WO2009130801A1 - Exhaust purification apparatus for internal combustion engine - Google Patents

Exhaust purification apparatus for internal combustion engine Download PDF

Info

Publication number
WO2009130801A1
WO2009130801A1 PCT/JP2008/058509 JP2008058509W WO2009130801A1 WO 2009130801 A1 WO2009130801 A1 WO 2009130801A1 JP 2008058509 W JP2008058509 W JP 2008058509W WO 2009130801 A1 WO2009130801 A1 WO 2009130801A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
air
ratio
fuel ratio
exhaust
Prior art date
Application number
PCT/JP2008/058509
Other languages
French (fr)
Japanese (ja)
Inventor
利岡俊祐
浅沼孝充
大橋伸基
吉田耕平
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/058509 priority Critical patent/WO2009130801A1/en
Publication of WO2009130801A1 publication Critical patent/WO2009130801A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust emission control device for an internal combustion engine.
  • the NOx stored in the NOx catalyst can be reduced.
  • the reducing agent can be added by providing a fuel addition valve in the exhaust passage and injecting fuel from the fuel addition valve, or discharging a gas containing the reducing agent from the internal combustion engine.
  • the reducing agent can be supplied while lowering the air-fuel ratio of the exhaust gas by increasing the EGR gas amount, reducing the intake air amount by the intake throttle valve, sub-injection into the cylinder, and the like.
  • the NOx reduction efficiency is a value obtained by dividing the amount of the reducing agent that reacts for the reduction of NOx in the supplied reducing agent by the amount of the reducing agent that is supplied.
  • Patent Document 1 JP 2 0 0 5-2 2 6 4 6 3
  • Patent Document 2 JP 2 0 0 4-3 3 2 7 1 2
  • Patent Document 3 JP 2 0 0 5 — See No. 9 0 4 3
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 2-3 8 9 2 6).
  • N Ox reduction efficiency varies depending on whether or not.
  • the present invention has been made in view of the above-described problems, and in an exhaust gas purification apparatus for an internal combustion engine, a plurality of means for reducing the air-fuel ratio of exhaust gas are combined, and further, the ratio of the air-fuel ratio reduction by each means
  • the objective is to provide a technology that further improves the NOx reduction efficiency by setting to a proper value.
  • an exhaust gas purification apparatus for an internal combustion engine is provided in an exhaust passage of the internal combustion engine, and an occlusion reduction type NOx catalyst whose purification capacity is recovered by supplying a reducing agent;
  • a fuel addition valve for adding fuel to the exhaust gas in the exhaust passage upstream of the NOx storage reduction catalyst
  • An exhaust air / fuel ratio lowering means for lowering the air / fuel ratio of the gas discharged from the combustion chamber of the internal combustion engine when recovering the purification capacity of the NOx storage reduction catalyst, compared to when not recovering the purification capacity;
  • the amount by which the air-fuel ratio is lowered by the exhaust air-fuel ratio lowering means and the amount by which the air-fuel ratio is lowered by adding fuel from the fuel addition valve are combined and flow into the NOx storage reduction catalyst
  • the NOx storage reduction is performed while reducing the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst.
  • x Reducing agent is supplied to the catalyst.
  • the reducing agent is added from the fuel addition valve, or the air-fuel ratio of the gas discharged from the internal combustion engine is lowered.
  • the fuel addition from the fuel addition valve and the reduction of the air-fuel ratio of the gas discharged from the internal combustion engine can be performed simultaneously, or only one of them can be performed.
  • the fuel supplied into the cylinder is exposed to the high-temperature combustion gas, so that it is mostly discharged from the internal combustion engine in a vaporized state or a reformed state. For this reason, the fuel discharged from the internal combustion engine is likely to react with the NOx storage reduction catalyst.
  • the fuel added from the fuel addition valve is added to the exhaust gas having a temperature lower than that in the cylinder, it is less likely to vaporize compared to the fuel supplied to the cylinder. Therefore, there is a risk of reaching the NOx storage reduction catalyst in the liquid state.
  • the exhaust gas in a state where the air-fuel ratio is locally low may reach the NOx storage reduction catalyst. In such a case, the NOx reduction efficiency is low even if fuel is added from the fuel addition valve.
  • the ratio changing means decreases the amount of fuel added from the fuel addition valve as the vaporization rate of the fuel added from the fuel addition valve is lower.
  • the fuel vaporization rate is lower.
  • the ratio at this time may be changed step by step or continuously.
  • the vaporization rate may be the ratio of fuel vaporized in the fuel added from the fuel addition valve.
  • the amount by which the air-fuel ratio is reduced by the fuel addition valve may be reduced based on whether the NO x catalyst is reached.
  • the ratio changing means is configured to reduce the air-fuel ratio by the exhaust air-fuel ratio lowering means according to the temperature of the exhaust gas or the temperature of the NOx storage reduction catalyst, and from the fuel addition valve to the fuel By adding, the ratio of reducing the air-fuel ratio can be changed.
  • the vaporization rate of the fuel added from the fuel addition valve is judged by the exhaust temperature or the temperature of the NOx storage reduction catalyst.
  • the lower the temperature of the exhaust the lower the vaporization rate of the fuel added from the fuel addition valve.
  • the lower the temperature of the NOx storage reduction catalyst the more difficult the fuel reacts with the NOx storage reduction catalyst.
  • the NO x reduction efficiency decreases.
  • exhaust temperature or occlusion The lower the temperature of the reduced NO x catalyst, the lower the air fuel ratio is reduced by the fuel addition valve, thereby improving the NO x reduction efficiency.
  • the ratio changing unit is configured to reduce the air-fuel ratio by the exhaust air-fuel ratio lowering unit according to the flow rate of the exhaust, and to add air from the fuel addition valve. It is possible to change the ratio of the amount by which the fuel ratio is decreased.
  • the vaporization rate of the fuel added from the fuel addition valve is determined by the exhaust flow rate.
  • the lower the flow rate of the exhaust the more difficult it is to diffuse when the fuel is vaporized.
  • the N O x reduction efficiency decreases.
  • the amount of fuel that is difficult to vaporize can be reduced by reducing the amount by which the air / fuel ratio is reduced by the fuel addition valve, thereby improving NOx reduction efficiency. Can do.
  • the ratio changing means reduces the air / fuel ratio by the exhaust air / fuel ratio reducing means in accordance with the ratio of the amount of fuel supplied from the fuel addition valve to the wall surface of the exhaust passage.
  • the ratio of the amount to be reduced and the amount to decrease the air-fuel ratio by adding fuel from the fuel addition valve can be changed.
  • the vaporization rate of the fuel added from the fuel addition valve is judged by the ratio of the amount of fuel supplied from the fuel addition valve to the wall of the exhaust passage.
  • the air-fuel ratio of the exhaust is hardly reduced unless the air-fuel ratio of the exhaust gas decreases to the value required for NO x reduction. Reduction efficiency decreases.
  • the ratio changing means is configured to reduce the air / fuel ratio by the exhaust air / fuel ratio lowering means in accordance with the temperature distribution of the NOx storage reduction catalyst, and fuel from the fuel addition valve. It is possible to change the ratio of the amount by which the air-fuel ratio is decreased by adding.
  • the vaporization rate of the fuel added from the fuel addition valve is judged by the temperature distribution of the NOx storage reduction catalyst.
  • the temperature in the NOx storage reduction catalyst may become uneven.
  • the fuel added from the fuel addition valve is difficult to diffuse depending on the conditions, so the air-fuel ratio of the exhaust is locally lowered. Therefore, the temperature may be locally increased even in the NOx storage reduction catalyst.
  • the storage reduction type NOx catalyst there may be a place where the temperature is low and a place where the temperature is high. In this case, it can be determined that the fuel vaporization rate is lowered. In such a case, the NOx reduction efficiency is reduced.
  • the exhaust gas purification apparatus for an internal combustion engine a plurality of means for reducing the air-fuel ratio of the exhaust gas are combined, and the ratio of the air-fuel ratio reduction by each means is set to an appropriate value. As a result, the NO x reduction efficiency can be further improved.
  • FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment is applied, and an intake system and an exhaust system thereof.
  • FIG. 2 is a diagram showing an example of the ratio of the combustion rich and exhaust rich for achieving the target air-fuel ratio when reducing agent is added.
  • FIG. 3 is a diagram illustrating the relationship between the exhaust gas temperature or NOX catalyst temperature and the exhaust gas addition ratio.
  • Fig. 4 is a diagram illustrating the relationship between the exhaust gas flow rate and the exhaust gas addition ratio.
  • Fig. 5 is a diagram illustrating the relationship between the wall surface deposition rate and the exhaust gas addition ratio.
  • FIG. 4 is a diagram illustrating the relationship between the catalyst temperature non-uniformity and the exhaust gas addition ratio.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 to which the exhaust gas purification apparatus for an internal combustion engine according to this embodiment is applied, and its intake system and exhaust system.
  • the internal combustion engine 1 shown in Fig. 1 is a water-cooled four-cycle diesel engine.
  • An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1.
  • a throttle 4 is provided in the middle of the intake passage 2. This slot 4 is opened and closed by the electric actuator overnight.
  • An air flow meter 5 that outputs a signal corresponding to the flow rate of the intake air flowing through the intake passage 2 is provided in the intake passage 2 upstream of the throttle 4. The air flow meter 5 measures the amount of fresh intake air in the internal combustion engine 1.
  • an occlusion reduction type NOx catalyst 6 (hereinafter referred to as NOx catalyst 6) is provided in the middle of the exhaust passage 3.
  • the NO x catalyst 6 occludes NO x in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and stores the NO x that has been occluded when the oxygen concentration of the inflowing exhaust gas decreases and a reducing agent is present. Has the function of reducing.
  • the N O x catalyst 6 may be carried on a particulate filter that collects particulate matter in the exhaust gas.
  • the exhaust passage 3 upstream from the NO x catalyst 6 is circulated. It has a fuel addition valve 7 that adds fuel (light oil) as a reducing agent to the exhaust gas.
  • the fuel addition valve 7 is opened by a signal from the ECU 20 described later to inject fuel.
  • the fuel injected from the fuel addition valve 7 into the exhaust passage 3 makes the air-fuel ratio of the exhaust flowing from the upstream of the exhaust passage 3 rich, and is stored in the N Ox catalyst 6. Reduce Ox.
  • the internal combustion engine 1 is provided with an EGR device 8 that recirculates a part of the exhaust gas flowing through the exhaust passage 3 to the intake passage 2.
  • the EGR device 8 includes an EGR passage 8 1 and an EGR valve 8 2.
  • the EGR passage 8 1 connects the exhaust passage 3 upstream of the NOx catalyst 6 and the intake passage 2 downstream of the throttle 4.
  • the exhaust gas is recirculated by the exhaust gas flowing through the EGR passage 8 1.
  • the EGR valve 8 2 adjusts the amount of EGR gas flowing through the EGR passage 8 1 by adjusting the passage sectional area of the EGR passage 8 1.
  • a temperature sensor 9 that outputs a signal corresponding to the temperature of the exhaust flowing in the exhaust passage 3, and the air-fuel ratio of the exhaust flowing in the exhaust passage 3 are set. Air-fuel ratio sensors 10 and, which output corresponding signals, are attached. Based on the output signal of the temperature sensor 9, the temperature of the NOx catalyst 6 is detected.
  • the internal combustion engine 1 is provided with a fuel injection valve 11 for supplying fuel into the cylinder of the internal combustion engine 1.
  • the internal combustion engine 1 configured as described above is provided with ECU 20 as an electronic control unit for controlling the internal combustion engine 1.
  • This E C U 20 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the demands of the driver.
  • the ECU 20 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 12 by the driver, and an accelerator opening sensor 13 that can detect the engine load, and the engine speed Crank position sensor 14 is connected via electrical wiring, and the output signals of these various sensors Input to ECU 20
  • the fuel injection valve 11 and the fuel addition valve 7 are connected to the ECU 20 via electric wiring, and the ECU 20 controls the opening and closing timing of the fuel injection valve 11 and the fuel addition valve 7. .
  • the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 6 is set at a relatively short cycle toward the target air-fuel ratio.
  • the so-called rich spike control is executed to make the spike rich (short time).
  • This rich spike control is performed not only when NOx is reduced by the NOx catalyst 6 but also when sulfur poisoning of the NOx catalyst 6 is recovered.
  • the NOx catalyst 6 is supported on the particulate filter, this is also performed when the temperature of the filter is raised.
  • the fuel addition valve 7 corresponds to the reducing agent supply means in the present invention.
  • Gas discharged from the internal combustion engine 1 can also be obtained by performing sub-injection (boss soot injection) during the expansion stroke or exhaust stroke after the main injection from the fuel injection valve 1 1. It is possible to reduce the air-fuel ratio.
  • the amount of intake air can be reduced by moving the throttle 4 to the closing side.
  • the EGR gas amount can be increased by moving the EGR valve 82 to the open side.
  • the ECU that controls the throttle 4, the EGR valve 82, or the fuel injection valve 11 is used. 20 corresponds to the exhaust air-fuel ratio lowering means in the present invention.
  • combustion rich or “rich by combustion”.
  • r exhaust addition rich the reduction in the air-fuel ratio of the exhaust due to the injection of fuel from the fuel addition valve 7
  • the reduction of NO x can be performed either by combustion rich or exhaust addition rich, and can also be performed in combination.
  • Combustion rich can significantly reduce the air-fuel ratio in the combustion chamber.
  • CO with high NO x reduction efficiency is generated in the combustion chamber, so NO x reduction efficiency is high.
  • the rich combustion can be performed only when the load of the internal combustion engine 1 is relatively low.
  • the exhaust gas addition rich can be performed with almost no influence of the load of the internal combustion engine 1, and therefore can be performed in a wider range of operation than the combustion latch.
  • the NOx reduction efficiency deteriorates because the fuel hardly diffuses or the fuel adheres to the wall surface of the exhaust passage 3.
  • FIG. 2 is a diagram showing an example of the ratio of the combustion rich and the exhaust addition ridge to achieve the target air-fuel ratio when the reducing agent is added.
  • A shows a comparatively high ratio of combustion rich
  • B shows a comparatively high ratio of exhaust addition rich
  • C shows a case of exhaust rich only.
  • X indicates the air fuel ratio decrease due to combustion rich
  • Y indicates the air fuel ratio decrease due to the exhaust addition rich.
  • the internal combustion engine 1 Prior to the addition of the reducing agent, the internal combustion engine 1 is operated at the base air-fuel ratio.
  • This base air-fuel ratio is an air-fuel ratio set by the load of the internal combustion engine 1 or the like.
  • the air-fuel ratio is lowered in the combustion chamber of the internal combustion engine 1, and the exhaust gas flows through the exhaust passage 3. Then, by adding fuel from the fuel addition valve 7 to the exhaust gas, the air-fuel ratio of the exhaust gas is further lowered to the target air-fuel ratio.
  • NOx stored in the NOx catalyst 6 is reduced.
  • the actual air-fuel ratio is adjusted to the target air-fuel ratio by changing the air-fuel ratio of the exhaust gas from the internal combustion engine 1 and adding fuel from the fuel addition valve 7 in accordance with the air-fuel ratio of the exhaust gas at that time.
  • the air-fuel ratio of the exhaust gas from the internal combustion engine 1 becomes the base air-fuel ratio.
  • the value obtained by dividing the fuel added from the fuel addition valve 7 by the amount of fuel required to lower the base air-fuel ratio to the target air-fuel ratio is referred to as the exhaust addition ratio. That is, in the case shown in FIG. 2, the ratio of exhaust addition is the lowest in (A) and the highest in (C).
  • FIG. 3 is a diagram illustrating the relationship between the exhaust gas temperature or the temperature of the NOx catalyst 6 and the exhaust gas addition ratio.
  • the relationship shown in FIG. 3 is represented by a straight line, but it may be a curve, and the exhaust gas addition ratio may increase stepwise as the exhaust gas temperature or NO x catalyst 6 temperature rises. . This relationship can be obtained beforehand through experiments or the like.
  • the fuel added from the fuel addition valve 7 is more difficult to atomize, so the fuel vaporization rate becomes lower.
  • the lower the temperature of the exhaust gas the more difficult it becomes to uniformly reduce the air-fuel ratio of the exhaust gas even if fuel is added from the fuel addition valve 7. That is, the fuel may reach the NO x catalyst 6 while being in a liquid state. Moreover, even if it is vaporized, it reaches the NO x catalyst 6 with little diffusion. As a result, there are places where the air-fuel ratio of the exhaust is high and low.
  • the lowering of the NOx reduction efficiency can be suppressed by lowering the exhaust gas addition ratio as the temperature of the exhaust gas becomes lower or as the temperature of the NOx catalyst 6 becomes lower.
  • the ratio of combustion rich it is possible to supply more NO H x catalyst 6 to the fuel that has been vaporized from the beginning, or more highly reactive H 2 C or C 0.
  • Combustion rich can be performed when the load of the internal combustion engine 1 is relatively low. In such an operating state, the temperature of the exhaust gas and the temperature of the NOx catalyst 6 are lowered.
  • E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.
  • the other devices are the same as those in the previous embodiment, and the description is omitted.
  • FIG. 4 is a diagram illustrating the relationship between the exhaust flow rate and the exhaust gas addition ratio. Although the relationship shown in FIG. 4 is represented by a straight line, it may be a curve, and the exhaust gas addition ratio becomes higher stepwise as the exhaust gas flow rate increases. Also good. This relationship can be obtained in advance through experiments or the like. Further, the flow rate of the exhaust gas can be obtained from the intake air amount measured by the air flow meter 5.
  • the lower the exhaust gas flow rate the lower the NOx reduction efficiency can be suppressed by lowering the exhaust gas addition ratio.
  • the ratio of combustion rich it is possible to supply the N O x catalyst 6 with more fuel that has been vaporized from the beginning and more highly reactive HC or CO.
  • the combustion rich can be performed when the load of the internal combustion engine 1 is relatively low, but in such an operation state, the flow rate of the exhaust gas is reduced.
  • by changing the combustion rich ratio in accordance with the flow rate of the exhaust gas it is possible to suppress the combustion rich ratio from increasing during an operation state in which combustion rich cannot be performed.
  • E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.
  • the fuel adhering to the exhaust passage 3 includes fuel adhering to a member (for example, a turbocharger) between the fuel addition valve 7 and the NOx catalyst 6.
  • FIG. 5 is a diagram illustrating the relationship between the wall surface adhesion rate and the exhaust gas addition ratio.
  • the relationship shown in Fig. 5 is represented by a straight line, but it may be a curved line. It is also possible that the exhaust gas addition ratio gradually decreases with increasing wall surface adhesion rate. This relationship can be obtained in advance through experiments or the like.
  • the wall surface adhesion rate can be determined based on the exhaust temperature, the wall surface temperature of the exhaust passage 3, and the exhaust flow rate.
  • the lower the NOx reduction efficiency can be suppressed by lowering the exhaust gas addition ratio as the wall surface adhesion rate increases. That is, by increasing the ratio of the combustion rich, the reducing agent vaporized from the beginning can be supplied to the N O x catalyst 6.
  • combustion rich can be performed when the load of the internal combustion engine 1 is relatively low, but in such an operating state, the wall surface adhesion rate becomes high. In other words, by changing the combustion rich ratio according to the wall surface adhesion rate, it is possible to suppress the combustion rich ratio from being increased in an operating state where combustion rich cannot be performed.
  • E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.
  • the exhaust gas addition ratio is lowered as the temperature of the N O x catalyst 6 becomes nonuniform.
  • the other devices are the same as in the previous embodiment, so the description is omitted.
  • FIG. 6 is a graph illustrating the relationship between the temperature uniformity of the NO x catalyst 6 and the exhaust gas addition ratio. Although the relationship shown in FIG. 6 is represented by a straight line, it may be a curved line, and it is stepwise with respect to an increase in temperature uniformity of the NO x catalyst 6 In addition, the exhaust addition ratio may be high. “Temperature uniformity” is a value indicating how small the temperature difference in the NO x catalyst 6 is. The value indicating how large the temperature difference in the NO x catalyst 6 is called “temperature non-uniformity”. That is, as the temperature uniformity increases, the temperature difference in the NO x catalyst 6 decreases. In addition, the greater the temperature non-uniformity, the greater the temperature difference within the NO x catalyst 6.
  • the relationship shown in Fig. 6 can be obtained beforehand through experiments. For example, the temperature of several locations in the NO x catalyst 6 is measured or estimated, and the difference between these temperatures is obtained. The larger the temperature difference, the greater the temperature non-uniformity (that is, the temperature uniformity becomes higher). Small).
  • the NOx catalyst 6 may have a location that does not reach the target air-fuel ratio or a location that is richer than the target air-fuel ratio, which may reduce the NOx reduction efficiency. .
  • the reduction in the N O x reduction efficiency can be suppressed by lowering the exhaust gas addition ratio.
  • the ratio of combustion rich when the ratio of combustion rich is increased, the reducing agent diffused to some extent from the beginning can be supplied more to the N O x catalyst 6, so that the temperature of the N O x catalyst 6 can be increased as a whole.
  • combustion rich can be performed when the load of the internal combustion engine 1 is relatively low. In such an operating state, the temperature non-uniformity of the NOx catalyst 6 increases. That is, by changing the ratio of the combustion rich according to the non-uniformity of the temperature of the NOx catalyst 6, it is possible to suppress an increase in the ratio of the combustion rich in an operating state where combustion rich cannot be performed.
  • E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

In an exhaust purification apparatus of an internal combustion engine, provided is a technique for improving an NOx reduction efficiency by combining a plurality of means to reduce an air-fuel ratio of an exhaust gas, and further by setting the rate of the air-fuel ratio reduction by each of the means to an adequate value. When performing NOx reduction by lowering the air-fuel ratio of the exhaust gas flowing into the occlusion and reduction type NOx catalyst (6) by combining a reduction quantity of the air-fuel ratio of a gas exhausted from a combustion chamber of the internal combustion engine (1) and a reduction quantity of the air-fuel ratio by adding fuel from a fuel adding valve (7), the reduction quantity of the air-fuel ratio by the fuel adding valve (7) is lowered in proportion to a vaporization rate of the fuel added by the fuel adding valve (7).

Description

明細書 内燃機関の排気浄化装置 技術分野  Technical field
本発明は、 内燃機関の排気浄化装置に関する。  The present invention relates to an exhaust emission control device for an internal combustion engine.
背景技術 Background art
排気通路に設けられる吸蔵還元型 N O x触媒 (以下、 単に N O x触媒と もいう。) へ還元剤を添加することにより、 該 N O x触媒に吸蔵されてい る N O xを還元することができる。 そして、 還元剤の添加は、 排気通路 に燃料添加弁を備えて該燃料添加弁から燃料を噴射したり、 内燃機関か ら還元剤を含んだガスを排出させたりして行なうことができる。 例えば 、 E G Rガス量の増加、 吸気絞り弁による吸入空気量の低減、 気筒内へ の副噴射等により排気の空燃比を低下させつつ還元剤を供給することが できる。  By adding a reducing agent to the NOx storage reduction catalyst (hereinafter also referred to simply as NOx catalyst) provided in the exhaust passage, the NOx stored in the NOx catalyst can be reduced. The reducing agent can be added by providing a fuel addition valve in the exhaust passage and injecting fuel from the fuel addition valve, or discharging a gas containing the reducing agent from the internal combustion engine. For example, the reducing agent can be supplied while lowering the air-fuel ratio of the exhaust gas by increasing the EGR gas amount, reducing the intake air amount by the intake throttle valve, sub-injection into the cylinder, and the like.
ここで、 燃料添加弁から燃料を添加する場合には、 内燃機関の運転状 態の影響をあまり受けないため、 広い運転領域での燃料添加が可能であ る。 しかし、 燃料が拡散する前に N O x触媒に到達して該 N O x触媒を燃 料がすり抜けたり、 排気通路に燃料が付着したりして、 N O x還元効率 が悪化する運転領域がある。 なお N O x還元効率は、 供給される還元剤 の中で N O xの還元のために反応する還元剤の量を、 供給される還元剤 の量で除した値とする。  Here, when fuel is added from the fuel addition valve, it is not significantly affected by the operating state of the internal combustion engine, so that fuel can be added in a wide operating range. However, there is an operating region where the NOx reduction efficiency deteriorates due to the NOx catalyst reaching the NOx catalyst before the fuel diffuses and the fuel passing through the nox catalyst or adhering to the exhaust passage. The NOx reduction efficiency is a value obtained by dividing the amount of the reducing agent that reacts for the reduction of NOx in the supplied reducing agent by the amount of the reducing agent that is supplied.
一方、 内燃機関から低い空燃比のガスを排出させる場合には、 燃焼室 内で酸素濃度を大幅に低下させることができる。 しかも、 N O x還元効 率の高い C Oが生成されるため、 N O x還元効率は高くなる。 しかし、 E G Rガス量を増加させたり、 吸入空気量を低減させたりすると燃焼状 態が不安定となる。 そのため、 内燃機関の低負荷運転時等の狭い運転領 域でしか用いることができない。 そこで、 上記 2種類の手段を組み合わせることにより、 互いの欠点を 補って N OX還元効率を高める技術が知られている (例えば、 特許文献On the other hand, when exhausting a low air-fuel ratio gas from an internal combustion engine, the oxygen concentration can be greatly reduced in the combustion chamber. In addition, since CO with high NOx reduction efficiency is produced, NOx reduction efficiency is increased. However, if the EGR gas amount is increased or the intake air amount is decreased, the combustion state becomes unstable. Therefore, it can be used only in a narrow operating region such as during low-load operation of an internal combustion engine. Therefore, there is known a technology that increases the NOx reduction efficiency by combining the above two types of means to compensate for each other's drawbacks (for example, Patent Documents).
1 (特開 2 0 0 5 - 2 2 6 4 6 3号公報)、 特許文献 2 (特開 2 0 0 4 - 3 3 2 7 1 2号公報)、 特許文献 3 (特開 2 0 0 5— 9 0 4 3 9号公 報)、 特許文献 4 (特開 2 0 0 2— 3 8 9 2 6号公報) 参照。)。 つまり 、 上記 2種類の手段を組み合わせることにより、 夫々の手段で低下させ る空燃比は小さくて済むため、 燃焼状態の悪化を抑制しつつ、 燃料が N Ox触媒をすリ抜けることを抑制できる。 1 (JP 2 0 0 5-2 2 6 4 6 3), Patent Document 2 (JP 2 0 0 4-3 3 2 7 1 2), Patent Document 3 (JP 2 0 0 5 — See No. 9 0 4 3 9) and Patent Document 4 (Japanese Patent Laid-Open No. 2 0 0 2-3 8 9 2 6). ). In other words, by combining the above two types of means, the air-fuel ratio to be lowered by each of the means can be small, so that the fuel can be prevented from slipping through the NOx catalyst while suppressing the deterioration of the combustion state.
しかし、 内燃機関から低空燃比のガスを排出させることができる運転 領域は狭く、 また燃料添加弁により燃料を添加する場合には該燃料が拡 散し難い。 そのため、 前記排気空燃比低下手段によリ空燃比を低下させ る分と、 前記燃料添加弁から燃料を添加することによリ空燃比を低下さ せる分と、 の割合をどのように決定するのかによリ N Ox還元効率が変 わる。  However, the operating range in which low air-fuel ratio gas can be discharged from the internal combustion engine is narrow, and when fuel is added by a fuel addition valve, the fuel is difficult to diffuse. Therefore, how to determine the ratio between the amount by which the exhaust air-fuel ratio is lowered by the exhaust air-fuel ratio lowering means and the amount by which the air-fuel ratio is lowered by adding fuel from the fuel addition valve is determined. N Ox reduction efficiency varies depending on whether or not.
発明の開示 Disclosure of the invention
本発明は、 上記したような問題点に鑑みてなされたものであり、 内燃 機関の排気浄化装置において、 排気の空燃比を低下させる手段を複数組 み合わせ、 さらに各手段による空燃比低下の割合を適正な値に設定する ことにより N Ox還元効率をより向上させる技術を提供することを目的 とする。  The present invention has been made in view of the above-described problems, and in an exhaust gas purification apparatus for an internal combustion engine, a plurality of means for reducing the air-fuel ratio of exhaust gas are combined, and further, the ratio of the air-fuel ratio reduction by each means The objective is to provide a technology that further improves the NOx reduction efficiency by setting to a proper value.
上記課題を達成するために本発明による内燃機関の排気浄化装置は、 内燃機関の排気通路に設けられ、 還元剤の供給により浄化能力が回復 される吸蔵還元型 N Ox触媒と、  In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust passage of the internal combustion engine, and an occlusion reduction type NOx catalyst whose purification capacity is recovered by supplying a reducing agent;
前記吸蔵還元型 N Ox触媒よリも上流の排気通路において排気中に燃 料を添加する燃料添加弁と、  A fuel addition valve for adding fuel to the exhaust gas in the exhaust passage upstream of the NOx storage reduction catalyst;
前記吸蔵還元型 N Ox触媒の浄化能力を回復するときに、 浄化能力を 回復しないときと比較して、 内燃機関の燃焼室から排出されるガスの空 燃比を低下させる排気空燃比低下手段と、 前記排気空燃比低下手段により空燃比を低下させる分と、 前記燃料添 加弁から燃料を添加することによリ空燃比を低下させる分と、 を合わせ て前記吸蔵還元型 N O x触媒に流入する排気の空燃比を目標空燃比まで 低下させることにより浄化能力を回復するときに、 前記燃料添加弁から 添加される燃料の気化率が低いほど該燃料添加弁によリ空燃比を低下さ せる分を小さくする割合変更手段と、 An exhaust air / fuel ratio lowering means for lowering the air / fuel ratio of the gas discharged from the combustion chamber of the internal combustion engine when recovering the purification capacity of the NOx storage reduction catalyst, compared to when not recovering the purification capacity; The amount by which the air-fuel ratio is lowered by the exhaust air-fuel ratio lowering means and the amount by which the air-fuel ratio is lowered by adding fuel from the fuel addition valve are combined and flow into the NOx storage reduction catalyst When recovering the purification capacity by reducing the air-fuel ratio of the exhaust gas to the target air-fuel ratio, the lower the vaporization rate of the fuel added from the fuel addition valve, the lower the air-fuel ratio by the fuel addition valve. A ratio changing means for reducing
を具備することを特徴とする。  It is characterized by comprising.
吸蔵還元型 N O x触媒に吸蔵されている N O xを還元するときや、 硫黄 被毒回復を行うときには、 該吸蔵還元型 N O x触媒へ流入する排気の空 燃比を低下させつつ該吸蔵還元型 N O x触媒へ還元剤が供給される。 そ して、 吸蔵還元型 N O x触媒へ還元剤を供給するために、 燃料添加弁か ら還元剤を添加したり、 内燃機関から排出されるガスの空燃比を低下さ せたりする。 この燃料添加弁からの燃料添加と、 内燃機関から排出され るガスの空燃比を低下させるのとは、 同時に行なうこともできるし、 何 れか一方のみを行なうこともできる。  When NOx stored in the NOx storage reduction catalyst is reduced or when sulfur poisoning recovery is performed, the NOx storage reduction is performed while reducing the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst. x Reducing agent is supplied to the catalyst. In order to supply the reducing agent to the NOx storage reduction catalyst, the reducing agent is added from the fuel addition valve, or the air-fuel ratio of the gas discharged from the internal combustion engine is lowered. The fuel addition from the fuel addition valve and the reduction of the air-fuel ratio of the gas discharged from the internal combustion engine can be performed simultaneously, or only one of them can be performed.
ここで、 気筒内に供給される燃料は、 高温の燃焼ガスに晒されるため 殆どが気化した状態か、 改質された状態で内燃機関から排出される。 そ のため、 内燃機関から排出された燃料は吸蔵還元型 N O x触媒で反応し 易い。  Here, the fuel supplied into the cylinder is exposed to the high-temperature combustion gas, so that it is mostly discharged from the internal combustion engine in a vaporized state or a reformed state. For this reason, the fuel discharged from the internal combustion engine is likely to react with the NOx storage reduction catalyst.
しかし、 燃料添加弁から添加される燃料は、 気筒内よりも温度が低い 排気中に添加されるため、 気筒内に供給される燃料と比較して気化し難 い。 そのため、 液体のまま吸蔵還元型 N O x触媒に到達する虞がある。 また、 気化しても拡散が進んでいないために局所的に空燃比が低い状態 の排気が吸蔵還元型 N O x触媒に到達することがある。 このような場合 には、 燃料添加弁から燃料を添加しても N O x還元効率は低い。  However, since the fuel added from the fuel addition valve is added to the exhaust gas having a temperature lower than that in the cylinder, it is less likely to vaporize compared to the fuel supplied to the cylinder. Therefore, there is a risk of reaching the NOx storage reduction catalyst in the liquid state. In addition, since the diffusion does not proceed even after vaporization, the exhaust gas in a state where the air-fuel ratio is locally low may reach the NOx storage reduction catalyst. In such a case, the NOx reduction efficiency is low even if fuel is added from the fuel addition valve.
そのため、 割合変更手段は、 燃料添加弁から添加される燃料の気化率 が低いほど、 燃料添加弁から添加する燃料量を減少させる。 つまり、 排 気の空燃比を目標空燃比まで低下させるときに、 燃料の気化率が低いほ ど、 排気空燃比低下手段により空燃比を低下させる分を大きくし、 燃料 添加弁から燃料を添加することによリ空燃比を低下させる分を小さくし ている。 このときの割合は、 段階的に変更しても良く、 連続的に変更し ても良い。 なお、 気化率は、 燃料添加弁から添加される燃料の中で気化 する燃料の割合としてもよい。 また、 気化率の代わりに、 燃料添加弁か ら添加された燃料が排気中でどれだけ拡散しているのか、 または、 燃料 添加弁から添加された燃料のなかでどれだけの燃料が吸蔵還元型 N O x 触媒に到達するのかに基づいて、 燃料添加弁によリ空燃比を低下させる 分を小さくしてもよい。 For this reason, the ratio changing means decreases the amount of fuel added from the fuel addition valve as the vaporization rate of the fuel added from the fuel addition valve is lower. In other words, when the exhaust air-fuel ratio is lowered to the target air-fuel ratio, the fuel vaporization rate is lower. However, the amount by which the air-fuel ratio is lowered by the exhaust air-fuel ratio lowering means is increased, and the amount by which fuel is added from the fuel addition valve is decreased by the amount added. The ratio at this time may be changed step by step or continuously. The vaporization rate may be the ratio of fuel vaporized in the fuel added from the fuel addition valve. Also, instead of the evaporation rate, how much fuel added from the fuel addition valve is diffused in the exhaust, or how much fuel is added to the storage reduction type fuel from the fuel addition valve. The amount by which the air-fuel ratio is reduced by the fuel addition valve may be reduced based on whether the NO x catalyst is reached.
このようにすることで、 燃料添加弁から供給される燃料による N O x 還元効率が低くなるほど、 該燃料添加弁からの燃料供給量が少なくなる ので、 全体としての N O x還元効率を向上させることができる。  By doing so, the lower the NO x reduction efficiency by the fuel supplied from the fuel addition valve, the smaller the amount of fuel supplied from the fuel addition valve, so the overall NO x reduction efficiency can be improved. it can.
また、 燃料の気化率の低下は、 内燃機関が比較的低い負荷で運転され ているときに多く見られる。 このような運転状態では、 内燃機関の燃焼 室から排出されるガスの空燃比を低下させても燃焼状態は悪化し難い。 そのため、 排気空燃比低下手段により空燃比を低下させる分を大きくす ることができる。  Also, a decrease in fuel vaporization rate is often seen when the internal combustion engine is operated at a relatively low load. In such an operating state, even if the air-fuel ratio of the gas discharged from the combustion chamber of the internal combustion engine is lowered, the combustion state is hardly deteriorated. Therefore, it is possible to increase the amount by which the air / fuel ratio is lowered by the exhaust air / fuel ratio lowering means.
本発明においては、 前記割合変更手段は、 排気の温度又は前記吸蔵還 元型 N O x触媒の温度に応じて、 前記排気空燃比低下手段により空燃比 を低下させる分と、 前記燃料添加弁から燃料を添加することによリ空燃 比を低下させる分と、 の割合を変更することができる。  In the present invention, the ratio changing means is configured to reduce the air-fuel ratio by the exhaust air-fuel ratio lowering means according to the temperature of the exhaust gas or the temperature of the NOx storage reduction catalyst, and from the fuel addition valve to the fuel By adding, the ratio of reducing the air-fuel ratio can be changed.
つまり、 燃料添加弁から添加される燃料の気化率を排気の温度又は吸 蔵還元型 N O x 触媒の温度で判断している。 ここで、 排気の温度が低く なるほど、 燃料添加弁から添加された燃料の気化率が低下する。 これに より、 吸蔵還元型 N O x 触媒に流入する排気の空燃比を均一に低下させ ることが困難となる。 また、 吸蔵還元型 N O x 触媒の温度が低くなるほ ど、 該吸蔵還元型 N O x 触媒にて燃料が反応し難くなる。 これらにより 、 N O x 還元効率が低下する。 これに対し、 例えば排気の温度又は吸蔵 還元型 N O x 触媒の温度が低くなるほど、 燃料添加弁により空燃比を低 下させる分を小さくすることで、 N O x 還元効率を向上させることがで さる。 In other words, the vaporization rate of the fuel added from the fuel addition valve is judged by the exhaust temperature or the temperature of the NOx storage reduction catalyst. Here, the lower the temperature of the exhaust, the lower the vaporization rate of the fuel added from the fuel addition valve. As a result, it becomes difficult to uniformly reduce the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst. Further, the lower the temperature of the NOx storage reduction catalyst, the more difficult the fuel reacts with the NOx storage reduction catalyst. As a result, the NO x reduction efficiency decreases. On the other hand, for example, exhaust temperature or occlusion The lower the temperature of the reduced NO x catalyst, the lower the air fuel ratio is reduced by the fuel addition valve, thereby improving the NO x reduction efficiency.
また、 本発明においては、 前記割合変更手段は、 排気の流量に応じて 、 前記排気空燃比低下手段により空燃比を低下させる分と、 前記燃料添 加弁から燃料を添加することによリ空燃比を低下させる分と、 の割合を 変更することができる。  Further, in the present invention, the ratio changing unit is configured to reduce the air-fuel ratio by the exhaust air-fuel ratio lowering unit according to the flow rate of the exhaust, and to add air from the fuel addition valve. It is possible to change the ratio of the amount by which the fuel ratio is decreased.
つまり、 燃料添加弁から添加される燃料の気化率を排気の流量で判断 している。 ここで、 排気の流量が少なくなるほど、 燃料が気化したとき に拡散し難くなる。 そのため、 排気中の空燃比が目標空燃比よりも高い 箇所と低い箇所とができてしまい、 N O x 還元効率が低下する。 これに 対し、 たとえば排気の流量が少なくなるほど、 燃料添加弁により空燃比 を低下させる分を小さくすることで、 気化し難い燃料の量を減少させる ことができるので、 N O x還元効率を向上させることができる。  In other words, the vaporization rate of the fuel added from the fuel addition valve is determined by the exhaust flow rate. Here, the lower the flow rate of the exhaust, the more difficult it is to diffuse when the fuel is vaporized. As a result, there are places where the air-fuel ratio in the exhaust is higher and lower than the target air-fuel ratio, and the N O x reduction efficiency decreases. On the other hand, for example, as the flow rate of exhaust gas decreases, the amount of fuel that is difficult to vaporize can be reduced by reducing the amount by which the air / fuel ratio is reduced by the fuel addition valve, thereby improving NOx reduction efficiency. Can do.
また、 本発明においては、 前記割合変更手段は、 前記燃料添加弁から 供給される燃料のなかで排気通路の壁面に付着する量の割合に応じて、 前記排気空燃比低下手段により空燃比を低下させる分と、 前記燃料添加 弁から燃料を添加することによリ空燃比を低下させる分と、 の割合を変 更することができる。  Further, in the present invention, the ratio changing means reduces the air / fuel ratio by the exhaust air / fuel ratio reducing means in accordance with the ratio of the amount of fuel supplied from the fuel addition valve to the wall surface of the exhaust passage. The ratio of the amount to be reduced and the amount to decrease the air-fuel ratio by adding fuel from the fuel addition valve can be changed.
つまり、 燃料添加弁から添加される燃料の気化率を、 燃料添加弁から 供給される燃料のなかで排気通路の壁面に付着する量の割合で判断して いる。 ここで、 燃料添加弁から添加される燃料が排気通路の壁面に多く 付着していると、 排気の空燃比を目標空燃比にすることが困難となる。 たとえば、 排気通路の壁面に付着していた燃料が徐々に蒸発しても、 排 気の空燃比が N O x 還元に必要となる値まで低下しなければ N O x は殆 ど還元されないので、 N O x 還元効率が低下する。 これに対し、 たとえ ば燃料添加弁から供給される燃料のなかで排気通路の壁面に付着する量 の割合が高くなるほど、 燃料添加弁によリ空燃比を低下させる分を小さ くすることで、 N O X還元効率を向上させることができる。 In other words, the vaporization rate of the fuel added from the fuel addition valve is judged by the ratio of the amount of fuel supplied from the fuel addition valve to the wall of the exhaust passage. Here, if a large amount of fuel added from the fuel addition valve adheres to the wall surface of the exhaust passage, it becomes difficult to set the air-fuel ratio of the exhaust to the target air-fuel ratio. For example, even if the fuel adhering to the wall of the exhaust passage gradually evaporates, NO x is hardly reduced unless the air-fuel ratio of the exhaust gas decreases to the value required for NO x reduction. Reduction efficiency decreases. On the other hand, for example, the higher the proportion of the amount of fuel supplied from the fuel addition valve that adheres to the wall surface of the exhaust passage, the smaller the amount by which the fuel addition valve lowers the air-fuel ratio. By doing so, NOX reduction efficiency can be improved.
また、 本発明においては、 前記割合変更手段は、 前記吸蔵還元型 N O X触媒の温度分布に応じて、 前記排気空燃比低下手段によリ空燃比を低 下させる分と、 前記燃料添加弁から燃料を添加することによリ空燃比を 低下させる分と、 の割合を変更することができる。  Further, in the present invention, the ratio changing means is configured to reduce the air / fuel ratio by the exhaust air / fuel ratio lowering means in accordance with the temperature distribution of the NOx storage reduction catalyst, and fuel from the fuel addition valve. It is possible to change the ratio of the amount by which the air-fuel ratio is decreased by adding.
つまり、 燃料添加弁から添加される燃料の気化率を吸蔵還元型 N O x 触媒の温度分布で判断している。 ここで、 燃料添加弁から吸蔵還元型 N O x触媒へ燃料を供給すると、 該吸蔵還元型 N O x触媒内の温度が不均一 となることがある。 すなわち、 燃料添加弁から添加された燃料は、 条件 によっては拡散し難いので排気の空燃比を局所的に低くする。 そのため 、 吸蔵還元型 N O x触媒においても局所的に温度を上昇させることがあ る。 つまり、 吸蔵還元型 N O x触媒のなかで温度の低い箇所と高い箇所 とができることがあり、 この場合には燃料の気化率が低下していると判 新することができる。 このような場合には、 N O x還元効率が低下して いる。 また、 吸蔵還元型 N O x触媒内の温度が不均一となると、 一部で 活性温度以下となる虞もある。 これに対し、 吸蔵還元型 N O x触媒内の 温度の不均一の度合いが高くなるほど、 燃料添加弁により空燃比を低下 させる分を小さくすることで、 気化率の低い燃料の供給量を減少させる ことができるので、 N O x還元効率を向上させることができる。  In other words, the vaporization rate of the fuel added from the fuel addition valve is judged by the temperature distribution of the NOx storage reduction catalyst. Here, when fuel is supplied from the fuel addition valve to the NOx storage reduction catalyst, the temperature in the NOx storage reduction catalyst may become uneven. In other words, the fuel added from the fuel addition valve is difficult to diffuse depending on the conditions, so the air-fuel ratio of the exhaust is locally lowered. Therefore, the temperature may be locally increased even in the NOx storage reduction catalyst. In other words, in the storage reduction type NOx catalyst, there may be a place where the temperature is low and a place where the temperature is high. In this case, it can be determined that the fuel vaporization rate is lowered. In such a case, the NOx reduction efficiency is reduced. In addition, if the temperature in the NOx storage reduction catalyst becomes non-uniform, there is a risk that the temperature will be partially below the activation temperature. On the other hand, the higher the degree of temperature non-uniformity in the NOx storage reduction catalyst, the smaller the amount by which the fuel addition valve lowers the air-fuel ratio, thereby reducing the amount of fuel supplied with a low vaporization rate. NOx reduction efficiency can be improved.
以上説明したように本発明によれば、 内燃機関の排気浄化装置におい て、 排気の空燃比を低下させる手段を複数組み合わせ、 さらに各手段に よる空燃比低下の割合を適正な値に設定することにより、 N O x還元効 率をより向上させることができる。  As described above, according to the present invention, in the exhaust gas purification apparatus for an internal combustion engine, a plurality of means for reducing the air-fuel ratio of the exhaust gas are combined, and the ratio of the air-fuel ratio reduction by each means is set to an appropriate value. As a result, the NO x reduction efficiency can be further improved.
図面の簡単な説明 Brief Description of Drawings
図 1 は、 実施例に係る内燃機関の排気浄化装置を適用する内燃機関と その吸気系及び排気系の概略構成を示す図である。  FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment is applied, and an intake system and an exhaust system thereof.
図 2は、 還元剤添加時において目標空燃比とするための燃焼リツチ及 び排気添加リツチの割合の例を示した図である。 図 3は、 排気の温度又は N O X触媒の温度と、 排気添加割合と、 の関 係を例示した図である。 FIG. 2 is a diagram showing an example of the ratio of the combustion rich and exhaust rich for achieving the target air-fuel ratio when reducing agent is added. FIG. 3 is a diagram illustrating the relationship between the exhaust gas temperature or NOX catalyst temperature and the exhaust gas addition ratio.
図 4は、 排気の流量と、 排気添加割合と、 の関係を例示した図である 図 5は、 壁面付着率と、 排気添加割合と、 の関係を例示した図である 図 6は、 N O x触媒の温度の不均一度と、 排気添加割合と、 の関係を 例示した図である。  Fig. 4 is a diagram illustrating the relationship between the exhaust gas flow rate and the exhaust gas addition ratio. Fig. 5 is a diagram illustrating the relationship between the wall surface deposition rate and the exhaust gas addition ratio. FIG. 4 is a diagram illustrating the relationship between the catalyst temperature non-uniformity and the exhaust gas addition ratio.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る内燃機関の排気浄化装置の具体的な実施態様につ いて図面に基づいて説明する。  Hereinafter, specific embodiments of an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to the drawings.
(実施例 1 )  (Example 1)
図 1 は、 本実施例に係る内燃機関の排気浄化装置を適用する内燃機関 1 とその吸気系及び排気系の概略構成を示す図である。 図 1 に示す内燃 機関 1 は、 水冷式の 4サイクル 'ディーゼルエンジンである。  FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 to which the exhaust gas purification apparatus for an internal combustion engine according to this embodiment is applied, and its intake system and exhaust system. The internal combustion engine 1 shown in Fig. 1 is a water-cooled four-cycle diesel engine.
内燃機関 1 には、 吸気通路 2および排気通路 3が接続されている。 こ の吸気通路 2の途中には、 スロットル 4が設けられている。 このスロッ 卜ル 4は、 電動ァクチユエ一夕により開閉される。 スロッ トル 4よりも 上流の吸気通路 2には、 該吸気通路 2内を流通する吸気の流量に応じた 信号を出力するエアフローメータ 5が設けられている。 このエアフロー メータ 5により、 内燃機関 1 の吸入新気量が測定される。  An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1. A throttle 4 is provided in the middle of the intake passage 2. This slot 4 is opened and closed by the electric actuator overnight. An air flow meter 5 that outputs a signal corresponding to the flow rate of the intake air flowing through the intake passage 2 is provided in the intake passage 2 upstream of the throttle 4. The air flow meter 5 measures the amount of fresh intake air in the internal combustion engine 1.
一方、 排気通路 3の途中には、 吸蔵還元型 N O x触媒 6 (以下、 N O x 触媒 6という。) が備えられている。 N O x触媒 6は、 流入する排気の酸 素濃度が高いときは排気中の N O xを吸蔵し、 流入する排気の酸素濃度 が低下し且つ還元剤が存在するときは吸蔵していた N O xを還元する機 能を有する。 この N O x触媒 6は、 排気中の粒子状物質を捕集するパテ ィキユレ一卜フィルタに担持されていてもよい。  On the other hand, an occlusion reduction type NOx catalyst 6 (hereinafter referred to as NOx catalyst 6) is provided in the middle of the exhaust passage 3. The NO x catalyst 6 occludes NO x in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and stores the NO x that has been occluded when the oxygen concentration of the inflowing exhaust gas decreases and a reducing agent is present. Has the function of reducing. The N O x catalyst 6 may be carried on a particulate filter that collects particulate matter in the exhaust gas.
さらに、 本実施例では、 N O x触媒 6よりも上流の排気通路 3を流通 する排気中に還元剤たる燃料 (軽油) を添加する燃料添加弁 7を備えて いる。 ここで、 燃料添加弁 7は、 後述する E C U 2 0からの信号により 開弁して燃料を噴射する。 そして、 燃料添加弁 7から排気通路 3内へ噴 射された燃料は、 排気通路 3の上流から流れてきた排気の空燃比をリッ チにすると共に、 該 N Ox触媒 6に吸蔵されていた N Oxを還元する。 そして、 内燃機関 1 には、 排気通路 3内を流通する排気の一部を吸気 通路 2へ再循環させる E G R装置 8が備えられている。 この E G R装置 8は、 E G R通路 8 1及び E G R弁 8 2を備えて構成されている。 Further, in this embodiment, the exhaust passage 3 upstream from the NO x catalyst 6 is circulated. It has a fuel addition valve 7 that adds fuel (light oil) as a reducing agent to the exhaust gas. Here, the fuel addition valve 7 is opened by a signal from the ECU 20 described later to inject fuel. The fuel injected from the fuel addition valve 7 into the exhaust passage 3 makes the air-fuel ratio of the exhaust flowing from the upstream of the exhaust passage 3 rich, and is stored in the N Ox catalyst 6. Reduce Ox. The internal combustion engine 1 is provided with an EGR device 8 that recirculates a part of the exhaust gas flowing through the exhaust passage 3 to the intake passage 2. The EGR device 8 includes an EGR passage 8 1 and an EGR valve 8 2.
E G R通路 8 1 は、 N Ox触媒 6よりも上流側の排気通路 3と、 スロ ッ卜ル 4よりも下流の吸気通路 2と、 を接続している。 そして、 この E G R通路 8 1 を排気が流通することにより、 排気が再循環される。 また 、 E G R弁 8 2は、 E G R通路 8 1 の通路断面積を調整することにより 、 該 E G R通路 8 1 を流れる E G Rガスの量を調整する。  The EGR passage 8 1 connects the exhaust passage 3 upstream of the NOx catalyst 6 and the intake passage 2 downstream of the throttle 4. The exhaust gas is recirculated by the exhaust gas flowing through the EGR passage 8 1. Further, the EGR valve 8 2 adjusts the amount of EGR gas flowing through the EGR passage 8 1 by adjusting the passage sectional area of the EGR passage 8 1.
また、 N Ox触媒 6よりも下流の排気通路 3には、 該排気通路 3内を 流れる排気の温度に応じた信号を出力する温度センサ 9と、 該排気通路 3内を流れる排気の空燃比に応じた信号を出力する空燃比センサ 1 0と 、 が取り付けられている。 この温度センサ 9の出力信号に基づいて N O X触媒 6の温度が検出される。  Further, in the exhaust passage 3 downstream of the NOx catalyst 6, a temperature sensor 9 that outputs a signal corresponding to the temperature of the exhaust flowing in the exhaust passage 3, and the air-fuel ratio of the exhaust flowing in the exhaust passage 3 are set. Air-fuel ratio sensors 10 and, which output corresponding signals, are attached. Based on the output signal of the temperature sensor 9, the temperature of the NOx catalyst 6 is detected.
さらに、 内燃機関 1 には、 該内燃機関 1 の気筒内に燃料を供給する燃 料噴射弁 1 1が備えられている。  Further, the internal combustion engine 1 is provided with a fuel injection valve 11 for supplying fuel into the cylinder of the internal combustion engine 1.
以上述べたように構成された内燃機関 1 には、 該内燃機関 1 を制御す るための電子制御ュニッ卜である E C U 2 0が併設されている。 この E C U 2 0は、 内燃機関 1の運転条件や運転者の要求に応じて内燃機関 1 の運転状態を制御するュニッ卜である。  The internal combustion engine 1 configured as described above is provided with ECU 20 as an electronic control unit for controlling the internal combustion engine 1. This E C U 20 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the demands of the driver.
また、 E C U 2 0には、 上記センサの他、 運転者がアクセルペダル 1 2を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なァク セル開度センサ 1 3、 及び機関回転数を検出するクランクポジションセ ンサ 1 4が電気配線を介して接続され、 これら各種センサの出力信号が E C U 2 0に入力されるようになっている。 一方、 E C U 2 0には、 燃 料噴射弁 1 1 および燃料添加弁 7が電気配線を介して接続され、 該 E C U 2 0により燃料噴射弁 1 1 および燃料添加弁 7の開閉時期が制御され る。 In addition to the above sensor, the ECU 20 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 12 by the driver, and an accelerator opening sensor 13 that can detect the engine load, and the engine speed Crank position sensor 14 is connected via electrical wiring, and the output signals of these various sensors Input to ECU 20 On the other hand, the fuel injection valve 11 and the fuel addition valve 7 are connected to the ECU 20 via electric wiring, and the ECU 20 controls the opening and closing timing of the fuel injection valve 11 and the fuel addition valve 7. .
そして、 本実施例では、 N Ox触媒 6に吸蔵されている N Oxを還元す るときに、 該 N Ox触媒 6に流入する排気の空燃比を目標空燃比に向け て比較的に短い周期でスパイク的 (短時間) にリッチとする、 所謂リツ チスパイク制御を実行する。 このリッチスパイク制御は、 N Ox触媒 6 にて N Oxを還元するときのほかに、 N Ox触媒 6の硫黄被毒を回復させ るときに行われる。 また、 N Ox触媒 6がパティキュレー卜フィルタに 担持されているときには、 該フィルタの温度を上昇させるときにも行な われる。 そして、 排気の空燃比を低下させるには、 燃料添加弁 7から燃 料を噴射させることによつても、 また内燃機関 1から排出されるガスの 空燃比を低下させることによつても行なうことができる。 つまり、 これ らの手段によって N Ox触媒 6へ還元剤を供給することにより、 該 N Ox 触媒 6に吸蔵されている N Oxの還元等を行うことができる。 なお、 本 実施例においては燃料添加弁 7が、 本発明における還元剤供給手段に相 当する。  In this embodiment, when NOx stored in the NOx catalyst 6 is reduced, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 6 is set at a relatively short cycle toward the target air-fuel ratio. The so-called rich spike control is executed to make the spike rich (short time). This rich spike control is performed not only when NOx is reduced by the NOx catalyst 6 but also when sulfur poisoning of the NOx catalyst 6 is recovered. In addition, when the NOx catalyst 6 is supported on the particulate filter, this is also performed when the temperature of the filter is raised. In order to reduce the air-fuel ratio of the exhaust, either by injecting fuel from the fuel addition valve 7 or by reducing the air-fuel ratio of the gas discharged from the internal combustion engine 1 Can do. That is, by supplying a reducing agent to the N Ox catalyst 6 by these means, N Ox occluded in the N Ox catalyst 6 can be reduced. In this embodiment, the fuel addition valve 7 corresponds to the reducing agent supply means in the present invention.
ここで、 内燃機関 1から排出されるガスの空燃比を低下させる方法と して、 吸入空気量を減少させたり、 E G Rガス量を増加させたりするこ とが例示できる。 また、 燃料噴射弁 1 1 から主噴射を行なった後の膨張 行程中若しくは排気行程中に再度燃料を噴射する副噴射 (ボス卜噴射) を行なうことによつても内燃機関 1から排出されるガスの空燃比を低下 させることができる。  Here, as a method for lowering the air-fuel ratio of the gas discharged from the internal combustion engine 1, it is possible to exemplify reducing the intake air amount or increasing the EGR gas amount. Gas discharged from the internal combustion engine 1 can also be obtained by performing sub-injection (boss soot injection) during the expansion stroke or exhaust stroke after the main injection from the fuel injection valve 1 1. It is possible to reduce the air-fuel ratio.
そして、 吸入空気量は、 スロットル 4を閉じ側へ動かすことによリ減 少させることができる。 また、 E G Rガス量は、 E G R弁 8 2を開き側 へ動かすことにより増加させることができる。 なお、 本実施例において はスロッ トル 4、 E G R弁 8 2、 又は燃料噴射弁 1 1 を制御する E C U 2 0が、 本発明における排気空燃比低下手段に相当する。 The amount of intake air can be reduced by moving the throttle 4 to the closing side. The EGR gas amount can be increased by moving the EGR valve 82 to the open side. In this embodiment, the ECU that controls the throttle 4, the EGR valve 82, or the fuel injection valve 11 is used. 20 corresponds to the exhaust air-fuel ratio lowering means in the present invention.
また、 内燃機関 1 から排出されるガスの空燃比の低下のことを以下、 In addition, the decrease in the air-fuel ratio of the gas discharged from the internal combustion engine 1 is
「燃焼リッチ」 又は 「燃焼によるリッチ」 という。 また、 燃料添加弁 7 から燃料を噴射させることによる排気の空燃比の低下のことを以下、 r 排気添加リツチ」 という。 It is called “combustion rich” or “rich by combustion”. In addition, the reduction in the air-fuel ratio of the exhaust due to the injection of fuel from the fuel addition valve 7 is hereinafter referred to as “r exhaust addition rich”.
そして、 N O xの還元は、 燃焼リッチ及び排気添加リッチの何れによ つても行うことができ、 またこれらを組み合わせて行なうこともできる 燃焼リッチは、 燃焼室内で空燃比を大幅に低下させることができ、 し かも N O x還元効率の高い C Oが燃焼室内で生成されるため、 N O x還元 効率が高い。 しかし、 燃焼リッチを行うことができるのは、 内燃機関 1 の負荷が比較的低いときに限られる。  The reduction of NO x can be performed either by combustion rich or exhaust addition rich, and can also be performed in combination. Combustion rich can significantly reduce the air-fuel ratio in the combustion chamber. In addition, CO with high NO x reduction efficiency is generated in the combustion chamber, so NO x reduction efficiency is high. However, the rich combustion can be performed only when the load of the internal combustion engine 1 is relatively low.
一方、 排気添加リッチは、 内燃機関 1 の負荷の影響を殆ど受けること なく行なうことができるので、 燃焼リツチよリも広い範囲の運転領域で 行なうことができる。 しかし、 燃料が拡散し難かったり、 排気通路 3の 壁面に燃料が付着したりするため、 N O x還元効率が悪くなる運転領域 がある。  On the other hand, the exhaust gas addition rich can be performed with almost no influence of the load of the internal combustion engine 1, and therefore can be performed in a wider range of operation than the combustion latch. However, there is an operating region in which the NOx reduction efficiency deteriorates because the fuel hardly diffuses or the fuel adheres to the wall surface of the exhaust passage 3.
そのため、 本実施例では、 燃焼リッチ及び排気添加リッチの双方を組 み合わせて用い、 しかも夫々から添加される還元剤の割合を状況に応じ て変更することで、 夫々の添加方法の利点を最大限に活用している。 ここで、 図 2は、 還元剤添加時において目標空燃比とするための燃焼 リッチ及び排気添加リツヂの割合の例を示した図である。 (A ) は燃焼 リッチの割合が比較的高い場合、 (B ) は排気添加リッチの割合が比較 的高い場合、 (C ) は排気添加リッチのみの場合を夫々示している。 ま た、 (X ) は燃焼リッチによる空燃比の低下分を示し、 ( Y ) は排気添加 リツチによる空燃比の低下分を夫々示している。  Therefore, in this embodiment, the advantages of each addition method can be maximized by using both combustion rich and exhaust addition rich in combination, and changing the ratio of the reducing agent added from each in accordance with the situation. It is used as much as possible. Here, FIG. 2 is a diagram showing an example of the ratio of the combustion rich and the exhaust addition ridge to achieve the target air-fuel ratio when the reducing agent is added. (A) shows a comparatively high ratio of combustion rich, (B) shows a comparatively high ratio of exhaust addition rich, and (C) shows a case of exhaust rich only. In addition, (X) indicates the air fuel ratio decrease due to combustion rich, and (Y) indicates the air fuel ratio decrease due to the exhaust addition rich.
還元剤添加前はベース空燃比にて内燃機関 1が運転されている。 この ベース空燃比は、 内燃機関 1 の負荷等により設定される空燃比である。 そして、 燃焼リッチを行う場合には、 内燃機関 1の燃焼室内で空燃比が 低下され、 その排気が排気通路 3を流通する。 そして、 その排気中に燃 料添加弁 7から燃料が添加されることにより、 排気の空燃比が更に低下 して、 目標空燃比とされる。 この目標空燃比とされた排気が N O x触媒 6に流入することにより、 該 N O x触媒 6に吸蔵されている N O xが還元 される。 Prior to the addition of the reducing agent, the internal combustion engine 1 is operated at the base air-fuel ratio. This base air-fuel ratio is an air-fuel ratio set by the load of the internal combustion engine 1 or the like. When the combustion rich is performed, the air-fuel ratio is lowered in the combustion chamber of the internal combustion engine 1, and the exhaust gas flows through the exhaust passage 3. Then, by adding fuel from the fuel addition valve 7 to the exhaust gas, the air-fuel ratio of the exhaust gas is further lowered to the target air-fuel ratio. When the exhaust gas having the target air-fuel ratio flows into the NOx catalyst 6, NOx stored in the NOx catalyst 6 is reduced.
つまり、 内燃機関 1からの排気の空燃比を変更し、 そのときの排気の 空燃比に合わせて燃料添加弁 7から燃料を添加することにより、 実際の 空燃比を目標空燃比に合わせている。 なお、 排気添加リッチのみを行な うときには、 内燃機関 1からの排気の空燃比はベース空燃比となる。 こ こで、 燃料添加弁 7から添加される燃料を、 ベース空燃比から目標空燃 比に低下させるために必要な燃料量で除した値を排気添加割合と称する 。 つまり、 図 2で示される場合の排気添加割合は、 (A ) が最も低く、 ( C ) が最も高い。  That is, the actual air-fuel ratio is adjusted to the target air-fuel ratio by changing the air-fuel ratio of the exhaust gas from the internal combustion engine 1 and adding fuel from the fuel addition valve 7 in accordance with the air-fuel ratio of the exhaust gas at that time. Note that when only the exhaust gas addition rich is performed, the air-fuel ratio of the exhaust gas from the internal combustion engine 1 becomes the base air-fuel ratio. Here, the value obtained by dividing the fuel added from the fuel addition valve 7 by the amount of fuel required to lower the base air-fuel ratio to the target air-fuel ratio is referred to as the exhaust addition ratio. That is, in the case shown in FIG. 2, the ratio of exhaust addition is the lowest in (A) and the highest in (C).
そして、 本実施例では、 排気の温度が低いほど、 又は N O x触媒 6の 温度が低いほど、 排気添加割合を低くする。  In this embodiment, the lower the exhaust gas temperature or the lower the temperature of the NOx catalyst 6, the lower the exhaust gas addition ratio.
図 3は、 排気の温度又は N O x触媒 6の温度と、 排気添加割合と、 の 関係を例示した図である。 なお、 図 3で示す関係は直線で表されている が、 曲線であっても良く、 排気温度又は N O x触媒 6の温度の上昇に対 して段階的に排気添加割合が高くなつても良い。 この関係は、 予め実験 等によリ求めることができる。  FIG. 3 is a diagram illustrating the relationship between the exhaust gas temperature or the temperature of the NOx catalyst 6 and the exhaust gas addition ratio. The relationship shown in FIG. 3 is represented by a straight line, but it may be a curve, and the exhaust gas addition ratio may increase stepwise as the exhaust gas temperature or NO x catalyst 6 temperature rises. . This relationship can be obtained beforehand through experiments or the like.
ここで、 排気の温度が低いほど、 燃料添加弁 7から添加される燃料が 霧化し難くなるため、 燃料の気化率が低くなる。 これにより、 排気の温 度が低くなるほど、 燃料添加弁 7から燃料を添加しても排気の空燃比を 均一に低下させることが困難となる。 つまり、 燃料が液体のまま N O x 触媒 6に到達することがある。 また、 気化したとしてもあまり拡散しな いまま N O x触媒 6に到達する。 そのため、 排気の空燃比の高い所と低 いところとが生じる。 この排気が N O x触媒 6に到達しても、 目標空燃 比となっている一部分で N O Xの還元が行われ、 目標空燃比に達してい ない箇所や目標空燃比よリもリツチとなっている箇所においては、 N 0 Xがあまり還元されない。 そのため、 N O x還元効率が低下する。 Here, as the temperature of the exhaust gas is lower, the fuel added from the fuel addition valve 7 is more difficult to atomize, so the fuel vaporization rate becomes lower. As a result, the lower the temperature of the exhaust gas, the more difficult it becomes to uniformly reduce the air-fuel ratio of the exhaust gas even if fuel is added from the fuel addition valve 7. That is, the fuel may reach the NO x catalyst 6 while being in a liquid state. Moreover, even if it is vaporized, it reaches the NO x catalyst 6 with little diffusion. As a result, there are places where the air-fuel ratio of the exhaust is high and low. Even if this exhaust reaches NO x catalyst 6, the target air combustion NOX is reduced at a part of the ratio, and N 0 X is not reduced much at locations where the target air-fuel ratio has not been reached, or where the target air-fuel ratio is more critical. Therefore, the NO x reduction efficiency decreases.
また、 N O x触媒 6の温度が低くなるほど、 該 N O x触媒 6で燃料が反 応し難くなる。 つまり、 N O x触媒 6の温度が低くなるほど、 燃料添加 弁 7から添加される燃料では N O xの還元がし難くなる。 そのため、 N O x還元効率が低下する。  Further, the lower the temperature of the N O x catalyst 6, the more difficult the fuel reacts with the N O x catalyst 6. In other words, the lower the temperature of the N O x catalyst 6, the more difficult it is to reduce N O x with the fuel added from the fuel addition valve 7. Therefore, N O x reduction efficiency decreases.
その点、 排気の温度が低くなるほど、 又は N O x触媒 6の温度が低く なるほど、 排気添加割合を低くすることにより、 N O x還元効率の低下 を抑制することができる。 つまり、 燃焼リッチの割合を高めることで、 最初から気化している燃料や、 より反応性の高い H C若しくは C 0を、 より多く N O x触媒 6に供給することができる。 また、 燃焼リッチは、 内燃機関 1の負荷が比較的低いときに行なうことができるが、 このよう な運転状態では排気の温度及び N O x触媒 6の温度が低くなる。 つまり 、 排気の温度又は N O x触媒 6の温度に応じて燃焼リッチの割合を変更 することで、 燃焼リツチを行うことができない運転状態のときに燃焼リ ツチの割合が高くなることも抑制される。  In this respect, the lowering of the NOx reduction efficiency can be suppressed by lowering the exhaust gas addition ratio as the temperature of the exhaust gas becomes lower or as the temperature of the NOx catalyst 6 becomes lower. In other words, by increasing the ratio of combustion rich, it is possible to supply more NO H x catalyst 6 to the fuel that has been vaporized from the beginning, or more highly reactive H 2 C or C 0. Combustion rich can be performed when the load of the internal combustion engine 1 is relatively low. In such an operating state, the temperature of the exhaust gas and the temperature of the NOx catalyst 6 are lowered. In other words, by changing the combustion rich ratio according to the temperature of the exhaust gas or the temperature of the NO x catalyst 6, it is possible to suppress an increase in the ratio of the combustion rich in an operating state where the combustion rich cannot be performed. .
このようにして、 燃焼状態の悪化を抑制しつつ N O x還元効率を向上 させることができる。 そのため、 ドライバピリティを向上させつつ燃費 を向上させることができる。  In this way, the NOx reduction efficiency can be improved while suppressing the deterioration of the combustion state. Therefore, it is possible to improve fuel efficiency while improving driver spirit.
なお、 本実施例においては排気添加割合を変更する E C U 2 0が、 本 発明における割合変更手段に相当する。  In this embodiment, E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.
(実施例 2 )  (Example 2)
本実施例では、 排気の流量が少ないほど、 排気添加割合を低くする。 他の装置については前記実施例と同様なので、 説明を省略する。  In this embodiment, the lower the exhaust gas flow rate, the lower the exhaust gas addition ratio. The other devices are the same as those in the previous embodiment, and the description is omitted.
図 4は、 排気の流量と、 排気添加割合と、 の関係を例示した図である 。 なお、 図 4で示す関係は直線で表されているが、 曲線であっても良く 、 排気の流量の上昇に対して段階的に排気添加割合が高くなつていつて も良い。 この関係は、 予め実験等により求めることができる。 また、 排 気の流量は、 エアフローメータ 5によリ測定される吸入空気量から求め ることができる。 FIG. 4 is a diagram illustrating the relationship between the exhaust flow rate and the exhaust gas addition ratio. Although the relationship shown in FIG. 4 is represented by a straight line, it may be a curve, and the exhaust gas addition ratio becomes higher stepwise as the exhaust gas flow rate increases. Also good. This relationship can be obtained in advance through experiments or the like. Further, the flow rate of the exhaust gas can be obtained from the intake air amount measured by the air flow meter 5.
ここで、 排気の流量が少なくなるほど、 燃料添加弁 7から添加される 燃料が霧化し難くなるため、 燃料の気化率が低くなる。  Here, as the flow rate of the exhaust gas decreases, the fuel added from the fuel addition valve 7 becomes difficult to atomize, so the fuel vaporization rate decreases.
その点、 排気の流量が少なくなるほど、 排気添加割合を低くすること により、 N O x還元効率の低下を抑制することができる。 つまり、 燃焼 リッチの割合を高めることで、 最初から気化している燃料や、 より反応 性の高い H C若しくは C Oを、 より多く N O x触媒 6に供給することが できる。 また、 燃焼リッチは、 内燃機関 1の負荷が比較的低いときに行 なうことができるが、 このような運転状態では排気の流量が少なくなる 。 つまり、 排気の流量に応じて燃焼リッチの割合を変更することで、 燃 焼リツチを行うことができない運転状態のときに燃焼リツチの割合が高 くなることも抑制される。  In that respect, the lower the exhaust gas flow rate, the lower the NOx reduction efficiency can be suppressed by lowering the exhaust gas addition ratio. In other words, by increasing the ratio of combustion rich, it is possible to supply the N O x catalyst 6 with more fuel that has been vaporized from the beginning and more highly reactive HC or CO. In addition, the combustion rich can be performed when the load of the internal combustion engine 1 is relatively low, but in such an operation state, the flow rate of the exhaust gas is reduced. In other words, by changing the combustion rich ratio in accordance with the flow rate of the exhaust gas, it is possible to suppress the combustion rich ratio from increasing during an operation state in which combustion rich cannot be performed.
このようにして、 燃焼状態の悪化を抑制しつつ N O x還元効率を向上 させることができる。 そのため、 ドライバピリティを向上させつつ燃費 を向上させることができる。  In this way, the NOx reduction efficiency can be improved while suppressing the deterioration of the combustion state. Therefore, it is possible to improve fuel efficiency while improving driver spirit.
なお、 本実施例においては排気添加割合を変更する E C U 2 0が、 本 発明における割合変更手段に相当する。  In this embodiment, E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.
(実施例 3 )  (Example 3)
本実施例では、 燃料添加弁 7から添加される燃料のなかで、 排気通路 3に付着する割合 (以下、 壁面付着率という。) が高くなるほど、 排気 添加割合を低くする。 他の装置については前記実施例と同様なので、 説 明を省略する。 なお、 排気通路 3に付着する燃料には、 燃料添加弁 7か ら N O x触媒 6の間にある部材 (たとえばターボチャージャ) に付着す る燃料を含む。  In this embodiment, among the fuel added from the fuel addition valve 7, the higher the rate of attachment to the exhaust passage 3 (hereinafter referred to as the wall surface deposition rate), the lower the exhaust addition rate. The other devices are the same as those in the previous embodiment, so the description is omitted. The fuel adhering to the exhaust passage 3 includes fuel adhering to a member (for example, a turbocharger) between the fuel addition valve 7 and the NOx catalyst 6.
図 5は、 壁面付着率と、 排気添加割合と、 の関係を例示した図である 。 なお、 図 5で示す関係は直線で表されているが、 曲線であっても良く 、 壁面付着率の上昇に対して段階的に排気添加割合が低くなつていつて も良い。 この関係は、 予め実験等により求めることができる。 また、 壁 面付着率は、 排気の温度、 排気通路 3の壁面温度、 及び排気の流量に基 づいて求めることができる。 FIG. 5 is a diagram illustrating the relationship between the wall surface adhesion rate and the exhaust gas addition ratio. The relationship shown in Fig. 5 is represented by a straight line, but it may be a curved line. It is also possible that the exhaust gas addition ratio gradually decreases with increasing wall surface adhesion rate. This relationship can be obtained in advance through experiments or the like. The wall surface adhesion rate can be determined based on the exhaust temperature, the wall surface temperature of the exhaust passage 3, and the exhaust flow rate.
ここで、 壁面付着率が高くなるほど、 N O x触媒 6に到達する排気の 空燃比は高くなるため、 目標空燃比に到達させるためにより多くの燃料 を添加しなくてはならない。 そのため、 壁面付着率が高くなるほど、 N O x還元効率が低下する。  Here, since the air-fuel ratio of the exhaust gas that reaches the NOx catalyst 6 increases as the wall surface adhesion rate increases, more fuel must be added to reach the target air-fuel ratio. Therefore, the higher the wall surface adhesion rate, the lower the NOx reduction efficiency.
その点、 壁面付着率が高くなるほど、 排気添加割合を低くすることに より、 N O x還元効率の低下を抑制することができる。 つまり、 燃焼リ ツチの割合を高めることで、 最初から気化している還元剤を N O x触媒 6に供給することができる。 また、 燃焼リッチは、 内燃機関 1の負荷が 比較的低いときに行なうことができるが、 このような運転状態では壁面 付着率が高くなる。 つまり、 壁面付着率に応じて燃焼リッチの割合を変 更することで、 燃焼リッチを行うことができない運転状態のときに燃焼 リッチの割合が高くなることも抑制される。  In that respect, the lower the NOx reduction efficiency can be suppressed by lowering the exhaust gas addition ratio as the wall surface adhesion rate increases. That is, by increasing the ratio of the combustion rich, the reducing agent vaporized from the beginning can be supplied to the N O x catalyst 6. In addition, combustion rich can be performed when the load of the internal combustion engine 1 is relatively low, but in such an operating state, the wall surface adhesion rate becomes high. In other words, by changing the combustion rich ratio according to the wall surface adhesion rate, it is possible to suppress the combustion rich ratio from being increased in an operating state where combustion rich cannot be performed.
このようにして、 燃焼状態の悪化を抑制しつつ N O x還元効率を向上 させることができる。 そのため、 ドライバピリティを向上させつつ燃費 を向上させることができる。  In this way, the NOx reduction efficiency can be improved while suppressing the deterioration of the combustion state. Therefore, it is possible to improve fuel efficiency while improving driver spirit.
なお、 本実施例においては排気添加割合を変更する E C U 2 0が、 本 発明における割合変更手段に相当する。  In this embodiment, E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.
(実施例 4 )  (Example 4)
本実施例では、 N O x触媒 6の温度が不均一となるほど、 排気添加割 合を低くする。 他の装置については前記実施例と同様なので、 説明を省 略する。  In this embodiment, the exhaust gas addition ratio is lowered as the temperature of the N O x catalyst 6 becomes nonuniform. The other devices are the same as in the previous embodiment, so the description is omitted.
図 6は、 N O x触媒 6の温度の均一度と、 排気添加割合と、 の関係を 例示した図である。 なお、 図 6で示す関係は直線で表されているが、 曲 線であっても良く、 N O x触媒 6の温度の均一度の上昇に対して段階的 に排気添加割合が高くなつていつても良い。 また、 「温度の均一度」 と は、 N O x触媒 6内における温度差がどれだけ小さいのかを示す値であ る。 また、 N O x触媒 6内における温度差がどれだけ大きいのかを示す 値を 「温度の不均一度」 とする。 つまり温度の均一度が大きくなるほど 、 N O x触媒 6内における温度差が小さくなる。 また、 温度の不均一度 が大きくなるほど、 N O x触媒 6内における温度差が大きくなる。 そし て、 図 6の関係は予め実験等により求めることができる。 なお、 例えば N O x触媒 6内の数箇所の温度を測定若しくは推定し、 これらの温度の 差を求め、 この温度の差が大きくなるほど温度の不均一度が大きい (つ まり、 温度の均一度が小さい) としても良い。 FIG. 6 is a graph illustrating the relationship between the temperature uniformity of the NO x catalyst 6 and the exhaust gas addition ratio. Although the relationship shown in FIG. 6 is represented by a straight line, it may be a curved line, and it is stepwise with respect to an increase in temperature uniformity of the NO x catalyst 6 In addition, the exhaust addition ratio may be high. “Temperature uniformity” is a value indicating how small the temperature difference in the NO x catalyst 6 is. The value indicating how large the temperature difference in the NO x catalyst 6 is called “temperature non-uniformity”. That is, as the temperature uniformity increases, the temperature difference in the NO x catalyst 6 decreases. In addition, the greater the temperature non-uniformity, the greater the temperature difference within the NO x catalyst 6. The relationship shown in Fig. 6 can be obtained beforehand through experiments. For example, the temperature of several locations in the NO x catalyst 6 is measured or estimated, and the difference between these temperatures is obtained. The larger the temperature difference, the greater the temperature non-uniformity (that is, the temperature uniformity becomes higher). Small).
ここで、 燃料添加弁 7から燃料添加を行なった場合に燃料の気化率が 低いと、 部分的に排気の空燃比が低くなつたり高くなつたりする。 その ため、 N O X触媒 6の温度が部分的に高くなつたり低くなつたりするこ とがある。 このような場合には、 N O x触媒 6内で、 目標空燃比に達し ていない箇所や目標空燃比よりもリツチとなった箇所ができてしまうの で、 N O x還元効率が低下する虞がある。  Here, if fuel is added from the fuel addition valve 7 and the fuel vaporization rate is low, the air-fuel ratio of the exhaust gas partially decreases or increases. For this reason, the temperature of the NOx catalyst 6 may rise or fall partially. In such a case, the NOx catalyst 6 may have a location that does not reach the target air-fuel ratio or a location that is richer than the target air-fuel ratio, which may reduce the NOx reduction efficiency. .
その点、 N O x触媒 6の温度の不均一度が大きくなるほど、 排気添加 割合を低くすることにより、 N O x還元効率の低下を抑制することがで きる。 つまり、 燃焼リッチの割合を高めると、 最初からある程度拡散し ている還元剤を N O x触媒 6により多く供給することができるため、 N O x触媒 6の温度を全体的に高めることができる。 また、 燃焼リッチは 、 内燃機関 1 の負荷が比較的低いときに行なうことができるが、 このよ うな運転状態では N O x触媒 6の温度の不均一度が大きくなる。 つまり 、 N O x触媒 6の温度の不均一度に応じて燃焼リツチの割合を変更する ことで、 燃焼リッチを行うことができない運転状態のときに燃焼リッチ の割合が高くなることも抑制される。  In this regard, as the temperature non-uniformity of the N O x catalyst 6 increases, the reduction in the N O x reduction efficiency can be suppressed by lowering the exhaust gas addition ratio. In other words, when the ratio of combustion rich is increased, the reducing agent diffused to some extent from the beginning can be supplied more to the N O x catalyst 6, so that the temperature of the N O x catalyst 6 can be increased as a whole. In addition, combustion rich can be performed when the load of the internal combustion engine 1 is relatively low. In such an operating state, the temperature non-uniformity of the NOx catalyst 6 increases. That is, by changing the ratio of the combustion rich according to the non-uniformity of the temperature of the NOx catalyst 6, it is possible to suppress an increase in the ratio of the combustion rich in an operating state where combustion rich cannot be performed.
このようにして、 燃焼状態の悪化を抑制しつつ N O x還元効率を向上 させることができる。 そのため、 ドライバピリティを向上させつつ燃費 を向上させることができる。 In this way, NOx reduction efficiency can be improved while suppressing deterioration of the combustion state. Therefore, fuel efficiency is improved while improving driver spirit. Can be improved.
なお、 本実施例においては排気添加割合を変更する E C U 2 0が、 本 発明における割合変更手段に相当する。  In this embodiment, E C U 20 that changes the exhaust gas addition ratio corresponds to the ratio changing means in the present invention.

Claims

請求の範囲 The scope of the claims
1 . 内燃機関の排気通路に設けられ、 還元剤の供給により浄化能力が 回復される吸蔵還元型 N O x触媒と、  1. an NOx storage reduction catalyst that is provided in the exhaust passage of an internal combustion engine and whose purification capacity is restored by supplying a reducing agent;
前記吸蔵還元型 N O x触媒よリも上流の排気通路において排気中に燃 料を添加する燃料添加弁と、  A fuel addition valve for adding fuel to the exhaust gas in the exhaust passage upstream of the NOx storage reduction catalyst;
前記吸蔵還元型 N O x触媒の浄化能力を回復するときに、 浄化能力を 回復しないときと比較して、 内燃機関の燃焼室から排出されるガスの空 燃比を低下させる排気空燃比低下手段と、  An exhaust air-fuel ratio lowering means for lowering the air-fuel ratio of the gas discharged from the combustion chamber of the internal combustion engine when recovering the purification capacity of the NOx storage reduction catalyst, compared with when not recovering the purification capacity;
前記排気空燃比低下手段により空燃比を低下させる分と、 前記燃料添 加弁から燃料を添加することによリ空燃比を低下させる分と、 を合わせ て前記吸蔵還元型 N O x触媒に流入する排気の空燃比を目標空燃比まで 低下させることにより浄化能力を回復するときに、 前記燃料添加弁から 添加される燃料の気化率が低いほど該燃料添加弁によリ空燃比を低下さ せる分を小さくする割合変更手段と、  The amount by which the air-fuel ratio is lowered by the exhaust air-fuel ratio lowering means and the amount by which the air-fuel ratio is lowered by adding fuel from the fuel addition valve are combined and flow into the NOx storage reduction catalyst When recovering the purification capacity by reducing the air-fuel ratio of the exhaust gas to the target air-fuel ratio, the lower the vaporization rate of the fuel added from the fuel addition valve, the lower the air-fuel ratio by the fuel addition valve. A ratio changing means for reducing
を具備することを特徴とする内燃機関の排気浄化装置。  An exhaust emission control device for an internal combustion engine, comprising:
2 . 前記割合変更手段は、 排気の温度又は前記吸蔵還元型 N O x触媒 の温度に応じて、 前記排気空燃比低下手段により空燃比を低下させる分 と、 前記燃料添加弁から燃料を添加することによリ空燃比を低下させる 分と、 の割合を変更することを特徴とする請求項 1 に記載の内燃機関の 排気浄化装置。  2. The ratio changing unit is configured to add the fuel from the fuel addition valve by reducing the air-fuel ratio by the exhaust air-fuel ratio lowering unit according to the temperature of the exhaust gas or the temperature of the NOx storage reduction catalyst. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the ratio of the amount by which the air-fuel ratio is reduced by the step is changed.
3 . 前記割合変更手段は、 排気の流量に応じて、 前記排気空燃比低下 手段によリ空燃比を低下させる分と、 前記燃料添加弁から燃料を添加す ることによリ空燃比を低下させる分と、 の割合を変更することを特徴と する請求項 1 に記載の内燃機関の排気浄化装置。  3. The ratio changing means reduces the air-fuel ratio by adding the fuel from the fuel addition valve and the amount by which the exhaust air-fuel ratio is lowered by the exhaust air-fuel ratio lowering means according to the flow rate of the exhaust gas. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the ratio of the amount to be changed is changed.
4 . 前記割合変更手段は、 前記燃料添加弁から供給される還元剤のな かで排気通路の壁面に付着する量の割合に応じて、 前記排気空燃比低下 手段により空燃比を低下させる分と、 前記燃料添加弁から燃料を添加す ることによリ空燃比を低下させる分と、 の割合を変更することを特徴と する請求項 1 に記載の内燃機関の排気浄化装置。 4. The ratio changing means reduces the air-fuel ratio by the exhaust air-fuel ratio lowering means according to the ratio of the amount of reducing agent supplied from the fuel addition valve to the wall of the exhaust passage. The ratio of reducing the air-fuel ratio by adding fuel from the fuel addition valve and the ratio of The exhaust emission control device for an internal combustion engine according to claim 1.
5 . 前記割合変更手段は、 前記吸蔵還元型 N O x触媒の温度分布に応 じて、 前記排気空燃比低下手段により空燃比を低下させる分と、 前記燃 料添加弁から燃料を添加することによリ空燃比を低下させる分と、 の割 合を変更することを特徴とする請求項 1 に記載の内燃機関の排気浄化装 置。  5. The ratio changing unit is configured to add fuel from the fuel addition valve by reducing the air / fuel ratio by the exhaust air / fuel ratio reducing unit according to the temperature distribution of the NOx storage reduction catalyst. 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the ratio of the amount by which the air-fuel ratio is lowered is changed.
PCT/JP2008/058509 2008-04-25 2008-04-25 Exhaust purification apparatus for internal combustion engine WO2009130801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058509 WO2009130801A1 (en) 2008-04-25 2008-04-25 Exhaust purification apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058509 WO2009130801A1 (en) 2008-04-25 2008-04-25 Exhaust purification apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2009130801A1 true WO2009130801A1 (en) 2009-10-29

Family

ID=41216550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058509 WO2009130801A1 (en) 2008-04-25 2008-04-25 Exhaust purification apparatus for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2009130801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203409A (en) * 2016-05-11 2017-11-16 いすゞ自動車株式会社 Exhaust emission control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120986A (en) * 2003-10-20 2005-05-12 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007040241A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2007064167A (en) * 2005-09-02 2007-03-15 Toyota Motor Corp Exhaust emission control device and exhaust emission control method for internal combustion engine
JP2007071142A (en) * 2005-09-08 2007-03-22 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007332935A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120986A (en) * 2003-10-20 2005-05-12 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007040241A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2007064167A (en) * 2005-09-02 2007-03-15 Toyota Motor Corp Exhaust emission control device and exhaust emission control method for internal combustion engine
JP2007071142A (en) * 2005-09-08 2007-03-22 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007332935A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203409A (en) * 2016-05-11 2017-11-16 いすゞ自動車株式会社 Exhaust emission control system
WO2017195856A1 (en) * 2016-05-11 2017-11-16 いすゞ自動車株式会社 Exhaust gas purifying system
US10837336B2 (en) 2016-05-11 2020-11-17 Isuzu Motors Limited Exhaust gas purifying system

Similar Documents

Publication Publication Date Title
US7340884B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP5907269B2 (en) Exhaust gas purification device for internal combustion engine
JP2005048716A (en) Exhaust circulation control device for internal combustion engine
JP2010180802A (en) Exhaust emission control device for internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
US20060168939A1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP4736931B2 (en) Exhaust gas recirculation device for internal combustion engine
US10392981B2 (en) Exhaust purification system, and control method for exhaust purification system
JP2009002275A (en) Control system of internal combustion engine
JP4899890B2 (en) Exhaust gas purification device for internal combustion engine
JP6278344B2 (en) Engine exhaust purification system
JP2010180803A (en) Exhaust emission control device for internal combustion engine
JP4529967B2 (en) Exhaust gas purification system for internal combustion engine
WO2009130801A1 (en) Exhaust purification apparatus for internal combustion engine
JP2008075571A (en) Control device for internal combustion engine
JP4957478B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264203A (en) Exhaust device for internal combustion engine
JP3820990B2 (en) Exhaust gas purification device for internal combustion engine
JP2008115838A (en) Exhaust emission control device for internal combustion engine
JP2013019401A (en) Catalyst deterioration determination system
US20110036077A1 (en) Exhaust gas purification system for internal combustion engine
JP2012233419A (en) Determination system of catalyst degradation
JP7268693B2 (en) engine controller
JP2010019171A (en) Exhaust emission control device for internal combustion engine
JP2009299558A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08752401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP