WO2009130775A1 - Flat antenna device and communication equipment - Google Patents

Flat antenna device and communication equipment Download PDF

Info

Publication number
WO2009130775A1
WO2009130775A1 PCT/JP2008/057925 JP2008057925W WO2009130775A1 WO 2009130775 A1 WO2009130775 A1 WO 2009130775A1 JP 2008057925 W JP2008057925 W JP 2008057925W WO 2009130775 A1 WO2009130775 A1 WO 2009130775A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar
antennas
planar antenna
antenna device
antenna
Prior art date
Application number
PCT/JP2008/057925
Other languages
French (fr)
Japanese (ja)
Inventor
晶夫 倉本
信博 遠藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010509004A priority Critical patent/JPWO2009130775A1/en
Priority to PCT/JP2008/057925 priority patent/WO2009130775A1/en
Publication of WO2009130775A1 publication Critical patent/WO2009130775A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to a planar antenna, and more particularly to an antenna configuration that can vary directivity by combining a plurality of planar antennas.
  • PDA Personal The information transmission speed of a device that transmits and receives information by wireless communication, such as a digital assistant terminal or a mobile phone terminal, greatly depends on the antenna performance of the terminal.
  • the line quality differs greatly when the terminal side is in a place where the base station antenna can be seen directly, and when it is in a place where the base station antenna cannot be seen directly, such as behind a building or indoors.
  • WiMAX Worldwide Wide The same applies to communication using Interoperability for Microwave Access
  • the external antenna may have a sharp directivity, may have a broad directivity, or may have a non-directivity.
  • the antenna directivity can be directed to the base station, so an antenna with sharp directivity and high gain is preferable.
  • a broad directional antenna is effective when the direction of strong radio waves is known.
  • an omnidirectional antenna is convenient.
  • the external antenna to be used has a function of easily changing these directivities. Furthermore, if the external antenna is compact and planar, it can be easily carried in a bag or the like when being carried.
  • the external antenna to be used can support communication using MIMO (Multi-Input Multi-Output) technology if a plurality of antennas can be independently connected.
  • MIMO Multi-Input Multi-Output
  • the situation where MIMO is used is a situation where communication quality and communication speed can be improved by performing communication using a plurality of reflected waves using a plurality of antennas when a large number of reflected waves exist.
  • each antenna By using each antenna independently, it is possible to improve the communication quality and the communication speed by effectively using the MIMO technology.
  • 23 (a) and 23 (b) illustrate an antenna apparatus related to the external antenna.
  • the related art antenna device shown in FIG. 23A is a device in which a monopole antenna (hereinafter referred to as a monopole antenna) 100 is connected to a coaxial cable 101 and a coaxial connector 102 is attached to the tip of the coaxial cable 101. is there.
  • This monopole antenna 100 has a donut-shaped non-directional directivity d11 in a horizontal plane.
  • the related art antenna apparatus shown in FIG. 23B is a device in which a flat thin antenna (hereinafter referred to as a planar antenna) 200 is connected to a coaxial cable 201 and a coaxial connector 202 is attached to the tip of the coaxial cable 201. is there.
  • the planar antenna 200 has directivity d21 in a single direction.
  • a small plane area has a small gain and broad directivity
  • a large plane area has a large gain and sharp directivity.
  • the cited document 1 includes a plurality of thin sub-antenna portions that have a radiating element on at least one surface so that they can be folded.
  • the sub-antenna portion is folded when stored, and the sub-antenna portion is unfolded when used.
  • An antenna device configured to be communicable is disclosed. According to this, even when the direction of the radio base station is unknown, it is possible to provide a small antenna device that can direct the beam toward the radio base station.
  • Cited Document 2 as an antenna device built in a wireless device, a plurality of planar antennas are arranged so that their main radiation directions are directed in different directions, and feeding points and high-frequency switches of the plurality of planar antennas are arranged.
  • a device is disclosed in which radiation directivity is switched by selecting a planar antenna to be operated by connecting and switching a high-frequency switch. According to this, the directivity control antenna device built in the wireless device can be realized with a simple configuration.
  • the related art antenna device shown in FIG. 23 (a) uses the omnidirectional monopole antenna 100. Therefore, the directivity is variable, and the compact and portable external antenna has high convenience. Cannot be used as In addition, since the antenna apparatus of FIG. 23A does not connect a plurality of antennas independently, it cannot be used for communication using the MIMO technology, and a plurality of reflected waves exist when there are a large number of reflected waves. Communication quality and communication speed cannot be improved by performing communication using a large number of reflected waves using the antenna.
  • the related art antenna device shown in FIG. 23 (b) uses the planar antenna 200 having directivity in a single direction. It cannot be used as a highly convenient external antenna having portability.
  • the antenna device of FIG. 23 (b) does not connect a plurality of antennas independently, and therefore cannot be used for communication using MIMO technology, and there are a large number of reflected waves. In this case, communication quality and communication speed cannot be improved by performing communication using a large number of reflected waves using a plurality of antennas.
  • the sub-antenna unit is folded when stored, and the sub-antenna unit is deployed so as to be communicable when used, so that the structure can be downsized. Since it is a structure that folds with the surface that radiates or receives radio waves inside, it can receive radio waves from only one side when folded, and cannot improve the reception state when folded. Similarly to the above, the antenna device of Patent Document 1 does not connect a plurality of antennas independently, and thus cannot be used for communication using the MIMO technology, and there are many reflected waves. In addition, communication quality and communication speed cannot be improved by performing communication using a large number of reflected waves using a plurality of antennas.
  • the antenna device of Patent Document 2 is configured to select a plurality of planar antennas having different main radiation directions and switch the directivity, the directivity can be made variable, while the plurality of antennas are independently connected. Therefore, it cannot be used for communication using MIMO technology, and when there are a large number of reflected waves, communication quality is obtained by using a plurality of antennas to communicate using a large number of reflected waves. And communication speed cannot be improved.
  • An object of the present invention is to solve the above-described problems, and can change the directivity, have a compact portability, improve the reception state when folded, and communicate using MIMO technology.
  • Another object of the present invention is to provide a highly convenient planar antenna device that can be used for the above-mentioned.
  • the planar antenna device includes a plurality of directional planar antennas that can be folded.
  • the directivity of the plurality of planar antennas is controlled by adjusting the angle of the adjacent planar antennas to radiate or receive radio waves and to radiate or receive radio waves from both sides when folded.
  • the directivity can be changed, the portability is compact, the reception state at the time of folding can be improved, and it can be used for communication using MIMO technology, which is highly convenient.
  • a planar antenna device can be provided.
  • FIG. 1 is a perspective view of the planar antenna apparatus which concerns on 1st Example of this invention.
  • A) is sectional drawing which shows the structure of the housing
  • (a) is a perspective view of the housing
  • (c) is a perspective view of the cover. is there.
  • (A) is a front view which shows the structure of the surface side of the printed circuit board of the 1st planar antenna of FIG. 1
  • (b) is a rear view which shows the structure of the back surface side.
  • A) is a front view which shows the structure of the surface side of the printed circuit board of the 2nd planar antenna of FIG.
  • (b) is a rear view which shows the structure of the back surface side. It is a perspective view which shows the connection structure of the printed circuit board of the 2nd planar antenna of FIG. 1, and a 1st coaxial cable.
  • (A) is a perspective view explaining the 1st usage method of the planar antenna apparatus of FIG. 1,
  • (b) is a figure which shows the directivity.
  • (A) is a perspective view explaining the 2nd usage method of the planar antenna apparatus of FIG. 1, (b) is a figure which shows the directivity.
  • (A) is a perspective view explaining the 3rd usage method of the planar antenna apparatus of FIG. 1, (b) is a figure which shows the directivity.
  • FIG. 10 is a perspective view showing a connection structure between the first and second planar antennas of FIG. 9 and the first coaxial cable.
  • A is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 3rd Example of this invention
  • (b) is the partial rear view which shows the connection structure of the coaxial cable.
  • A is a front view which shows the structure of the surface side of the printed circuit board of the 1st planar antenna of FIG.
  • FIG. 12 is a front view which shows the structure of the surface side of the printed circuit board of the 2nd planar antenna of FIG.
  • A) is a front view showing the structure on the front surface side of the first connection printed circuit board in FIG. 12
  • (b) is a rear view showing the structure on the back surface side
  • (c) is the second connection printed circuit board in FIG.
  • (d) is a rear view which shows the structure of the back surface side.
  • It is a front view which shows the connection structure of the mutual printed circuit board of the 1st, 2nd planar antenna of FIG.
  • Planar antenna device folding planar antenna
  • First connection portion Foot portion
  • Second connection portion First coaxial cable 6
  • Second coaxial cable 7 Connector 10 to 30 First to third planar antenna 31
  • the planar antenna device is used as an external antenna of a communication terminal such as a WiMAX terminal, a PDA terminal or a mobile phone.
  • This planar antenna device has a structure in which a plurality of planar antennas (planar antennas) are connected and can be folded into a single plane.
  • Each planar antenna has broad directivity, and the directivity is controlled by arbitrarily adjusting the rotation angle of adjacent planar antennas to radiate or receive radio waves. Radiate or receive radio waves.
  • each planar antenna is adjusted in the same direction, a planar antenna device having sharp directivity and high gain can be configured. Also, the angle of each planar antenna is adjusted so that it is circular when viewed from the upper surface side, that is, when two planar antennas are used, it is back-to-back, and when it is three, it is triangular when viewed from the upper surface side. In the case of four sheets, omnidirectionality can be formed by arranging them in a square shape when viewed from the upper surface side.
  • a plurality of planar antennas are connected to each other so that they can be folded into a single plane, and the directivity is controlled by adjusting the angle between adjacent planar antennas. Because it is configured to emit or receive radio waves from both planes when folded, the direction of each planar antenna can be adjusted, 1) the directivity can be varied, and 2) compact and flat storage 3) It is possible to provide a convenient external antenna that can be used for communication using MIMO technology.
  • FIG. 1 is a perspective view showing the configuration of the planar antenna device according to the first embodiment of the present invention, as viewed from the back surface (back surface) side.
  • the first to third planar antennas 10 to 30 are controlled in directivity by adjusting the angle of adjacent planar antennas by the first connecting portion (connecting portion) 2 to radiate or receive radio waves and are folded. Sometimes radio waves are emitted or received from both planes.
  • the first to third planar antennas 10 to 30 are made of a flat (planar) member having a rectangular outer shape, and are set to dimensions of thickness t, width w, and height h.
  • the first to third planar antennas 10 to 30 have front (front) side surfaces p11, p21 and p31, back side back surfaces p12, p22 and p32, and upper side upper side surfaces (upper surface) p13, p23, p33, lower (bottom) side lower side surfaces (bottom surfaces) p14, p24, and p34, left side surfaces p15, p25, and p35, and right side surfaces p16, p26, and p36.
  • the width direction (left and right direction, short direction) is the x direction
  • the height direction (vertical direction, longitudinal direction) is the y direction
  • the thickness direction (depth direction) is z. It is written as direction.
  • the xz plane defined by the x direction and the z direction corresponds to a plane along the horizontal direction
  • the yz plane defined by the y direction and the z direction corresponds to a plane along the vertical direction.
  • the first connecting unit 2 connects the first planar antenna 10 and the second planar antenna 20, and the first planar antenna 10 and the third planar antenna 30, respectively.
  • 30 can be folded in the horizontal direction (refer to the direction of the dotted arrow a1 in the figure), or can be set to a relative installation angle arbitrarily, and can be rotated and movable such as a hinge. ing.
  • the first connecting portion 2 is arranged on the back surface p12 to p32 side of the first to third planar antennas 10 to 30, but the arrangement location is not limited to this, and the first connecting portion 2 is on the front surface p11 to p31 side.
  • the foot part 3 is added to the second and third planar antennas 20 and 30 by the second connecting part 4 so that the folding planar antenna 1 itself does not fall down.
  • the second connecting portion 4 has a structure such as a hinge that can be rotated in the horizontal direction (refer to the direction of the dotted arrow a2 in the figure) so that the foot portion 3 can be folded and stored.
  • the foot 3 is not necessary if the bottom surfaces p14, p24, and p34 of the first to third planar antennas 10 to 30 are planar and can stand up sufficiently stably.
  • the first coaxial cable 5 extends from the second and third planar antennas 20 and 30, and is connected to the first planar antenna 10, respectively.
  • a second coaxial cable 6 is connected to the first planar antenna 10, and a connector 7 is provided at the tip thereof.
  • the connector 7 is connected to an antenna connection terminal on the communication device (not shown) side.
  • the first and second coaxial cables 5 and 6 and the connector 7 constitute a power feeding means.
  • the radio waves received by the second and third planar antennas 20 and 30 are once taken into a feeding circuit (not shown) in the first planar antenna 10 and the same as the radio waves received by the first planar antenna 10.
  • the signals are combined in phase, transmitted to the second coaxial cable 6, and output to the connector 7 via the first coaxial cable 5.
  • transmission power fed from the connector 7 is radiated from the first to third planar antennas 10 to 30 in the same phase (see the radiation directions d1 to d3 in FIG. 1).
  • FIGS. 2A to 2C show the internal structure of the first planar antenna 10.
  • the first planar antenna 10 includes a concave casing 11 on the front surface p11 side, a printed circuit board 12 disposed therein, and a cover 13 on the rear surface p12 side.
  • the housing 11 is made of a dielectric, for example, plastic such as polycarbonate or acrylic.
  • the printed board 12 has a planar antenna radiating element and a microstrip line as a feed line formed on the surface 12a by etching (see FIG. 3A described later).
  • the cover 13 is a portion corresponding to the lid of the back surface 12b of the printed circuit board 12, and can be a conductor such as metal or a dielectric such as plastic.
  • the cover 13 is provided with a hole 14 through which the first and second coaxial cables 5 and 6 are passed.
  • the second and third planar antennas 20 and 30 in FIG. 1 are structurally similar.
  • 3A and 3B show the detailed structure of the printed circuit board 12 used in the first planar antenna 10.
  • 3A shows the front surface 12a of the printed circuit board 12
  • FIG. 3B shows the back surface 12b.
  • FIG. 3A On the surface 12a of the printed circuit board 12, as shown in FIG. 3A, four patch antennas 15, a microstrip line 16, and a ground 17 are formed by etching or the like.
  • the ground 17 is electrically connected to a ground 21 made of a conductor on the back surface 12b shown in FIG. 3B through a plurality of (four in the drawing) through holes 18.
  • a hole 19 through which the first and second coaxial cables 5 and 6 pass is formed in the lower portion of the printed circuit board 12.
  • FIGS. 4A and 4B show the detailed structure of the printed circuit board 22 used for the second planar antenna 20.
  • 4A shows the front surface 22a of the printed circuit board 22
  • FIG. 3B shows the back surface 22b of the printed circuit board 22, respectively.
  • the printed circuit board 22 has four patch antennas 23, a microstrip line 24, and a ground 25 formed on its surface 22a by etching or the like.
  • the ground 25 is electrically connected to a ground 27 made of a conductor on the back surface 22a shown in FIG.
  • a hole 28 through which the first coaxial cable 5 passes is formed in the lower part of the printed circuit board 22.
  • the printed circuit board used for the third planar antenna 30 has a line-symmetric structure with the printed circuit board 22 shown in FIGS.
  • FIG. 5 shows a connection structure between the printed circuit board 22 of the second planar antenna 20 and the first coaxial cable 5.
  • the connection end of the first coaxial cable 5 to the second planar antenna 20 passes through the hole 29 of the cover 23 and further passes from the side where the ground 27 of the printed circuit board 22 is provided, and is connected on the surface 22 a side of the printed circuit board 22. .
  • the coaxial outer conductor 40 of the first coaxial cable 5 is soldered to the ground 25, and the coaxial center conductor 41 is connected to the microstrip line 24 by soldering.
  • the printed board 22 and the cover 23 are assembled with the housing 11 facing the front.
  • FIGS. 6A and 6B show a first usage method of this embodiment.
  • the first to third planar antennas 10 to 30 have broad radiation directivities d10 to d30, respectively. These are directed in the same direction d1 to d3 as shown in FIG. 6A and synthesized in the same phase, so that the sharpness as in the directivity d40 is obtained as shown in FIG. 6B. High gain characteristics can be obtained. Therefore, when the direction in which the radio wave is strong is known, the communication quality can be improved by using it as shown in FIGS. 6 (a) and 6 (b).
  • FIGS. 7A and 7B show a second usage method of this embodiment.
  • the first to third planar antennas 10 to 30 have broad radiation directivities d10 to d30, respectively.
  • the radio waves of the first to third planar antennas 10 to 30 are radiated in the facing directions d1 to d3, respectively.
  • the angle at the boundary between adjacent antennas is about 3 to 4 dB from the maximum value, so that the gain is slightly reduced. This degree of degradation is determined by the size, gain, and beam width of the planar antenna, and therefore differs depending on the size of the planar antenna.
  • FIGS. 8A and 8B show a third usage method of this embodiment.
  • the first to third planar antennas 10 to 30 have broad radiation directivities d10 to d30, respectively.
  • the radio waves of the first to third planar antennas 10 to 30 are radiated in the opposite directions d1 to d3, respectively. Therefore, even at the angle between the borders of adjacent antennas, the gain is slightly reduced to about 4 to 5 dB from the maximum value. This degree of degradation is determined by the size, gain, and beam width of the planar antenna, and therefore differs depending on the size of the planar antenna.
  • 7 and 8 are effective when it is not known from which direction the strong radio waves come from, or when it is desired to receive many reflected radio waves indoors.
  • FIG. 9 is a perspective view showing the configuration of the planar antenna device according to the second embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 9 shows a structure in which a coaxial cable 51 corresponding to the first coaxial cable 5 constituting the power feeding means of FIG. 1 is arranged on the upper side surface of the first to third planar antennas 10 to 30.
  • the lead-in structure of the first coaxial cable 51 is as shown in FIG.
  • the first coaxial cable 51 is guided to the respective printed boards 12 and 22 through holes 52 provided in the upper side surfaces of the first and second planar antennas 10 and 20, and the coaxial central conductor 41 and the coaxial outer conductor in FIG. It is attached in the same manner as when 40 is connected.
  • FIGS. 11A and 11B are perspective views showing the configuration of the planar antenna device according to the third embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the first coaxial cable 5 is connected so as to wrap around on the outside as shown in FIGS.
  • the antenna device has a structure in which the first coaxial cables 53 constituting the feeding means are connected at the shortest distance between the adjacent side surfaces of the adjacent planar antennas. is there.
  • the first planar antenna 10 is connected by the first coaxial cable 53 between the adjacent second and third planar antennas 20 and 30.
  • the first coaxial cable 53, the second coaxial cable 6, and the connector 7 constitute a power feeding means.
  • FIG. 12 is a perspective view showing the configuration of the planar antenna device according to the third embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the first to third planar antennas 10 to 30 are connected by the first coaxial cable 53.
  • the planar antenna device of this embodiment is connected by two flexible first and second printed circuit boards 80 and 90. That is, the first planar antenna 10 is connected to the adjacent second and third planar antennas 20 and 30 via the first and second connection printed boards 80 and 90.
  • the first and second connection printed boards 80 and 90, the second coaxial cable 6, and the connector 7 constitute a power feeding means.
  • FIG. 13 shows the structure on the surface 12a, 22a side of the printed circuit boards 12, 22 used in the first and second planar antennas 10, 20.
  • a printed circuit board 12 is used for the first planar antenna 10
  • a printed circuit board 22 is used for the second planar antenna 20.
  • the first and second planar antennas 10 and 20 are connected to the grounds 17a and 25a provided at the side edges of the printed boards 12 and 22 and the first and second connection printed boards 80 and 90, respectively.
  • FIG. 14A is a front view showing the structure on the front surface 80a side of the printed circuit board 80 for first connection
  • FIG. 14B is a rear view showing the structure on the back surface 80b side
  • FIG. 14C is the second connection.
  • FIG. 14D is a rear view showing the structure on the back surface 90b side of the printed circuit board 90.
  • FIG. 15 shows printed circuit boards 12 and 22 used in the first and second planar antennas 10 and 20 shown in FIGS.
  • the connection structure with the 1st, 2nd printed circuit boards 80 and 90 shown to Fig.14 (a)-(d) is shown.
  • the first connection printed circuit board 80 is formed of a flexible printed circuit board that can be bent. As shown in FIG. 14B, the back surface 80 b is provided with a conductor layer such as a copper foil that constitutes the ground 83. As shown in FIG. 15, a part of the copper foil surface constituting the ground 83 on both the left and right sides of the first connection printed circuit board 80 is formed on the ground 17a of the printed circuit board 12 and the ground 25a of the printed circuit board 22, respectively. Soldered to the connecting part. Thereby, the printed circuit boards 12 and 22 are physically connected.
  • the second connection printed circuit board 90 is also formed of a flexible printed circuit board that can be bent. As shown in FIG. 14C, the second printed circuit board 90 has a microstrip line 91 disposed on the surface 90a, and through holes 92 are formed on the left and right ends thereof. As shown in FIG. 14D, the through hole 92 reaches the back surface 90 b side of the second connection printed circuit board 90 and is electrically connected to the conductor land 94. Further, as shown in FIG. 14D, a conductor ground 93 is disposed on the back surface 90 b side of the first connection printed board 90 so as to avoid the previous land 94.
  • the second connection printed circuit board 90 has both ends of the ground 93 between the ground 17 of the printed circuit board 12 and the ground 25 of the printed circuit board 22 as shown in FIG. Soldered to each connection. Further, as shown in FIG. 15, the land 94 of the second connection printed circuit board 90 is soldered to each of the front end portion of the microstrip line 16 of the printed circuit board 12 and the front end portion of the microstrip line 24 of the printed circuit board 22. Is done. Thereby, the printed circuit boards 12 and 22 are physically and electrically connected via the second connection printed circuit board 90.
  • FIG. 16 is a perspective view showing the configuration of the planar antenna device according to the fifth embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the three first to third planar antennas 10 to 30 are connected by the two first connecting portions 2.
  • the first connecting portion 2 is configured in a hinge-like structure, and the first to third planar antennas 10 to 30 are folded in the horizontal direction (see the dotted arrow a1 in the figure).
  • the structure is movable so that the relative installation angle can be set arbitrarily.
  • first planar antenna 10 and the second and third planar antennas 20 and 30 are not directly connected by the first coaxial cable 5, It is to be electrically connected by two first coaxial cables 54 once through connectors 55 provided on the respective back surfaces.
  • the length from the connector 54a provided at one end of the two first coaxial cables 54 to the connector 54b provided at the other end is normally radiated from the first to third planar antennas 10 to 30.
  • the combined directivity radiated from the three first to third planar antennas 10 to 30 is changed by using the first coaxial cable 54 having a different length. It becomes possible to widen the beam width and to direct the beam direction to the right side or the left side.
  • the coaxial cables independent of the second planar antenna 20 and the third planar antenna 30 can be used as antennas used in MIMO communication.
  • FIG. 17 is a perspective view showing the configuration of the planar antenna device according to the sixth embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • three connectors 62a are provided on one end side, one connector 62b is provided on the other end side, and one coaxial cable connected to one connector 62b is branched into three on the way.
  • a coaxial cable 61 having a structure connected to the three connectors 62a is provided.
  • the first planar antenna 10 on the center side has one connector 62 on the back surface side, and the second and third planar antennas 20 and 30 also have one connector 62 on the back surface side. .
  • Each connector 62 is connected to three connectors 62 a on one end side of the coaxial cable 61.
  • the first to third planar antennas 10 to 30 of the coaxial cable 61 can be used as independent antennas, respectively, and can cope with three-channel MIMO communication.
  • FIG. 18 (a) and 18 (b) show the structure of a planar antenna device according to a seventh embodiment of the present invention.
  • FIG. 18 (a) shows the state when the planar antenna device is deployed, and
  • FIG. A folding state when the planar antenna device is stored is shown.
  • Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the planar antenna device of the present embodiment has three planar antennas, that is, two first, second, and third planar antennas 10, 20, and 30 on each side.
  • the first connection portions 2a and 2b are connected to each other.
  • the first connecting portion 2a reduces the thickness of the third planar antenna 30 to the first and second planar antennas 10 and 10.
  • 20 is set to a size that can be sandwiched.
  • the relationship between the thickness t of the first to third planar antennas 10 to 30 and the dimensions t1 and t2 in the thickness direction (z direction) of the first connecting portions 2a and 2b at the time of folding is t ⁇ t2 ⁇ t1.
  • the radio wave radiation surfaces of the first planar antenna 10 and the second planar antenna 20 are directed upward and downward in the drawing when folded.
  • the radio wave radiation surfaces of the two planar antennas face the front and back surfaces (front and back surfaces) when folded, there is an advantage that at least two antennas can be used even when folded.
  • both sides of the planar antenna device become radiation surfaces when folded, so it is difficult to fold and install multiple planar antennas, for example, when used in a car or carried around It is possible to receive from both sides of the planar antenna device in an open state and improve the reception state.
  • FIGS. 19A and 19B show the configuration of the planar antenna device according to the eighth embodiment of the present invention.
  • FIG. 19A shows a state where the planar antenna device is deployed, and
  • FIG. A folding state when the planar antenna device is stored is shown.
  • the planar antenna device of the present embodiment includes four planar antennas, that is, first, second, third, and fourth planar antennas 10, 20, 30, and 31. It has three 1st connection parts 2a, 2b, 2c to connect.
  • the first to fourth planar antennas 10 to 31 are rotatably connected to the side surfaces of adjacent planar antennas via the three first coupling portions 2a, 2b, and 2c.
  • the first connecting portions 2a and 2b are formed by the thicknesses of the third and fourth planar antennas 30 and 31 when the first to fourth planar antennas 10 to 31 are folded in the order of arrows a11, a12, and a13 in the drawing.
  • the radio wave radiation surfaces of the first planar antenna 10 and the first planar antenna 20 are directed upward and downward during folding. That is, since the radiation surfaces of the radio waves of the two planar antennas 10 and 20 face the both surfaces (front and back surfaces) when folded, there is an advantage that at least two antennas can be used even when folded. In this case, both sides of the planar antenna device become radiation surfaces when folded, so it is difficult to fold and install multiple planar antennas, for example, when used in a car or carried around It is possible to receive from both sides of the planar antenna device in an open state and improve the reception state.
  • FIG. 20 is a perspective view showing the configuration of the planar antenna device according to the ninth embodiment of the present invention. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the planar antenna apparatus has an antenna structure particularly useful for MIMO communication, and receives signals with each of the first to third planar antennas 10 to 30, and thus is independent of each of the first to third planar antennas. It is possible to connect the coaxial cable 63 that constitutes the power feeding means and to be folded via the first connecting portion 2.
  • the first to third planar antennas 10 to 30 are provided with independent coaxial connectors 64 on the back side.
  • Each coaxial connector 64 is connected to a connector 63 a provided on one end side of an independent coaxial cable 63.
  • a connector 63b provided on the other end side of each coaxial cable 63 is connected to an antenna connection terminal on the communication device (not shown) side.
  • a plurality of antenna connection terminals on the communication device side are provided when used in MIMO.
  • the situation where MIMO is used is a situation where communication quality and communication speed can be improved by using a plurality of antennas to communicate using a large number of reflected waves when there are a large number of reflected waves. Therefore, by using each planar antenna independently as in this embodiment, it is possible to improve the communication quality and communication speed by effectively using the MIMO technology.
  • any two of the three planar antennas may be selected. Further, in communication using MIMO, it is effective that the correlation between a plurality of antennas to be used is small. Therefore, as in the first to third usage methods (FIGS. 6 to 8) of the first embodiment described above. In addition, further improvements in communication quality and communication speed can be expected by adjusting the orientation of the antenna.
  • planar antenna device of this embodiment is used for MIMO, particularly when used in the folded state of the seventh and eighth embodiments (FIGS. 18 and 19) described above, the effect as MIMO is further exhibited. Can do. This is because the antenna directivity is directed in the opposite direction, and the correlation between the antennas is reduced. For this reason, when the planar antenna devices of the seventh and eighth embodiments described above are used at the time of folding, a plurality of independent connectors are provided for each planar antenna as in this embodiment and used as MIMO. A big effect can be expected.
  • FIG. 21 is a perspective view showing the configuration of the planar antenna device according to the tenth embodiment of the present invention, and is a perspective view as seen from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the planar antenna apparatus of the present embodiment has an antenna structure useful for MIMO communication, and receives signals by the first to third planar antennas 10 to 30, respectively.
  • a coaxial cable 65 that constitutes an independent feeding means is connected to each of the third planar antennas and can be folded via the first connecting portion 2.
  • each coaxial connector 66 is connected to a connector 65 a provided on one end side of an independent coaxial cable 65.
  • a connector 65b provided on the other end side of each coaxial cable 65 is connected to an antenna connection terminal on the communication device (not shown) side.
  • a plurality of antenna connection terminals on the communication device side are provided when used in MIMO.
  • FIG. 22 is a perspective view showing the configuration of the planar antenna device according to the eleventh embodiment of the present invention, viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the planar antenna device of the present embodiment is an antenna structure useful for MIMO communication, and receives signals with each of the first to third planar antennas 10 to 30.
  • Each of the first to third planar antennas is connected to a coaxial cable 67 that constitutes an independent feeding means, and can be folded via the first connecting portion 2.
  • a hole 68 is formed on the upper side surface side of the first to third planar antennas 10 to 30, and one end side of each independent coaxial connector 67 is passed through the hole 68. (Not shown) is connected to the internal printed circuit board. That is, as shown in FIG. 22, one end side (not shown) of each independent coaxial cable 67 is electrically connected to the first to third planar antennas 10 to 30 through the upper side surface side.
  • a connector 67a provided on the other end side of each coaxial cable 67 is connected to an antenna connection terminal on the communication device (not shown) side.
  • a plurality of antenna connection terminals on the communication device side are provided when used in MIMO.
  • the number of parts can be reduced and the apparatus configuration can be simplified because it is not necessary to provide a coaxial connector on the planar antenna.
  • a plurality of planar antennas are connected to each other so that they can be folded into a single plane, and the directivity is adjusted by adjusting the angle between adjacent planar antennas. Is controlled to radiate or receive radio waves and to radiate or receive radio waves from both planes when folded, by adjusting the direction of each planar antenna, 1) the directivity can be varied, 2) It is possible to provide a convenient external antenna that is compact and can be stored in a flat form, and 3) can be used for communication using MIMO technology.
  • the present invention includes an external antenna for a terminal using WiMAX technology, an external antenna for a wireless LAN, an external antenna for a mobile phone, an external antenna for a terminal having a communication mechanism such as a PDA or a personal computer, and an external antenna for a terminal using MIMO technology.
  • the present invention can be applied to a planar antenna device such as an external antenna for a portable terminal.

Abstract

A flat antenna device is provided with a plurality of flat antennas having directivity so that they can be folded. In the plurality of flat antennas, an angle between the adjacent flat antennas is adjusted to control the directivity for rating or receiving radio waves. Further, they radiate or receive a radio wave from or on planes on both sides when folded.

Description

平面アンテナ装置及び通信装置Planar antenna device and communication device
 本発明は、平面状のアンテナに係り、特に複数の平面アンテナを組み合わせて指向性を可変できるアンテナ構成に関する。 The present invention relates to a planar antenna, and more particularly to an antenna configuration that can vary directivity by combining a plurality of planar antennas.
 近年、PDA(Personal
Digital Assistant)端末や携帯電話端末など無線通信によって情報を送受する機器は、端末のアンテナ性能によって、情報伝送速度が大きく左右される。特に、携帯電話では、端末側が、基地局アンテナが直接見通せる場所にいる場合と、ビルの陰や屋内などの基地局アンテナから直接見通せない場所にいる場合では、回線品質が大きく異なる。このことは、WiMAX(Worldwide
Interoperability for Microwave Access)技術を用いた通信においても同様である。
In recent years, PDA (Personal
The information transmission speed of a device that transmits and receives information by wireless communication, such as a digital assistant terminal or a mobile phone terminal, greatly depends on the antenna performance of the terminal. In particular, in mobile phones, the line quality differs greatly when the terminal side is in a place where the base station antenna can be seen directly, and when it is in a place where the base station antenna cannot be seen directly, such as behind a building or indoors. This means that WiMAX (Worldwide
The same applies to communication using Interoperability for Microwave Access) technology.
 このような場合、上記の端末に外部アンテナを接続し、その外部アンテナを、基地局アンテナが見通せるような電波の強い場所に置くことができれば、通信品質を改善することができる。また、この外部アンテナは、使用場所によって、鋭い指向性を持つ方が良い場合と、ブロードな指向性を持つ方が良い場合と、無指向性である方が良い場合とがある。 In this case, communication quality can be improved if an external antenna is connected to the above terminal and the external antenna can be placed in a place with strong radio waves where the base station antenna can be seen. In addition, depending on the location of use, the external antenna may have a sharp directivity, may have a broad directivity, or may have a non-directivity.
 例えば、外部アンテナを基地局が見通せる場所に置ける場合は、アンテナの指向性を基地局側に向けることができるので、鋭い指向性で高い利得を持つアンテナが良い。また、基地局が見通せるかどうかは不明でも、何となく電波の強い方向がわかる場合は、ブロードな指向性のアンテナが有効である。さらに、全く、どこから電波が飛んでくるか不明な場合は、無指向性のアンテナが便利である。 For example, when the external antenna can be placed in a place where the base station can see, the antenna directivity can be directed to the base station, so an antenna with sharp directivity and high gain is preferable. In addition, even if it is unclear whether the base station can be seen, a broad directional antenna is effective when the direction of strong radio waves is known. Furthermore, if it is unclear where the radio waves come from, an omnidirectional antenna is convenient.
 したがって、使用する外部アンテナは、これらの指向性を簡単に変える機能を持っていると便利である。さらに、この外部アンテナは、コンパクトで平面状であれば、携帯時には、カバン等に入れて持ち歩きやすい。 Therefore, it is convenient that the external antenna to be used has a function of easily changing these directivities. Furthermore, if the external antenna is compact and planar, it can be easily carried in a bag or the like when being carried.
 さらに、使用する外部アンテナは、複数のアンテナを独立に接続することができれば、MIMO(Multi Input Multi Output)技術を用いた通信にも対応が可能である。MIMOを使用する状況は、多数の反射波が存在する場合に、複数のアンテナを用いて多数の反射波を利用して通信することで通信品質や通信速度を向上させることができる状況であるため、それぞれのアンテナを独立に用いることで、MIMO技術を有効に用いて、通信品質や通信速度を改善することが可能になる。 Furthermore, the external antenna to be used can support communication using MIMO (Multi-Input Multi-Output) technology if a plurality of antennas can be independently connected. The situation where MIMO is used is a situation where communication quality and communication speed can be improved by performing communication using a plurality of reflected waves using a plurality of antennas when a large number of reflected waves exist. By using each antenna independently, it is possible to improve the communication quality and the communication speed by effectively using the MIMO technology.
 図23(a)及び(b)は、上記の外部アンテナに関連するアンテナ装置を説明するものである。 23 (a) and 23 (b) illustrate an antenna apparatus related to the external antenna.
 図23(a)に示す関連技術のアンテナ装置は、モノポール状のアンテナ(以下、モノポールアンテナ)100を同軸ケーブル101に接続し、その同軸ケーブル101の先端に同軸コネクタ102を取り付けたものである。このモノポールアンテナ100は、水平面内にドーナツ状の無指向性の指向性d11を有する。 The related art antenna device shown in FIG. 23A is a device in which a monopole antenna (hereinafter referred to as a monopole antenna) 100 is connected to a coaxial cable 101 and a coaxial connector 102 is attached to the tip of the coaxial cable 101. is there. This monopole antenna 100 has a donut-shaped non-directional directivity d11 in a horizontal plane.
 図23(b)に示す関連技術のアンテナ装置は、平面状の薄型のアンテナ(以下、平面アンテナ)200を同軸ケーブル201に接続し、その同軸ケーブル201の先端に同軸コネクタ202を取り付けたものである。この平面アンテナ200は、単一の方向に指向性d21を有する。一般に、平面アンテナ200では、平面の面積の小さなものは利得が小さくブロードな指向性を有し、平面の面積が大きなものは利得が大きく尖鋭な指向性を有する。 The related art antenna apparatus shown in FIG. 23B is a device in which a flat thin antenna (hereinafter referred to as a planar antenna) 200 is connected to a coaxial cable 201 and a coaxial connector 202 is attached to the tip of the coaxial cable 201. is there. The planar antenna 200 has directivity d21 in a single direction. In general, in the planar antenna 200, a small plane area has a small gain and broad directivity, and a large plane area has a large gain and sharp directivity.
 上記に関連して、引用文献1には、少なくとも1つの表面に放射素子を有する薄い副アンテナ部を折りたたみ可能に複数枚結合し、収納時には副アンテナ部を折りたたみ、使用時には副アンテナ部を展開して通信可能に構成したアンテナ装置が開示されている。これによれば、無線基地局の方向が不明な場合でも無線基地局の方向にビームを向けることができる小型のアンテナ装置が提供可能とされている。 In relation to the above, the cited document 1 includes a plurality of thin sub-antenna portions that have a radiating element on at least one surface so that they can be folded. The sub-antenna portion is folded when stored, and the sub-antenna portion is unfolded when used. An antenna device configured to be communicable is disclosed. According to this, even when the direction of the radio base station is unknown, it is possible to provide a small antenna device that can direct the beam toward the radio base station.
 また、引用文献2には、無線装置に内蔵されるアンテナ装置として、複数の平面アンテナを、その主放射方向がそれぞれ異なる方向に向くように配置し、複数の平面アンテナの給電点と高周波スイッチを接続し、高周波スイッチの切り替えにより、動作させる平面アンテナを選択することで放射指向性を切り替えるようにしたものが開示されている。これによれば、無線装置に内蔵される指向性制御アンテナ装置を簡単な構成で実現可能とされている。
特開平10-051215号公報 特開2000-068729号公報
Also, in Cited Document 2, as an antenna device built in a wireless device, a plurality of planar antennas are arranged so that their main radiation directions are directed in different directions, and feeding points and high-frequency switches of the plurality of planar antennas are arranged. A device is disclosed in which radiation directivity is switched by selecting a planar antenna to be operated by connecting and switching a high-frequency switch. According to this, the directivity control antenna device built in the wireless device can be realized with a simple configuration.
Japanese Patent Laid-Open No. 10-051215 JP 2000-068729 A
 図23(a)に示す関連技術のアンテナ装置は、無指向性のモノポールアンテナ100を用いたものであるため、指向性を可変し、かつ、コンパクトな携帯性を有する利便性の高い外部アンテナとして用いることができない。また、図23(a)のアンテナ装置は、複数のアンテナを独立に接続するものではないため、MIMO技術を用いた通信に使用することはできず、多数の反射波が存在する場合に、複数のアンテナを用いて多数の反射波を利用して通信することで通信品質や通信速度を向上させることができない。 The related art antenna device shown in FIG. 23 (a) uses the omnidirectional monopole antenna 100. Therefore, the directivity is variable, and the compact and portable external antenna has high convenience. Cannot be used as In addition, since the antenna apparatus of FIG. 23A does not connect a plurality of antennas independently, it cannot be used for communication using the MIMO technology, and a plurality of reflected waves exist when there are a large number of reflected waves. Communication quality and communication speed cannot be improved by performing communication using a large number of reflected waves using the antenna.
 また、図23(b)に示す関連技術のアンテナ装置は、単一方向に指向性を持つ平面アンテナ200を用いたものであるため、上記と同様に、指向性を可変し、かつ、コンパクトな携帯性を有する利便性の高い外部アンテナとして用いることができない。また、図23(b)のアンテナ装置も、上記と同様に、複数のアンテナを独立に接続するものではないため、MIMO技術を用いた通信に使用することはできず、多数の反射波が存在する場合に、複数のアンテナを用いて多数の反射波を利用して通信することで通信品質や通信速度を向上させることができない。 In addition, the related art antenna device shown in FIG. 23 (b) uses the planar antenna 200 having directivity in a single direction. It cannot be used as a highly convenient external antenna having portability. Similarly to the above, the antenna device of FIG. 23 (b) does not connect a plurality of antennas independently, and therefore cannot be used for communication using MIMO technology, and there are a large number of reflected waves. In this case, communication quality and communication speed cannot be improved by performing communication using a large number of reflected waves using a plurality of antennas.
 一方、特許文献1のアンテナ装置では、収納時には副アンテナ部を折りたたみ、使用時には副アンテナ部を展開して通信可能に構成しているため、小型化可能な構造とすることができる一方、折りたたみ時に電波を放射又は受信する面を内側にして折りたたむ構造であるため、折りたたみ時に一面からしか電波を受信できず、折りたたみ時の受信状態を向上させることができない。また、特許文献1のアンテナ装置も、上記と同様に、複数のアンテナを独立に接続するものではないため、MIMO技術を用いた通信に使用することはできず、多数の反射波が存在する場合に、複数のアンテナを用いて多数の反射波を利用して通信することで通信品質や通信速度を向上させることができない。 On the other hand, in the antenna device of Patent Document 1, the sub-antenna unit is folded when stored, and the sub-antenna unit is deployed so as to be communicable when used, so that the structure can be downsized. Since it is a structure that folds with the surface that radiates or receives radio waves inside, it can receive radio waves from only one side when folded, and cannot improve the reception state when folded. Similarly to the above, the antenna device of Patent Document 1 does not connect a plurality of antennas independently, and thus cannot be used for communication using the MIMO technology, and there are many reflected waves. In addition, communication quality and communication speed cannot be improved by performing communication using a large number of reflected waves using a plurality of antennas.
 さらに、特許文献2のアンテナ装置では、主放射方向が異なる複数の平面アンテナを選択して指向性を切り替える構成であるため、指向性を可変とすることができる一方、複数のアンテナを独立に接続するものではないため、MIMO技術を用いた通信に使用することはできず、多数の反射波が存在する場合に、複数のアンテナを用いて多数の反射波を利用して通信することで通信品質や通信速度を向上させることができない。 Furthermore, since the antenna device of Patent Document 2 is configured to select a plurality of planar antennas having different main radiation directions and switch the directivity, the directivity can be made variable, while the plurality of antennas are independently connected. Therefore, it cannot be used for communication using MIMO technology, and when there are a large number of reflected waves, communication quality is obtained by using a plurality of antennas to communicate using a large number of reflected waves. And communication speed cannot be improved.
 本発明の目的は、上述した課題を解決するもので、指向性を可変することができ、コンパクトな携帯性を有し、折りたたみ時の受信状態を向上させることができ、MIMO技術を用いた通信にも使用できる、利便性の高い平面アンテナ装置を提供することにある。 An object of the present invention is to solve the above-described problems, and can change the directivity, have a compact portability, improve the reception state when folded, and communicate using MIMO technology. Another object of the present invention is to provide a highly convenient planar antenna device that can be used for the above-mentioned.
 上記目的を達成するため、本発明に係る平面アンテナ装置は、指向性を有する複数の平面アンテナを折りたたみ可能に備える。複数の平面アンテナは、隣り合う平面アンテナの角度が調整されることによって指向性を制御されて、電波を放射又は受信すると共に、折りたたみ時に両側の平面から電波を放射又は受信する。 To achieve the above object, the planar antenna device according to the present invention includes a plurality of directional planar antennas that can be folded. The directivity of the plurality of planar antennas is controlled by adjusting the angle of the adjacent planar antennas to radiate or receive radio waves and to radiate or receive radio waves from both sides when folded.
 本発明によれば、指向性を可変することができ、コンパクトな携帯性を有し、折りたたみ時の受信状態を向上させることができ、MIMO技術を用いた通信にも使用できる、利便性の高い平面アンテナ装置を提供することができる。 According to the present invention, the directivity can be changed, the portability is compact, the reception state at the time of folding can be improved, and it can be used for communication using MIMO technology, which is highly convenient. A planar antenna device can be provided.
本発明の第1の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on 1st Example of this invention. (a)は図1の第1平面アンテナを構成する筐体、カバー、及びプリント基板の構造を示す断面図、(a)はその筐体の斜視図、(c)はそのカバーの斜視図である。(A) is sectional drawing which shows the structure of the housing | casing, cover, and printed circuit board which comprise the 1st planar antenna of FIG. 1, (a) is a perspective view of the housing | casing, (c) is a perspective view of the cover. is there. (a)は図1の第1平面アンテナのプリント基板の表面側の構造を示す正面図、(b)はその裏面側の構造を示す背面図である。(A) is a front view which shows the structure of the surface side of the printed circuit board of the 1st planar antenna of FIG. 1, (b) is a rear view which shows the structure of the back surface side. (a)は図1の第2平面アンテナのプリント基板の表面側の構造を示す正面図、(b)はその裏面側の構造を示す背面図である。(A) is a front view which shows the structure of the surface side of the printed circuit board of the 2nd planar antenna of FIG. 1, (b) is a rear view which shows the structure of the back surface side. 図1の第2平面アンテナのプリント基板と第1同軸ケーブルとの接続構造を示す斜視図である。It is a perspective view which shows the connection structure of the printed circuit board of the 2nd planar antenna of FIG. 1, and a 1st coaxial cable. (a)は図1の平面アンテナ装置の第1の使用方法を説明する斜視図、(b)はその指向性を示す図である。(A) is a perspective view explaining the 1st usage method of the planar antenna apparatus of FIG. 1, (b) is a figure which shows the directivity. (a)は図1の平面アンテナ装置の第2の使用方法を説明する斜視図、(b)はその指向性を示す図である。(A) is a perspective view explaining the 2nd usage method of the planar antenna apparatus of FIG. 1, (b) is a figure which shows the directivity. (a)は図1の平面アンテナ装置の第3の使用方法を説明する斜視図、(b)はその指向性を示す図である。(A) is a perspective view explaining the 3rd usage method of the planar antenna apparatus of FIG. 1, (b) is a figure which shows the directivity. 本発明の第2の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 2nd Example of this invention. 図9の第1、第2平面アンテナと第1同軸ケーブルとの接続構造を示す斜視図である。FIG. 10 is a perspective view showing a connection structure between the first and second planar antennas of FIG. 9 and the first coaxial cable. (a)は本発明の第3の実施例に係る平面アンテナ装置の構成を示す斜視図、(b)はその同軸ケーブルの接続構造を示す部分背面図である。(A) is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 3rd Example of this invention, (b) is the partial rear view which shows the connection structure of the coaxial cable. 本発明の第4の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 4th Example of this invention. (a)は図12の第1平面アンテナのプリント基板の表面側の構造を示す正面図、(b)は図12の第2平面アンテナのプリント基板の表面側の構造を示す正面図である。(A) is a front view which shows the structure of the surface side of the printed circuit board of the 1st planar antenna of FIG. 12, (b) is a front view which shows the structure of the surface side of the printed circuit board of the 2nd planar antenna of FIG. (a)は図12の第1接続用プリント基板の表面側の構造を示す正面図、(b)はその裏面側の構造を示す背面図、(c)は図12の第2接続用プリント基板の表面側の構造を示す正面図、(d)はその裏面側の構造を示す背面図である。(A) is a front view showing the structure on the front surface side of the first connection printed circuit board in FIG. 12, (b) is a rear view showing the structure on the back surface side, and (c) is the second connection printed circuit board in FIG. The front view which shows the structure of the surface side of this, (d) is a rear view which shows the structure of the back surface side. 図12の第1、第2平面アンテナの互いのプリント基板の接続構造を示す正面図である。It is a front view which shows the connection structure of the mutual printed circuit board of the 1st, 2nd planar antenna of FIG. 本発明の第5の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 5th Example of this invention. 本発明の第6の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 6th Example of this invention. 本発明の第7の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 7th Example of this invention. 本発明の第8の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 8th Example of this invention. 本発明の第9の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus which concerns on the 9th Example of this invention. 本発明の第10の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus based on the 10th Example of this invention. 本発明の第11の実施例に係る平面アンテナ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the planar antenna apparatus based on the 11th Example of this invention. (a)は関連技術のモノポールアンテナを用いたアンテナ装置の構成を示す斜視図、(b)は関連技術の平面アンテナを用いたアンテナ装置の構成を示す斜視図である。(A) is a perspective view which shows the structure of the antenna apparatus using the monopole antenna of related technology, (b) is a perspective view which shows the structure of the antenna apparatus using the planar antenna of related technology.
符号の説明Explanation of symbols
 1 平面アンテナ装置(折りたたみ平面アンテナ)
 2 第1連結部
 3 足部
 4 第2連結部
 5 第1同軸ケーブル
 6 第2同軸ケーブル
 7 コネクタ
 10~30 第1~第3平面アンテナ
 31 第4平面アンテナ
1 Planar antenna device (folding planar antenna)
2 First connection portion 3 Foot portion 4 Second connection portion 5 First coaxial cable 6 Second coaxial cable 7 Connector 10 to 30 First to third planar antenna 31 Fourth planar antenna
 以下、本発明に係る平面アンテナ装置及び通信装置の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of a planar antenna device and a communication device according to the present invention will be described in detail with reference to the drawings.
 本実施の形態に係る平面アンテナ装置は、WiMAX端末、PDA端末や携帯電話などの通信端末の外部アンテナとして用いるものである。この平面アンテナ装置は、平面状のアンテナ(平面アンテナ)を複数接続し、それらを1枚の平面に折りたたみ可能な構造としている。それぞれの平面アンテナは、ブロードな指向性を有し、隣り合う平面アンテナの回転角度が任意に調整されることによって指向性を制御されて、電波を放射又は受信すると共に、折りたたみ時に両側の平面から電波を放射又は受信する。 The planar antenna device according to the present embodiment is used as an external antenna of a communication terminal such as a WiMAX terminal, a PDA terminal or a mobile phone. This planar antenna device has a structure in which a plurality of planar antennas (planar antennas) are connected and can be folded into a single plane. Each planar antenna has broad directivity, and the directivity is controlled by arbitrarily adjusting the rotation angle of adjacent planar antennas to radiate or receive radio waves. Radiate or receive radio waves.
 この構造により、それぞれの平面アンテナを同じ向きに調節すれば、先鋭な指向性を有し、かつ、利得の高い平面アンテナ装置が構成できる。また、それぞれの平面アンテナの角度を調整して、上面側から見て円周状、すなわち、平面アンテナが2枚の時は背中合わせの状態に、3枚の時は上面側から見て三角形状に、4枚のときは上面側から見て正方形状に、それぞれ配置すれば、無指向性を形成することができる。 With this structure, if each planar antenna is adjusted in the same direction, a planar antenna device having sharp directivity and high gain can be configured. Also, the angle of each planar antenna is adjusted so that it is circular when viewed from the upper surface side, that is, when two planar antennas are used, it is back-to-back, and when it is three, it is triangular when viewed from the upper surface side. In the case of four sheets, omnidirectionality can be formed by arranging them in a square shape when viewed from the upper surface side.
 本実施の形態によれば、平面状のアンテナを複数接続し、それらを1枚の平面に折りたたみ可能な構造とし、隣り合う平面アンテナの角度が調整されることによって指向性を制御されて、電波を放射又は受信すると共に、折りたたみ時に両側の平面から電波を放射又は受信する構成としたため、それぞれの平面アンテナの方向を調整して、1)指向性を可変でき、2)コンパクトで平面状に収納できる、3)MIMO技術を用いた通信にも使用できる、利便性の高い外部アンテナを提供することができる。 According to the present embodiment, a plurality of planar antennas are connected to each other so that they can be folded into a single plane, and the directivity is controlled by adjusting the angle between adjacent planar antennas. Because it is configured to emit or receive radio waves from both planes when folded, the direction of each planar antenna can be adjusted, 1) the directivity can be varied, and 2) compact and flat storage 3) It is possible to provide a convenient external antenna that can be used for communication using MIMO technology.
 図1は、本発明の第1の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである。 FIG. 1 is a perspective view showing the configuration of the planar antenna device according to the first embodiment of the present invention, as viewed from the back surface (back surface) side.
 図1に示す平面アンテナ装置を構成する折りたたみ平面アンテナ1は、指向性を有する3枚の平面アンテナ、すなわち中央部側の第1平面アンテナ10、左端部側の第2平面アンテナ20、及び右端部側の第3平面アンテナを折りたたみ可能に備える。第1~第3平面アンテナ10~30は、第1連結部(接続部)2により隣り合う平面アンテナの角度が調整されることによって指向性を制御されて、電波を放射又は受信すると共に、折りたたみ時に両側の平面から電波を放射又は受信する。 1 includes three planar antennas having directivity, that is, a first planar antenna 10 on the center side, a second planar antenna 20 on the left end side, and a right end portion. The third planar antenna on the side is foldably provided. The first to third planar antennas 10 to 30 are controlled in directivity by adjusting the angle of adjacent planar antennas by the first connecting portion (connecting portion) 2 to radiate or receive radio waves and are folded. Sometimes radio waves are emitted or received from both planes.
 第1~第3平面アンテナ10~30は、矩形(長方形)の外形を有する平板状(平面状)部材で構成され、厚さt、幅w、高さhの寸法に設定されている。この第1~第3平面アンテナ10~30は、正面(前面)側の表面p11、p21、p31と、背面側の裏面p12、p22、p32と、上部側の上部側面(上面)p13、p23、p33と、下部(底部)側の下部側面(底面)p14、p24、p34と、左側面p15、p25、p35と、右側面p16、p26、p36とを有している。なお、図の例では、説明の都合上、幅方向(左右方向、短手方向)をx方向、高さ方向(上下方向、長手方向)をy方向、その厚さ方向(奥行き方向)をz方向と表記している。この場合、x方向とz方向とで規定されるxz面が水平方向に沿った面、y方向とz方向とで規定されるyz面が垂直方向に沿った面にそれぞれ対応する。 The first to third planar antennas 10 to 30 are made of a flat (planar) member having a rectangular outer shape, and are set to dimensions of thickness t, width w, and height h. The first to third planar antennas 10 to 30 have front (front) side surfaces p11, p21 and p31, back side back surfaces p12, p22 and p32, and upper side upper side surfaces (upper surface) p13, p23, p33, lower (bottom) side lower side surfaces (bottom surfaces) p14, p24, and p34, left side surfaces p15, p25, and p35, and right side surfaces p16, p26, and p36. In the example of the figure, for convenience of explanation, the width direction (left and right direction, short direction) is the x direction, the height direction (vertical direction, longitudinal direction) is the y direction, and the thickness direction (depth direction) is z. It is written as direction. In this case, the xz plane defined by the x direction and the z direction corresponds to a plane along the horizontal direction, and the yz plane defined by the y direction and the z direction corresponds to a plane along the vertical direction.
 第1連結部2は、第1平面アンテナ10及び第2平面アンテナ20の間と、第1平面アンテナ10及び第3平面アンテナ30の間とをそれぞれ連結し、第1~第3平面アンテナ10~30を、水平方向(図中の点線矢印a1の方向参照)に折りたたんだり、相対的な設置角度を任意に設定したりすることができるように蝶番(ヒンジ)等の回転可動可能な構造となっている。本実施例では、第1連結部2は、第1~第3平面アンテナ10~30の裏面p12~p32側に配置されているが、その配置場所はこれに限らず、表面p11~p31側に配置されてもよく、後述するように、第1平面アンテナ10の左側面p15及び第2平面アンテナ20の右側面p26の間と、第1平面アンテナ10の右側面p16及び第3平面アンテナ30の左側面p35の間とに配置されてもよい。 The first connecting unit 2 connects the first planar antenna 10 and the second planar antenna 20, and the first planar antenna 10 and the third planar antenna 30, respectively. 30 can be folded in the horizontal direction (refer to the direction of the dotted arrow a1 in the figure), or can be set to a relative installation angle arbitrarily, and can be rotated and movable such as a hinge. ing. In the present embodiment, the first connecting portion 2 is arranged on the back surface p12 to p32 side of the first to third planar antennas 10 to 30, but the arrangement location is not limited to this, and the first connecting portion 2 is on the front surface p11 to p31 side. As described later, between the left side surface p15 of the first planar antenna 10 and the right side surface p26 of the second planar antenna 20, and between the right side surface p16 of the first planar antenna 10 and the third planar antenna 30. You may arrange | position between the left side surfaces p35.
 第2及び第3平面アンテナ20及び30には、折りたたみ平面アンテナ1自身が倒れないように、足部3が第2連結部4によって付加されている。第2連結部4は、足部3を折りたたんで収納できるように、水平方向(図中の点線矢印a2の方向参照)に回転可動可能な蝶番(ヒンジ)等の構造になっている。足部3は、第1~第3平面アンテナ10~30の底面p14、p24、p34が平面状で、十分安定に自立できるならば不要である。 The foot part 3 is added to the second and third planar antennas 20 and 30 by the second connecting part 4 so that the folding planar antenna 1 itself does not fall down. The second connecting portion 4 has a structure such as a hinge that can be rotated in the horizontal direction (refer to the direction of the dotted arrow a2 in the figure) so that the foot portion 3 can be folded and stored. The foot 3 is not necessary if the bottom surfaces p14, p24, and p34 of the first to third planar antennas 10 to 30 are planar and can stand up sufficiently stably.
 第2及び第3平面アンテナ20及び30からは、それぞれ第1同軸ケーブル5が伸び、それぞれ第1平面アンテナ10に接続される。そして、第1平面アンテナ10には、第2同軸ケーブル6が接続され、その先端には、コネクタ7が設けられている。コネクタ7は、通信装置(非図示)側のアンテナ接続端子に接続される。本実施例では、第1、第2同軸ケーブル5、6、コネクタ7が給電手段を構成している。 The first coaxial cable 5 extends from the second and third planar antennas 20 and 30, and is connected to the first planar antenna 10, respectively. A second coaxial cable 6 is connected to the first planar antenna 10, and a connector 7 is provided at the tip thereof. The connector 7 is connected to an antenna connection terminal on the communication device (not shown) side. In the present embodiment, the first and second coaxial cables 5 and 6 and the connector 7 constitute a power feeding means.
 上記構成において、第2及び第3平面アンテナ20及び30で受信された電波は、いったん第1平面アンテナ10内の給電回路(非図示)に取り込まれ、第1平面アンテナ10で受信した電波と同位相で合成され、第2同軸ケーブル6に伝送され、第1同軸ケーブル5を介してコネクタ7に出力される。同様に、送信の場合も、コネクタ7から給電された送信電力は、同位相で第1~第3平面アンテナ10~30から放射される(図1中の放射方向d1~d3参照)。 In the above configuration, the radio waves received by the second and third planar antennas 20 and 30 are once taken into a feeding circuit (not shown) in the first planar antenna 10 and the same as the radio waves received by the first planar antenna 10. The signals are combined in phase, transmitted to the second coaxial cable 6, and output to the connector 7 via the first coaxial cable 5. Similarly, in the case of transmission, transmission power fed from the connector 7 is radiated from the first to third planar antennas 10 to 30 in the same phase (see the radiation directions d1 to d3 in FIG. 1).
 図2(a)~(c)は、第1平面アンテナ10の内部構造を示している。第1平面アンテナ10は、表面p11側の凹状の筐体11と、その内部に配置されるプリント基板12と、裏面p12側のカバー13とを有している。筐体11は、誘電体、例えば、ポリカーネイトやアクリルなどのプラスチック等から構成される。プリント基板12は、その表面12aに、平面アンテナの放射素子や給電線路としてのマイクロストリップラインがエッチングによって形成されている(後述の図3(a)参照)。カバー13は、プリント基板12の背面12bのふたに相当する部分であり、金属のような導体でも、プラスチックのような誘電体でも使用可能である。カバー13には、第1、第2同軸ケーブル5、6を通す穴14が設けられている。図1の第2、第3平面アンテナ20、30も構造的には同様である。 FIGS. 2A to 2C show the internal structure of the first planar antenna 10. The first planar antenna 10 includes a concave casing 11 on the front surface p11 side, a printed circuit board 12 disposed therein, and a cover 13 on the rear surface p12 side. The housing 11 is made of a dielectric, for example, plastic such as polycarbonate or acrylic. The printed board 12 has a planar antenna radiating element and a microstrip line as a feed line formed on the surface 12a by etching (see FIG. 3A described later). The cover 13 is a portion corresponding to the lid of the back surface 12b of the printed circuit board 12, and can be a conductor such as metal or a dielectric such as plastic. The cover 13 is provided with a hole 14 through which the first and second coaxial cables 5 and 6 are passed. The second and third planar antennas 20 and 30 in FIG. 1 are structurally similar.
 図3(a)及び(b)は、第1平面アンテナ10に用いられるプリント基板12の詳細構造を示している。図3(a)はプリント基板12の表面12a、図3(b)はその裏面12bをそれぞれ示す。 3A and 3B show the detailed structure of the printed circuit board 12 used in the first planar antenna 10. 3A shows the front surface 12a of the printed circuit board 12, and FIG. 3B shows the back surface 12b.
 プリント基板12の表面12aには、図3(a)に示すように、4つのパッチアンテナ15と、マイクロストリップライン16と、グランド17とがエッチング等により形成されている。グランド17は、複数(図中では4つ)のスルーホール18により、図3(b)に示す裏面12bの導体よりなるグランド21に導通している。プリント基板12の下部には、第1、第2同軸ケーブル5及び6の通る穴19が形成されている。 On the surface 12a of the printed circuit board 12, as shown in FIG. 3A, four patch antennas 15, a microstrip line 16, and a ground 17 are formed by etching or the like. The ground 17 is electrically connected to a ground 21 made of a conductor on the back surface 12b shown in FIG. 3B through a plurality of (four in the drawing) through holes 18. A hole 19 through which the first and second coaxial cables 5 and 6 pass is formed in the lower portion of the printed circuit board 12.
 図4(a)及び(b)は、第2平面アンテナ20に用いられるプリント基板22の詳細構造を示している。図4(a)はプリント基板22の表面22a、図3(b)はプリント基板22の裏面22bをそれぞれ示す。 FIGS. 4A and 4B show the detailed structure of the printed circuit board 22 used for the second planar antenna 20. 4A shows the front surface 22a of the printed circuit board 22, and FIG. 3B shows the back surface 22b of the printed circuit board 22, respectively.
 プリント基板22には、図4(a)に示すように、その表面22aに、4つのパッチアンテナ23と、マイクロストリップライン24と、グランド25とがエッチング等により形成されている。グランド25は、複数のスルーホール26により、図4(b)に示す裏面22aの導体よりなるグランド27に導通している。プリント基板22の下部には、第1同軸ケーブル5の通る穴28が形成されている。第3平面アンテナ30に用いられるプリント基板は、図4(a)及び(b)に示すプリント基板22と線対称の構造となっている。 As shown in FIG. 4A, the printed circuit board 22 has four patch antennas 23, a microstrip line 24, and a ground 25 formed on its surface 22a by etching or the like. The ground 25 is electrically connected to a ground 27 made of a conductor on the back surface 22a shown in FIG. A hole 28 through which the first coaxial cable 5 passes is formed in the lower part of the printed circuit board 22. The printed circuit board used for the third planar antenna 30 has a line-symmetric structure with the printed circuit board 22 shown in FIGS.
 図5は、第2平面アンテナ20のプリント基板22と第1同軸ケーブル5との接続構造を示したものである。第1同軸ケーブル5の第2平面アンテナ20への接続側端は、カバー23の穴29を通し、さらにプリント基板22のグランド27のある側から通し、プリント基板22の表面22a側で接続される。表面22a側は、第1同軸ケーブル5の同軸外部導体40をグランド25にハンダ付けし、同軸中心導体41をマイクロストリップライン24にハンダ付けで接続する。プリント基板22とカバー23は、図2のように、筐体11を前面にして組み立てる。 FIG. 5 shows a connection structure between the printed circuit board 22 of the second planar antenna 20 and the first coaxial cable 5. The connection end of the first coaxial cable 5 to the second planar antenna 20 passes through the hole 29 of the cover 23 and further passes from the side where the ground 27 of the printed circuit board 22 is provided, and is connected on the surface 22 a side of the printed circuit board 22. . On the surface 22a side, the coaxial outer conductor 40 of the first coaxial cable 5 is soldered to the ground 25, and the coaxial center conductor 41 is connected to the microstrip line 24 by soldering. As shown in FIG. 2, the printed board 22 and the cover 23 are assembled with the housing 11 facing the front.
 図6(a)及び(b)は、本実施例の第1の使用方法を示したものである。第1~第3平面アンテナ10~30は、それぞれそのブロードな放射指向性d10~d30を有している。これらが、図6(a)の置き方のように同じ方向d1~d3に向けられ、同位相で合成されることにより、図6(b)に示すように、指向性d40のようなシャープで高利得な特性が得られる。したがって、電波の強い方向などがわかるときは、図6(a)及び(b)のように使用することで、通信品質を向上させることができる。 FIGS. 6A and 6B show a first usage method of this embodiment. The first to third planar antennas 10 to 30 have broad radiation directivities d10 to d30, respectively. These are directed in the same direction d1 to d3 as shown in FIG. 6A and synthesized in the same phase, so that the sharpness as in the directivity d40 is obtained as shown in FIG. 6B. High gain characteristics can be obtained. Therefore, when the direction in which the radio wave is strong is known, the communication quality can be improved by using it as shown in FIGS. 6 (a) and 6 (b).
 図7(a)及び(b)は、本実施例の第2の使用方法を示したものである。図6の説明同様に、第1~第3平面アンテナ10~30は、それぞれそのブロードな放射指向性d10~d30を有している。これらが、図7(a)のように、コの字状に置かれた場合、第1~第3平面アンテナ10~30の電波は、それぞれ正対する方向d1~d3に放射されるが、それぞれがブロードな放射指向性を有しているため、隣接するアンテナの境目の角度でも、最大値より、概ね3~4dB程度と、利得がわずかに落ちる程度にとどまる。この劣化具合は、平面アンテナの大きさと利得、ビーム幅で決まるので、平面アンテナの大きさにより異なる。 FIGS. 7A and 7B show a second usage method of this embodiment. Similarly to the description of FIG. 6, the first to third planar antennas 10 to 30 have broad radiation directivities d10 to d30, respectively. When these are placed in a U-shape as shown in FIG. 7A, the radio waves of the first to third planar antennas 10 to 30 are radiated in the facing directions d1 to d3, respectively. Because of the broad radiation directivity, the angle at the boundary between adjacent antennas is about 3 to 4 dB from the maximum value, so that the gain is slightly reduced. This degree of degradation is determined by the size, gain, and beam width of the planar antenna, and therefore differs depending on the size of the planar antenna.
 一方、この境目の方向では、隣接する2つの平面アンテナの指向性が合成されるので、結果として、利得は2倍の3dBが増加することになり、結局、この境目の方向での利得は、平面アンテナ正面方向とあまり変わらない値となる。そのように考えると、結局は、図7(b)で、概ね270度の方向をカバーできる指向性d10~d30が形成できる。 On the other hand, since the directivities of two adjacent planar antennas are combined in the direction of this boundary, as a result, the gain increases by 3 dB, which is twice as a result. The value is not so different from the front direction of the planar antenna. In such a case, in the end, directivity d10 to d30 that can cover a direction of about 270 degrees can be formed in FIG. 7B.
 図8(a)及び(b)は、本実施例の第3の使用方法を示したものである。図6の説明同様に、第1~第3平面アンテナ10~30は、それぞれそのブロードな放射指向性d10~d30を有している。しかし、これらが、図8(a)のように、三角形状に置かれた場合、第1~第3平面アンテナ10~30の電波は、それぞれ正対する方向d1~d3に放射されるが、それぞれの指向性がブロードなため、隣接するアンテナの境目の角度でも、最大値より、概ね4~5dB程度と、利得がわずかに落ちる程度にとどまる。この劣化具合は、平面アンテナの大きさと利得、ビーム幅で決まるので、平面アンテナの大きさにより異なる。 FIGS. 8A and 8B show a third usage method of this embodiment. Similarly to the description of FIG. 6, the first to third planar antennas 10 to 30 have broad radiation directivities d10 to d30, respectively. However, when these are placed in a triangular shape as shown in FIG. 8A, the radio waves of the first to third planar antennas 10 to 30 are radiated in the opposite directions d1 to d3, respectively. Therefore, even at the angle between the borders of adjacent antennas, the gain is slightly reduced to about 4 to 5 dB from the maximum value. This degree of degradation is determined by the size, gain, and beam width of the planar antenna, and therefore differs depending on the size of the planar antenna.
 一方、この境目の方向では、隣接する2つの平面アンテナの指向性が合成されるので、結果として、利得は2倍の3dBが増加することになり、結局、この境目の方向での利得は、平面アンテナ正面方向とあまり変わらないかわずかに劣化する程度の値となる。そして、結局は、図8(b)で、概ね360度の方向をカバーできる指向性d10~d30が形成できる。 On the other hand, since the directivities of two adjacent planar antennas are combined in the direction of this boundary, as a result, the gain increases by 3 dB, which is twice as a result. It is a value that is not much different from the front direction of the flat antenna or slightly deteriorates. Finally, in FIG. 8B, directivity d10 to d30 that can cover a direction of approximately 360 degrees can be formed.
 図7及び図8の使用方法は、強い電波がどの方向からくるかわからない場合や、室内などで、反射した多数の電波を多く受信したい場合に有効である。 7 and 8 are effective when it is not known from which direction the strong radio waves come from, or when it is desired to receive many reflected radio waves indoors.
 図9は、本発明の第2の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIG. 9 is a perspective view showing the configuration of the planar antenna device according to the second embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図9は、図1の給電手段を構成している第1同軸ケーブル5に相当する同軸ケーブル51が、第1~第3平面アンテナ10~30の上部側面に配置されている構造になっている。この場合、第1同軸ケーブル51の引き込み構造は、図10のようになっている。第1同軸ケーブル51は、第1及び第2平面アンテナ10及び20の上部側面に設けられた穴52を通して、それぞれのプリント基板12及び22に導かれ、図5の同軸中心導体41と同軸外部導体40とを接続した場合と同様に取り付けられる。 FIG. 9 shows a structure in which a coaxial cable 51 corresponding to the first coaxial cable 5 constituting the power feeding means of FIG. 1 is arranged on the upper side surface of the first to third planar antennas 10 to 30. . In this case, the lead-in structure of the first coaxial cable 51 is as shown in FIG. The first coaxial cable 51 is guided to the respective printed boards 12 and 22 through holes 52 provided in the upper side surfaces of the first and second planar antennas 10 and 20, and the coaxial central conductor 41 and the coaxial outer conductor in FIG. It is attached in the same manner as when 40 is connected.
 図11(a)及び(b)は、本発明の第3の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIGS. 11A and 11B are perspective views showing the configuration of the planar antenna device according to the third embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 第1、第2の実施例の平面アンテナ装置は、図1、図9に示すように第1同軸ケ-ブル5が、外側でまわりこむように接続されていたのに対し、本実施例の平面アンテナ装置は、図11(a)及び(b)に示すように、隣り合う平面アンテナの、隣り合う側面部で給電手段を構成する第1同軸ケーブル53を最短距離になるように接続した構造である。第1平面アンテナ10は、隣り合う第2、第3平面アンテナ20、30との間で、それぞれ第1同軸ケ-ブル53によって接続されている。本実施例では、第1同軸ケーブル53、第2同軸ケーブル6、コネクタ7が給電手段を構成している。 In the planar antenna devices of the first and second embodiments, the first coaxial cable 5 is connected so as to wrap around on the outside as shown in FIGS. As shown in FIGS. 11 (a) and 11 (b), the antenna device has a structure in which the first coaxial cables 53 constituting the feeding means are connected at the shortest distance between the adjacent side surfaces of the adjacent planar antennas. is there. The first planar antenna 10 is connected by the first coaxial cable 53 between the adjacent second and third planar antennas 20 and 30. In the present embodiment, the first coaxial cable 53, the second coaxial cable 6, and the connector 7 constitute a power feeding means.
 図12は、本発明の第3の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIG. 12 is a perspective view showing the configuration of the planar antenna device according to the third embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 第3の実施例の平面アンテナ装置は、図11(a)及び(b)に示すように、第1~第3平面アンテナ10~30が、第1同軸ケ-ブル53によって接続されていたのに対し、本実施例の平面アンテナ装置は、図12に示すように、フレキシブルな2つの第1、第2接続用プリント基板80、90で接続している。すなわち、第1平面アンテナ10は、隣り合う第2、第3平面アンテナ20、30との間で、第1、第2接続用プリント基板80、90を介して接続されている。本実施例では、第1、第2接続用プリント基板80、90、第2同軸ケーブル6、コネクタ7が給電手段を構成している。 In the planar antenna device of the third embodiment, as shown in FIGS. 11A and 11B, the first to third planar antennas 10 to 30 are connected by the first coaxial cable 53. On the other hand, as shown in FIG. 12, the planar antenna device of this embodiment is connected by two flexible first and second printed circuit boards 80 and 90. That is, the first planar antenna 10 is connected to the adjacent second and third planar antennas 20 and 30 via the first and second connection printed boards 80 and 90. In this embodiment, the first and second connection printed boards 80 and 90, the second coaxial cable 6, and the connector 7 constitute a power feeding means.
 図13は、第1、第2平面アンテナ10、20に用いられるプリント基板12、22の表面12a、22a側の構造を示す。第1平面アンテナ10には、プリント基板12が用いられ、第2平面アンテナ20には、プリント基板22が用いられる。第1、第2平面アンテナ10、20は、それぞれのプリント基板12、22の側面端に設けたグランド17a、25aと、第1、第2接続用プリント基板80、90とが接続される。 FIG. 13 shows the structure on the surface 12a, 22a side of the printed circuit boards 12, 22 used in the first and second planar antennas 10, 20. A printed circuit board 12 is used for the first planar antenna 10, and a printed circuit board 22 is used for the second planar antenna 20. The first and second planar antennas 10 and 20 are connected to the grounds 17a and 25a provided at the side edges of the printed boards 12 and 22 and the first and second connection printed boards 80 and 90, respectively.
 図14(a)は第1接続用プリント基板80の表面80a側の構造を示す正面図、図14(b)はその裏面80b側の構造を示す背面図、図14(c)は第2接続用プリント基板90の表面90a側の構造を示す正面図、図14(d)はその裏面90b側の構造を示す背面図である。図15は、図13(a)、(b)に示す第1、第2平面アンテナ10、20で用いられるプリント基板12、22と、
図14(a)~(d)に示す第1、第2接続用プリント基板80、90との接続構造を示す。
14A is a front view showing the structure on the front surface 80a side of the printed circuit board 80 for first connection, FIG. 14B is a rear view showing the structure on the back surface 80b side, and FIG. 14C is the second connection. FIG. 14D is a rear view showing the structure on the back surface 90b side of the printed circuit board 90. FIG. FIG. 15 shows printed circuit boards 12 and 22 used in the first and second planar antennas 10 and 20 shown in FIGS.
The connection structure with the 1st, 2nd printed circuit boards 80 and 90 shown to Fig.14 (a)-(d) is shown.
 第1接続用プリント基板80は、折り曲げが可能なフレキシブルなプリント基板で構成される。その裏面80bは、図14(b)に示すように、グランド83を構成する銅箔等の導体層が設けられている。この第1接続用プリント基板80の左右両端のグランド83を構成する銅箔面の一部は、図15に示すように、プリント基板12のグランド17aと、プリント基板22のグランド25aとのそれぞれの接続部分にハンダ付けされる。これにより、プリント基板12と22は物理的に接続される。 The first connection printed circuit board 80 is formed of a flexible printed circuit board that can be bent. As shown in FIG. 14B, the back surface 80 b is provided with a conductor layer such as a copper foil that constitutes the ground 83. As shown in FIG. 15, a part of the copper foil surface constituting the ground 83 on both the left and right sides of the first connection printed circuit board 80 is formed on the ground 17a of the printed circuit board 12 and the ground 25a of the printed circuit board 22, respectively. Soldered to the connecting part. Thereby, the printed circuit boards 12 and 22 are physically connected.
 同様に、第2接続用プリント基板90も、折り曲げが可能なフレキシブルなプリント基板で構成されている。第2接続用プリント基板90は、図14(c)に示すように、表面90aにマイクロストリップライン91が配置され、その左右端にスルーホール92が形成されている。そのスルーホール92は、図14(d)に示すように、第2接続用プリント基板90の裏面90b側に達し、導体のランド94に導通している。また、第1接続用プリント基板90の裏面90b側には、図14(d)に示すように、導体のグランド93が先のランド94を避けて配置されている。 Similarly, the second connection printed circuit board 90 is also formed of a flexible printed circuit board that can be bent. As shown in FIG. 14C, the second printed circuit board 90 has a microstrip line 91 disposed on the surface 90a, and through holes 92 are formed on the left and right ends thereof. As shown in FIG. 14D, the through hole 92 reaches the back surface 90 b side of the second connection printed circuit board 90 and is electrically connected to the conductor land 94. Further, as shown in FIG. 14D, a conductor ground 93 is disposed on the back surface 90 b side of the first connection printed board 90 so as to avoid the previous land 94.
 第2接続用プリント基板90も、第1接続用プリント基板80と同様に、グランド93の両端部が、図15に示すように、プリント基板12のグランド17と、プリント基板22のグランド25とのそれぞれの接続部分にハンダ付けされる。また、第2接続用プリント基板90のランド94は、図15に示すように、プリント基板12のマイクロストリップライン16の先端部とプリント基板22のマイクロストリップライン24の先端部とのそれぞれにハンダ付けされる。これにより、第2接続用プリント基板90を介して、プリント基板12と22とは、物理的にも電気的にも接続される。 Similarly to the first connection printed circuit board 80, the second connection printed circuit board 90 has both ends of the ground 93 between the ground 17 of the printed circuit board 12 and the ground 25 of the printed circuit board 22 as shown in FIG. Soldered to each connection. Further, as shown in FIG. 15, the land 94 of the second connection printed circuit board 90 is soldered to each of the front end portion of the microstrip line 16 of the printed circuit board 12 and the front end portion of the microstrip line 24 of the printed circuit board 22. Is done. Thereby, the printed circuit boards 12 and 22 are physically and electrically connected via the second connection printed circuit board 90.
 図16は、本発明の第5の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIG. 16 is a perspective view showing the configuration of the planar antenna device according to the fifth embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例の平面アンテナ装置は、3枚の第1~第3平面アンテナ10~30が2つの第1連結部2によって接続されている。第1連結部2は、図1と同様に、蝶番(ヒンジ)のような構造で構成され、第1~第3平面アンテナ10~30を水平方向(図中の点線矢印a1参照)に折りたたんだり、相対的な設置角度を任意に設定したりすることができるように可動可能な構造になっている。 In the planar antenna device of this embodiment, the three first to third planar antennas 10 to 30 are connected by the two first connecting portions 2. As in FIG. 1, the first connecting portion 2 is configured in a hinge-like structure, and the first to third planar antennas 10 to 30 are folded in the horizontal direction (see the dotted arrow a1 in the figure). The structure is movable so that the relative installation angle can be set arbitrarily.
 本実施例と図1に示す第1の実施例との違いは、第1平面アンテナ10と、第2、第3平面アンテナ20、30とが第1同軸ケーブル5で直接的に接続されず、一旦、それぞれの裏面側に設けたコネクタ55を介して、2本の第1同軸ケーブル54によって電気的に接続されることである。 The difference between the present embodiment and the first embodiment shown in FIG. 1 is that the first planar antenna 10 and the second and third planar antennas 20 and 30 are not directly connected by the first coaxial cable 5, It is to be electrically connected by two first coaxial cables 54 once through connectors 55 provided on the respective back surfaces.
 本実施例では、2本の第1同軸ケーブル54の一端側に設けたコネクタ54aからその他端側に設けたコネクタ54bまでの長さは、通常、第1~第3平面アンテナ10~30から放射される電波が同位相となるように設定される。しかし、本実施例の場合では、あえて長さの異なる第1同軸ケーブル54を用いることで、3つの第1~第3平面アンテナ10~30から放射される合成の指向性を変化させる、すなわち、ビーム幅を広げたり、ビーム方向を右側または左側に向けたりすることが可能になる。さらに、第2平面アンテナ20と第3平面アンテナ30とに独立した同軸ケーブルで、MIMO通信で用いるアンテナとして使用することが可能になる。 In the present embodiment, the length from the connector 54a provided at one end of the two first coaxial cables 54 to the connector 54b provided at the other end is normally radiated from the first to third planar antennas 10 to 30. Are set to have the same phase. However, in the case of the present embodiment, the combined directivity radiated from the three first to third planar antennas 10 to 30 is changed by using the first coaxial cable 54 having a different length. It becomes possible to widen the beam width and to direct the beam direction to the right side or the left side. Further, the coaxial cables independent of the second planar antenna 20 and the third planar antenna 30 can be used as antennas used in MIMO communication.
 図17は、本発明の第6の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIG. 17 is a perspective view showing the configuration of the planar antenna device according to the sixth embodiment of the present invention, as viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例の平面アンテナ装置は、一端側に3つのコネクタ62aを設け、他端側に1つのコネクタ62bを設け、1つのコネクタ62bに接続された1本の同軸ケーブルを途中で3本に分岐させて3つのコネクタ62aに接続した構造の同軸ケーブル61を備えている。そして、中央側の第1平面アンテナ10は、その裏面側に1つのコネクタ62を有し、第2、第3平面アンテナ20、30も、その裏面側にそれぞれ1つのコネクタ62を有している。各コネクタ62は、同軸ケーブル61の一端側の3つのコネクタ62aにそれぞれ接続される。すなわち、同軸ケーブル61の第1~第3平面アンテナ10~30へは、電力を3分配する機能をもった同軸ケーブル61によって給電する構造としている。この場合、第1~第3平面アンテナ10~30は、それぞれ独立のアンテナとしても使用可能で、3チャネルのMIMO通信に対応できる。 In the planar antenna device of this embodiment, three connectors 62a are provided on one end side, one connector 62b is provided on the other end side, and one coaxial cable connected to one connector 62b is branched into three on the way. A coaxial cable 61 having a structure connected to the three connectors 62a is provided. The first planar antenna 10 on the center side has one connector 62 on the back surface side, and the second and third planar antennas 20 and 30 also have one connector 62 on the back surface side. . Each connector 62 is connected to three connectors 62 a on one end side of the coaxial cable 61. That is, power is supplied to the first to third planar antennas 10 to 30 of the coaxial cable 61 by the coaxial cable 61 having a function of distributing power to three. In this case, the first to third planar antennas 10 to 30 can be used as independent antennas, respectively, and can cope with three-channel MIMO communication.
 図18(a)及び(b)は、本発明の第7の実施例に係る平面アンテナ装置の構成を示すもので、図18(a)は平面アンテナ装置の展開時、図18(b)は平面アンテナ装置を収納する場合の折りたたみ時を示している。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 18 (a) and 18 (b) show the structure of a planar antenna device according to a seventh embodiment of the present invention. FIG. 18 (a) shows the state when the planar antenna device is deployed, and FIG. A folding state when the planar antenna device is stored is shown. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例の平面アンテナ装置は、図18(a)に示すように、3枚の平面アンテナ、すなわち第1、第2、第3平面アンテナ10、20、30が、それぞれの側面で、2つの第1連結部2a、2bを介してそれぞれ接続される。第1連結部2aは、第1~第3平面アンテナ10~30を図中の矢印a11、a12の順で折りたたんだときに、第3平面アンテナ30の厚み分を第1、第2平面アンテナ10、20で挟み込み可能な寸法に設定される。すなわち、第1~第3平面アンテナ10~30の厚さtと、折りたたみ時の第1連結部2a、2bの厚さ方向(z方向)の寸法t1、t2との関係は、t<t2<t1となる。これにより、図18(b)に示す折りたたみ時に平板状に収納することができ、これにより携帯性、利便性をより一層向上させることができる。 As shown in FIG. 18A, the planar antenna device of the present embodiment has three planar antennas, that is, two first, second, and third planar antennas 10, 20, and 30 on each side. The first connection portions 2a and 2b are connected to each other. When the first to third planar antennas 10 to 30 are folded in the order of arrows a11 and a12 in the figure, the first connecting portion 2a reduces the thickness of the third planar antenna 30 to the first and second planar antennas 10 and 10. , 20 is set to a size that can be sandwiched. That is, the relationship between the thickness t of the first to third planar antennas 10 to 30 and the dimensions t1 and t2 in the thickness direction (z direction) of the first connecting portions 2a and 2b at the time of folding is t <t2 < t1. Thereby, it can accommodate in flat form at the time of the folding shown in FIG.18 (b), Thereby, portability and the convenience can be improved further.
 また、本実施例では、折りたたみ時に、第1平面アンテナ10と第2平面アンテナ20の電波の放射面が図中の上側と下側に向くようになっている。すなわち、折りたたみ時に、2つの平面アンテナの電波の放射面が両側の表面(前面及び裏面)を向くので、折りたたみ時でも最低2面のアンテナが使用できる利点がある。この場合は、折りたたみ時に平面アンテナ装置の両面が放射面となるため、複数の平面アンテナを拡げて設置することが困難な場合、例えば車内で使用する場合や携帯して使用する場合等でも、折りたたんだ状態のままで平面アンテナ装置の両面から受信でき、受信状態を向上させることができる。 In this embodiment, the radio wave radiation surfaces of the first planar antenna 10 and the second planar antenna 20 are directed upward and downward in the drawing when folded. In other words, since the radio wave radiation surfaces of the two planar antennas face the front and back surfaces (front and back surfaces) when folded, there is an advantage that at least two antennas can be used even when folded. In this case, both sides of the planar antenna device become radiation surfaces when folded, so it is difficult to fold and install multiple planar antennas, for example, when used in a car or carried around It is possible to receive from both sides of the planar antenna device in an open state and improve the reception state.
 図19(a)及び(b)は、本発明の第8の実施例に係る平面アンテナ装置の構成を示すもので、図19(a)は平面アンテナ装置の展開時、図19(b)は平面アンテナ装置を収納する場合の折りたたみ時を示している。 FIGS. 19A and 19B show the configuration of the planar antenna device according to the eighth embodiment of the present invention. FIG. 19A shows a state where the planar antenna device is deployed, and FIG. A folding state when the planar antenna device is stored is shown.
 本実施例の平面アンテナ装置は、図19(a)に示すように、4枚の平面アンテナ、すなわち第1、第2、第3、第4平面アンテナ10、20、30、31と、これらを接続する3つの第1連結部2a、2b、2cとを有している。第1~第4平面アンテナ10~31は、隣り合う平面アンテナのそれぞれの側面で、3つの第1連結部2a、2b、2cを介して回転可動可能に接続される。第1連結部2a、2bは、第1~第4平面アンテナ10~31を図中の矢印a11、a12、a13の順で折りたたんだときに、第3、第4平面アンテナ30、31の厚み分を第1、第2平面アンテナ10、20で挟み込み可能な寸法に設定される。すなわち、第1~第3平面アンテナ10~30の厚さtと、第1連結部2a、2b、2cの折りたたみ時の厚さ方向(z方向)の寸法t1、t2、t3との関係は、t<t3<t2<t1となる。これにより、図19(b)に示す折りたたみ時に平板状に収納することができ、これにより携帯性、利便性をより一層向上させることができる。 As shown in FIG. 19A, the planar antenna device of the present embodiment includes four planar antennas, that is, first, second, third, and fourth planar antennas 10, 20, 30, and 31. It has three 1st connection parts 2a, 2b, 2c to connect. The first to fourth planar antennas 10 to 31 are rotatably connected to the side surfaces of adjacent planar antennas via the three first coupling portions 2a, 2b, and 2c. The first connecting portions 2a and 2b are formed by the thicknesses of the third and fourth planar antennas 30 and 31 when the first to fourth planar antennas 10 to 31 are folded in the order of arrows a11, a12, and a13 in the drawing. Is set to a dimension that can be sandwiched between the first and second planar antennas 10 and 20. That is, the relationship between the thickness t of the first to third planar antennas 10 to 30 and the dimensions t1, t2, and t3 in the thickness direction (z direction) when the first connecting portions 2a, 2b, and 2c are folded is t <t3 <t2 <t1. Thereby, it can accommodate in flat form at the time of the folding shown in FIG.19 (b), Thereby, portability and convenience can be improved further.
 また、本実施例では、第7の実施例と同様に、折りたたみ時に、第1平面アンテナ10と第1平面アンテナ20の電波の放射面が上側と下側に向くようになっている。すなわち、折りたたみ時に、2つの平面アンテナ10、20の電波の放射面が両側の表面(前面及び裏面)を向くので、折りたたみ時でも最低2面のアンテナが使用できる利点がある。この場合は、折りたたみ時に平面アンテナ装置の両面が放射面となるため、複数の平面アンテナを拡げて設置することが困難な場合、例えば車内で使用する場合や携帯して使用する場合等でも、折りたたんだ状態のままで平面アンテナ装置の両面から受信でき、受信状態を向上させることができる。 In the present embodiment, similarly to the seventh embodiment, the radio wave radiation surfaces of the first planar antenna 10 and the first planar antenna 20 are directed upward and downward during folding. That is, since the radiation surfaces of the radio waves of the two planar antennas 10 and 20 face the both surfaces (front and back surfaces) when folded, there is an advantage that at least two antennas can be used even when folded. In this case, both sides of the planar antenna device become radiation surfaces when folded, so it is difficult to fold and install multiple planar antennas, for example, when used in a car or carried around It is possible to receive from both sides of the planar antenna device in an open state and improve the reception state.
 図20は、本発明の第9の実施例に係る平面アンテナ装置の構成を示す斜視図である。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIG. 20 is a perspective view showing the configuration of the planar antenna device according to the ninth embodiment of the present invention. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例の平面アンテナ装置は、特にMIMO通信に有用なアンテナ構造であり、第1~第3平面アンテナ10~30のそれぞれで信号を受信するため、第1~第3平面アンテナのそれぞれに独立の給電手段を構成する同軸ケーブル63を接続し、かつ、第1連結部2を介して折りたたむことを可能としている。 The planar antenna apparatus according to the present embodiment has an antenna structure particularly useful for MIMO communication, and receives signals with each of the first to third planar antennas 10 to 30, and thus is independent of each of the first to third planar antennas. It is possible to connect the coaxial cable 63 that constitutes the power feeding means and to be folded via the first connecting portion 2.
 図20に示すように、第1~第3平面アンテナ10~30には、裏面側にそれぞれ独立の同軸コネクタ64が設けられる。各同軸コネクタ64には、それぞれ独立の同軸ケーブル63の一端側に設けたコネクタ63aが接続される。各同軸ケーブル63の他端側に設けたコネクタ63bは、通信装置(非図示)側のアンテナ接続端子に接続される。通信装置側のアンテナ接続端子は、MIMOで使用する場合は複数設けられる。 As shown in FIG. 20, the first to third planar antennas 10 to 30 are provided with independent coaxial connectors 64 on the back side. Each coaxial connector 64 is connected to a connector 63 a provided on one end side of an independent coaxial cable 63. A connector 63b provided on the other end side of each coaxial cable 63 is connected to an antenna connection terminal on the communication device (not shown) side. A plurality of antenna connection terminals on the communication device side are provided when used in MIMO.
 ここで、MIMOを使用する状況は、多数の反射波が存在する場合に、複数のアンテナを用いて多数の反射波を利用して通信することで通信品質や通信速度を向上させることができる状況であるため、本実施例のように、それぞれの平面アンテナを独立して使用することで、MIMO技術を有効に用いて通信品質や通信速度を改善することが可能になる。 Here, the situation where MIMO is used is a situation where communication quality and communication speed can be improved by using a plurality of antennas to communicate using a large number of reflected waves when there are a large number of reflected waves. Therefore, by using each planar antenna independently as in this embodiment, it is possible to improve the communication quality and communication speed by effectively using the MIMO technology.
 なお、上記で、通信装置側のアンテナ接続端子が2つの場合は、3つの平面アンテナのうち、任意の2つを選べばよい。また、MIMOを用いた通信では、使用する複数のアンテナ同士の相関が小さいほうが有効であるため、前述した第1の実施例の第1~第3の使用法(図6~図8)のように、アンテナの向きをいろいろ調整することで、通信品質や通信速度のさらなる改善が期待できる。 In the above, when there are two antenna connection terminals on the communication device side, any two of the three planar antennas may be selected. Further, in communication using MIMO, it is effective that the correlation between a plurality of antennas to be used is small. Therefore, as in the first to third usage methods (FIGS. 6 to 8) of the first embodiment described above. In addition, further improvements in communication quality and communication speed can be expected by adjusting the orientation of the antenna.
 また、本実施例の平面アンテナ装置をMIMOに用いる場合、特に、前述した第7、第8の実施例(図18、図19)の折りたたみ状態で使用すると、MIMOとしての効果をさらに発揮させることができる。これは、アンテナの指向性が反対方向を向いているため、互いのアンテナの相関が小さくなるためである。このことから、前述した第7、第8の実施例の平面アンテナ装置の折りたたみ時の使用では、本実施例のように平面アンテナ毎に独立した複数のコネクタを設けて、MIMOとして使用する場合に大きな効果が期待できる。 Further, when the planar antenna device of this embodiment is used for MIMO, particularly when used in the folded state of the seventh and eighth embodiments (FIGS. 18 and 19) described above, the effect as MIMO is further exhibited. Can do. This is because the antenna directivity is directed in the opposite direction, and the correlation between the antennas is reduced. For this reason, when the planar antenna devices of the seventh and eighth embodiments described above are used at the time of folding, a plurality of independent connectors are provided for each planar antenna as in this embodiment and used as MIMO. A big effect can be expected.
 図21は、本発明の第10の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである斜視図である。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIG. 21 is a perspective view showing the configuration of the planar antenna device according to the tenth embodiment of the present invention, and is a perspective view as seen from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例の平面アンテナ装置は、第9の実施例と同様に、MIMO通信に有用なアンテナ構造であり、第1~第3平面アンテナ10~30のそれぞれで信号を受信するため、第1~第3平面アンテナのそれぞれに独立の給電手段を構成する同軸ケーブル65を接続し、かつ、第1連結部2を介して折りたたむことを可能としたものである。 Similar to the ninth embodiment, the planar antenna apparatus of the present embodiment has an antenna structure useful for MIMO communication, and receives signals by the first to third planar antennas 10 to 30, respectively. A coaxial cable 65 that constitutes an independent feeding means is connected to each of the third planar antennas and can be folded via the first connecting portion 2.
 本実施例と第9の実施例との相違点は、第1~第3平面アンテナ10~30の上部側面側にそれぞれ独立の同軸コネクタ66を設けた点にある。すなわち、図21に示すように、各同軸コネクタ66には、それぞれ独立の同軸ケーブル65の一端側に設けたコネクタ65aが接続される。各同軸ケーブル65の他端側に設けたコネクタ65bは、通信装置(非図示)側のアンテナ接続端子に接続される。通信装置側のアンテナ接続端子は、MIMOで使用する場合は複数設けられる。 The difference between the present embodiment and the ninth embodiment is that independent coaxial connectors 66 are provided on the upper side surfaces of the first to third planar antennas 10 to 30, respectively. That is, as shown in FIG. 21, each coaxial connector 66 is connected to a connector 65 a provided on one end side of an independent coaxial cable 65. A connector 65b provided on the other end side of each coaxial cable 65 is connected to an antenna connection terminal on the communication device (not shown) side. A plurality of antenna connection terminals on the communication device side are provided when used in MIMO.
 従って、本実施例でも、第9の実施例と同様に、それぞれの平面アンテナを独立して使用することで、MIMO技術を有効に用いて通信品質や通信速度を改善することが可能になる。 Therefore, in this embodiment as well, similarly to the ninth embodiment, it is possible to improve the communication quality and communication speed by effectively using the MIMO technology by using each planar antenna independently.
 また、本実施例では、平面アンテナの上部側面側に独立の同軸コネクタを設けているため、第7、第8の実施例(図18、図19)のような折りたたみ状態でより一層使用しやすくなり、MIMOとしての効果をより一層発揮させることができる。これは、折りたたみ時にアンテナの指向性が反対方向を向いているため、互いのアンテナの相関が小さくなるためである。 In this embodiment, since an independent coaxial connector is provided on the upper side surface of the planar antenna, it is easier to use in the folded state as in the seventh and eighth embodiments (FIGS. 18 and 19). Therefore, the effect as MIMO can be further exhibited. This is because the antenna directivity is directed in the opposite direction when folded, so that the correlation between the antennas becomes small.
 図22は、本発明の第11の実施例に係る平面アンテナ装置の構成を示す斜視図であり、その背面(裏面)側からみたものである。第1の実施例と同様の構成要素については、同一符号を付してその説明を省略する。 FIG. 22 is a perspective view showing the configuration of the planar antenna device according to the eleventh embodiment of the present invention, viewed from the back surface (back surface) side. Constituent elements similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例の平面アンテナ装置は、第9、第10の実施例と同様に、MIMO通信に有用なアンテナ構造であり、第1~第3平面アンテナ10~30のそれぞれで信号を受信するため、第1~第3平面アンテナのそれぞれに独立の給電手段を構成する同軸ケーブル67を接続し、かつ、第1連結部2を介して折りたたむことを可能としたものである。 As in the ninth and tenth embodiments, the planar antenna device of the present embodiment is an antenna structure useful for MIMO communication, and receives signals with each of the first to third planar antennas 10 to 30. Each of the first to third planar antennas is connected to a coaxial cable 67 that constitutes an independent feeding means, and can be folded via the first connecting portion 2.
 本実施例と第10の実施例との相違点は、第1~第3平面アンテナ10~30の上部側面側に穴68を形成し、その穴68を通して、それぞれ独立の同軸コネクタ67の一端側(非図示)を内部のプリント基板に接続した点にある。すなわち、図22に示すように、第1~第3平面アンテナ10~30には、上部側面側を通して、それぞれ独立の同軸ケーブル67の一端側(非図示)が電気的に接続される。各同軸ケーブル67の他端側に設けたコネクタ67aは、通信装置(非図示)側のアンテナ接続端子に接続される。通信装置側のアンテナ接続端子は、MIMOで使用する場合は複数設けられる。 The difference between the present embodiment and the tenth embodiment is that a hole 68 is formed on the upper side surface side of the first to third planar antennas 10 to 30, and one end side of each independent coaxial connector 67 is passed through the hole 68. (Not shown) is connected to the internal printed circuit board. That is, as shown in FIG. 22, one end side (not shown) of each independent coaxial cable 67 is electrically connected to the first to third planar antennas 10 to 30 through the upper side surface side. A connector 67a provided on the other end side of each coaxial cable 67 is connected to an antenna connection terminal on the communication device (not shown) side. A plurality of antenna connection terminals on the communication device side are provided when used in MIMO.
 従って、本実施例でも、第9、第10の実施例と同様に、それぞれの平面アンテナを独立して使用することで、MIMO技術を有効に用いて通信品質や通信速度を改善することが可能になる。 Therefore, in this embodiment, as in the ninth and tenth embodiments, it is possible to improve the communication quality and communication speed by effectively using the MIMO technology by using each planar antenna independently. become.
 また、本実施例では、第10の実施例と同様に、平面アンテナの上部側面側に独立の同軸コネクタを設けているため、第7、第8の実施例(図18、図19)のような折りたたみ状態でより一層使用しやすくなり、MIMOとしての効果をより一層発揮させることができる。 Further, in this embodiment, as in the tenth embodiment, since an independent coaxial connector is provided on the upper side surface side of the planar antenna, as in the seventh and eighth embodiments (FIGS. 18 and 19). It becomes easier to use in a simple folded state, and the effect as MIMO can be further exhibited.
 さらに、本実施例では、第9、第10の実施例と比べると、平面アンテナに同軸コネクタを設ける必要がない分、部品点数を削減することができ、装置構成を簡素化することができる。 Furthermore, in this embodiment, compared to the ninth and tenth embodiments, the number of parts can be reduced and the apparatus configuration can be simplified because it is not necessary to provide a coaxial connector on the planar antenna.
 以上説明したように、上記各実施例によれば、平面状のアンテナを複数接続し、それらを1枚の平面に折りたたみ可能な構造とし、隣り合う平面アンテナの角度が調整されることによって指向性を制御されて、電波を放射又は受信すると共に、折りたたみ時に両側の平面から電波を放射又は受信する構成としたことにより、それぞれの平面アンテナの方向を調整して、1)指向性を可変でき、2)コンパクトで平面状に収納できる、3)MIMO技術を用いた通信にも使用できる、利便性の高い外部アンテナを提供することができる。 As described above, according to each of the above embodiments, a plurality of planar antennas are connected to each other so that they can be folded into a single plane, and the directivity is adjusted by adjusting the angle between adjacent planar antennas. Is controlled to radiate or receive radio waves and to radiate or receive radio waves from both planes when folded, by adjusting the direction of each planar antenna, 1) the directivity can be varied, 2) It is possible to provide a convenient external antenna that is compact and can be stored in a flat form, and 3) can be used for communication using MIMO technology.
 なお、上記各実施例では、複数の平面アンテナが3枚又は4枚で構成される場合を説明しているが、本発明はこれに限らず、2枚で構成されてもよく、又は4枚以上で構成されてもよい。 In each of the above-described embodiments, a case where a plurality of planar antennas are configured by 3 or 4 is described. However, the present invention is not limited to this and may be configured by 2 or 4 You may be comprised by the above.
 以上、実施の形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施の形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解し得る様々な変更をすることができる。 As described above, the present invention has been described with reference to the embodiments and examples, but the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 本発明は、WiMAX技術を用いた端末用外部アンテナ、無線LAN用外部アンテナ、携帯電話用外部アンテナ、PDAやパソコンなどの通信機構を有した端末の外部アンテナ、MIMO技術を用いた端末の外部アンテナ、その他、携帯端末用の外部アンテナ等の平面アンテナ装置に適用可能である。 The present invention includes an external antenna for a terminal using WiMAX technology, an external antenna for a wireless LAN, an external antenna for a mobile phone, an external antenna for a terminal having a communication mechanism such as a PDA or a personal computer, and an external antenna for a terminal using MIMO technology. In addition, the present invention can be applied to a planar antenna device such as an external antenna for a portable terminal.

Claims (13)

  1.  指向性を有する複数の平面アンテナを折りたたみ可能に備える平面アンテナ装置であって、
     前記複数の平面アンテナは、隣り合う平面アンテナの角度が調整されることによって指向性を制御されて、電波を放射又は受信すると共に、折りたたみ時に両側の平面から電波を放射又は受信することを特徴とする平面アンテナ装置。
    A planar antenna device comprising a plurality of directional planar antennas in a foldable manner,
    The plurality of planar antennas are controlled in directivity by adjusting the angle of adjacent planar antennas to radiate or receive radio waves and radiate or receive radio waves from both planes when folded. Planar antenna device.
  2.  前記複数の平面アンテナを放射又は受信する面が外側になるように同一平面側に折りたたむことを特徴とする請求項1記載の平面アンテナ装置。 The planar antenna device according to claim 1, wherein the planar antenna device is folded on the same plane side so that a surface for radiating or receiving the plurality of planar antennas is on the outside.
  3.  前記複数の平面アンテナは、前記隣り合う平面アンテナ間の角度が可変に接続されると共に、それぞれ独立した給電手段を備え、それぞれ独立したアンテナとして機能し、前記複数の平面アンテナで複数のデータの送受信を行うことを特徴とする請求項1又は2に記載の平面アンテナ装置。 The plurality of planar antennas are variably connected to the angle between the adjacent planar antennas and have independent power feeding means, function as independent antennas, and transmit and receive a plurality of data with the plurality of planar antennas. The planar antenna device according to claim 1, wherein:
  4.  前記給電手段は、それぞれ独立したコネクタを備えることを特徴とする請求項3記載の平面アンテナ装置。 The planar antenna device according to claim 3, wherein each of the power feeding means includes an independent connector.
  5.  前記給電手段は、それぞれ独立して接続される同軸ケーブルを備えることを特徴とする請求項3又は4に記載の平面アンテナ装置。 The planar antenna device according to claim 3 or 4, wherein the power feeding means includes coaxial cables that are independently connected to each other.
  6.  前記複数の平面アンテナは、3枚で構成されることを特徴とする請求項1乃至5のいずれか1項に記載の平面アンテナ装置。 The planar antenna device according to any one of claims 1 to 5, wherein the plurality of planar antennas includes three antennas.
  7.  前記複数の平面アンテナは、4枚で構成されることを特徴とする請求項1乃至5のいずれか1項に記載の平面アンテナ装置。 The planar antenna device according to any one of claims 1 to 5, wherein the plurality of planar antennas includes four antennas.
  8.  前記複数の平面アンテナは、接続部を介して前記隣り合う平面アンテナの角度を可変に接続されていることを特徴とする請求項1乃至7のいずれか1項に記載の平面アンテナ装置。 The planar antenna device according to any one of claims 1 to 7, wherein the plurality of planar antennas are connected to each other with an angle of the adjacent planar antennas variably via a connection portion.
  9.  前記接続部は、前記隣り合う平面アンテナの側面に備えられていることを特徴とする請求項8記載の平面アンテナ装置。 The planar antenna device according to claim 8, wherein the connecting portion is provided on a side surface of the adjacent planar antenna.
  10.  前記接続部は、前記隣り合う平面アンテナの表面又は背面に備えられていることを特徴とする請求項8記載の平面アンテナ装置。 The planar antenna device according to claim 8, wherein the connecting portion is provided on a front surface or a back surface of the adjacent planar antenna.
  11.  前記接続部は、蝶番で構成されることを特徴とする請求項8乃至10のいずれか1項に記載の平面アンテナ装置。 The planar antenna device according to any one of claims 8 to 10, wherein the connection portion is formed of a hinge.
  12.  請求項1乃至11のいずれか1項に記載の平面アンテナ装置と、
     前記平面アンテナ装置が備える複数の平面アンテナに接続可能なアンテナ接続端子とを有することを特徴とする通信装置。
    A planar antenna device according to any one of claims 1 to 11,
    An antenna connection terminal connectable to a plurality of planar antennas included in the planar antenna device.
  13.  請求項1乃至11のいずれか1項に記載の平面アンテナ装置と、
     前記平面アンテナ装置が備える複数の平面アンテナに独立して接続可能な複数のアンテナ接続端子とを有することを特徴とする通信装置。
    A planar antenna device according to any one of claims 1 to 11,
    A communication apparatus, comprising: a plurality of antenna connection terminals that can be independently connected to a plurality of planar antennas included in the planar antenna apparatus.
PCT/JP2008/057925 2008-04-24 2008-04-24 Flat antenna device and communication equipment WO2009130775A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010509004A JPWO2009130775A1 (en) 2008-04-24 2008-04-24 Planar antenna device and communication device
PCT/JP2008/057925 WO2009130775A1 (en) 2008-04-24 2008-04-24 Flat antenna device and communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057925 WO2009130775A1 (en) 2008-04-24 2008-04-24 Flat antenna device and communication equipment

Publications (1)

Publication Number Publication Date
WO2009130775A1 true WO2009130775A1 (en) 2009-10-29

Family

ID=41216524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057925 WO2009130775A1 (en) 2008-04-24 2008-04-24 Flat antenna device and communication equipment

Country Status (2)

Country Link
JP (1) JPWO2009130775A1 (en)
WO (1) WO2009130775A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120066A (en) * 2009-12-04 2011-06-16 Nippon Signal Co Ltd:The Antenna for reader/writer and reader/writer
JP2011203033A (en) * 2010-03-25 2011-10-13 Sysmex Corp Specimen analysis device
JP2015207972A (en) * 2014-04-23 2015-11-19 日本ピラー工業株式会社 Planar antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170805A (en) * 1990-11-02 1992-06-18 Sumitomo Electric Ind Ltd Antenna
JPH07106820A (en) * 1993-09-30 1995-04-21 Nec Corp Plane antenna system
JPH1051215A (en) * 1996-08-05 1998-02-20 Nippon Telegr & Teleph Corp <Ntt> Antenna device
JP2000114869A (en) * 1998-09-30 2000-04-21 Nec Eng Ltd Planar antenna device
JP2007180819A (en) * 2005-12-27 2007-07-12 Paamu:Kk Polygonal antenna unit for radio ic tag

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201304A (en) * 1981-06-04 1982-12-09 Mitsubishi Electric Corp Electric power feeding circuit of phased array antenna
JPH0265529A (en) * 1988-08-31 1990-03-06 Yamatake Honeywell Co Ltd Card type transmitter-receiver
JPH08204621A (en) * 1995-01-26 1996-08-09 Nippon Telegr & Teleph Corp <Ntt> Wireless card
JP3445431B2 (en) * 1996-02-13 2003-09-08 株式会社東芝 Circularly polarized patch antenna and wireless communication system
JP2005184456A (en) * 2003-12-19 2005-07-07 Hitachi Cable Ltd Phase adjustment adapter and phase adjustment method employing the same
WO2006065172A1 (en) * 2004-12-13 2006-06-22 Telefonaktiebolaget L M Ericsson (Publ) An antenna arrangement and a method relating thereto

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170805A (en) * 1990-11-02 1992-06-18 Sumitomo Electric Ind Ltd Antenna
JPH07106820A (en) * 1993-09-30 1995-04-21 Nec Corp Plane antenna system
JPH1051215A (en) * 1996-08-05 1998-02-20 Nippon Telegr & Teleph Corp <Ntt> Antenna device
JP2000114869A (en) * 1998-09-30 2000-04-21 Nec Eng Ltd Planar antenna device
JP2007180819A (en) * 2005-12-27 2007-07-12 Paamu:Kk Polygonal antenna unit for radio ic tag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120066A (en) * 2009-12-04 2011-06-16 Nippon Signal Co Ltd:The Antenna for reader/writer and reader/writer
JP2011203033A (en) * 2010-03-25 2011-10-13 Sysmex Corp Specimen analysis device
US10062955B2 (en) 2010-03-25 2018-08-28 Sysmex Corporation Sample analyzer and reagent information obtaining method
JP2015207972A (en) * 2014-04-23 2015-11-19 日本ピラー工業株式会社 Planar antenna

Also Published As

Publication number Publication date
JPWO2009130775A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP4724084B2 (en) Portable wireless device
US6483463B2 (en) Diversity antenna system including two planar inverted F antennas
US10910700B2 (en) Omnidirectional antenna for mobile communication service
US7106252B2 (en) User terminal antenna arrangement for multiple-input multiple-output communications
US10219389B2 (en) Electronic device having millimeter wave antennas
KR101718032B1 (en) Mobile terminal
JP3903991B2 (en) Antenna device
US20100103052A1 (en) Antenna assembly
US20060044200A1 (en) Multibeam antenna
JP2007013643A (en) Integrally formed flat-plate multi-element antenna and electronic apparatus
EP1841006A1 (en) Mobile wireless unit
JP2005520383A (en) Adaptive receive and omnidirectional antenna arrays
JP4667310B2 (en) Multi-antenna with parasitic elements
JP2007151115A (en) Monopole antenna and mimo antenna including it
JP2008167420A (en) Antenna apparatus and wireless communication apparatus
JP2008113187A (en) Flat antenna device
JP4690820B2 (en) Antenna device
JP4446203B2 (en) Antenna element and broadband antenna device
JP2008545327A (en) Electronic equipment with built-in antenna
KR100837408B1 (en) Antenna device
GB2563335A (en) Beam switching using common and differential modes
CA2776339A1 (en) Antenna for multi mode mimo communication in handheld devices
JP2004172912A (en) Multiband antenna
CN114665260B (en) Antenna and communication equipment
WO2009130775A1 (en) Flat antenna device and communication equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509004

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08752024

Country of ref document: EP

Kind code of ref document: A1