JP4667310B2 - Multi-antenna with parasitic elements - Google Patents

Multi-antenna with parasitic elements Download PDF

Info

Publication number
JP4667310B2
JP4667310B2 JP2006184787A JP2006184787A JP4667310B2 JP 4667310 B2 JP4667310 B2 JP 4667310B2 JP 2006184787 A JP2006184787 A JP 2006184787A JP 2006184787 A JP2006184787 A JP 2006184787A JP 4667310 B2 JP4667310 B2 JP 4667310B2
Authority
JP
Japan
Prior art keywords
antenna
circuit board
parasitic
parasitic element
antenna according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006184787A
Other languages
Japanese (ja)
Other versions
JP2008017047A (en
Inventor
由樹 岡野
敬三 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2006184787A priority Critical patent/JP4667310B2/en
Publication of JP2008017047A publication Critical patent/JP2008017047A/en
Application granted granted Critical
Publication of JP4667310B2 publication Critical patent/JP4667310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

本発明は、マルチアンテナに関し、特に複数の給電素子及び無給電素子を備えた移動通信端末用マルチアンテナに関するものである。   The present invention relates to a multi-antenna, and more particularly to a multi-antenna for a mobile communication terminal including a plurality of feeding elements and parasitic elements.

従来、移動通信端末用のマルチアンテナまたはアレーアンテナとしては、ダイバーシティアンテナが一般的であり、1/2波長ダイポールアンテナを用いてアンテナ素子間隔を0.5波長程度とした理想的なアンテナ条件が前提とされている。これは、アレー理論に基づいてグレーティング・ローブを発生させずに高いアンテナ利得を得るためであり、素子間結合の影響による利得の低下を避けるためにも、アンテナ素子間隔を0.5波長程度とするものが多い。   Conventionally, as a multi-antenna or array antenna for a mobile communication terminal, a diversity antenna is generally used, and an ideal antenna condition in which a half-wave dipole antenna is used and an antenna element interval is about 0.5 wavelength is assumed. It is said that. This is to obtain a high antenna gain without generating a grating lobe based on the array theory, and in order to avoid a decrease in gain due to the effect of coupling between elements, the antenna element spacing is set to about 0.5 wavelength. There are many things to do.

1/2波長ダイポールアンテナにより構成される0.5波長間隔のマルチアンテナは、ビームフォーミングにより高いアンテナ利得が得られ、またアンテナ素子間の相関係数も小さくなる反面、アンテナ給電方式やアンテナ容積について考慮した場合、特に小型化が求められる携帯端末等に搭載することは困難であった。また、これまでのマルチアンテナに関する検討は、現実的なアンテナ構成を考慮したものではなかった。   A multi-antenna with a 0.5 wavelength interval composed of a half-wave dipole antenna can obtain a high antenna gain by beam forming and a correlation coefficient between antenna elements is reduced. Considering this, it was difficult to mount it on a portable terminal or the like that is particularly required to be downsized. In addition, previous studies on multi-antennas have not considered a realistic antenna configuration.

さらに、端末用のマルチアンテナとしてPDC方式の携帯端末では例えば図17に示すようにホイップ形状と逆F形状の2本のアンテナを素子間隔0.5波長以下として配置したものがあった。しかしながら、これは単にダイバーシティ効果を得るためのアンテナ配置であり、次世代の移動通信システムへの適用が検討されているビームフォーミングやダイバーシティ、MIMO伝送を両立させるアンテナ構成について検討したものではなかった。   Furthermore, as a multi-antenna for a terminal, there is a PDC portable terminal in which two antennas having a whip shape and an inverted F shape are arranged with an element interval of 0.5 wavelength or less as shown in FIG. However, this is merely an antenna arrangement for obtaining a diversity effect, and it has not been studied about an antenna configuration that is compatible with beam forming, diversity, and MIMO transmission, which are being considered for application to the next generation mobile communication system.

例えば、ビームフォーミングやダイバーシティ、MIMO伝送を行う移動通信システムで利用可能な端末用マルチアンテナとしては、図18に示すようにノート型パソコンの外部拡張スロットに搭載するカード型無線端末の端部に突起状の放射素子を複数配置する構成が考えられる。これは、回路基板180と給電点181、モノポール形状の給電素子182から構成される。このマルチアンテナ構成の場合、アンテナ間相互結合の影響が大きいため放射効率が低下し、十分なアンテナ性能を得ることが難しかった。そこで、相互結合の影響が小さい移動通信システムに適用可能なマルチアンテナが望まれていた。   For example, as a multi-antenna for a terminal that can be used in a mobile communication system that performs beam forming, diversity, or MIMO transmission, as shown in FIG. 18, a protrusion is formed at the end of a card-type wireless terminal mounted in an external expansion slot of a notebook computer A configuration in which a plurality of radiating elements are arranged is conceivable. This is composed of a circuit board 180, a feeding point 181, and a monopole feeding element 182. In the case of this multi-antenna configuration, the effect of mutual coupling between antennas is large, so that the radiation efficiency is lowered and it is difficult to obtain sufficient antenna performance. Therefore, a multi-antenna that can be applied to a mobile communication system that is less affected by mutual coupling has been desired.

従来、無給電素子の追加によりアンテナ特性を改善するものとして、以下のような特許文献が知られている。しかしながら、いずれも単数の給電素子を用いるものであり、複数の給電素子を有するマルチアンテナを用いるものであった。
特開2003−283238号公報 特開2004−64312号公報 特開2005−286895号公報 特開2006−50496号公報 特開2006−67234号公報
Conventionally, the following patent documents are known for improving antenna characteristics by adding a parasitic element. However, all use a single feeding element, and use a multi-antenna having a plurality of feeding elements.
JP 2003-283238 A JP 2004-6431 A JP 2005-286895 A JP 2006-50496 A JP 2006-67234 A

本発明の特徴に従ったマルチアンテナは、複数の給電点を備えた回路基板;一端が開放され他端が給電点にそれぞれ接続された複数の給電素子;及び一端が開放され他端が回路基板に接続された単数または複数の無給電素子;を備え、
給電素子および無給電素子は使用周波数帯の波長で換算して0.2波長乃至0.3波長の長さの素子長を有し;かつ無給電素子を任意の前記給電点近傍において回路基板に接続することを特徴とする。
A multi-antenna according to a feature of the present invention includes a circuit board having a plurality of feeding points; a plurality of feeding elements having one end opened and the other end connected to the feeding point; One or more parasitic elements connected to
The feeding element and the parasitic element have an element length of 0.2 to 0.3 wavelength in terms of the wavelength of the used frequency band; and the parasitic element is attached to the circuit board in the vicinity of the arbitrary feeding point. It is characterized by connecting.

給電素子または無給電素子は折り曲げ構造を有しても良い。   The feeding element or the parasitic element may have a bent structure.

給電素子および無給電素子は分岐構造を有しても良い。   The feeding element and the parasitic element may have a branch structure.

無給電素子を任意の誘電率を有する誘電体の表面または内部に配置しても良い。   The parasitic element may be arranged on the surface or inside of a dielectric having an arbitrary dielectric constant.

給電素子は回路基板に対して垂直および平行に配置され、無給電素子は回路基板に対して垂直に配置された給電素子の給電点近傍において回路基板と接続するように構成することができる。   The feeding element can be arranged to be perpendicular and parallel to the circuit board, and the parasitic element can be connected to the circuit board in the vicinity of the feeding point of the feeding element arranged perpendicular to the circuit board.

無給電素子は互いに直交して配置しても良い。   The parasitic elements may be arranged orthogonal to each other.

上記のマルチアンテナは、指向性を制御するビームフォーミングを行うように構成しても良い。   The multi-antenna may be configured to perform beam forming for controlling directivity.

上記のマルチアンテナは、ダイバーシティを行うように構成しても良い。   The multi-antenna may be configured to perform diversity.

上記のマルチアンテナは、空間的な物理チャネルの並列伝送により伝送容量を増大させるMIMO伝送を行うように構成しても良い。   The multi-antenna may be configured to perform MIMO transmission that increases transmission capacity by parallel transmission of spatial physical channels.

上記のマルチアンテナは、通信を行う周辺の伝搬環境に応じてビームフォーミング、ダイバーシティまたはMIMO伝送を切替えて使用するように構成しても良い。   The above multi-antenna may be configured to switch and use beamforming, diversity, or MIMO transmission according to the surrounding propagation environment for communication.

本発明の実施例に従ったマルチアンテナによれば、複数のアンテナを使用するマルチアンテナにおいて相互結合による性能劣化の少ないマルチアンテナを提供することができる。   According to the multi-antenna according to the embodiment of the present invention, it is possible to provide a multi-antenna that uses a plurality of antennas and has little performance deterioration due to mutual coupling.

以下、図面を参照しながら本発明に従ったアンテナ装置の実施例について説明する。   Hereinafter, embodiments of an antenna device according to the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例に従ったマルチアンテナ8の基本構成を示す概略図である。マルチアンテナ8は基本的に、回路基板10、回路基板10上の複数の給電点11、及び複数の給電素子12を備えている。各給電素子12は一端が開放され、他端が対応する給電点11にそれぞれ接続されている。マルチアンテナ8はさらに、一端が開放され他端が回路基板10に接続された単数または複数の無給電素子13を備えている。給電素子12および無給電素子13は、使用周波数帯の波長で換算して0.2波長乃至0.3波長の長さを有する。無給電素子13は任意の給電点11の近傍において回路基板10と接続されている。   FIG. 1 is a schematic diagram showing a basic configuration of a multi-antenna 8 according to the first embodiment of the present invention. The multi-antenna 8 basically includes a circuit board 10, a plurality of feeding points 11 on the circuit board 10, and a plurality of feeding elements 12. Each feed element 12 has one end open and the other end connected to the corresponding feed point 11. The multi-antenna 8 further includes one or a plurality of parasitic elements 13 having one end opened and the other end connected to the circuit board 10. The feed element 12 and the parasitic element 13 have a length of 0.2 wavelength to 0.3 wavelength in terms of the wavelength of the used frequency band. The parasitic element 13 is connected to the circuit board 10 in the vicinity of an arbitrary feeding point 11.

携帯端末用のアンテナとしては、小型化および内蔵化が可能な1/4波長モノポール方式のアンテナを採用することが多く、本実施例においても素子長約1/4波長のモノポールアンテナを用いている。   As an antenna for a portable terminal, a quarter-wave monopole antenna that can be miniaturized and built-in is often used. In this embodiment, a monopole antenna having an element length of about 1/4 wavelength is used. ing.

また、図1の実施例では、給電素子12は2本あり、回路基板10の端部に配置され、それぞれ給電点11に接続されている。無給電素子13は1本であり、回路基板の端部において片方の給電点の近傍に接続されている(給電点には接続されていない)。   Further, in the embodiment of FIG. 1, there are two feeding elements 12, which are arranged at the end of the circuit board 10 and are connected to the feeding point 11, respectively. One parasitic element 13 is connected to the vicinity of one of the feeding points at the end of the circuit board (not connected to the feeding point).

図2のグラフに、第1実施例に従った端末用マルチアンテナ8と、図18に示すような従来構成の端末用マルチアンテナとの特性の比較を示す。図2に示した値は、モーメント法による数値計算を用いてマルチアンテナを構成する各アンテナの相互結合量と放射効率とを算出した結果の値である。従来構成の端末用マルチアンテナは、図18に示すように無給電素子を備えていない。   The graph of FIG. 2 shows a comparison of characteristics between the terminal multi-antenna 8 according to the first embodiment and the terminal multi-antenna having the conventional configuration as shown in FIG. The values shown in FIG. 2 are values obtained as a result of calculating the mutual coupling amount and the radiation efficiency of the respective antennas constituting the multi-antenna using the numerical calculation by the moment method. The conventional multi-antenna for terminals does not include a parasitic element as shown in FIG.

図2のグラフより、従来構成の端末用マルチアンテナの場合には、相互結合量が−10dB以上であり、その強い相互結合に起因して放射効率が約1dB劣化していることが分かる。一方、本発明第1実施例のマルチアンテナの場合には、相互結合量は−15dB程度であって、放射効率の劣化を0.1dB程度に抑えていることが分かる。
[無給電素子の長さについて]
ここで、無給電素子13の長さについて説明する。図3のグラフに、第1実施例に従った端末用マルチアンテナ8の無給電素子13の長さに対する相互結合量を数値計算により評価した値を示す。
From the graph of FIG. 2, it can be seen that in the case of a terminal multi-antenna having a conventional configuration, the mutual coupling amount is -10 dB or more, and the radiation efficiency is degraded by about 1 dB due to the strong mutual coupling. On the other hand, in the case of the multi-antenna of the first embodiment of the present invention, the mutual coupling amount is about −15 dB, and it is understood that the deterioration of the radiation efficiency is suppressed to about 0.1 dB.
[Length of parasitic element]
Here, the length of the parasitic element 13 will be described. In the graph of FIG. 3, the value which evaluated the mutual coupling amount with respect to the length of the parasitic element 13 of the multi antenna 8 for terminals according to 1st Example by numerical calculation is shown.

図4のグラフには、第1実施例に従った端末用マルチアンテナ8の無給電素子13の長さに対する放射効率を数値計算により評価した値を示す。   In the graph of FIG. 4, the value which evaluated the radiation efficiency with respect to the length of the parasitic element 13 of the multi antenna 8 for terminals according to 1st Example by numerical calculation is shown.

図3より、例えば相互結合量を−10dB以下にするためには、無給電素子13の長さを使用周波数帯の波長で換算して0.2波長乃至0.3波長とする必要があることが分かる。また、図4より、例えば放射効率の劣化を0.2dB以内にするためには、無給電素子13の長さを使用周波数帯の波長で換算して0.2波長乃至0.3波長とする必要があることが分かる。つまり、本発明者らは、無給電素子13の長さを給電素子12と同様に約1/4波長とし、給電素子12だけでなく無給電素子13にも電流を積極的に生じさせることで、アンテナ間の結合を低減させ放射効率を改善できることを確認した。   From FIG. 3, for example, in order to reduce the mutual coupling amount to −10 dB or less, it is necessary to convert the length of the parasitic element 13 to 0.2 wavelength to 0.3 wavelength in terms of the wavelength of the used frequency band. I understand. Also, from FIG. 4, for example, in order to make the degradation of radiation efficiency within 0.2 dB, the length of the parasitic element 13 is converted to the wavelength of the used frequency band to be 0.2 wavelength to 0.3 wavelength. I understand that it is necessary. That is, the present inventors set the length of the parasitic element 13 to about ¼ wavelength similarly to the feeder element 12, and positively generate current not only in the feeder element 12 but also in the parasitic element 13. It was confirmed that the radiation efficiency can be improved by reducing the coupling between the antennas.

図5は、本発明の第1実施例に従った端末用アンテナであるが、給電素子を3本備えた端末用アンテナ58の基本構成を示す概略図である。3本の給電素子52のうち、2本に各々1本ずつ無給電素子53が配置されている。   FIG. 5 is a schematic diagram showing a basic configuration of a terminal antenna 58 according to the first embodiment of the present invention, which is provided with three feeding elements. Of the three feeding elements 52, one parasitic element 53 is arranged for each two.

図6のグラフは、図2と同様に、本発明の第1実施例に従った端末用マルチアンテナ58と、従来構成の端末用マルチアンテナとの特性の比較を示す。給電素子を3本とした場合、図6のグラフより、従来構成の端末用マルチアンテナの場合には、相互結合量が−5dB程度であり、その相互結合に起因して放射効率が2dB以上劣化していることが分かる。一方、本発明第1実施例のマルチアンテナ58の場合には、相互結合量は−10dB程度であって、放射効率の劣化を1dB以内に抑えていることが分かる。   The graph of FIG. 6 shows a comparison of the characteristics of the terminal multi-antenna 58 according to the first embodiment of the present invention and the conventional terminal multi-antenna, as in FIG. When three feed elements are used, the amount of mutual coupling is about −5 dB in the case of a terminal multi-antenna having a conventional configuration, and the radiation efficiency is deteriorated by 2 dB or more due to the mutual coupling. You can see that On the other hand, in the case of the multi-antenna 58 of the first embodiment of the present invention, the mutual coupling amount is about −10 dB, and it can be seen that the deterioration of the radiation efficiency is suppressed within 1 dB.

アンテナ容積が限られる携帯端末に複数のアンテナを搭載するマルチアンテナにおいては、十分なアンテナ間距離を確保することができないため、アンテナ間相互結合の影響により放射効率が劣化しやすい。そうした課題に対し、本発明の第1実施例では、使用周波数帯の波長で換算して0.2波長乃至0.3波長の長さを有する無給電素子を任意の給電点付近において各々1本ずつ回路基板と接続して配置することにより、給電素子だけでなく無給電素子上にも電流を生じさせ、アンテナ間の結合を低減し放射効率を改善することができる。
なお、本実施例においては、無給電素子の数を各給電点において多くとも各々1本ずつ配置する例を示したが、各給電点において2本以上配置しても効果は変わらないため、各給電点において各々1本ずつの無給電素子で十分である。
In a multi-antenna in which a plurality of antennas are mounted on a portable terminal having a limited antenna volume, a sufficient distance between the antennas cannot be ensured, so that radiation efficiency is likely to deteriorate due to the influence of mutual coupling between antennas. In response to such a problem, in the first embodiment of the present invention, one parasitic element having a length of 0.2 to 0.3 wavelength in terms of the wavelength of the used frequency band is provided in the vicinity of an arbitrary feeding point. By connecting to the circuit board one by one, current can be generated not only on the feed element but also on the parasitic element, coupling between antennas can be reduced, and radiation efficiency can be improved.
In the present embodiment, an example in which at most one parasitic element is arranged at each feeding point is shown, but the effect is not changed even if two or more parasitic elements are arranged at each feeding point. One parasitic element at each feeding point is sufficient.

図7は、本発明の第2実施例に従ったマルチアンテナ78の基本構成を示す概略図である。この実施例は、第1実施例と同様な構成であるが、マルチアンテナ78の給電素子72または無給電素子73が折り曲げ構造を有している点が相違する。折り曲げ構造を有する給電素子72または無給電素子73についても、その素子長を周波数帯の波長で換算して0.2波長乃至0.3波長とし、無給電素子73を任意の給電点近傍において各々1本ずつ回路基板と接続することにより、給電素子72だけでなく無給電素子73上にも電流を生じさせ、第1実施例と同様な効果を得ることができる。   FIG. 7 is a schematic diagram showing a basic configuration of a multi-antenna 78 according to the second embodiment of the present invention. This embodiment has the same configuration as that of the first embodiment, except that the feeding element 72 or the parasitic element 73 of the multi-antenna 78 has a bent structure. For the feed element 72 or the parasitic element 73 having a bent structure, the element length is converted to a wavelength of 0.2 to 0.3 wavelengths by converting the wavelength of the frequency band, and the parasitic element 73 is set near any feed point. By connecting to the circuit board one by one, a current is generated not only on the feed element 72 but also on the parasitic element 73, and the same effect as in the first embodiment can be obtained.

給電素子72または無給電素子73を折り曲げ構造とすることで、アンテナの低姿勢化や任意形状の携帯端末筐体への内蔵化が可能となり、アンテナ性能とデザイン性の両立を図ることができる。   By making the feeding element 72 or the parasitic element 73 into a bent structure, the antenna can be lowered in posture and can be built in a portable terminal housing of an arbitrary shape, and both antenna performance and design can be achieved.

図8は、本発明の第3実施例に従ったマルチアンテナ88の基本構成を示す概略図である。この実施例は、第1実施例と同様な構成であるが、マルチアンテナ88の給電素子82および無給電素子83が分岐構造を有している点が相違する。分岐構造を有する給電素子82または無給電素子83についても、給電点から分岐点を経由して開放端までの長さを、使用周波数帯の波長で換算して0.2波長乃至0.3波長とし、無給電素子を任意の給電点近傍において各々1本ずつ回路基板と接続することにより、給電素子82だけでなく無給電素子83上にも電流を生じさせ、第1実施例と同様な効果を得ることができる。   FIG. 8 is a schematic diagram showing a basic configuration of a multi-antenna 88 according to the third embodiment of the present invention. This embodiment has the same configuration as that of the first embodiment, except that the feeding element 82 and the parasitic element 83 of the multi-antenna 88 have a branch structure. For the feeding element 82 or the parasitic element 83 having a branch structure, the length from the feeding point to the open end via the branching point is converted into the wavelength of the used frequency band by 0.2 wavelength to 0.3 wavelength. By connecting the parasitic elements to the circuit board one by one near the arbitrary feeding point, current is generated not only on the feeding element 82 but also on the parasitic element 83, and the same effect as in the first embodiment is obtained. Can be obtained.

給電素子82または無給電素子83を分岐構造とすることで、同一のアンテナ構成を用いながらも複数の周波数帯へ適用可能なマルチバンドを実現することができ、複数の周波数帯における相互結合の低減効果と放射効率の改善効果を得ることができる。   By using the feed element 82 or the parasitic element 83 as a branch structure, a multiband applicable to a plurality of frequency bands can be realized while using the same antenna configuration, and mutual coupling in a plurality of frequency bands can be reduced. The effect and the improvement effect of radiation efficiency can be acquired.

図9は、本発明の第4実施例に従ったマルチアンテナ98の基本構成を示す概略図である。この実施例は、第1実施例と同様な構成であるが、マルチアンテナ98の無給電素子93が任意の誘電率を有する誘電体94の表面または内部に配置されている点が相違する。任意の誘電率を有する誘電体94の表面または内部に配置される無給電素子93についても、その素子長を使用周波数帯の誘電率を考慮した波長で換算して0.2波長乃至0.3波長とし、無給電素子93を任意の給電点近傍において各々1本ずつ回路基板と接続することにより、給電素子92だけでなく無給電素子93上にも電流を生じさせ、第1実施例と同様な効果を得ることができる。   FIG. 9 is a schematic diagram showing a basic configuration of a multi-antenna 98 according to the fourth embodiment of the present invention. This embodiment has the same configuration as that of the first embodiment, but is different in that the parasitic element 93 of the multi-antenna 98 is arranged on the surface or inside of the dielectric 94 having an arbitrary dielectric constant. The parasitic element 93 disposed on the surface of or inside the dielectric 94 having an arbitrary dielectric constant is also converted to a wavelength that takes into account the dielectric constant of the operating frequency band and has a wavelength of 0.2 to 0.3. By setting the wavelength and connecting each parasitic element 93 to the circuit board one by one in the vicinity of an arbitrary feeding point, a current is generated not only on the feeding element 92 but also on the parasitic element 93, as in the first embodiment. Effects can be obtained.

無給電素子93を任意の誘電率を有する誘電体94の表面または内部に配置することで、無給電素子93の搭載に必要とされる容積を削減することができ、アンテナの小型化を図ることができる。例えば、図9に示す本発明第4実施例に従ったマルチアンテナ98の基本構成において、比誘電率3の誘電体を用いた場合には、相互結合の低減効果および放射効率の改善効果を維持したまま、誘電体の配置による波長短縮効果により無給電素子の物理的な素子長を短縮し、アンテナ容積を約1/2とすることができる。   By disposing the parasitic element 93 on the surface of or inside the dielectric 94 having an arbitrary dielectric constant, the volume required for mounting the parasitic element 93 can be reduced, and the antenna can be downsized. Can do. For example, in the basic configuration of the multi-antenna 98 according to the fourth embodiment of the present invention shown in FIG. 9, when a dielectric having a relative dielectric constant of 3 is used, the mutual coupling reduction effect and the radiation efficiency improvement effect are maintained. The physical element length of the parasitic element can be shortened by the wavelength shortening effect due to the arrangement of the dielectric, and the antenna volume can be reduced to about ½.

図10は、本発明の第5実施例に従ったマルチアンテナ108の基本構成を示す概略図である。この実施例は、第1実施例と同様な構成であるが、マルチアンテナ108の各給電素子102がそれぞれ回路基板100に対して垂直および平行に配置された点が相違する。無給電素子103は回路基板100に対して垂直に配置された放射素子102の給電点近傍において回路基板と接続されている。回路基板に対して垂直および平行に配置された給電素子102についても、その素子長を周波数帯の波長で換算して0.2波長乃至0.3波長とし、無給電素子103を図示のように回路基板100と接続することにより、給電素子102だけでなく無給電素子103上にも電流を生じさせ、第1実施例と同様な効果を得ることができる。   FIG. 10 is a schematic diagram showing a basic configuration of the multi-antenna 108 according to the fifth embodiment of the present invention. This embodiment has the same configuration as that of the first embodiment, but is different in that each feeding element 102 of the multi-antenna 108 is arranged vertically and parallel to the circuit board 100, respectively. The parasitic element 103 is connected to the circuit board in the vicinity of the feeding point of the radiating element 102 arranged perpendicular to the circuit board 100. Also for the feed element 102 arranged perpendicularly and parallel to the circuit board, the element length is converted to a wavelength of 0.2 to 0.3 wavelength in terms of the frequency band, and the parasitic element 103 is as shown in the figure. By connecting to the circuit board 100, a current is generated not only on the feed element 102 but also on the parasitic element 103, and the same effect as in the first embodiment can be obtained.

給電素子102を垂直および平行に配置することで、アンテナ間の相互結合を低減することが可能となる。また、垂直に配置された給電素子102の給電点近傍に無給電素子103を配置することで、垂直に配置された給電素子102のグランド機能が強化され、垂直に配置された給電素子102の放射パターンについて垂直偏波成分が増大する。   By arranging the feed elements 102 vertically and in parallel, mutual coupling between the antennas can be reduced. Further, by arranging the parasitic element 103 in the vicinity of the feeding point of the feeder element 102 arranged vertically, the ground function of the feeder element 102 arranged vertically is strengthened, and the radiation of the feeder element 102 arranged vertically is radiated. The vertical polarization component increases for the pattern.

例えば、本実施例に従ったマルチアンテナ108を携帯端末に搭載して使用する場合、端末周辺の到来波は垂直偏波成分が支配的であるため、端末の放射特性と到来波の整合性が向上し携帯端末における実効的な利得が改善する。   For example, when the multi-antenna 108 according to the present embodiment is mounted on a mobile terminal and used, the vertical polarization component is dominant in the incoming waves around the terminal, so that the radiation characteristics of the terminal and the consistency of the incoming waves are The effective gain in the portable terminal is improved.

図11は、本発明の第6実施例に従ったマルチアンテナ118の基本構成を示す概略図である。この実施例は、第1実施例と同様な構成であるが、マルチアンテナ118の無給電素子113が互いに直交して配置されている点が相違する。図11に示す実施例の場合には、3本の給電素子112が接続された全ての給電点111の近傍に各々1本ずつ無給電素子113が配置されており、かつ、前記無給電素子113は互いに直交して配置されている。互いに直交する無給電素子113を配置した場合においても、その素子長を使用周波数帯の誘電率を考慮した波長で換算して0.2波長乃至0.3波長とし、無給電素子113を任意の給電点近傍において各々1本ずつ回路基板110と接続することにより、給電素子112だけでなく無給電素子113上にも電流を生じさせ、第1実施例と同様な効果を得ることができる。無給電素子113を互いに直交させて配置することで、無給電素子間に生じる相互結合の影響を低減することが可能となり、アンテナ間相互結合の低減および放射効率の改善を図ることができる。   FIG. 11 is a schematic diagram showing a basic configuration of a multi-antenna 118 according to the sixth embodiment of the present invention. This embodiment has the same configuration as that of the first embodiment, but is different in that the parasitic elements 113 of the multi-antenna 118 are arranged orthogonal to each other. In the case of the embodiment shown in FIG. 11, one parasitic element 113 is arranged in the vicinity of all the feeding points 111 to which the three feeding elements 112 are connected, and the parasitic element 113. Are arranged orthogonal to each other. Even when parasitic elements 113 that are orthogonal to each other are arranged, the element length is converted to a wavelength that takes into account the dielectric constant of the operating frequency band to be 0.2 to 0.3 wavelengths, and the parasitic element 113 is arbitrarily set. By connecting each one to the circuit board 110 in the vicinity of the feeding point, a current is generated not only on the feeding element 112 but also on the parasitic element 113, and the same effect as in the first embodiment can be obtained. By disposing the parasitic elements 113 so as to be orthogonal to each other, it is possible to reduce the influence of mutual coupling between the parasitic elements, and it is possible to reduce the mutual coupling between antennas and improve the radiation efficiency.

なお、本実施例においては、直交する無給電素子を回路基板が配置されている面と同一面内に構成した例を示したが、同一ではない面内に各無給電素子を配置した場合においても同様な効果が得られる。   In the present embodiment, an example in which the orthogonal parasitic elements are configured in the same plane as the circuit board is disposed, but in the case where each parasitic element is disposed in a plane that is not the same, The same effect can be obtained.

図12は、本発明の第7実施例に従ったマルチアンテナ128の基本構成を示す概略図である。この実施例は、指向性の合成により利得の増大効果が得られるビームフォーミングに対して本発明に係るマルチアンテナを応用した例である。この実施例は、第1乃至第5実施例のいずれかのマルチアンテナを用いて構成され、指向性の合成を行うビームフォーミング回路124を具備している。本実施例におけるマルチアンテナ装置128は、アンテナとして第1から第5実施例に記載のマルチアンテナを使用しているため、アンテナ間の相互結合の影響が小さく、高い放射効率を得ることができる。従って、指向性の合成を行うビームフォーミングにおいても、高い利得の増大効果を得ることができる。   FIG. 12 is a schematic diagram showing a basic configuration of a multi-antenna 128 according to the seventh embodiment of the present invention. This embodiment is an example in which the multi-antenna according to the present invention is applied to beam forming in which a gain increasing effect is obtained by directivity synthesis. This embodiment is configured using the multi-antenna of any one of the first to fifth embodiments, and includes a beam forming circuit 124 that performs directivity synthesis. Since the multi-antenna apparatus 128 in the present embodiment uses the multi-antenna described in the first to fifth embodiments as an antenna, the influence of mutual coupling between the antennas is small, and high radiation efficiency can be obtained. Accordingly, a high gain increasing effect can be obtained even in beam forming in which directivity synthesis is performed.

図13は、本発明の第8実施例に従ったマルチアンテナ138の基本構成を示す概略図である。この実施例は、信号の合成により利得の増大効果が得られるダイバーシティに対して本発明に係るマルチアンテナを応用した例である。
この実施例は、第1乃至第5実施例のいずれかのマルチアンテナを用いて構成され、信号の合成を行うダイバーシティ回路134を具備している。本実施例におけるマルチアンテナ装置138は、アンテナとして第1から第5実施例に記載のマルチアンテナを使用しているため、アンテナ間の相互結合の影響が小さく、高い放射効率を得ることができる。また、アンテナ間相互結合の低減に伴い、ダイバーシティ利得と密接な関係にあるアンテナ間相関も十分低く抑えされている。したがって、信号の合成を行うダイバーシティにおいても、高い利得の増大効果を得ることができる。
FIG. 13 is a schematic diagram showing a basic configuration of a multi-antenna 138 according to the eighth embodiment of the present invention. This embodiment is an example in which the multi-antenna according to the present invention is applied to diversity in which a gain increasing effect can be obtained by combining signals.
This embodiment is configured using the multi-antenna of any of the first to fifth embodiments, and includes a diversity circuit 134 that combines signals. Since the multi-antenna apparatus 138 in the present embodiment uses the multi-antenna described in the first to fifth embodiments as an antenna, the influence of mutual coupling between the antennas is small, and high radiation efficiency can be obtained. As the mutual coupling between antennas is reduced, the correlation between antennas, which is closely related to the diversity gain, is also suppressed to a sufficiently low level. Therefore, a high gain increase effect can be obtained even in diversity in which signals are combined.

また、図14は、異なる偏波間の信号を合成することにより利得の増大効果が得られる偏波ダイバーシティに対して本発明に係るマルチアンテナを応用した例である。この例では、第5実施例のマルチアンテナを用いて構成されており、信号の合成を行うダイバーシティ回路144を具備している。本実施例におけるマルチアンテナ装置148は、アンテナとして第5実施例に記載のマルチアンテナを使用しているため、アンテナ間の相互結合の影響が小さく、高い放射効率を得ることができる。さらに、垂直に配置された給電素子142の給電点近傍に無給電素子143を配置しているため、垂直に配置された給電素子142は垂直偏波成分を有し、平行に配置された給電素子142は水平偏波成分を有する。その結果、マルチアンテナ148を構成する各アンテナが垂直・水平の独立した偏波特性を有するため、ダイバーシティ利得と密接な関係にあるアンテナ間相関を十分低く抑えることができる。したがって異なる偏波間の信号の合成を行う偏波ダイバーシティにおいて、高い利得の増大効果を得ることができる。   FIG. 14 shows an example in which the multi-antenna according to the present invention is applied to polarization diversity in which a gain increasing effect can be obtained by combining signals between different polarizations. In this example, the multi-antenna of the fifth embodiment is used, and a diversity circuit 144 that combines signals is provided. Since the multi-antenna apparatus 148 in the present embodiment uses the multi-antenna described in the fifth embodiment as an antenna, the influence of mutual coupling between the antennas is small, and high radiation efficiency can be obtained. Further, since the parasitic element 143 is arranged in the vicinity of the feeding point of the vertically arranged feeding element 142, the vertically arranged feeding element 142 has a vertical polarization component and is arranged in parallel. 142 has a horizontal polarization component. As a result, since each antenna constituting the multi-antenna 148 has vertical and horizontal independent polarization characteristics, the inter-antenna correlation closely related to the diversity gain can be suppressed sufficiently low. Therefore, a high gain increasing effect can be obtained in polarization diversity in which signals between different polarizations are combined.

なお、従来技術である無給電素子を配置しない場合には、給電素子を回路基板に対して垂直に配置したときも、回路基板に生じる電流の影響により垂直偏波成分を得ることができず、偏波ダイバーシティを実現することはできなかった。   In addition, when the parasitic element which is the prior art is not arranged, even when the feeding element is arranged perpendicular to the circuit board, a vertical polarization component cannot be obtained due to the influence of the current generated in the circuit board. Polarization diversity could not be realized.

図15は、本発明の第9実施例に従ったマルチアンテナ158の基本構成を示す概略図である。この実施例は、空間的な物理チャネルの並列伝送により伝送容量を増大させるMIMO伝送に対して本発明に係るマルチアンテナを応用した例である。この実施例は、第1乃至第5実施例のいずれかのマルチアンテナを用いて構成され、MIMO伝送に関する信号処理を行うMIMO伝送回路154を具備している。本実施例におけるマルチアンテナ装置158は、アンテナとして第1から第5実施例に記載のマルチアンテナを使用しているため、アンテナ間の相互結合の影響が小さく、高い放射効率を得ることができる。また、アンテナ間相関を低く抑えることができる。したがって、空間的な物理チャネルの並列伝送により伝送容量を増大させるMIMO伝送においても、高い伝送容量の増大効果を得ることができる。   FIG. 15 is a schematic diagram showing a basic configuration of a multi-antenna 158 according to the ninth embodiment of the present invention. This embodiment is an example in which the multi-antenna according to the present invention is applied to MIMO transmission in which transmission capacity is increased by parallel transmission of spatial physical channels. This embodiment is configured using the multi-antenna of any of the first to fifth embodiments, and includes a MIMO transmission circuit 154 that performs signal processing related to MIMO transmission. Since the multi-antenna apparatus 158 in the present embodiment uses the multi-antenna described in the first to fifth embodiments as an antenna, the influence of mutual coupling between the antennas is small, and high radiation efficiency can be obtained. Moreover, the correlation between antennas can be kept low. Therefore, even in MIMO transmission in which the transmission capacity is increased by parallel transmission of spatial physical channels, the effect of increasing the high transmission capacity can be obtained.

図16は、本発明の第10実施例に従ったマルチアンテナ168の基本構成を示す概略図である。この実施例は、ビームフォーミングまたはダイバーシティまたはMIMO伝送を切り替えて使用するシステムに対して、本発明に係るマルチアンテナを応用した例である。この実施例は、第1から第5実施例のいずれかのマルチアンテナを用いて構成され、ビームフォーミングおよびダイバーシティおよびMIMO伝送に関する信号処理を行うビームフォーミング・ダイバーシティ・MIMO伝送回路164を具備している。本実施例におけるマルチアンテナ装置168は、アンテナとして第1から第5実施例に記載のマルチアンテナを使用しているため、アンテナ間の相互結合の影響が小さく、高い放射効率を得ることができる。また、アンテナ間相関を低く抑えることができる。従って、指向性の合成を行うビームフォーミングおよび信号の合成を行うダイバーシティおよび空間的な物理チャネルの並列伝送により伝送容量を増大させるMIMO伝送においても、高い利得の増大効果と高い伝送容量の増大効果を得ることができる。さらに、通信を行う周辺の伝搬環境に応じて、上記3種を切り替えて行うことで、環境に依存しない最適な信号伝送を常に行うことが可能となり、システム容量の増大を図ることができる。   FIG. 16 is a schematic diagram showing a basic configuration of a multi-antenna 168 according to the tenth embodiment of the present invention. This embodiment is an example in which the multi-antenna according to the present invention is applied to a system that switches between beamforming, diversity, and MIMO transmission. This embodiment is configured using the multi-antenna of any of the first to fifth embodiments, and includes a beamforming diversity MIMO transmission circuit 164 that performs signal processing relating to beamforming, diversity, and MIMO transmission. . Since the multi-antenna apparatus 168 in the present embodiment uses the multi-antenna described in the first to fifth embodiments as an antenna, the influence of mutual coupling between the antennas is small, and high radiation efficiency can be obtained. Moreover, the correlation between antennas can be kept low. Therefore, even in MIMO transmission that increases transmission capacity by beamforming for combining directivity, diversity for combining signals, and parallel transmission of spatial physical channels, it has the effect of increasing high gain and increasing transmission capacity. Obtainable. Furthermore, by switching between the above three types according to the surrounding propagation environment in which communication is performed, optimum signal transmission independent of the environment can always be performed, and the system capacity can be increased.

本発明の第1実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 1st Example of this invention. 本発明の第1実施例に従ったマルチアンテナの相互結合量と放射効率を示す図である。It is a figure which shows the mutual coupling amount and radiation efficiency of the multi-antenna according to 1st Example of this invention. 本発明の第1実施例に従ったマルチアンテナの無給電素子の長さに対する相互結合量を示す図である。It is a figure which shows the mutual coupling amount with respect to the length of the parasitic element of the multi-antenna according to 1st Example of this invention. 本発明の第1実施例に従ったマルチアンテナの無給電素子の長さに対する放射効率を示す図である。It is a figure which shows the radiation efficiency with respect to the length of the parasitic element of the multi-antenna according to 1st Example of this invention. 本発明の第1実施例に従ったマルチアンテナの給電素子を3つとした場合の基本構成を示す概略図である。It is the schematic which shows the basic composition at the time of setting the feed element of the multi-antenna according to 1st Example of this invention to three. 本発明の第1実施例に従った図5に示すマルチアンテナの給電素子を3つとした場合の相互結合量と放射効率を示す図である。FIG. 6 is a diagram showing the amount of mutual coupling and radiation efficiency when there are three feeding elements of the multi-antenna shown in FIG. 5 according to the first embodiment of the present invention. 本発明の第2実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 2nd Example of this invention. 本発明の第3実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 3rd Example of this invention. 本発明の第4実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 4th Example of this invention. 本発明の第5実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 5th Example of this invention. 本発明の第6実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 6th Example of this invention. 本発明の第7実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 7th Example of this invention. 本発明の第8実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 8th Example of this invention. 本発明の第8実施例に従ったマルチアンテナを偏波ダイバーシティに適用した場合の基本構成を示す概略図である。It is the schematic which shows the basic composition at the time of applying the multi-antenna according to the 8th Example of this invention to polarization diversity. 本発明の第9実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 9th Example of this invention. 本発明の第10実施例に従ったマルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the multi-antenna according to 10th Example of this invention. 従来の端末用ダイバーシティアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the diversity antenna for the conventional terminal. 従来の端末用マルチアンテナの基本構成を示す概略図である。It is the schematic which shows the basic composition of the conventional multi-antenna for terminals.

符号の説明Explanation of symbols

8 マルチアンテナ
10 回路基板
11 給電点
12 給電素子
13 無給電素子
8 Multi-antenna 10 Circuit board 11 Feed point 12 Feed element 13 Parasitic element

Claims (10)

複数の給電点を備えた回路基板;
一端が開放され他端が前記給電点にそれぞれ接続された複数の給電素子;及び
一端が開放され他端が前記回路基板に接続された単数または複数の無給電素子;
を備えたマルチアンテナであって:
前記給電素子および前記無給電素子は使用周波数帯の波長で換算して0.2波長乃至0.3波長の長さの素子長を有し;かつ
前記無給電素子を任意の前記給電点近傍において回路基板に接続すること
を特徴とするマルチアンテナ。
Circuit board with multiple feed points;
A plurality of feed elements having one end open and the other end connected to the feed point; and one or more parasitic elements having one end open and the other end connected to the circuit board;
A multi-antenna with:
The feed element and the parasitic element have an element length of 0.2 to 0.3 wavelength in terms of a wavelength in a use frequency band; and the parasitic element is located near any feed point A multi-antenna characterized by being connected to a circuit board.
前記給電素子または無給電素子は折り曲げ構造を有することを特徴とする請求項1に記載のマルチアンテナ。 The multi-antenna according to claim 1, wherein the feeding element or the parasitic element has a bent structure. 前記給電素子および無給電素子は分岐構造を有することを特徴とする請求項1に記載のマルチアンテナ。 The multi-antenna according to claim 1, wherein the feeding element and the parasitic element have a branched structure. 前記無給電素子は任意の誘電率を有する誘電体の表面または内部に配置されることを特徴とする請求項1に記載のマルチアンテナ。 The multi-antenna according to claim 1, wherein the parasitic element is disposed on or inside a dielectric having an arbitrary dielectric constant. 前記給電素子は回路基板に対して垂直および平行に配置され、前記無給電素子は回路基板に対して垂直に配置された給電素子の給電点近傍において回路基板と接続することを特徴とする請求項1に記載のマルチアンテナ。 The feeder element is arranged perpendicularly and parallel to the circuit board, and the parasitic element is connected to the circuit board in the vicinity of a feeding point of the feeder element arranged perpendicular to the circuit board. The multi-antenna according to 1. 前記無給電素子は互いに直交して配置されることを特徴とする請求項1に記載のマルチアンテナ。 The multi-antenna according to claim 1, wherein the parasitic elements are arranged orthogonal to each other. 指向性を制御するビームフォーミングを行うこと特徴とする請求項1乃至5のいずれかに記載のマルチアンテナ。 6. The multi-antenna according to claim 1, wherein beam forming for controlling directivity is performed. ダイバーシティを行うことを特徴とする請求項1乃至5に記載のマルチアンテナ。 6. The multi-antenna according to claim 1, wherein diversity is performed. 空間的な物理チャネルの並列伝送により伝送容量を増大させるMIMO伝送を行うことを特徴とする請求項1乃至5のいずれかに記載のマルチアンテナ。 The multi-antenna according to any one of claims 1 to 5, wherein MIMO transmission is performed to increase transmission capacity by parallel transmission of spatial physical channels. 通信を行う周辺の伝搬環境に応じてビームフォーミング、ダイバーシティまたはMIMO伝送を切替えて使用することを特徴とする請求項1乃至5のいずれかに記載のマルチアンテナ。 The multi-antenna according to any one of claims 1 to 5, wherein beamforming, diversity, or MIMO transmission is switched and used in accordance with a surrounding propagation environment in which communication is performed.
JP2006184787A 2006-07-04 2006-07-04 Multi-antenna with parasitic elements Expired - Fee Related JP4667310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184787A JP4667310B2 (en) 2006-07-04 2006-07-04 Multi-antenna with parasitic elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184787A JP4667310B2 (en) 2006-07-04 2006-07-04 Multi-antenna with parasitic elements

Publications (2)

Publication Number Publication Date
JP2008017047A JP2008017047A (en) 2008-01-24
JP4667310B2 true JP4667310B2 (en) 2011-04-13

Family

ID=39073671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184787A Expired - Fee Related JP4667310B2 (en) 2006-07-04 2006-07-04 Multi-antenna with parasitic elements

Country Status (1)

Country Link
JP (1) JP4667310B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751591A (en) * 2011-04-22 2012-10-24 索尼移动通信日本株式会社 Antenna apparatus
CN102983399A (en) * 2011-07-15 2013-03-20 Gn瑞声达A/S Antenna device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922956B2 (en) * 2008-01-28 2012-04-25 株式会社エヌ・ティ・ティ・ドコモ Multi-antenna device with parasitic elements
US7973718B2 (en) 2008-08-28 2011-07-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods employing coupling elements to increase antenna isolation
WO2010028521A1 (en) * 2008-09-11 2010-03-18 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods employing coupling elements to increase antenna isolation
JP5532847B2 (en) 2009-11-20 2014-06-25 船井電機株式会社 Multi-antenna device and portable device
JP2012049873A (en) 2010-08-27 2012-03-08 Fujitsu Ltd Antenna device, and wireless communication device
US9325064B2 (en) 2011-08-18 2016-04-26 Sony Corporation Mobile terminal
US9088069B2 (en) 2011-09-21 2015-07-21 Sony Corporation Wireless communication apparatus
EP2774213A1 (en) * 2011-10-31 2014-09-10 Sony Ericsson Mobile Communications AB Multiple-input multiple-output (mimo) antennas with multi-band wave traps
US9059520B2 (en) 2012-01-31 2015-06-16 Sony Corporation Wireless communication device and communication terminal apparatus
JP7557177B2 (en) 2021-03-31 2024-09-27 原田工業株式会社 Composite antenna device for built-in unit
CN118556347A (en) * 2022-01-24 2024-08-27 华为技术有限公司 Antenna device, antenna system and base station

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037413A (en) * 2001-07-25 2003-02-07 Matsushita Electric Ind Co Ltd Antenna for portable wireless device
JP2004040361A (en) * 2002-07-02 2004-02-05 Ntt Docomo Inc Antenna device with variable beam width
JP2004064312A (en) * 2002-07-26 2004-02-26 Matsushita Electric Ind Co Ltd Antenna system for mobile wireless unit
JP2005086780A (en) * 2003-09-11 2005-03-31 Taiyo Yuden Co Ltd Communication device
JP2005086518A (en) * 2003-09-09 2005-03-31 Ntt Docomo Inc Antenna assembly
JP2006042111A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Antenna device
JP2006067234A (en) * 2004-08-26 2006-03-09 Matsushita Electric Ind Co Ltd Antenna device
JP2008515287A (en) * 2004-09-23 2008-05-08 インターデイジタル テクノロジー コーポレーション Blind signal separation using correlated antenna elements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037413A (en) * 2001-07-25 2003-02-07 Matsushita Electric Ind Co Ltd Antenna for portable wireless device
JP2004040361A (en) * 2002-07-02 2004-02-05 Ntt Docomo Inc Antenna device with variable beam width
JP2004064312A (en) * 2002-07-26 2004-02-26 Matsushita Electric Ind Co Ltd Antenna system for mobile wireless unit
JP2005086518A (en) * 2003-09-09 2005-03-31 Ntt Docomo Inc Antenna assembly
JP2005086780A (en) * 2003-09-11 2005-03-31 Taiyo Yuden Co Ltd Communication device
JP2006042111A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Antenna device
JP2006067234A (en) * 2004-08-26 2006-03-09 Matsushita Electric Ind Co Ltd Antenna device
JP2008515287A (en) * 2004-09-23 2008-05-08 インターデイジタル テクノロジー コーポレーション Blind signal separation using correlated antenna elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751591A (en) * 2011-04-22 2012-10-24 索尼移动通信日本株式会社 Antenna apparatus
US8947318B2 (en) 2011-04-22 2015-02-03 Sony Mobile Communications Inc. Antenna apparatus
CN102751591B (en) * 2011-04-22 2015-06-17 索尼移动通信日本株式会社 Antenna apparatus
CN102983399A (en) * 2011-07-15 2013-03-20 Gn瑞声达A/S Antenna device
CN102983399B (en) * 2011-07-15 2016-08-10 Gn瑞声达A/S Antenna equipment
US10601128B2 (en) 2011-07-15 2020-03-24 Gn Hearing A/S Device and method using a parasitic antenna element to substantially isolate or decouple first and second antennas respectively operating in first and second frequency bands

Also Published As

Publication number Publication date
JP2008017047A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4667310B2 (en) Multi-antenna with parasitic elements
CN107534206B (en) Wireless electronic device
JP3903991B2 (en) Antenna device
Haraz et al. Single-band PIFA MIMO antenna system design for future 5G wireless communication applications
JP4171008B2 (en) Antenna device and portable radio
CN112088465B (en) Antenna
US20090273523A1 (en) Antenna and communication device having same
JP2007151115A (en) Monopole antenna and mimo antenna including it
JP4952789B2 (en) Dual polarized antenna
JP2007013643A (en) Integrally formed flat-plate multi-element antenna and electronic apparatus
TW201236265A (en) Antenna, complex antenna and radio-frequency transceiver system
JPWO2010073429A1 (en) Array antenna device
JP4690820B2 (en) Antenna device
JP2007300398A (en) Multi-band antenna and multi-band multi-antenna
WO2015107983A1 (en) Antenna device
Hwang et al. Cavity-backed stacked patch array antenna with dual polarization for mmWave 5G base stations
JP2007142878A (en) Terminal multi-antenna system
JP4709667B2 (en) Antenna device and receiving device
JP4044074B2 (en) Antenna device
JP5545375B2 (en) Antenna device
US9419327B2 (en) System for radiating radio frequency signals
KR100586938B1 (en) Internal diversity antenna
KR101710803B1 (en) Base Station Antenna Radiator for Isolation of Polarization Diversity
JP2005086518A (en) Antenna assembly
Brar et al. Phased arrays and MIMO: Wideband 5G end fire elements on liquid crystal polymer for MIMO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees