WO2009131162A1 - マルチキャリア通信システム、通信装置、通信方法 - Google Patents

マルチキャリア通信システム、通信装置、通信方法 Download PDF

Info

Publication number
WO2009131162A1
WO2009131162A1 PCT/JP2009/058037 JP2009058037W WO2009131162A1 WO 2009131162 A1 WO2009131162 A1 WO 2009131162A1 JP 2009058037 W JP2009058037 W JP 2009058037W WO 2009131162 A1 WO2009131162 A1 WO 2009131162A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
ofdm symbol
puncturing
power
base station
Prior art date
Application number
PCT/JP2009/058037
Other languages
English (en)
French (fr)
Inventor
平川功
阿部一博
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2009131162A1 publication Critical patent/WO2009131162A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a multicarrier communication system using radio communication technology, and more particularly to transmission signal arrangement and power allocation technology.
  • EUTRA evolved third generation radio access
  • Evolved Universal Terrestrial Radio Access hereinafter referred to as “EUTRA”
  • Evolved Universal Radio Access evolved third generation radio access network
  • EUTRA evolved third generation radio access network
  • Evolved Universal Terrestrial Radio Access hereinafter referred to as “Evolved Universal Radio Access”
  • EUTRA orthogonal Frequency Division Multiplexing Access
  • As an EUTRA downlink an OFDMA (Orthogonal Frequency Division Multiplexing Access) scheme has been proposed.
  • EUTRA technology application of spatial multiplexing (SM) technology and transmission diversity technology for improving communication capability using a plurality of transmission antennas has been proposed. This technology, for example, uses a plurality of transmission antennas to increase the communication capacity by transmitting different data or to ensure the reliability of communication by transmitting the same data redundantly. .
  • SM spatial multiplexing
  • time division multiplexing TDM is used by using the resources of the frequency axis (subcarrier) and time axis (OFDM symbol) of the OFDM signal.
  • Time Division Multiplexing Frequency Division Multiplexing FDM (Frequency Division Multiplexing)
  • FDM Frequency Division Multiplexing
  • FIG. 10 is a configuration example of a downlink radio frame of EUTRA proposed in 3GPP, and is a diagram illustrating an example of radio channel mapping.
  • the downlink radio frame shown in FIG. 10 is composed of a plurality of subcarriers on the frequency axis (vertical axis) and a frequency bandwidth Bch and a time axis (horizontal axis) OFDM symbol.
  • one slot consists of seven symbols, and two slots constitute one subframe.
  • a two-dimensional radio resource block (RB) is configured by 12 subcarriers ⁇ 7 symbols, and a resource block pair (indicated by a bold line in FIG. 10) is formed by two radio resource blocks RB that are continuous on the time axis. RB pair) is configured.
  • a plurality of resource block pairs (RB pairs) are collected to form a radio frame.
  • a minimum unit composed of one subcarrier and one OFDM symbol is referred to as a resource element.
  • the entire downlink spectrum (base station specific system frequency bandwidth Bch) is 20 MHz, one radio frame is 10 ms, and the subframe SF is 1 ms.
  • a sub-carrier and one subframe constitute a resource block pair (RB pair).
  • the subcarrier frequency bandwidth Bsc is 15 kHz
  • the frequency bandwidth Bch of the resource block is 180 kHz (15 kHz ⁇ 12)
  • 1200 subcarriers are included in the entire 20 MHz band in the downlink.
  • a radio frame includes 1000 RBs.
  • the first, fifth, eighth, and twelfth OFDM symbols are collectively referred to as the reference (reference) signal RS1 of the first antenna (Ant1) and the second antenna (Ant2). It can be seen that the reference signal RS2 is included. Further, in the second and ninth OFDM symbols, the reference signal RS3 of the third antenna and the reference signal RS4 of the fourth antenna are similarly arranged (see Non-Patent Document 1 below).
  • Non-Patent Document 2 Explanation on transmission diversity As a technique for improving communication quality, there is an antenna diversity technique using a plurality of antennas (see Non-Patent Document 2 below).
  • SFBC Space Frequency Block code
  • SFBC + FSTD Frequency Switched Transmit Diversity frequency switching: Is proposed in EUTRA.
  • FIG. 11A and FIG. 11B are diagrams for explaining the transmission diversity method.
  • FIG. 11A is a diagram illustrating SFBC using two transmission antennas (Ant1 and Ant2). Two transmission signals (s1, s2) and signals (s1 * , ⁇ s2 * ) obtained by inverting and conjugate transposing the two transmission signals for redundancy are respectively transmitted to each frequency domain, that is, each subcarrier ( F1 and f2) transmit simultaneously from each transmitting antenna.
  • FIG. 11B is a diagram showing SFBC + FSTD which is a diversity technique using four transmission antennas (Ant1, Ant2, Ant3, and Ant4).
  • a pair of Ant1 and Ant3 constitutes one spatial frequency block code SFBC
  • a pair of Ant2 and Ant4 constitutes one spatial frequency block code SFBC.
  • An FSTD is used in which each of the above pairs is transmitted in different frequency regions (f1 and f3, f2 and f4).
  • FIG. 11C is a diagram illustrating a relationship between each antenna in MIMO and data to be transmitted in each frequency domain.
  • the communication capacity can be increased by transmitting and receiving different signals simultaneously at each frequency and each antenna.
  • FIG. 12 is a diagram illustrating an example of arrangement of transmission signals of each antenna pair when SFBC + FSTD is applied.
  • FIG. 12 shows one resource block pair including 12 subcarriers and 14 OFDM symbols.
  • Ant1 and Ant3 are one antenna pair
  • Ant2 and Ant4 are another antenna pair.
  • the resource element D13 indicates that a transmission signal of a pair of data signals Ant1 and Ant3 is transmitted at this position
  • the resource element D24 transmits a data signal of a pair of Ant2 and Ant4. Indicates that a signal is transmitted at this location. That is, the two numbers after D indicate a pair of antennas.
  • the first to maximum third OFDM symbols of each resource block pair are used to transmit some control signals.
  • FIG. 12 shows an example in which the first and second OFDM symbols are used for transmission of the control signal, and this is indicated by symbol C.
  • the meaning of the number after the sign is the same as in the case of the data signal.
  • Each of these antenna pairs is a set of two resource elements, and a pair of Ant1 and Ant3 in order of increasing frequency, except for a portion where a reference signal (R) is arranged within one OFDM symbol. Pairs and pairs of Ant2 and Ant4 pairs are alternately arranged.
  • the resource element R1 indicates that the reference signal of Ant1 is transmitted at this position. That is, the number after R represents the reference signal of the corresponding antenna.
  • FIG. 13 is a diagram illustrating an example of arrangement of transmission signals of each antenna pair when spatial multiplexing is applied.
  • Resource element D1234 indicates that transmission signals of data signals Ant1, Ant2, Ant3, and Ant4 are transmitted at this position.
  • Non-Patent Document 4 the power balance between symbols is maintained by using the power excluding the power of the reference signal as the data power for the OFDM symbol transmitting the reference signal.
  • Non-Patent Document 5 For an antenna that does not transmit a reference signal, power corresponding to the reference signal is allocated to data subcarriers to maintain the power balance between the antennas, which is called an inter-antenna scaling method. .
  • Non-Patent Document 6 3GPP TS 36.211, V8.2.0 (2008-03), Technical Specification Group Radio Access Network (Evolved Universal Terrestrial Relative Access (E-UTRA); E-UTRA); http: // www. 3 gpp. org / ftp / Specs / html-info / 36211. htm Keiji Tachikawa, “W-CDMA mobile communication system”, ISBN4-621-04894-5, P103, P115, and the like.
  • E-UTRA Technical Specification Group Radio Access Network
  • the power of the reference signal depends on the base station because it is set in consideration of the coverage area covered by the base station and interference with other cells.
  • the power required to increase the power of the reference signal is usually generated by reducing the data power in the same symbol by that amount, but instead of transmitting part of the resource element that transmits data. You can also take a technique called puncturing.
  • puncturing a technique called puncturing.
  • the data power in the OFDM symbol in which the reference signal exists may be equal to the data power in the OFDM symbol in which the reference signal does not exist. it can.
  • 14A and 14B show an example of the concept of the relationship between the power amplification of the reference signal, the reduction of data power, and puncturing.
  • FIG. 14A is OFDM symbols in which a reference signal exists (for example, corresponding to the first OFDM symbol in FIG. 13) when spatial multiplexing is performed with four transmission antennas
  • FIG. 14 is a diagram illustrating the arrangement of reference signals and data signals for each transmission antenna for an OFDM symbol without a reference signal (e.g., corresponding to the fourth OFDM symbol in FIG. 13).
  • 14A (b-1) and (b-3) show the power of the reference signal and the data signal for each of these OFDM symbols. This figure shows a case where the power of the reference signal is three times the data power in the OFDM symbol where no reference signal exists.
  • the data power in the OFDM symbol where the reference signal exists is set to 3/4 of the data power in the OFDM symbol where the reference signal does not exist. As a result, the total power in each OFDM symbol is equal.
  • FIG. 14A shows that the presence of the reference signal is equal to the data power in the OFDM symbol where the reference signal exists and the data power in the OFDM symbol where the reference signal does not exist. It is a figure which shows the example which reduces the number of the resource elements which transmit the data in the OFDM symbol to perform, ie, performs puncturing.
  • the (dot) mark in FIG. 14A (a-2) indicates that the resource element is punctured.
  • FIG. 14B is a diagram similar to FIG. 14A showing the OFDM symbols, the arrangement of reference signals and data signals at each transmission antenna, and their powers when SFBC + FSTD is applied to four transmission antennas.
  • the number of resource elements of a data signal is halved compared to the case of spatial multiplexing. Therefore, if the total power is equal, the power of the data signal per resource element is doubled compared to the case of spatial multiplexing. Become.
  • FIG. 14B shows a case where the power of the reference signal is 3/2 times the data power in the OFDM symbol in which no reference signal exists.
  • the data power in the OFDM symbol where the reference signal exists is set to 3/4 of the data power in the OFDM symbol where the reference signal does not exist (FIG. 14B (d-1), (d-3)).
  • the data power in the OFDM symbol in which the reference signal exists is equal to the data power in the OFDM symbol in which the reference signal does not exist, and the total power is made equal.
  • the number of data resource elements in an OFDM symbol in which a reference signal exists may be changed from 4 to 3.
  • SFBC since two resource elements are a pair, it is necessary to puncture two resource elements instead of one resource element per antenna.
  • FIG. 14B (c-2) shows an example of puncturing two resource elements.
  • Dot represents a resource element that should be punctured originally
  • “••” double dot
  • FIG. 14B (d-2) shows the power at this time, and there is a problem that the puncturing is excessively performed by the amount of power “ ⁇ ” (double dot) and the power cannot be effectively used. is there.
  • the present invention is a multi-carrier communication system including a base station and a mobile station, wherein the base station includes data power in an OFDM symbol including a reference signal and a reference signal.
  • a power ratio determining unit that determines a ratio of data power in a non-OFDM symbol, a puncturing pattern determining unit that determines a puncturing pattern of data in an OFDM symbol including a reference signal, and application of puncturing in each resource block
  • a scheduling unit that determines presence / absence of a resource, a transmission unit that transmits each resource block according to the determined power ratio, presence / absence of puncturing, and a puncturing pattern, and
  • the mobile station receiving the puncture Communication system, comprising a puncturing pattern decision unit for determining a ring pattern.
  • the power ratio determination unit determines a ratio between the sum of the data power in the OFDM symbol including the reference signal and the sum of the data power in the OFDM symbol not including the reference signal. It is preferable to determine the number of puncturings in the resource block so as to be a value equal to the ratio between the data power in the OFDM symbol including the reference signal and the data power in the OFDM symbol not including the reference signal.
  • the puncturing pattern determination unit of the base station is configured such that a ratio between a sum of data power in an OFDM symbol including a reference signal in a resource block and a sum of data power in an OFDM symbol not including a reference signal is the power ratio determination unit. So that the number of puncturings, which is equal to the ratio of the data power in the OFDM symbol including the reference signal determined in step 1 to the data power in the OFDM symbol not including the reference signal, is rounded by the transmission coding unit. It is preferable to determine.
  • the communication system uses a spatial frequency block code
  • the transmission coding unit is a transmission coding unit of a spatial frequency block code.
  • the number of puncturings determined by the puncturing pattern determination unit of the base station is performed on a plurality of resource blocks allocated to the mobile station apparatus by the scheduling unit. It is preferable that the puncturing pattern determination unit of the base station performs the determined number of puncturings at a predetermined position. Preferably, the puncturing pattern determination unit of the base station performs the determined number of puncturings at different positions depending on the base station.
  • Notification of information regarding the number of puncturing patterns of the base station notification of information regarding a power ratio for determining a ratio of data power in an OFDM symbol including the reference signal and data power in an OFDM symbol not including the reference signal, May be notified as the same information.
  • the base station apparatus in the communication system may make data power in an OFDM symbol including a reference signal different from data power in an OFDM symbol not including a reference signal or puncturing for each mobile station or communication. It is preferable to select whether to transmit the data power in the OFDM symbol including the reference signal and the data power in the OFDM symbol not including the reference signal as equal.
  • a base station apparatus used in a multicarrier communication system, a power ratio determining unit that determines a ratio between data power in an OFDM symbol including a reference signal and data power in an OFDM symbol not including a reference signal;
  • a puncturing pattern determining unit that determines a puncturing pattern of data in an OFDM symbol including a reference signal, a scheduling unit that determines whether to apply puncturing in each resource block, the determined power ratio, and puncturing
  • a base station apparatus characterized by having presence / absence and a transmission unit that transmits each resource block with a puncturing pattern.
  • a mobile station apparatus used in a multicarrier communication system wherein the receiving apparatus includes a puncturing pattern determining unit that determines a puncturing pattern of a transmission signal transmitted by the transmitting apparatus. Provided.
  • a communication method in a multicarrier communication system including a base station and a mobile station, wherein the base station does not include data power in an OFDM symbol including a reference signal and a reference signal.
  • a power ratio determining step for determining a ratio of data power in an OFDM symbol, a puncturing pattern determining step for determining a puncturing pattern of data in an OFDM symbol including a reference signal, and application of puncturing in each resource block Receiving a punctured resource block, including a scheduling step for determining presence / absence, a transmission step for transmitting each resource block according to the determined power ratio, presence / absence of puncturing, and puncturing pattern.
  • a communication method characterized by having a puncturing pattern determination step of determining the puncturing pattern.
  • the puncturing pattern determination unit of the base station changes a position where puncturing is performed for each OFDM symbol in which a reference signal exists. It is preferable that the puncturing pattern determination unit of the base station changes a position where puncturing is performed for each resource block. It is preferable that the puncturing pattern determination unit of the base station changes a puncturing position for each subframe.
  • the puncturing pattern determination unit of the base station defines a position where puncturing is performed in an interval in units of subcarriers from a reference signal, and the interval includes at least a base station ID, an OFDM symbol number, a subframe number, a resource It is preferable to determine using at least one value of the block number.
  • a mobile station apparatus used in a multicarrier communication system including a puncturing pattern determining unit that determines a puncturing pattern of a transmission signal transmitted by the transmitting apparatus, and the determined punctured resource element
  • the mobile station apparatus is characterized in that the interference amount of the received signal is estimated.
  • the mobile station apparatus used in the multicarrier communication system the receiving apparatus includes a puncturing pattern determining unit that determines a puncturing pattern of a transmission signal transmitted by the transmitting apparatus, and the determined punctured resource element
  • the mobile station apparatus is characterized in that the quality of the received signal is estimated.
  • the estimated amount is preferably notified to a base station.
  • the base station determines a puncturing pattern of data in an OFDM symbol including a reference signal, and the determined puncturing
  • a transmitting unit that transmits each resource block according to a pattern, and the mobile station that receives the punctured resource block includes: a puncturing pattern determining unit that determines the puncturing pattern; and the determined puncturing
  • a communication system characterized by having a quality estimation unit for estimating the quality of a received signal in a charled resource element, and notifying the estimated quality of the received signal from a mobile station apparatus to a base station apparatus.
  • the present invention may be a program for causing a computer to execute the above method, or a recording medium for recording the program.
  • the program may be acquired by a transmission medium.
  • FIG. 6A An OFDM symbol in which the reference signal exists in Ant1 and Ant2 in the first half slot, an OFDM symbol in which the reference signal exists in Ant1 and Ant2 in the second half slot, and an arrangement of resource elements in the OFDM symbol in which no reference signal exists, and It is a figure which shows the electric power distribution.
  • FIG. 6A An OFDM symbol in which the reference signal exists in Ant1 and Ant2 in the first half slot, an OFDM symbol in which the reference signal exists in Ant1 and Ant2 in the second half slot, and an arrangement of resource elements in the OFDM symbol in which no reference signal exists, and It is a figure which shows the electric power distribution.
  • SYMBOLS 1 ... Transmission apparatus, 2 ... Data signal processing part, 3 ... Control channel processing part, 4 ... Turbo coding part, 5 ... Data modulation part, 6 ... Transmission diversity processing part, 7 ... Multiplexing part, 8 ... IFFT part, 9 ... CP insertion section, 10 ... D / A section, 11 ... transmission RF section, 12 ... transmission antenna, 13 ... OFDM transmission section, 14 ... convolution coding section, 15 ... QPSK modulation section, 16 ... transmission diversity processing section, 17 ... see Signal generation unit 18 ... Power ratio determination unit 19 ... Puncturing pattern determination unit 20 ... Control unit 21 ... Power ratio information signal generation unit 22 ... Reception processing unit 23 ...
  • Reception antenna 24 ... Reception RF unit 25 ... A / D section, 26 ... CP removal section, 27 ... FFT section, 28 ... Demultiplexing section, 29 ... Propagation path estimation section, 30 ... Propagation path compensation section, 31 ... Transmit diversity combining section, 32 ... Data demodulation section , 33... Decoding unit, 34 ... control unit, 35 ... data power determination unit, 36 ... power ratio determining section, 37 ... puncturing pattern determining unit, 38 ... quality estimation unit, 100-103 ... base station apparatus, 200 ... mobile station apparatus.
  • FIG. 1 is a functional block diagram illustrating a configuration example of a transmission apparatus in a multicarrier communication apparatus according to an embodiment when SFBC + FSTD is applied to transmission diversity as four transmission antennas.
  • the data signal processing unit 2 includes a turbo coding unit 4, a data modulation unit 5, and a transmission diversity processing unit 6 in order from the input side.
  • the turbo coding unit 4 performs error correction coding using a turbo code for increasing the error resistance of the input data in accordance with the coding rate instruction from the control unit 20.
  • the data modulation unit 5 includes QPSK (Quadrature Phase Shift Keying), 16QAM (16 Quadrature Amplitude Modulation), 64QAM (64 Quadrature Amplitude Modulation value such as 64 Quadrature Amplitude Modulation value).
  • QPSK Quadratture Phase Shift Keying
  • 16QAM (16 Quadrature Amplitude Modulation
  • 64QAM 64 Quadrature Amplitude Modulation value such as 64 Quadrature Amplitude Modulation value
  • the transmission diversity processing unit 6 generates signals Sn * and -Sn * by inverting and conjugate transposing the signal Sn modulated by the data modulation unit 5, thereby redundantly transmitting a signal to be transmitted to each mobile station apparatus. And a frequency set (s1, s2, s1 * , -s2 * , s3, s4, s3 * , -s4 * ) for performing SFBC + FSTD processing is generated as a pair of signals by redundancy.
  • control information regarding the communication system is input to the control channel processing unit 3.
  • the control channel processing unit 3 performs processing on the downlink control channel.
  • the control channel processing unit 3 includes a convolutional coding unit 14, a QPSK modulation unit 15, and a transmission diversity processing unit 16.
  • the convolutional code unit 14 performs error correction coding using a convolutional code for increasing the error tolerance of the control information input from the control unit 20.
  • the QPSK modulation unit 15 modulates the control information that has been subjected to error correction coding by the convolutional coding unit 14 using the QPSK modulation method.
  • the transmission diversity processing unit 16 Similar to the transmission diversity processing unit 6, the transmission diversity processing unit 16 generates a frequency set that is a set of transmission signals for 4 subcarriers ⁇ 4 transmission antennas for performing SFBC + FSTD processing.
  • the reference signal generator 17 generates a reference signal transmitted by each transmission antenna of the transmission device 1.
  • the multiplexing unit 7 transmits the transmission signal of the processed transmission data such as encoding and modulation output from the data signal processing unit 2 and the processed control data of the encoding and modulation output from the control channel processing unit 3
  • the transmission signal and the reference signal generated by the reference signal generation unit 17 are designated in which resource element in the subframe of which antenna of the transmission signal to prompt the arrangement.
  • Each transmission data multiplexed by the multiplexing unit 7 is sent to the OFDM transmission unit 13 of each antenna for each antenna to be transmitted.
  • Each of the OFDM transmission units 13 includes an IFFT unit 8, a CP insertion unit 9, a D / A unit 10, a transmission RF unit 11, and a transmission antenna 12.
  • the IFFT unit 8 performs high-speed inverse Fourier transform on the signal input from the multiplexing unit 7 to perform OFDM modulation.
  • the CP insertion unit 9 generates a symbol in the OFDM scheme by adding a cyclic prefix (CP) to the OFDM-modulated signal.
  • the cyclic prefix can be obtained by a known method for duplicating a part of the beginning or end of a symbol to be transmitted.
  • the D / A unit 10 converts the baseband digital signal input from the CP insertion unit 9 into an analog signal.
  • the transmission RF unit 11 generates an in-phase component and a quadrature component of the intermediate frequency from the analog signal input from the D / A unit 10, removes an extra frequency component for the intermediate frequency band, and converts the intermediate frequency signal to a high frequency.
  • the signal is converted (up-converted) into the above signal, the excess frequency component is removed, the power is amplified, and output to each of the transmission antennas 12.
  • the power ratio determining unit 18 determines the ratio of the power of the reference signal, the power of the data signal in the OFDM symbol including the reference signal, and the ratio of the power of the data signal in the OFDM symbol not including the reference signal. To notify.
  • the control unit 20 instructs the data signal processing unit 2, the control channel processing unit 3, and the reference signal generation unit 17 to set the power value of each transmission signal based on the determined power ratio.
  • the puncturing pattern determination unit 19 determines the puncturing pattern of the data signal and notifies the control unit 20 of it.
  • the control unit 20 also instructs the data signal processing unit 2 and the multiplexing unit 7 to generate a data signal with the determined puncturing pattern and perform mapping to the resource element.
  • the power ratio information generation unit 21 generates power ratio information to be notified to the mobile station apparatus based on the information determined by the power ratio determination unit 18 and the puncturing pattern determination unit 19.
  • the generated power ratio information is transmitted as data and / or control information.
  • the control unit 20 also controls each unit.
  • FIG. 2 is a functional block diagram showing a configuration example of the receiving device in the multicarrier communication device according to the present embodiment.
  • the reception processing unit 22 of the reception apparatus includes a reception RF unit 24, an A / D unit 25, a CP removal unit 26, an FFT unit 27, a demultiplexing unit 28, and a propagation path estimation unit. 29, a propagation path compensation unit 30, a transmission diversity combining unit 31, a data demodulation unit 32, and an encoding / decoding unit 33.
  • the reception RF unit 24 amplifies the signal received via the reception antenna 23, converts it to an intermediate frequency (down-conversion), removes unnecessary frequency components, and sets the amplification level so that the signal level is properly maintained. Control and perform quadrature demodulation based on the in-phase and quadrature components of the received signal.
  • the A / D unit 25 converts the analog signal orthogonally demodulated by the reception RF unit 24 into a digital signal.
  • the CP removing unit 26 removes a portion corresponding to a cyclic prefix from the digital signal output from the A / D unit 25.
  • the FFT unit 27 performs fast Fourier transform on the signal input from the CP removal unit 26 and performs demodulation of the OFDM method.
  • the demultiplexing unit 28 Based on an instruction from the control unit 34, the demultiplexing unit 28 extracts a reference signal from the signal that is FFT-transformed by the FFT unit 27, that is, a received signal demodulated by the OFDM method, from the arranged resource elements and outputs the extracted reference signal. Specifically, the demultiplexing unit 28 extracts a reference signal having a fixed arrangement and outputs the reference signal to the propagation path estimation unit 29.
  • the propagation path estimation unit 29 estimates propagation path fluctuations for each of the transmission antennas 1 to 4 of the transmission apparatus 1 based on the reception results of the known reference signals separated and extracted by the demultiplexing unit 28, and propagation path fluctuations Output the compensation value.
  • the propagation path compensation unit 30 compensates the propagation path fluctuation of the input signal based on the propagation path fluctuation compensation value from the propagation path estimation unit 29.
  • the transmission diversity combining unit 31 reproduces the frequency set of each antenna of the transmission signal generated by the transmission device based on the transmission diversity scheme used by the transmission device for the signal for which the propagation channel compensation unit 30 has compensated for the propagation path fluctuation. Are combined to generate a signal before redundancy.
  • the transmission diversity combining unit performs Alamouti combining on each of the antenna pair data (see Non-Patent Document 7 above).
  • the control unit 34 includes the demultiplexing unit 28, the propagation path compensation unit 30, the transmission diversity combining unit 31, and the data demodulation unit 32, the power information determined by the data power determination unit 35 and the puncturing pattern determination unit 37, and puncturing Instructs processing to be performed based on the pattern.
  • the data demodulator 32 demodulates the data signal or control information generated by the transmission diversity combiner 31. This demodulation is performed corresponding to the modulation method used in the data modulation unit 5 or the QPSK modulation unit 15 of the transmission apparatus 1, and information on the modulation method is instructed from the control unit 34.
  • the encoding / decoding unit 33 decodes the data demodulated by the data demodulating unit 32.
  • information on the power ratio and puncturing pattern which is control information, is extracted if transmitted, and the power ratio determining unit 36 determines the power ratio and the puncturing pattern determining unit 37 determines the puncture. Used to determine charing patterns.
  • the power ratio determining unit 36 determines the power ratio among the determined reference signal, the data power in the OFDM symbol where the reference signal exists, and the data power in the OFDM symbol where the reference signal does not exist. The determination of these powers in the power ratio determination unit 36 is obtained from control information transmitted from the base station apparatus, or is uniquely determined from each power received by the reception unit of the mobile station apparatus.
  • the data power determination unit 35 determines data power from the power ratio determined by the power ratio determination unit 36 and the power of the reference signal.
  • the puncturing pattern determination unit 37 determines a puncturing pattern when data is punctured. The determination of the puncturing pattern in the puncturing pattern determination unit 37 is obtained from the control information transmitted from the base station device, or is uniquely determined from each power received by the reception unit of the mobile station device. In this case, the same puncturing pattern as that determined by the puncturing pattern determination unit of the transmission apparatus is obtained.
  • FIG. 3 is a diagram showing an example of allocation of each resource block to one mobile station apparatus for one subframe in the present embodiment. A single or a plurality of resource blocks are allocated to each mobile station apparatus.
  • an allocation method called split resource block allocation is used in which one subframe is divided into slots and used by a plurality of mobile station apparatuses, such as mobile station apparatus or mobile station apparatus “G”.
  • a plurality of mobile station apparatuses such as mobile station apparatus or mobile station apparatus “G”.
  • an even number of resource blocks are shared by two mobile station apparatuses “f” and “g”, and the mobile station apparatus “f” uses the first half slot of one resource block and the second half slot of the other resource block.
  • the mobile station device uses the opposite slot.
  • the mobile station apparatus “I” and the mobile station apparatus “B” perform puncturing by making the data power in the OFDM symbol in which the reference signal exists different from the data power in the OFDM symbol in which the reference signal does not exist.
  • the mobile station devices “ha”, “d”, “e”, “f”, “g” indicate that the data power in the OFDM symbol where the reference signal exists and the data power in the OFDM symbol where the reference signal does not exist Are assumed to be equal, puncturing is performed.
  • FIG. 4 is a diagram illustrating an example of the arrangement of resource elements and data power for one resource block in the mobile station apparatus “I” in FIG. 3, and represents an example with four transmission antennas.
  • FIG. 3 is also referred to as appropriate.
  • FIGS. 4 (a-1) and 4 (a-2) are diagrams illustrating an arrangement of resource elements in an OFDM symbol in which a reference signal exists in Ant1 and Ant2 and an OFDM symbol in which no reference signal exists, respectively.
  • FIG. 4 (b-1) and FIG. 4 (b-2) are diagrams showing the distribution of the corresponding power, respectively.
  • the left side of the above equation is the value (b-1) in the OFDM symbol where the reference signal exists, and the right side is the value (b-2) in the OFDM symbol where the reference signal does not exist.
  • FIG. 5 is a diagram showing an example of the arrangement of resource elements and data power for resource blocks in the mobile station apparatus “d” in FIG. However, it is not an example of one resource block, but shows two resource blocks allocated to the mobile station apparatus “d”. Similarly, SFBC + FSTD is applied to the mobile station apparatus “d” as transmission diversity. However, it is a diagram illustrating an example in which puncturing is performed so that data power in an OFDM symbol in which a reference signal exists is equal to data power in an OFDM symbol in which no reference signal exists.
  • FIGS. 5 (a-1) and 5 (a-2) are diagrams illustrating examples of resource element arrangement in OFDM symbols in which reference signals exist in Ant1 and Ant2, and OFDM symbols in which no reference signals exist, respectively. is there. Further, FIG.
  • FIG. 5 (b-1) and FIG. 5 (b-2) are diagrams showing the distribution of the corresponding power, respectively.
  • puncturing is performed on two resource elements that are resource element pairs of one set of SFBC.
  • the other resource element is not punctured.
  • one resource element is punctured per resource block on average.
  • FIG. 14B describing the above-described prior art, when SFBC (+ FSTD) is used with one resource source block alone, puncturing is always performed with two resource elements and a pair. It was necessary to do. Therefore, it is necessary to perform puncturing excessively, and there are cases where power cannot be used effectively.
  • FIG. 6 is a diagram showing an example of the arrangement of resource elements and data power for resource blocks in the mobile station apparatus “e” in FIG.
  • the figure shows three resource blocks allocated to the mobile station apparatus “e”.
  • SFBC + FSTD is similarly applied to the mobile station apparatus “e” as transmission diversity.
  • puncturing is performed so that the data power in the OFDM symbol in which the reference signal exists is equal to the data power in the OFDM symbol in which the reference signal does not exist.
  • FIGS. 6A (a-1) and 6 (a-2) are diagrams illustrating the arrangement of resource elements in OFDM symbols in which reference signals exist in Ant1 and Ant2 and OFDM symbols in which no reference signals exist, respectively.
  • FIGS. 6B (b-1) and 6 (b-2) are diagrams showing the distribution of the corresponding power.
  • Puncturing is performed on two resource elements which are resource element pairs of one set of SFBC.
  • 1 Puncturing may be performed on the resource element.
  • the number of resource element pairs constituting the SFBC is 2, puncturing is performed on two resource elements. That is, a total of four resource elements are punctured by three resource blocks.
  • puncturing is performed by rounding up to a multiple of 2.
  • power may not be used effectively, but puncturing can be performed while maintaining the SFBC pair without exceeding the upper limit of the transmission power of the base station apparatus.
  • puncturing may be performed instead of rounding up. Or you may adjust so that it may not exceed the upper limit of the transmission power of a base station apparatus combining them.
  • FIG. 7 is a diagram showing an example of the arrangement of resource elements and data power for resource blocks in the mobile station apparatus “F” and the mobile station apparatus “G” in FIG.
  • the mobile station apparatus “F” and the mobile station apparatus “G” are assigned with the divided resource block, share the same resource block for each slot, and use two resource blocks together.
  • SFBC + FSTD is applied as transmission diversity, and puncturing is performed so that the data power in an OFDM symbol in which a reference signal exists is equal to the data power in an OFDM symbol in which no reference signal exists.
  • FIG. 7 (a-1) is an OFDM symbol in which the reference signal is present in Ant1 and Ant2 in the first half slot
  • FIG. 7 (a-2) is an OFDM symbol in which the reference signal is present in Ant1 and Ant2 in the second half slot. Symbols, OFDM symbols in which reference signals are present in Ant1 and Ant2, respectively, and FIG. 7 (a-3) are diagrams showing the arrangement of resource elements in OFDM symbols in which no reference signals are present. Further, FIG. 7 (b-1), FIG. 7 (b-2), and FIG. 7 (b-3) are diagrams each showing the distribution of the corresponding power. Similar to the example of FIG. 5, for one resource block, puncturing is performed on two resource elements that are resource element pairs of one set of SFBC. The other resource element is not punctured. As a result, on average, one resource element is punctured per resource block.
  • FIG. 8 is a diagram illustrating an example of a technique for notifying a puncturing pattern from a base station apparatus to a mobile station apparatus in the present embodiment.
  • EUTRA a ratio between data power in an OFDM symbol in which a reference signal exists and data power in an OFDM symbol in which no reference signal exists is used as a table, and the index of the table can be reported from the base station apparatus to the mobile station apparatus. It has been proposed (see Non-Patent Document 8 above). In essence, when the ratio between the power of the reference signal and the data power in the OFDM symbol in which no reference signal exists is uniquely determined by the base station, the ratio in the OFDM symbol in which the reference signal exists is determined based on the ratio.
  • #Pnc represents the number of puncturing per resource block when performing puncturing, which is determined by the puncturing pattern determination unit 37 in the present invention.
  • SM represents spatial multiplexing. These values are respectively relative to the ratio of the power of the reference signal indicated by the index (Index) and the data power in the OFDM symbol in which no reference signal exists, respectively.
  • the sum of the powers of the reference signals + the sum of the data powers in the symbols in which the reference signals are present the sum of the data powers in the symbols in which no reference signals are present is determined to be satisfied.
  • Which resource element is to be punctured with respect to the determined number of puncturings may be notified of the pattern index, but the position determined by the number of puncturing rings is punctured in advance. Also good. By using such a notification method, it is possible to reduce an increase in the notification amount from the base station apparatus to the mobile station apparatus when puncturing is applied.
  • FIG. 8B is a diagram showing a table when performing SFBC (+ FSTD) using two resource blocks, which is an embodiment of the present invention.
  • #Pnc in 2 Ant (SFBC) and 4 Ant (SFBC + FSTD) the number of puncturing per resource block is shown.
  • the number of puncturing per resource is 1 in the case of 2 Ant (SFBC). That is, in two resource blocks, it means that a total of two puncturings are applied.
  • 1 This means that two resource elements are punctured for one resource block and puncturing is not performed for the other one resource block.
  • the mobile station device is also notified separately whether puncturing is applied.
  • the notification of application of puncturing may be notified in combination with the notification of the index in FIG. 8, or may be notified in combination with another signaling method.
  • EUTRA there is a method using a common control channel or higher layer signaling as a method of notifying individual control information for each mobile station apparatus.
  • EUTRA since the power of the reference signal is all common among the resource blocks for each mobile station apparatus, as described above, if the base station determines the power of the reference signal, the reference signal corresponds to this.
  • the ratio of the data power in the OFDM symbol in which the reference signal exists to the data power in the OFDM symbol in which the reference signal does not exist, and the number of puncturing corresponding to the ratio are determined for each base station. It is desirable from the viewpoint of the effective use of electric power. Therefore, these values are broadcast as broadcast information that is commonly signaled for each mobile station apparatus, and whether or not each mobile station apparatus applies puncturing uses a common control channel or higher layer signaling. Is desirable.
  • FIG. 9A is a diagram illustrating an example in which the puncturing pattern described above is different for each base station apparatus in the embodiment of the present invention.
  • FIG. 9A is a schematic diagram showing an arrangement of a plurality of base station apparatuses 100 to 103. The areas covered by each base station apparatus 100 to 103 overlap so that no blank section occurs. In LTE, each base station apparatus uses the same frequency band. In this case, interference between base station apparatuses occurs near the cell boundary.
  • the position of the resource element on which puncturing is performed differs for each base station apparatus, thereby obtaining an interference reduction effect by puncturing.
  • FIG. 9A is a diagram illustrating an example in which the puncturing pattern described above is different for each base station apparatus in the embodiment of the present invention.
  • FIG. 9A is a schematic diagram showing an arrangement of a plurality of base station apparatuses 100 to 103. The areas covered by each base station apparatus 100 to 103 overlap so that no blank section occurs. In LTE, each base station apparatus uses the same frequency band. In this case
  • 9B (a) is a diagram illustrating an example of a case where puncturing is performed with two resource elements in the case where spatial multiplexing is used with 2 Ant. However, only Ant1 is described for simplicity.
  • a base station ID for identification is assigned to the base station apparatus, and the mobile station apparatus first determines the base station ID during communication. In order to derive the puncturing position, for example, the base station ID is used.
  • the puncturing position is determined by shifting the puncturing position based on the base station ID.
  • FIG. 9B (b) is a diagram illustrating an example in which two puncturings are performed per two resource blocks when SFBC is used in two transmission Ants.
  • two resource elements are punctured for one resource block of the two resource blocks, and puncturing is not performed for the other resource element. Puncturing positions in one resource element are determined based on the base station ID, and which resource block is to be punctured is determined based on the base station ID, thereby distributing the puncturing positions and causing interference. A reduction effect is obtained.
  • the present invention is also applicable to the case where power control is performed so that the transmission power to each mobile station apparatus is different. it can.
  • the power of each resource element may be simply multiplied by kn. This can be similarly applied to each mobile station apparatus even in the case of the above-described division resource allocation.
  • the power of the reference signal is increased when the data power in the OFDM symbol in which the reference signal exists is different from the data power value in the OFD signal in which the reference signal does not exist without applying puncturing.
  • Punuring may be automatically applied when the power of the resource element is below a certain value.
  • the present invention can also be applied to the case where the subcarrier power for each antenna is different.
  • the power of the resource element is set so that the sum of the data power in the antenna without the reference signal is equal to the sum of the data power in the OFDM symbol without the reference signal.
  • the power of one resource element of data in the antenna where the reference signal does not exist and the power of one resource element of data in the OFDM symbol where the reference signal does not exist Should be set to 3/2 times.
  • the resource element corresponding to the SFBC pair corresponding to the resource element punctured in the antenna in which the reference signal exists is punctured, but another data is transmitted without puncturing the resource element. May be.
  • the same can be applied to the spatial multiplexing method.
  • FIG. 15 is a diagram illustrating another example in which the puncturing pattern described above is different for each base station apparatus.
  • Non-Patent Document 9 describes an example in which interference estimation is performed using a punctured resource element. This is because the mobile station estimates the amount of interference from other base stations in the punctured resource element so that the mobile station is not affected by the transmission signal from the base station with which the mobile station is communicating. Thus, the interference amount from other stations with high accuracy is estimated.
  • Non-Patent Document 9 shows an example in which interference measurement is performed on a resource element at a position 3 subcarriers away from a reference signal for one transmission antenna.
  • FIG. 15 shows the position of puncturing for one resource block pair in the case of one transmission antenna in Non-Patent Document 9.
  • (dot) represents a punctured resource element.
  • Resource element C1 indicates that the transmission signal of the control signal from antenna 1 is transmitted at this position by the resource element.
  • the resource element D1 indicates that the transmission signal of the data signal from the antenna 1 is transmitted at this position by the resource element.
  • the power of the reference signal transmitted from the base station is constant by the base station regardless of the frequency, and is constant in the time axis direction as long as the base station is not reconfigured. It does not matter.
  • the power of the control signal and data signal differs for each mobile station with which the base station communicates. That is, it differs for each resource block pair. Under this circumstance, it is desirable to estimate the amount of interference for a reference signal with constant power.
  • FIG. 16 shows an example of the shift of the transmission position of the reference signal.
  • the base station apparatus 120 transmits the reference signal at a position having a higher subcarrier frequency than the base station apparatus 110.
  • the position of the resource element to be punctured is similarly shifted by one subcarrier.
  • a mobile station apparatus that communicates with base station apparatus 120 is referred to as mobile station apparatus 220.
  • FIG. 24 shows the relationship between the base station device and the mobile station device at this time.
  • mobile station apparatus 220 estimates the amount of interference using resource elements punctured by base station apparatus 120
  • the transmission signal from base station apparatus 110 that causes interference is always a control signal or a data signal. Therefore, fluctuations in frequency and time increase.
  • the position to be punctured is different for each OFDM symbol.
  • FIG. 17 is a diagram showing an example of the arrangement of resource elements to be punctured in an embodiment of the present invention.
  • the interval between the reference signal and the position of the resource element to be punctured is determined according to the following reference signal. In the OFDM symbol, it is increased by 1 than that in the OFDM symbol with the previous reference signal.
  • the reference signals are arranged at intervals of 6 subcarriers, the number of consecutive resource elements that are not reference signals is 5, and one of the 5 resource elements can be arranged. Therefore, the actual value is a remainder obtained by dividing the above value by 5. That is, in the first OFDM symbol, it is a resource element that is 3 subcarriers away from the reference signal as in FIG.
  • the mobile station apparatus 221 estimates the interference amount in the resource element punctured by the base station apparatus 121.
  • the transmission signal from the base station apparatus 111 that causes interference is a reference signal, so that fluctuations in frequency and time are small and accurate interference estimation is performed. Can be done.
  • FIG. 18 shows an adaptation example in the case of SFBC with two transmitting antennas in the case of SFBC + FSTD. Puncturing is performed in units of two resource elements, which are constituent units of SFBC resource elements.
  • the mobile station apparatus 222 that communicates with the base station apparatus 122 is the mobile station apparatus 222 (not shown)
  • the mobile station apparatus 222 estimates the interference amount in the resource element punctured by the base station apparatus 122, Using the reference signal of the base station apparatus 112 in the first subcarrier of the first OFDM symbol, the fourth subcarrier of the fifth OFDM symbol, the seventh subcarrier of the eighth OFDM symbol, and the tenth subcarrier of the twelfth OFDM symbol, the accuracy is high. Interference estimation can be performed.
  • puncturing may be performed in units of 4 resource elements, which are the constituent units of SFBC + FSTD resource elements.
  • FIG. 19 is an example in which the present invention is similarly applied to the spatial multiplexing of four transmitting antennas.
  • the mobile station apparatus that communicates with the base station apparatus 123 is a mobile station apparatus 223 (not shown)
  • the mobile station apparatus 223 is a resource element that is punctured in the base station apparatus 123.
  • accurate interference estimation can be performed using the reference signal of the base station apparatus 113.
  • the position of the resource element to be punctured in the present embodiment may be fixed with respect to the position of the position of the reference signal and the resource element to be punctured for each OFDM symbol.
  • the reference signal shifts 3 in the frequency direction from the base station apparatus 111 in FIG. 17 as in the base station apparatus 141 in FIG.
  • the base station apparatus shifted in the higher direction (however, since the number of subcarriers in one resource block is 12, when the position of the allocated resource block exceeds 12, the remainder obtained by dividing the number by 12
  • the mobile station apparatus communicates with the base station apparatus 121.
  • the interval between the position of the reference signal and the position of the resource element to be punctured is preferably different depending on the frequency, such as at least for each resource block, or different depending on the time, such as for each subframe. Is desirable. Or it is desirable to make it different in both.
  • FIG. 21 shows an example in which the interval between the reference signal and the position of the punctured element is different for each resource block. It shows two resource blocks in the frequency direction.
  • the interval between the positions of the reference signal and the resource element to be punctured is the same as in FIG. 20, that is, 3, 4, 5, respectively for the first, fifth, eighth, and twelfth OFDM symbols.
  • the mobile station device that communicates with the base station device 124 is the mobile station device 224 (not shown)
  • the mobile station device 224 is punctured by the base station device 124 in the upper resource block.
  • Interference estimation can be performed using the reference signal from the base station apparatus 144 that causes interference in the 4th and 10th subcarriers of the 12th OFDM symbol that is a resource element.
  • FIG. 22 shows an example in which the interval between the reference signal and the position of the punctured element is different for each subframe. It shows two subframes in the time axis direction.
  • the position interval between the reference signal and the resource element to be punctured is the same as in FIG. 20, that is, the first, fifth, eighth,
  • the interval between the reference signal and the position of the punctured resource element is the first.
  • the mobile station apparatus that communicates with the base station apparatus 125 is 225 (not shown)
  • the mobile station apparatus 225 does not use the punctured resource element of the base station apparatus 125 for the first subframe.
  • the interference estimation of the reference signal of the base station apparatus 145 cannot be performed, but for the next subframe, the punctured resource element of the base station apparatus 125, that is, the fourth and tenth subs of the twelfth OFDM symbol.
  • interference estimation can be performed using a reference signal from the base station apparatus 145 that causes interference.
  • FIG. 23 shows an example in which the interval between the reference signal and the position of the resource element to be punctured is different for each base station apparatus.
  • the base station apparatus 141 and the base station apparatus 121 are base station apparatuses in which the shift of the reference signal is shifted 3 and 1 higher in the frequency direction from the base station apparatus 111 of FIG.
  • the mobile station apparatus 221 (not shown) that communicates with the base station apparatus 121 cannot perform interference measurement using the reference signal of the base station apparatus 141 that causes interference at the puncturing position of the base station apparatus 121. .
  • the mobile station apparatus that communicates with the base station apparatus 126 is the mobile station apparatus 226 (not shown)
  • the mobile station apparatus 226 uses the punctured resource element of the base station apparatus 126, that is, the twelfth OFDM symbol.
  • interference estimation can be performed using the reference signal from the base station apparatus 141 that causes interference.
  • the method of deriving the position of the punctured resource element, the interval with the reference signal, etc. may be derived from the base station apparatus identification number, the resource block, the subframe number, etc. according to a predetermined method. However, if the mobile station apparatus knows in advance the presence of a base station that causes interference, the base station may determine the position of the base station according to the interference station and notify the mobile station apparatus of the information.
  • these examples are not limited to interference estimation, and may be used for the purpose of measuring the quality of signals from the base station apparatus. Further, the estimated interference amount and signal quality may be fed back to the base station apparatus.
  • FIG. 25 shows an example of the reception processing unit 22 of the receiving device according to the present embodiment.
  • the functional units not mentioned below are denoted by the same reference numerals as those in FIG.
  • the control unit 34 instructs the demultiplexing unit 28 to output the received signal in the punctured resource element to the quality estimation unit 38.
  • the quality estimation unit 38 estimates the amount of interference from the base station apparatus subject to interference from the received signal in the punctured resource element, and measures the quality of the received signal from the mobile station apparatus performing communication. To output quality information.
  • the quality information is fed back to the control unit or transmitted to the base station apparatus through a transmission apparatus (not shown) of the mobile station apparatus.
  • the present invention can be used for communication devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

基地局1は、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比を決定する電力比決定部18と、参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定部19と、各リソースブロックでのパンクチャリングの適用の有無を決定するスケジューリング部と、決定した電力比、およびパンクチャリングの有無、およびパンクチャリングパターンにて各リソースブロックを送信を行なう送信部を有し、パンクチャリングされたリソースブロックの受信を行なう移動局は、パンクチャリングパターンを決定するパンクチャリングパターン決定部を有する。これによりマルチキャリア通信システムにおいて、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力とを異なるものとして送信する代わりにパンクチャリングを施す場合において、過剰なパンクチャリングが施されることによる送信装置における電力の有効利用の低下を抑制することが可能になる。

Description

マルチキャリア通信システム、通信装置、通信方法
 本発明は、無線通信技術を利用したマルチキャリア通信システムに関し、特に、送信信号の配置および電力割当技術に関する。
 現在、進化した第三世代無線アクセス(Evolved Universal Terrestrial Radio Access、以下、「EUTRA」と称する。)及び進化した第三世代無線アクセスネットワーク(Evolvde Universal Terrestrial Radio Access Network、以下、「EUTRAN」と称する。)が検討されている。EUTRAの下りリンクとしては、OFDMA(Orthogonal Frequency Division Multiplexing Access)方式が提案されている。EUTRA技術として、複数の送信アンテナを使用して通信能力の向上を図る空間多重(Spatial Multiplexing:SM)技術や送信ダイバシティ技術の適用が提案されている。この技術は、例えば複数の送信アンテナを用いて、異なるデータを送信することにより通信容量の増大を図ったり、同じデータを冗長に送信することにより通信の信頼性の確保を図ったりするものである。
 以下の上記の技術の内容について簡単に説明する。
 1)EUTRAの下りリンク無線フレーム構成に関する説明
 OFDMA方式における下りリンク無線チャネルの配置については、OFDM信号の周波数軸(サブキャリア)と時間軸(OFDMシンボル)とのリソースを用いて、時間分割多重TDM(Time Divion Multiplexing)、周波数分割多重FDM(Frequency Divion Multiplexing)、またはTDM・FDMの組み合わせで、時間・周波数に多重する方法が提案されている。
 また、3GPPのEUTRA技術検討の国際会合により作成された技術仕様文書において、下りリンク無線フレームの構成、無線チャネルのマッピング方法が提案されている。
 図10は、3GPPで提案されているEUTRAの下りリンク無線フレーム構成例であり、無線チャネルマッピングの例を示す図である。図10に示す下りリンク無線フレームは、周波数軸(縦軸)の複数サブキャリアのかたまりで周波数帯域幅Bchと時間軸(横軸)のOFDMシンボルにより構成されている。図示するように、1スロットは7シンボルからなっており、2スロットで1サブフレームを構成する。12サブキャリア×7シンボルにより、2次元の無線リソースブロック(RB)が構成されており、時間軸上において連続する2つの無線リソースブロックRBにより、図10において太線で囲まれているリソースブロックペア(RBペア)が構成されている。このリソースブロックペア(RBペア)が複数集まって、無線フレームを構成する。尚、1つのサブキャリアと1つのOFDMシンボルから構成される、最小の単位をリソースエレメントと称する。
 例えば、図10に示すように、周波数軸では、下りリンクの全体のスペクトル(基地局固有のシステム周波数帯域幅Bch)が20MHz、1つの無線フレームが10ms、サブフレームSFが1msであり、12本のサブキャリアと1つのサブフレームとでリソースブロックペア(RBペア)が構成される。サブキャリア周波数帯域幅Bscを15kHzとする場合、リソースブロックの周波数帯域幅Bchは180kHz(15kHz×12)であり、下りリンクでは、20MHz帯域全体で1200本のサブキャリアが含まれる。無線フレームには1000個のRBが含まれる。
 4送信アンテナの場合には、全体で見ると、第1、第5、第8、第12のOFDMシンボルに、第1のアンテナ(Ant1)の参照(リファレンス)信号RS1と第2のアンテナ(Ant2)の参照信号RS2とが含まれていることがわかる。また、第2、第9OFDMシンボルには、第3のアンテナの参照信号RS3と、第4のアンテナの参照信号RS4とが同様に配置されている(下記非特許文献1参照)。
 2)送信ダイバシティに関する説明
 通信品質の向上を図るための技術として、複数のアンテナを用いるアンテナダイバシティ技術がある(下記非特許文献2参照)。2本の送信アンテナを用いた送信ダイバシティ方式として、SFBC(Space Frequency Block code:空間周波数ブロック符号)、4本の送信アンテナを用いた送信ダイバシティ方式としてSFBC+FSTD(Frequency Switched Transmit Diversity:周波数切換送信ダイバシティ)の適用が、EUTRAにおいて提案されている。
 図11(a)、図11(b)は、送信ダイバシティ方法を説明するための図である。図11(a)は、2本の送信アンテナ(Ant1、Ant2)を用いたSFBCを示す図である。2つの送信信号(s1、s2)と、この2つの送信信号に対し冗長化のために符号反転、共役転置した信号(s1、-s2)とを、各周波数領域、すなわち各サブキャリア(f1、f2)で各送信アンテナから同時に送信する。図11(b)は、4本の送信アンテナ(Ant1、Ant2、Ant3、Ant4)を用いたダイバシティ技術であるSFBC+FSTDを示す図である。4つの送信信号(s1、s2、s3、s4)と、これら4つの送信信号に対し冗長化のために符号反転、共役転置した信号(s1、-s2、s3、-s4)とを、各周波数領域(f1、f2、f3、f4)で各送信アンテナから送信する。Ant1とAnt3とのペアで1つの空間周波数ブロック符号SFBCを構成し、また、Ant2とAnt4とのペアで1つの空間周波数ブロック符号SFBCを構成する。上記の各ペアを異なる周波数領域(f1とf3、f2とf4)で送信するFSTDが適用される。また、通信容量を増大させるための技術として、複数のアンテナを用いて複数の信号を送信する空間多重技術である多入力・多出力(Multiple Input Multiple Output:MIMO)技術がある(非特許文献3参照)。送信ダイバシティとは異なり、それぞれのアンテナで異なる信号を送信する。図11(c)はMIMOにおける各アンテナと各周波数領域において送信するデータとの関係を示す図である。各周波数、各アンテナにおいて同時に異なる信号の送受を行なうことにより通信容量の増大を図ることができる。
 3)リソースブロックへの送信データのアンテナペアの配置
 図12は、SFBC+FSTDを適用した場合の各アンテナペアの送信信号の配置の例を示す図である。図12では、12本のサブキャリアと14個のOFDMシンボルからなる1リソースブロックペアを示している。Ant1とAnt3とが1つのアンテナペア、Ant2とAnt4とがもう1つのアンテナペアである。図12において、例えば、リソースエレメントD13は、Ant1とAnt3とのペアのデータ信号の送信信号がこの位置で送信されることを示し、リソースエレメントD24は、Ant2とAnt4とのペアのデータ信号の送信信号がこの位置で送信されることを示す。すなわち、Dの後の2つの数字が、ペアとなるアンテナを示す。尚、EUTRAでは、各リソースブロックペアの第1から、最大第3までのOFDMシンボルについては、一部の制御信号の送信に使用される。図12では、第1、第2OFDMシンボルが制御信号の送信に使用される場合の例を示しており、これを符号Cで示す。符号の後の数字の意味は、データ信号の場合と同じである。これらアンテナペアは、各々2個のリソースエレメントを一組としており、1OFDMシンボル内で、参照信号(R)の配置されている部分を除いて、周波数が増加する順に、Ant1とAnt3とのペアの組と、Ant2とAnt4とのペアの組と、が交互に配置されている。
 尚、例えば、リソースエレメントR1は、Ant1の参照信号がこの位置で送信されることを示す。すなわち、Rの後の数字が、対応するアンテナの参照信号を表す。
 また、前述したMIMOにおいては、FSTDを適用しないで空間多重のみが適用される。図13は、空間多重を適用した場合の各アンテナペアの送信信号の配置の例を示す図である。リソースエレメントD1234は、Ant1、Ant2、Ant3、Ant4のデータ信号の送信信号がこの位置で送信されることを示す。
 4)各アンテナのサブキャリアの電力
 EUTRAでは、参照信号が全てのOFDMシンボルには配置されず、また、1つのOFDMシンボルにおいては一部のアンテナに関する参照信号しか配置されない。従って、OFDMシンボル間およびアンテナ間で送信される電力にアンバランスが生じ、これを解消するための様々な提案がなされている。
 参照信号を送信するOFDMシンボルと、送信しない送信シンボルと、の間でのシンボル間の電力のアンバランスを解消するために、参照信号を送信するOFDMシンボルと参照信号を送信しないシンボルとで、データ電力の値を異なるものとすることが提案されている(非特許文献4参照)。この提案では、参照信号を送信するOFDMシンボルについては参照信号の電力を除いた電力をデータ電力とすることにより、シンボル間の電力バランスを保つものである。
 また、送信ダイバシティを適応する際に、アンテナ間の電力のアンバランスを解消するために、アンテナ毎にサブキャリア当たりの電力を異なる値とすることも提案されている(非特許文献5参照)。この提案は、参照信号を送信しないアンテナについては、参照信号に相当する電力をデータのサブキャリアへ充当することにより、各アンテナ間の電力バランスを保つものであり、アンテナ間スケーリング方式と称される。
 これらの方式においては、各シンボルもしくは各アンテナにおけるデータ電力の値をそれぞれ送信装置より受信装置へ通知する必要があり、この通知量を削減するため、あらかじめ定められた値のテーブルを用意しておいてそのインデックスを通知することが提案されている(非特許文献6参照)。
3GPP TS 36.211、V8.2.0(2008-03)、Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8).http://www.3gpp.org/ftp/Specs/html-info/36211.htm 立川 敬二、"W-CDMA移動通信方式"、ISBN4-621-04894-5、P103、P115など。 唐沢好男:"MIMO伝搬チャネルモデリング",信学論B, Vol.J86-B, No.9,pp.1706-1720,2003 3GPP TSG RAN1 #51,Jeju,Korea,5-9 November,2007,R1-07970 "Data Power Setting for PDSCH across OFDM Symbols" 3GPP TSG RAN1 #51,Jeju,Korea,5-9 November,2007,R1-074796 "Power Scaling and DL RS boosting" 3GPP TSG RAN1 #51bis,Sorrento,Italy,11-15 February,2008,R1-081134 "PDSCH downlink power settings" S.M.Alamouti, "A Simple Transmit Diversity Technique for Wireless Communicatins",IEEE,Journal on Selected Areas of Communicatins,1998 Vol.16 No.8 3GPP TSG RAN1 #52,Sorrento,Italy,11-15 February,2008,R1-081134 "PDSCH downlink power settings" 3GPP TSG RAN1 #52bis,Shenzhen,China,31March - 4 April,2008,R1-081476 "RS power boosting and intereference estimation issues"
 参照信号の電力は、基地局がカバーするカバレッジエリアや他セルとの干渉等を考慮して設定するため、基地局に依存する。参照信号の電力を増加させるのに必要な電力は、通常、同一シンボル中のデータ電力をその分だけ減少させることで捻出するが、その代わりにデータを送信するリソースエレメントの一部を送信しないようにする、パンクチャリングと呼ばれる手法をとることもできる。この場合には、参照信号の存在するOFDMシンボルにおける、データ送信量は減るものの、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力を等しいものとすることができる。図14A・Bは、参照信号の電力増幅と、データ電力の減少およびパンクチャリングとの関係の概念の一例を示したものである。図14Aの(a-1)および(a-3)は、それぞれ、4送信アンテナで空間多重を行なう場合の、参照信号の存在するOFDMシンボル(例えば、図13の第1OFDMシンボルに相当)、および、参照信号の存在しないOFDMシンボル(例えば、図13の第4OFDMシンボルに相当)について、各送信アンテナ毎の参照信号とデータ信号の配置とを示した図である。また、図14A(b-1)および(b-3)は、それらの各OFDMシンボルについて、参照信号およびデータ信号の電力を表したものである。この図では、参照信号の電力を、参照信号の存在しないOFDMシンボルにおけるデータ電力の3倍とした場合について示した図である。参照信号の存在するOFDMシンボルにおけるデータ電力は、参照信号の存在しないOFDMシンボルにおけるデータ電力の3/4に設定される。その結果、各OFDMシンボルでの、合計電力が等しいものとなっている。
 図14Aの(a-2)および(b-2)は、参照信号の存在するOFDMシンボルにおけるデータ電力と参照信号の存在しないOFDMシンボルにおけるデータ電力とを等しいものとする代わりに、参照信号の存在するOFDMシンボルにおけるデータを送信するリソースエレメントの数を減じる、すなわちパンクチャンリングを行なう例を示す図である。図14A(a-2)の・(ドット)印は、そのリソースエレメントがパンクチャリングされていることを示すものである。リソースエレメントの個数を8個から6個に減じることにより、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力と、を等しいものとすることができる。
 しかしながら、これを空間ダイバシティ技術であるSFBCに適応すると次のような問題が生じる。SFBCは、2本のアンテナペアで、2つのサブキャリアを使用して信号を送信するため、パンクチャリングは必ず2リソースブロック単位で行なわれなければならない。すなわち、SFBCの送信符号化単位は2である。図14Bは、4送信アンテナにおいて、SFBC+FSTDを適用した場合の各OFDMシンボル、各送信アンテナでの参照信号及びデータ信号の配置、ならびにそれらの電力について、図14Aと同様に示した図である。SFBCでは、データ信号のリソースエレメントの個数が空間多重の場合と比べて半分になるため、1リソースエレメント当たりのデータ信号の電力は、トータル電力が等しいとすると、空間多重の場合と比べて倍になる。
 図14Bでは、参照信号の電力を、参照信号の存在しないOFDMシンボルにおけるデータ電力の3/2倍とした場合について示している。参照信号の存在するOFDMシンボルにおけるデータ電力は、参照信号の存在しないOFDMシンボルにおけるデータ電力の3/4に設定される(図14B(d-1)、(d-3))。ここで、パンクチャリングを行なう場合について考えると、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力と、を等しいものとして、トータル電力を等しいものとするには、参照信号の存在するOFDMシンボルにおけるデータのリソースエレメントの個数を4個から3個とすればよい。しかしながら、SFBCでは、2リソースエレメントがペアであるので、1アンテナあたり、1つのリソースエレメントではなく、2つのリソースエレメントをパンクチャリングする必要がある。図14B(c-2)は、2つのリソースエレメントをパンクチャリングする場合の一例を示している。・(ドット)は本来パンクチャリングされるべきリソースエレメントを表し、「・・」(ダブルドット)は、SFBCペアのため、合わせてパンクチャリングされるリソースエレメントを表している。図14B(d-2)はこのときの電力を表したものであり、「・・」(ダブルドット)の電力分、過剰にパンクチャリングを施すことになり電力の有効利用が図れないという問題がある。
 このような課題を解決するために、本発明は、基地局と移動局とを含むマルチキャリア通信システムであって、前記基地局は、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力と、の比を決定する電力比決定部と、参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定部と、各リソースブロックでのパンクチャリングの適用の有無を決定するスケジューリング部と、前記決定した電力比、および、パンクチャリングの有無、および、パンクチャリングパターンにより各リソースブロックの送信を行なう送信部と、を有し、パンクチャリングされたリソースブロックの受信を行なう移動局は、前記パンクチャリングパターンを決定するパンクチャリングパターン決定部を有することを特徴とする通信システムが提供される。
 前記基地局のパンクチャリングパターン決定部は、参照信号を含むOFDMシンボルにおけるデータ電力の総和と、参照信号を含まないOFDMシンボルにおけるデータ電力の総和との比が、前記電力比決定部において決定された参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比に等しい値となるよう、リソースブロック内のパンクチャリング数を決定することが好ましい。
 前記基地局のパンクチャリングパターン決定部は、リソースブロック内の参照信号を含むOFDMシンボルにおけるデータ電力の総和と、参照信号を含まないOFDMシンボルにおけるデータ電力の総和との比が、前記電力比決定部において決定された参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比に等しい値となるパンクチャリング数を、送信符号化単位で丸めた値となるように決定することが好ましい。前記通信システムは空間周波数ブロック符号を用い、前記送信符号化単位は空間周波数ブロック符号の送信符号化単位であることが好ましい。前記基地局のパンクチャリングパターン決定部の決定した数のパンクチャリングを、前記スケジューリング部が移動局装置へ割り当てた複数のリソースブロックに対して行うことが好ましい。前記基地局のパンクチャリングパターン決定部は、決定した数のパンクチャリングをあらかじめ定められた位置に施すことが好ましい。前記基地局のパンクチャリングパターン決定部は、決定した数のパンクチャリングを基地局により異なる位置に施すことが好ましい。
 前記基地局のパンクチャリングパターン数に関する情報の通知と、前記参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比を決定する電力比に関する情報の通知と、を同一情報として通知するようにすると良い。前記通信システムにおける基地局装置は、移動局毎もしくは通信毎に、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力とを異なるものにするか、或いは、パンクチャリングを施し、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力とを等しいものとして送信するか、を選択することが好ましい。
 また、マルチキャリア通信システムに用いられる基地局装置であって、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力と、の比を決定する電力比決定部と、参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定部と、各リソースブロックでのパンクチャリングの適用の有無を決定するスケジューリング部と、前記決定した電力比、およびパンクチャリングの有無、および、パンクチャリングパターンにて各リソースブロックの送信を行なう送信部と、を有することを特徴とする基地局装置が提供される。
 また、マルチキャリア通信システムに用いる移動局装置であって、その受信装置は、送信装置が送信する送信信号のパンクチャリングパターンを決定するパンクチャリングパターン決定部を有することを特徴とする移動局装置が提供される。
 本発明の他の観点によれば、基地局と移動局とを含むマルチキャリア通信システムにおける通信方法であって、前記基地局において、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力と、の比を決定する電力比決定ステップと、参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定ステップと、各リソースブロックでのパンクチャリングの適用の有無を決定するスケジューリングステップと、前記決定した電力比、および、パンクチャリングの有無、および、パンクチャリングパターンにより各リソースブロックの送信を行なう送信ステップと、を有し、パンクチャリングされたリソースブロックの受信を行なう前記移動局において、前記パンクチャリングパターンを決定するパンクチャリングパターン決定ステップを有することを特徴とする通信方法が提供される。
 前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、参照信号の存在するOFDMシンボル毎に変更することが好ましい。前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、リソースブロック毎に変更することが好ましい。前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、サブフレーム毎に変更することが好ましい。前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、参照信号からのサブキャリア単位での間隔において定義し、前記間隔は、少なくとも基地局ID、OFDMシンボル番号、サブフレーム番号、リソースブロック番号の少なくとも1つの値を用いて決定することが好ましい。
 また、マルチキャリア通信システムに用いる移動局装置であって、その受信装置は、送信装置が送信する送信信号のパンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングされたリソースエレメントにおいて、受信信号の干渉量の推定を行なうことを特徴とする移動局装置が提供される。さらに、マルチキャリア通信システムに用いる移動局装置であって、その受信装置は、送信装置が送信する送信信号のパンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングされたリソースエレメントにおいて、受信信号の品質の推定を行なうことを特徴とする移動局装置が提供される。前記パンクチャリングされたリソースエレメントにおいて、前記推定量を基地局に通知することが好ましい。
 さらに、基地局と移動局とを含むマルチキャリア通信システムであって、前記基地局は、参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングパターンにより各リソースブロックの送信を行なう送信部と、を有し、パンクチャリングされたリソースブロックの受信を行なう前記移動局は、前記パンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングされたリソースエレメントにおいて、受信信号の品質の推定を行なう品質推定部を有し、前記推定した受信信号の品質を移動局装置から基地局装置へ通知することを特徴とする通信システムが提供される。
 本発明は、上記方法をコンピュータに実行させるプログラム、該プログラムを記録する記録媒体であっても良い。該プログラムは伝送媒体によって取得されるものでも良い。
 本発明によれば、マルチキャリア通信システムにおいて、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力とを異なるものとして送信する代わりにパンクチャリングを施す場合において、過剰なパンクチャリングを低減することができ、基地局装置の送信装置の電力の有効利用を図ることができる。
本発明の一実施の形態によるマルチキャリア通信装置における送信装置の一構成例を示す機能ブロック図である。 本実施の形態によるマルチキャリア通信装置における受信装置の一構成例を示す機能ブロック図である。 本実施の形態における、1サブフレームについての各リソースブロックの移動局装置への割当の一例を示した図である。 Ant1およびAnt2に参照信号が存在するOFDMシンボル、および、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置、およびその電力配分を示す図である。 Ant1およびAnt2に参照信号が存在するOFDMシンボル、および、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置、およびその電力配分を示す図である。 Ant1およびAnt2に参照信号が存在するOFDMシンボル、および、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置を示す図である。 図6Aにおける電力配分を示す図である。 前半のスロットにおける、Ant1およびAnt2に参照信号が存在するOFDMシンボル、後半のスロットにおける、Ant1およびAnt2に参照信号が存在するOFDMシンボル、および、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置、およびその電力配分を示す図である。 本実施の形態において、基地局装置から移動局装置へパンクチャリングパターンを通知する手法の一例を示した図である。 複数の基地局装置と移動局装置との関係を示す図である。 本発明の実施の形態において、基地局装置毎に異なるもの位置にパンクチャリングを施す場合の一例を示す図である。 3GPPで提案されているEUTRAの下りリンク無線フレーム構成例であり、無線チャネルマッピングの例を示す図である。 送信ダイバシティ方法を説明するための図である。 SFBC+FSTDを適用した場合の各アンテナペアの送信信号の配置の例を示す図である。 空間多重を適用した場合の各アンテナペアの送信信号の配置の例を示す図である。 参照信号の電力増幅と、データ電力の減少およびパンクチャリングとの関係の概念の一例を示した図である。 参照信号の電力増幅と、データ電力の減少およびパンクチャリングとの関係の概念の一例を示した図である。 従来例における1送信アンテナの場合の1リソースブロックペアについてのパンクチャリングの位置を表した図である。 従来例における1送信アンテナの場合の1リソースブロックペアについてのパンクチャリングの位置を表した図である。 1送信アンテナの場合の1リソースブロックペアについてのパンクチャリングの位置の一例を表した図である。 2送信アンテナSFBCの場合の1リソースブロックペアについてのパンクチャリングの位置の一例を表した図である。 4送信アンテナ空間多重の場合の1リソースブロックペアについてのパンクチャリングの位置の一例を表した図である。 1送信アンテナの場合の1リソースブロックペアについてのパンクチャリングの位置の一例を表した図である。 1送信アンテナの場合の2リソースブロックペアについてのパンクチャリングの位置の一例を表した図である。 1送信アンテナの場合の1リソースブロックペアの2サブフレームについてのパンクチャリングの位置の一例を表した図である。 1送信アンテナの場合の1リソースブロックペアについてのパンクチャリングの位置の一例を表した図である。 複数の基地局装置と移動局装置との関係を示す図である。 本実施の他の形態によるマルチキャリア通信装置における受信装置の一構成例を示す機能ブロック図である。
 1…送信装置、2…データ信号処理部、3…制御チャネル処理部、4…ターボ符号部、5…データ変調部、6…送信ダイバシティ処理部、7…多重部、8…IFFT部、9…CP挿入部、10…D/A部、11…送信RF部、12…送信アンテナ、13…OFDM送信部、14…畳み込み符号部、15…QPSK変調部、16…送信ダイバシティ処理部、17…参照信号発生部、18…電力比決定部、19…パンクチャリングパターン決定部、20…制御部、21…電力比情報信号生成部、22…受信処理部、23…受信アンテナ、24…受信RF部、25…A/D部、26…CP除去部、27…FFT部、28…多重分離部、29…伝搬路推定部、30…伝搬路補償部、31…送信ダイバシティ合成部、32…データ復調部、33…符号化復号部、34…制御部、35…データ電力決定部、36…電力比決定部、37…パンクチャリングパターン決定部、38…品質推定部、100~103…基地局装置、200…移動局装置。
 以下、本発明の実施の形態について図面を参照しながら説明する。図1は、4送信アンテナとして、送信ダイバシティにSFBC+FSTDを適用した場合の、一実施の形態によるマルチキャリア通信装置における送信装置の一構成例を示す機能ブロック図である。
 送信装置1において、送信されるデータは、まずデータ信号処理部2へ入力される。データ信号処理部2は、入力側から順番に、ターボ符号部4と、データ変調部5と、送信ダイバシティ処理部6と、を具備する。
 ターボ符号部4は、制御部20からの符号化率の指示に従い、入力されたデータの誤り耐性を高めるためのターボ符号による誤り訂正符号化を行う。データ変調部5は、QPSK(Quadrature Phase Shift Keying;4相位相偏移変調)、16QAM(16Quadrature Amplitude Modulation;16値直交振幅変調)、64QAM(64Quadrature Amplitude Modulation;64値直交振幅変調)等のような変調方式のうち、制御部20から指示された変調方式で、ターボ符号部4により誤り訂正符号化されたデータを変調する。送信ダイバシティ処理部6は、データ変調部5により変調された信号Snを符号反転、共役転置して信号Sn、-Snを生成することにより、各移動局装置に宛に送信する信号を冗長化し、冗長化による信号の組とし、SFBC+FSTD処理を行う周波数セット(s1、s2、s1、-s2、s3、s4、s3、-s4)を生成する。
 一方、通信システムに関する制御情報は、制御チャネル処理部3へ入力される。制御チャネル処理部3は、下りリンク制御チャネルの処理を行う。制御チャネル処理部3は、畳込み符号部14と、QPSK変調部15と、送信ダイバシティ処理部16と、を有する。畳込み符号部14は、制御部20から入力された制御情報の誤り耐性を高めるための畳込み符号による誤り訂正符号化を行う。QPSK変調部15は、畳込み符号部14により誤り訂正符号化された制御情報をQPSK変調方式で変調する。送信ダイバシティ処理部16は、上記送信ダイバシティ処理部6と同様に、SFBC+FSTD処理を行う4サブキャリア×4送信アンテナ分の送信信号の組みである周波数セットを生成する。
 参照信号発生部17は、送信装置1の各送信アンテナが送信する参照信号を生成する。多重部7は、データ信号処理部2から出力された符号化及び変調等の処理済の送信データの送信信号と、制御チャネル処理部3から出力された符号化及び変調等の処理済みの制御データの送信信号と、参照信号生成部17で生成された参照信号と、を送信信号のいずれのアンテナのサブフレーム中の、いずれのリソースエレメントに配置するかを指定し、配置を促す。
 多重部7で多重化された各送信データは、送信されるアンテナ毎に、各アンテナのOFDM送信部13…へ送られる。各OFDM送信部13…は、それぞれ、IFFT部8、CP挿入部9、D/A部10、送信RF部11、送信アンテナ12、を具備する。
 IFFT部8は、多重部7から入力された信号を高速逆フーリエ変換し、OFDM方式の変調を行う。CP挿入部9は、OFDM変調済みの信号にサイクリクスプレフィクス(CP)を付加することにより、OFDM方式におけるシンボルを生成する。サイクリックプレフィクスは、伝送するシンボルの先頭又は末尾の一部を複製する公知の方法によって得ることができる。D/A部10は、CP挿入部9から入力されたベースバンドのディジタル信号をアナログ信号に変換する。送信RF部11は、D/A部10から入力されたアナログ信号から、中間周波数の同相成分及び直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート)し、余分な周波数成分を除去し、電力増幅し、送信アンテナ12のそれぞれに出力する。
 尚、本実施の形態では、OFDM送信部を4つ具備している例について示しているが、2アンテナの場合は2つで良い。1アンテナの場合は1つで良い。
 電力比決定部18は、参照信号の電力、参照信号の含まれているOFDMシンボルにおけるデータ信号の電力、参照信号の含まれていないOFDMシンボルにおけるデータ信号の電力の比を決定し、制御部20へ通知する。制御部20は、データ信号処理部2、制御チャネル処理部3、参照信号発生部17、に対して、決定した電力比に基づき各送信信号の電力値を設定するよう指示する。パンクチャリングパターン決定部19はデータ信号のパンクチャリングパターンを決定し、それを制御部20へ通知する。制御部20はまた、データ信号処理部2、多重部7に対して決定したパンクチャリングパターンでデータ信号の生成し、リソースエレメントへのマッピングを行なうように指示する。電力比情報生成部21は、電力比決定部18、パンクチャリングパターン決定部19、により決定された情報に基づき、移動局装置に通知する電力比情報を生成する。生成された電力比情報は、データもしくは制御情報もしくはその両方として送信される。制御部20は、また、各部の制御を行なう。
 図2は、本一実施の形態によるマルチキャリア通信装置における受信装置の一構成例を示す機能ブロック図である。図2に示すように、受信装置の受信処理部22は、受信RF部24と、A/D部25と、CP除去部26と、FFT部27と、多重分離部28と、伝搬路推定部29と、伝搬路補償部30と、送信ダイバシティ合成部31と、データ復調部32と、符号化復号部33と、を具備する。
 受信RF部24は、受信アンテナ23を介して受信した信号を増幅し、中間周波数に変換し(ダウンコンバート)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分及び直交成分に基づいて、直交復調する。A/D部25は、受信RF部24により直交復調されたアナログ信号をディジタル信号に変換する。CP除去部26は、A/D部25の出力したディジタル信号からサイクリックプレフィクスに相当する部分を除去する。FFT部27は、CP除去部26から入力された信号を高速フーリエ変換し、OFDM方式の復調を行う。
 多重分離部28は、制御部34からの指示に基づき、FFT部27がフーリエ変換した信号、すなわちOFDM方式により復調された受信信号から参照信号を、配置されたリソースエレメントから抽出して出力する。具体的には、多重分離部28は固定の配置である参照信号を抽出して、伝搬路推定部29に出力する。
 伝搬路推定部29は、多重分離部28が分離、抽出した既知の参照信号の受信結果に基づいて送信装置1の送信アンテナ1~送信アンテナ4の各々に対する伝搬路変動を推定し、伝搬路変動補償値を出力する。伝搬路補償部30は、伝搬路推定部29からの伝搬路変動補償値に基づいて、入力された信号の伝搬路変動の補償を行う。送信ダイバシティ合成部31は、伝搬路補償部30が伝搬路変動の補償を行った信号について、送信装置が使用する送信ダイバシティ方式に基づき、送信装置が生成した送信信号の各アンテナの周波数セットを再生し、合成して冗長化前の信号を生成する。
 この送信ダイバシティ合成部の処理は、例えば送信ダイバシティ方式にSFBCを用いる場合は、アンテナペアのデータそれぞれに対して、アラモウチ(Alamouti)合成を行う(上記非特許文献7参照)。制御部34は、多重分離部28、伝搬路補償部30、送信ダイバシティ合成部31、データ復調部32に、データ電力決定部35およびパンクチャリングパターン決定部37で決定された電力情報およびパンクチャンリングパターンに基づき処理を行なうように指示する。データ復調部32は、送信ダイバシティ合成部31により生成されたデータ信号もしくは制御情報の復調を行う。この復調は、送信装置1のデータ変調部5もしくはQPSK変調部15で用いた変調方式に対応したものが行われ、変調方式に関する情報は制御部34から指示される。符号化復号部33は、データ復調部32が復調したデータを復号する。復号されたデータのうち、制御情報である電力比やパンクチャリングパターンに関する情報は、送信されておれば抽出されて、電力比決定部36における電力比の決定や、パンクチャリングパターン決定部37のパンクチャリングパターンの決定に使用される。電力比決定部36は決定した参照信号、参照信号の存在するOFDMシンボルにおけるデータ電力、参照信号の存在しないOFDMシンボルにおけるデータ電力相互の電力比を決定する。電力比決定部36におけるこれら電力の決定は、基地局装置より送信される制御情報から得られるか、もしくは移動局装置の受信部で受信した各々の電力より独自に決定される。データ電力決定部35は電力比決定部36により決定された電力比と、参照信号の電力とからデータ電力を決定する。パンクチャリングパターン決定部37はデータがパンクチャされた場合のパンクチャリングパターンを決定する。パンクチャリングパターン決定部37におけるこのパンクチャリングパターンの決定は、基地局装置より送信される制御情報から得られるか、もしくは移動局装置の受信部で受信した各々の電力より独自に決定され、いずれの場合も送信装置のパンクチャリングパターン決定部が決定したのと同じパンクチャリングパターンを得る。図3は、本実施の形態における、1サブフレームについての各リソースブロックの移動局装置への割当の一例を示した図である。各移動局装置へは単一もしくは複数のリソースブロックが割り当てられる。また、移動局装置ヘや移動局装置「ト」のように、1サブフレームをスロット毎に分割して複数の移動局装置で使用する、分割リソースブロック割当と称する割当方法も取られる。この例では、偶数個のリソースブロックを2つの移動局装置「ヘ」、「ト」で共用し、移動局装置「ヘ」は一方のリソースブロックの前半スロットと、他方のリソースブロックの後半スロットを使用し、移動局装置トはその逆のスロットを使用する。
 図3では、移動局装置「イ」、移動局装置「ロ」は、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力とを異なるものとしてパンクチャリングを行なわないものし、移動局装置「ハ」、「ニ」、「ホ」、「ヘ」、「ト」は、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力とを等しいものとするため、パンクチャリングを行うものとする。
 図4は図3で、移動局装置「イ」における1リソースブロックについてのリソースエレメントの配置およびデータ電力の一例を示した図であり、4送信アンテナでの例を表している。図3も適宜参照する。
 ここでは、参照信号のあるOFDMシンボルにおいては、システム帯域幅内の参照信号の電力の合計が、システム帯域内の全電力の合計の1/2である場合を例として説明する。尚、1/2以外の他の値の場合でも同様の技術を適応することが可能である。移動局装置イには、送信ダイバシティとしてSFBC+FSTDが適用されており、また、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力と、を異なるものとしてパンクチャリングを行なわないものとする。図4(a-1)、図4(a-2)は、それぞれ、Ant1およびAnt2に参照信号が存在するOFDMシンボル、および、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置を示す図である。また、図4(b-1)、図4(b-2)はそれぞれ、対応する電力の配分を示す図である。
 例えば、Ant1を例にして説明すると、各OFDMシンボルにおいて、合計電力が等しいように電力が配分される。すなわち、
 2×(R1の電力) + 4×(D1の電力) =  6×(D1の電力)
となる。但し、上式の左辺が参照信号の存在するOFDMシンボルにおける値(b-1)であり、右辺が参照信号の存在しないOFDMシンボルにおける値(b-2)である。
 図5は、同じく図3で、移動局装置「ニ」におけるリソースブロックについてのリソースエレメントの配置およびデータ電力の一例を示した図である。但し、1リソースブロックについての例ではなく、移動局装置「ニ」に割り当てられている2リソースブロック分について示している。移動局装置「ニ」には、送信ダイバシティとして、同じくSFBC+FSTDが適用されているものとする。但し、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力と、を等しいものとするために、パンクチャリングを行なうものとした場合の一例を示す図である。図5(a-1)、図5(a-2)は、それぞれ、Ant1およびAnt2に参照信号が存在するOFDMシンボル、および、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置例を示す図である。また、図5(b-1)、図5(b-2)は、それぞれ、対応する電力の配分を示す図である。1つのリソースブロックについては1組のSFBCのリソースエレメントペアである2リソースエレメントに対してパンクチャリングを行う。もう1つのリソースエレメントについては、パンクチャリングを行わない。結果として、平均で1リソースブロック当たり1つのリソースエレメントのパンクチャリングを施す。上記従来技術を説明した図14Bの(c-2)、(d-2)のように、1リソースソースブロック単独では、SFBC(+FSTD)を用いる場合には、必ず2リソースエレメント、ペアでパンクチャリングをする必要があった。従って、過剰にパンクチャリングを施す必要があり、電力を有効に使用できない場合があった。
 本実施の形態においては、複数のリソースブロックにおいて、別のパンクチャリングパターンを組み合わせることにより、SFBCのリソースエレメントのペアを維持したまま、電力を有効に使用するパンクチャリングを施すことが出来る。例えば、Ant1を例に取ると、各OFDMシンボルにおいて、
 4×(R1の電力) + 6×(D1の電力) =  12×(D1の電力)
となっている。ここで、左辺が参照信号の存在するOFDMシンボルにおける値(b-1)、右辺が参照信号の存在しないOFDMシンボルにおける値(b-2)である。
 図6は、同じく図3で、移動局装置「ホ」におけるリソースブロックについてのリソースエレメントの配置およびデータ電力の一例を示した図である。移動局装置「ホ」に割り当てられている3リソースブロック分について示している。移動局装置「ホ」には、移動局装置「ニ」の場合と同様に、送信ダイバシティとして同じくSFBC+FSTDが適用されているものとする。また、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力と、を等しいものとするために、パンクチャリングを行うものとする。図6A(a-1)、(a-2)は、それぞれ、Ant1およびAnt2に参照信号が存在するOFDMシンボル、および、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置を示す図である。また、図6B(b-1)、(b-2)は、それぞれ、対応する電力の配分を示す図である。
 下から2つのリソースブロックについては、移動局装置「ニ」の場合と同様に、1組のSFBCのリソースエレメントペアである2リソースエレメントに対してパンクチャリングを行ない、もう1つのリソースエレメントについては、1組のSFBCのリソースエレメントペアである2リソースエレメントに対してパンクチャリングを行なう。上の1つのリソースブロックについては、参照信号の存在するOFDMシンボルにおける参照信号とデータ電力との合計が、参照信号の存在するOFDMシンボルにおけるデータ電力との合計と等しいものとするためには、1リソースエレメントに対してパンクチャリングを施せばよいのであるが、SFBCを構成するリソースエレメントのペア数は2であるので、2つのリソースエレメントに対してパンクチャリングを行なう。すなわち、3つのリソースブロックにて合計4つのリソースエレメントのパンクチャリングを行なう。各リソースブロック毎に、SFBCを構成するリソースエレメントのペア数の単位でパンクチャリングを行なうとすると、2×3=6リソースエレメントのパンクチャリングを行なう必要があるため、これに比べて電力を有効に利用できる。このように、本実施の形態においては、必要とするリソースブロックのパンクチャリング数がSFBCを構成するペア数の単位である2で割り切れない場合は、2の倍数に切り上げてパンクチャリングを施す。必要とするパンクチャリング数により、電力を有効に使用できない場合が生じるが、基地局装置の送信電力の上限を超えないで、SFBCのペアを維持してパンクチャリングを行なうことができる。
 尚、基地局装置の送信電力の送信電力に余裕がある場合は、切り上げるのではなく、切り捨ててパンクチャリングを行ってもよい。もしくは、それらを組み合わせて、基地局装置の送信電力の上限を越えないように調整してもよい。
 図7は、同じく図3で、移動局装置「ヘ」および移動局装置「ト」におけるリソースブロックについてのリソースエレメントの配置およびデータ電力の一例を示した図である。移動局装置「ヘ」および移動局装置「ト」は、分割リソースブロック割当が適用され、同一リソースブロックをスロット毎に共有しており、双方で合わせて2リソースブロックを使用している。また、送信ダイバシティとして同じくSFBC+FSTDが適用されているものとし、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力とを等しいものとするために、パンクチャリングを行うものとする。図7(a-1)は、前半のスロットにおける、Ant1およびAnt2に参照信号が存在するOFDMシンボル、図7(a-2)は、後半のスロットにおける、Ant1およびAnt2に参照信号が存在するOFDMシンボル、それぞれ、Ant1およびAnt2に参照信号が存在するOFDMシンボル、図7(a-3)は、参照信号が存在しないOFDMシンボルにおけるリソースエレメントの配置を示す図である。また、図7(b-1)、図7(b-2)、図7(b-3)は、それぞれ、対応する電力の配分を示す図である。図5の例と同様に、1つのリソースブロックについては1組のSFBCのリソースエレメントペアである2リソースエレメントに対してパンクチャリングを行う。もう1つのリソースエレメントについては、パンクチャリングを行わない。その結果として、平均で1リソースブロック当たり1つのリソースエレメントのパンクチャリングを施す。このように、本実施の形態を分割リソースブロック割当に適用した場合には、分割リソースブロック割当は必ず2の倍数のリソースブロックを用いて行なわれるため、それらリソースブロックを組み合わせてパンクチャリングを行うことにより、SFBCのリソースエレメントのペアを維持したまま、電力を有効に使用するパンクチャリングを施すことが出来る。
 図8は、本実施の形態において、基地局装置から移動局装置へパンクチャリングパターンを通知する手法の一例を示した図である。EUTRAでは、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力との比をテーブルとし、そのテーブルのインデックスを、基地局装置から移動局装置へ通知することが提案されている(上記非特許文献8参照)。これは、本質的には、参照信号の電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力との比が基地局により一意に定められると、その値に基づいて参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力と、の比が一意に定められることによる。本実施の形態では、パンクチャリングを適用するリソースブロックと、適用しないリソースブロックとが混在する場合には、パンクチャリングを適用する移動局装置については、パンクチャリング情報の通知を、パンクチャリングを適用しないリソースブロックにおける、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力との比の通知と兼用する。図8(a)において、Ratioは、図2に示す電力比決定部36において決定される、各インデックスが通知された場合の、各送信アンテナ数(1本、2本、4本)における、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力との比の例を示している。#Pncは、本発明におけるパンクチャリングパターン決定部37が決定する、パンクチャリングを行なう場合の1リソースブロックあたりのパンクチャリングの数を表している。尚、SMは空間多重を示す。これらの値は、インデックス(Index)が指し示す参照信号の電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力との比に対して、それぞれ、
 参照信号の電力の総和 + 参照信号の存在するシンボルにおけるデータ電力の総和 = 参照信号の存在しないシンボルにおけるデータ電力の総和
の式が満たされるように決められる。
 但し、SFBCおよびSFBCを使用する場合には、SFBCのリソースエレメントペアの単位である2の倍数でない端数については、2の倍数になるように切り上げを行う。また、空間多重の場合には、整数に満たない端数については、整数となるように切り上げを行う。また、負の値になる場合は0とする。
 決定されたパンクチャリング数に対して、どのリソースエレメントをパンクチャリングするかは、パターンのインデックスを通知してもよいが、あらかじめ、パンクチャンリングの個数により定められた位置をパンクチャリングするようにしてもよい。このような通知方法にすることで、パンクチャリングを適用する場合の基地局装置から移動局装置への通知量の増加を低減することができる。
 図8(b)は、上記本発明の一実施例である、2つのリソースブロックを使用してSFBC(+FSTD)を行う場合のテーブルを示す図である。2Ant(SFBC)および4Ant(SFBC+FSTD)における#Pncについては、1リソースブロック当たりのパンクチャリング数を示す。例えば、インデックス001が通知される場合、2Ant(SFBC)の場合では、1リソース当たりのパンクチャリング数は1である。すなわち、2つのリソースブロックでは、合計2つのパンクチャリングを適用することを意味し、前述したようにSFBCでは必ず2つのリソースエレメントがペアであるため、図5(a-2)に示すように1つのリソースブロックについて2つのリソースエレメントをパンクチャリングし、他の1つのリソースブロックについては、パンクチャリングを施さないことを意味する。
 移動局装置は、また別途、パンクチャリングが適用されるかどうかも別途通知される。パンクチャリングの適用の通知は、図8のインデックスの通知と組み合わせて通知しても良いし、別のシグナリング手法と組み合わせて通知しても良い。例えば、EUTRAでは、各移動局装置向けの個別の制御情報の通知方法として、共通制御チャネルや、高次レイヤシグナリングを用いる方法がある。EUTRAでは、参照信号の電力は各々の移動局装置向けのリソースブロック間で全て共通であるため、前述したように参照信号の電力を、基地局が定まれば、これに対応して、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力との比、および、それに対応するパンクチャリングの個数は基地局毎に定まる値とするのが、基地局の送信装置における電力の有効利用の観点から望ましい。従って、これらの値は各移動局装置向けに共通にシグナリングする報知情報として報知し、各々の移動局装置がパンクチャリングを適用するか否かは、共通制御チャネルや、高次レイヤシグナリングを用いるのが望ましい。
 図9Aは、本発明の実施の形態において、前述のパンクチャリングパターンを、基地局装置毎に異なるものとした一例を示す図である。図9Aは、複数の基地局装置100から103までの配置を示した模式的な図である。各基地局装置100から103までがカバーするエリアは、空白区間が生じないようにオーバラップしている。LTEでは、各基地局装置は同一周波数帯域を使用するため、この場合、セル境界近くにおいては基地局装置間の干渉が生じる。本実施の形態においては、パンクチャリングを施す際に、パンクチャリングが行なわれるリソースエレメントの位置を基地局装置毎に異なるものとすることで、パンクチャリングにより干渉低減効果をも得るものである。図9B(a)は、2Antで空間多重を用いた場合で、パンクチャリングを2リソースエレメント施す場合の一例を示す図である。但し、簡単のためAnt1についてのみ記載している。各送信装置において、パンクチャリングの位置を異なるものとすることにより、他の送信装置への干渉を低減する。基地局装置には、識別のための基地局IDが付与されており、移動局装置は、通信時にまずこの基地局IDを判別する。パンクチャリング位置の導出には、例えば、この基地局IDを用い、例えばパンクチャリングの位置を基地局IDに基づきシフトすることにより、パンクチャリングの位置を定めるようにする。このように、パンクチャリングの位置を基地局IDとパンクチャリング数から一意に定めるようにした場合に、パンクチャリングの位置を通知するためのシグナリングも不要になるという利点もある。
 例えば、パンクチャリングを2リソースエレメントに施す場合、そのパンクチャリング位置のパターンは、8リソースエレメントの場合に28通り存在するが、あらかじめ位置の導出方法を定めておくことにより、このための通知は不要となる。
 図9B(b)は、2送信AntでSFBCを用いた場合で、パンクチャリングを2リソースブロックあたり2つ施す場合の一例を示す図である。前述したように、2つのリソースブロックのうち、1つのリソースブロックについて、2リソースエレメントパンクチャリングを施し、他方のリソースエレメントについてはパンクチャリングを施さない。1リソースエレメント中におけるパンクチャリング位置を基地局IDに基づき決めると共に、どちらのリソースブロックにパンクチャリングを施すかについても、基地局IDに基づき決めるようすることで、パンクチャリング位置の分散を図り、干渉低減効果を得る。
 尚、これらの実施の形態では、各々移動局装置へのリソースブロック当たりの電力が等しい場合について示したが、各移動局装置への送信電力を異なるものとする電力制御を行った場合にも適用できる。この場合には、各移動局装置に対して、kn倍の電力制御を行うものとすると(ここで、nは各移動局装置を表すインデックスで、n={イ、ロ、ハ、…})、パンクチャリングを適用する場合、および、パンクチャリングを適用しない場合のそれぞれについては、単純に各リソースエレメントの電力をkn倍にすればよい。これは、前述した分割リソース割当の場合でも、移動局装置毎に同様に適応できる。
 尚、パンクチャリングを適用せずに、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFD信号におけるデータ電力の値とを異なるようにする場合に、参照信号の電力を大きくしたときに、参照信号の存在しないOFDMシンボルにおけるデータ電力が過度に小さくなる場合がある。よって、リソースエレメントの電力がある値以下になる場合には、自動的にパンクチャリングを適用するようにしても良い。
 また、各OFDMシンボルにおいては、アンテナ毎のサブキャリア電力は等しいものとした場合について示したが、アンテナ毎のサブキャリア電力を異なるようにした場合について適用することも可能である。この場合に、参照信号の存在するOFDMシンボルにおいて、参照信号の存在しないアンテナにおけるデータ電力の合計が、参照信号の存在しないOFDMシンボルにおけるデータ電力の合計と等しいようになるように、リソースエレメントの電力を設定する。これまでに挙げたEUTRAの例では、参照信号の存在するOFDMシンボルにおいて、参照信号の存在しないアンテナにおけるデータの1リソースエレメントの電力を、参照信号の存在しないOFDMシンボルにおけるデータの1リソースエレメントの電力の3/2倍に設定すればよい。この場合、参照信号の存在するアンテナにおいてパンクチャリングされたリソースエレメントに対応するSFBCペアに相当するリソースエレメントはパンクチャリングされることとなるが、これをパンクチャリングしないで別のデータを送信するようにしても良い。
 また、上記の実施の形態では、空間多重方式においても、同様に適用が出来る。
 図15は、前述のパンクチャリングパターンを、基地局装置毎に異なるものとした、他の一例を示す図である。上記非特許文献9においては、パンクチャリングされたリソースエレメントを用いて干渉推定を行なう例が記載されている。これは、移動局が他の基地局からの干渉量の推定を、パンクチャリングされたリソースエレメントにおいて行うことで、移動局が通信を行なっている基地局からの送信信号の影響を受けないようすることで、精度の高い他局からの干渉量の推定を実施するものである。非特許文献9においては、1送信アンテナについて、参照信号から3サブキャリア離れた位置のリソースエレメントにおいて干渉測定を行なう例が示されている。図15は、上記非特許文献9における1送信アンテナの場合の1リソースブロックペアについてのパンクチャリングの位置を表したものである。図中の・(ドット)はパンクチャリングされているリソースエレメントを表す。また、リソースエレメントC1はそのリソースエレメントでアンテナ1からの制御信号の送信信号がこの位置で送信されることを示す。リソースエレメントD1はそのリソースエレメントでアンテナ1からのデータ信号の送信信号がこの位置で送信されることを示す。
 ところで、EUTRAでは基地局より送信される参照信号の電力は周波数に関わらず基地局により一定であり、また時間軸方向においても基地局の再設定を行なわない限り一定であり、事実上一定と考えて差し支えない。一方、制御信号やデータ信号の電力は基地局が通信を行なう対象とする移動局毎に異なる。すなわちリソースブロックペア毎に異なる。この状況下では、干渉量の推定は電力が一定である参照信号に対して行なうのが望ましい。
 ところで、EUTRAにおいては参照信号の周波数軸上の送信位置は基地局により基地局IDの値に基づきシフトを行なうことが定められている。
 図16に参照信号の送信位置のシフトの例を示す。基地局装置120は参照信号が基地局装置110よりも1サブキャリア周波数の高い位置で送信される。この場合、非特許文献9に記載された手法ではパンクチャリングされるリソースエレメントの位置も同様に1サブキャリア分シフトすることとなる。このとき、基地局装置120と通信を行なう移動局装置を移動局装置220とする。
 図24はこのときの基地局装置と移動局装置との関係を示したものである。移動局装置220が、基地局装置120でパンクチャリングされているリソースエレメントを利用して干渉量の推定を行なう場合、干渉となる基地局装置110からの送信信号は常に制御信号もしくはデータ信号となるため、周波数や時間における変動が大きくなる。このような問題を解決するために、本発明においてはパンクチャリングされる位置をOFDMシンボル毎に異なるものとする。
 図17は、本発明の一実施例におけるパンクチャリングされるリソースエレメントの配置の一例を示す図であり、参照信号と、パンクチャリングされるリソースエレメントの位置との間隔を、次の参照信号のあるOFDMシンボルにおいて、前の参照信号のあるOFDMシンボルにおけるそれよりも1ずつ増加するようにしている。ただし、1送信アンテナの場合、参照信号は6サブキャリア間隔に配置されており、参照信号でないリソースエレメントの連続数は5であり、配置できるのはその5つのリソースエレメントの中の1つであるため、実際の値は上記の値を5で除した剰余とする。すなわち、第1OFDMシンボルにおいては、図16と同じく参照信号より3サブキャリア離れたリソースエレメントであるが、第5OFDMシンボルにおいては参照信号より、周波数の高い方向に4サブキャリア離れた位置であり、第8OFDMシンボルにおいては周波数の高い方向に5サブキャリア離れた位置、すなわち周波数の低い方向に1つ離れた位置、第8OFDMシンボルにおいては周波数の高い方向に1サブキャリア(6 mod 5 = 1)離れた位置である。このとき基地局装置121と通信を行なう移動局装置を移動局装置221とすると(図示せず)、移動局装置221が基地局装置121でパンクチャリングされているリソースエレメントにおいて干渉量の推定を行なう場合、第8OFDMシンボルの第1サブキャリアと第7サブキャリアに関しては、干渉となる基地局装置111からの送信信号は参照信号であるため、周波数や時間における変動が小さく、精度のよい干渉推定を行なうことができる。
 図18は2送信アンテナにおけるSFBCの場合の適応例SFBC+FSTDにおける場合の適応例である。SFBCのリソースエレメントの構成単位である2リソースエレメント単位でのパンクチャリングがなされる。基地局装置122と通信を行なう移動局装置を移動局装置222とすると(図示せず)、移動局装置222が基地局装置122でパンクチャリングされているリソースエレメントにおいて干渉量の推定を行なう場合、第1OFDMシンボルの第1サブキャリア、第5OFDMシンボルの第4サブキャリア、第8OFDMシンボルの第7サブキャリア、第12OFDMシンボルの第10サブキャリアにおいて基地局装置112の参照信号を用いて、精度のよい干渉推定を行なうことができる。4送信アンテナのSFBC+FSTDに適用する場合は、同様にSFBC+FSTDのリソースエレメントの構成単位である4リソースエレメント単位でのパンクチャリングを行なえばよい。
 図19は4送信アンテナの空間多重において、本発明を同様に適用した一例である。基地局装置123と通信を行なう移動局装置を移動局装置223とすると(図示せず)、移動局装置223が基地局装置123においてパンクチャリングされているリソースエレメントである第5および第9OFDMシンボルの第1、第7サブキャリアにおいて、基地局装置113の参照信号を用いて、精度のよい干渉推定を行なうことができる。
 なお、本実施形態におけるパンクチャリングされるリソースエレメントの位置は、各OFDMシンボルについて、参照信号とパンクチャリングされるリソースエレメントとの位置の間隔を固定にしてもよいが、例えば図17の場合、基地局装置121について言うと、第4および第10サブキャリアではパンクチャリングされないため、このとき、図20の基地局装置141のように参照信号のシフトが図17の基地局装置111から周波数方向に3高い方向にシフトした基地局装置の場合(ただし、1リソースブロック中のサブキャリア数は12であるので、配置されるリソースブロックの位置が12を超える場合は、その数を12で除した剰余の位置に配置される。他の実施例でも同様。)、基地局装置121と通信を行なう移動局装置(221図示せず)が干渉推定を行なう場合には、基地局装置121においてパンクチャリングされたリソースエレメントのいずれのサブキャリアにおいても干渉対象となる基地局装置141の参照信号が存在しないので、効果が得られない。このため、参照信号の位置とパンクチャリングされるリソースエレメントの位置との間隔は、少なくともリソースブロック毎等、周波数依存で異なるものとするのが望ましい、もしくはサブフレーム毎等時間依存で異なるものとするのが望ましい。もしくはその双方で異なるものとするのが望ましい。
 図21は参照信号とパンクチャリングされるエレメントとの位置との間隔をリソースブロック毎にも異なるものとなるようにした場合の一例である。周波数方向2リソースブロック分について示している。下側のリソースブロックにおいては参照信号とパンクチャリングされるリソースエレメントとの位置の間隔は図20の場合と同じ、すなわち第1、第5、第8、第12OFDMシンボルについてそれぞれ3、4、5、1(=6 mod 5)サブキャリア分であるが、上側のリソースブロックについては、参照信号とパンクチャリングされるリソースエレメントとの位置の間隔が下側のリソースブロックよりも周波数方向に1大きい値、すなわち第1、第5、第8、第12OFDMシンボルについてそれぞれ4、5、1(=6 mod 5)、2(=7 mod 5)サブキャリア分としている。これにより、基地局装置124と通信を行なう移動局装置を移動局装置224とした場合(図示せず)、移動局装置224は、上側のリソースブロックにおいて、基地局装置124においてパンクチャリングされているリソースエレメントである第12OFDMシンボルの第4および第10サブキャリアにおいて、干渉となる基地局装置144からの参照信号を用いて干渉推定を行なうことができる。
 図22は参照信号とパンクチャリングされるエレメントとの位置との間隔をサブフレーム毎にも異なるものとなるようにした一例である。時間軸方向2サブフレーム分について示している。最初のサブフレームにおいては、基地局装置145、基地局装置125ともに、参照信号とパンクチャリングされるリソースエレメントとの位置の間隔は図20の場合と同じ、すなわち第1、第5、第8、第12OFDMシンボルについてそれぞれ3、4、5、1(=6 mod 5)サブキャリア分であるが、次のサブフレームについては、参照信号とパンクチャリングされるリソースエレメントとの位置との間隔が最初のサブフレームよりも周波数方向に1大きい値、すなわち第1、第5、第8、第12OFDMシンボルについてそれぞれ4、5、1(=6 mod 5)、2(=7 mod 5)サブキャリア分としている。これにより、基地局装置125と通信を行なう移動局装置を225とした場合(図示せず)、移動局装置225は、最初のサブフレームについては基地局装置125のパンクチャリングされたリソースエレメントにおいては、基地局装置145の参照信号の干渉推定を行なうことができないのであるが、次のサブフレームについては、基地局装置125のパンクチャリングされたリソースエレメント、すなわち第12OFDMシンボルの第4および第10サブキャリアにおいて、干渉となる基地局装置145からの参照信号を用いて干渉推定を行なうことができる。
 図23は、前記参照信号とパンクチャリングされるリソースエレメントとの位置との間隔を基地局装置毎に異なるものとなるようにした一例である。基地局装置141および基地局装置121は、図20と同じく、それぞれ参照信号のシフトが図17の基地局装置111から周波数方向に3および1高い方向にシフトした基地局装置であって、参照信号とパンクチャリングされるリソースエレメントとの位置の間隔が、第1、第5、第8、第12OFDMシンボルについてそれぞれ3、4、5、1(=6 mod 5)サブキャリア分である例であり、このときには、基地局装置121と通信を行なう移動局装置を221(図示せず)は、基地局装置121のパンクチャリング位置においては干渉となる基地局装置141の参照信号を用いた干渉測定はできない。一方、基地局装置126は参照信号のシフトは基地局装置121と同じであるが、参照信号とパンクチャリングされるリソースエレメントとの位置の間隔は、基地局装置121よりも1多い値としている。すなわち、第1、第5、第8、第12OFDMシンボルについてそれぞれ4、5、1(=6 mod 5)、2(=7 mod 5)サブキャリア分である。この場合、基地局装置126と通信を行なう移動局装置を移動局装置226とした場合(図示せず)、移動局装置226は基地局装置126のパンクチャリングされたリソースエレメント、すなわち第12OFDMシンボルの第4および第10サブキャリアにおいて、干渉となる基地局装置141からの参照信号を用いて干渉推定を行なうことができる。
 なお、これらパンクチャリングされるリソースエレメントの位置、参照信号との間隔等の導出方法はあらかじめ定められた方法に従い、基地局装置識別番号、リソースブロック、サブフレーム番号等から導出するようにしてもよいが、移動局装置においてあらかじめ、干渉となる基地局の存在が分かっている場合、基地局において干渉局に合わせてそれらの位置を決定し、移動局装置にその情報を通知しても構わない。
 また、これらの例は、干渉推定にとどまらず、基地局装置からの信号の品質測定目的等に用いても構わない。さらに、推定した干渉量や、信号品質を基地局装置にフィードバックするようしても構わない。
 図25に、本実施形態における受信装置の受信処理部22の一例を示す。下記で言及しない各機能部には、図2と同様の符号を付してその説明を省略する。パンクチャリングパターン決定部37で決定されたパンクチャリングパターンに基づき、制御部34は多重分離部28に、パンクチャリングされたリソースエレメントにおける受信信号を品質推定部38に出力するよう指示する。品質推定部38では、パンクチャリングされたリソースエレメントのおける受信信号から、干渉対象となっている基地局装置からの干渉量の推定や、通信を行なっている移動局装置からの受信信号の品質測定を行ない、品質情報を出力する。品質情報は制御部にフィードバックされたり、移動局装置の送信装置(図示せず)を通して基地局装置へ送信される。
 (まとめ)
 本実施の形態によれば、マルチキャリア通信システムにおいて、参照信号の存在するOFDMシンボルにおけるデータ電力と、参照信号の存在しないOFDMシンボルにおけるデータ電力とを異なるものとして送信する代わりにパンクチャリングを施す場合において、過剰なパンクチャリングを低減することができ、基地局装置の送信装置の電力の有効利用を図ることができるという利点がある。
 また、パンクチャリングを利用して他の送信装置への干渉を低減したり、他の送信装置からの干渉量の推定を行なったりすることができる。
 本発明は、通信装置に利用可能である。

Claims (20)

  1.  基地局と移動局とを含むマルチキャリア通信システムであって、
     前記基地局は、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力と、の比を決定する電力比決定部と、参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定部と、各リソースブロックでのパンクチャリングの適用の有無を決定するスケジューリング部と、前記決定した電力比、および、パンクチャリングの有無、および、パンクチャリングパターンにより各リソースブロックの送信を行なう送信部と、を有し、
     前記パンクチャリングパターン決定部は、参照信号を含むOFDMシンボルにおけるデータ電力の総和と、参照信号を含まないOFDMシンボルにおけるデータ電力の総和との比が、前記電力比決定部において決定された参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比に等しい値となるよう、リソースブロック内のパンクチャリング数を決定し、
    パンクチャリングされたリソースブロックの受信を行なう前記移動局は、前記パンクチャリングパターンを決定するパンクチャリングパターン決定部を有することを特徴とする通信システム。
  2.  前記基地局のパンクチャリングパターン決定部は、リソースブロック内の参照信号を含むOFDMシンボルにおけるデータ電力の総和と、参照信号を含まないOFDMシンボルにおけるデータ電力の総和との比が、前記電力比決定部において決定された参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比に等しい値となるパンクチャリング数を、送信符号化単位で丸めた値となるように決定することを特徴とする請求項2に記載の通信システム。
  3.  前記通信システムは空間周波数ブロック符号を用い、前記送信符号化単位は空間周波数ブロック符号の送信符号化単位であることを特徴とする請求項1または2に記載の通信システム。
  4.  前記基地局のパンクチャリングパターン決定部の決定した数のパンクチャリングを、前記スケジューリング部が移動局装置へ割り当てた複数のリソースブロックに対して行い、前記複数のリソースブロックにおいて施されるパンクチャリングパターンは別のパンクチャリングパターンの組合せであることを特徴とする請求項1から3までのいずれか1項に記載の通信システム。
  5.  前記通信システムは分割リソース割当てを適応し、前記分割リソースブロック割当てが適用される移動局装置が共有する複数のリソースブロックにおいて施されるパンクチャリングパターンは別のパンクチャリングパターンの組合せであることを特徴とする請求項4に記載の通信システム。
  6.  前記基地局のパンクチャリングパターン決定部は、決定した数のパンクチャリングをあらかじめ定められた位置に施すことを特徴とする請求項1から5までのいずれか1項に記載の通信システム。
  7.  前記基地局のパンクチャリングパターン決定部は、決定した数のパンクチャリングを基地局により異なる位置に施すことを特徴とする請求項1から6までのいずれか1項に記載の通信システム。
  8.  前記基地局のパンクチャリングパターン数に関する情報の通知と、前記参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比を決定する電力比に関する情報の通知と、を同一情報として通知することを特徴とする請求項1から5までのいずれか1項に記載の通信システム。
  9.  前記通信システムにおける基地局装置は、移動局毎もしくは通信毎に、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力とを異なるものにするか、或いは、パンクチャリングを施し、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力とを等しいものとして送信するか、を選択することを特徴とする請求項1に記載の通信システム。
  10.  マルチキャリア通信システムに用いられる基地局装置であって、
     参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力と、の比を決定する電力比決定部と、
     参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定部と、
     各リソースブロックでのパンクチャリングの適用の有無を決定するスケジューリング部と、
     前記決定した電力比、およびパンクチャリングの有無、および、パンクチャリングパターンによって各リソースブロックの送信を行なう送信部と
    を有し、
    前記パンクチャリングパターン決定部は、参照信号を含むOFDMシンボルにおけるデータ電力の総和と、参照信号を含まないOFDMシンボルにおけるデータ電力の総和との比が、前記電力比決定部において決定された参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比に等しい値となるよう、リソースブロック内のパンクチャリング数を決定することを特徴とする基地局装置。
  11.  マルチキャリア通信システムに用いる移動局装置であって、
     その受信装置は、送信装置が送信する送信信号のパンクチャリングパターンを決定するパンクチャリングパターン決定部を有することを特徴とする移動局装置。
  12.  基地局と移動局とを含むマルチキャリア通信システムにおける通信方法であって、
     前記基地局において、参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力と、の比を決定する電力比決定ステップと、前記参照信号を含むOFDMシンボルにおけるデータ電力の総和と、参照信号を含まないOFDMシンボルにおけるデータ電力の総和との比が、前記電力比決定ステッップにおいて決定された参照信号を含むOFDMシンボルにおけるデータ電力と、参照信号を含まないOFDMシンボルにおけるデータ電力との比に等しい値となるよう、参照信号を含むOFDMシンボルにおけるデータのパンクチャリング数およびパンクチャリングパターンを決定するパンクチャリングパターン決定ステップと、各リソースブロックでのパンクチャリングの適用の有無を決定するスケジューリングステップと、前記決定した電力比、および、パンクチャリングの有無、および、パンクチャリングパターンにより各リソースブロックの送信を行なう送信ステップと、を有し、
     パンクチャリングされたリソースブロックの受信を行なう前記移動局において、前記パンクチャリングパターンを決定するパンクチャリングパターン決定ステップを有することを特徴とする通信方法。
  13.  前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、参照信号の存在するOFDMシンボル毎に変更することを特徴とする請求項6又は7に記載の通信システム。
  14.  前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、リソースブロック毎に変更することを特徴とする請求項6、7、13に記載の通信システム。
  15.  前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、サブフレーム毎に変更することを特徴とする請求項6、7、13に記載の通信システム。
  16.  前記基地局のパンクチャリングパターン決定部は、パンクチャリングを施す位置を、参照信号からのサブキャリア単位での間隔において定義し、前記間隔は、少なくとも基地局ID、OFDMシンボル番号、サブフレーム番号、リソースブロック番号の少なくとも1つの値用いて決定することを特徴とする請求項6、7、13に記載の通信システム。
  17.  マルチキャリア通信システムに用いる移動局装置であって、
     その受信装置は、送信装置が送信する送信信号のパンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングされたリソースエレメントにおいて、受信信号の干渉量の推定を行なうことを特徴とする移動局装置。
  18.  マルチキャリア通信システムに用いる移動局装置であって、
     その受信装置は、送信装置が送信する送信信号のパンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングされたリソースエレメントにおいて、受信信号の品質の推定を行なうことを特徴とする移動局装置。
  19.  前記パンクチャリングされたリソースエレメントにおいて、前記推定量を基地局に通知することを特徴とする請求項17又は18に記載の移動局装置。
  20.  基地局と移動局とを含むマルチキャリア通信システムであって、
     前記基地局は、参照信号を含むOFDMシンボルにおけるデータのパンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングパターンにより各リソースブロックの送信を行なう送信部と、を有し、
     パンクチャリングされたリソースブロックの受信を行なう前記移動局は、前記パンクチャリングパターンを決定するパンクチャリングパターン決定部と、前記決定したパンクチャリングされたリソースエレメントにおいて、受信信号の品質の推定を行なう品質推定部を有し、前記推定した受信信号の品質を移動局装置から基地局装置へ通知することを特徴とする通信システム。
PCT/JP2009/058037 2008-04-25 2009-04-23 マルチキャリア通信システム、通信装置、通信方法 WO2009131162A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-115508 2008-04-25
JP2008115508 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009131162A1 true WO2009131162A1 (ja) 2009-10-29

Family

ID=41216891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058037 WO2009131162A1 (ja) 2008-04-25 2009-04-23 マルチキャリア通信システム、通信装置、通信方法

Country Status (1)

Country Link
WO (1) WO2009131162A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162663A1 (en) * 2010-06-23 2011-12-29 Telefonaktiebolaget L M Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
WO2016161843A1 (en) * 2015-04-10 2016-10-13 Huawei Technologies Co., Ltd. System and method for duplicating preamble information
JP2017523646A (ja) * 2014-06-02 2017-08-17 インテル アイピー コーポレイション 動的非直交多元接続通信のためのユーザ機器および方法
CN108781158A (zh) * 2016-03-31 2018-11-09 三星电子株式会社 用于在移动通信系统中提供不同服务的方法和设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111504A (ja) * 2007-10-26 2009-05-21 Sharp Corp 通信システム、送信装置及び通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111504A (ja) * 2007-10-26 2009-05-21 Sharp Corp 通信システム、送信装置及び通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NORTEL: "RE Mapping of SFBC+FSTD Based TxD for Shared Data Channel", 3GPP TSG-RAN WORKING GROUP 1 MEETING #49BIS, R1-07380, - 29 June 2007 (2007-06-29) *
NTT DOCOMO ET AL.: "Power Boosting of Reference Signal in E-UTRA Downlink", 3GPP TSG RAN WG1 MEETING #47BIS, R1-070088, - 15 January 2007 (2007-01-15) *
SAMSUNG: "RE puncturing pattern for RS boosting", 3GPP TSG-RAN WORKING GROUP 1 #52BIS, R1-081232, 4 April 2008 (2008-04-04) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225057B2 (en) 2010-06-23 2019-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
CN105611548B (zh) * 2010-06-23 2019-09-13 瑞典爱立信有限公司 异构网络部署中的参考信号干扰管理
EP3002888A1 (en) * 2010-06-23 2016-04-06 Telefonaktiebolaget LM Ericsson (publ) Reference signal interference management in heterogeneous network deployments
CN105611548A (zh) * 2010-06-23 2016-05-25 瑞典爱立信有限公司 异构网络部署中的参考信号干扰管理
USRE49804E1 (en) 2010-06-23 2024-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
US9571246B2 (en) 2010-06-23 2017-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
US8489029B2 (en) 2010-06-23 2013-07-16 Telefonaktiebolaget L M Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
WO2011162663A1 (en) * 2010-06-23 2011-12-29 Telefonaktiebolaget L M Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
JP2017523646A (ja) * 2014-06-02 2017-08-17 インテル アイピー コーポレイション 動的非直交多元接続通信のためのユーザ機器および方法
US10361804B2 (en) 2014-06-02 2019-07-23 Intel IP Corporation User equipment and method for dynamic non-orthogonal multiple access communication
WO2016161843A1 (en) * 2015-04-10 2016-10-13 Huawei Technologies Co., Ltd. System and method for duplicating preamble information
US9992000B2 (en) 2015-04-10 2018-06-05 Huawei Technologies Co., Ltd. System and method for duplicating preamble information
CN108781158A (zh) * 2016-03-31 2018-11-09 三星电子株式会社 用于在移动通信系统中提供不同服务的方法和设备
CN108781158B (zh) * 2016-03-31 2021-10-22 三星电子株式会社 用于在移动通信系统中提供不同服务的方法和设备

Similar Documents

Publication Publication Date Title
US7978662B2 (en) Method and apparatus for transmitting/receiving downlink data for UE in soft handover region in an OFDM system
USRE47344E1 (en) Method and apparatus for supporting multiple reference signals in OFDMA communication systems
EP2495905B1 (en) Wireless communication system, base station device, mobile station device, wireless communication method, and integrated circuit
US8817753B2 (en) Mobile terminal apparatus and radio communication method
EP2343942B1 (en) Base station apparatuses, terminal apparatuses, wireless communication system having those apparatuses, and programs base stations of that system are caused to execute
JP4800418B2 (ja) 移動通信システム、基地局装置及び方法
US8369885B2 (en) Multi-user MIMO transmissions in wireless communication systems
US20100189038A1 (en) Circuit and method for mapping data symbols and reference signals for coordinated multi-point systems
RU2507720C2 (ru) Мобильный терминал, базовая станция радиосвязи и способ передачи сигнала общего канала
US20100067512A1 (en) Uplink transmit diversity schemes with 4 antenna ports
US20100041350A1 (en) Uplink transmissions with two antenna ports
EP2660993A2 (en) Transmission apparatus, transmission method, reception apparatus and reception method
WO2010122876A1 (ja) 基地局装置、端末装置、無線通信システム、送信方法、受信方法及びプログラム
CN102860121B (zh) 用于下行链路高阶mimo的参考信号设计
EP2469906B1 (en) Method and system for processing pilot demodulation, base station, user equipment thereof
JP5077484B2 (ja) 送信装置、受信装置および無線通信方法
WO2009131162A1 (ja) マルチキャリア通信システム、通信装置、通信方法
JP2009188675A (ja) 無線通信システム、基地局装置、移動局装置および無線通信方法
JP2009060420A (ja) 無線通信システム、無線送信装置、無線受信装置、プログラムおよび無線通信方法
JP2010041587A (ja) マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
JP2013150268A (ja) 通信装置、通信方法およびプログラム
JP2009218706A (ja) マルチキャリア通信装置及び通信システム
KR20100038852A (ko) 직교 주파수 분할 다중 접속 시스템에서의 이종 서브프레임간 송수신 방법 및 장치
WO2010122869A1 (ja) 基地局装置、リレー局装置および移動通信システム
KR101578083B1 (ko) 다중안테나를 갖는 무선 통신 시스템에서 하향링크 기준 신호 전송 및 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09734634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP