WO2009128454A1 - 移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法 - Google Patents

移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法 Download PDF

Info

Publication number
WO2009128454A1
WO2009128454A1 PCT/JP2009/057525 JP2009057525W WO2009128454A1 WO 2009128454 A1 WO2009128454 A1 WO 2009128454A1 JP 2009057525 W JP2009057525 W JP 2009057525W WO 2009128454 A1 WO2009128454 A1 WO 2009128454A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station apparatus
mobile
handover
mobile station
Prior art date
Application number
PCT/JP2009/057525
Other languages
English (en)
French (fr)
Inventor
徹 佐原
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2009801137121A priority Critical patent/CN102007804A/zh
Priority to KR1020107023017A priority patent/KR101148975B1/ko
Priority to US12/988,306 priority patent/US8599882B2/en
Publication of WO2009128454A1 publication Critical patent/WO2009128454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • the present invention relates to a mobile communication system, a mobile station apparatus, a base station apparatus, and a handover method, and more particularly to a technique for speeding up handover.
  • Next generation PHS Next Generation Personal Handy-phone System
  • TDD Time Division Multiple Access / Time Division Duplex: Time Division Multiple Access / Time Division Bidirectional Communication
  • OFDMA Orthogonal Frequency Division Multiple Access
  • FIG. 9 is a diagram showing a next-generation PHS call sequence.
  • the base station transmits a broadcast control channel (BCCH) including its own base station ID and transmission power control information (a negative value indicating a difference between the actual transmission power and the base station maximum transmission power).
  • BCCH broadcast control channel
  • TCCH Timing Correct Channel
  • the base station that has received the timing correction channel from the mobile station first calculates the difference between the reception timing of the timing correction channel and the desired reception timing as a timing correction amount (S206).
  • ANCH Anchor Channel
  • Each communication channel in the next-generation PHS is composed of a combination of either a time slot by TDMA (for example, a time slot length of 625 ⁇ s) and one of subchannels by OFDMA, and is called a PRU (Physical Resource Unit).
  • the base station calculates the correction amount of the mobile station transmission power based on the difference between the reception power and the desired reception power of the timing correction channel (S210), and the timing correction amount calculated in S206 and the ANCH PRU determined in S208
  • a signal control channel (downlink SCCH: Signaling Control Channel) including the mobile station transmission power correction amount calculated in S210 is transmitted to the mobile station (S212).
  • the mobile station When the mobile station receives the signal control channel from the base station, it acquires the ANCH PRU from the signal control channel (S214). Next, the mobile station corrects the transmission power of the ANCH based on the transmission power correction amount included in the signal control channel (S216), and corrects the transmission timing based on the timing correction amount included in the signal control channel. Thus, frame synchronization in the uplink direction (direction from the mobile station to the base station) is established (S218). Then, the mobile station uses the ANCH PRU acquired in S214 to transmit the uplink ANCH requesting the allocation of the EXCH (Extra Channel) PRU at the transmission power corrected in S216 and the transmission timing corrected in S218. (S220).
  • EXCH Extra Channel
  • the base station that has received the uplink ANCH from the mobile station determines an EXCH PRU consisting of one or more PRUs (S222), and transmits the downlink ANCH including the determined EXCH PRUs to the mobile station (S224).
  • next-generation PHS employing the OFDMA method it is impossible to individually correct the reception timing shift and reception power shift of the uplink signal transmitted from each mobile station on the base station side.
  • the inter-symbol interference ISI: Inter-Symbol Interference
  • ISI Inter-Symbol Interference
  • next-generation PHS even when a mobile station performs handover from a communicating base station to another base station, a sequence similar to the above calling sequence is executed between the mobile station and the handover destination base station. (See S300, S302, S318 to S338 in FIG. 10), there is a problem that time is required for the handover. Further, even in a mobile communication system other than the next-generation PHS, there is a demand for faster handover.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a mobile communication system, a mobile station apparatus, a base station apparatus, and a handover method that can speed up handover.
  • a mobile communication system includes a first base station device, a second base station device, and a second base station device configured to establish uplink frame synchronization.
  • a mobile communication system including a mobile station apparatus that performs soft handover to a station apparatus, wherein the mobile station apparatus receives a downlink signal transmission timing transmitted from the first base station apparatus, and the second base station.
  • the reception timing difference calculating means for calculating the timing difference between the broadcast signal and the reception timing of the broadcast signal transmitted from the station apparatus, the uplink signal transmission timing for the first base station apparatus, and the reception timing difference calculating means.
  • the second base station apparatus by correcting the transmission timing of the uplink signal to the second base station apparatus based on the timing difference between the second base station apparatus and the second base station apparatus. It includes an uplink frame synchronization means for establishing frame synchronization of direction, and characterized in that.
  • the mobile station apparatus establishes uplink frame synchronization with the handover destination base station apparatus without transmitting the uplink synchronization burst to the handover destination base station apparatus. For this reason, it is possible to omit the uplink synchronization burst transmission by the mobile station apparatus and the timing correction amount transmission by the handover destination base station apparatus from the handover sequence, thereby speeding up the handover.
  • the second base station apparatus allocates communication to the mobile station apparatus in response to a handover request from the mobile station apparatus received via the first base station apparatus.
  • a communication channel determining means for determining a channel, and a communication channel determined by the communication channel determining means are notified to the mobile station apparatus via a handover response transmitted from the first base station apparatus to the mobile station apparatus.
  • the mobile station apparatus transmits an uplink signal to the second base station apparatus using the communication channel notified through the handover response.
  • the handover destination base station apparatus notifies the mobile station apparatus of the communication channel via the handover response transmitted from the communicating base station apparatus to the mobile station apparatus. Can do.
  • the first and second base station devices communicate with the mobile station device using an orthogonal frequency division multiple access scheme.
  • GI guard interval
  • the mobile station apparatus is a mobile station apparatus that performs a soft handover from a first base station apparatus in which uplink frame synchronization is established to a second base station apparatus, wherein the first base station apparatus A reception timing difference calculating means for calculating a timing difference between a reception timing of a downlink signal transmitted from a station apparatus and a reception timing of a broadcast signal transmitted from the second base station apparatus; and the first base station By correcting the uplink signal transmission timing for the second base station apparatus based on the transmission timing of the uplink signal to the apparatus and the timing difference calculated by the reception timing difference calculating means, the second base station And uplink frame synchronization means for establishing uplink frame synchronization with the station apparatus.
  • the base station apparatus determines a communication channel to be allocated to the mobile station apparatus in response to a handover request from the mobile station apparatus received via the first base station apparatus.
  • Communication channel notification means for notifying the mobile station apparatus of the communication channel determined by the communication channel determination means via a handover response transmitted from the first base station apparatus to the mobile station apparatus; It is characterized by including.
  • a handover method is a handover method for performing a soft handover from a first base station apparatus in which uplink frame synchronization is established to a second base station apparatus, wherein the first base station apparatus Calculating a timing difference between the reception timing of the downlink signal transmitted from the station apparatus and the reception timing of the notification signal transmitted from the second base station apparatus; and an uplink signal for the first base station apparatus And an uplink frame between the second base station device by correcting the transmission timing of the uplink signal to the second base station device based on the transmission timing of the second base station device and the calculated timing difference. Establishing synchronization.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to an embodiment of the present invention. It is a functional block diagram of the mobile station which concerns on embodiment of this invention. It is a figure which shows the calculation method of ANCH transmission power. It is a figure which shows the other calculation method of ANCH transmission power. It is a figure which shows the transmission timing of ANCH. It is a figure which shows the positional relationship of the mobile station and base station at the time of a hand-over. It is a functional block diagram of the base station which concerns on embodiment of this invention. It is a figure which shows the hand-over sequence which concerns on embodiment of this invention. It is a figure which shows the call sequence of next generation PHS. It is a figure which shows the hand-over sequence of next generation PHS.
  • FIG. 1 is an overall configuration diagram of a mobile communication system 10 according to an embodiment of the present invention.
  • the mobile communication system 10 includes a plurality of mobile stations 12 (only one is shown here) and a plurality of base stations 14 (here, base stations communicating with the mobile station 12 ( Serving Base Station) 14-1 and a base station (Target Base Station) 14-2 that is the handover destination of the mobile station 12), and an ASN gateway 18 (ASN-GW: Access Service Network Gateway) It is configured.
  • the base stations 14-1 and 14-2 and the ASN gateway 18 are connected to each other via the IP network 16.
  • the base station 14 employs the TDMA / TDD system and the OFDMA system, and uses at least one communication channel formed by a combination of any of the time slots based on TDMA and any of the subchannels based on OFDMA. Communicate.
  • the ASN gateway 18 is a known server computer that performs relay of inter-base station communication, authentication management, radio resource management, handover control, and the like.
  • the mobile station transmits a timing correction channel (TCCH) (S318), and the handover destination base station transmits a signal control channel (downlink SCCH) (S326). Can be omitted, so that a fast handover can be realized.
  • TCCH timing correction channel
  • SCCH signal control channel
  • FIG. 2 is a functional block diagram of the mobile station 12.
  • the mobile station 12 includes an antenna 20, a radio communication unit 22, a downlink frame synchronization unit 24, a demodulation unit 26, a data detection unit 28, a storage unit 30, a propagation loss calculation unit 32, and a transmission power control unit 34.
  • Some of these are configured by, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processing).
  • the antenna 20 receives a radio signal and outputs the received radio signal to the radio communication unit 22. Further, the antenna 20 transmits a radio signal supplied from the radio communication unit 22 to the base station 14. Reception and transmission of radio signals are switched in a time division manner in accordance with instructions from the radio communication unit 22.
  • the wireless communication unit 22 includes a low noise amplifier, a power amplifier, a local oscillator, a mixer, and a filter.
  • the radio communication unit 22 amplifies the radio signal input from the antenna 20 with a low noise amplifier, down-converts the radio signal to an intermediate frequency signal, and outputs the intermediate signal to the downlink frame synchronization unit 24. Further, the radio communication unit 22 up-converts the modulation signal input from the uplink frame synchronization unit 42 into a radio signal, amplifies the signal to a transmission output level with a power amplifier, and supplies the radio signal to the antenna 20.
  • the downlink frame synchronization unit 24 detects the correlation between the signal input from the wireless communication unit 22 and the known signal, and uses the timing at which the correlation greater than or equal to the predetermined value is detected as the reception timing of the downlink signal transmitted from the base station 14. To detect. Then, based on the detected reception timing of the downlink signal, the downlink frame synchronization unit 24 establishes downlink frame synchronization with the base station 14. Further, the downlink frame synchronization unit 24 measures the received power of the downlink signal transmitted from the base station 14.
  • the demodulator 26 includes an A / D converter, a serial-parallel converter, an FFT (Fast Fourier Transform) arithmetic unit, and a parallel-serial converter.
  • the demodulator 26 performs a removal of a guard interval (GI), A / D conversion, serial / parallel conversion, discrete Fourier transform, parallel / serial conversion, and the like on the signal input from the downlink frame synchronization unit 24 and continues. Get complex symbol sequence. The complex symbol sequence acquired in this way is output to the data detection unit 28.
  • GI guard interval
  • the data detection unit 28 detects a data bit sequence (reception data) corresponding to the symbol modulation method from the complex symbol sequence input from the demodulation unit 26, and outputs the detected reception data to an upper layer (not shown).
  • the storage unit 30 is configured by, for example, a semiconductor memory element, and stores the reception timing of the downlink signal detected by the downlink frame synchronization unit 24, the reception power of the downlink signal measured by the downlink frame synchronization unit 24, and the like.
  • the propagation loss calculation unit 32 calculates the propagation loss of the downlink signal (downlink common channel (CCH: Common Channel) or downlink individual channel (ICH: Individual Channel)) transmitted from the base station 14.
  • the broadcast control channel (BCCH) is one of the downlink common channels (CCH).
  • the propagation loss calculation unit 32 includes the known base station maximum transmission power PtMAX_BS, the transmission power control information ⁇ Pt_BS2 included in the broadcast control channel, the received power RSSI_BS2 of the broadcast control channel stored in the storage unit 30, Based on the above, the propagation loss LOSS_BS2 of the broadcast control channel is calculated.
  • the transmission power control unit 34 controls the transmission power of the uplink signal for the base station 14. In particular, when the mobile station 12 performs a handover from the base station 14-1 to the base station 14-2, the transmission power control unit 34 determines that the received power of the ANCH at the handover destination base station 14-2 is the base station desired received power Z The transmission power of the ANCH is controlled to be equal to An ANCH PRU (single channel consisting of one communication channel) used for communication with the handover destination base station 14-2 sends a handover response transmitted from the communicating base station 14-1, as will be described later. Via the handover destination base station 14-2.
  • An ANCH PRU single channel consisting of one communication channel
  • the above-mentioned mobile station is set to the desired received power Z of the base station.
  • the transmission power control unit 34 based on the known base station desired reception power Z and the propagation loss LOSS_BS2 calculated by the propagation loss calculation unit 32, transmits the ANCH transmission power to the handover destination base station 14-2.
  • Pt_MS2 is calculated.
  • the calculated transmission power Pt_MS2 is supplied to the modulation unit 40.
  • FIG. 4 is a diagram illustrating another method for calculating the transmission power of the ANCH for the handover destination base station 14-2.
  • the transmission power of the uplink signal to the base station 14-1 is previously set so that the reception power of the uplink signal (uplink CCH or uplink ICH) at the communicating base station 14-1 is equal to the base station desired reception power Z. This method is based on the premise that it is controlled.
  • the propagation loss LOSS_BS1 calculated in this way can be regarded as a propagation loss between the mobile station 12 and the base station 14-1.
  • the uplink signal transmission power Pt_MS1 for the base station 14-1 in communication is determined so that the reception power of the uplink signal at the base station 14-1 is equal to the base station desired reception power Z.
  • the transmission power control unit 34 transmits the uplink signal transmission power Pt_MS1 to the communicating base station 14-1, the downlink signal transmission loss LOSS_BS1 transmitted from the communicating base station 14-1, and the handover destination. Based on the difference from the propagation loss LOSS_BS2 of the broadcast control channel transmitted from the base station 14-2, the ANCH transmission power Pt_MS2 for the handover destination base station 14-2 may be calculated.
  • the timing correction amount calculation unit 36 transmits a downlink signal transmitted from the communicating base station 14-1.
  • the timing difference between the reception timing of (downlink CCH or downlink ICH) and the reception timing of the broadcast control channel (BCCH) transmitted from the handover destination base station 14-2 is calculated as a timing correction amount ⁇ t.
  • the timing correction amount ⁇ t is supplied to the upstream frame synchronization unit 42.
  • the two reception timings used for calculating the timing correction amount ⁇ t are read from the storage unit 30.
  • the time slot in which the communicating base station 14-1 transmits a downlink signal may be different from the time slot in which the handover destination base station 14-2 transmits a broadcast control channel.
  • the timing correction amount calculation unit 36 sets a value obtained by further subtracting the interval between the time slots (a multiple of the time slot length) from the timing difference as the timing correction amount ⁇ t.
  • the data generation unit 38 generates transmission data by adding header information or the like according to the format of the transmission channel to a data bit string input from an upper layer (not shown).
  • the generated transmission data is output to the modulation unit 40.
  • the modulation unit 40 includes a serial-parallel converter, an IFFT (Inverse Fourier Transform) operation unit, a parallel-serial converter, and a D / A converter.
  • the modulation unit 40 performs symbol mapping (assignment of amplitude and phase) on the transmission data input from the data generation unit 38 according to the modulation scheme, and obtains a complex symbol sequence.
  • the modulation unit 40 divides the obtained complex symbol sequence into subcarrier components, and the transmission power of the uplink signal (uplink ANCH or the like) becomes the transmission power calculated by the transmission power control unit 34. To adjust the subcarrier component corresponding to the PRU allocated from. Then, the modulation unit 40 performs serial-parallel conversion, inverse discrete Fourier transform, parallel-serial conversion, D / A conversion, and the like on each carrier component of the adjusted complex symbol sequence to obtain a baseband OFDM signal. The baseband OFDM signal acquired in this way is output to the upstream frame synchronization unit 42 after a guard interval is added.
  • the uplink frame synchronization unit 42 is calculated by the timing correction amount calculation unit 36 when the mobile station 12 performs a handover from the communicating base station 14-1 with established uplink frame synchronization to the base station 14-2. Based on the timing correction amount ⁇ t, the ANCH transmission timing to the handover destination base station 14-2 is corrected.
  • the uplink frame synchronization unit 42 transmits the downlink signal (downlink CCH or downlink ICH) transmitted from the base station 14-1 with which the BCCH transmitted from the handover destination base station 14-2 is communicating.
  • the ANCH signal is output to the radio communication unit 22 earlier by
  • the frame synchronization unit 42 outputs an ANCH signal to the radio communication unit 22 later by ⁇ t than the transmission timing of the uplink signal (uplink CCH or uplink ICH) to the base station 14-1.
  • the uplink frame synchronization unit 42 The ANCH transmission timing is corrected by further considering the interval between the time slots (a multiple of the time slot length).
  • FIG. 7 is a functional block diagram of the base station 14.
  • the base station 14 includes an antenna 50, a radio communication unit 52, a demodulation unit 54, a data detection unit 56, an IP interface unit 58, a communication channel control unit 60, a handover control unit 62, a data generation unit 64, And a modulation unit 66.
  • Some of these are constituted by, for example, a CPU or a DSP.
  • the antenna 50 receives a radio signal and outputs the received radio signal to the radio communication unit 52. Further, the antenna 50 transmits a radio signal supplied from the radio communication unit 52 to the mobile station 12. Note that reception and transmission of wireless signals are switched in a time-sharing manner in accordance with instructions from the wireless communication unit 52.
  • the wireless communication unit 52 includes a low noise amplifier, a power amplifier, a local oscillator, a mixer, and a filter.
  • the radio communication unit 52 amplifies the radio signal input from the antenna 50 with a low noise amplifier, down-converts the radio signal to an intermediate frequency signal, and outputs the signal to the demodulation unit 54. Further, the wireless communication unit 52 up-converts the modulation signal input from the modulation unit 66 into a wireless signal, amplifies it to a transmission output level with a power amplifier, and supplies the signal to the antenna 50.
  • the demodulator 54 includes an A / D converter, a serial / parallel converter, an FFT operation unit, and a parallel / serial converter.
  • the demodulator 54 performs guard interval removal, A / D conversion, serial-parallel conversion, discrete Fourier transform, parallel-serial conversion, and the like on the signal input from the wireless communication unit 52 to obtain a continuous complex symbol sequence.
  • the complex symbol sequence acquired in this way is output to the data detection unit 56.
  • the data detection unit 56 detects a data bit sequence (reception data) corresponding to the symbol modulation method from the complex symbol sequence input from the demodulation unit 54, and detects the detected reception data in the IP interface unit 58, the handover control unit 62, and the like. Output to.
  • the IP interface unit 58 generates an IP packet by adding a predetermined IP header to the data input from the handover control unit 62 and the data generation unit 64, and transmits the IP packet to another base station 14 via the IP network 16. Or to the ASN gateway 18.
  • the IP interface unit 58 receives IP packets transmitted from other base stations 14 and the ASN gateway 18 via the IP network 16, and uses the handover control unit 62 and the data generation unit for payload data included in the received IP packets. To the unit 64 and the like.
  • the communication channel control unit 60 responds to a request from the mobile station 12 by using an ANCH PRU (single channel consisting of one communication channel) or an EXCH PRU (one or more communication channels) allocated to the mobile station 12. Channel) and the like, and the determined PRU is notified to the mobile station.
  • an ANCH PRU single channel consisting of one communication channel
  • EXCH PRU one or more communication channels allocated to the mobile station 12. Channel
  • the handover control unit 62 uses the ANCH assigned to the mobile station 12 by the communication channel control unit 60.
  • a handover request including the PRU is generated, and the handover request is transmitted to the handover destination base station 14-2 via the ASN gateway 18.
  • the handover controller 62 notifies the communication channel controller 60 of a new ANCH PRU included in the handover response (Switching Response) returned from the handover destination base station 14-2 and moves the handover response.
  • the data generator 64 is instructed to transmit to the station 12.
  • the communication channel control unit 60 needs to ensure that the new ANCH PRU time slot notified from the handover control unit 62 and the EXCH PRU time slot allocated to the mobile station 12 do not overlap. Accordingly, the allocation of EXCH PRUs is changed. That is, the communication channel control unit 60 restricts the EXCH PRU allocated to the mobile station 12 to a time slot excluding the new ANCH PRU time slot notified from the handover control unit 62.
  • the handover control unit 62 determines the ANCH PRU included in the handover request.
  • the communication channel control unit 60 is notified.
  • the communication channel control unit 60 determines one free PRU included in a time slot different from the time slot of the ANCH PRU notified from the handover control unit 62 as a new ANCH PRU.
  • the handover control unit 62 generates a handover response including the new ANCH PRU determined by the communication channel control unit 60, and returns the handover response to the base station 14-1 via the ASN gateway 18.
  • the data generation unit 64 adds the header information according to the format of the transmission channel to the data bit string from the IP interface unit 58 or the handover control unit 62, and generates transmission data.
  • the generated transmission data is output to modulation section 66.
  • the modulation unit 66 includes a serial-parallel converter, an IFFT calculation unit, a parallel-serial converter, and a D / A converter.
  • the modulation unit 66 performs symbol mapping, serial / parallel conversion, inverse discrete Fourier transform, parallel / serial conversion, D / A conversion, and the like on the transmission data input from the data generation unit 64 to obtain a baseband OFDM signal. .
  • the baseband OFDM signal acquired in this way is output to the wireless communication unit 52 after a guard interval is added.
  • This handover is a soft handover in which the mobile station 12 performs communication simultaneously with the base station 14-1 with which the mobile station 12 is communicating and the base station 14-2 that is the handover destination. It is assumed that the mobile station 12 has already established uplink frame synchronization with the communicating base station 14-1. Further, the transmission power Pt_MS1 of the uplink signal (uplink CCH or uplink ICH) to the base station 14-1 has been controlled so that the reception power of the uplink signal at the base station 14-1 is equal to the base station desired reception power Z. To do.
  • the base station 14 periodically transmits a broadcast control channel (BCCH) including its own base station ID and transmission power control information (S100).
  • BCCH broadcast control channel
  • the mobile station 12 uses the broadcast control channel with the highest received power among the broadcast control channels transmitted from each base station 14 (in this case, the broadcast control channel transmitted from the base station 14-2), based on the base station 14- 2.
  • Downlink frame synchronization is established with S2 (S102).
  • the mobile station 12 stores the reception timing and reception power of the broadcast control channel transmitted from the base station 14-2 in the storage unit 30.
  • the mobile station 12 transmits a handover request to the base station 14-2 to the communicating base station 14-1 (S104).
  • the base station 14-1 receives the handover request from the mobile station 12, the base station 14-1 generates a handover request including the ANCH PRU assigned to the mobile station 12 by the base station 14-1, and sends the handover request via the ASN gateway 18. Transmit to the handover destination base station 14-2 (S106, S108).
  • the base station 14-2 that has received the handover request from the base station 14-1 exchanges a path registration request, a path registration response, authentication information, etc. with the ASN gateway 18 (S110), and then makes a handover request.
  • One empty PRU included in a time slot different from the time slot of the included ANCH PRU is determined as a new ANCH PRU (S112).
  • a handover response including the determined new ANCH PRU is transmitted to the base station 14-1 via the ASN gateway 18 (S114, S116).
  • the base station 14-1 Upon receiving the handover response from the base station 14-2, the base station 14-1 transmits a handover response including the new ANCH PRU determined by the base station 14-2 to the mobile station 12 (S118).
  • the base station 14-1 determines the time slot of the new ANCH PRU determined by the base station 14-2, the time slot of the EXCH PRU assigned to the mobile station 12 by the base station 14-1, The EXCH PRU assignment is changed as necessary so that the two do not overlap.
  • the mobile station 12 When receiving the handover request from the communicating base station 14-1, the mobile station 12 acquires a new ANCH PRU from the handover response (S120). Next, the mobile station 12 includes the known base station maximum transmission power, the transmission power control information included in the broadcast control channel received in S100, and the received power of the broadcast control channel stored in the storage unit 30. Based on this, the propagation loss of the broadcast control channel, that is, the propagation loss between the mobile station 12 and the base station 14-2 is calculated. Then, based on the known desired reception power of the base station and the calculated propagation loss between the mobile station 12 and the base station 14-2, the transmission power of the ANCH to the handover destination base station 14-2 is calculated and corrected ( S122, S124).
  • the mobile station 12 receives the downlink signal (downlink CCH or downlink ICH) received from the communicating base station 14-1 and the broadcast control channel received from the handover destination base station 14-2.
  • the timing is read from the storage unit 30, and the timing difference is calculated as a timing correction amount (S126).
  • uplink frame synchronization is established with the handover destination base station 14-2 by correcting the ANCH transmission timing based on the calculated timing correction amount (S128).
  • the mobile station 12 uses the ANCH PRU acquired in S120 to transmit the uplink ANCH that requests the allocation of the EXCH PRU at the transmission power corrected in S124 and the transmission timing corrected in S128, to the handover destination base station. It is transmitted to 14-2 (S130).
  • the base station 14-2 that has received the uplink ANCH from the mobile station 12 determines an EXCH PRU composed of one or more PRUs to be allocated to the mobile station 12 (S132), and transmits the downlink ANCH including the determined EXCH PRU to the mobile station. 12 (S134). In this way, the mobile station 12 receives the allocation of the ANCH PRU and the EXCH PRU from the handover destination base station 14-2.
  • the base station 14-2 that has received the connection request confirms execution of the handover with the ASN gateway 18. From (S138), a connection response is returned to the mobile station 12 (S140). At this time, the ASN gateway 18 transmits a path deletion request to the base station 14-1 (S142), and releases the connection between the mobile station 12 and the base station 14-1 (S144).
  • the present invention is not limited to the next-generation PHS employing the TDMA / TDD scheme and the OFDMA scheme, but the first and second base stations and the second base station from which the first frame is established with uplink frame synchronization.
  • the present invention can be widely applied to all mobile communication systems including mobile stations that perform soft handover to other base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 上り方向のフレーム同期が確立された通信中の基地局(14-1)から基地局(14-2)にソフトハンドオーバを行う移動局(12)は、基地局(14-1)から送信される下り信号の受信タイミングと、S100で基地局(14-2)から送信される報知制御チャネルの受信タイミングと、のタイミング差をタイミング補正量として算出し(S126)、基地局(14-1)に対する上り信号の送信タイミングと、S126で算出されたタイミング差と、に基づいて基地局(14-2)に対する上りANCHの送信タイミングを補正することにより、基地局(14-2)との間で上り方向のフレーム同期を確立する(S128)。

Description

移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法
 本発明は、移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法に関し、特に、ハンドオーバを高速化する技術に関する。
 次世代PHS(Next Generation Personal Handy-phone System)は、TDMA/TDD(Time Division Multiple Access/Time Division Duplex:時分割多元接続/時分割双方向通信)方式およびOFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)方式により高速通信を実現する移動通信システムである。この次世代PHSの無線通信インターフェースは、非特許文献1に規定されている。
 図9は、次世代PHSの発呼シーケンスを示す図である。同図に示すように、基地局は、自局の基地局IDや送信電力制御情報(実際の送信電力と基地局最大送信電力との差を示す負の値)などを含む報知制御チャネル(BCCH:Broadcast Control Channel)を定期的に送信している(S200)。移動局は、この報知制御チャネルに基づいて下り方向(基地局から移動局に向かう方向)のフレーム同期を確立した後(S202)、上り同期バースト信号に対応するタイミング補正チャネル(TCCH:Timing Correct Channel)を基地局に送信する(S204)。
 移動局からのタイミング補正チャネルを受信した基地局は、まず、タイミング補正チャネルの受信タイミングと所望受信タイミングとのずれをタイミング補正量として算出する(S206)。次に、移動局に割り当てるANCH(Anchor Channel)用の1つの通信チャネルを決定する(S208)。次世代PHSにおける各通信チャネルは、TDMAによるタイムスロット(たとえば、タイムスロット長625μs)のいずれかとOFDMAによるサブチャネルのいずれかとの組み合わせからなり、PRU(Physical Resource Unit)と呼ばれる。
 さらに、基地局は、タイミング補正チャネルの受信電力と所望受信電力とのずれを移動局送信電力の補正量を算出し(S210)、S206で算出したタイミング補正量とS208で決定したANCH用PRUとS210で算出した移動局送信電力の補正量とを含む信号制御チャネル(下りSCCH:Signaling Control Channel)を移動局に送信する(S212)。
 移動局は、基地局からの信号制御チャネルを受信すると、その信号制御チャネルからANCH用PRUを取得する(S214)。次に、移動局は、信号制御チャネルに含まれる送信電力補正量に基づいてANCHの送信電力を補正するとともに(S216)、信号制御チャネルに含まれるタイミング補正量に基づいて送信タイミングを補正することにより、上り方向(移動局から基地局に向かう方向)のフレーム同期を確立する(S218)。そして、移動局は、S214で取得したANCH用PRUを使用して、S216で補正した送信電力およびS218で補正した送信タイミングで、EXCH(Extra Channel)用PRUの割り当てを要求する上りANCHを基地局に送信する(S220)。
 移動局からの上りANCHを受信した基地局は、1以上のPRUからなるEXCH用PRUを決定し(S222)、決定したEXCH用PRUを含む下りANCHを移動局に送信する(S224)。
 OFDMA方式を採用する次世代PHSでは、各移動局から送信される上り信号の受信タイミングずれおよび受信電力ずれを基地局側で個別に補正することができない。このため、上記のように、移動局側で上り信号の送信タイミングを補正することにより、シンボル間干渉(ISI:Inter-Symbol Interference)を防ぐようにしている。また、移動局の送信電力を適正化することにより、隣接セルへの干渉を防ぐようにしている。
 しかしながら、次世代PHSでは、移動局が通信中の基地局から他の基地局にハンドオーバを行う場合にも、移動局とハンドオーバ先の基地局との間で上記発呼シーケンスと同様のシーケンスが実行されるため(図10のS300,S302,S318~S338参照)、ハンドオーバに時間を要するという問題があった。また、次世代PHS以外の移動通信システムでも、ハンドオーバの高速化が求められている。
 本発明は、上記従来の課題に鑑みてなされたものであり、ハンドオーバを高速化することができる移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る移動通信システムは、第1および第2の基地局装置と、上り方向のフレーム同期が確立された前記第1の基地局装置から前記第2の基地局装置にソフトハンドオーバを行う移動局装置と、を含む移動通信システムであって、前記移動局装置は、前記第1の基地局装置から送信される下り信号の受信タイミングと、前記第2の基地局装置から送信される報知信号の受信タイミングと、のタイミング差を算出する受信タイミング差算出手段と、前記第1の基地局装置に対する上り信号の送信タイミングと、前記受信タイミング差算出手段により算出されたタイミング差と、に基づいて前記第2の基地局装置に対する上り信号の送信タイミングを補正することにより、前記第2の基地局装置との間で上り方向のフレーム同期を確立する上りフレーム同期手段と、を含む、ことを特徴とする。
 本発明によれば、移動局装置が、ハンドオーバ先の基地局装置に上り同期バーストを送信することなく、ハンドオーバ先の基地局装置との間で上りフレーム同期を確立する。このため、移動局装置による上り同期バーストの送信と、ハンドオーバ先基地局装置によるタイミング補正量の送信と、をハンドオーバシーケンスから省略することが可能となり、ハンドオーバを高速化することができる。
 また、本発明の一態様では、前記第2の基地局装置は、前記第1の基地局装置を介して受信される前記移動局装置からのハンドオーバ要求に応じて、前記移動局装置に割り当てる通信チャネルを決定する通信チャネル決定手段と、前記通信チャネル決定手段により決定された通信チャネルを、前記第1の基地局装置から前記移動局装置に送信されるハンドオーバ応答を介して前記移動局装置に通知する通信チャネル通知手段と、を含み、前記移動局装置は、前記ハンドオーバ応答を介して通知された通信チャネルを用いて、前記第2の基地局装置に対する上り信号を送信する。
 この態様によれば、通信中の基地局装置から移動局装置に送信されるハンドオーバ応答を介して、ハンドオーバ先の基地局装置が移動局装置に通信チャネルを通知するので、ハンドオーバを高速化することができる。
 また、本発明の一態様では、前記第1および第2の基地局装置は、直交周波数分割多元接続方式により、前記移動局装置と通信を行う。
 この態様によれば、ハンドオーバ先の基地局装置において、ガードインターバル(GI:Guard Interval)長を越える受信タイミングずれを防止することができる。このため、OFDMA方式で特に問題となるシンボル間干渉を防ぎつつ、ハンドオーバを高速化することができる。
 また、本発明に係る移動局装置は、上り方向のフレーム同期が確立された第1の基地局装置から第2の基地局装置にソフトハンドオーバを行う移動局装置であって、前記第1の基地局装置から送信される下り信号の受信タイミングと、前記第2の基地局装置から送信される報知信号の受信タイミングと、のタイミング差を算出する受信タイミング差算出手段と、前記第1の基地局装置に対する上り信号の送信タイミングと、前記受信タイミング差算出手段により算出されたタイミング差と、に基づいて前記第2の基地局装置に対する上り信号の送信タイミングを補正することにより、前記第2の基地局装置との間で上り方向のフレーム同期を確立する上りフレーム同期手段と、を含むことを特徴とする。
 また、本発明に係る基地局装置は、前記第1の基地局装置を介して受信される前記移動局装置からのハンドオーバ要求に応じて、前記移動局装置に割り当てる通信チャネルを決定する通信チャネル決定手段と、前記通信チャネル決定手段により決定された通信チャネルを、前記第1の基地局装置から前記移動局装置に送信されるハンドオーバ応答を介して前記移動局装置に通知する通信チャネル通知手段と、を含むことを特徴とする。
 また、本発明に係るハンドオーバ方法は、上り方向のフレーム同期が確立された第1の基地局装置から第2の基地局装置にソフトハンドオーバを行うためのハンドオーバ方法であって、前記第1の基地局装置から送信された下り信号の受信タイミングと、前記第2の基地局装置から送信された報知信号の受信タイミングと、のタイミング差を算出するステップと、前記第1の基地局装置に対する上り信号の送信タイミングと、前記算出されたタイミング差と、に基づいて前記第2の基地局装置に対する上り信号の送信タイミングを補正することにより、前記第2の基地局装置との間で上り方向のフレーム同期を確立するステップと、を含むことを特徴とする。
本発明の実施形態に係る移動通信システムの全体構成図である。 本発明の実施形態に係る移動局の機能ブロック図である。 ANCH送信電力の算出方法を示す図である。 ANCH送信電力の他の算出方法を示す図である。 ANCHの送信タイミングを示す図である。 ハンドオーバ時の移動局と基地局の位置関係を示す図である。 本発明の実施形態に係る基地局の機能ブロック図である。 本発明の実施形態に係るハンドオーバシーケンスを示す図である。 次世代PHSの発呼シーケンスを示す図である。 次世代PHSのハンドオーバシーケンスを示す図である。
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。
 図1は、本発明の一実施形態に係る移動通信システム10の全体構成図である。同図に示すように、移動通信システム10は、複数の移動局12(ここでは1つのみを示す)と、複数の基地局14(ここでは、移動局12と通信をしている基地局(Serving Base Station)14-1と移動局12のハンドオーバ先である基地局(Target Base Station)14-2のみを示す)と、ASNゲートウェイ18(ASN-GW:Access Service Network Gateway)と、を含んで構成されている。基地局14-1,14-2とASNゲートウェイ18は、IP網16を介して相互に接続されている。
 基地局14は、TDMA/TDD方式およびOFDMA方式を採用しており、TDMAによるタイムスロットのいずれかとOFDMAによるサブチャネルのいずれかとの組み合わせからなる通信チャネルの少なくとも1つを使用して移動局12と通信を行う。
 ASNゲートウェイ18は、基地局間通信の中継、認証管理、無線リソース管理、ハンドオーバ制御などを行う公知のサーバコンピュータである。
 移動通信システム10では、図10に示したハンドオーバシーケンスから、移動局によるタイミング補正チャネル(TCCH)の送信(S318)と、ハンドオーバ先の基地局による信号制御チャネル(下りSCCH)の送信(S326)と、を省略することができるため、高速なハンドオーバを実現することができる。
 以下では、上記ハンドオーバの高速化を実現するために移動局12および基地局14が備える構成について説明する。
 図2は、移動局12の機能ブロック図である。同図に示すように、移動局12は、アンテナ20、無線通信部22、下りフレーム同期部24、復調部26、データ検出部28、記憶部30、伝搬損失演算部32、送信電力制御部34、タイミング補正量演算部36、データ生成部38、変調部40、および上りフレーム同期部42を含んで構成される。これらのうち一部は、たとえばCPU(Central Processing Unit)またはDSP(Digital Signal Processor)で構成される。
 アンテナ20は、無線信号を受信し、受信された無線信号を無線通信部22に出力する。また、アンテナ20は、無線通信部22から供給される無線信号を基地局14に対して送信する。無線信号の受信と送信は、無線通信部22の指示に従って時分割で切り替えられる。
 無線通信部22は、ローノイズアンプ、パワーアンプ、局部発振器、ミキサ、およびフィルタを含んで構成される。無線通信部22は、アンテナ20から入力される無線信号をローノイズアンプで増幅し、中間周波数信号にダウンコンバートしてから、下りフレーム同期部24に出力する。また、無線通信部22は、上りフレーム同期部42から入力される変調信号を無線信号にアップコンバートし、パワーアンプで送信出力レベルまで増幅してから、アンテナ20に供給する。
 下りフレーム同期部24は、無線通信部22から入力される信号と既知信号との相関を検出し、所定値以上の相関が検出されたタイミングを基地局14から送信された下り信号の受信タイミングとして検出する。そして、検出された下り信号の受信タイミングに基づいて、下りフレーム同期部24は、基地局14との間で下り方向のフレーム同期を確立する。また、下りフレーム同期部24は、基地局14から送信された下り信号の受信電力を測定する。
 復調部26は、A/D変換器、直並列変換器、FFT(Fast Fourier Transform:高速フーリエ変換)演算部、および並直列変換器を含んで構成される。復調部26は、下りフレーム同期部24から入力される信号に、ガードインターバル(GI:Guard Interval)の除去、A/D変換、直並列変換、離散フーリエ変換、並直列変換などを施し、連続する複素シンボル列を取得する。こうして取得された複素シンボル列は、データ検出部28に出力される。
 データ検出部28は、復調部26から入力される複素シンボル列からシンボルの変調方式に応じたデータビット列(受信データ)を検出し、検出された受信データを図示しない上位層に出力する。
 記憶部30は、たとえば半導体メモリ素子で構成され、下りフレーム同期部24で検出された下り信号の受信タイミングや下りフレーム同期部24で測定された下り信号の受信電力などを記憶する。
 伝搬損失演算部32は、基地局14から送信される下り信号(下り共通チャネル(CCH:Common Channel)または下り個別チャネル(ICH:Individual Channel))の伝搬損失を算出する。報知制御チャネル(BCCH)は、下り共通チャネル(CCH)の1つである。
 ここでは、ハンドオーバ先の基地局14-2から送信される報知制御チャネルの伝搬損失の算出方法を図3に基づいて説明する。同図に示すように、ハンドオーバ先の基地局14-2から送信される報知制御チャネルの伝搬損失LOSS_BS2は、報知制御チャネルの送信電力Pt_BS2と移動局12における報知制御チャネルの受信電力RSSI_BS2との差であるから、LOSS_BS2=Pt_BS2-RSSI_BS2と表される。また、既知の基地局最大送信電力をPtMAX_BS、報知制御チャネルの送信電力制御情報(報知制御チャネルに含まれる負の値)をΔPt_BS2とすると、報知制御チャネルの送信電力Pt_BS2は、Pt_BS2=PtMAX_BS+ΔPt_BS2と表される。したがって、ハンドオーバ先の基地局14-2から送信される報知制御チャネルの伝搬損失LOSS_BS2は、LOSS_BS2=(PtMAX_BS+ΔPt_BS2)-RSSI_BS2により算出される。こうして算出される伝搬損失LOSS_BS2は、移動局12~基地局14-2間の伝搬損失とみなすことができる。
 このように、伝搬損失演算部32は、既知の基地局最大送信電力PtMAX_BSと、報知制御チャネルに含まれる送信電力制御情報ΔPt_BS2と、記憶部30に記憶された報知制御チャネルの受信電力RSSI_BS2と、に基づいて、報知制御チャネルの伝搬損失LOSS_BS2を算出する。
 送信電力制御部34は、基地局14に対する上り信号の送信電力を制御する。特に、移動局12が基地局14-1から基地局14-2にハンドオーバを行う際、送信電力制御部34は、ハンドオーバ先の基地局14-2におけるANCHの受信電力が基地局所望受信電力Zと等しくなるよう、ANCHの送信電力を制御する。ハンドオーバ先の基地局14-2との通信に使用するANCH用PRU(1つの通信チャネルからなる単一チャネル)は、後述するように、通信中の基地局14-1から送信されるハンドオーバ応答を介してハンドオーバ先の基地局14-2から通知される。
 ここで、ハンドオーバ先の基地局14-2に対するANCHの送信電力の算出方法を図3に基づいて説明する。同図に示すように、ハンドオーバ先の基地局14-2におけるANCHの受信電力が既知の基地局所望受信電力Zと等しくなるようにするためには、基地局所望受信電力Zに上述した移動局12~基地局14-2間の伝搬損失LOSS_BS2を上乗せした電力をANCHの送信電力Pt_MS2とすればよい。すなわち、Pt_MS2=Z+LOSS_BS2とすればよい。
 このように、送信電力制御部34は、既知の基地局所望受信電力Zと伝搬損失演算部32により算出された伝搬損失LOSS_BS2とに基づいて、ハンドオーバ先の基地局14-2に対するANCHの送信電力Pt_MS2を算出する。算出された送信電力Pt_MS2は変調部40に供給される。
 なお、送信電力制御部34は、他の方法によりANCHの送信電力Pt_MS2を制御してもよい。図4は、ハンドオーバ先の基地局14-2に対するANCHの送信電力の他の算出方法を示す図である。この算出方法は、通信中の基地局14-1における上り信号(上りCCHまたは上りICH)の受信電力が基地局所望受信電力Zと等しくなるよう予め基地局14-1に対する上り信号の送信電力が制御されていることを前提とした方法である。
 図4に示すように、通信中の基地局14-1から送信される下り信号(下りCCHまたは下りICH)の伝搬損失LOSS_BS1は、下り信号の送信電力Pt_BS1と移動局12における下り信号の受信電力RSSI_BS1との差であるから、LOSS_BS1=Pt_BS1-RSSI_BS1と表される。また、下り信号の送信電力制御情報(下り信号に含まれる負の値)をΔPt_BS1とすると、下り信号の送信電力Pt_BS1は、Pt_BS1=PtMAX_BS+ΔPt_BS1と表される。したがって、通信中の基地局14-1から送信される下り信号の伝搬損失LOSS_BS1は、LOSS_BS1=(PtMAX_BS+ΔPt_BS1)-RSSI_BS1により算出される。こうして算出される伝搬損失LOSS_BS1は、移動局12~基地局14-1間の伝搬損失とみなすことができる。
 また、通信中の基地局14-1に対する上り信号の送信電力Pt_MS1は、基地局14-1における上り信号の受信電力が基地局所望受信電力Zに等しくなるように決定されたものであるため、上り信号の送信電力Pt_MS1から移動局12~基地局14-1間の伝搬損失LOSS_BS1を差し引けば基地局所望受信電力Zが得られる。すなわち、基地局所望受信電力Zは、Z=Pt_MS1-LOSS_BS1により算出される。
 上述したように、ハンドオーバ先の基地局14-2に対するANCHの送信電力Pt_MS2は、Pt_MS2=Z+LOSS_BS2と表されるから、これにZ=Pt_MS1-LOSS_BS1を代入すると、Pt_MS2=Pt_MS1+(LOSS_BS2-LOSS_BS1)となる。
 このように、送信電力制御部34は、通信中の基地局14-1に対する上り信号の送信電力Pt_MS1と、通信中の基地局14-1から送信される下り信号の伝搬損失LOSS_BS1とハンドオーバ先の基地局14-2から送信される報知制御チャネルの伝搬損失LOSS_BS2との差と、に基づいて、ハンドオーバ先の基地局14-2に対するANCHの送信電力Pt_MS2を算出してもよい。
 タイミング補正量演算部36は、移動局12が基地局14-1から基地局14-2にハンドオーバを行う際、図5に示すように、通信中の基地局14-1から送信される下り信号(下りCCHまたは下りICH)の受信タイミングと、ハンドオーバ先の基地局14-2から送信される報知制御チャネル(BCCH)の受信タイミングと、のタイミング差をタイミング補正量Δtとして算出し、算出されたタイミング補正量Δtを上りフレーム同期部42に供給する。タイミング補正量Δtの算出に用いられる上記2つの受信タイミングは、記憶部30から読み出される。
 ただし、移動通信システム10では、通信中の基地局14-1が下り信号を送信するタイムスロットと、ハンドオーバ先の基地局14-2が報知制御チャネルを送信するタイムスロットと、が異なる場合がある。この場合、タイミング補正量演算部36は、それらタイムスロット間の間隔(タイムスロット長の倍数)を上記タイミング差からさらに差し引いた値をタイミング補正量Δtとする。
 こうして算出されたタイミング補正量Δtは、図6に示すように、移動局12~基地局14-1間の距離d1と、移動局12~基地局14-2間の距離d2と、の差に対応する。すなわち、光速をcとすると、Δt=(d1-d2)/cとなる。
 データ生成部38は、図示しない上位層から入力されるデータビット列に、送信チャネルのフォーマットに応じたヘッダ情報などを付加して、送信データを生成する。生成された送信データは、変調部40に出力される。
 変調部40は、直並列変換器、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)演算部、並直列変換器、およびD/A変換器を含んで構成される。変調部40は、データ生成部38から入力される送信データに対して変調方式に応じたシンボルマッピング(振幅および位相の割り当て)を行い、複素シンボル列を得る。
 また、変調部40は、得られた複素シンボル列を各サブキャリア成分に分割し、上り信号(上りANCHなど)の送信電力が送信電力制御部34で算出された送信電力になるよう基地局14から割り当てられたPRUに対応するサブキャリア成分を調整する。そして、変調部40は、調整された複素シンボル列の各キャリア成分に、直並列変換、逆離散フーリエ変換、並直列変換、D/A変換などを施し、ベースバンドOFDM信号を取得する。こうして取得されたベースバンドOFDM信号は、ガードインターバルが付加された後に、上りフレーム同期部42に出力される。
 上りフレーム同期部42は、移動局12が上り方向のフレーム同期が確立された通信中の基地局14-1から基地局14-2にハンドオーバを行う際、タイミング補正量演算部36により算出されたタイミング補正量Δtに基づいて、ハンドオーバ先の基地局14-2に対するANCHの送信タイミングを補正する。
 すなわち、図5に示すように、上りフレーム同期部42は、ハンドオーバ先の基地局14-2から送信されたBCCHが通信中の基地局14-1から送信された下り信号(下りCCHまたは下りICH)より|Δt|だけ遅れて受信された場合には、基地局14-1に対する上り信号(上りCCHまたは上りICH)の送信タイミングより|Δt|だけ早くANCH用の信号を無線通信部22に出力する。逆に、ハンドオーバ先の基地局14-2から送信されたBCCHが通信中の基地局14-1から送信された下り信号(下りCCHまたは下りICH)よりΔtだけ早く受信された場合には、上りフレーム同期部42は、基地局14-1に対する上り信号(上りCCHまたは上りICH)の送信タイミングよりΔtだけ遅くANCH用の信号を無線通信部22に出力する。
 なお、通信中の基地局14-1に対して上り信号を送信するタイムスロットと、ハンドオーバ先の基地局14-2に対してANCHを送信するタイムスロットと、が異なる場合、上りフレーム同期部42は、それらタイムスロット間の間隔(タイムスロット長の倍数)をさらに考慮してANCHの送信タイミングを補正するものとする。
 図7は、基地局14の機能ブロック図である。同図に示すように、基地局14は、アンテナ50、無線通信部52、復調部54、データ検出部56、IPインターフェース部58、通信チャネル制御部60、ハンドオーバ制御部62、データ生成部64、および変調部66を含んで構成される。これらのうち一部は、たとえばCPUまたはDSPで構成される。
 アンテナ50は、無線信号を受信し、受信された無線信号を無線通信部52に出力する。また、アンテナ50は、無線通信部52から供給される無線信号を移動局12に対して送信する。なお、無線信号の受信と送信は、無線通信部52の指示に従って時分割で切り替えられる。
 無線通信部52は、ローノイズアンプ、パワーアンプ、局部発振器、ミキサ、およびフィルタを含んで構成される。無線通信部52は、アンテナ50から入力される無線信号をローノイズアンプで増幅し、中間周波数信号にダウンコンバートしてから、復調部54に出力する。また、無線通信部52は、変調部66から入力される変調信号を無線信号にアップコンバートし、パワーアンプで送信出力レベルまで増幅してから、アンテナ50に供給する。
 復調部54は、A/D変換器、直並列変換器、FFT演算部、および並直列変換器を含んで構成される。復調部54は、無線通信部52から入力される信号に、ガードインターバルの除去、A/D変換、直並列変換、離散フーリエ変換、並直列変換などを施し、連続する複素シンボル列を取得する。こうして取得された複素シンボル列は、データ検出部56に出力される。
 データ検出部56は、復調部54から入力される複素シンボル列からシンボルの変調方式に応じたデータビット列(受信データ)を検出し、検出された受信データをIPインターフェース部58やハンドオーバ制御部62などに出力する。
 IPインターフェース部58は、ハンドオーバ制御部62やデータ生成部64から入力されるデータに所定のIPヘッダを付加してIPパケットを生成し、そのIPパケットをIP網16を介して他の基地局14やASNゲートウェイ18に送信する。また、IPインターフェース部58は、他の基地局14やASNゲートウェイ18から送信されるIPパケットをIP網16を介して受信し、受信したIPパケットに含まれるペイロードデータをハンドオーバ制御部62やデータ生成部64などに供給する。
 通信チャネル制御部60は、移動局12からの要求に応じて、移動局12に割り当てるANCH用PRU(1つの通信チャネルからなる単一チャネル)やEXCH用PRU(1つ以上の通信チャネルからなる複合チャネル)などを決定し、決定したPRUを移動局に通知する。
 ハンドオーバ制御部62は、データ検出部56で検出された受信データが通信中の移動局12からのハンドオーバ要求(Switching Request)である場合、通信チャネル制御部60が移動局12に割り当てているANCH用PRUを含むハンドオーバ要求を生成し、そのハンドオーバ要求をASNゲートウェイ18を介してハンドオーバ先の基地局14-2に送信する。その後、ハンドオーバ制御部62は、ハンドオーバ先の基地局14-2から返信されるハンドオーバ応答(Switching Response)に含まれる新たなANCH用PRUを通信チャネル制御部60に通知するとともに、そのハンドオーバ応答を移動局12に送信するようデータ生成部64に指示する。
 この場合、通信チャネル制御部60は、ハンドオーバ制御部62から通知された新たなANCH用PRUのタイムスロットと、移動局12に割り当てているEXCH用PRUのタイムスロットと、が重複しないよう、必要に応じてEXCH用PRUの割り当てを変更する。すなわち、通信チャネル制御部60は、移動局12に割り当てるEXCH用PRUを、ハンドオーバ制御部62から通知された新たなANCH用PRUのタイムスロットを除くタイムスロットに制限する。
 一方、ハンドオーバ制御部62は、IPインターフェース部58から入力されるデータが移動局12と通信をしている基地局14-1からのハンドオーバ要求である場合、そのハンドオーバ要求に含まれるANCH用PRUを通信チャネル制御部60に通知する。この場合、通信チャネル制御部60は、ハンドオーバ制御部62から通知されたANCH用PRUのタイムスロットとは異なるタイムスロットに含まれる1つの空きPRUを新たなANCH用PRUとして決定する。そして、ハンドオーバ制御部62は、通信チャネル制御部60が決定した新たなANCH用PRUを含むハンドオーバ応答を生成し、そのハンドオーバ応答をASNゲートウェイ18を介して基地局14-1に返信する。
 データ生成部64は、IPインターフェース部58やハンドオーバ制御部62からデータビット列に、送信チャネルのフォーマットに応じたヘッダ情報などを付加して、送信データを生成する。生成された送信データは、変調部66に出力される。
 変調部66は、直並列変換器、IFFT演算部、並直列変換器、およびD/A変換器を含んで構成される。変調部66は、データ生成部64から入力される送信データに対して、シンボルマッピング、直並列変換、逆離散フーリエ変換、並直列変換、D/A変換などを施し、ベースバンドOFDM信号を取得する。こうして取得されたベースバンドOFDM信号は、ガードインターバルが付加された後に、無線通信部52に出力される。
 次に、移動局12が通信中の基地局14-1から基地局14-2にハンドオーバを行う場合のハンドオーバシーケンスを図8に基づいて説明する。このハンドオーバは、移動局12が通信中の基地局14-1およびハンドオーバ先の基地局14-2と同時に通信を行うソフトハンドオーバである。なお、移動局12は、通信中の基地局14-1との間で上り方向のフレーム同期を確立済みであるものとする。また、基地局14-1に対する上り信号(上りCCHまたは上りICH)の送信電力Pt_MS1は、基地局14-1における上り信号の受信電力が基地局所望受信電力Zと等しくなるよう制御済みであるものする。
 同図に示すように、基地局14は、自局の基地局IDおよび送信電力制御情報を含む報知制御チャネル(BCCH)を定期的に送信している(S100)。移動局12は、各基地局14から送信される報知制御チャネルのうち最も受信電力の高い報知制御チャネル(ここでは基地局14-2から送信された報知制御チャネル)に基づいて、基地局14-2との間で下り方向のフレーム同期を確立する(S102)。このとき、移動局12は、基地局14-2から送信された報知制御チャネルの受信タイミングと受信電力を記憶部30に保存する。
 次に、移動局12は、通信中の基地局14-1に対して基地局14-2へのハンドオーバ要求を送信する(S104)。移動局12からのハンドオーバ要求を受信した基地局14-1は、基地局14-1が移動局12に割り当てているANCH用PRUを含むハンドオーバ要求を生成し、そのハンドオーバ要求をASNゲートウェイ18経由でハンドオーバ先の基地局14-2に送信する(S106,S108)。
 基地局14-1からのハンドオーバ要求を受信した基地局14-2は、ASNゲートウェイ18との間でパス登録要求、パス登録応答、認証情報などの交換を行った後(S110)、ハンドオーバ要求に含まれるANCH用PRUのタイムスロットとは異なるタイムスロットに含まれる1つの空きPRUを新たなANCH用PRUとして決定する(S112)。そして、決定された新たなANCH用PRUを含むハンドオーバ応答をASNゲートウェイ18経由で基地局14-1に送信する(S114,S116)。
 基地局14-2からのハンドオーバ応答を受信した基地局14-1は、基地局14-2により決定された新たなANCH用PRUを含むハンドオーバ応答を移動局12に送信する(S118)。ここで、基地局14-1は、基地局14-2により決定された新たなANCH用PRUのタイムスロットと、基地局14-1が移動局12に割り当てているEXCH用PRUのタイムスロットと、が重複しないよう、必要に応じてEXCH用PRUの割り当てを変更する。
 移動局12は、通信中の基地局14-1からハンドオーバ要求を受信すると、そのハンドオーバ応答から新たなANCH用PRUを取得する(S120)。次に、移動局12は、既知の基地局最大送信電力と、S100で受信された報知制御チャネルに含まれる送信電力制御情報と、記憶部30に記憶された報知制御チャネルの受信電力と、に基づいて、報知制御チャネルの伝搬損失、すなわち移動局12~基地局14-2間の伝搬損失を算出する。そして、既知の基地局所望受信電力と算出した移動局12~基地局14-2間の伝搬損失とに基づいて、ハンドオーバ先の基地局14-2に対するANCHの送信電力を算出し、補正する(S122,S124)。
 さらに、移動局12は、通信中の基地局14-1から送信された下り信号(下りCCHまたは下りICH)の受信タイミングと、ハンドオーバ先の基地局14-2から送信された報知制御チャネルの受信タイミングと、を記憶部30から読み出し、それらのタイミング差をタイミング補正量として算出する(S126)。そして、算出されたタイミング補正量に基づいてANCHの送信タイミングを補正することにより、ハンドオーバ先の基地局14-2との間で上り方向のフレーム同期を確立する(S128)。
 その後、移動局12は、S120で取得したANCH用PRUを使用して、S124で補正した送信電力およびS128で補正した送信タイミングで、EXCH用PRUの割り当てを要求する上りANCHをハンドオーバ先の基地局14-2に送信する(S130)。
 移動局12からの上りANCHを受信した基地局14-2は、移動局12に割り当てる1以上のPRUからなるEXCH用PRUを決定し(S132)、決定したEXCH用PRUを含む下りANCHを移動局12に送信する(S134)。このようにして、移動局12はハンドオーバ先の基地局14-2からANCH用PRUとEXCH用PRUの割り当てを受ける。
 その後、移動局12がハンドオーバ先の基地局14-2に接続要求を送信すると(S136)、接続要求を受信した基地局14-2は、ASNゲートウェイ18との間でハンドオーバの実行確認を行ってから(S138)、移動局12に接続応答を返信する(S140)。このとき、ASNゲートウェイ18は、基地局14-1に対してパス抹消要求を送信し(S142)、移動局12と基地局14-1との接続を解除する(S144)。
 以上説明した移動通信システム10によれば、移動局12によるタイミング補正チャネル(上り同期バーストに対応)の送信と、ハンドオーバ先の基地局14-2による信号制御チャネル(タイミング補正量、新たなASCH用PRU、および送信電力補正量を含む情報)の送信と、がハンドオーバシーケンスに含まれないため、ハンドオーバの高速化と無線リソースの利用効率向上を実現することができる。
 なお、本発明は、上記実施形態に限定されるものではない。
 すなわち、本発明は、TDMA/TDD方式およびOFDMA方式を採用する次世代PHSに限らず、第1および第2の基地局と、上り方向のフレーム同期が確立された第1の基地局から第2の基地局にソフトハンドオーバを行う移動局と、を含む移動通信システム全般に広く適用可能である。

Claims (6)

  1.  第1および第2の基地局装置と、上り方向のフレーム同期が確立された前記第1の基地局装置から前記第2の基地局装置にソフトハンドオーバを行う移動局装置と、を含む移動通信システムであって、
     前記移動局装置は、
     前記第1の基地局装置から送信される下り信号の受信タイミングと、前記第2の基地局装置から送信される報知信号の受信タイミングと、のタイミング差を算出する受信タイミング差算出手段と、
     前記第1の基地局装置に対する上り信号の送信タイミングと、前記受信タイミング差算出手段により算出されたタイミング差と、に基づいて前記第2の基地局装置に対する上り信号の送信タイミングを補正することにより、前記第2の基地局装置との間で上り方向のフレーム同期を確立する上りフレーム同期手段と、
     を含む、
     ことを特徴とする移動通信システム。
  2.  請求項1に記載の移動通信システムにおいて、
     前記第2の基地局装置は、
     前記第1の基地局装置を介して受信される前記移動局装置からのハンドオーバ要求に応じて、前記移動局装置に割り当てる通信チャネルを決定する通信チャネル決定手段と、
     前記通信チャネル決定手段により決定された通信チャネルを、前記第1の基地局装置から前記移動局装置に送信されるハンドオーバ応答を介して前記移動局装置に通知する通信チャネル通知手段と、
     を含み、
     前記移動局装置は、前記ハンドオーバ応答を介して通知された通信チャネルを使用して、前記第2の基地局装置に対する上り信号を送信する、
     ことを特徴とする移動通信システム。
  3.  請求項1または2に記載の移動通信システムにおいて、
     前記第1および第2の基地局装置は、直交周波数分割多元接続方式により、前記移動局装置と通信を行う、
     ことを特徴とする移動通信システム。
  4.  上り方向のフレーム同期が確立された第1の基地局装置から第2の基地局装置にソフトハンドオーバを行う移動局装置であって、
     前記第1の基地局装置から送信される下り信号の受信タイミングと、前記第2の基地局装置から送信される報知信号の受信タイミングと、のタイミング差を算出する受信タイミング差算出手段と、
     前記第1の基地局装置に対する上り信号の送信タイミングと、前記受信タイミング差算出手段により算出されたタイミング差と、に基づいて前記第2の基地局装置に対する上り信号の送信タイミングを補正することにより、前記第2の基地局装置との間で上り方向のフレーム同期を確立する上りフレーム同期手段と、
     を含むことを特徴とする移動局装置。
  5.  請求項4に記載の第2の基地局装置であって、
     前記第1の基地局装置を介して受信される前記移動局装置からのハンドオーバ要求に応じて、前記移動局装置に割り当てる通信チャネルを決定する通信チャネル決定手段と、
     前記通信チャネル決定手段により決定された通信チャネルを、前記第1の基地局装置から前記移動局装置に送信されるハンドオーバ応答を介して前記移動局装置に通知する通信チャネル通知手段と、
     を含むことを特徴とする基地局装置。
  6.  上り方向のフレーム同期が確立された第1の基地局装置から第2の基地局装置にソフトハンドオーバを行うためのハンドオーバ方法であって、
     前記第1の基地局装置から送信された下り信号の受信タイミングと、前記第2の基地局装置から送信された報知信号の受信タイミングと、のタイミング差を算出するステップと、
     前記第1の基地局装置に対する上り信号の送信タイミングと、前記算出されたタイミング差と、に基づいて前記第2の基地局装置に対する上り信号の送信タイミングを補正することにより、前記第2の基地局装置との間で上り方向のフレーム同期を確立するステップと、
     を含むことを特徴とするハンドオーバ方法。
PCT/JP2009/057525 2008-04-18 2009-04-14 移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法 WO2009128454A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801137121A CN102007804A (zh) 2008-04-18 2009-04-14 移动通信系统、移动台装置、基站装置以及越区切换方法
KR1020107023017A KR101148975B1 (ko) 2008-04-18 2009-04-14 이동통신시스템, 이동국장치, 기지국장치, 및 핸드오버방법
US12/988,306 US8599882B2 (en) 2008-04-18 2009-04-14 Mobile communication system, mobile station device, base station device and handover method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-108735 2008-04-18
JP2008108735A JP2009260768A (ja) 2008-04-18 2008-04-18 移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法

Publications (1)

Publication Number Publication Date
WO2009128454A1 true WO2009128454A1 (ja) 2009-10-22

Family

ID=41199143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057525 WO2009128454A1 (ja) 2008-04-18 2009-04-14 移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法

Country Status (5)

Country Link
US (1) US8599882B2 (ja)
JP (1) JP2009260768A (ja)
KR (1) KR101148975B1 (ja)
CN (1) CN102007804A (ja)
WO (1) WO2009128454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150463A1 (ja) * 2009-06-22 2010-12-29 シャープ株式会社 通信システム、移動局、基地局及び通信方法
CN103181088A (zh) * 2010-10-28 2013-06-26 富士通株式会社 无线通信装置以及无线通信方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9560572B2 (en) * 2011-11-28 2017-01-31 Kyocera Corporation Handovers in wireless communication systems with hierarchical cells using different transmission time periods for uplink communication
US9313698B2 (en) 2013-10-11 2016-04-12 Blackberry Limited Method and apparatus for handover in heterogeneous cellular networks
CN106454821A (zh) * 2016-02-01 2017-02-22 深圳市途鸽信息有限公司 虚拟用户识别模块鉴权方法和装置
WO2020096175A1 (ko) * 2018-11-11 2020-05-14 엘지전자 주식회사 차세대 통신 시스템에서 릴레이 노드가 하향링크 신호를 송신하는 방법 및 이를 위한 장치
CN111212452B (zh) * 2020-01-13 2022-05-17 海能达通信股份有限公司 语音通信的越区切换方法、通信系统、终端和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164650A (ja) * 1996-11-28 1998-06-19 Oki Electric Ind Co Ltd 通信チャネル切替制御方法、移動通信制御局装置、基地局装置、移動局装置及び移動通信システム
JP2005514822A (ja) * 2001-12-20 2005-05-19 モトローラ・インコーポレイテッド 移動体開始のcdmaディスパッチソフトハンドオフのための方法及びその装置
WO2006125150A2 (en) * 2005-05-18 2006-11-23 Qualcomm Incorporated Softer and soft handoff in an orthogonal frequency division wireless communication system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250762B2 (ja) * 1993-05-21 2002-01-28 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム基地局同期法
JP3313573B2 (ja) * 1996-04-05 2002-08-12 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける拡散コードの同期確立方法および移動局装置と基地局装置
EP0845877A3 (en) * 1996-11-28 2002-03-27 Oki Electric Industry Co., Ltd. Mobile communication system for accomplishing handover with phase difference of frame sync signals corrected
JP4267092B2 (ja) * 1998-07-07 2009-05-27 富士通株式会社 時刻同期方法
US6490454B1 (en) * 1998-08-07 2002-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Downlink observed time difference measurements
FI982399A0 (fi) * 1998-11-05 1998-11-05 Nokia Telecommunications Oy Kehyssykronointimekanismi
FI106494B (fi) * 1998-11-05 2001-02-15 Nokia Networks Oy Kehystahdistusmekanismi
US7525948B2 (en) * 2002-04-29 2009-04-28 Nokia Corporation Method and apparatus for utilizing synchronization information
JP2006074082A (ja) * 2004-08-31 2006-03-16 Shibasoku:Kk 無線計測装置の制御方法
KR100929087B1 (ko) * 2006-02-09 2009-11-30 삼성전자주식회사 이동통신 시스템에서 핸드오버시 업링크 타이밍싱크 프로시져 수행 방법 및 장치
KR20100005084A (ko) * 2007-04-28 2010-01-13 후아웨이 테크놀러지 컴퍼니 리미티드 근접성 기반의 전송 모드 변경을 통한 간섭 감소를 위한 방법 및 시스템
US8218500B2 (en) * 2007-04-30 2012-07-10 Texas Instruments Incorporated Pre-synchronization method for hard handovers in wireless networks
US8170585B2 (en) * 2007-11-14 2012-05-01 Andrew, Llc Ranging in UMTS networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164650A (ja) * 1996-11-28 1998-06-19 Oki Electric Ind Co Ltd 通信チャネル切替制御方法、移動通信制御局装置、基地局装置、移動局装置及び移動通信システム
JP2005514822A (ja) * 2001-12-20 2005-05-19 モトローラ・インコーポレイテッド 移動体開始のcdmaディスパッチソフトハンドオフのための方法及びその装置
WO2006125150A2 (en) * 2005-05-18 2006-11-23 Qualcomm Incorporated Softer and soft handoff in an orthogonal frequency division wireless communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150463A1 (ja) * 2009-06-22 2010-12-29 シャープ株式会社 通信システム、移動局、基地局及び通信方法
US8768362B2 (en) 2009-06-22 2014-07-01 Sharp Kabushiki Kaisha Communication system, mobile station, base station, and communication method
CN103181088A (zh) * 2010-10-28 2013-06-26 富士通株式会社 无线通信装置以及无线通信方法

Also Published As

Publication number Publication date
US20110034172A1 (en) 2011-02-10
US8599882B2 (en) 2013-12-03
KR20100126808A (ko) 2010-12-02
JP2009260768A (ja) 2009-11-05
KR101148975B1 (ko) 2012-05-23
CN102007804A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
US11818618B2 (en) Base station backhaul link information
US11632693B2 (en) Sidelink congestion control
US11825360B2 (en) Uplink selection for handover
WO2009128456A1 (ja) 移動局装置および送信電力制御方法
EP3785480B1 (en) Resource configuration for integrated access and backhaul nodes
US20210314965A1 (en) Wireless Resource Selection
EP3735075A1 (en) D2d sidelink wireless communications with indication of receiver information
JP5174520B2 (ja) 移動通信システム、およびチャネル割り当て方法
WO2009128454A1 (ja) 移動通信システム、移動局装置、基地局装置、およびハンドオーバ方法
US20230291455A1 (en) Channel State Information Feedback for Multiple Transmission Reception Points
WO2015064443A1 (ja) 無線基地局、ユーザ端末および無線通信方法
JP4756056B2 (ja) 移動局装置および送信電力制御方法
JP5047042B2 (ja) 移動局装置および送信電力制御方法
WO2009128307A1 (ja) 移動局装置および送信電力制御方法
TW202410728A (zh) 用於跨時槽邊界排程的方法及使用者設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113712.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107023017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12988306

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731764

Country of ref document: EP

Kind code of ref document: A1