WO2009129882A1 - Electric machine comprising curved cooling channels in the rotor - Google Patents

Electric machine comprising curved cooling channels in the rotor Download PDF

Info

Publication number
WO2009129882A1
WO2009129882A1 PCT/EP2009/001053 EP2009001053W WO2009129882A1 WO 2009129882 A1 WO2009129882 A1 WO 2009129882A1 EP 2009001053 W EP2009001053 W EP 2009001053W WO 2009129882 A1 WO2009129882 A1 WO 2009129882A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cooling channel
cooling
fluid element
cooling medium
Prior art date
Application number
PCT/EP2009/001053
Other languages
German (de)
French (fr)
Inventor
Torsten Franke
Cornelia Welker
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Publication of WO2009129882A1 publication Critical patent/WO2009129882A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/18Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the external part of the closed circuit comprises a heat exchanger structurally associated with the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to an electrical machine according to the preamble of claim 1.
  • Electrical machines also referred to below as “electrical machines” have stationary parts (stator) and rotating parts (rotor) in which, due to the electromagnetic energy conversion, heat loss is produced.
  • the heat loss is usually provided by a cooling medium, e.g. Air, water, oil etc. discharged from the machine.
  • a cooling medium e.g. Air, water, oil etc. discharged from the machine.
  • the rotor is cooled by means of flowing fluids.
  • the dissipatable heat output is substantially proportional to the mass flow of the cooling medium, the heat transfer coefficient between the machine part to be cooled and the cooling medium and the temperature difference between the machine part to be cooled and the cooling medium.
  • the object of the invention is to provide an electrical machine, the rotor can be effectively cooled, the cooling of the rotor as little as possible draws kinetic energy.
  • the starting point of the invention is an electric machine with a stator and a rotor, which is rotatably arranged about an axis of rotation relative to the stator.
  • at least one cooling channel is provided, which is separated from a cooling medium, such as e.g. Oil, water or similar is flowed through.
  • the absolute velocity of a fluid element of the medium flowing through the cooling channel is composed of the speed of the rotor or of the cooling channel at the location at which the fluid element is currently located and the velocity of the fluid element relative to the rotor or to the cooling channel.
  • the basic principle of the invention is to design the geometry of the at least one cooling channel in such a way that the resulting velocity of the fluid element or of the cooling medium flowing through the cooling channel in the circumferential or rotational direction of the electric machine is as low as possible, preferably zero.
  • the geometry of the cooling channel is such that the fluid element under consideration, as it flows through the cooling channel, has a velocity component relative to the rotor which corresponds to the circumferential direction present at the location of the fluid element under consideration.
  • 19057Getician.rtf speed of the rotor or the cooling channel is opposite.
  • the relative speed of the fluid element in the circumferential direction of the rotor and the speed of the rotor measured in the circumferential direction completely or at least partially cancel out at the location of the fluid element under consideration.
  • the invention is independent of the geometric shape of the rotating, to be cooled body (rotor) applicable, provided that the geometry of the cooling channel, the flow velocity of the medium flowing in the cooling channel and the rotational speed of the rotor are coordinated such that the absolute speed of the cooling medium in Seen circumferentially low or preferably zero.
  • the cross section of the cooling channel changes or is constant over the length of the cooling channel.
  • the flow rate of the cooling medium in the cooling channel is constant in accordance with the equation of continuity.
  • variable cross-section the flow rate changes accordingly inversely proportional to the change in cross section.
  • a control or regulating electronics which controls or regulates the volume flow of the cooling medium flowing through the cooling channel as a function of the rotational speed of the electric machine that the transmitted from the rotor to the cooling medium kinetic energy or mechanical power is minimal and at the same time a predetermined operating temperature is not exceeded.
  • the volume flow of the cooling medium can be adjusted so that the resulting velocity component of the cooling medium
  • the flow rate of the cooling medium satisfying this condition may be referred to as "synchronous speed".
  • the geometry of the or the cooling channels is preferably designed so that the "synchronizing condition" is achieved even at maximum speed of the electric machine and maximum available volume flow of the cooling medium.
  • the data required to control the flow rate of the cooling medium may be e.g. stored electronically stored in a map.
  • FIGS 1, 2 a first embodiment of the invention
  • Figure 3 shows a second embodiment according to the invention.
  • FIG. 4 a third embodiment according to the invention.
  • FIG. 1 shows an electric machine 1 with a stator 2, which has winding heads 3, 4. Radially inside the stator 2, a rotor 5 is arranged, which is rotatable relative to the stator 2 about a rotation axis 6 of the electric machine.
  • the rotor or rotor 5 has a rotor or rotor shaft 7 in which an inflow channel 8 is provided, via which coolant is pumped into the rotor 5.
  • An arrow 9 shows the flow direction of the coolant in the inflow channel 8.
  • the rotor 5 may have the shape of a circular cylinder.
  • a circular plate-like plane 10 is provided in the lower third of the rotor 5, via which the annular rotor shell 11 is connected to the rotor shaft 7.
  • the inflow channel 8 provided in the rotor shaft 7 extends down to approximately the middle of the plane 10.
  • FIG. 2 shows a top view of the circular plate-like plane 10.
  • a plurality of fluid channels 12-19 are provided in the circular plate-like plane 10 which extend from the center of the circular plate 10, ie. extend spirally outwardly from the inflow channel 8.
  • the fluid channels 12-19 in the plan view shown in FIG. 2 have the shape of involute. From outer ends 20 -
  • the coolant used for cooling the rotor 5 thus flows via the inflow channel 8 downwards into the circular plate 10 and from the center thereof via the fluid channels 12-19 to the outside and from there upwards or downwards via the branch channels 28-31 or 32. 35. Via the outlet openings 36-43, the cooling medium exits the jacket surface 11 of the rotor 5 and from there it sprays against the stator 2 or against the winding heads 3, 4.
  • the coolant flows back through a coolant sump, from which it is sucked off by means of a pump (not shown here) and pumped via a recooler (not shown) back into the inflow channel 8.
  • the fluid channels 12-19 are spirally curved in the form of involutes.
  • the fluid channels 12-19 are curved counterclockwise. at
  • the cooling medium flowing outward from the inflow channel 8 in the fluid channels 12-19 is hardly or not moved in the circumferential direction since the rotational speed of the rotor 5 is entirely or at least partially due to an oppositely directed velocity component of the cooling medium flowing outward in the fluid channels 12-19 is compensated.
  • the outward flow of the cooling medium in the fluid channels 12-19 hardly kinetic energy is transferred from the rotor 5 to the cooling medium.
  • the branch channels 28 - 31 or 32 - 35 provided in the lateral surface 11 of the rotor 5 run obliquely with respect to the axis of rotation of the electric machine 1 indicated by the arrow 9 upward flow or when flowing down the cooling medium in the fluid channels 28 - 31 and 32 - 35, the relative speed of the fluid with respect to the rotor 5 in the circumferential direction of the rotor 5 of the peripheral speed of the rotor 5 is directed opposite and thus no or hardly kinetic energy is transferred from the rotor 5 to the cooling medium.
  • FIG. 3 shows an exemplary embodiment of an electrical machine 1 in which the "circular plate" 10 which connects the rotor shell 11 to the rotor shaft 7 is arranged at the lower end of the rotor shell 11.
  • the rotor 5 thus has a "cup shape”.
  • the embodiment of FIG. 3 is substantially identical to the exemplary embodiment described in FIGS. 1 and 2.
  • Figures 4, 5 show an embodiment in which the coolant does not exit on the lateral surface of the rotor 5 from the rotor 5, in contrast to the previous embodiments, but via meshströmkanäle 44 - 49 back into the rotor shaft 7 and from there to an external cooler (not shown) flows. Then it flows over one
  • the return flow 44 - 49 are also designed so that the resulting speed of the return flow 44 - 49 flowing through the cooling medium in the circumferential or rotational direction of the electric machine is as low as possible, preferably zero.

Abstract

An electric machine, comprising a stator, a rotor disposed rotatably about an axis of rotation relative to the stator, and at least one cooling channel provided in or on the rotor, a cooling medium flowing through said cooling channel, wherein the absolute velocity of a fluid element of the cooling medium is found by superpositioning the velocity of the rotor at the current location of the fluid element under consideration and the velocity of the fluid element relative to the rotor. The geometry of the cooling channel is configured such that when flowing through the cooling channel the fluid element has a velocity component relative to the rotor that is directed opposite the circumferential velocity of the rotor or cooling channel at the current location of the fluid element under consideration.

Description

ELEKTRISCHE MASCHINE MIT GEKRÜMMTEN KUHLKANALEN IM ROTOR ELECTRIC MACHINE WITH CURVED COOLING CHANNELS IN THE ROTOR
Die vorliegende Erfindung betrifft eine elektrische Maschine gemäß dem Oberbegriff des Patentanspruches 1.The present invention relates to an electrical machine according to the preamble of claim 1.
Elektrische Maschinen, im Folgenden auch als "Elektromaschinen" bezeichnet, weisen stehende Teile (Stator) und rotierende Teile (Rotor) auf, in denen bedingt durch die elektromagnetische Energiewandlung Verlustwärme entsteht. Die Verlustwärme wird üblicherweise durch ein Kühlmedium, wie z.B. Luft, Wasser, Öl etc. aus der Maschine abgeführt. Insbesondere bei Maschinen mit hoher Leistungsdichte, wie z.B. Generatoren von Fahrzeugen, wird der Rotor mittels strömender Fluide gekühlt. Die abführbare Wärmeleistung ist dabei im Wesentlichen proportional zum Massenstrom des Kühlmediums, zum Wärmeübergangskoeffizienten zwischen dem zu kühlenden Maschinenteil und dem Kühlmedium sowie zur Temperaturdifferenz zwischen dem zu kühlenden Maschinenteil und dem Kühlmedium.Electrical machines, also referred to below as "electrical machines", have stationary parts (stator) and rotating parts (rotor) in which, due to the electromagnetic energy conversion, heat loss is produced. The heat loss is usually provided by a cooling medium, e.g. Air, water, oil etc. discharged from the machine. Especially in machines with high power density, such as Generators of vehicles, the rotor is cooled by means of flowing fluids. The dissipatable heat output is substantially proportional to the mass flow of the cooling medium, the heat transfer coefficient between the machine part to be cooled and the cooling medium and the temperature difference between the machine part to be cooled and the cooling medium.
Zur Kühlung des Stators sind verschiedene Ansätze bekannt. Bekannt ist beispielsweise, das Kühlmedium über die Mantelfläche des Stators zu leiten oder durch Kühlkanäle, die im Inneren des Stators vorgesehen sind. Stand der Technik ist ferner, die besonders temperaturempfindlichen Wickelköpfe mittels Düsen, welche im Stator angeordnet sind, mit Kühlmittel zu besprühen. Energetisch nachteilig ist es, wenn dem Kühlmedium durch rotierende Teile der elektrischen Maschine kinetische Energie zugeführt wird, da sowohl die Aufnahme der kinetischen Energie durch das Kühlmedium als auch deren Abgabe jeweils mit der Erzeugung von Wärme verbunden ist und somit den Gesamtwirkungsgrad ungünstig beeinflusst.For cooling the stator, various approaches are known. It is known, for example, to guide the cooling medium over the lateral surface of the stator or through cooling channels, which are provided in the interior of the stator. The prior art is also to spray the particularly temperature-sensitive end windings by means of nozzles which are arranged in the stator, with coolant. It is energetically disadvantageous if kinetic energy is supplied to the cooling medium by rotating parts of the electric machine, since both the absorption of the kinetic energy by the cooling medium and its delivery are each associated with the generation of heat and thus unfavorably affect the overall efficiency.
Aufgabe der Erfindung ist es, eine elektrische Maschine zu schaffen, deren Rotor wirksam gekühlt werden kann, wobei die Kühlung dem Rotor möglichst wenig kinetische Energie entzieht.The object of the invention is to provide an electrical machine, the rotor can be effectively cooled, the cooling of the rotor as little as possible draws kinetic energy.
Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.This object is solved by the features of claim 1. Advantageous embodiments and further developments of the invention can be found in the dependent claims.
Ausgangspunkt der Erfindung ist eine elektrische Maschine mit einem Stator und einem Rotor, der um eine Drehachse relativ zum Stator drehbar angeordnet ist. In bzw. an dem Rotor ist mindestens ein Kühlkanal vorgesehen, der von einem Kühlmedium, wie z.B. Öl, Wasser o.a. durchströmt ist. Die Absolutgeschwindigkeit eines Fluidelements des den Kühlkanal durchströmenden Mediums setzt sich zusammen aus der Geschwindigkeit des Rotors bzw. des Kühlkanals an dem Ort, an dem sich das Fluidelement gerade befindet, und der Geschwindigkeit des Fluidelements relativ zum Rotor bzw. zum Kühlkanal.The starting point of the invention is an electric machine with a stator and a rotor, which is rotatably arranged about an axis of rotation relative to the stator. In or on the rotor, at least one cooling channel is provided, which is separated from a cooling medium, such as e.g. Oil, water or similar is flowed through. The absolute velocity of a fluid element of the medium flowing through the cooling channel is composed of the speed of the rotor or of the cooling channel at the location at which the fluid element is currently located and the velocity of the fluid element relative to the rotor or to the cooling channel.
Das Grundprinzip der Erfindung besteht darin, die Geometrie des mindestens einen Kühlkanals derart zu gestalten, dass die resultierende Geschwindigkeit des Fluidelements bzw. des den Kühlkanal durchströmenden Kühlmediums in Umfangs- bzw. Drehrichtung der elektrischen Maschine möglichst gering, vorzugsweise Null ist. Anders ausgedrückt ist die Geometrie des Kühlkanals so beschaffen, dass das betrachtete Fluidelement beim Durchströmen des Kühlkanals eine Geschwindigkeitskomponente relativ zum Rotor aufweist, die der am Ort des betrachteten Fluidelements vorliegenden Umfangs-The basic principle of the invention is to design the geometry of the at least one cooling channel in such a way that the resulting velocity of the fluid element or of the cooling medium flowing through the cooling channel in the circumferential or rotational direction of the electric machine is as low as possible, preferably zero. In other words, the geometry of the cooling channel is such that the fluid element under consideration, as it flows through the cooling channel, has a velocity component relative to the rotor which corresponds to the circumferential direction present at the location of the fluid element under consideration.
19057Gesamt.rtf geschwindigkeit des Rotors bzw. des Kühlkanals entgegengerichtet ist. Bei der Überlagerung der beiden Geschwindigkeiten heben sich die Relativgeschwindigkeit des Fluidelements in Umfangsrichtung des Rotors und die in Umfangsrichtung gemessene Geschwindigkeit des Rotors am Ort des betrachteten Fluidelements ganz oder zumindest teilweise auf. Je geringer die Differenz dieser beiden Geschwindigkeiten ist, um so geringer ist die vom Rotor auf das Kühlmedium übertragene kinetische Energie und somit die durch die Kühlung hervorgerufene Verlustleistung.19057Gesamt.rtf speed of the rotor or the cooling channel is opposite. When the two velocities are superimposed, the relative speed of the fluid element in the circumferential direction of the rotor and the speed of the rotor measured in the circumferential direction completely or at least partially cancel out at the location of the fluid element under consideration. The smaller the difference between these two speeds, the lower is the kinetic energy transferred from the rotor to the cooling medium and thus the power loss caused by the cooling.
Grundsätzlich ist die Erfindung unabhängig von der geometrischen Form des sich drehenden, zu kühlenden Körpers (Rotors) anwendbar, sofern die Geometrie des Kühlkanals, die Strömungsgeschwindigkeit des im Kühlkanal strömenden Mediums und die Drehzahl des Rotors derart aufeinander abgestimmt sind, dass die Absolutgeschwindigkeit des Kühlmediums in Umfangsrichtung gesehen gering bzw. vorzugsweise Null ist.Basically, the invention is independent of the geometric shape of the rotating, to be cooled body (rotor) applicable, provided that the geometry of the cooling channel, the flow velocity of the medium flowing in the cooling channel and the rotational speed of the rotor are coordinated such that the absolute speed of the cooling medium in Seen circumferentially low or preferably zero.
Nach einer Weiterbildung kann vorgesehen sein, dass sich der Querschnitt des Kühlkanals über der Länge des Kühlkanals verändert oder konstant ist. Bei konstantem Querschnitt ist entsprechend der Kontinuitätsgleichung auch die Strömungsgeschwindigkeit des Kühlmediums im Kühlkanal konstant. Bei veränderlichem Querschnitt ändert sich die Strömungsgeschwindigkeit entsprechend umgekehrt proportional zur Querschnittsänderung.According to a development it can be provided that the cross section of the cooling channel changes or is constant over the length of the cooling channel. With a constant cross section, the flow rate of the cooling medium in the cooling channel is constant in accordance with the equation of continuity. With variable cross-section, the flow rate changes accordingly inversely proportional to the change in cross section.
Vorzugsweise ist eine Steuer- bzw. Regelelektronik vorgesehen, welche den Volumenstrom des den Kühlkanal durchströmenden Kühlmediums in Abhängigkeit von der Drehzahl der elektrischen Maschine derart steuert bzw. regelt, dass die vom Rotor auf das Kühlmedium übertragene kinetische Energie bzw. mechanische Leistung minimal ist und gleichzeitig eine vorgegebene Betriebstemperatur nicht überschritten wird.Preferably, a control or regulating electronics is provided, which controls or regulates the volume flow of the cooling medium flowing through the cooling channel as a function of the rotational speed of the electric machine that the transmitted from the rotor to the cooling medium kinetic energy or mechanical power is minimal and at the same time a predetermined operating temperature is not exceeded.
Wie bereits erwähnt, kann der Volumenstrom des Kühlmediums so einstellt werden, dass die resultierende Geschwindigkeitskomponente des Kühl-As already mentioned, the volume flow of the cooling medium can be adjusted so that the resulting velocity component of the cooling medium
19057Gesamt.rtf mediums in Dreh- bzw. Umfangsrichtung Null wird. Die Strömungsgeschwindigkeit des Kühlmediums, bei der diese Bedingung erfüllt ist, kann auch als "Synchrongeschwindigkeit" bezeichnet werden. Die Geometrie des bzw. der Kühlkanäle ist vorzugsweise so gestaltet, dass die "Synchronbedingung" auch bei maximaler Drehzahl der elektrischen Maschine und maximal verfügbarem Volumenstrom des Kühlmediums erreicht wird. Bei der Steuerung des Volumenstroms des Kühlmediums kann durchaus von der Synchronbedingung abgewichen werden, beispielsweise, wenn infolge von Wirbelbildung im Kühlmedium eine geringere Strömungsgeschwindigkeit als die "Synchrongeschwindigkeit" zu einer höheren Energieeffizienz führt.19057Gesamt.rtf mediums in the rotational or circumferential direction becomes zero. The flow rate of the cooling medium satisfying this condition may be referred to as "synchronous speed". The geometry of the or the cooling channels is preferably designed so that the "synchronizing condition" is achieved even at maximum speed of the electric machine and maximum available volume flow of the cooling medium. When controlling the volume flow of the cooling medium can be deviated from the synchronous condition, for example, if due to vortex formation in the cooling medium, a lower flow velocity than the "synchronous speed" leads to a higher energy efficiency.
Die für die Steuerung bzw. Regelung der Strömungsgeschwindigkeit des Kühlmediums erforderlichen Daten können z.B. elektronisch gespeichert in einem Kennfeld abgelegt sein.The data required to control the flow rate of the cooling medium may be e.g. stored electronically stored in a map.
Im Folgenden wird die Erfindung im Zusammenhang mit der Zeichnung näher erläutert. Es zeigen:In the following the invention will be explained in connection with the drawing. Show it:
Figuren 1 , 2 ein erstes Ausbildungsbeispiel gemäß der Erfindung;Figures 1, 2 a first embodiment of the invention;
Figur 3 ein zweites Ausführungsbeispiel gemäß der Erfindung; undFigure 3 shows a second embodiment according to the invention; and
Fig. 4, 5 ein drittes Ausführungsbeispiel gemäß der Erfindung.Fig. 4, 5, a third embodiment according to the invention.
Figur 1 zeigt eine elektrische Maschine 1 mit einem Stator 2, der Wickelköpfe 3, 4 aufweist. Radial innerhalb des Stators 2 ist ein Rotor 5 angeordnet, der relativ zu dem Stator 2 drehbar um eine Drehachse 6 der elektrischen Maschine ist. Der Rotor bzw. Läufer 5 weist eine Rotor- bzw. Läuferwelle 7 auf, in der ein Zuströmkanal 8 vorgesehen ist, über den Kühlmittel in den Rotor 5 gepumpt wird. Ein Pfeil 9 zeigt die Strömungsrichtung des Kühlmittels im Zuströmkanal 8.FIG. 1 shows an electric machine 1 with a stator 2, which has winding heads 3, 4. Radially inside the stator 2, a rotor 5 is arranged, which is rotatable relative to the stator 2 about a rotation axis 6 of the electric machine. The rotor or rotor 5 has a rotor or rotor shaft 7 in which an inflow channel 8 is provided, via which coolant is pumped into the rotor 5. An arrow 9 shows the flow direction of the coolant in the inflow channel 8.
19057Gesamt rtf Der Rotor 5 kann die Form eines Kreiszylinders haben. Bei dem in Figur 1 gezeigten Ausführungsbeispiel ist im unteren Drittel des Rotors 5 eine kreis- plattenartige Ebene 10 vorgesehen, über die der ringförmige Rotormantel 11 mit der Rotorwelle 7 verbunden ist.19057Total rtf The rotor 5 may have the shape of a circular cylinder. In the embodiment shown in Figure 1, a circular plate-like plane 10 is provided in the lower third of the rotor 5, via which the annular rotor shell 11 is connected to the rotor shaft 7.
Der in der Rotorwelle 7 vorgesehene Zuströmkanal 8 reicht bis in etwa zur Mitte der Ebene 10 nach unten.The inflow channel 8 provided in the rotor shaft 7 extends down to approximately the middle of the plane 10.
Figur 2 zeigt eine Draufsicht auf die kreisplattenartige Ebene 10. Wie aus Figur 2 ersichtlich ist, sind in der kreisplattenartigen Ebene 10 mehrere Fluid- kanäle 12 - 19 vorgesehen, die sich vom Zentrum der Kreisplatte 10, d.h. von dem Zuströmkanal 8 spiralartig nach außen erstrecken. Bei dem hier gezeigten Ausführungsbeispiel haben die Fluidkanäle 12 - 19 in der in Figur 2 gezeigten Draufsicht die Form vom Evolventen. Von äußeren Enden 20 -FIG. 2 shows a top view of the circular plate-like plane 10. As can be seen from FIG. 2, a plurality of fluid channels 12-19 are provided in the circular plate-like plane 10 which extend from the center of the circular plate 10, ie. extend spirally outwardly from the inflow channel 8. In the embodiment shown here, the fluid channels 12-19 in the plan view shown in FIG. 2 have the shape of involute. From outer ends 20 -
27 der Fluidkanäle 12 - 19 zweigen nach oben bzw. nach unten Stichkanäle27 of the fluid channels 12 - 19 branch up or down stitch channels
28 - 31 bzw. 32 - 35 ab, die in Austrittsöffnungen 36 - 39 bzw. 40 - 43, welche in der Mantelfläche 11 des Rotors 5 vorgesehen sind, münden.28-31 or 32-35, which open into outlet openings 36-39 and 40-43, which are provided in the lateral surface 11 of the rotor 5, open.
Das zur Kühlung des Rotors 5 verwendete Kühlmittel strömt somit über den Zuströmkanal 8 nach unten in die Kreisplatte 10 und von deren Zentrum über die Fluidkanäle 12 - 19 nach außen und von dort nach oben bzw. unten über die Stichkanäle 28 - 31 bzw. 32 - 35. Über die Austrittsöffnungen 36 - 43 tritt das Kühlmedium an der Mantelfläche 11 des Rotors 5 aus und spritzt von dort gegen den Stator 2 bzw. gegen die Wickelköpfe 3, 4.The coolant used for cooling the rotor 5 thus flows via the inflow channel 8 downwards into the circular plate 10 and from the center thereof via the fluid channels 12-19 to the outside and from there upwards or downwards via the branch channels 28-31 or 32. 35. Via the outlet openings 36-43, the cooling medium exits the jacket surface 11 of the rotor 5 and from there it sprays against the stator 2 or against the winding heads 3, 4.
Von dort fließt das Kühlmittel über einen Kühlmittelsumpf zurück, aus dem es mittels einer hier nicht näher dargestellten Pumpe abgesaugt und über einen Rückkühler (nicht dargestellt) zurück in den Zuströmkanal 8 gepumpt wird.From there, the coolant flows back through a coolant sump, from which it is sucked off by means of a pump (not shown here) and pumped via a recooler (not shown) back into the inflow channel 8.
Wie bereits in Zusammenhang mit Figur 2 erwähnt wurde, sind die Fluidkanäle 12 - 19 spiralartig gekrümmt und zwar in der Form von Evolventen. Die Fluidkanäle 12 - 19 sind entgegen dem Uhrzeigersinn gekrümmt. BeiAs already mentioned in connection with FIG. 2, the fluid channels 12-19 are spirally curved in the form of involutes. The fluid channels 12-19 are curved counterclockwise. at
19057Gesamt rtf einer Drehung des Rotors bzw. der Rotorplatte 10 im Uhrzeigersinn wird das von dem Zuströmkanal 8 in den Fluidkanälen 12 - 19 nach außen strömende Kühlmedium kaum bzw. nicht in Umfangsrichtung bewegt, da die Drehgeschwindigkeit des Rotors 5 ganz oder zumindest teilweise durch eine entgegengesetzt gerichtete Geschwindigkeitskomponente des in den Fluidkanälen 12 - 19 nach außen strömenden Kühlmediums kompensiert wird. Somit wird beim nach außen Strömen des Kühlmediums in den Fluidkanälen 12 - 19 kaum kinetische Energie vom Rotor 5 auf das Kühlmedium übertragen.19057Total rtf In a clockwise rotation of the rotor or the rotor plate 10, the cooling medium flowing outward from the inflow channel 8 in the fluid channels 12-19 is hardly or not moved in the circumferential direction since the rotational speed of the rotor 5 is entirely or at least partially due to an oppositely directed velocity component of the cooling medium flowing outward in the fluid channels 12-19 is compensated. Thus, in the outward flow of the cooling medium in the fluid channels 12-19 hardly kinetic energy is transferred from the rotor 5 to the cooling medium.
Wie aus Figur 1 ersichtlich ist, verlaufen die in der Mantelfläche 11 des Rotors 5 vorgesehenen Stichkanäle 28 - 31 bzw. 32 - 35 schräg in Bezug auf die durch den Pfeil 9 angedeutete Drehachse der elektrischen Maschine 1. Durch diese Schrägstellung ist sichergestellt, dass beim nach oben Strömen bzw. beim nach unten Strömen des Kühlmediums in den Fluidkanälen 28 - 31 bzw. 32 - 35 die Relativgeschwindigkeit des Fluids in Bezug auf den Rotor 5 in Umfangsrichtung des Rotors 5 der Umfangsgeschwindigkeit des Rotors 5 entgegengerichtet ist und somit keine bzw. kaum kinetische Energie vom Rotor 5 auf das Kühlmedium übertragen wird.As can be seen from FIG. 1, the branch channels 28 - 31 or 32 - 35 provided in the lateral surface 11 of the rotor 5 run obliquely with respect to the axis of rotation of the electric machine 1 indicated by the arrow 9 upward flow or when flowing down the cooling medium in the fluid channels 28 - 31 and 32 - 35, the relative speed of the fluid with respect to the rotor 5 in the circumferential direction of the rotor 5 of the peripheral speed of the rotor 5 is directed opposite and thus no or hardly kinetic energy is transferred from the rotor 5 to the cooling medium.
Figur 3 zeigt ein Ausführungsbeispiel einer elektrischen Maschine 1 , bei dem die "Kreisplatte" 10 welche den Rotormantel 11 mit der Rotorwelle 7 verbindet, am unteren Ende des Rotormantels 11 angeordnet ist. Der Rotor 5 hat somit eine "Topfform". Im Übrigen stimmt das Ausführungsbeispiel der Figur 3 im Wesentlichen mit dem in den Figuren 1 und 2 beschriebenen Ausführungsbeispiel überein.FIG. 3 shows an exemplary embodiment of an electrical machine 1 in which the "circular plate" 10 which connects the rotor shell 11 to the rotor shaft 7 is arranged at the lower end of the rotor shell 11. The rotor 5 thus has a "cup shape". Incidentally, the embodiment of FIG. 3 is substantially identical to the exemplary embodiment described in FIGS. 1 and 2.
Die Figuren 4, 5 zeigen ein Ausführungsbeispiel, bei dem das Kühlmittel im Unterschied zu den vorherigen Ausführungsbeispielen nicht an der Mantelfläche des Rotors 5 aus dem Rotor 5 austritt, sondern über Rückströmkanäle 44 - 49 zurück in die Rotorwelle 7 und von dort zu einem externen Kühler (nicht dargestellte) strömt. Anschließend strömt es über eineFigures 4, 5 show an embodiment in which the coolant does not exit on the lateral surface of the rotor 5 from the rotor 5, in contrast to the previous embodiments, but via Rückströmkanäle 44 - 49 back into the rotor shaft 7 and from there to an external cooler (not shown) flows. Then it flows over one
19057Gesamt.rtf Zuströmbohrung 50 der Rotorwelle 7 in das Kühlkanalsystem des Rotor 5. Die Rückströmkanäle 44 - 49 sind ebenfalls so gestaltet, die resultierende Geschwindigkeit des die Rückströmkanäle 44 - 49 durchströmenden Kühlmediums in Umfangs- bzw. Drehrichtung der elektrischen Maschine möglichst gering, vorzugsweise Null ist.19057Gesamt.rtf The return flow 44 - 49 are also designed so that the resulting speed of the return flow 44 - 49 flowing through the cooling medium in the circumferential or rotational direction of the electric machine is as low as possible, preferably zero.
19057Gesamt rtf 19057Total rtf

Claims

Patentansprüche claims
1. Elektrische Maschine (1), mit einem Stator (2), einem Rotor (5), der um eine Drehachse (9) relativ zu dem Stator (2) drehbar angeordnet ist, und mindestens einem in bzw. an dem Rotor (5) vorgesehenen Kühlkanal (12 - 19; 28 - 25), der von einem Kühlmedium durchströmt ist, wobei sich die Absolutgeschwindigkeit eines Fluidelements des Kühlmediums aus einer Überlagerung der Geschwindigkeit des Rotors (5) am momentanen Ort des betrachteten Fluidelements und der Geschwindigkeit des Fluidelements relativ zum Rotor (5) ergibt, dadurch gekennzeichnet, dass die Geometrie des Kühlkanals (12 - 19; 28 - 35) derart gestaltet ist, dass das Fluidelement beim Durchströmen des Kühlkanals (12 - 19; 28 -35) eine Geschwindigkeitskomponente relativ zum Rotor (5) aufweist, die der Umfangsgeschwindigkeit des Rotors (5) bzw. des Kühlkanals (12 - 19; 28 -35) am momentanen Ort des betrachteten Fluidelements entgegengerichtet ist.An electric machine (1), comprising a stator (2), a rotor (5) which is rotatably arranged about an axis of rotation (9) relative to the stator (2), and at least one in or on the rotor (5 ), which is flowed through by a cooling medium, wherein the absolute velocity of a fluid element of the cooling medium from a superposition of the speed of the rotor (5) at the current location of the considered fluid element and the speed of the fluid relative to the rotor (5), characterized in that the geometry of the cooling channel (12-19; 28-35) is designed such that the fluid element as it flows through the cooling channel (12-19; 28-35) has a velocity component relative to the rotor (FIG. 5), which is opposite to the peripheral speed of the rotor (5) or the cooling channel (12 - 19; 28-35) at the instantaneous location of the considered fluid element.
2. Elektrische Maschine (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Geometrie des Kühlkanals (12 - 19; 28 -35), die Strömungsgeschwindigkeit des Kühlmediums im Kühlkanal und die Drehzahl des Rotors (5) zumindest in manchen Be- triebszuständen der elektrischen Maschine (1) derart aufeinander abgestimmt sind, dass die Absolutgeschwindigkeit des betrachteten Fluidelements in Umfangsrichtung des Rotors (5) Null oder annähernd Null ist.2. Electrical machine (1) according to claim 1, characterized in that the geometry of the cooling channel (12-19; 28-35), the flow velocity of the cooling medium in the cooling channel and the rotational speed of the rotor (5) at least in some operating states of the electric machine (1) are matched to one another such that the absolute speed of the considered fluid element in the circumferential direction of the rotor (5) is zero or approximately zero.
19057Gesamt.rtf 19057Gesamt.rtf
3. Elektrische Maschine (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest ein Abschnitt des Kühlkanals (12 - 19) sich in einer Ebene (10) erstreckt, die senkrecht zur Drehachse (9) des Rotors (5) ist und dass der sich in dieser Ebene (10) erstreckende Abschnitt (12 - 19) des Kühlkanals gekrümmt ist.3. Electrical machine (1) according to claim 1 or 2, characterized in that at least a portion of the cooling channel (12-19) extends in a plane (10) which is perpendicular to the axis of rotation (9) of the rotor (5) and in that the section (12-19) of the cooling channel extending in this plane (10) is curved.
4. Elektrische Maschine (1) nach Anspruch 3, dadurch gekennzeichnet, dass der sich in der Ebene (10) erstreckende Abschnitt (12 - 19) des Kühlkanals entsprechend einer Evolvente gekrümmt ist.4. Electrical machine (1) according to claim 3, characterized in that in the plane (10) extending portion (12 - 19) of the cooling channel is curved according to an involute.
5. Elektrische Maschine (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest ein Abschnitt (28 - 35) des Kühlkanals sich in einem konstanten Abstand von der Drehachse (9) des Rotors (5) erstreckt, wobei, in einer Abwicklungsdarstellung betrachtet, dieser Abschnitt (28 - 35) des Kühlkanals einen geraden Verlauf hat und in einer Projektion einen vorgegebenen Winkel mit der Drehachse (9) einschließt.5. Electrical machine (1) according to one of claims 1 to 4, characterized in that at least a portion (28-35) of the cooling channel extends at a constant distance from the axis of rotation (9) of the rotor (5), wherein, in As viewed in a development diagram, this section (28-35) of the cooling channel has a straight course and, in a projection, encloses a predetermined angle with the axis of rotation (9).
6. Elektrische Maschine (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in einer Rotorwelle (7) des Rotors (5) ein koaxial zur Drehachse (9) des Rotors (5) sich erstreckender Zuströmkanal (8) vorgesehen ist, der in Fluidverbindung mit dem mindestens einen Kühlkanal (12 - 19; 28 - 35) steht.6. Electrical machine (1) according to one of claims 1 to 5, characterized in that in a rotor shaft (7) of the rotor (5) is provided coaxially to the axis of rotation (9) of the rotor (5) extending inflow channel (8) which is in fluid communication with the at least one cooling channel (12-19; 28-35).
7. Elektrische Maschine (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Kühlkanal (12 - 19; 28 - 35) einen in einer Mantelfläche (11) des Rotors (5) vorgesehenen Auslass (36 - 43) für Kühlmedium aufweist.7. Electrical machine (1) according to one of the preceding claims, characterized in that the at least one cooling channel (12 - 19, 28 - 35) provided in a lateral surface (11) of the rotor (5) outlet (36 - 43) for Has cooling medium.
19057Gesamt.rtf 19057Gesamt.rtf
PCT/EP2009/001053 2008-04-24 2009-02-14 Electric machine comprising curved cooling channels in the rotor WO2009129882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008020426.9 2008-04-24
DE102008020426A DE102008020426A1 (en) 2008-04-24 2008-04-24 Electric machine with cooling channels in the rotor

Publications (1)

Publication Number Publication Date
WO2009129882A1 true WO2009129882A1 (en) 2009-10-29

Family

ID=40433814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/001053 WO2009129882A1 (en) 2008-04-24 2009-02-14 Electric machine comprising curved cooling channels in the rotor

Country Status (2)

Country Link
DE (1) DE102008020426A1 (en)
WO (1) WO2009129882A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357170A (en) * 2017-11-14 2020-06-30 赛峰直升机发动机公司 Electric machine of a turbomachine comprising a rotor cooled by a cooling channel
GB2594934A (en) * 2020-05-06 2021-11-17 Imra Europe S A S Apparatus for cooling an electrical machine
GB2604042A (en) * 2021-02-19 2022-08-24 Electrified Automation Ltd Rotor and electric machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121304A1 (en) * 2012-07-25 2014-01-26 Wilic Sarl ROTOR OF A ROTATING ELECTRIC MACHINE FOR GAS MILLER AND AIRCONDITIONER INCLUDING SUCH ROTOR
DE102012022453A1 (en) * 2012-11-09 2014-05-15 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Electrical machine for use in hybrid drive strand of motor vehicle, has rotor with driveshaft, where rotor is turnably mounted concerning to machine housing, and driveshaft has shaft channel through which cooling fluid is conductable
DE102014107843B3 (en) 2014-06-04 2015-11-26 Thyssenkrupp Presta Teccenter Ag Media transport in rotor shaft
JP6145120B2 (en) * 2015-02-13 2017-06-07 ファナック株式会社 Rotor having flow path for cooling fluid and electric motor including the rotor
WO2016167353A1 (en) * 2015-04-16 2016-10-20 アイシン・エィ・ダブリュ株式会社 Rotating electrical machine
JP6436231B2 (en) 2015-04-16 2018-12-12 アイシン・エィ・ダブリュ株式会社 Stator and stator manufacturing method
CN105471145B (en) * 2016-01-06 2017-11-10 哈尔滨理工大学 Cold ventilation cooling system in rotor of steam turbo generator circumference tooth
DE102016200423A1 (en) * 2016-01-15 2017-07-20 Continental Automotive Gmbh Electric machine
JP2020014355A (en) 2018-07-20 2020-01-23 現代自動車株式会社Hyundai Motor Company motor
DE102018220810A1 (en) 2018-12-03 2020-06-04 Audi Ag Fluid-cooled rotor for an electrical machine
EP4360195A1 (en) * 2021-06-22 2024-05-01 Pierburg GmbH Rotor for an electric machine
DE102021119990A1 (en) * 2021-08-02 2023-02-02 Bayerische Motoren Werke Aktiengesellschaft Cooling fluid guiding device for an electrical machine, electrical machine and method for providing an electrical machine
DE102022210589A1 (en) 2022-10-06 2024-04-11 Zf Friedrichshafen Ag Thermal management in an electrically powered vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959043A (en) * 1982-09-28 1984-04-04 Toshiba Corp Motor
JPS61210848A (en) * 1985-03-13 1986-09-19 Mitsubishi Electric Corp Ventilating cooler for rotary electric machine
JP2003324901A (en) * 2002-04-26 2003-11-14 Nippon Soken Inc Motor
JP2005237070A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT212393Z2 (en) * 1987-09-09 1989-07-04 Magneti Marelli Spa ROTOR FOR A PARTICULARLY ALTERNATOR FOR VEHICLES
DE10117398A1 (en) * 2001-04-06 2002-10-10 Miscel Oy Ltd Electric asynchronous motor
US6727609B2 (en) * 2001-08-08 2004-04-27 Hamilton Sundstrand Corporation Cooling of a rotor for a rotary electric machine
GB2430809B (en) * 2005-10-01 2010-02-17 Turbo Genset Company Ltd Self-cooled rotor for a high speed permanent magnet generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959043A (en) * 1982-09-28 1984-04-04 Toshiba Corp Motor
JPS61210848A (en) * 1985-03-13 1986-09-19 Mitsubishi Electric Corp Ventilating cooler for rotary electric machine
JP2003324901A (en) * 2002-04-26 2003-11-14 Nippon Soken Inc Motor
JP2005237070A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357170A (en) * 2017-11-14 2020-06-30 赛峰直升机发动机公司 Electric machine of a turbomachine comprising a rotor cooled by a cooling channel
CN111357170B (en) * 2017-11-14 2022-07-05 赛峰直升机发动机公司 Electric machine of a turbomachine comprising a rotor cooled by a cooling channel
GB2594934A (en) * 2020-05-06 2021-11-17 Imra Europe S A S Apparatus for cooling an electrical machine
GB2594934B (en) * 2020-05-06 2023-04-19 Imra Europe S A S Apparatus for cooling an electrical machine
GB2604042A (en) * 2021-02-19 2022-08-24 Electrified Automation Ltd Rotor and electric machine

Also Published As

Publication number Publication date
DE102008020426A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2009129882A1 (en) Electric machine comprising curved cooling channels in the rotor
EP3422538A1 (en) Electrical machine and motor vehicle
AT503361B1 (en) DRIVE
DE102015223073A1 (en) Electric motor with cooled rotor shaft
DE102007003247A1 (en) Cooling system and method for electric motors with concentrated windings
DE112008002425T5 (en) drive unit
DE102012203695A1 (en) Electric machine with a dual-circuit cooling
EP3214736A1 (en) Electric machine for a motor vehicle, coil carrier for an electric machine, and motor vehicle
WO2011092091A1 (en) Centrifugal pump
WO1995024762A1 (en) Brushless electric motor and method of operating the same
EP2834906B1 (en) Electrical machine
DE102016203945A1 (en) Stator device for an electrical machine and method for its production
WO2018114099A1 (en) Cooling jacket housing, in particular for an electric machine
DE3042017A1 (en) RETARDER FOR VEHICLES, WITH AT LEAST ONE INTERNAL HYDRODYNAMIC WORKING CIRCUIT
EP1920521B1 (en) Claw pole generator and closing member for a claw pole generator
WO2005099070A1 (en) Cooling device for an electrical machine cooled by means of a coolant
EP2122147B1 (en) Device for recovering electric energy from the exhaust heat of an internal combustion engine in a motor vehicle and method for recovering electric energy from the exhaust heat of an internal combustion engine in a motor vehicle
EP1155490B1 (en) Pole generator with vibration damping
EP2640589B1 (en) Current generating unit
DE3632963C2 (en)
DE112013007633T5 (en) Nututing fluid mechanical energy converter
DE102012104767A1 (en) Conical honeycomb body with obliquely radial channels
WO2020094514A1 (en) Electric machine with a fluid-type cooling device
DE102018208170A1 (en) device
WO2021223808A1 (en) Electrical drive device and drive arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733921

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09733921

Country of ref document: EP

Kind code of ref document: A1