WO2009128440A2 - Composite foamed-resin sheet - Google Patents

Composite foamed-resin sheet Download PDF

Info

Publication number
WO2009128440A2
WO2009128440A2 PCT/JP2009/057489 JP2009057489W WO2009128440A2 WO 2009128440 A2 WO2009128440 A2 WO 2009128440A2 JP 2009057489 W JP2009057489 W JP 2009057489W WO 2009128440 A2 WO2009128440 A2 WO 2009128440A2
Authority
WO
WIPO (PCT)
Prior art keywords
foam
resin sheet
composite
sheet
foaming
Prior art date
Application number
PCT/JP2009/057489
Other languages
French (fr)
Japanese (ja)
Inventor
文剛 永森
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2010508212A priority Critical patent/JPWO2009128440A1/en
Publication of WO2009128440A2 publication Critical patent/WO2009128440A2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the present invention relates to an olefin-based composite foamed resin sheet that can be folded while maintaining a certain hardness and that can retain its shape.
  • Patent Document 1 a non-combustible corrugated cardboard in which a core material made of corrugated paper is covered with an aluminum foil and a non-combustible layer is interposed between the core material and the aluminum foil is corrugated cardboard.
  • a non-combustible corrugated cardboard in which a core material made of corrugated paper is covered with an aluminum foil and a non-combustible layer is interposed between the core material and the aluminum foil is corrugated cardboard.
  • the non-combustible corrugated cardboard is made of corrugated paper, the aluminum foil can maintain a certain level of hermeticity, but it is highly likely to absorb moisture in the atmosphere depending on the conditions of construction and the surrounding environment. Issues remain from the viewpoint of durability.
  • the non-combustible corrugated cardboard is also difficult to bend in a certain direction because of the anisotropy in strength due to the characteristics of the corrugated cardboard in terms of workability, and processing restrictions may occur.
  • heat insulation can include the advantages of corrugated cardboard ducts, and as a material that can overcome the problems of corrugated cardboard ducts, resin foams are preferred, especially bent, From the viewpoint of processability such as cutting, an olefin resin foam is preferred.
  • olefin-based resins can maintain appropriate heat insulation by foaming. This is also highly recyclable with respect to disposal.
  • the olefin-based resin foam has a high expansion ratio and can be bent if it is soft and soft, but it is difficult to maintain the shape because of insufficient rigidity, and the compressive strength is kept low.
  • deformation of the material itself is likely to occur due to deformation such as dents due to local load generation.
  • the olefin resin itself has a problem that it is difficult to maintain the flameproof property, which is a necessary requirement of the air conditioning duct, and it tends to burn.
  • Patent Document 3 In order to overcome such a problem, use of a polyolefin resin foam described in Patent Document 3 is conceivable. Since this polyolefin resin foam has flexibility for bending despite its high compressive strength, it can be bent or heat-shaped without cracking. Therefore, even if a certain amount of external force is applied during construction, the shape can be maintained without causing deformation such as a dent, and the durability after construction is excellent. From the viewpoint of flameproofness, Patent Document 4 and Patent Document 5 propose a composite foamed resin sheet obtained by laminating a metal foil on the surface. The composite foamed resin sheet having such a laminated structure can impart fire resistance to the resin foam from the performance of the metal foil.
  • the surface layer of the composite foamed resin sheet is made of a metal foil, so that stress in the tensile direction is generated on the surface layer on one side during bending, and cracks and fractures occur if the metal foil cannot withstand the stress. It will occur.
  • the bending process range is limited so that the surface layer does not crack or break, making it difficult to use the composite foamed resin sheet in the air conditioning duct field.
  • a method of increasing the strength by increasing the thickness of the metal foil is also conceivable, but in this case, it is difficult to bend, and workability and cost become problems.
  • the present invention does not cause cracking or breaking of the surface metal foil at the time of bending, which was a problem of the above-mentioned metal foil laminated foam, and is excellent in heat insulation, environmental performance, workability, and air conditioning duct material It aims at providing the composite foaming resin sheet which can be used for.
  • the polyolefin-based composite resin foamed resin sheet according to the present invention has an average aspect ratio Dz / Dxy of internal bubbles of 1.1 to 5.0, a foaming ratio of 4 to 20 times, and a compressive strength of 0.05 MPa or more.
  • the composite foamed resin sheet in which a metal foil having an average thickness of 5 ⁇ m to 200 ⁇ m is laminated on at least one surface of a polyolefin resin foam is characterized in that at least a part or the entire surface of the metal foil side is subjected to a textured process. To do.
  • the foam contains 5 to 30 parts by weight of a flame retardant with respect to 100 parts by weight of the polyolefin resin.
  • the top and bottom of a foamable laminate formed by laminating metal foil on at least one surface of a polyolefin-based resin foamable sheet is sandwiched between two endless belts and heated.
  • the foamed sheet is foamed and then cooled, and the endless belt on the metal foil side has a textured shape on the surface.
  • the processed product of the polyolefin-based composite resin foamed resin sheet according to the present invention can be manufactured into a desired shape by making a crease using a wedge-shaped metal fitting.
  • the polyolefin composite resin foamed resin sheet and processed product according to the present invention are useful as, for example, a duct material for air conditioning.
  • the polyolefin resin foam has an average value of the aspect ratio Dz / Dxy [Dz (maximum diameter parallel to the foam thickness direction) / Dxy (maximum diameter parallel to the foam width or length direction)] of the internal bubbles.
  • the foaming ratio is 1.1 to 5.0
  • the expansion ratio is 4 to 20 times, preferably 6 to 17 times
  • the compressive strength is 0.05 MPa or more, preferably 0.1 to 1.5 MPa.
  • the resin component used for the resin foam sheet is a polyolefin resin because of its advantages of processability and recyclability.
  • the polyolefin resin used may be a homopolymer or copolymer of an olefin monomer, and is not particularly limited.
  • low density polyethylene high density polyethylene
  • linear low density Polyethylene such as polyethylene
  • polypropylene such as propylene homopolymer, propylene random polymer, propylene block polymer, polybutene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer
  • a copolymer having ethylene as a main component, such as a polymer is preferably used.
  • polyethylene and polypropylene are particularly preferably used. These polyolefin resin may be used independently and 2 or more types may be used together.
  • the polyolefin resin may be a polyolefin resin composition in which other resin of less than 30% by weight is added to the polyolefin resin.
  • other resin for example, a polystyrene, a styrene-type elastomer, etc. are mentioned. These other resins may be used alone or in combination of two or more.
  • the amount of other resin added to the polyolefin resin is 30% by weight or more, the excellent properties of the polyolefin resin such as light weight, chemical resistance, flexibility, and elasticity may be hindered. Sometimes it may be difficult to ensure the necessary melt viscosity.
  • the polyolefin resin may be a polyolefin resin composition to which a modifying monomer is added.
  • the modifying monomer is not particularly limited, and examples thereof include dioxime compounds, bismaleimide compounds, divinylbenzene, allyl polyfunctional monomers, (meth) acrylic polyfunctional monomers, and quinone compounds. These modifying monomers may be used alone or in combination of two or more.
  • the polyolefin resin foam has an aspect ratio [Dz (maximum diameter parallel to the foam thickness direction) / Dxy (maximum parallel to the foam width or length direction) of the inherent cell for improving the compression performance.
  • the average value of (diameter)] is 1.1 to 5.0, and the expansion ratio is 4 to 20 times. If the expansion ratio of the foam is less than 4 times, the compression strength (compression modulus) becomes too high and it becomes hard to bend, and conversely, if the expansion ratio of the foam exceeds 20 times, The thickness becomes thin, the compression strength (compression modulus) becomes insufficient, and it is difficult to maintain the shape.
  • the apparent density is measured according to JIS K-6767 “Testing method for polyethylene foam”, and the reciprocal number is taken as the foaming ratio.
  • Compressive strength is defined as the higher of the maximum stress value or the yield point stress measured when the sample is compressed to 10% of the thickness with reference to JIS K 7220.
  • the polyolefin resin foam has a compressive strength of 0.05 MPa or more, preferably 0.1 to 1.5 MPa. If the compressive strength of the foam is less than 0.05 MPa, dents are likely to be generated with respect to local loads, and the sheet is too soft to maintain the processed shape.
  • FIG. 1 (a) is a perspective view showing a foam
  • FIG. 1 (b) is an enlarged view of portion A in FIG. 1 (a).
  • the average value of the aspect ratio [Dz (maximum diameter parallel to the foam thickness direction) / Dxy (maximum diameter parallel to the foam width or length direction)] is the inside of the foam (1) shown in FIG. It means the number (arithmetic) average value of the ratio of the maximum directional diameter in the cell (3) and is measured by the following method.
  • Measuring method of average value of aspect ratio (Dz / Dxy) Take a 50 times magnified photograph of an arbitrary cross section (2) parallel to the thickness direction (referred to as z direction) of foam (1) and select at random The maximum diameter in the fixed direction of at least 50 cells (3) is measured in the following two directions, and the number (arithmetic) average value of each aspect ratio (Dz / Dxy) is calculated.
  • Dz Maximum diameter parallel to the Z direction of the cell (3) in the foam (1)
  • Dxy In the foam width direction or the foam length direction of the cell (3) in the foam (1), that is, in the z direction
  • the above aspect ratio [Dz (maximum diameter parallel to foam thickness direction) / Dxy (maximum diameter parallel to foam width or length direction)] which is the maximum diameter parallel to the vertical surface direction (referred to as xy direction)]
  • xy direction the average value of 1.1 to 5.0 (preferably 1.2 to 2.2)
  • the cell (3) in the foam (1) has a long axis in the thickness direction of the foam (1).
  • a spindle-shaped cell (3) having Therefore, when the foam (1) receives a compressive force in the thickness direction, the compressive force is applied in the major axis direction of the spindle-shaped cell (3), so the foam (1) is high in the thickness direction.
  • the compressive strength compression elastic modulus
  • the aspect ratio exceeds 5.0, the foam becomes too brittle and difficult to bend.
  • the average value of Dxy of the cells (3) inside the foam (1) is not particularly limited, but is preferably 500 ⁇ m or more, more preferably 800 ⁇ m or more.
  • the method for producing a polyolefin resin foam in the present invention can be produced by foaming a polyolefin resin foam sheet prepared by the method of an example described in Japanese Patent No. 3766249, for example.
  • the foamable sheet is preferably foamed using a continuous foaming apparatus.
  • the foaming method using the continuous foaming device is not particularly limited.
  • a take-up type foaming device that continuously foams the foamable sheet while taking the foam on the outlet side of the heating furnace.
  • a foaming method using a belt-type foaming apparatus, a vertical or horizontal foaming furnace, a hot air thermostat, and a foaming method in a hot bath such as an oil bath, a metal bath or a salt bath.
  • a double belt type foaming method is preferable.
  • This consists of sandwiching a foamable sheet between two upper and lower endless belts of a double belt type foaming apparatus and heating the foamable sheet in a heating furnace to foam the foamable sheet.
  • a foamed sheet manufacturing method for obtaining a foam by cooling with a cooling device wherein a heating blower connected to a heating source is disposed in a furnace covered with a heating element, and the endless belt is heated by the heating blower while the furnace is heated. It circulates inside.
  • the metal foil laminated on the polyolefin resin foam has a thickness of 5 to 200 ⁇ m, preferably 7 to 150 ⁇ m, more preferably 20 to 120 ⁇ m. If the thickness is less than 5 ⁇ m, it is easy to break in terms of strength, and it is difficult to obtain a shape retention effect, so that it is difficult to process. On the other hand, if this thickness exceeds 200 ⁇ m, the rigidity of the metal foil as the face material becomes too large and it becomes difficult to bend. Therefore, the thickness of the metal foil is preferably 5 to 200 ⁇ m. In consideration of nonflammability, cost, and handleability, a thickness of 20 to 120 ⁇ m is most preferable. Although metal foil does not specifically limit, Aluminum foil, stainless steel foil, titanium alloy foil, nickel alloy foil, bronze foil, tin foil, zinc alloy foil, brass foil, etc. are mentioned. Aluminum foil is preferable from the viewpoint of economy and productivity.
  • the metal foil is placed at the stacking position, and the foamable sheet and the metal foil are simultaneously fed into the heating furnace of the continuous foaming apparatus. . Then, the foamable sheet is melted, and the foamable sheet and the metal foil are laminated and integrated to foam.
  • the metal foil may be directly laminated on the foam, or may be laminated via an intermediate layer such as a thermoplastic resin film, a nonwoven fabric, inorganic fibers, or paper.
  • an intermediate layer such as a thermoplastic resin film, a nonwoven fabric, inorganic fibers, or paper.
  • thermoplastic hot melt adhesives and surface modification effects such as primer treatment and corona discharge on the metal foil surface are effective means for improving the adhesive strength between the foam sheet and aluminum foil. is there.
  • a further feature of the present invention is that a texture is formed on at least one side of a laminate comprising a polyolefin resin foam and a metal foil laminated thereon.
  • “Wrinkles” are originally irregularities that appear on the surface of the fabric due to the warp of the yarn (Ojizumi).
  • “wrinkles” are the purpose of adding functionality and design to the surface of the molded product. It means uneven patterns such as leather, satin, wood, and cloth.
  • the shape of the embossing is not particularly limited, but if the embossed recess is too deep, the foamability is impaired, and if it is too shallow, the above-described effects cannot be exhibited. Therefore, the depth of the embossed recess is preferably 0.01 to 1 mm.
  • the texture on the surface of the laminate may be formed in advance on the surface of the metal foil, or may be formed on the foamed laminate obtained by laminating the metal foil on the polyolefin resin foamable sheet or the foamed laminate after the foaming.
  • the latter is preferable from an economic point of view.
  • the latter uses a belt having an embossed shape with an average unevenness depth of 0.01 to 1.00 mm on the surface of a foamed laminate obtained by laminating a metal foil on at least one side of a polyolefin resin foamable sheet.
  • This is a method in which the embossed shape is pressure-transferred onto the surface of the laminate before or after foaming of the foamable laminate while being conveyed through the foaming apparatus.
  • the composite foamed resin sheet according to the present invention can add flame resistance to the polyolefin resin foam by laminating a metal foil on the polyolefin resin foam.
  • the non-flammability can be increased without impairing the productivity of the foamed resin sheet itself, and if the specific conditions are met, meet the standards in the non-flammable material test stipulated in the Building Standards Act Is possible.
  • the flame retardant used is not limited, but a halogen flame retardant is particularly effective. Examples include chlorine-based flame retardants such as decabromodiphenyl ether, tetrabromobisphenol-A, TBA-bis [2,3-dibromopropyl ether], TBA-bis [allyl ether], hexabromocyclodecane, tribromophenol. .
  • a brominated flame retardant such as ethylene bispentabromobenzene is preferable from the viewpoint of safety.
  • non-halogen flame retardants such as antimony trioxide, heat-expandable graphite, phosphorus, magnesium hydroxide, aluminum hydroxide, and various inorganic substances can be used. These flame retardants may be used alone or in combination of two or more.
  • the combined use of antimony trioxide and a brominated flame retardant exhibits a flame retardant effect effectively.
  • the combined use of ethylenebispentabromobenzene and antimony trioxide ratio is around 2: 1 is preferable.
  • the flame retardant is preferably added in an amount of 5 to 30 parts by weight with respect to 100 parts by weight of the polyolefin resin. If this proportion is less than 5 parts by weight, the effect of flame retardancy cannot be sufficiently exerted, and if it exceeds 30 parts by weight, the foamability tends to be inhibited.
  • the method for producing a composite foamed resin sheet according to the present invention comprises a foamed laminate formed by laminating a metal foil on at least one side of a polyolefin resin foamable sheet, sandwiched between two endless belts, and heated to be foamable.
  • the endless belt on the metal foil side has an embossed shape with an average unevenness height difference (average height difference between the highest point and the lowest point on the embossed surface) of 0.01 to 1 mm on the surface. preferable.
  • the embossed surface is pressed on the surface of the laminate at any timing from the heating before foaming of the foamable laminate to the cooling after foaming. Transcribed.
  • the surface of the endless belt itself on the metal foil side for conveying the foamable laminate is subjected to graining in advance.
  • the foamable sheet is very soft because the foamable sheet is close to or melted before and after foaming, and preferably after the foamable laminate is heated.
  • a method is preferred in which the embossed shape of the belt is pressure-transferred onto the surface of the laminate before and after foaming.
  • an embossed shape can be easily formed on the composite foamed resin sheet.
  • a foamable laminate comprising a polyolefin resin foamable sheet and a metal foil
  • the foamable sheet foams and the metal foil becomes a foamed layer.
  • solidify after cooling at that time, a textured shape can be formed on the surface layer of the composite resin foam sheet by the textured shape provided on at least one surface of the upper and lower two endless belts.
  • the outer surface of the conveying belt driven in the foaming heating furnace (the upper belt is the upper surface relative to the belt, the lower belt is the belt
  • the weight of the heat transfer roll provided on the outer surface of the upper belt By applying forced pressure to the roll, the embossed shape processed on at least one surface of the upper belt and the lower belt can be pressure-transferred to the surface of the laminate while the foamable laminate is conveyed in the foaming apparatus.
  • the compressive strength of the foamable laminate and the foamed laminate after the foaming is reduced at the time of pressurization before and after foaming, the shape of the belt surface is transferred to the surface layer of the structure even at a relatively low pressure. Easy to be. Further, it is also possible to use pressure applied by a cooling roll or the like used for cooling the foamed laminated body provided at the rear in the foaming apparatus. This method is more advantageous in terms of energy consumption and cost than a method of forming a texture on the surface of the metal foil in advance.
  • the belt for transporting the laminate is not particularly limited as long as the heat resistance during heating and foaming can be maintained, but a steel belt, a fluorine processing belt, or the like is preferable.
  • fluororesin especially polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, for fiber layers such as long glass fibers, from the viewpoint of ease of surface texture processing, releasability, and strength
  • a belt made of a sheet coated with (PFA) or the like is preferable.
  • fluororesins include tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), A chlorotrifluoroethylene / ethylene copolymer (ECTFE) is exemplified, but since a resin having a foaming heating temperature exceeding the melting point of the resin cannot be used, the resin is selected in consideration of the foaming start temperature.
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene / ethylene copolymer
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • the crease treatment includes a method of pressing using a wedge-shaped metal fitting and a method of performing groove processing such as V-shaped on a bent portion. Besides that, U-shaped pressing and groove processing It is possible to make the sheet easier to bend by a method in which the thickness of the bending position is locally thinner than other portions, such as a local linear press at the same position on the front and back sides. Of these, the method of performing a press treatment using a wedge-shaped metal fitting is most preferable.
  • the resin foam layer is heated and melted, causing a decrease in compressive strength, so that press working can be performed without increasing the pressure. It becomes easy to do.
  • This method is also preferable from the viewpoint that the composite foamed resin sheet is solidified by cooling after heating, the strength is restored, and the crease shape can be maintained.
  • crease processing by press processing it is possible to make a crease at a predetermined position at the same time as punching processing by performing press processing using a specific metal fitting simultaneously with punching processing such as Thomson processing.
  • the composite foamed resin sheet according to the present invention is a polyolefin resin foam having a specific cell structure in which the average aspect ratio Dz / Dxy of the internal bubbles is 1.1 to 5.0 and the expansion ratio is 4 to 20 times. Because it is a laminate of metal foil, the cell structure can ensure flexibility against bending action while maintaining a compressive strength of 0.05 MPa or more, and can be bent while maintaining a certain hardness. is there.
  • the surface layer to which the grain shape is given against the tensile stress generated on the surface on the tension side is Can stretch compared to no flat surface condition. Therefore, it is possible to greatly obtain the dimensional followability of the metal foil with respect to the surface displacement at the time of sheet bending, and by this effect, it becomes possible to suppress cracks and breaks caused by the tensile stress on the metal foil within a certain curvature as much as possible, It becomes easier to bend the composite foam resin sheet than the one without the crimped shape. This effect is prominent when using a metal foil having a smaller elongation characteristic than a foam.
  • the polyolefin resin foam contains a flame retardant in a predetermined ratio
  • the flameproofness is improved in combination with the effect of laminating the metal foil on the resin foam.
  • the requirements for non-combustible materials specified in the Building Standards Act are required. It becomes possible to satisfy.
  • the method for producing a composite foamed resin sheet according to the present invention comprises a foamed laminate formed by laminating a metal foil on at least one side of a polyolefin resin foamable sheet, sandwiched between two endless belts, and heated to be foamable.
  • a crease is made in advance by performing a press treatment using a wedge-shaped metal fitting on the folded portion of the composite resin foamed sheet.
  • the bending process can be easily performed.
  • the metal fitting is heated to a temperature higher than the temperature at which the resin foam layer melts, for example, 130 to 150 ° C. or higher for polypropylene resin, the metal foil on the surface of the sheet is cracked or broken by a relatively low-pressure press treatment. It is possible to make a crease without any.
  • the air-conditioning duct made of the composite foamed resin sheet according to the present invention is better than the galvanized steel duct in terms of heat insulation and light weight, and has a performance superior to that of the corrugated cardboard duct in terms of water resistance and workability.
  • a flame retardant with a resin, it can have the performance of a non-flammable material certified level stipulated in the Building Standard Law, which is a necessary requirement for air conditioning ducts. Therefore, the composite foamed resin sheet according to the present invention is a material suitable for an air conditioning duct.
  • FIG. 1 It is a perspective view which shows a foam. It is an enlarged view of the A section in Fig.1 (a). It is the schematic which shows a shape maintenance evaluation test.
  • Example 1 (no flame retardant formulation) A foamable laminate is prepared by sandwiching a foamable sheet made of a polypropylene resin composition produced by the method described in Patent Document 6 from above and below with aluminum foil (thickness: 40 ⁇ m). It was carried into a heating furnace (set temperature 220 to 229 ° C.) of a continuous foaming apparatus using an endless belt for conveyance (texture shape: fluorine-based resin coating belt having an average unevenness height difference 0.2 mm on the surface). In that process, the conveying belt is pressurized by the weight of the roll using the heat transfer roll from the upper part of the conveying upper belt, and the embossed shape processed on the belt surface is applied to the surface of the laminate before and after the foaming laminate is foamed.
  • the fluororesin processing belt for transport used at this time was made of a fluororesin on a fiber layer knitted perpendicularly on a sheet plane with strands (glass fiber bundles) having a diameter of about 1.2 mm using long glass fibers. Some PTFE and PFA coated were used. In this case, when the glass fiber bundle is knitted orthogonally, a textured shape (fine irregularities) is generated.
  • the convex portion generated by knitting the fiber remains on the surface, and the wrinkle shape is maintained on the surface. Since the embossed shape is formed without applying to the belt surface, this can be used as it is.
  • a composite foamed resin sheet (average aspect ratio Dz / Dxy: 1.6, foaming ratio: 7 times, compressive strength: 0.61 MPa, thickness: 5 mm) having wrinkles on the entire upper and lower surfaces was produced.
  • Example 2 flame retardant formulation 1 The same operation as in Example 1 except that the polypropylene resin composition of Example 1 is obtained by blending 6 parts by weight of ethylenebispentabromobenzene and 3 parts by weight of antimony trioxide with respect to 100 parts by weight of polypropylene.
  • a composite foamed resin sheet (average aspect ratio Dz / Dxy: 1.7, foaming ratio: 7 times, compressive strength: 0.55 MPa, thickness: 5 mm) having wrinkles on the entire upper and lower surfaces was prepared.
  • Example 3 flame retardant compounding 2 The same operation as in Example 1 except that the polypropylene resin composition of Example 1 is obtained by blending 10 parts by weight of ethylenebispentabromobenzene and 5 parts by weight of antimony trioxide with respect to 100 parts by weight of polypropylene. Then, a composite foamed resin sheet (average aspect ratio Dz / Dxy: 1.5, foaming ratio: 7 times, compressive strength: 0.54 MPa, thickness: 5 mm) having wrinkles on both upper and lower surfaces was prepared.
  • the polypropylene resin composition of Example 1 is obtained by blending 10 parts by weight of ethylenebispentabromobenzene and 5 parts by weight of antimony trioxide with respect to 100 parts by weight of polypropylene. Then, a composite foamed resin sheet (average aspect ratio Dz / Dxy: 1.5, foaming ratio: 7 times, compressive strength: 0.54 MPa, thickness: 5 mm) having wrinkles on both upper and lower surfaces was prepared.
  • Comparative Example 1 (no wrinkles) The foam was produced using the same foaming sheet as in Example 1 except that flat belts having no embossed shapes were used for the upper and lower endless belts of the double belt type foaming apparatus, and the entire upper and lower surfaces were made.
  • a composite foamed resin sheet having an embossed surface (average aspect ratio Dz / Dxy: 1.6, foaming ratio: 7 times, compressive strength: 0.75 MPa, thickness: 5 mm) was produced.
  • Comparative Example 2 (without wrinkles) Composite foam resin sheet (aspect ratio) with no wrinkles by bonding aluminum foil (thickness 40 ⁇ m) to the front and back of both sides of soft polyethylene foam (product name "Soft Ron” manufactured by Sekisui Chemical Co., Ltd.) Dz / Dxy average value: 1 or less, foaming ratio: 30 times, compression strength: less than 0.05 MPa, thickness: 5 mm).
  • Comparative Example 3 (no wrinkles) Composite foamed resin sheet having an average ratio of aspect ratio Dz / Dxy with aluminum foil ⁇ thickness 40 ⁇ m> bonded to the front and back with an adhesive on both sides of a polystyrene foam having a foaming ratio of 12 times and a thickness of 6 mm. 1 or less, foaming ratio: 12 times, compressive strength: 0.97 MPa, thickness: 7 mm).
  • Comparative Example 4 (excessive flame retardant) Except that the polypropylene resin composition is obtained by blending 40 parts by weight of ethylenebispentabromobenzene with respect to 100 parts by weight of polypropylene, the composite foam having the texture on both the upper and lower surfaces is the same as in Example 1.
  • a resin sheet (average value of aspect ratio Dz / Dxy: measurement not possible due to coarse bubbles), foaming ratio: foamed layer coarsened and measurement not possible, compressive strength: 0.12 MPa, thickness: 5 mm was prepared.
  • Comparative Example 5 corrugated cardboard
  • An aluminum foil (thickness 40 ⁇ m) was laminated on a corrugated paper having a thickness of 5 mm with an adhesive.
  • Shape retention evaluation ⁇ As shown in FIG. 2, the base end of the sample (s) having a width of 20 mm and a length of 200 mm is fixed to a horizontal surface with double-sided tape, and the tip is started from the center in the longitudinal direction. The part was bent to a height of 40 mm, and the height after 30 minutes, 60 minutes and 1 day was measured. At that time, the sample (s) was bent along a special triangular jig in order to maintain the processing accuracy at the time of bending.
  • Nonflammability was evaluated according to the exothermic test method ⁇ corn calorie test> in the nonflammability evaluation prescribed in the Building Standards Law. Test items: total calorific value and maximum burning rate during 20-minute evaluation.
  • Table 1 summarizes the results of the performance evaluation test.

Landscapes

  • Laminated Bodies (AREA)

Abstract

A composite foamed-resin sheet which suffers neither the cracking nor breakage of a surface metal foil upon bending which has been a problem for conventional metal-foil-laminated foams. The composite sheet is excellent in heat-insulating properties, suitability for environmental preservation, and processability and is usable as a material for air-conditioning ducts. The composite sheet is a polyolefin-based composite foamed-resin sheet characterized by comprising a polyolefin resin foam having cells with an aspect ratio, Dz/Dxy, of 1.1-5.0 on the average and having an expansion ratio of 4-20 and a compression strength of 0.05 MPa or higher and a metal foil having an average thickness of 5-200 µm laminated to at least one side of the foam, part or the whole of at least one side of the sheet having been embossed.

Description

複合発泡樹脂シートComposite foam resin sheet
 本発明は、一定の硬さを保ちつつ折り曲げが可能であり、かつ形状の保持ができるオレフィン系複合発泡樹脂シートに関するものである。 The present invention relates to an olefin-based composite foamed resin sheet that can be folded while maintaining a certain hardness and that can retain its shape.
 近年、軽量性や環境性の観点から、空調ダクトの材料として一般に使用されている亜鉛めっき鋼板等の金属代替として段ボール紙にアルミ箔を積層してなる複合材が注目されている。例えば、特許文献1や特許文献2には、段ボール紙製の芯材の表面又は裏面をアルミ箔で被覆し、該芯材とアルミ箔の間に不燃層を介在させた不燃性段ボールは、段ボール紙を使用しているにも拘わらず、空調ダクトの必要性能である建築基準法の不燃材料の要件を満たすことができると報告されている。また、これは、亜鉛鋼板よりも軽量であるために施工がし易く、断熱性を有するためにグラスウールなどの保温材を多く用いる必要がなく、撤去時の産業廃棄物量を軽減できる利点があるとされる。 In recent years, from the viewpoint of lightness and environment, a composite material obtained by laminating aluminum foil on corrugated paper as a metal substitute such as galvanized steel sheet generally used as a material for air conditioning ducts has attracted attention. For example, in Patent Document 1 and Patent Document 2, a non-combustible corrugated cardboard in which a core material made of corrugated paper is covered with an aluminum foil and a non-combustible layer is interposed between the core material and the aluminum foil is corrugated cardboard. Despite the use of paper, it has been reported that it can meet the requirements of non-combustible materials in the Building Standards Act, which is the required performance of air conditioning ducts. In addition, it is lighter than galvanized steel, so it is easy to install, and since it has heat insulation, there is no need to use a large amount of heat insulating material such as glass wool, and there is an advantage that the amount of industrial waste at the time of removal can be reduced. Is done.
 しかし、上記不燃性段ボールは段ボール紙が使用されているため、アルミ箔で密閉性がある程度維持できるものの、施工や周辺環境の状況によっては大気中の水分を吸収する可能性が高く、長期的な耐久性の観点から課題が残る。また上記不燃性段ボールは、加工性の点でも、段ボール紙の特性上、強度的に異方性を持つため一定方向に対して折り曲げ難く、加工制限が生じてしまうことがある。 However, since the non-combustible corrugated cardboard is made of corrugated paper, the aluminum foil can maintain a certain level of hermeticity, but it is highly likely to absorb moisture in the atmosphere depending on the conditions of construction and the surrounding environment. Issues remain from the viewpoint of durability. In addition, the non-combustible corrugated cardboard is also difficult to bend in a certain direction because of the anisotropy in strength due to the characteristics of the corrugated cardboard in terms of workability, and processing restrictions may occur.
 このような点に対し、亜鉛鋼板製空調ダクトよりも断熱性、環境性が良く段ボールダクトの利点を包含でき、かつ、段ボールダクトの課題を克服できる素材としては樹脂発泡体が好ましく、特に折り曲げ、切断などの加工性の点からオレフィン系樹脂発泡体が好ましい。 For such points, heat insulation, better environmental properties than galvanized steel air conditioning duct, can include the advantages of corrugated cardboard ducts, and as a material that can overcome the problems of corrugated cardboard ducts, resin foams are preferred, especially bent, From the viewpoint of processability such as cutting, an olefin resin foam is preferred.
 一般的にオレフィン系樹脂は発泡させることで適度な断熱性を保持できる。また、これは廃棄処理に関してもリサイクル性に富む。 Generally, olefin-based resins can maintain appropriate heat insulation by foaming. This is also highly recyclable with respect to disposal.
  しかし、一般的にオレフィン系樹脂発泡体は発泡倍率が高く軟質でやわらかいと曲げることはできるが剛性が足りないために形状を維持することが難しく、また、圧縮強度が低く抑えられてしまうため、施工時には局所的な荷重の発生による凹み等の変形により素材そのものの変形が発生し易い。硬質発泡の場合は、折り曲げ加工時に割れてしまう可能性がある。またオレフィン樹脂自体は空調ダクトの必要要件である防炎性が維持し難く燃え易いという問題がある。 However, in general, the olefin-based resin foam has a high expansion ratio and can be bent if it is soft and soft, but it is difficult to maintain the shape because of insufficient rigidity, and the compressive strength is kept low. At the time of construction, deformation of the material itself is likely to occur due to deformation such as dents due to local load generation. In the case of hard foaming, there is a possibility of cracking during bending. In addition, the olefin resin itself has a problem that it is difficult to maintain the flameproof property, which is a necessary requirement of the air conditioning duct, and it tends to burn.
 このような問題を克服するものとして、特許文献3に記載のポリオレフィン系樹脂発泡体の利用が考えられる。このポリオレフィン系樹脂発泡体では、圧縮強度が高いにも拘わらず折り曲げに対し柔軟性を有することができるために、割れを生じることなく折り曲げ加工や熱賦形加工などを行うことができる。従って、施工時にある程度の外力が加わっても凹み等の変形が生じることなく形状を維持でき、施工後の耐久性にも優れる。また、防炎性の観点から、特許文献4や特許文献5には、表面に金属箔を積層してなる複合発泡樹脂シートが提案されている。このような積層構造を持つ構成の複合発泡樹脂シートは金属箔の性能から樹脂発泡体に防火性を付与することができる。 In order to overcome such a problem, use of a polyolefin resin foam described in Patent Document 3 is conceivable. Since this polyolefin resin foam has flexibility for bending despite its high compressive strength, it can be bent or heat-shaped without cracking. Therefore, even if a certain amount of external force is applied during construction, the shape can be maintained without causing deformation such as a dent, and the durability after construction is excellent. From the viewpoint of flameproofness, Patent Document 4 and Patent Document 5 propose a composite foamed resin sheet obtained by laminating a metal foil on the surface. The composite foamed resin sheet having such a laminated structure can impart fire resistance to the resin foam from the performance of the metal foil.
 しかし、この構成では複合発泡樹脂シートの表面層が金属箔からなるので曲げ加工時にその片側表層に対して引張り方向への応力が発生し、その応力に金属箔が耐えきれないと亀裂や破断が生じてしまう。金属箔に亀裂や破断が生じると複合発泡樹脂シートの表層部の延焼に対して防炎性や不燃性を維持することができない。従って、表層に亀裂や破断が生じないように折り曲げ加工範囲に制約があり、空調ダクト分野への複合発泡樹脂シートの利用が困難になる。金属箔を厚くして強度を向上させる方法も考えられるが、この場合は折り曲げ難く、加工性やコストが問題となる。
特開2006-1095号公報 特開2007-147185号公報 特許第3124267号公報 特開2001-310432号公報 特開2005-238573号公報
However, in this configuration, the surface layer of the composite foamed resin sheet is made of a metal foil, so that stress in the tensile direction is generated on the surface layer on one side during bending, and cracks and fractures occur if the metal foil cannot withstand the stress. It will occur. When cracks and breaks occur in the metal foil, it is impossible to maintain flameproofness and nonflammability against the spread of the surface layer portion of the composite foamed resin sheet. Therefore, the bending process range is limited so that the surface layer does not crack or break, making it difficult to use the composite foamed resin sheet in the air conditioning duct field. A method of increasing the strength by increasing the thickness of the metal foil is also conceivable, but in this case, it is difficult to bend, and workability and cost become problems.
JP 2006-1095 A JP 2007-147185 A Japanese Patent No. 312267 JP 2001-310432 A JP 2005-238573 A
 そこで、本発明は、前述の金属箔積層発泡体の課題であった折り曲げ時の表面金属箔の亀裂や破断を生じさせることがなく、断熱性、環境性、加工性に優れ、空調用ダクト素材に使用可能な複合発泡樹脂シートを提供することを目的とする。 Therefore, the present invention does not cause cracking or breaking of the surface metal foil at the time of bending, which was a problem of the above-mentioned metal foil laminated foam, and is excellent in heat insulation, environmental performance, workability, and air conditioning duct material It aims at providing the composite foaming resin sheet which can be used for.
 本発明によるポリオレフィン系複合樹脂発泡樹脂シートは、内在する気泡のアスペクト比Dz/Dxyの平均値が1.1~5.0、発泡倍率が4~20倍、圧縮強度が0.05MPa以上であるポリオレフィン系樹脂発泡体の少なくとも片面に、平均厚さ5μm~200μmの金属箔が積層された複合発泡樹脂シートの、少なくとも金属箔側の一部又は全面にシボ加工が形成されていることを特徴とする。 The polyolefin-based composite resin foamed resin sheet according to the present invention has an average aspect ratio Dz / Dxy of internal bubbles of 1.1 to 5.0, a foaming ratio of 4 to 20 times, and a compressive strength of 0.05 MPa or more. The composite foamed resin sheet in which a metal foil having an average thickness of 5 μm to 200 μm is laminated on at least one surface of a polyolefin resin foam is characterized in that at least a part or the entire surface of the metal foil side is subjected to a textured process. To do.
 上記ポリオレフィン系樹脂発泡体の難燃性を高めるためには、同発泡体はポリオレフィン系樹脂100重量部に対し難燃剤を5~30重量部含む。 In order to increase the flame retardancy of the polyolefin resin foam, the foam contains 5 to 30 parts by weight of a flame retardant with respect to 100 parts by weight of the polyolefin resin.
 本発明によるポリオレフィン系複合樹脂発泡樹脂シートの製造方法は、ポリオレフィン系樹脂発泡性シートの少なくとも片面に金属箔を積層してなる発泡性積層体の上下を2枚の無端ベルト間に挟持し加熱して発泡性シートを発泡させた後冷却する複合発泡樹脂シートの製造方法であって、上記金属箔側の無端ベルトが、シボ形状を表面に有するものである。 In the method for producing a polyolefin-based composite resin foamed resin sheet according to the present invention, the top and bottom of a foamable laminate formed by laminating metal foil on at least one surface of a polyolefin-based resin foamable sheet is sandwiched between two endless belts and heated. In this method, the foamed sheet is foamed and then cooled, and the endless belt on the metal foil side has a textured shape on the surface.
 本発明によるポリオレフィン系複合樹脂発泡樹脂シート加工品は、楔形金具を用いて折り目を付けることにより所望の形状に製造することができる。 The processed product of the polyolefin-based composite resin foamed resin sheet according to the present invention can be manufactured into a desired shape by making a crease using a wedge-shaped metal fitting.
 本発明によるポリオレフィン系複合樹脂発泡樹脂シート及び加工品は、例えば空調用ダクト素材として有用である。 The polyolefin composite resin foamed resin sheet and processed product according to the present invention are useful as, for example, a duct material for air conditioning.
 まず、本発明によるポリオレフィン系複合樹脂発泡樹脂シートの主体を構成するポリオレフィン系樹脂発泡体について、説明をする。 First, the polyolefin resin foam constituting the main body of the polyolefin composite resin foam resin sheet according to the present invention will be described.
 ポリオレフィン系樹脂発泡体は、内在する気泡のアスペクト比Dz/Dxy〔Dz(発泡体厚み方向に平行な最大径)/Dxy(発泡体幅または長さ方向に平行な最大径)〕の平均値が1.1~5.0、発泡倍率が4~20倍、好ましくは6~17倍で、圧縮強度が0.05MPa以上、好ましくは0.1~1.5MPaのものである。 The polyolefin resin foam has an average value of the aspect ratio Dz / Dxy [Dz (maximum diameter parallel to the foam thickness direction) / Dxy (maximum diameter parallel to the foam width or length direction)] of the internal bubbles. The foaming ratio is 1.1 to 5.0, the expansion ratio is 4 to 20 times, preferably 6 to 17 times, and the compressive strength is 0.05 MPa or more, preferably 0.1 to 1.5 MPa.
 樹脂発泡体シートに使用される樹脂成分は加工性やリサイクル性の利点からポリオレフィン系樹脂であることを特徴とする。また、使用されるポリオレフィン系樹脂とはオレフィン系モノマーの単独重合体もしくは共重合体であればよく、特に限定されるものではないが、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン、プロピレンホモポリマー、プロピレンランダムポリマー、プロピレンブロックポリマー等のポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エステル共重合体等のエチレンを主成分とする共重合体などが好適に用いられるが、なかでもポリエチレンやポリプロピレンが特に好適に用いられる。これらのポリオレフィン系樹脂は、単独で用いられても良いし、2種類以上が併用されても良い。 The resin component used for the resin foam sheet is a polyolefin resin because of its advantages of processability and recyclability. The polyolefin resin used may be a homopolymer or copolymer of an olefin monomer, and is not particularly limited. For example, low density polyethylene, high density polyethylene, linear low density Polyethylene such as polyethylene, polypropylene such as propylene homopolymer, propylene random polymer, propylene block polymer, polybutene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer A copolymer having ethylene as a main component, such as a polymer, is preferably used. Among them, polyethylene and polypropylene are particularly preferably used. These polyolefin resin may be used independently and 2 or more types may be used together.
 また、上記ポリオレフィン系樹脂は、ポリオレフィン系樹脂に対し30重量%未満の他の樹脂が添加されているポリオレフィン系樹脂組成物であっても良い。上記他の樹脂としては、特に限定されるものではないが、例えば、ポリスチレンやスチレン系エラストマー等が挙げられる。これらの他の樹脂は、単独で用いられても良いし、2種類以上が併用されても良い。 Further, the polyolefin resin may be a polyolefin resin composition in which other resin of less than 30% by weight is added to the polyolefin resin. Although it does not specifically limit as said other resin, For example, a polystyrene, a styrene-type elastomer, etc. are mentioned. These other resins may be used alone or in combination of two or more.
 ポリオレフィン系樹脂に対する他の樹脂の添加量が30重量%以上であると、軽量、耐薬品性、柔軟性、弾性等のポリオレフィン系樹脂が有する優れた特性が阻害されることがあり、また、発泡時に必要な溶融粘度を確保することが困難となることがある。 If the amount of other resin added to the polyolefin resin is 30% by weight or more, the excellent properties of the polyolefin resin such as light weight, chemical resistance, flexibility, and elasticity may be hindered. Sometimes it may be difficult to ensure the necessary melt viscosity.
 さらに、上記ポリオレフィン系樹脂は、変性用モノマーが添加されているポリオレフィン系樹脂組成物であっても良い。上記変性用モノマーとしては、特に限定されるものではないが、例えば、ジオキシム化合物、ビスマレイミド化合物、ジビニルベンゼン、アリル系多官能モノマー、(メタ)アクリル系多官能モノマー、キノン化合物等が挙げられる。これらの変性用モノマーは、単独で用いられても良いし、2種類以上が併用されても良い。 Furthermore, the polyolefin resin may be a polyolefin resin composition to which a modifying monomer is added. The modifying monomer is not particularly limited, and examples thereof include dioxime compounds, bismaleimide compounds, divinylbenzene, allyl polyfunctional monomers, (meth) acrylic polyfunctional monomers, and quinone compounds. These modifying monomers may be used alone or in combination of two or more.
 特にこの場合、ポリオレフィン系樹脂発泡体は、圧縮性能を高める上で内在するセルのアスペクト比〔Dz(発泡体厚み方向に平行な最大径)/Dxy(発泡体幅または長さ方向に平行な最大径)〕の平均値が1.1~5.0であり、発泡倍率が4~20倍である。発泡体の発泡倍率が4倍未満であると、圧縮強度(圧縮弾性率)が高くなり過ぎて硬くなることで曲げ難くなり、逆に発泡体の発泡倍率が20倍を超えると、セル壁の厚みが薄くなって、圧縮強度(圧縮弾性率)が不十分となり形状を維持し難い。 Particularly in this case, the polyolefin resin foam has an aspect ratio [Dz (maximum diameter parallel to the foam thickness direction) / Dxy (maximum parallel to the foam width or length direction) of the inherent cell for improving the compression performance. The average value of (diameter)] is 1.1 to 5.0, and the expansion ratio is 4 to 20 times. If the expansion ratio of the foam is less than 4 times, the compression strength (compression modulus) becomes too high and it becomes hard to bend, and conversely, if the expansion ratio of the foam exceeds 20 times, The thickness becomes thin, the compression strength (compression modulus) becomes insufficient, and it is difficult to maintain the shape.
 発泡倍率については、発泡体部分より板状の試料をカッターで切り出した後、JIS K-6767「ポリエチレンフォーム試験方法」に準拠して、見かけ密度を測定し、その逆数を発泡倍率とする。 Regarding the foaming ratio, after cutting a plate-like sample from the foamed part with a cutter, the apparent density is measured according to JIS K-6767 “Testing method for polyethylene foam”, and the reciprocal number is taken as the foaming ratio.
 圧縮強度は、JIS K 7220を参考とし、サンプルを厚さに対し10%まで圧縮したときに測定した最大応力値か降伏点応力のどちらか高い値と定義する。 Compressive strength is defined as the higher of the maximum stress value or the yield point stress measured when the sample is compressed to 10% of the thickness with reference to JIS K 7220.
 ポリオレフィン系樹脂発泡体は、圧縮強度が0.05MPa以上、好ましくは0.1~1.5MPaのものである。発泡体の圧縮強度が0.05MPa未満であると、局所的な荷重に対して凹みが発生し易くなり、またシートが柔らかすぎて加工後の形状を維持し難くなる。 The polyolefin resin foam has a compressive strength of 0.05 MPa or more, preferably 0.1 to 1.5 MPa. If the compressive strength of the foam is less than 0.05 MPa, dents are likely to be generated with respect to local loads, and the sheet is too soft to maintain the processed shape.
 図1(a) は発泡体を示す斜視図であり、図1(b)は図1(a)中のA部の拡大図である。上記アスペクト比〔Dz(発泡体厚み方向に平行な最大径)/Dxy(発泡体幅または長さ方向に平行な最大径)〕の平均値とは、図1に示す発泡体(1)内部のセル(3)における定方向最大径の比の個数(算術)平均値を意味し、以下の方法で測定される。 FIG. 1 (a) is a perspective view showing a foam, and FIG. 1 (b) is an enlarged view of portion A in FIG. 1 (a). The average value of the aspect ratio [Dz (maximum diameter parallel to the foam thickness direction) / Dxy (maximum diameter parallel to the foam width or length direction)] is the inside of the foam (1) shown in FIG. It means the number (arithmetic) average value of the ratio of the maximum directional diameter in the cell (3) and is measured by the following method.
 アスペクト比(Dz/Dxy)の平均値の測定方法:発泡体(1)の厚み方向(z方向と呼ぶ)に平行な任意の断面(2)の50倍の拡大写真を撮り、無作為に選ばれた少なくとも50個のセル(3)の定方向最大径を下記2方向で測定し、各アスペクト比(Dz/Dxy)の個数(算術)平均値を算出する。 Measuring method of average value of aspect ratio (Dz / Dxy): Take a 50 times magnified photograph of an arbitrary cross section (2) parallel to the thickness direction (referred to as z direction) of foam (1) and select at random The maximum diameter in the fixed direction of at least 50 cells (3) is measured in the following two directions, and the number (arithmetic) average value of each aspect ratio (Dz / Dxy) is calculated.
 Dz:発泡体(1)中のセル(3)のZ方向に平行な最大径Dxy:発泡体(1)中のセル(3)の発泡体幅方向または発泡体長さ方向、即ち、z方向に垂直な面方向(xy方向と呼ぶ)に平行な最大径である
 上記アスペクト比〔Dz(発泡体厚み方向に平行な最大径)/Dxy(発泡体幅または長さ方向に平行な最大径)〕の平均値を1.1~5.0(好ましくは1.2~2.2)とすることにより、発泡体(1)中のセル(3)は発泡体(1)の厚み方向に長軸を有する紡錘形のセル(3)となる。従って、発泡体(1)が厚み方向に圧縮力を受けた場合、圧縮力は紡錘形のセル(3)の長軸方向に負荷されることになるので、発泡体(1)は厚み方向に高い圧縮強度(圧縮弾性率)を発現し得るものとなる。アスペクト比が5.0を超えると発泡体が脆くなりすぎて曲げ難くなる。
Dz: Maximum diameter parallel to the Z direction of the cell (3) in the foam (1) Dxy: In the foam width direction or the foam length direction of the cell (3) in the foam (1), that is, in the z direction The above aspect ratio [Dz (maximum diameter parallel to foam thickness direction) / Dxy (maximum diameter parallel to foam width or length direction)] which is the maximum diameter parallel to the vertical surface direction (referred to as xy direction)] By making the average value of 1.1 to 5.0 (preferably 1.2 to 2.2), the cell (3) in the foam (1) has a long axis in the thickness direction of the foam (1). A spindle-shaped cell (3) having Therefore, when the foam (1) receives a compressive force in the thickness direction, the compressive force is applied in the major axis direction of the spindle-shaped cell (3), so the foam (1) is high in the thickness direction. The compressive strength (compression elastic modulus) can be expressed. If the aspect ratio exceeds 5.0, the foam becomes too brittle and difficult to bend.
 また、発泡体(1)内部のセル(3)のDxyの平均値は、特に限定されるものではないが、好ましくは500μm以上、より好ましくは800μm以上である。 Further, the average value of Dxy of the cells (3) inside the foam (1) is not particularly limited, but is preferably 500 μm or more, more preferably 800 μm or more.
 本発明におけるポリオレフィン系樹脂発泡体の製造方法は、例えば特許第3766249号公報に記載された実施例の方法により作成されたポリオレフィン系樹脂発泡性シートを発泡して製造することができる。 The method for producing a polyolefin resin foam in the present invention can be produced by foaming a polyolefin resin foam sheet prepared by the method of an example described in Japanese Patent No. 3766249, for example.
 ポリオレフィン系樹脂発泡体の製造工程において、発泡性シートの発泡は連続発泡装置を用いて行われることが好ましい。連続発泡装置を用いて発泡を行う方法としては、特に限定されるものではないが、例えば、加熱炉の出口側で発泡体を引取りながら連続的に発泡性シートを発泡させる引取り式発泡装置、ベルト式発泡装置、縦型もしくは横型発泡炉、熱風恒温槽等を用いて発泡を行う方法や、オイルバス、メタルバス、ソルトバス等の熱浴中で発泡を行う方法等が挙げられる。好ましくはダブルベルト式発泡方式が挙げられる。これは、ダブルベルト式発泡装置の上下2枚の無端ベルトの間に発泡性シートを挟持し,加熱炉で加熱して発泡性シートを発泡させた後、例えば冷却水循環式の冷却ロールからなるような冷却装置により冷却して発泡体を得る発泡シートの製造方法であって、加熱源につながる加熱ブロアーは駆体で覆われた炉内に配設され、加熱ブロアーにより無端ベルトが加熱されつつ炉内を循環するものである。(特許第3766249号公報、特開2005-059309号公報参照)
 つぎに、ポリオレフィン系樹脂発泡体の少なくとも片面に積層される金属箔について、説明をする。
In the production process of the polyolefin resin foam, the foamable sheet is preferably foamed using a continuous foaming apparatus. The foaming method using the continuous foaming device is not particularly limited. For example, a take-up type foaming device that continuously foams the foamable sheet while taking the foam on the outlet side of the heating furnace. And a foaming method using a belt-type foaming apparatus, a vertical or horizontal foaming furnace, a hot air thermostat, and a foaming method in a hot bath such as an oil bath, a metal bath or a salt bath. A double belt type foaming method is preferable. This consists of sandwiching a foamable sheet between two upper and lower endless belts of a double belt type foaming apparatus and heating the foamable sheet in a heating furnace to foam the foamable sheet. A foamed sheet manufacturing method for obtaining a foam by cooling with a cooling device, wherein a heating blower connected to a heating source is disposed in a furnace covered with a heating element, and the endless belt is heated by the heating blower while the furnace is heated. It circulates inside. (See Japanese Patent No. 3766249, Japanese Patent Laid-Open No. 2005-059309)
Next, the metal foil laminated on at least one surface of the polyolefin resin foam will be described.
 ポリオレフィン系樹脂発泡体に積層される金属箔は、厚さ5~200μm、好ましくは7~150μm、より好ましくは20~120μmのものである。この厚さが5μm未満であると強度面で破断し易く、また形状保持効果が得られ難いので加工し難い。逆に、この厚さが200μmを超えると、面材である金属箔の剛性が大きくなり過ぎて、曲げ難くなる。したがって金属箔の厚さは5~200μmであることが好ましい。不燃性とコスト、ハンドリング性を考慮に入れると、厚さ20~120μmが最も好ましい。金属箔は特に限定をするものではないが、アルミニウム箔、ステンレス箔、チタン合金箔、ニッケル合金箔、青銅箔、スズ箔、亜鉛合金箔、真鍮箔など挙げられる。経済性や生産性の観点からアルミニウム箔が好ましい。 The metal foil laminated on the polyolefin resin foam has a thickness of 5 to 200 μm, preferably 7 to 150 μm, more preferably 20 to 120 μm. If the thickness is less than 5 μm, it is easy to break in terms of strength, and it is difficult to obtain a shape retention effect, so that it is difficult to process. On the other hand, if this thickness exceeds 200 μm, the rigidity of the metal foil as the face material becomes too large and it becomes difficult to bend. Therefore, the thickness of the metal foil is preferably 5 to 200 μm. In consideration of nonflammability, cost, and handleability, a thickness of 20 to 120 μm is most preferable. Although metal foil does not specifically limit, Aluminum foil, stainless steel foil, titanium alloy foil, nickel alloy foil, bronze foil, tin foil, zinc alloy foil, brass foil, etc. are mentioned. Aluminum foil is preferable from the viewpoint of economy and productivity.
 金属箔は、発泡体成形時に連続発泡装置の加熱炉へ発泡性シートを投入する直前に、金属箔を積層位置に配置し、連続発泡装置の加熱炉へ発泡性シートと金属箔を同時投入させる。そして、発泡性シートが溶融して、発泡性シートと金属箔が積層一体化し発泡する。 For metal foil, immediately before the foamable sheet is put into the heating furnace of the continuous foaming apparatus when molding the foam, the metal foil is placed at the stacking position, and the foamable sheet and the metal foil are simultaneously fed into the heating furnace of the continuous foaming apparatus. . Then, the foamable sheet is melted, and the foamable sheet and the metal foil are laminated and integrated to foam.
 金属箔は発泡体に直接積層されてもよいし、熱可塑系樹脂フィルムや不織布、無機質系繊維、紙などの中間層を介して積層されてもよい。また、熱可塑性のホットメルト接着剤の使用や、金属箔表面にプライマー処理やコロナ放電等による表面改質効果などは、発泡性シートとアルミ箔との接着強度を向上させるための手段として有効である。 The metal foil may be directly laminated on the foam, or may be laminated via an intermediate layer such as a thermoplastic resin film, a nonwoven fabric, inorganic fibers, or paper. In addition, the use of thermoplastic hot melt adhesives and surface modification effects such as primer treatment and corona discharge on the metal foil surface are effective means for improving the adhesive strength between the foam sheet and aluminum foil. is there.
 本発明のさらなる特徴点は、ポリオレフィン系樹脂発泡体とそれに積層される金属箔とからなる積層体の少なくとも片面にシボが形成されている点である。「シボ」とは、元々は糸の縒(よ)り具合で織物の表面に現れる凹凸であるが(大辞泉)、本発明では、「シボ」は成型品表面に機能性付与やデザインなどの目的で形成される皮、梨地、木目、布目などの凹凸模様を意味する。シボの形状は特に限定するものではないが、シボの凹部が深過ぎると、発泡性を損ない、浅過ぎると前述の効果が発揮できなくなる。したがって、シボの凹部の深さは好ましくは0.01~1mmである。 A further feature of the present invention is that a texture is formed on at least one side of a laminate comprising a polyolefin resin foam and a metal foil laminated thereon. “Wrinkles” are originally irregularities that appear on the surface of the fabric due to the warp of the yarn (Ojizumi). In the present invention, “wrinkles” are the purpose of adding functionality and design to the surface of the molded product. It means uneven patterns such as leather, satin, wood, and cloth. The shape of the embossing is not particularly limited, but if the embossed recess is too deep, the foamability is impaired, and if it is too shallow, the above-described effects cannot be exhibited. Therefore, the depth of the embossed recess is preferably 0.01 to 1 mm.
  積層体表面のシボは予め金属箔表面に形成されていてもよいし、ポリオレフィン系樹脂発泡性シートに金属箔が積層した発泡性積層体や発泡後の積層体にシボ加工により形成してもよいが、経済的な点からは後者が好ましい。 The texture on the surface of the laminate may be formed in advance on the surface of the metal foil, or may be formed on the foamed laminate obtained by laminating the metal foil on the polyolefin resin foamable sheet or the foamed laminate after the foaming. However, the latter is preferable from an economic point of view.
 後者は、より詳しくは、ポリオレフィン系樹脂発泡性シートの少なくとも片面に金属箔が積層されてなる発泡性積層体を平均凹凸深さ0.01~1.00mmのシボ形状を表面に有するベルトを用いて発泡装置内を搬送させながら発泡性積層体の発泡前後かもしくはどちらかのタイミングにおいて、該積層体表層にシボ形状を加圧転写する方法である。本発明による複合発泡樹脂シートは、上述のように、ポリオレフィン系樹脂発泡体に金属箔を積層することで同発泡体に防炎性能を加味することができるが、ポリオレフィン系樹脂に所定量の難燃剤を含ませることで、発泡樹脂シート自体の生産性を阻害することなく不燃性を高められることができ、また、特定の条件を満たせば建築基準法規定の不燃材料試験でその基準を満たすことが可能である。用いられる難燃剤は限定されないが、特にハロゲン系難燃剤などが有効である。例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノール-A、TBA-ビス[2,3-ジブロモプロピルエーテル]、TBA-ビス[アリルエーテル]、ヘキサブロモシクロデカン、トリブロモフェノールなどの塩素系難燃剤が挙げられる。特に安全性の観点からエチレンビスペンタブロモベンゼン等の臭素系難燃剤が好ましい。それ以外にも三酸化アンチモンや加熱膨張性黒鉛系やリン系、水酸化マグネシウム系、水酸化アルミニウム系、各種無機物質等のノンハロゲン系難燃剤が使用できる。これらの難燃剤は単体で用いてもよいし、二つ以上を併用してもよい。三酸化アンチモンと臭素系難燃剤との併用は、効果的に難燃作用を発揮する。特にエチレンビスペンタブロモベンゼンと三酸化アンチモンとの併用(比率は2:1前後)が好ましい。また、ポリオレフィン系樹脂100重量部に対して難燃剤を好ましくは5~30重量部添加する。この割合が5重量部未満であると難燃性の効果が十分発揮できず、30重量部を超えると発泡性を阻害する傾向がある。 In more detail, the latter uses a belt having an embossed shape with an average unevenness depth of 0.01 to 1.00 mm on the surface of a foamed laminate obtained by laminating a metal foil on at least one side of a polyolefin resin foamable sheet. This is a method in which the embossed shape is pressure-transferred onto the surface of the laminate before or after foaming of the foamable laminate while being conveyed through the foaming apparatus. As described above, the composite foamed resin sheet according to the present invention can add flame resistance to the polyolefin resin foam by laminating a metal foil on the polyolefin resin foam. By including a flame retardant, the non-flammability can be increased without impairing the productivity of the foamed resin sheet itself, and if the specific conditions are met, meet the standards in the non-flammable material test stipulated in the Building Standards Act Is possible. The flame retardant used is not limited, but a halogen flame retardant is particularly effective. Examples include chlorine-based flame retardants such as decabromodiphenyl ether, tetrabromobisphenol-A, TBA-bis [2,3-dibromopropyl ether], TBA-bis [allyl ether], hexabromocyclodecane, tribromophenol. . In particular, a brominated flame retardant such as ethylene bispentabromobenzene is preferable from the viewpoint of safety. In addition, non-halogen flame retardants such as antimony trioxide, heat-expandable graphite, phosphorus, magnesium hydroxide, aluminum hydroxide, and various inorganic substances can be used. These flame retardants may be used alone or in combination of two or more. The combined use of antimony trioxide and a brominated flame retardant exhibits a flame retardant effect effectively. In particular, the combined use of ethylenebispentabromobenzene and antimony trioxide (ratio is around 2: 1) is preferable. The flame retardant is preferably added in an amount of 5 to 30 parts by weight with respect to 100 parts by weight of the polyolefin resin. If this proportion is less than 5 parts by weight, the effect of flame retardancy cannot be sufficiently exerted, and if it exceeds 30 parts by weight, the foamability tends to be inhibited.
 つぎに、複合発泡樹脂シートの製造方法について説明をする。 Next, a method for producing a composite foamed resin sheet will be described.
 本発明による複合発泡樹脂シートの製造方法は、ポリオレフィン系樹脂発泡性シートの少なくとも片面に金属箔を積層してなる発泡性積層体の上下を2枚の無端ベルト間に挟持し加熱して発泡性シートを発泡させた後冷却する複合発泡樹脂シートの製造方法であって、上記金属箔側の無端ベルトが、シボ形状を表面に有するものであることを特徴とする。 The method for producing a composite foamed resin sheet according to the present invention comprises a foamed laminate formed by laminating a metal foil on at least one side of a polyolefin resin foamable sheet, sandwiched between two endless belts, and heated to be foamable. A method for producing a composite foamed resin sheet that is cooled after foaming the sheet, wherein the endless belt on the metal foil side has a textured shape on the surface.
 本発明の製造方法において、上記金属箔側の無端ベルトが、平均凹凸部分高低差(シボ面の最も高い点と低い点の平均高低差)0.01~1mmのシボ形状を表面に有するものが好ましい。このようなベルトを用いて発泡装置内に供給することにより、発泡性積層体の発泡前の加熱時から、発泡後の冷却時までのいずれかのタイミングにおいて、積層体表層にシボ形状が加圧転写される。 In the production method of the present invention, the endless belt on the metal foil side has an embossed shape with an average unevenness height difference (average height difference between the highest point and the lowest point on the embossed surface) of 0.01 to 1 mm on the surface. preferable. By supplying such a belt into the foaming apparatus, the embossed surface is pressed on the surface of the laminate at any timing from the heating before foaming of the foamable laminate to the cooling after foaming. Transcribed.
 この方法では、該発泡性積層体を搬送するための金属箔側の無端ベルト自体の表面に予めシボ加工を施しておく。加熱発泡工程、特にダブルベルト方式の発泡工程では、発泡前後は発泡性シートが溶融状態に近いもしくは溶融しているために非常に柔らかい状態であるので、好ましくは発泡性積層体が加熱されてから発泡する前後にベルトのシボ形状が該積層体表面に加圧転写される方法がよい。また、発泡装置内後方に備え付けられる発泡後の積層体を冷却させるために用いる冷却ロールなどの加圧力も利用することは可能である 前述のダブルベルト式発泡方式では、ダブルベルト式発泡装置の上下2枚の無端ベルトの少なくとも一方の表面に予めシボ加工を施しておくことで簡単に複合発泡樹脂シートにシボ形状を形成することができる。例えば、上下2枚の無端ベルトによって、ポリオレフィン系樹脂発泡性シートと金属箔からなる発泡性積層体をダブルベルト式発泡装置の加熱炉に搬入すると、発泡性シートが発泡し、金属箔が発泡層と接合し冷却後固化する。その際、上下2枚の無端ベルトの少なくとも一方の表面に設けられたシボ形状により、複合樹脂発泡シート表層にシボ形状を形成することができる。そのメカニズムを説明すると、加圧開始から終了のタイミングは詳細に規定するわけではないが、発泡加熱炉内で駆動される搬送用ベルトの外側面(上ベルトではベルトに対し上面、下ベルトではベルトに対し下面)に加熱発泡や発泡後の形状維持の目的で熱伝導性を制御するための伝熱用ロールが数カ所設けられており、上ベルトの外面に備え付けられた伝熱用ロールの自重やロールに対する強制加圧によって、上ベルトと下ベルトの少なくとも片方の表面に加工されたシボ形状を発泡装置内で発泡性積層体を搬送しながら該積層体表面に加圧転写させることができる。また、発泡前後の加圧時点では設定温度が高温で発泡性積層体や発泡後の積層体の圧縮強度が低下しているため、比較的低い圧力でもベルト表面の形状が該構成体表層に転写されやすい。また、発泡装置内後方に備え付けられる発泡後の積層体を冷却させるために用いる冷却ロールなどの加圧力も利用は可能である。この方法は、予め金属箔表面にシボを形成しておく方法などよりエネルギー消費、コストの点で有利である。 In this method, the surface of the endless belt itself on the metal foil side for conveying the foamable laminate is subjected to graining in advance. In the heating and foaming process, particularly in the double belt type foaming process, the foamable sheet is very soft because the foamable sheet is close to or melted before and after foaming, and preferably after the foamable laminate is heated. A method is preferred in which the embossed shape of the belt is pressure-transferred onto the surface of the laminate before and after foaming. In addition, it is possible to use the pressure applied by a cooling roll or the like used to cool the foamed layered body provided at the rear of the foaming device. In the double belt type foaming method described above, By embossing at least one surface of two endless belts in advance, an embossed shape can be easily formed on the composite foamed resin sheet. For example, when a foamable laminate comprising a polyolefin resin foamable sheet and a metal foil is carried into a heating furnace of a double belt type foaming apparatus using two upper and lower endless belts, the foamable sheet foams and the metal foil becomes a foamed layer. And solidify after cooling. At that time, a textured shape can be formed on the surface layer of the composite resin foam sheet by the textured shape provided on at least one surface of the upper and lower two endless belts. Explaining the mechanism, although the timing from the start to the end of pressurization is not specified in detail, the outer surface of the conveying belt driven in the foaming heating furnace (the upper belt is the upper surface relative to the belt, the lower belt is the belt There are several heat transfer rolls on the lower surface) to control the thermal conductivity for the purpose of heating foaming and maintaining the shape after foaming. The weight of the heat transfer roll provided on the outer surface of the upper belt By applying forced pressure to the roll, the embossed shape processed on at least one surface of the upper belt and the lower belt can be pressure-transferred to the surface of the laminate while the foamable laminate is conveyed in the foaming apparatus. In addition, since the compressive strength of the foamable laminate and the foamed laminate after the foaming is reduced at the time of pressurization before and after foaming, the shape of the belt surface is transferred to the surface layer of the structure even at a relatively low pressure. Easy to be. Further, it is also possible to use pressure applied by a cooling roll or the like used for cooling the foamed laminated body provided at the rear in the foaming apparatus. This method is more advantageous in terms of energy consumption and cost than a method of forming a texture on the surface of the metal foil in advance.
 積層体を搬送するベルトは、加熱発泡時の耐熱性が維持できれば特に限定するものではないが、スチール系ベルト、フッ素加工系ベルトなどが好ましい。特に、表面シボ形状加工の簡易性、離型性、強度の観点からガラス長繊維等の繊維層にフッ素系樹脂、特にポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などでコートされたシートで作製されたベルトが好ましい。またその他のフッ素系樹脂としてテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)などが例示されるが、発泡加熱温度が樹脂の融点を超えるような樹脂は使用できないため、発泡開始温度を考慮して樹脂を選択する。 The belt for transporting the laminate is not particularly limited as long as the heat resistance during heating and foaming can be maintained, but a steel belt, a fluorine processing belt, or the like is preferable. In particular, fluororesin, especially polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, for fiber layers such as long glass fibers, from the viewpoint of ease of surface texture processing, releasability, and strength A belt made of a sheet coated with (PFA) or the like is preferable. Other fluororesins include tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), A chlorotrifluoroethylene / ethylene copolymer (ECTFE) is exemplified, but since a resin having a foaming heating temperature exceeding the melting point of the resin cannot be used, the resin is selected in consideration of the foaming start temperature.
 つぎに、本発明による複合発泡樹脂シートを加工する方法について、説明をする。 Next, a method for processing the composite foamed resin sheet according to the present invention will be described.
 折り曲げ加工を行う際には特段器具を用いる必要性はないが、折り曲げ個所に予め折り目を付けておくことが折り曲げ易さの点から好ましい。折り目処理を施すには、楔形の金具を用いてプレス処理を行う方法や、また、V型等の溝加工を折り曲げ部分に行う方法があり、それ以外にも、U型のプレス加工や溝加工、表裏同位置の局所線状プレスなど、折れ曲がる位置の厚さを局所的に他の部分よりも薄くする方法でシートを折り曲げ易くすることが可能である。これらの内、楔形の金具を用いてプレス処理を行う方法が最も好ましい。この方法では、金具を加熱することで、樹脂発泡層が加熱されることで溶融し圧縮強度の低下を引き起こすため圧力を上げることなくプレス加工ができ、また低圧処理のため金属箔の破断も回避しやすくなる。また加熱後の冷却で複合発泡樹脂シートが固化し強度が復元し折り目形状を維持できる点からもこの方法が好ましい。 It is not necessary to use a special instrument when performing the bending process, but it is preferable from the viewpoint of easy folding that a crease is provided in advance at the folding part. The crease treatment includes a method of pressing using a wedge-shaped metal fitting and a method of performing groove processing such as V-shaped on a bent portion. Besides that, U-shaped pressing and groove processing It is possible to make the sheet easier to bend by a method in which the thickness of the bending position is locally thinner than other portions, such as a local linear press at the same position on the front and back sides. Of these, the method of performing a press treatment using a wedge-shaped metal fitting is most preferable. In this method, by heating the metal fitting, the resin foam layer is heated and melted, causing a decrease in compressive strength, so that press working can be performed without increasing the pressure. It becomes easy to do. This method is also preferable from the viewpoint that the composite foamed resin sheet is solidified by cooling after heating, the strength is restored, and the crease shape can be maintained.
 加えて、プレス処理による折り目加工の応用例としては、トムソン加工などの抜き打ち加工と同時に特定の金具を用いてプレス処理を行えば抜き打ち処理と同時に所定の位置に折り目を付けることが可能である。 In addition, as an application example of crease processing by press processing, it is possible to make a crease at a predetermined position at the same time as punching processing by performing press processing using a specific metal fitting simultaneously with punching processing such as Thomson processing.
 本発明による複合発泡樹脂シートは、内在する気泡のアスペクト比Dz/Dxyの平均値が1.1~5.0、発泡倍率が4~20倍という特定のセル構造を有するポリオレフィン系樹脂発泡体に金属箔を積層したものであるので、該セル構造によって圧縮強度を0.05MPa以上を保持しつつ曲げ作用に対する柔軟性を確保することができ、そのため一定の硬さを保ちつつ折り曲げることが可能である。 The composite foamed resin sheet according to the present invention is a polyolefin resin foam having a specific cell structure in which the average aspect ratio Dz / Dxy of the internal bubbles is 1.1 to 5.0 and the expansion ratio is 4 to 20 times. Because it is a laminate of metal foil, the cell structure can ensure flexibility against bending action while maintaining a compressive strength of 0.05 MPa or more, and can be bent while maintaining a certain hardness. is there.
 加えて、複合樹脂発泡体シートの少なくとも片面にシボ加工が施されているので、シートが曲がるとき、引張り側の表面に発生する引張り応力に対してシボ形状を付与された表層が、シボ形状がないフラットな表面状態と比べて伸びることができる。従ってシート曲げ時の表面変位に対する金属箔の寸法追従性を大きく得ることができ、この効果によって、一定曲率内の金属箔への引張り応力が原因で生じる亀裂や破断を極力抑えることが可能となり、シボ形状がないものと比べて複合発泡体樹脂シートを曲げやすくなる。金属箔のように発泡体に比べ伸び特性が小さなものを用いるとこの効果が顕著に現れる。 In addition, since at least one surface of the composite resin foam sheet has been subjected to graining, when the sheet is bent, the surface layer to which the grain shape is given against the tensile stress generated on the surface on the tension side is Can stretch compared to no flat surface condition. Therefore, it is possible to greatly obtain the dimensional followability of the metal foil with respect to the surface displacement at the time of sheet bending, and by this effect, it becomes possible to suppress cracks and breaks caused by the tensile stress on the metal foil within a certain curvature as much as possible, It becomes easier to bend the composite foam resin sheet than the one without the crimped shape. This effect is prominent when using a metal foil having a smaller elongation characteristic than a foam.
 また、ポリオレフィン系樹脂発泡体が難燃剤を所定割合で含むと、同樹脂発泡体への金属箔の積層効果と相まって防炎性が向上し、特定の条件では建築基準法規定の不燃材料の要件を満たすことが可能になる。 In addition, when the polyolefin resin foam contains a flame retardant in a predetermined ratio, the flameproofness is improved in combination with the effect of laminating the metal foil on the resin foam. Under certain conditions, the requirements for non-combustible materials specified in the Building Standards Act are required. It becomes possible to satisfy.
 本発明による複合発泡樹脂シートの製造方法は、ポリオレフィン系樹脂発泡性シートの少なくとも片面に金属箔を積層してなる発泡性積層体の上下を2枚の無端ベルト間に挟持し加熱して発泡性シートを発泡させた後冷却する複合発泡樹脂シートの製造方法であって、上記金属箔側の無端ベルトが、シボ形状を表面に有するものである。これらの場合、発泡工程の前後に金属箔や樹脂発泡層にシボ加工を施す必要性がないため特殊なシボ加工装置が不必要となり、経済的に有利である。 The method for producing a composite foamed resin sheet according to the present invention comprises a foamed laminate formed by laminating a metal foil on at least one side of a polyolefin resin foamable sheet, sandwiched between two endless belts, and heated to be foamable. A method for producing a composite foamed resin sheet that is cooled after foaming the sheet, wherein the endless belt on the metal foil side has a textured shape on the surface. In these cases, there is no need to apply a texture to the metal foil or the resin foam layer before and after the foaming step, so that a special texture processing device is unnecessary, which is economically advantageous.
 本発明による複合発泡樹脂シートを加工するには、予め、複合樹脂発泡シートの折り曲げ部分に楔形金具を用いてプレス処理を行い、折り目を付けておく。これにより容易に折り曲げ加工を行うことができる。また該金具を樹脂発泡層が溶融する温度以上、例えばポリプロピレン樹脂であると130~150℃以上に加熱することにより、比較的低圧のプレス処理にてシート表面の金属箔に亀裂や破断を生じさせることなく折り目を付けることが可能となる。 In order to process the composite foamed resin sheet according to the present invention, a crease is made in advance by performing a press treatment using a wedge-shaped metal fitting on the folded portion of the composite resin foamed sheet. As a result, the bending process can be easily performed. Further, when the metal fitting is heated to a temperature higher than the temperature at which the resin foam layer melts, for example, 130 to 150 ° C. or higher for polypropylene resin, the metal foil on the surface of the sheet is cracked or broken by a relatively low-pressure press treatment. It is possible to make a crease without any.
 本発明による複合発泡樹脂シートからなる空調ダクトは、断熱性、軽量性の点で亜鉛鋼板性ダクトよりも良く、耐水性、加工性の観点からは段ボールダクトを凌ぐ性能を持つ。また難燃材を樹脂に配合することで空調用ダクトの必要要件である建築基準法規定の不燃材料認定レベルの性能を有することができる。したがって、本発明による複合発泡樹脂シートは空調用ダクトに好適な材料である。 The air-conditioning duct made of the composite foamed resin sheet according to the present invention is better than the galvanized steel duct in terms of heat insulation and light weight, and has a performance superior to that of the corrugated cardboard duct in terms of water resistance and workability. In addition, by blending a flame retardant with a resin, it can have the performance of a non-flammable material certified level stipulated in the Building Standard Law, which is a necessary requirement for air conditioning ducts. Therefore, the composite foamed resin sheet according to the present invention is a material suitable for an air conditioning duct.
発泡体を示す斜視図である。It is a perspective view which shows a foam. 図1(a) 中のA部の拡大図である。It is an enlarged view of the A section in Fig.1 (a). 形状保持評価試験を示す概略図である。It is the schematic which shows a shape maintenance evaluation test.
 つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。 Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.
実施例1(難燃剤配合なし) 
 特許文献6記載の方法で作製したポリプロピレン樹脂組成物からなる発泡性シートをアルミ箔(厚さ40μm)で上下から挟みこんで発泡性積層体を準備し、ダブルベルト式発泡装置の上下2枚の搬送用無端ベルト(シボ形状:平均凹凸高低差0.2mmを表面に有するフッ素系樹脂コーティングベルト)を用いて連続発泡装置の加熱炉(設定温度220~229℃)内に搬入した。その工程で搬送用上ベルトの上部から伝熱用ロールを用いてロールの自重により搬送用ベルトを加圧し、ベルト表面に加工されたシボ形状を発泡性積層体の発泡前後において該積層体表面に加圧転写させた。加えて、発泡装置内に備え付けられた発泡後の積層体を冷却するための冷却ロールを用いて線圧1kgf/m以上の加圧を上ベルトの上部から行った。またこの際に使用した搬送用フッ素系樹脂加工ベルトはガラス長繊維を用いた直径φ1.2mm程度のストランド(ガラス繊維束)にてシート平面上で直行に編まれた繊維層にフッ素系樹脂であるPTFE及びPFAをコーティングさせてなるものを使用した。この場合、ガラス繊維束が直交に編まれることによりシボ形状(微細な凹凸)が生じる。また、凹部分をフッ素系樹脂が埋め尽くすまでに至っていない状態では、同繊維が編まれたことによって生じた凸部分が表面に残存し、シボ形状が表面に維持されるため、別途、シボ加工をベルト表面に施すことなくシボ形状が形成されるので、これをそのまま利用することができる。こうして、上下両面全体にシボを有する複合発泡樹脂シート(アスペクト比Dz/Dxyの平均値:1.6、発泡倍率:7倍、圧縮強度:0.61MPa、厚さ:5mm)を作製した。
Example 1 (no flame retardant formulation)
A foamable laminate is prepared by sandwiching a foamable sheet made of a polypropylene resin composition produced by the method described in Patent Document 6 from above and below with aluminum foil (thickness: 40 μm). It was carried into a heating furnace (set temperature 220 to 229 ° C.) of a continuous foaming apparatus using an endless belt for conveyance (texture shape: fluorine-based resin coating belt having an average unevenness height difference 0.2 mm on the surface). In that process, the conveying belt is pressurized by the weight of the roll using the heat transfer roll from the upper part of the conveying upper belt, and the embossed shape processed on the belt surface is applied to the surface of the laminate before and after the foaming laminate is foamed. Pressurized and transferred. In addition, a linear roll pressure of 1 kgf / m or higher was applied from the upper part of the upper belt using a cooling roll for cooling the foamed laminate provided in the foaming apparatus. In addition, the fluororesin processing belt for transport used at this time was made of a fluororesin on a fiber layer knitted perpendicularly on a sheet plane with strands (glass fiber bundles) having a diameter of about 1.2 mm using long glass fibers. Some PTFE and PFA coated were used. In this case, when the glass fiber bundle is knitted orthogonally, a textured shape (fine irregularities) is generated. In addition, in a state where the concave portion is not filled with the fluorine-based resin, the convex portion generated by knitting the fiber remains on the surface, and the wrinkle shape is maintained on the surface. Since the embossed shape is formed without applying to the belt surface, this can be used as it is. Thus, a composite foamed resin sheet (average aspect ratio Dz / Dxy: 1.6, foaming ratio: 7 times, compressive strength: 0.61 MPa, thickness: 5 mm) having wrinkles on the entire upper and lower surfaces was produced.
実施例2(難燃剤配合1)
 実施例1のポリプロピレン樹脂組成物がポリプロピレン100重量部に対してエチレンビスペンタブロモベンゼンを6重量部、三酸化アンチモンを3重量部配合してなるものであること以外、実施例1と同様の操作を行い、上下両面全体にシボを有する複合発泡樹脂シート(アスペクト比Dz/Dxyの平均値:1.7、発泡倍率:7倍、圧縮強度:0.55MPa、厚さ:5mm)を作製した。
Example 2 (flame retardant formulation 1)
The same operation as in Example 1 except that the polypropylene resin composition of Example 1 is obtained by blending 6 parts by weight of ethylenebispentabromobenzene and 3 parts by weight of antimony trioxide with respect to 100 parts by weight of polypropylene. A composite foamed resin sheet (average aspect ratio Dz / Dxy: 1.7, foaming ratio: 7 times, compressive strength: 0.55 MPa, thickness: 5 mm) having wrinkles on the entire upper and lower surfaces was prepared.
実施例3(難燃剤配合2)
 実施例1のポリプロピレン樹脂組成物がポリプロピレン100重量部に対してエチレンビスペンタブロモベンゼンを10重量部、三酸化アンチモンを5重量部配合してなるものであること以外、実施例1と同様の操作を行い、上下両面全体にシボを有する複合発泡樹脂シート(アスペクト比Dz/Dxyの平均値:1.5、発泡倍率:7倍、圧縮強度:0.54MPa、厚さ:5mm)を作製した。
Example 3 (flame retardant compounding 2)
The same operation as in Example 1 except that the polypropylene resin composition of Example 1 is obtained by blending 10 parts by weight of ethylenebispentabromobenzene and 5 parts by weight of antimony trioxide with respect to 100 parts by weight of polypropylene. Then, a composite foamed resin sheet (average aspect ratio Dz / Dxy: 1.5, foaming ratio: 7 times, compressive strength: 0.54 MPa, thickness: 5 mm) having wrinkles on both upper and lower surfaces was prepared.
比較例1(シボなし)
 ダブルベルト式発泡装置の上下2枚の無端ベルトに、シボ形状を有していないフラットベルトを用いたこと以外、実施例1と同様の発泡性シートを用いて発泡体製作を行い、上下両面全体にシボを有する複合発泡樹脂シート(アスペクト比Dz/Dxyの平均値:1.6、発泡倍率:7倍、圧縮強度:0.75MPa、厚さ:5mm)を作製した。
Comparative Example 1 (no wrinkles)
The foam was produced using the same foaming sheet as in Example 1 except that flat belts having no embossed shapes were used for the upper and lower endless belts of the double belt type foaming apparatus, and the entire upper and lower surfaces were made. A composite foamed resin sheet having an embossed surface (average aspect ratio Dz / Dxy: 1.6, foaming ratio: 7 times, compressive strength: 0.75 MPa, thickness: 5 mm) was produced.
比較例2(シボなし)
 軟質ポリエチレン発泡体(積水化学社製、商品名「ソフトロン」)の表裏両面にアルミ箔(厚さ40μm)を接着剤にて表裏に接合して、シボを有しない複合発泡樹脂シート(アスペクト比Dz/Dxyの平均値:1以下、発泡倍率:30倍、圧縮強度:0.05MPa未満、厚さ:5mm)を作製した。
Comparative Example 2 (without wrinkles)
Composite foam resin sheet (aspect ratio) with no wrinkles by bonding aluminum foil (thickness 40μm) to the front and back of both sides of soft polyethylene foam (product name "Soft Ron" manufactured by Sekisui Chemical Co., Ltd.) Dz / Dxy average value: 1 or less, foaming ratio: 30 times, compression strength: less than 0.05 MPa, thickness: 5 mm).
比較例3(シボなし)
 発泡倍率12倍、厚さ6mmのポリスチレンフォームの表裏両面にアルミ箔〈厚さ40μm〉を接着剤にて表裏に接合して、シボを有しない複合発泡樹脂シート(アスペクト比Dz/Dxyの平均値:1以下、発泡倍率:12倍、圧縮強度:0.97MPa、厚さ:7mm)を作製した。
Comparative Example 3 (no wrinkles)
Composite foamed resin sheet having an average ratio of aspect ratio Dz / Dxy with aluminum foil <thickness 40 μm> bonded to the front and back with an adhesive on both sides of a polystyrene foam having a foaming ratio of 12 times and a thickness of 6 mm. 1 or less, foaming ratio: 12 times, compressive strength: 0.97 MPa, thickness: 7 mm).
比較例4(難燃剤多過)
 ポリプロピレン樹脂組成物がポリプロピレン100重量部に対してエチレンビスペンタブロモベンゼンを40重量部配合してなるものであること以外、実施例1と同様の操作を行い、上下両面全体にシボを有する複合発泡樹脂シート(アスペクト比Dz/Dxyの平均値:粗大気泡化のため測定不可、発泡倍率:発泡層が粗大化し測定不可、圧縮強度:0.12MPa、厚さ:5mm)を作製した。
Comparative Example 4 (excessive flame retardant)
Except that the polypropylene resin composition is obtained by blending 40 parts by weight of ethylenebispentabromobenzene with respect to 100 parts by weight of polypropylene, the composite foam having the texture on both the upper and lower surfaces is the same as in Example 1. A resin sheet (average value of aspect ratio Dz / Dxy: measurement not possible due to coarse bubbles), foaming ratio: foamed layer coarsened and measurement not possible, compressive strength: 0.12 MPa, thickness: 5 mm was prepared.
比較例5(段ボール)
 厚さ5mmの段ボール紙にアルミ箔(厚さ40μm)を接着剤にて積層した。
Comparative Example 5 (corrugated cardboard)
An aluminum foil (thickness 40 μm) was laminated on a corrugated paper having a thickness of 5 mm with an adhesive.
性能評価試験
a)圧縮強度
・JIS K 7220に準拠し、クロスヘッド速度1mm/minにおける厚み10%変形時までの最大応力値と降伏点応力を比べて高い値を測定した。
Performance evaluation test
a) Compressive strength: Based on JIS K 7220, a higher value was measured by comparing the maximum stress value up to 10% thickness deformation and the yield point stress at a crosshead speed of 1 mm / min.
b)熱伝導率
・JIS A 1412に準拠して測定した。
b) Thermal conductivity Measured according to JIS A 1412.
c)折り曲げ評価
・複合発泡樹脂シート幅20mm、長さ200mmのサンプルを60°の角度に折り曲げた場合、割れが発生しない場合○、完全に割れた場合×とした。
c) Folding evaluation: When a sample having a composite foamed resin sheet width of 20 mm and a length of 200 mm was bent at an angle of 60 °, no crack was generated.
d)形状保持評価
・図2に示すように、幅20mm、長さ200mmのサンプル(s)のサンプル(s)の基端部を水平面に両面テープで固定し、長手方向の中心を起点として先端部を40mmの高さに折り曲げ、30分後,60分後、1日後の高さを測定した。その際、折り曲げ時の加工精度を維持するためにサンプル(s)を専用の三角型治具に沿わせて折り曲げた。
d) Shape retention evaluation ・ As shown in FIG. 2, the base end of the sample (s) having a width of 20 mm and a length of 200 mm is fixed to a horizontal surface with double-sided tape, and the tip is started from the center in the longitudinal direction. The part was bent to a height of 40 mm, and the height after 30 minutes, 60 minutes and 1 day was measured. At that time, the sample (s) was bent along a special triangular jig in order to maintain the processing accuracy at the time of bending.
e)発泡性
・発泡体部分より板状の試料をカッターで切り出した後、目視にて切断面のセル状態を確認した。粗大なセルや連続気泡が著しい場合は×とした。
e) After foaming and cutting out a plate-like sample from the foamed portion with a cutter, the cell state of the cut surface was confirmed visually. When coarse cells or open cells were remarkable, it was marked as x.
f〉不燃性
・建築基準法に規定される不燃性評価における発熱性試験方法〈コーンカロリー試験〉にしたがって不燃性を評価した。試験項目:20分間評価時の総発熱量および最大燃焼速度。
f> Nonflammability: Nonflammability was evaluated according to the exothermic test method <corn calorie test> in the nonflammability evaluation prescribed in the Building Standards Law. Test items: total calorific value and maximum burning rate during 20-minute evaluation.
性能評価試験の結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 summarizes the results of the performance evaluation test.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例の複合発泡樹脂シートはすべての項目について良好な性能を示した。 As is clear from Table 1, the composite foamed resin sheets of the examples showed good performance for all items.
符合の説明Explanation of sign
 (1) 発泡体
 (2) 任意の断面
 (3) セル
(1) Foam (2) Arbitrary cross section (3) Cell

Claims (6)

  1.  内在する気泡のアスペクト比Dz/Dxyの平均値が1.1~5.0、発泡倍率が4~20倍、圧縮強度が0.05MPa以上であるポリオレフィン系樹脂発泡体の少なくとも片面に、平均厚さ5μm~200μmの金属箔が積層された複合発泡樹脂シートの、少なくとも金属箔側の一部又は全面にシボ加工が形成されていることを特徴とする複合発泡樹脂シート。 An average thickness of at least one surface of a polyolefin resin foam having an average aspect ratio Dz / Dxy of the internal bubbles of 1.1 to 5.0, an expansion ratio of 4 to 20 times, and a compressive strength of 0.05 MPa or more. A composite foamed resin sheet, wherein at least a part or the entire surface of the metal foam side of the composite foamed resin sheet in which metal foils having a thickness of 5 μm to 200 μm are laminated is formed.
  2.  上記ポリオレフィン系樹脂発泡体が、ポリオレフィン系樹脂100重量部に対し難燃剤5~30重量部を含む請求項1記載の複合発泡樹脂シート。 The composite foam resin sheet according to claim 1, wherein the polyolefin resin foam contains 5 to 30 parts by weight of a flame retardant with respect to 100 parts by weight of the polyolefin resin.
  3.  ポリオレフィン系樹脂発泡性シートの少なくとも片面に金属箔を積層してなる発泡性積層体の上下を2枚の無端ベルト間に挟持し加熱して発泡性シートを発泡させた後冷却する複合発泡樹脂シートの製造方法であって、上記金属箔側の無端ベルトが、シボ形状を表面に有するものであることを特徴とする請求項1又は2記載の複合発泡樹脂シートの製造方法。 Composite foamed resin sheet for cooling after foaming a foamable sheet by sandwiching the top and bottom of a foamable laminate formed by laminating metal foil on at least one side of a polyolefin resin foamable sheet and heating it between two endless belts 3. The method for producing a composite foamed resin sheet according to claim 1, wherein the endless belt on the metal foil side has a textured shape on the surface.
  4.  請求項1又は2記載の複合発泡樹脂シートに楔形金具を用いて折り目を付けることを特徴とする複合発泡樹脂シート加工品の製造方法。 A method for producing a composite foam resin sheet processed product, wherein the composite foam resin sheet according to claim 1 or 2 is creased using a wedge-shaped metal fitting.
  5. 請求項1又は2記載の複合発泡樹脂シートからなる空調用ダクト素材。 An air conditioning duct material comprising the composite foamed resin sheet according to claim 1 or 2.
  6. 請求項4記載の製造方法により所定形状に製造されたものであることを特徴とする空調用ダクト素材。 An air-conditioning duct material manufactured by the manufacturing method according to claim 4 in a predetermined shape.
PCT/JP2009/057489 2008-04-18 2009-04-14 Composite foamed-resin sheet WO2009128440A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508212A JPWO2009128440A1 (en) 2008-04-18 2009-04-14 Composite foam resin sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008108656 2008-04-18
JP2008-108656 2008-04-18

Publications (1)

Publication Number Publication Date
WO2009128440A2 true WO2009128440A2 (en) 2009-10-22

Family

ID=41199541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057489 WO2009128440A2 (en) 2008-04-18 2009-04-14 Composite foamed-resin sheet

Country Status (2)

Country Link
JP (1) JPWO2009128440A1 (en)
WO (1) WO2009128440A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125784A1 (en) * 2013-02-12 2014-08-21 川崎重工業株式会社 Vehicle air-conditioning duct, and railway vehicle
JP2018103622A (en) * 2016-12-27 2018-07-05 旭硝子株式会社 Decorative plate
JP2020020535A (en) * 2018-08-02 2020-02-06 フジモリ産業株式会社 Sock duct device
WO2021132164A1 (en) * 2019-12-26 2021-07-01 キョーラク株式会社 Expansion molded body and method for producing molded body
JP2021104647A (en) * 2019-12-26 2021-07-26 キョーラク株式会社 Method for manufacturing molded article
JP2021105115A (en) * 2019-12-26 2021-07-26 キョーラク株式会社 Foam molded body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10556602B2 (en) 2013-02-12 2020-02-11 Kawasaki Jukogyo Kabushiki Kaisha Car air conditioning duct and railcar
JP2014151809A (en) * 2013-02-12 2014-08-25 Kawasaki Heavy Ind Ltd Vehicular air-conditioning duct and railway vehicle
CN104955703A (en) * 2013-02-12 2015-09-30 川崎重工业株式会社 Vehicle air-conditioning duct, and railway vehicle
WO2014125784A1 (en) * 2013-02-12 2014-08-21 川崎重工業株式会社 Vehicle air-conditioning duct, and railway vehicle
JP7037746B2 (en) 2016-12-27 2022-03-17 Agc株式会社 Veneer
JP2018103622A (en) * 2016-12-27 2018-07-05 旭硝子株式会社 Decorative plate
JP2020020535A (en) * 2018-08-02 2020-02-06 フジモリ産業株式会社 Sock duct device
WO2021132164A1 (en) * 2019-12-26 2021-07-01 キョーラク株式会社 Expansion molded body and method for producing molded body
JP2021104647A (en) * 2019-12-26 2021-07-26 キョーラク株式会社 Method for manufacturing molded article
JP2021105115A (en) * 2019-12-26 2021-07-26 キョーラク株式会社 Foam molded body
CN114786918A (en) * 2019-12-26 2022-07-22 京洛株式会社 Foamed molded article and method for producing molded article
EP4082749A4 (en) * 2019-12-26 2023-01-25 Kyoraku Co., Ltd. Expansion molded body and method for producing molded body
JP7303974B2 (en) 2019-12-26 2023-07-06 キョーラク株式会社 Molded body manufacturing method
JP7440743B2 (en) 2019-12-26 2024-02-29 キョーラク株式会社 foam molded body

Also Published As

Publication number Publication date
JPWO2009128440A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2009128440A2 (en) Composite foamed-resin sheet
JP6447750B2 (en) Method for manufacturing sandwich panel
JP5926947B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
JP5740694B2 (en) Manufacturing method of molded products
JP6278286B2 (en) Laminate
TWI404634B (en) A laminated foam of polyethylene resin
US20140087147A1 (en) Self-corrugating laminates and methods of making them
JP2015051629A (en) Method for producing laminate substrate and laminate substrate
JP2007045098A (en) Base material for automobile upholsteries
WO2017110726A1 (en) Hollow-structure plate
JP2011104947A (en) Foamed laminated sheet for automotive interior materials, and automotive interior material
JP2014172267A (en) Laminate substrate
JP5605148B2 (en) Non-woven fabric for foam molded article reinforcement and method for producing the same
JP2009233904A (en) Method for producing shape holding molding
JP2012111388A (en) Base material for automobile ceiling, and automobile ceiling material
WO2018079432A1 (en) Hollow resin plate
JP5379992B2 (en) Insulated folded board
JP2009262361A (en) Foam laminated sheet for automobile interior material, and automobile interior material
JP4921716B2 (en) Pinup flameproof panel
JP2016198985A (en) Resin laminate
CN111051606A (en) Artificial leather having excellent surface appearance and method for manufacturing same
JP2007291711A (en) Core for tatami floor and thin tatami using it
JP2018131524A (en) Film
JP3624974B2 (en) Fiber reinforced thermoplastic resin composite sheet
JP2010046927A (en) Laminated foam sheet for vehicle luggage compartment constituting trim, and vehicle luggage compartment constituting trim

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733404

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010508212

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09733404

Country of ref document: EP

Kind code of ref document: A2