なく保持圧力制御ができる。吸着力を解除するための真空破壊のためには、窒素を逆噴射する機構がついており、逆噴射力を各ラインで独立に制御できるように4本の窒素配管521~524に可変絞り531,532,533,534がそれぞれ配置されている。 Each suction pad 53 is configured to be able to independently suck or release the suction corresponding to each of the four lower molds 44 by opening the electromagnetic valves V1 to V4. The suction source is a vacuum pump unit 170. is there. The suction pipes 501 to 504 branched from the vacuum pump unit 170 are connected to the suction pads 53, and variable throttles 516 and 517 for adjusting the flow rate at a ratio of one for two of the four suction pipes 501 to 504 are arranged. The suction pressures of the four suction pipes 501 to 504 are controlled semi-independently. Since the four suction pipes 501 to 504 are equipped with the pressure sensors 511 to 514, respectively, the holding pressure can be controlled without any problem even if the suction pressure is semi-independent. In order to break the vacuum for releasing the adsorption force, a mechanism for reverse injection of nitrogen is provided, and variable throttles 531 are provided in the four nitrogen pipes 521 to 524 so that the reverse injection force can be controlled independently in each line. 532, 533, and 534 are arranged, respectively.
 従って、本実施の形態では、可変絞り516,517により4つの各吸着パッド53の吸着力を制御することができ、各吸引配管501~504のそれぞれに可変絞りを設ける場合よりも少ない数の絞りで制御することが可能になり、コスト的にも有利である。
〔下型圧力付与手段370の構成〕
 図10は下型圧力付与手段(下型加圧調整機構)370の構成を示す図である。図10に示す下型圧力付与手段370は、圧力発生手段80の昇圧シリンダ81による圧力を胴型42に伝達する支持部材85に設けられている。支持部材85は、矩形状に形成されており、昇圧シリンダ81の昇降駆動軸84が連結された下部ベース85aと、下部ベース85aの両側より上方に延在する支柱85bと、支柱85bの上端に連結された上部ベース85cとを有する。
Therefore, in the present embodiment, the suction force of each of the four suction pads 53 can be controlled by the variable throttles 516 and 517, and the number of throttles is smaller than when the variable throttles are provided in each of the suction pipes 501 to 504. This is advantageous in terms of cost.
[Configuration of Lower Mold Pressure Applying Unit 370]
FIG. 10 is a diagram showing the configuration of the lower mold pressure applying means (lower mold pressure adjusting mechanism) 370. The lower mold pressure applying means 370 shown in FIG. 10 is provided on the support member 85 that transmits the pressure generated by the pressure increasing cylinder 81 of the pressure generating means 80 to the body mold 42. The support member 85 is formed in a rectangular shape, and includes a lower base 85a to which the raising / lowering drive shaft 84 of the booster cylinder 81 is connected, a support 85b extending above both sides of the lower base 85a, and an upper end of the support 85b. And an upper base 85c connected thereto.
 下型圧力付与手段370は、支持部材85の上部ベース85cの下面に取り付けられた4つの下部梃子手段600と、4つの下部シリンダ610とから構成されている。各下部梃子手段600及び各下部シリンダ610は、夫々各下型44の夫々に対応して配されている。 The lower mold pressure applying means 370 includes four lower lever means 600 attached to the lower surface of the upper base 85c of the support member 85 and four lower cylinders 610. Each lower lever means 600 and each lower cylinder 610 are arranged corresponding to each lower mold 44.
 下部梃子手段600は、各下型44を下方から押圧する4本の下型加圧ロッド602と、上部ベース85cの下面に締結される下部支点部材604と、下部支点部材604の連結ピン604aを中心に揺動可能に支持された下部揺動部材606とから構成されている。 The lower lever means 600 includes four lower mold pressure rods 602 that press each lower mold 44 from below, a lower fulcrum member 604 fastened to the lower surface of the upper base 85c, and a connecting pin 604a of the lower fulcrum member 604. The lower swinging member 606 is swingably supported at the center.
 下部支点部材604は、上部ベース85cの下面の取付け部材608に対して摺動可能に締結されている。そのため、下部揺動部材606に設けられた複数の孔606aに対する連結ピン604aの挿通位置を変更すると共に、取付け部材608に対する下部支点部材604の締結位置を変更することにより、下部梃子手段600の圧力を調整することが可能である。 The lower fulcrum member 604 is slidably fastened to the attachment member 608 on the lower surface of the upper base 85c. Therefore, the pressure of the lower lever means 600 is changed by changing the insertion position of the connecting pin 604a with respect to the plurality of holes 606a provided in the lower swinging member 606 and changing the fastening position of the lower fulcrum member 604 with respect to the mounting member 608. Can be adjusted.
 下部シリンダ610は、エアシリンダからなり、シリンダ内部には高圧空気が充填されている。圧縮荷重がピストンロッド610aに印加されると、ピストンロッド610aが下方に摺動すると共に、空気が圧縮されてピストンロッド610aを上方に押圧する圧力が増大する。この圧力は、下部揺動部材606と下部支点部材604との連結位置によって決まる連結ピン607,604a,凹部606bの各距離に応じた比率によって増大される。 The lower cylinder 610 is an air cylinder, and the cylinder is filled with high-pressure air. When the compression load is applied to the piston rod 610a, the piston rod 610a slides downward, and the pressure by which the air is compressed and pushes the piston rod 610a upward increases. This pressure is increased by a ratio corresponding to each distance between the connection pins 607 and 604a and the recess 606b determined by the connection position between the lower swing member 606 and the lower fulcrum member 604.
 下型加圧ロッド602は、下端が下部揺動部材606の一端に設けられた凹部606bに嵌合されている。また、下部揺動部材606の他端は、連結ピン607を介して下部シリンダ610のピストンロッド610aの下端部に連結されている。 The lower mold pressure rod 602 has a lower end fitted in a recess 606 b provided at one end of the lower swinging member 606. The other end of the lower swing member 606 is connected to the lower end portion of the piston rod 610 a of the lower cylinder 610 via a connecting pin 607.
 前述したプレス成形時に、圧力発生手段80の昇降駆動軸84が上方に押圧されると、下型圧力付与手段370は、支持部材85、昇降ベース43、胴型42と共に上方に押圧される。 When the lifting drive shaft 84 of the pressure generating means 80 is pressed upward during the press forming described above, the lower mold pressure applying means 370 is pressed upward together with the support member 85, the lifting base 43, and the body mold 42.
 下型圧力付与手段370は、胴型42の上動により下型44が上型46に近接した状態で、下部シリンダ610への圧力を増圧する。これにより、下部シリンダ610は、ピストンロッド610aを下方に駆動し、下部揺動部材606を介して下型加圧ロッド602を上動させる。そして、下型加圧ロッド602は、下型44を上方に押圧する。この下型加圧ロッド602の上動による圧力が下型44と上型46との間に載置されたガラス素材に対する下型44のプレス圧となる。 The lower mold pressure applying means 370 increases the pressure applied to the lower cylinder 610 in a state where the lower mold 44 is close to the upper mold 46 by the upward movement of the body mold 42. As a result, the lower cylinder 610 drives the piston rod 610a downward, and moves the lower mold pressure rod 602 upward via the lower swing member 606. The lower mold pressure rod 602 presses the lower mold 44 upward. The pressure due to the upward movement of the lower mold pressure rod 602 becomes the press pressure of the lower mold 44 against the glass material placed between the lower mold 44 and the upper mold 46.
 下型44と上型46との間でプレス成形されたガラス素材は、下型44の上端44aの成形面と上型46の下端46aの成形面の表面に隙間無く密着した状態で加圧され、上端44aと下端46aとの間に形成された空間形状に応じた非球面レンズに成形される。
〔センタリング・スクレーバ機構60の構成〕
 図11Aはセンタリング・スクレーバ機構60の動作前の状態を示す平面図である。図11Bはセンタリング・スクレーバ機構60の動作前の状態を示す側面図である。図11A及び図11Bに示されるように、センタリング・スクレーバ機構60は、水平方向(Y方向)に延在する4本の挿入レバー700を有する2組の挿入部710と、挿入部710を支持すると共に各挿入レバー700をX方向に振動させるレバー支持部720と、レバー支持部720をZ方向に移動させるZ軸駆動部730と、Z軸駆動部730を支持する移動台740と、移動台740をY方向に移動させるY軸方向駆動部750と、Y軸方向駆動部750を支持する取付台760とを有する。
The glass material press-formed between the lower mold 44 and the upper mold 46 is pressed in a state in which the glass material is in close contact with the molding surface of the upper end 44a of the lower mold 44 and the molding surface of the lower end 46a of the upper mold 46 without any gap. The aspherical lens is formed in accordance with the space shape formed between the upper end 44a and the lower end 46a.
[Configuration of Centering / Scraper Mechanism 60]
FIG. 11A is a plan view showing a state before the operation of the centering / scraper mechanism 60. FIG. 11B is a side view showing a state before the operation of the centering / scraper mechanism 60. As shown in FIGS. 11A and 11B, the centering / scraper mechanism 60 supports two sets of insertion portions 710 each having four insertion levers 700 extending in the horizontal direction (Y direction), and the insertion portion 710. In addition, a lever support portion 720 that vibrates each insertion lever 700 in the X direction, a Z-axis drive portion 730 that moves the lever support portion 720 in the Z direction, a moving base 740 that supports the Z-axis driving portion 730, and a moving stand 740 Has a Y-axis direction drive unit 750 that moves the Y-axis direction drive unit 750 and a mounting base 760 that supports the Y-axis direction drive unit 750.
 取付台760は、胴型42が載置固定された胴型ベースプレート437に締結されている。また、挿入部710の挿入レバー700は、胴型42の成形空間42cに水平方向から挿入される。 The mounting base 760 is fastened to a trunk base plate 437 on which the trunk mold 42 is placed and fixed. In addition, the insertion lever 700 of the insertion portion 710 is inserted into the molding space 42 c of the body mold 42 from the horizontal direction.
 挿入レバー700は、Y方向に平行に配された一対ずつが一組として配置されており、レバー支持部720には、センタリング時に一対の挿入レバー700を互いに近接方向または離間方向に開閉移動するように駆動するレバー駆動手段が設けられている。このレバー駆動手段としては、空気圧によって駆動されるエアシリンダを用いても良いし、あるいは空気圧によって駆動される揺動型アクチュエータを用いても良い。 A pair of insertion levers 700 arranged in parallel in the Y direction are arranged as a pair, and the lever support portion 720 opens and closes the pair of insertion levers 700 in the proximity direction or the separation direction when centering. Lever driving means for driving is provided. As the lever driving means, an air cylinder driven by air pressure may be used, or a swinging actuator driven by air pressure may be used.
 一対の挿入レバー700は、ハサミのように互いに近接、離間するように振動することにより下型44に載置されたガラス素材を両側から同時に押圧することが可能になる。 The pair of insertion levers 700 can simultaneously press the glass material placed on the lower mold 44 from both sides by vibrating so as to approach and separate from each other like scissors.
 また、一対の挿入レバー700の互いに近接する側面には、ガラス素材の直径に応じた凹部700a,700bが設けられている。また、凹部700a,700bの中心の間隔は、Y方向の各下型44の離間距離と同じ距離に設定されている。 Further, concave portions 700a and 700b corresponding to the diameter of the glass material are provided on the side surfaces of the pair of insertion levers 700 that are close to each other. The distance between the centers of the recesses 700a and 700b is set to the same distance as the distance between the lower molds 44 in the Y direction.
 図12Aはセンタリング・スクレーバ機構60の動作中の状態を示す平面図である。図12Bはセンタリング・スクレーバ機構60の動作中の状態を示す側面図である。図12A及び図12Bに示されるように、センタリング・スクレーバ機構60は、胴型42を支持する昇降ベース43に搭載されており、Z軸駆動部730によって胴型42に対する挿入レバー700の高さ位置が調整され、Y軸方向駆動部750によって挿入レバー700が胴型42の成形空間42cに挿入される。 FIG. 12A is a plan view showing the centering / scraper mechanism 60 during operation. FIG. 12B is a side view showing the centering / scraper mechanism 60 during operation. As shown in FIGS. 12A and 12B, the centering / scraper mechanism 60 is mounted on an elevating base 43 that supports the body mold 42, and the height position of the insertion lever 700 with respect to the body mold 42 by the Z-axis drive unit 730. Is adjusted, and the insertion lever 700 is inserted into the molding space 42 c of the body mold 42 by the Y-axis direction drive unit 750.
 図13はセンタリング・スクレーバ機構60のセンタリング動作を示す平面図である。
図13に示されるように、ガラス素材Gが下型44に載置されると、各挿入レバー700が胴型42の成形空間42cに挿入される。そして、各挿入レバー700の凹部700a,700bが下型44の上端に載置されたガラス素材Gの両側に位置するように降下させる。尚、本例では、プレス前のガラス素材Gは、球形ではなく、成形される光学素子に近い楕円形状に予め形成されているため、転がりにくい。
FIG. 13 is a plan view showing the centering operation of the centering / scraper mechanism 60.
As shown in FIG. 13, when the glass material G is placed on the lower mold 44, each insertion lever 700 is inserted into the molding space 42 c of the trunk mold 42. Then, the recesses 700 a and 700 b of each insertion lever 700 are lowered so as to be positioned on both sides of the glass material G placed on the upper end of the lower mold 44. In this example, the glass material G before pressing is not spherical and is formed in advance in an elliptical shape close to the optical element to be molded, and therefore, it is difficult to roll.
 この挿入状態において、各挿入レバー700をX方向に振動させると、各挿入レバー700の凹部700a,700bが互いに近接方向(閉方向)に繰り返し複数回移動する。
例えば、図14Aに示すように、ガラス素材Gが下型44の上端44aに形成された成形面(成形凹部)の中心位置(一点鎖線で示す位置)から半径方向に外れた位置(実線で示す)に載置された場合のセンタリング動作について説明する。上記のように各挿入レバー700の凹部700a,700bがX方向に往復動してガラス素材Gの外周を中心側に押圧する。これにより、ガラス素材Gは、振動する各挿入レバー700の凹部700a,700bに押圧されて下型44の上端44aに形成された成形面(成形凹部)の中心に移動する。図14Bに上記各挿入レバー700の往復動によりガラス素材Gを成形面(成形凹部)の中心にセンタリングした調整後の状態を示す。
In this insertion state, when each insertion lever 700 is vibrated in the X direction, the recesses 700a and 700b of each insertion lever 700 are repeatedly moved in the proximity direction (closing direction) a plurality of times.
For example, as shown in FIG. 14A, a position (indicated by a solid line) where the glass material G deviates in the radial direction from the center position (indicated by a one-dot chain line) of the forming surface (the forming recess) formed on the upper end 44 a of the lower mold 44. The centering operation in the case of being placed on () will be described. As described above, the recesses 700a and 700b of each insertion lever 700 reciprocate in the X direction to press the outer periphery of the glass material G toward the center. As a result, the glass material G moves to the center of the molding surface (molding recess) formed on the upper end 44a of the lower mold 44 by being pressed by the recesses 700a and 700b of the vibrating insertion levers 700. FIG. 14B shows a state after adjustment in which the glass material G is centered at the center of the molding surface (molding recess) by the reciprocating motion of each of the insertion levers 700.
 これにより、ガラス素材Gは、吸着パッド53から分離されて下型44の上端44aに載置された後、下型44の軸心からずれた位置に載置されてしまった場合でも、各挿入レバー700の凹部700a,700bによって両側から同時に押圧されることで、下型44の軸心に位置するようにセンタリングされる。
〔ヒータユニット70の構成〕
 図15Aはヒータユニット70の動作前の状態を示す平面図である。図15Bはヒータユニット70の動作中の状態を示す平面図である。図15Aに示されるように、ヒータユニット70は、ガラス加熱ヒータ800と駆動部804からなる。ガラス加熱ヒータ800は複数のカートリッジヒータ802を内蔵し、独立した温度調節機に接続され、ガラス加熱ヒータ800に差し込まれた熱電対803により温度が検出された加熱温度が制御される。複数のカートリッジヒータ802は、夫々円筒形状に形成されており、平板状のヒータ部801の内部に同じ方向に延在する向きで並設される。
Accordingly, even when the glass material G is separated from the suction pad 53 and placed on the upper end 44 a of the lower mold 44, the glass material G is inserted in a position shifted from the axis of the lower mold 44. By being simultaneously pressed from both sides by the concave portions 700 a and 700 b of the lever 700, the lever 700 is centered so as to be positioned at the axis of the lower mold 44.
[Configuration of heater unit 70]
FIG. 15A is a plan view showing a state before the heater unit 70 operates. FIG. 15B is a plan view showing the heater unit 70 during operation. As shown in FIG. 15A, the heater unit 70 includes a glass heater 800 and a drive unit 804. The glass heater 800 includes a plurality of cartridge heaters 802 and is connected to an independent temperature controller, and the heating temperature at which the temperature is detected is controlled by a thermocouple 803 inserted into the glass heater 800. The plurality of cartridge heaters 802 are each formed in a cylindrical shape, and are arranged in parallel in the flat heater portion 801 so as to extend in the same direction.
 また、ガラス加熱ヒータ800は、高温に設定される(例えば900℃)ので、高温に耐える材質で作られる(例えば、SKD61、SKD62、ハステロイ、より好ましくはアンビロイ、超硬合金)。 Further, since the glass heater 800 is set to a high temperature (for example, 900 ° C.), it is made of a material that can withstand the high temperature (for example, SKD61, SKD62, Hastelloy, more preferably Ambiloy, cemented carbide).
 駆動部804とヒータ部801との間は、連結部805により連結されている。駆動部804は、例えば、エアシリンダからなり、電磁弁V18の開弁により供給される空気圧によって胴型42の側面開口42dより、ガラス加熱ヒータ800を挿入する。 The driving unit 804 and the heater unit 801 are connected by a connecting unit 805. The drive unit 804 is formed of, for example, an air cylinder, and the glass heater 800 is inserted from the side surface opening 42d of the trunk mold 42 by air pressure supplied by opening the electromagnetic valve V18.
 そして、図15Bに示されるように、複数のカートリッジヒータ802は、通電されて発熱した状態でヒータ部801を加熱し、一定温度(加熱温度)に保たれているヒータ部801が胴型42の成形空間42cに挿入される。 As shown in FIG. 15B, the plurality of cartridge heaters 802 heat the heater unit 801 in a state of being energized and generate heat, and the heater unit 801 maintained at a constant temperature (heating temperature) It is inserted into the molding space 42c.
 ここで、ガラス素材Gを加熱する工程とプレス成形する工程の動作について説明する。 Here, the operation of the step of heating the glass material G and the step of press molding will be described.
 図16Aに示されるように、下型44の上端44aに載置されたガラス素材Gは、ヒータ部801の下方に位置するため、ヒータ部801から放射された熱によってガラスの粘度が例えば、10dPa・sになるまで加熱される。 As shown in FIG. 16A, since the glass material G placed on the upper end 44a of the lower mold 44 is located below the heater unit 801, the viscosity of the glass is, for example, 10 by the heat radiated from the heater unit 801. Heated to 7 dPa · s.
 そして、カートリッジヒータ802により900°Cに保持されたヒータ部801は、胴型42の開口42dから下型44とガラス素材Gの上方、上型46の下方の間に挿入される。ガラス加熱ヒータ800とガラス素材Gの距離は、胴型42の上昇位置を調整することで自在に設定できる。上型46と下型44は、胴型42に挿入されたカートリッジヒータにより、例えば、ガラス粘度で10dPa・s程度の温度に加熱される。一方、ガラス素材Gはガラス加熱ヒータ800により、例えば、ガラス粘度で10dPa・s程度の温度に加熱される。所望の時間、ガラス素材G及び上型46及び下型44が加温された後(例えば90秒)、ヒータユニット70のシリンダ機構72(図1参照)を作動させてガラス加熱ヒータ800を胴型42から引き抜く。 The heater portion 801 held at 900 ° C. by the cartridge heater 802 is inserted between the lower mold 44 and the glass material G and below the upper mold 46 from the opening 42 d of the body mold 42. The distance between the glass heater 800 and the glass material G can be freely set by adjusting the rising position of the body mold 42. The upper mold 46 and the lower mold 44 are heated to, for example, a glass viscosity of about 10 9 dPa · s by a cartridge heater inserted into the body mold 42. On the other hand, the glass material G is heated by the glass heater 800 to a temperature of, for example, about 10 7 dPa · s in terms of glass viscosity. After the glass material G and the upper mold 46 and the lower mold 44 are heated for a desired time (for example, 90 seconds), the cylinder mechanism 72 (see FIG. 1) of the heater unit 70 is operated to make the glass heater 800 a barrel mold. Pull out from 42.
 その後、図16Bに示されるように、胴型42を圧力発生手段80の昇圧シリンダ81の圧力で上昇させ、プレス成形する。 Thereafter, as shown in FIG. 16B, the body mold 42 is raised by the pressure of the pressure-increasing cylinder 81 of the pressure generating means 80 and press-molded.
 上型46の大径部46bが、スペーサ91を介して胴型42の上端に十分接触した後(例えば10秒後)、胴型42の冷却用溝48に冷却媒体(例えば窒素ガス)を供給し、ガラス粘度が例えば、1010.5dPa・sから1013dPa・s程度の間で、下部シリンダ610の圧力が下部梃子手段600を介して下型44を上方に押圧して下型44からプレス圧を加える(例えば全圧力で3KN)。 After the large-diameter portion 46b of the upper mold 46 is sufficiently in contact with the upper end of the body mold 42 via the spacer 91 (for example, after 10 seconds), a cooling medium (for example, nitrogen gas) is supplied to the cooling groove 48 of the body mold 42. When the glass viscosity is, for example, between about 10 10.5 dPa · s and about 10 13 dPa · s, the pressure of the lower cylinder 610 presses the lower mold 44 upward via the lower lever means 600 to lower the lower mold 44. Press pressure is applied (eg 3KN at total pressure).
 圧力発生手段80の圧力により下型44が胴型42と共に上動し、ガラス素材Gを下型44の上端44aと上型46の下端46aとの間でプレスすると、ガラス素材Gは成形面の所定形状(例えば、楕円形状)に応じた形状に成形される。また、上型46は、下端46aの外周に小径段部46cが形成されている。 When the lower mold 44 moves upward together with the body mold 42 by the pressure of the pressure generating means 80 and the glass material G is pressed between the upper end 44a of the lower mold 44 and the lower end 46a of the upper mold 46, the glass material G is formed on the molding surface. It is formed into a shape corresponding to a predetermined shape (for example, an elliptical shape). The upper mold 46 has a small-diameter step 46c formed on the outer periphery of the lower end 46a.
 図17Aに示されるように、上記ガラス素材Gに対するプレス成形の所定時間が経過すると、前述したセンタリング・スクレーバ機構60の上型46の下端に形成された小径段部46cに挿入レバー700を挿入する。その際、挿入レバー700の挿入高さは、Y軸方向駆動部750(図12B参照)によって小径段部46cの高さ位置に調整されている。そのため、挿入レバー700は、ガラス素材Gに接触しない高さで挿入され、ガラス素材Gを損傷しないように挿入される。 As shown in FIG. 17A, when a predetermined time of press forming for the glass material G elapses, the insertion lever 700 is inserted into the small diameter step 46c formed at the lower end of the upper mold 46 of the centering / scraper mechanism 60 described above. . At this time, the insertion height of the insertion lever 700 is adjusted to the height position of the small-diameter step portion 46c by the Y-axis direction drive unit 750 (see FIG. 12B). Therefore, the insertion lever 700 is inserted at a height that does not contact the glass material G, and is inserted so as not to damage the glass material G.
 また、各挿入レバー700は、一対ずつのレバー同士が互いに近接するX方向に駆動されて凹部700a,700bが小径段部46cに近接する。この挿入状態では、各挿入レバー700は、楕円形状に成形されたガラス素材G(光学素子)の周縁部と非接触である。 Further, each insertion lever 700 is driven in the X direction in which a pair of levers are close to each other, and the recesses 700a and 700b are close to the small diameter step 46c. In this insertion state, each insertion lever 700 is not in contact with the peripheral edge portion of the glass material G (optical element) formed in an elliptical shape.
 図17Bに示されるように、胴型42及び下型44が降下して離型する際は、昇降ベース43に搭載されたセンタリング・スクレーバ機構60の挿入レバー700も降下する。
そのため挿入レバー700の下面が成形された光学素子Gの周縁部に接触して光学素子Gを下方に押圧する。光学素子Gは、上記加熱された状態でプレス成形されるため、上型46の成形面に密着しており、自重のみで落下することができないことがある。
As shown in FIG. 17B, when the barrel mold 42 and the lower mold 44 are lowered and released, the insertion lever 700 of the centering / scraper mechanism 60 mounted on the lifting base 43 is also lowered.
Therefore, the lower surface of the insertion lever 700 comes into contact with the peripheral edge of the molded optical element G and presses the optical element G downward. Since the optical element G is press-molded in the heated state, the optical element G is in close contact with the molding surface of the upper mold 46 and may not be dropped by its own weight alone.
 そこで、センタリング・スクレーバ機構60の挿入レバー700を上型46の小径段部46cにあてがって離型動作すると、挿入レバー700が胴型42と共に降下することにより、光学素子を下型44に載置させることができる。これにより、成形後の光学素子を胴型42の成形空間42cから取り出す際は、炉内ハンド機構50が駆動されてアーム54の先端に装着された吸着ハンド52が胴型42の成形空間42cに挿入される。そして、胴型42の高さ位置を吸着ハンド52の高さ位置に応じて吸着しやすい位置に調整した後、電磁弁V1~V4が開弁されて吸着ハンド52の各吸着パッド53に真空ポンプユニット170で生成された真空が供給される。 Therefore, when the insertion lever 700 of the centering / scraper mechanism 60 is released from the small-diameter step portion 46c of the upper mold 46, the insertion lever 700 is lowered together with the body mold 42, so that the optical element is placed on the lower mold 44. Can be made. As a result, when the optical element after molding is taken out from the molding space 42 c of the barrel mold 42, the suction hand 52 attached to the tip of the arm 54 is driven into the molding space 42 c of the trunk mold 42 by driving the in-furnace hand mechanism 50. Inserted. Then, after adjusting the height position of the body mold 42 to a position where it is easy to attract according to the height position of the suction hand 52, the electromagnetic valves V1 to V4 are opened, and vacuum pumps are provided to the suction pads 53 of the suction hand 52. The vacuum generated by unit 170 is supplied.
 これにより、吸着ハンド52の各吸着パッド53は、下型44上に載置された光学素子を吸着し、アーム54の回動により成形された光学素子を胴型42から取り出す。そして、光学素子は、炉内ハンド機構50の動作によりシフタ140に移送され、シフタ140上の所定位置に移動した時点で吸着パッド53による吸着を解除されてシフタ140上に載置される。この後の光学素子は、シフタ移動手段150の駆動によってシフタ140と共に置換室130に回収され、さらにスカラロボット120の回収動作によりストッカ室30のパレット112に移送される。
〔変形例〕
 ここで、変形例について説明する。図18は上型圧力分配手段100の変形例を示す縦断面図である。図18に示されるように、上部シリンダ104が縦方向に長い寸法を有する場合には、上部シリンダ104の本体104b端部を上部揺動部材106の他端に連結する。また、上部シリンダ104のピストンロッド104aは、本体104b端部より下方に延在しており、真空チャンバ20の天板20bに固定部材101により固定されている。
As a result, each suction pad 53 of the suction hand 52 sucks the optical element placed on the lower mold 44, and takes out the optical element formed by the rotation of the arm 54 from the barrel mold 42. Then, the optical element is transferred to the shifter 140 by the operation of the in-furnace hand mechanism 50, and when the optical element moves to a predetermined position on the shifter 140, the suction by the suction pad 53 is released and is placed on the shifter 140. The subsequent optical elements are collected in the replacement chamber 130 together with the shifter 140 by driving the shifter moving means 150, and further transferred to the pallet 112 in the stocker chamber 30 by the collecting operation of the SCARA robot 120.
[Modification]
Here, a modified example will be described. FIG. 18 is a longitudinal sectional view showing a modification of the upper die pressure distribution means 100. As shown in FIG. 18, when the upper cylinder 104 has a long dimension in the vertical direction, the end of the main body 104 b of the upper cylinder 104 is connected to the other end of the upper swing member 106. The piston rod 104 a of the upper cylinder 104 extends downward from the end of the main body 104 b and is fixed to the top plate 20 b of the vacuum chamber 20 by a fixing member 101.
 そのため、上部揺動部材106が上部支点部材105を中心に揺動した場合には、本体104bがピストンロッド104aに対して上下動して荷重が上部シリンダ104に付与される。これにより、上部シリンダ104で発生した圧力が上部揺動部材106を介して上型加圧ロッド302に付与される。そのため、上型46は、上部シリンダ104の圧力によって下型44の下方から押圧力を緩衝されると共に、下型44に対する押圧力を付与される。 Therefore, when the upper swing member 106 swings around the upper fulcrum member 105, the main body 104b moves up and down relative to the piston rod 104a, and a load is applied to the upper cylinder 104. As a result, the pressure generated in the upper cylinder 104 is applied to the upper mold pressure rod 302 via the upper swing member 106. Therefore, the upper die 46 is buffered with a pressing force from below the lower die 44 by the pressure of the upper cylinder 104 and is given a pressing force against the lower die 44.
 尚、この変形例においては、上型圧力分配手段100の作用、効果は、前述した図4に示すものと同じなので、その説明は省略する。 In this modification, the operation and effect of the upper pressure distribution means 100 are the same as those shown in FIG.
 図19Aは炉内ハンド機構50の吸着ハンド52の変形例1を示す側面図である。図19Bは炉内ハンド機構50の吸着ハンド52の変形例1を示す平面図である。図19A及び図19Bに示されるように、吸着ハンド52の基部52aは、アーム54の下面に固定された上部ベース55aとの間に配された水平保持機構900によって常に水平状態を保つように保持されている。この水平保持機構900は、所謂リストコンプライアンサとも呼ばれており、上部取付部902と下部取付部904との間に中心軸910と、その周囲に3本の弾性部材920が円周方向に120度間隔に配されている。3本の弾性部材920は、各下端が中心軸910よりに傾斜した向きに取り付けられている。そのため、吸着ハンド52が外力を受けてX軸周りあるいはY軸周りに傾いた場合には、3本の弾性部材920の何れかが圧縮荷重を受けることになり、各弾性部材920が均等な力で吸着ハンド52を付勢する向き、すなわち水平状態に吸着ハンド52を復帰させることができる。 FIG. 19A is a side view showing Modification 1 of the suction hand 52 of the in-furnace hand mechanism 50. FIG. 19B is a plan view showing Modification 1 of the suction hand 52 of the in-furnace hand mechanism 50. As shown in FIGS. 19A and 19B, the base 52a of the suction hand 52 is held so as to be always kept horizontal by a horizontal holding mechanism 900 disposed between the upper base 55a fixed to the lower surface of the arm 54. Has been. The horizontal holding mechanism 900 is also referred to as a so-called wrist compliance, and includes a central shaft 910 between the upper mounting portion 902 and the lower mounting portion 904, and three elastic members 920 around the center shaft 910 in the circumferential direction. It is arranged at intervals of degrees. The three elastic members 920 are attached such that each lower end is inclined with respect to the central axis 910. Therefore, when the suction hand 52 receives an external force and tilts around the X axis or the Y axis, one of the three elastic members 920 receives a compressive load, and each elastic member 920 has an equal force. Thus, the suction hand 52 can be returned to the direction in which the suction hand 52 is urged, that is, in a horizontal state.
 図20Aは炉内ハンド機構50の吸着ハンド52の変形例2を示す側面図である。図20Bは炉内ハンド機構50の吸着ハンド52の変形例2を示す平面図である。図20Aに示されるように、吸着ハンド52の基部52aは、リニアガイド950により昇降可能に支持されている。リニアガイド950は、アーム54の下面より鉛直方向に延在するガイドレール952と、ガイドレール952の3面(正面及び左右側面)を囲むようにコ字状(上方からみた形状)に形成されたスライダ954とから構成されている。 FIG. 20A is a side view showing a second modification of the suction hand 52 of the in-furnace hand mechanism 50. FIG. 20B is a plan view showing Modification Example 2 of the suction hand 52 of the in-furnace hand mechanism 50. As shown in FIG. 20A, the base portion 52a of the suction hand 52 is supported by a linear guide 950 so as to be movable up and down. The linear guide 950 is formed in a U-shape (a shape seen from above) so as to surround the guide rail 952 extending in the vertical direction from the lower surface of the arm 54 and the three surfaces (front and left and right side surfaces) of the guide rail 952. And a slider 954.
 ガイドレール952には、スライダ954を上下方向に駆動するZ軸駆動手段が設けられている。このZ軸駆動手段は、例えばボールネジあるいはリニアモータなどがあり、適宜選択することができる。 The guide rail 952 is provided with Z-axis driving means for driving the slider 954 in the vertical direction. The Z-axis driving means includes, for example, a ball screw or a linear motor, and can be selected as appropriate.
 吸着ハンド52の基部52aは、スライダ954に結合されているので、スライダ954の駆動方向である上下方向(Z方向)にのみ移動することができる。また、アーム54の旋回動作により、吸着ハンド52を水平方向に回動させることができる。 Since the base 52 a of the suction hand 52 is coupled to the slider 954, it can move only in the vertical direction (Z direction) that is the driving direction of the slider 954. Further, the suction hand 52 can be rotated in the horizontal direction by the turning operation of the arm 54.
 図20Bに示されるように、ガラス素材Gを吸着パッド53に吸着させる際は、スライダ954を降下させることにより、吸着ハンド52を水平状態のまま降下させることができ、各吸着パッド53とガラス素材Gとの位置ずれが生じないように吸着動作を行うことが可能になる。また、アーム54を昇降させるのではなく、吸着ハンド52のみを昇降させることができるので、吸着ハンド52を素早く昇降させて吸着動作時間を短縮させることも可能になる。 As shown in FIG. 20B, when the glass material G is attracted to the suction pad 53, the suction hand 52 can be lowered in a horizontal state by lowering the slider 954. It is possible to perform the suction operation so that the positional deviation from G does not occur. Also, since the arm 54 can be raised and lowered, and only the suction hand 52 can be raised and lowered, the suction hand 52 can be quickly raised and lowered to shorten the suction operation time.
 本発明により、耐久性や光学ガラスとの離型性に優れた精密プレス成形法に好適な光学ガラス用成形型を提供できる。また、本型を使用して光学ガラスをプレス成形することにより各種光学素子を成形後に研磨等することなく製造できるため、量産性があり、かつ、原価面でも有利な光学素子製造法を提供できる。 According to the present invention, it is possible to provide a mold for optical glass suitable for a precision press molding method excellent in durability and releasability from optical glass. In addition, since various optical elements can be manufactured without being polished after molding by press molding optical glass using this mold, an optical element manufacturing method that is mass-productive and advantageous in terms of cost can be provided. .
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2008年4月23日出願の日本特許出願(特願2008-113006)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on April 23, 2008 (Japanese Patent Application No. 2008-113006), the contents of which are incorporated herein by reference.
10 プレス成形装置
20 真空チャンバ(筐体)
30 ストッカ室
40 成型用金型ユニット
42 胴型
42c 成形空間
43 昇降ベース
44 下型
44a 上端
46 上型
46a 下端
46b 大径部
46c 小径段部
48 冷却用溝
49 圧力伝達部材
50 炉内ハンド機構
52 吸着ハンド
53 吸着パッド
60 センタリング・スクレーバ機構
70 ヒータユニット
80 圧力発生手段
81 昇圧シリンダ
84 昇降駆動軸
85 支持部材
90 調芯手段
91 スペーサ
92 球面軸受
94 軸受保持部材
94a 周縁部
100 上型圧力分配手段(上型加圧調整機構)
102 上部梃子手段
104 上部エアシリンダ
104a ピストンロッド
105 上部支点部材
106 上部揺動部材
110 パレット台
120 スカラ型ロボット
122 真空チャック
130 置換室
132 連通路
140 シフタ
150 シフタ移動手段
154 エアシリンダ
160 ゲート弁
170 真空ポンプユニット
190 空気配管
200 窒素配管
210 冷却用窒素配管
220 真空配管
260 吸着制御ユニット
300 制御装置
302 上型加圧ロッド
303 支持部材
310 高圧空気供給ユニット
312 吊下部材
312b 上端フック部
312a 下端フック部
320 ゲート弁開閉機構
330 置換室内圧力調整ユニット
340 チャンバ内圧力調整ユニット
350 窒素供給ユニット
360 窒素冷却ユニット
370 下型圧力付与手段(下型加圧調整機構)
435 窒素供給管
600 下部梃子手段
602 下型加圧ロッド
604 下部支点部材
606 下部揺動部材
608 取付け部材
610 下部シリンダ
610a ピストンロッド
700 挿入レバー
700a,700b 凹部
800 ガラス加熱ヒータ
802 カートリッジヒータ
900 水平保持機構
950 リニアガイド
952 ガイドレール
954 スライダ
V1~V27 電磁弁
10 Press molding equipment 20 Vacuum chamber (housing)
30 Stocker chamber 40 Mold unit 42 Molding die 42c Molding space 43 Lifting base 44 Lower die 44a Upper end 46 Upper die 46a Lower end 46b Large diameter portion 46c Small diameter step portion 48 Cooling groove 49 Pressure transmission member 50 In-furnace hand mechanism 52 Suction hand 53 Suction pad 60 Centering / scraper mechanism 70 Heater unit 80 Pressure generating means 81 Boosting cylinder 84 Lifting drive shaft 85 Support member 90 Alignment means 91 Spacer 92 Spherical bearing 94 Bearing holding member 94a Peripheral part 100 Upper die pressure distribution means ( Upper mold pressure adjustment mechanism)
102 Upper lever means 104 Upper air cylinder 104a Piston rod 105 Upper fulcrum member 106 Upper rocking member 110 Pallet table 120 SCARA robot 122 Vacuum chuck 130 Replacement chamber 132 Communication path 140 Shifter 150 Shifter moving means 154 Air cylinder 160 Gate valve 170 Vacuum Pump unit 190 Air pipe 200 Nitrogen pipe 210 Cooling nitrogen pipe 220 Vacuum pipe 260 Adsorption control unit 300 Control device 302 Upper mold pressure rod 303 Support member 310 High-pressure air supply unit 312 Suspension member 312b Upper end hook part 312a Lower end hook part 320 Gate valve opening / closing mechanism 330 Replacement chamber pressure adjustment unit 340 Chamber pressure adjustment unit 350 Nitrogen supply unit 360 Nitrogen cooling unit 370 Lower mold pressure applying means (lower mold pressure regulator) )
435 Nitrogen supply pipe 600 Lower insulator means 602 Lower mold pressure rod 604 Lower fulcrum member 606 Lower swing member 608 Mounting member 610 Lower cylinder 610a Piston rod 700 Insert lever 700a, 700b Recess 800 Glass heater 802 Cartridge heater 900 Horizontal holding mechanism 950 Linear guide 952 Guide rail 954 Slider V1 to V27 Solenoid valve

Claims (14)

  1.  複数の上型と該上型と対をなす複数の下型との間でガラス素材をプレスして光学素子を成形する光学素子のプレス成形装置において、
     前記複数の下型に圧力を付与する下型圧力付与手段と、
     前記複数対の上型が上方から挿入され、前記複数対の下型が下方から挿入され、前記上型と前記下型の相対位置をガイドする胴型と、
     前記胴型を上方に押圧する圧力発生手段と、
     該圧力発生手段による押圧力で前記胴型を上動させるのに伴い、前記各上型を下方に向けて押圧すると共に前記各上型に独立的に圧力を付加させるための上型圧力分配手段と、を有し、
     前記上型圧力分配手段は、
     前記上型に作用する圧力による荷重を受ける上部シリンダと、
     支点を介して揺動自在に配置され、一端が前記上型の上端部と当接され、他端部が前記上部シリンダに連結される上部揺動部材と、を備え、
     前記圧力発生手段により前記胴型を上動させる過程で前記上部揺動部材を介して前記上部シリンダによる各上型に対する圧力を調整すると共に、前記下型圧力付与手段により前記下型を上方に押圧することを特徴とする光学素子のプレス成形装置。
    In an optical element press molding apparatus for molding an optical element by pressing a glass material between a plurality of upper molds and a plurality of lower molds paired with the upper mold,
    Lower mold pressure applying means for applying pressure to the plurality of lower molds;
    The plurality of pairs of upper molds are inserted from above, the plurality of pairs of lower molds are inserted from below, and a trunk mold that guides the relative positions of the upper mold and the lower mold,
    Pressure generating means for pressing the barrel mold upward;
    As the body mold is moved upward by the pressing force of the pressure generating means, the upper mold pressure distributing means for pressing each upper mold downward and applying pressure to each upper mold independently. And having
    The upper mold pressure distribution means includes:
    An upper cylinder that receives a load due to pressure acting on the upper mold;
    An upper swinging member that is swingably disposed through a fulcrum, has one end abutting against the upper end of the upper mold, and the other end coupled to the upper cylinder;
    In the process of moving the barrel mold upward by the pressure generating means, the pressure on the upper mold by the upper cylinder is adjusted via the upper swing member, and the lower mold is pressed upward by the lower mold pressure applying means. An optical element press molding apparatus.
  2.  少なくとも前記上型、前記下型及び前記胴型を内部に収納する筐体を備え、
     前記上部シリンダ及び前記上部揺動部材は、前記筐体の上面に配置されたことを特徴とする請求項1に記載の光学素子のプレス成形装置。
    A housing that houses at least the upper mold, the lower mold, and the trunk mold;
    The optical element press molding apparatus according to claim 1, wherein the upper cylinder and the upper swing member are disposed on an upper surface of the casing.
  3.  前記下型圧力付与手段は、前記圧力発生手段による押圧力で前記胴型を上動させるのに伴い、前記複数の下型を上方に向けて押圧することを特徴とする請求項1に記載の光学素子のプレス成形装置。 The lower mold pressure applying means presses the plurality of lower molds upward as the body mold is moved upward by the pressing force of the pressure generating means. Optical element press molding equipment.
  4.  前記下型圧力付与手段は、
     前記下型に作用する圧力による荷重を受ける下部シリンダと、
     支点を介して揺動自在に配置され、一端が前記下型の下端部と当接され、他端部が前記下部シリンダに連結される下部揺動部材と、を備え、
     前記下部揺動部材が前記支点を中心に揺動することにより前記下部シリンダによる各下型に対する圧力を調整することを特徴とする請求項3に記載の光学素子のプレス成形装置。
    The lower mold pressure applying means includes
    A lower cylinder that receives a load due to pressure acting on the lower mold;
    A lower swinging member that is swingably disposed through a fulcrum, one end of which is in contact with the lower end of the lower mold, and the other end is coupled to the lower cylinder;
    4. The press molding apparatus for an optical element according to claim 3, wherein the lower swing member swings about the fulcrum to adjust the pressure applied to each lower die by the lower cylinder.
  5.  前記圧力発生手段による押圧力で前記胴型を上動させる過程で前記胴型に対する前記上型の位置を調芯する複数の調芯手段を備え、
     前記複数の各調芯手段は、
     前記胴型を上方に押圧動作する際に前記胴型の移動軸線に対して前記上型の軸線を一致させるように前記上型を回動可能とする球面軸受と、
     前記球面軸受の外側を支持するように形成され、前記上方への押圧動作により前記球面軸受が離間する上型支持部材と、
     を有することを特徴とする請求項1に記載の光学素子のプレス成形装置。
    A plurality of alignment means for aligning the position of the upper mold with respect to the cylinder mold in the process of moving the cylinder mold upward with a pressing force by the pressure generating means;
    Each of the plurality of alignment means includes
    A spherical bearing that allows the upper mold to rotate so that the axis of the upper mold coincides with the axis of movement of the trunk mold when the barrel mold is pressed upward;
    An upper mold support member that is formed to support the outside of the spherical bearing, and from which the spherical bearing is separated by the upward pressing operation;
    The press molding apparatus for an optical element according to claim 1.
  6.  前記上型圧力分配手段は、前記上部揺動部材の長手方向に対する前記支点の連結位置が可変可能であり、前記支点の連結位置と前記上部揺動部材の全長との比率により前記上型に作用する圧力が調整されることを特徴とする請求項1に記載の光学素子のプレス成形装置。 The upper mold pressure distribution means can change the connection position of the fulcrum with respect to the longitudinal direction of the upper swing member, and acts on the upper mold according to the ratio between the connection position of the fulcrum and the total length of the upper swing member. The press molding apparatus for an optical element according to claim 1, wherein the pressure to be adjusted is adjusted.
  7.  前記下型圧力付与手段は、前記下部揺動部材の長手方向に対する前記支点の連結位置が可変可能であり、前記支点の連結位置と前記下部揺動部材の全長との比率により前記下型に作用する圧力が調整されることを特徴とする請求項4に記載の光学素子のプレス成形装置。 The lower mold pressure applying means can change the connection position of the fulcrum with respect to the longitudinal direction of the lower swing member, and acts on the lower mold according to the ratio between the connection position of the fulcrum and the total length of the lower swing member. The press forming apparatus for an optical element according to claim 4, wherein the pressure to be adjusted is adjusted.
  8.  前記上型圧力分配手段は、前記上部シリンダ内の充填圧力が可変可能であり、前記充填圧力によって前記上型に作用する圧力が調整されることを特徴とする請求項1に記載の光学素子のプレス成形装置。 2. The optical element according to claim 1, wherein the upper die pressure distribution unit is configured such that a filling pressure in the upper cylinder is variable, and a pressure acting on the upper die is adjusted by the filling pressure. Press molding equipment.
  9.  前記下型圧力付与手段は、前記下部シリンダ内の充填圧力が可変可能であり、前記充填圧力によって前記下型に作用する圧力が調整されることを特徴とする請求項4に記載の光学素子のプレス成形装置。 5. The optical element according to claim 4, wherein the lower mold pressure applying means is configured such that a filling pressure in the lower cylinder is variable, and a pressure acting on the lower mold is adjusted by the filling pressure. Press molding equipment.
  10.  前記上部シリンダは、内部に所定圧の気体が充填されたエアシリンダであることを特徴とする請求項1に記載の光学素子のプレス成形装置。 2. The optical element press molding apparatus according to claim 1, wherein the upper cylinder is an air cylinder filled with a gas having a predetermined pressure.
  11.  前記下部シリンダは、内部に所定圧の気体が充填されたエアシリンダであることを特徴とする請求項4に記載の光学素子のプレス成形装置。 5. The optical element press molding apparatus according to claim 4, wherein the lower cylinder is an air cylinder filled with a gas having a predetermined pressure.
  12.  プレスする前に前記上型と前記下型との間に挿入され、前記下側に載置された前記ガラス素材の位置を両側より前記下型の中心にセンタリングするセンタリング部材を備え、
     前記センタリング部材は、前記ガラス素材をプレスして光学素子を成形した後に前記胴型を降下させると共に、前記光学素子の周縁部を下方に押圧することを特徴とする請求項1に記載の光学素子のプレス成形装置。
    A centering member that is inserted between the upper mold and the lower mold before pressing and centers the position of the glass material placed on the lower side from both sides to the center of the lower mold;
    2. The optical element according to claim 1, wherein the centering member lowers the body mold after pressing the glass material to mold the optical element, and presses a peripheral edge of the optical element downward. Press molding equipment.
  13.  前記筐体の内部を移動して前記ガラス素材を前記胴型内の前記下型の成形面に載置し、プレス後の前記光学素子を前記胴型から取り出す吸着ハンドと、
     前記吸着ハンドを水平状態に保持するハンド保持機構と、
     前記ハンド保持機構を介して前記吸着ハンドを駆動する駆動部と、を備え、
     前記ハンド保持機構は、弾性を有する複数のゴム部材により前記吸着ハンドを保持することを特徴とする請求項1に記載の光学素子のプレス成形装置。
    A suction hand for moving the inside of the housing and placing the glass material on the molding surface of the lower mold in the barrel mold, and taking out the optical element after pressing from the barrel mold;
    A hand holding mechanism for holding the suction hand in a horizontal state;
    A drive unit that drives the suction hand via the hand holding mechanism,
    The optical element press molding apparatus according to claim 1, wherein the hand holding mechanism holds the suction hand by a plurality of elastic rubber members.
  14.  前記筐体の内部を移動して前記ガラス素材を前記胴型内の前記下型の成形面に載置し、プレス後の前記光学素子を前記胴型から取り出す吸着ハンドと、
     前記吸着ハンドを水平状態に保持するハンド保持機構と、
     前記ハンド保持機構を介して前記吸着ハンドを駆動する駆動部と、を備え、
    前記ハンド保持機構は、リニアガイドにより上下方向にガイドされることを特徴とする請求項1に記載の光学素子のプレス成形装置。
    A suction hand for moving the inside of the housing and placing the glass material on the molding surface of the lower mold in the barrel mold, and taking out the optical element after pressing from the barrel mold;
    A hand holding mechanism for holding the suction hand in a horizontal state;
    A drive unit that drives the suction hand via the hand holding mechanism,
    The optical element press molding apparatus according to claim 1, wherein the hand holding mechanism is guided in a vertical direction by a linear guide.
PCT/JP2009/058051 2008-04-23 2009-04-23 Press forming device for optical element WO2009131168A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010509212A JPWO2009131168A1 (en) 2008-04-23 2009-04-23 Optical element press molding equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008113006 2008-04-23
JP2008-113006 2008-04-23

Publications (1)

Publication Number Publication Date
WO2009131168A1 true WO2009131168A1 (en) 2009-10-29

Family

ID=41216897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058051 WO2009131168A1 (en) 2008-04-23 2009-04-23 Press forming device for optical element

Country Status (3)

Country Link
JP (1) JPWO2009131168A1 (en)
TW (1) TW200948576A (en)
WO (1) WO2009131168A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128704A (en) * 2018-05-23 2018-08-16 株式会社ニコン Lens barrel and optical device
CN109080057A (en) * 2018-10-31 2018-12-25 张湘 A kind of novel plastic die arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345624A (en) * 1992-06-12 1993-12-27 Sumitomo Heavy Ind Ltd Mechanism for clamping mold in press forming machine for glass lens
JPH10139449A (en) * 1996-11-13 1998-05-26 Canon Inc Molding of glass optical element and apparatus for molding
JP2002249328A (en) * 2001-02-21 2002-09-06 Olympus Optical Co Ltd Method for forming optical element
WO2008050846A1 (en) * 2006-10-25 2008-05-02 Asahi Glass Co., Ltd. Optical element pressing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345624A (en) * 1992-06-12 1993-12-27 Sumitomo Heavy Ind Ltd Mechanism for clamping mold in press forming machine for glass lens
JPH10139449A (en) * 1996-11-13 1998-05-26 Canon Inc Molding of glass optical element and apparatus for molding
JP2002249328A (en) * 2001-02-21 2002-09-06 Olympus Optical Co Ltd Method for forming optical element
WO2008050846A1 (en) * 2006-10-25 2008-05-02 Asahi Glass Co., Ltd. Optical element pressing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128704A (en) * 2018-05-23 2018-08-16 株式会社ニコン Lens barrel and optical device
CN109080057A (en) * 2018-10-31 2018-12-25 张湘 A kind of novel plastic die arrangement

Also Published As

Publication number Publication date
TW200948576A (en) 2009-12-01
JPWO2009131168A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
KR101314440B1 (en) Mold press forming die and molded article manufacturing method
JP4845927B2 (en) Glass optical element
CN1834046B (en) Moulding forming device, method for making optical element
US20090205375A1 (en) Optical element pressing apparatus
WO2009131168A1 (en) Press forming device for optical element
JP2005255513A (en) Apparatus and method for producing glass optical element and glass optical element produced thereby
CN115692261A (en) Self-adaptive leveling pressure application device and method for electrostatic bonding
KR20100015588A (en) Method of producing glass molding product and mold press molding device
US5417730A (en) Apparatus for molding an optical element
US7114941B2 (en) Hot embossing auto-leveling apparatus and method
JP5111195B2 (en) Press machine
TWI388415B (en) Molding method for an optical element and optical element molding apparatus
JP4668657B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP7158925B2 (en) Forming mold disassembly and assembly equipment
JP7103977B2 (en) Press molding equipment
US11370688B2 (en) Method of molding optical element and optical element molding die
JP2815037B2 (en) Press forming equipment for optical elements
JP2618523B2 (en) Optical element manufacturing method
JPH11157854A (en) Method for forming optical element and device therefor
JP2003048725A (en) Die for forming glass element and glass element formed equipment
JP2009280448A (en) Method and apparatus for producing optical element
JP2006298668A (en) Method and apparatus for forming optical element and optical element
JPH05116964A (en) Press forming device for optical element
JP2006036592A (en) Apparatus for assembling molding die, mold press molding apparatus, method of assembling molding die and method of manufacturing molding
JP2007169125A (en) Press molding device, press molding method and method for manufacturing glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509212

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09733812

Country of ref document: EP

Kind code of ref document: A1