WO2009128399A1 - Oligonucleotide probe and microarray for determination of genome type of bk virus - Google Patents

Oligonucleotide probe and microarray for determination of genome type of bk virus Download PDF

Info

Publication number
WO2009128399A1
WO2009128399A1 PCT/JP2009/057337 JP2009057337W WO2009128399A1 WO 2009128399 A1 WO2009128399 A1 WO 2009128399A1 JP 2009057337 W JP2009057337 W JP 2009057337W WO 2009128399 A1 WO2009128399 A1 WO 2009128399A1
Authority
WO
WIPO (PCT)
Prior art keywords
bases
base sequence
oligonucleotide probe
seq
complementary
Prior art date
Application number
PCT/JP2009/057337
Other languages
French (fr)
Japanese (ja)
Inventor
平山幸一
池谷博
櫻田宏一
Original Assignee
東洋鋼鈑株式会社
警察庁科学警察研究所長が代表する日本国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 警察庁科学警察研究所長が代表する日本国 filed Critical 東洋鋼鈑株式会社
Priority to JP2010508191A priority Critical patent/JPWO2009128399A1/en
Publication of WO2009128399A1 publication Critical patent/WO2009128399A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • G01N2333/025Papovaviridae, e.g. papillomavirus, polyomavirus, SV40, BK virus, JC virus

Definitions

  • JCV JCV virus
  • JCV JCV virus
  • the JCV that enters the body is not completely eliminated by the immune response, and some viruses go to the kidney tissue, peripheral blood lymphocytes, and lymphoid tissues, where they persist throughout life.
  • JCV genomic DNA cloned from races around the world was analyzed, and in the process, it was revealed that the genomic type of JCV is related to race.
  • the base sequence of the IG region (610 base pairs) of JCV genomic DNA has been determined from urine collected in various parts of the world, and the molecular phylogenetic tree is determined from the obtained base sequence by the neighbor-joining method (Neighbor-Joining method, NJ method).
  • the phylogenetic tree has attracted attention as a novel indicator of the human population.
  • the JCV genome type detected from human urine and kidneys is used as a method for estimating the region of origin of an unidentified corpse (for example, Non-Patent Document 1).
  • BKV BK virus
  • JCV JCV genome type
  • BK virus BK virus
  • serological studies showed that it was as prevalent in the human population as JC virus, and that most humans can be infected with BK virus as a child. It was revealed. From the sequence analysis of the VP1 gene of BK virus, it was reported that BK virus strains can be classified into four subtypes (I to IV) that correspond well with grouping based on serological survey.
  • Non-Patent Document 2 a method of clarifying the entire base sequence of the VP1 gene and analyzing the molecular system has been adopted (for example, Non-Patent Document 2).
  • a conventional method has a problem that it requires a special technique for analysis and takes time. In some cases, the number of samples is very small. JOURNAL OF CLINICAL MICROBIOLOGY, June 1995, p.1448-1451 FORENSIC SCIENCE INTERNATIONAL, 2007, p.41-46
  • An object of the present invention is to provide a means for quickly and easily determining the genome type of a BK virus infecting a subject and estimating the place of birth of the subject.
  • the present inventors succeeded in designing a set of oligonucleotide probes useful for determining the genome type of BK virus from the base sequence of BK virus genomic DNA, and completed the present invention.
  • a set of oligonucleotide probes for determining the genome type of a BK virus that has infected a subject including the following oligonucleotide probes: (a-1) an oligonucleotide probe comprising a base sequence of 30 or less bases including the bases 223 to 241 of SEQ ID NO: 1, 2 or 3 or a base sequence complementary thereto (a-2) of SEQ ID NO: 4
  • An oligonucleotide probe comprising a base sequence of not more than 30 consecutive bases including the 223 to 241st bases or a base sequence complementary thereto (a-3) a continuous 30 comprising the 223 to 241st bases of SEQ ID NO: 5 or 6
  • Oligonucleotide probe comprising a nucleotide sequence of less than or equal to the base sequence or a complementary nucleotide sequence thereof (a-4) From a nucleotide sequence of not more than 30 consecutive nucleotides including
  • oligonucleotide probe comprising a continuous base sequence of 30 bases or less or a base sequence complementary thereto (b-4) a continuous base sequence of 30 bases or less including the 271th to 290th bases of SEQ ID NO: 7 or complementary thereto (C-1) consisting of a base sequence of 30 or fewer consecutive bases including the bases 285 to 304 of SEQ ID NO: 1, 4, 5, 6 or 7 or a base sequence complementary thereto Oligonucleotide probe (c-2) Oligonucleotide probe (c-3) comprising a base sequence of 30 nucleotides or less or a base sequence complementary thereto, including the 285th to 304th bases of SEQ ID NO: 2 or 3 An oligonucleotide probe consisting of a base sequence of 30 or less bases including the bases 285 to 304 in column No.
  • oligonucleotide probe comprising a base sequence of 30 bases or less or a base sequence complementary thereto (d-2) comprising 30 to 53 bases in a row including the 53rd to 72nd bases of SEQ ID NO: 2, 4, 5, 6 or 7 Oligonucleotide probe comprising a base sequence or a base sequence complementary thereto (d-3) Oligonucleotide comprising a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 3 or a base sequence complementary thereto Probe (e-1) Oligonucleotide probe (e-2) sequence consisting of a base sequence of 30 or less bases including the 81st to 100th bases of SEQ ID NO: 1, 2, 3 or 4 or a complementary base sequence thereto An oligonucleotide probe comprising a base sequence of no more than 30 bases including the 81st to 100th bases of No
  • oligonucleotide probe comprising a continuous base sequence of 30 bases or less or a base sequence complementary thereto.
  • the present invention makes it possible to quickly and easily determine the genome type of a BK virus that has infected a subject using a small amount of sample.
  • the present invention provides a means by which a person without advanced specialized knowledge can determine the genome type of the BK virus.
  • the birthplace of the subject can be estimated based on the genome type of the BK virus.
  • BK virus is a virus that belongs to the polyomaviridae and has a human host.
  • the set of oligonucleotide probes of the present invention detects a region (VP1 region) encoding the VP1 gene in the genome of a BK virus that has infected a subject.
  • the VP1 region is a region of 327 base pairs (J. ⁇ ⁇ ⁇ Med. Virol. 41 (1993) 11-17) with many mutations in the BK virus genome, and the genome types in the VP1 region are type Ia, Ib-1 Type, Ib-2 type, Ic type, II type, III type, and IV type (J.rolGen. VIrol. 85 (2004) 2821-2827), reported as a region that can be classified as seven types of genomic types Has been.
  • determining the genome type of the BK virus infected with the subject includes determining the genome type of the BK virus infected with the subject who is the origin of the test sample.
  • Estimating the person's birthplace includes estimating the birthplace of the subject who is the origin of the test sample.
  • the set of oligonucleotide probes of the present invention includes at least oligonucleotide probe groups (a) to (e).
  • the oligonucleotide probe group (a) is composed of oligonucleotide probes (a-1), (a-2), (a-3) and (a-4);
  • the oligonucleotide probe group (b) is an oligonucleotide probe (b -1), (b-2), (b-3) and (b-4);
  • the oligonucleotide probe group (c) comprises oligonucleotide probes (c-1), (c-2) and (c- 3);
  • oligonucleotide probe group (d) consists of oligonucleotide probes (d-1), (d-2) and (d-3);
  • oligonucleotide probe group (e) consists of oligonucleotide probes (e- 1), consisting of (e-2) and (e-3).
  • each oligonucleotide probe group such as the oligonucleotide probe group (a) may contain one type of oligonucleotide probe group, or a plurality of types as long as the conditions are satisfied.
  • An oligonucleotide probe group may be included.
  • each oligonucleotide probe group may include one type of oligonucleotide probe as each oligonucleotide probe such as oligonucleotide probe (a-1). As long as the condition is satisfied, a plurality of types of oligonucleotide probes may be included.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 8 is preferred.
  • the oligonucleotide probe (a-2) is an oligonucleotide probe consisting of a base sequence of 30 bases or less including the bases 223 to 241 of SEQ ID NO: 4 (base sequence of SEQ ID NO: 9) or a base sequence complementary thereto. It is.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 9 is preferred.
  • Oligonucleotide probe (a-3) is a nucleotide sequence of not more than 30 consecutive nucleotides including nucleotides 223 to 241 of SEQ ID NO: 5 or 6 (common sequence: nucleotide sequence of SEQ ID NO: 10) or a complementary nucleotide sequence thereto
  • An oligonucleotide probe consisting of SEQ ID NOS: 5 and 6 also share 18 bases upstream and 85 bases downstream of the 223 to 241st bases.
  • the oligonucleotide probe (a-3) is preferably 213 to A continuous base sequence of 30 bases or less selected from the 252nd base, comprising the 223th to 241st bases of SEQ ID NO: 5 or 6, or a base sequence complementary thereto.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 10 is preferred.
  • Oligonucleotide probe (a-4) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 223 to 241 of SEQ ID NO: 7 (base sequence of SEQ ID NO: 11) or a base sequence complementary thereto It is.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 11 is preferred.
  • Oligonucleotide probe group (b) The oligonucleotide probe (b-1) is a base sequence of 30 bases or less including or complementary to the 271st to 290th bases of SEQ ID NO: 1, 2 or 4 (common sequence: the base sequence of SEQ ID NO: 12). It is an oligonucleotide probe consisting of a base sequence.
  • SEQ ID NOs: 1, 2 and 4 have 9 bases upstream and 3 bases downstream of the 271st to 290th bases, and therefore the oligonucleotide probe (b-1) is preferably SEQ ID NO: 1, 2 or A continuous base sequence of 30 bases or less selected from the 262th to 293th bases of 4, comprising the 271st to 290th bases of SEQ ID NO: 1, 2, or 4, or a complementary base sequence thereof is there.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 12 is preferred.
  • the oligonucleotide probe (b-2) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 271 to 290 of SEQ ID NO: 3 (base sequence of SEQ ID NO: 13) or a complementary base sequence thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 13 is preferred.
  • the oligonucleotide probe (b-3) is a base sequence of 30 bases or less that includes nucleotides 271 to 290 of SEQ ID NO: 5 or 6 (common sequence: base sequence of SEQ ID NO: 14) or a complementary base sequence thereof
  • An oligonucleotide probe consisting of SEQ ID NOs: 5 and 6 are common to 65 bases upstream and 37 bases downstream of the 271st to 290th bases. Therefore, the oligonucleotide probe (b-3) is preferably selected from 261 to A continuous base sequence of 30 bases or less selected from the 300th base, which includes the 271st to 290th bases of SEQ ID NO: 5 or 6, or a base sequence complementary thereto.
  • the oligonucleotide probe (b-4) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 271 to 290 of SEQ ID NO: 7 (base sequence of SEQ ID NO: 15) or a base sequence complementary thereto. It is.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 15 is preferred.
  • Oligonucleotide probe group (c) The oligonucleotide probe (c-1) has a base sequence of 30 bases or less that includes the 285th to 304th bases of SEQ ID NO: 1, 4, 5, 6 or 7 (common sequence: base sequence of SEQ ID NO: 16) or It is an oligonucleotide probe consisting of a complementary base sequence. SEQ ID NOs: 1, 4, 5, 6 and 7 are common to the 1 base upstream and the 23 bases downstream of the bases of 285 to 304.
  • the oligonucleotide probe (c-1) is preferably SEQ ID NO: A continuous base sequence of 30 bases or less selected from the 284th to 314th bases of 1, 4, 5, 6 or 7 and the 285th to 304th bases of SEQ ID NO: 1, 4, 5, 6 or 7 Or a base sequence complementary thereto.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 16 is preferred.
  • the oligonucleotide probe (c-2) is a base sequence of 30 bases or less that includes the 285th to 304th bases of SEQ ID NO: 2 or 3 (common sequence: the base sequence of SEQ ID NO: 17) or a base sequence complementary thereto.
  • an oligonucleotide probe consisting of SEQ ID NOs: 2 and 3 are common to 5 bases upstream and 23 bases downstream of the bases of 285 to 304. Therefore, the oligonucleotide probe (c-2) is preferably 280 to A continuous base sequence of 30 bases or less selected from the 314th base, which contains the 285th to 304th bases of SEQ ID NO: 2 or 3, or a base sequence complementary thereto.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 17 is preferred.
  • the oligonucleotide probe (c-3) is an oligonucleotide probe comprising a base sequence of 30 bases or less that includes the 285th to 304th bases of SEQ ID NO: 7 (base sequence of SEQ ID NO: 18) or a base sequence complementary thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 18 is preferred.
  • Oligonucleotide probe group (d) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 1 (base sequence of SEQ ID NO: 19) or a base sequence complementary thereto It is.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 19 is preferred.
  • the oligonucleotide probe (d-2) has a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 2, 4, 5, 6 or 7 (common sequence: the base sequence of SEQ ID NO: 20) or It is an oligonucleotide probe consisting of a complementary base sequence.
  • SEQ ID NOs: 2, 4, 5, 6 and 7 have 52 bases upstream and 2 bases downstream of the 53rd to 72nd bases.
  • the oligonucleotide probe (d-2) is preferably SEQ ID NO: A continuous base sequence of 30 or less bases selected from the 43rd to 74th bases of 2, 4, 5, 6 or 7 and the 53rd to 72nd bases of SEQ ID NO: 2, 4, 5, 6 or 7 Or a base sequence complementary thereto.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 20 is preferred.
  • the oligonucleotide probe (d-3) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 3 (base sequence of SEQ ID NO: 21) or a base sequence complementary thereto. It is.
  • An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 21 is preferred.
  • Oligonucleotide probe group (e) is a base sequence of 30 bases or less including or complementary to the 81st to 100th bases of SEQ ID NO: 1, 2, 3 or 4 (common sequence: the base sequence of SEQ ID NO: 22) It is an oligonucleotide probe consisting of a typical base sequence. SEQ ID NOs: 1, 2, 3 and 4 also share the 11 bases upstream and the 1 base downstream of the 81st to 100th bases.
  • the oligonucleotide probe (e-1) is preferably SEQ ID NO: 1, A continuous base sequence of 30 bases or less selected from 2, 3 or 4 71-101 bases, comprising 81st to 100th bases of SEQ ID NO: 1, 2, 3 or 4; or It is a complementary base sequence.
  • An oligonucleotide probe consisting of the nucleotide sequence of SEQ ID NO: 22 is preferred.
  • the oligonucleotide probe (e-2) is a base sequence of 30 bases or less that includes the 81st to 100th bases of SEQ ID NO: 5 or 6 (common sequence: the base sequence of SEQ ID NO: 23) or a base sequence complementary thereto.
  • an oligonucleotide probe consisting of SEQ ID NOS: 5 and 6 are common to 80 bases upstream and 17 bases downstream of the 81st to 100th bases. Therefore, the oligonucleotide probe (e-2) is preferably selected from 71 to A continuous base sequence of 30 bases or less selected from the 110th base, which includes the 81st to 100th bases of SEQ ID NO: 5 or 6, or a complementary base sequence. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 23 is preferred.
  • the oligonucleotide probe (e-3) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the 81st to 100th bases of SEQ ID NO: 7 (base sequence of SEQ ID NO: 24) or a base sequence complementary thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 24 is preferred.
  • the oligonucleotide probe having a base sequence of 30 bases or less including the Y-Zth bases of SEQ ID NO: X is, in other words, 30 bases continuous in the base sequence represented by SEQ ID NO: X
  • the following partial sequence refers to an oligonucleotide probe containing the Y to Z bases of the SEQ ID NO.
  • the length of the oligonucleotide probe of the present invention is usually 30 bases or less, preferably 25 bases or less, more preferably 23 bases or less.
  • the oligonucleotide probe is preferably a nucleic acid, more preferably DNA.
  • DNA includes both double strands and single strands
  • the oligonucleotide probe of the present invention is preferably single-stranded DNA.
  • SEQ ID NO: 1 represents the nucleotide sequence of the Ia type VP1 region
  • SEQ ID NO: 2 represents the nucleotide sequence of the Ib-1 type VP1 region
  • SEQ ID NO: 3 represents the nucleotide sequence of the Ib-2 type VP1 region
  • No. 4 represents the base sequence of the Ic type VP1 region
  • SEQ ID NO: 5 represents the base sequence of the type II VP1 region
  • SEQ ID NO: 6 represents the base sequence of the type III VP1 region
  • SEQ ID NO: 7 represents the type IV Represents the nucleotide sequence of the VP1 region.
  • the genome sequence of each genomic type in the VP1 region can also be obtained from the gene database GenBank of NCBI (National Center for Biotechnology Information), for example.
  • the oligonucleotide probe of the present invention can be obtained by, for example, chemically synthesizing with a nucleic acid synthesizer.
  • a nucleic acid synthesizer an apparatus called a DNA synthesizer, a fully automatic nucleic acid synthesizer, a nucleic acid automatic synthesizer, or the like can be used.
  • the oligonucleotide probe set of the present invention is preferably used in the form of a microarray by being immobilized on a carrier.
  • a carrier those known in the art can be used and are not particularly limited.
  • conductive materials such as platinum, platinum black, gold, palladium, rhodium, silver, mercury, tungsten and precious metals such as compounds thereof, and carbon represented by graphite and carbon fiber; single crystal silicon, amorphous Silicon materials typified by silicon, silicon carbide, silicon oxide, silicon nitride, etc., composite materials of these silicon materials typified by SOI (silicon on insulator), etc .; glass, quartz glass, alumina, sapphire, ceramics, Inorganic materials such as stellite and photosensitive glass; polyethylene, ethylene, polypropylene, cyclic polyolefin, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorine-containing resin, polyvinyl chloride, polyvin
  • a carrier having a carbon layer and a chemical modification group on the surface is preferably used as the carrier.
  • Carriers having a carbon layer and a chemical modification group on the surface include those having a carbon layer and a chemical modification group on the surface of the substrate, and those having a chemical modification group on the surface of the substrate made of the carbon layer.
  • the material for the substrate those known in the art can be used, and are not particularly limited, and the same materials as those mentioned above as the carrier material can be used.
  • a carrier having a fine flat plate structure is preferably used.
  • the shape is not limited to a rectangle, a square, or a round shape, but a shape of 1 to 75 mm square, preferably 1 to 10 mm square, more preferably 3 to 5 mm square is usually used. Since it is easy to produce a carrier having a fine flat plate structure, it is preferable to use a substrate made of a silicon material or a resin material. In particular, a carrier having a carbon layer and a chemical modification group on the surface of a substrate made of single crystal silicon is more preferable. preferable. Single crystal silicon has a slight change in the orientation of the crystal axis in some parts (sometimes referred to as a mosaic crystal), or includes atomic scale disturbances (lattice defects) Are also included.
  • the soft diamond is a generic term for an incomplete diamond structure that is a mixture of diamond and carbon, such as so-called diamond-like carbon (DLC), and the mixing ratio is not particularly limited.
  • the carbon layer has excellent chemical stability, can withstand subsequent reactions in the introduction of chemical modification groups and binding to the analyte, and the binding is flexible because of the electrostatic binding to the analyte. It is advantageous in that it has the property of being transparent, it is transparent to the detection system UV because there is no UV absorption, and it can be energized during electroblotting. Further, it is advantageous in that nonspecific adsorption is small in the binding reaction with the analyte. As described above, a carrier whose substrate itself is made of a carbon layer may be used.
  • the carbon layer can be formed by a known method.
  • microwave plasma CVD Chemical vapor deposition
  • ECRCVD Electro cyclotron resonance chemical vapor deposition
  • ICP Inductive coupled plasma
  • DC sputtering method ECR (Electric cyclotron resonance) sputtering method
  • ionization deposition method arc Examples thereof include a vapor deposition method, a laser vapor deposition method, an EB (Electron beam) vapor deposition method, and a resistance heating vapor deposition method.
  • an arc discharge is generated in a vacuum by applying a DC voltage between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode), and a plasma of carbon atoms is generated from the cathode to generate an evaporation source. Further, by applying a negative bias voltage to the substrate, carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
  • a carbon layer can be formed by irradiating a graphite target plate with Nd: YAG laser (pulse oscillation) light and melting it, and depositing carbon atoms on a glass substrate.
  • the thickness of the carbon layer is usually a monomolecular layer to about 100 ⁇ m. If it is too thin, the surface of the base substrate may be locally exposed, and conversely thicker. In this case, productivity is deteriorated, so that the thickness is preferably 2 nm to 1 ⁇ m, more preferably 5 nm to 500 nm.
  • the oligonucleotide probe can be firmly immobilized on the carrier by introducing a chemical modification group on the surface of the substrate on which the carbon layer is formed.
  • the chemical modification group to be introduced can be appropriately selected by those skilled in the art and is not particularly limited, and examples thereof include an amino group, a carboxyl group, an epoxy group, a formyl group, a hydroxyl group, and an active ester group.
  • An amino group can be introduced, for example, by irradiating the carbon layer with ultraviolet light in ammonia gas or by plasma treatment.
  • the carbon layer can be chlorinated by irradiation with ultraviolet rays in chlorine gas and further irradiated with ultraviolet rays in ammonia gas.
  • the reaction can be carried out by reacting with a chlorinated carbon layer in a polyvalent amine gas such as methylenediamine or ethylenediamine.
  • the introduction of the carboxyl group can be carried out, for example, by reacting an appropriate compound with the carbon layer aminated as described above.
  • a compound used for introducing a carboxyl group for example, represented by the formula: XR 1 -COOH (wherein X represents a halogen atom, R 1 represents a divalent hydrocarbon group having 10 to 12 carbon atoms)
  • Halocarboxylic acids such as chloroacetic acid, fluoroacetic acid, bromoacetic acid, iodoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid, 3-chloroacrylic acid, 4-chlorobenzoic acid; formula: HOOC-R 2 -COOH ( Wherein R 2 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms), such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, phthalic acid; poly Polyvalent carboxylic acids such as acrylic acid
  • Monohalides of the indicated dicarboxylic acids such as succinic acid monochloride, malonic acid monochloride; acid anhydrides such as phthalic anhydride, succinic anhydride, oxalic anhydride, maleic anhydride, and butanetetracarboxylic anhydride.
  • organic peracid include peracetic acid, perbenzoic acid, diperoxyphthalic acid, performic acid, and trifluoroperacetic acid.
  • the introduction of the formyl group can be carried out, for example, by reacting glutaraldehyde with the carbon layer aminated as described above.
  • the introduction of the hydroxyl group can be carried out, for example, by reacting water with the carbon layer chlorinated as described above.
  • examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimide group, 5-norbornene-2,3-dicarboximide group and the like.
  • an N-hydroxysuccinimide group is preferably used.
  • the introduction of the active ester group is performed, for example, by converting the carboxyl group introduced as described above into a dehydrating condensing agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N- It can be carried out by active esterification with a compound such as hydroxysuccinimide.
  • a group in which an active ester group such as an N-hydroxysuccinimide group is bonded to the terminal of the hydrocarbon group via an amide bond can be formed (Japanese Patent Laid-Open No. 2001-139532).
  • the oligonucleotide probe of the present invention is dissolved in a spotting buffer to prepare a spotting solution, which is dispensed into a 96-well or 384-well plastic plate, and the dispensed solution is spotted on a carrier by a spotter device or the like.
  • a microarray in which oligonucleotide probes are immobilized on a carrier can be produced.
  • the spotting solution may be spotted manually with a micropipette.
  • Incubation is usually performed at a temperature of ⁇ 20 to 100 ° C., preferably 0 to 90 ° C., usually for 0.5 to 16 hours, preferably 1 to 2 hours. Incubation is preferably performed in a high humidity atmosphere, for example, at a humidity of 50 to 90%. Following the incubation, it is preferable to perform washing with a washing solution (for example, 50 mM TBS / 0.05% Tween 20, 2 ⁇ SSC / 0.2% SDS solution, ultrapure water, etc.) to remove DNA not bound to the carrier. .
  • a washing solution for example, 50 mM TBS / 0.05% Tween 20, 2 ⁇ SSC / 0.2% SDS solution, ultrapure water, etc.
  • the present invention also relates to a method for determining the genome type of a BK virus that has infected a subject using the set of oligonucleotide probes or the microarray.
  • the determination method of the present invention includes: Extracting DNA from a sample derived from a subject; Amplifying a nucleic acid encoding the VP1 region of the BK virus genome using the extracted DNA as a template; Using the set of oligonucleotide probes or microarray of the present invention to detect the amplified nucleic acid.
  • the subject is usually a human, and the subject-derived sample is not particularly limited as long as it can contain a BK virus.
  • blood-related samples blood, serum, plasma, etc.
  • body fluids such as lymph, sweat, tears, saliva, urine, feces, ascites and cerebrospinal fluid, and cells, tissues or organs (eg heart, pancreas, liver, ovary) , Lungs, brain, bone marrow, lymph nodes, kidneys, etc.) and the like.
  • kidney crushed material and extract are used.
  • the sample derived from the subject may not be collected directly from the human body, and may be, for example, a sample collected from urine spots or blood stains.
  • DNA is extracted from a sample collected from the subject.
  • the extraction means is not particularly limited.
  • a DNA extraction method using phenol / chloroform, ethanol, sodium hydroxide, CTAB or the like can be used.
  • an amplification reaction is performed using the obtained DNA as a template to amplify a nucleic acid encoding the VP1 region of the BK virus, preferably DNA.
  • amplification reaction polymerase chain reaction (PCR), LAMP (Loop-MediatedMediIsothermal Amplification), ICAN (Isothermal and Chimerichiprimer-initiated Amplification of Nucleic acids) method or the like can be applied.
  • PCR polymerase chain reaction
  • LAMP Loop-MediatedMediIsothermal Amplification
  • ICAN Isothermal and Chimerichiprimer-initiated Amplification of Nucleic acids
  • the method for labeling the amplified nucleic acid is not particularly limited.
  • a method in which a primer used in the amplification reaction is labeled in advance may be used, or a labeled nucleotide is used as a substrate in the amplification reaction. You may use the method to do.
  • the labeling substance is not particularly limited, and radioisotopes, fluorescent dyes, or organic compounds such as digoxigenin (DIG) and biotin can be used.
  • This reaction system also includes buffers necessary for nucleic acid amplification and labeling, heat-resistant DNA polymerase, primers specific to the VP1 region of BK virus, and labeled nucleotide triphosphates (specifically, nucleotide triphosphates to which a fluorescent label or the like is added). It is a reaction system containing phosphoric acid), nucleotide triphosphate, magnesium chloride and the like.
  • the primer used in the amplification reaction is not particularly limited as long as it can specifically amplify the VP1 region in the BK virus genome, and can be appropriately designed by those skilled in the art.
  • a primer set consisting of a primer consisting of the 1st to 20th bases and a primer consisting of the 327th to 308th bases in the VP1 region of the BK virus genome can be mentioned.
  • Primer 1 5′-CAAGTGCCAAAACTACTAAT-3 ′ (SEQ ID NO: 25)
  • Primer 2 5′-TGCATGAAGGTTAAGCATGC-3 ′ (SEQ ID NO: 26)
  • the amount of nucleic acid hybridized to each oligonucleotide probe can be measured, for example, by detecting a label, by carrying out a hybridization reaction between the amplified nucleic acid obtained as described above and the oligonucleotide probe of the present invention.
  • a hybridization reaction between the amplified nucleic acid obtained as described above and the oligonucleotide probe of the present invention.
  • the signal intensity from the label can be quantified by detecting the fluorescent signal using a fluorescent scanner and analyzing the detected signal with image analysis software.
  • the amplified nucleic acid hybridized with the oligonucleotide probe can also be quantified by creating a calibration curve using a sample containing a known amount of DNA, for example.
  • the hybridization reaction is preferably carried out under stringent conditions.
  • a microarray in which the set of oligonucleotide probes of the present invention is immobilized on a carrier, and apply the amplified nucleic acid to the microarray.
  • the method for determining the genome type of the BK virus of the present invention is carried out by comparing the amount of the amplified nucleic acid hybridized to each oligonucleotide probe within each oligonucleotide probe group. Specifically, in the oligonucleotide probe group, the amount of amplified nucleic acid hybridized to each oligonucleotide probe (for example, corresponding to the signal intensity derived from the label) is ranked. Since the order in each oligonucleotide probe group may or may not be characteristic of a particular genomic type, which genomic type has a characteristic signal for a sample from a subject By determining, the genome type of the BK virus that has infected the subject can be determined.
  • the amount of amplified nucleic acid hybridized to each oligonucleotide probe is Each probe group has the following characteristics. That is, the ratio of the amount of amplified nucleic acid that hybridizes to each oligonucleotide probe is detected as the signal intensity ratio.
  • the amount of amplified nucleic acid hybridized to the oligonucleotide probe (a-1) when viewed with respect to the oligonucleotide probe group (a) is More than the amount of amplified nucleic acid hybridized to each of the probes (a-2), (a-3) and (a-4) is detected.
  • the amount of amplified nucleic acid hybridized to the oligonucleotide probe (c-1) when the oligonucleotide probe group (c) is viewed is When the amount of amplified nucleic acid hybridized to each of probes (c-2) and (c-3) is detected more than the amount of amplified nucleic acid hybridized to oligonucleotide probe (c-3) There may be cases where more than the amount of amplified nucleic acid hybridized to each of (c-1) and (c-2) is detected.
  • the genotype is determined by combining the signal intensity ratios in the oligonucleotide probe groups (a) to (e). It is preferable to do. However, some of the signal intensity ratios can be found only in a specific genotype, and therefore, if the signal intensity ratio is detected, the genotype can be specified without looking at other signal intensity ratios. Therefore, among the signal intensity ratios shown in Table 1, the signal intensity ratios effective for genotype determination are shown in Table 2 below.
  • the genotype can be specified as follows. Amplification in which the amount of amplified nucleic acid hybridized to oligonucleotide probe (d-1) was hybridized to oligonucleotide probes (d-2) and (d-3) when viewed with respect to oligonucleotide probe group (d) If the amount is greater than the amount of nucleic acid, the BK virus that has infected the subject can be determined to be type Ia without examining other oligonucleotide probe groups.
  • the amount of the amplified nucleic acid hybridized to the oligonucleotide probe (b-1) is the same as that of the oligonucleotide probes (b-2), (b-3) and (b- More than the amount of amplified nucleic acid hybridized to 4) and the amount of amplified nucleic acid hybridized to oligonucleotide probe (c-2) when viewed for oligonucleotide probe group (c) was -1) and the amount of amplified nucleic acid hybridized to (c-3), the BK virus that infects the subject is of type Ib-1 without examining other oligonucleotide probe groups. It can be determined that there is.
  • the amount of the amplified nucleic acid hybridized to the oligonucleotide probe (b-2) is the oligonucleotide probe (b-1), (b-3) and (b-4). If the amount of amplified nucleic acid hybridized to is greater than the amount of amplified nucleic acid, it can be determined that the BK virus infecting the subject is type Ib-2 without examining other oligonucleotide probe groups.
  • the amount of amplified nucleic acid hybridized to the oligonucleotide probe (d-3) was hybridized to the oligonucleotide probes (d-1) and (d-2). Even when the amount of the amplified nucleic acid is larger, it is possible to determine that the BK virus infecting the subject is type Ib-2 without examining other oligonucleotide probe groups.
  • the amount of the amplified nucleic acid hybridized to the oligonucleotide probe (b-3) is the oligonucleotide probe (b-1), (b-2) and (b-4). If the amount of amplified nucleic acid hybridized to is greater than the amount of amplified nucleic acid, it can be determined that the BK virus infecting the subject is type II or type III without examining other oligonucleotide probe groups.
  • the amount of amplified nucleic acid hybridized to the oligonucleotide probe (e-2) hybridized to the oligonucleotide probes (e-1) and (e-3) Even when the amount of the amplified nucleic acid is larger, it is possible to determine that the BK virus infecting the subject is type II or type III without examining other oligonucleotide probe groups.
  • the present invention also relates to a method for estimating the place of birth of a subject based on the BK virus genome type determined by the above method using the set of oligonucleotide probes or microarray of the present invention.
  • each genome type is described in detail in Microbes Infect. 9 (2) (2007) 204-13.
  • the specific distribution of the seven main genome types is that type Ia is distributed in Africa, type Ib-1 is distributed in Southeast Asia, type Ib-2 is distributed in Europe, Type Ic is distributed in Far East Asia centering on Japan.
  • Type II and Type III have no regional difference, but type IV subgroups are distributed in continental Asia (J Mol Evol. 65 (1) 2007 103-11.).
  • Example 1 Production of Support A two-layer DLC layer was formed on a 3 mm square silicon substrate using the ionized vapor deposition method under the following conditions.
  • An amino group was introduced onto a silicon substrate having a DLC layer on the obtained surface using ammonia plasma under the following conditions.
  • Example 2 Preparation of microarray 17 oligonucleotides consisting of 19 or 20 bases based on 7 genomes of BK virus (SEQ ID NOs: 1 to 7) and modified at the 5 'end with an amino group A probe was synthesized.
  • the sequences of the oligonucleotide probes (hereinafter referred to as probes) are shown in Table 5 below. Regarding the probes described in Table 5, the corresponding oligonucleotide probe group of the present invention and each oligonucleotide probe are described in the column described as probe.
  • the 17 types of probes shown in Table 5 were dissolved in a spot solution (Sol. 6) so as to have a concentration of 10 pmol / ⁇ l, and a spotter SPBIO (manufactured by Hitachi Software Co., Ltd.) was used on the carrier prepared in Example 1. Spotted. After baking at 80 ° C. for 1 hour, the plate was washed with 2 ⁇ SSC / 0.2% SDS solution (room temperature) for 15 minutes, and further washed with 2 ⁇ SSC / 0.2% SDS solution (95 ° C.) for 5 minutes.
  • the microarray in which 17 kinds of probes were immobilized on the carrier was obtained by rinsing with ultrapure water three times, removing water with a centrifuge and drying.
  • a sample (a crushed kidney tissue) was collected, and DNA was extracted using QiaAmp DNA (manufactured by QIAGEN). Using this DNA as a template DNA, a PCR reaction solution was prepared with the composition shown in Table 6 so as to amplify the VP1 region (327 bp) of the BK virus.
  • Primer 1 5'-CAAGTGCCAAAACTACTAAT-3 '(SEQ ID NO: 25)
  • Primer 2 5′-TGCATGAAGGTTAAGCATGC-3 ′ (SEQ ID NO: 26)
  • a PCR reaction was performed on the prepared PCR reaction solution using GeneAmp PCR system 9700 (ABI) at the following temperature cycle, and the VP1 region of the BK virus genome was amplified for each sample.
  • Cy5-dCTP was fluorescently labeled by incorporating it into the PCR product.
  • 2 ⁇ L PCR product and 1 ⁇ L 3 ⁇ SSC / 0.3% SDS were mixed, dropped onto the microarray prepared in Example 2, and covered. Placed in a watered tapper and incubated at 45 ° C. for 1 hour. Washing was performed twice with 2 ⁇ SSC / 0.2% SDS and twice with 2 ⁇ SSC at room temperature.
  • the washed microarray was centrifuged at 1000 rpm and dried. Subsequently, scanning was performed with FLA 8000 (manufactured by Fujifilm), and the fluorescence intensity of each spot was digitized from the fluorescence image using Array Gauge (manufactured by Fujifilm).
  • the signal intensity values obtained for each sample are shown in Table 8 below.
  • the numerical value corresponding to the signal in the probe for which the strongest signal was obtained in each probe group was shaded, and the genotype was determined based on Table 2 above. The judgment results are listed in the bottom line.
  • the signal intensity in the probe group (e) is e-3> e-1, e-2, so that it can be determined as type IV. Moreover, it can also be determined as type IV because the signal intensity in the probe group (b) is b-4> b-1, b-2, b-3. Looking at the results of samples 3 and 6, since the signal intensity in the probe group (b) is b-2> b-1, b-3, b-4, it can be determined as type Ib-2, and the probe group ( Since the signal intensity in d) is d-3> d-1, d-2, it can be determined as type Ib-2.
  • the signal intensity in the probe group (a) is a-2> a-1, a-3, a-4, and therefore it can be determined as the Ic type.
  • the genotype result determined using the microarray was consistent with the genotype result determined by the conventional method (method of determining the base sequence of the amplified VP1 region and determining the genome type by phylogenetic analysis). .
  • the method of the present invention can easily and accurately determine the genome type of the BK virus possessed by the subject from the sample derived from the subject, and can estimate the birthplace of the subject. It was. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Disclosed is a means for rapidly and conveniently determining the genome type of a BK virus which has infected a subject and estimate the land of the subject's origin. Specifically disclosed is a set of oligonucleotide probes for determining the genome type of a BK virus which has infected a subject, which comprises oligonucleotide probes (a-1), (a-2), (a-3) and (a-4); oligonucleotide probes (b-1), (b-2), (b-3) and (b-4); oligonucleotide probes (c-1), (c-2) and (c-3); oligonucleotide probes (d-1), (d-2) and (d-3); and oligonucleotide probes (e-1), (e-2) and (e-3).

Description

BKウイルスのゲノム型を判定するためのオリゴヌクレオチドプローブ及びマイクロアレイOligonucleotide probes and microarray for determining the genomic type of BK virus
 本発明は、被検者に感染したBKウイルスのゲノム型を判定するためのオリゴヌクレオチドプローブ及びマイクロアレイ、並びにこれらを用いた被検者に感染したBKウイルスのゲノム型の判定方法及び被検者の出身地の判定方法に関する。 The present invention relates to an oligonucleotide probe and a microarray for determining the genome type of a BK virus infecting a subject, a method for determining the genome type of a BK virus infecting a subject using these, and a subject's It relates to the method of judging the place of birth.
 世界各地で行われた血清学的な調査によって、パポーバウイルスの一種であるJCウイルス(JCV)がヒト集団に蔓延していること、大部分のヒトは子供の時にJCVに無症候性感染することが明らかにされた。体内に入ったJCVは免疫反応によって完全に排除されず、一部のウイルスは腎組織、末梢血リンパ球、リンパ組織に行き、そこに生涯、持続感染する。JCVの起源を解明する目的で、世界各地の人種からクローニングされたJCVゲノムDNAの解析が実施され、その過程でJCVのゲノム型が人種と関係があることが明かとなった。それ以来世界各地で収集された尿からJCVゲノムDNAのIG領域(610塩基対)の塩基配列が決定され、得られた塩基配列から近隣結合法(Neighbor-Joining法、NJ法)により分子系統樹が作成された。その系統樹からJCVゲノム型はヒト集団の新規な指標として注目されるに至った。そして、身元不明死体の出身地域の推定法としてヒトの尿や腎臓から検出されるJCVのゲノム型を用いることが報告されている(例えば、非特許文献1)。 Serological studies conducted around the world show that the JCV virus (JCV), a type of papovavirus, is prevalent in the human population, and that most people are asymptomatically infected with JCV when they are children It was revealed. The JCV that enters the body is not completely eliminated by the immune response, and some viruses go to the kidney tissue, peripheral blood lymphocytes, and lymphoid tissues, where they persist throughout life. In order to elucidate the origin of JCV, JCV genomic DNA cloned from races around the world was analyzed, and in the process, it was revealed that the genomic type of JCV is related to race. Since then, the base sequence of the IG region (610 base pairs) of JCV genomic DNA has been determined from urine collected in various parts of the world, and the molecular phylogenetic tree is determined from the obtained base sequence by the neighbor-joining method (Neighbor-Joining method, NJ method). Was created. The phylogenetic tree has attracted attention as a novel indicator of the human population. And it has been reported that the JCV genome type detected from human urine and kidneys is used as a method for estimating the region of origin of an unidentified corpse (for example, Non-Patent Document 1).
 しかし、JCVのゲノム型を用いる上記方法でも、出身地域を推定できない場合があることも明らかとなった。そのため、別のマーカーとしてJCVと同じパポーバウイルスの一種であるBKウイルス(BKV)を用いた出身地域の推定方法が検討された。BKウイルスは最初に腎臓移植患者から検出され、その後、血清学的な調査によって、JCウイルスと同様にヒト集団に蔓延していること、大部分のヒトは子供の時にBKウイルスに感染することが明らかにされた。そして、BKウイルスのVP1遺伝子の配列解析から、BKウイルス株が血清学的調査に基づく群分けと十分に対応する4つのサブタイプ(I~IV)に分類できることが報告された。 However, it was also revealed that the above method using the JCV genome type may not be able to estimate the region of origin. Therefore, the estimation method of the birth area using BK virus (BKV) which is a kind of the same papovavirus as JCV as another marker was examined. BK virus was first detected in kidney transplant patients, and then serological studies showed that it was as prevalent in the human population as JC virus, and that most humans can be infected with BK virus as a child. It was revealed. From the sequence analysis of the VP1 gene of BK virus, it was reported that BK virus strains can be classified into four subtypes (I to IV) that correspond well with grouping based on serological survey.
 これまでBKVゲノム型を正確に判定するためには、そのVP1遺伝子の全塩基配列を明らかにし、分子系統解析する方法が採用されていた(例えば、非特許文献2)。しかし、このような従来の方法は、解析に専門的な技術が必要であるとともに時間がかかるという問題があった。また、試料が非常に少ない場合などには対応できない場合もあった。
JOURNAL OF CLINICAL MICROBIOLOGY, June 1995, p.1448-1451 FORENSIC SCIENCE INTERNATIONAL, 2007, p.41-46
Until now, in order to accurately determine the BKV genome type, a method of clarifying the entire base sequence of the VP1 gene and analyzing the molecular system has been adopted (for example, Non-Patent Document 2). However, such a conventional method has a problem that it requires a special technique for analysis and takes time. In some cases, the number of samples is very small.
JOURNAL OF CLINICAL MICROBIOLOGY, June 1995, p.1448-1451 FORENSIC SCIENCE INTERNATIONAL, 2007, p.41-46
 本発明の課題は、被検者に感染したBKウイルスのゲノム型を迅速・簡便に判定し、被検者の出身地を推定するための手段を提供することである。 An object of the present invention is to provide a means for quickly and easily determining the genome type of a BK virus infecting a subject and estimating the place of birth of the subject.
 本発明者らは、BKウイルスのゲノムDNAの塩基配列から、BKウイルスのゲノム型を判定するために有用なオリゴヌクレオチドプローブのセットを設計することに成功し、本発明を完成するに至った。 The present inventors succeeded in designing a set of oligonucleotide probes useful for determining the genome type of BK virus from the base sequence of BK virus genomic DNA, and completed the present invention.
 すなわち、本発明は以下の発明を包含する。
(1)以下のオリゴヌクレオチドプローブを含む、被検者に感染したBKウイルスのゲノム型を判定するためのオリゴヌクレオチドプローブのセット:
 (a-1)配列番号1、2又は3の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (a-2)配列番号4の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (a-3)配列番号5又は6の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (a-4)配列番号7の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (b-1)配列番号1、2又は4の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (b-2)配列番号3の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (b-3)配列番号5又は6の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (b-4)配列番号7の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (c-1)配列番号1、4、5、6又は7の285~304番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (c-2)配列番号2又は3の285~304番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (c-3)配列番号7の285~304番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (d-1)配列番号1の53~72番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (d-2)配列番号2、4、5、6又は7の53~72番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (d-3)配列番号3の53~72番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (e-1)配列番号1、2、3又は4の81~100番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (e-2)配列番号5又は6の81~100番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
 (e-3)配列番号7の81~100番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ。
(2)(1)記載のオリゴヌクレオチドプローブのセットが担体上に固定化されてなる、被検者に感染したBKウイルスのゲノム型を判定するためのマイクロアレイ。
(3)(1)記載のオリゴヌクレオチドプローブのセットが担体上に固定化されてなる、被検者の出身地を推定するためのマイクロアレイ。
(4)担体が、表面にカーボン層と化学修飾基とを有するものである、(2)又は(3)記載のマイクロアレイ。
(5)被検者に感染したBKウイルスのゲノム型を判定する方法であって、
 被検者由来の試料からDNAを抽出する工程と、
 抽出したDNAを鋳型とし、BKウイルスゲノムのVP1領域をコードする核酸を増幅する工程と、
 (1)記載のオリゴヌクレオチドプローブのセット又は(2)~(4)のいずれかに記載のマイクロアレイを用いて増幅された核酸を検出する工程と
を含む、前記方法。
(6)(5)記載の方法によって判定されたBKウイルスのゲノム型に基づいて被検者の出身地を推定する方法。
That is, the present invention includes the following inventions.
(1) A set of oligonucleotide probes for determining the genome type of a BK virus that has infected a subject, including the following oligonucleotide probes:
(a-1) an oligonucleotide probe comprising a base sequence of 30 or less bases including the bases 223 to 241 of SEQ ID NO: 1, 2 or 3 or a base sequence complementary thereto (a-2) of SEQ ID NO: 4 An oligonucleotide probe comprising a base sequence of not more than 30 consecutive bases including the 223 to 241st bases or a base sequence complementary thereto (a-3) a continuous 30 comprising the 223 to 241st bases of SEQ ID NO: 5 or 6 Oligonucleotide probe comprising a nucleotide sequence of less than or equal to the base sequence or a complementary nucleotide sequence thereof (a-4) From a nucleotide sequence of not more than 30 consecutive nucleotides including the 223 to 241st bases of SEQ ID NO: 7 or a complementary nucleotide sequence thereof An oligonucleotide probe (b-1) an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 271 to 290 of SEQ ID NO: 1, 2, or 4 or a base sequence complementary thereto (b-2) An oligonucleotide probe comprising a base sequence of not more than 30 bases including the bases 271 to 290 in column No. 3 or a base sequence complementary thereto (b-3) the bases 271 to 290 of SEQ ID NO: 5 or 6 An oligonucleotide probe comprising a continuous base sequence of 30 bases or less or a base sequence complementary thereto (b-4) a continuous base sequence of 30 bases or less including the 271th to 290th bases of SEQ ID NO: 7 or complementary thereto (C-1) consisting of a base sequence of 30 or fewer consecutive bases including the bases 285 to 304 of SEQ ID NO: 1, 4, 5, 6 or 7 or a base sequence complementary thereto Oligonucleotide probe (c-2) Oligonucleotide probe (c-3) comprising a base sequence of 30 nucleotides or less or a base sequence complementary thereto, including the 285th to 304th bases of SEQ ID NO: 2 or 3 An oligonucleotide probe consisting of a base sequence of 30 or less bases including the bases 285 to 304 in column No. 7 or a base sequence complementary thereto (d-1) a sequence containing the bases 53 to 72 of SEQ ID NO: 1 An oligonucleotide probe comprising a base sequence of 30 bases or less or a base sequence complementary thereto (d-2) comprising 30 to 53 bases in a row including the 53rd to 72nd bases of SEQ ID NO: 2, 4, 5, 6 or 7 Oligonucleotide probe comprising a base sequence or a base sequence complementary thereto (d-3) Oligonucleotide comprising a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 3 or a base sequence complementary thereto Probe (e-1) Oligonucleotide probe (e-2) sequence consisting of a base sequence of 30 or less bases including the 81st to 100th bases of SEQ ID NO: 1, 2, 3 or 4 or a complementary base sequence thereto An oligonucleotide probe comprising a base sequence of no more than 30 bases including the 81st to 100th bases of No. 5 or 6 or a base sequence complementary thereto (e-3) comprising the 81st to 100th bases of SEQ ID NO: 7 An oligonucleotide probe comprising a continuous base sequence of 30 bases or less or a base sequence complementary thereto.
(2) A microarray for determining the genome type of a BK virus infected with a subject, wherein the set of oligonucleotide probes according to (1) is immobilized on a carrier.
(3) A microarray for estimating the place of birth of a subject, wherein the set of oligonucleotide probes according to (1) is immobilized on a carrier.
(4) The microarray according to (2) or (3), wherein the carrier has a carbon layer and a chemical modification group on the surface.
(5) A method for determining the genome type of a BK virus that has infected a subject,
Extracting DNA from a sample derived from a subject;
Amplifying a nucleic acid encoding the VP1 region of the BK virus genome using the extracted DNA as a template;
And (1) detecting the nucleic acid amplified using the set of oligonucleotide probes according to (2) to (4) or the microarray according to any one of (2) to (4).
(6) A method for estimating the place of birth of the subject based on the genome type of the BK virus determined by the method according to (5).
 本発明により、被検者に感染したBKウイルスのゲノム型を、少量の試料を用いて、迅速・簡便に判定することが可能になる。また、本発明により、高度な専門的な知識を持たない人でもBKウイルスのゲノム型を判定できる手段が提供される。さらに、BKウイルスのゲノム型に基づいて、被検者の出身地を推定することもできる。
 本明細書は、本願の優先権の基礎である特願2008-108209号の明細書および特許請求の範囲に記載された内容を包含する。
The present invention makes it possible to quickly and easily determine the genome type of a BK virus that has infected a subject using a small amount of sample. In addition, the present invention provides a means by which a person without advanced specialized knowledge can determine the genome type of the BK virus. Furthermore, the birthplace of the subject can be estimated based on the genome type of the BK virus.
This specification includes the contents described in the specification and claims of Japanese Patent Application No. 2008-108209, which is the basis of the priority of the present application.
 BKウイルスは、ポリオーマウイルス科に属するウイルスのうちヒトを宿主とするウイルスである。本発明のオリゴヌクレオチドプローブのセットは、被検者に感染したBKウイルスのゲノムのVP1遺伝子をコードする領域(VP1領域)を検出するものである。VP1領域は、BKウイルスのゲノムのうち変異が多い、327塩基対の領域であり(J. Med. Virol. 41 (1993) 11-17)、VP1領域におけるゲノム型は、Ia型、Ib-1型、Ib-2型、Ic型、II型、III型、IV型に分類される(J. Gen. VIrol. 85 (2004) 2821-2827)、7つのタイプのゲノム型として分類できる領域として報告されている。 BK virus is a virus that belongs to the polyomaviridae and has a human host. The set of oligonucleotide probes of the present invention detects a region (VP1 region) encoding the VP1 gene in the genome of a BK virus that has infected a subject. The VP1 region is a region of 327 base pairs (J. の う ち Med. Virol. 41 (1993) 11-17) with many mutations in the BK virus genome, and the genome types in the VP1 region are type Ia, Ib-1 Type, Ib-2 type, Ic type, II type, III type, and IV type (J.rolGen. VIrol. 85 (2004) 2821-2827), reported as a region that can be classified as seven types of genomic types Has been.
 本発明において、被検者に感染したBKウイルスのゲノム型を判定することには、被検試料の起源となる被検者に感染したBKウイルスのゲノム型を判定することが含まれ、被検者の出身地を推定することには、被検試料の起源となる被検者の出身地を推定することが含まれる。 In the present invention, determining the genome type of the BK virus infected with the subject includes determining the genome type of the BK virus infected with the subject who is the origin of the test sample. Estimating the person's birthplace includes estimating the birthplace of the subject who is the origin of the test sample.
 本発明のオリゴヌクレオチドプローブのセットは、オリゴヌクレオチドプローブ群(a)~(e)を少なくとも含む。 The set of oligonucleotide probes of the present invention includes at least oligonucleotide probe groups (a) to (e).
 オリゴヌクレオチドプローブ群(a)はオリゴヌクレオチドプローブ(a-1)、(a-2)、(a-3)及び(a-4)からなり;オリゴヌクレオチドプローブ群(b)はオリゴヌクレオチドプローブ(b-1)、(b-2)、(b-3)及び(b-4)からなり;オリゴヌクレオチドプローブ群(c)はオリゴヌクレオチドプローブ(c-1)、(c-2)及び(c-3)からなり;オリゴヌクレオチドプローブ群(d)はオリゴヌクレオチドプローブ(d-1)、(d-2)及び(d-3)からなり;オリゴヌクレオチドプローブ群(e)はオリゴヌクレオチドプローブ(e-1)、(e-2)及び(e-3)からなる。 The oligonucleotide probe group (a) is composed of oligonucleotide probes (a-1), (a-2), (a-3) and (a-4); the oligonucleotide probe group (b) is an oligonucleotide probe (b -1), (b-2), (b-3) and (b-4); the oligonucleotide probe group (c) comprises oligonucleotide probes (c-1), (c-2) and (c- 3); oligonucleotide probe group (d) consists of oligonucleotide probes (d-1), (d-2) and (d-3); oligonucleotide probe group (e) consists of oligonucleotide probes (e- 1), consisting of (e-2) and (e-3).
 本発明のオリゴヌクレオチドプローブのセットにおいては、オリゴヌクレオチドプローブ群(a)などの各オリゴヌクレオチドプローブ群として、1種類のオリゴヌクレオチドプローブ群が含まれていてもよいし、条件を満たす限り複数種のオリゴヌクレオチドプローブ群が含まれていてもよい。同様に、本発明のオリゴヌクレオチドプローブのセットにおいて、各オリゴヌクレオチドプローブ群には、オリゴヌクレオチドプローブ(a-1)などの各オリゴヌクレオチドプローブとして、1種類のオリゴヌクレオチドプローブが含まれていてもよいし、条件を満たす限り複数種のオリゴヌクレオチドプローブが含まれていてもよい。 In the set of oligonucleotide probes of the present invention, each oligonucleotide probe group such as the oligonucleotide probe group (a) may contain one type of oligonucleotide probe group, or a plurality of types as long as the conditions are satisfied. An oligonucleotide probe group may be included. Similarly, in the set of oligonucleotide probes of the present invention, each oligonucleotide probe group may include one type of oligonucleotide probe as each oligonucleotide probe such as oligonucleotide probe (a-1). As long as the condition is satisfied, a plurality of types of oligonucleotide probes may be included.
 以下、各オリゴヌクレオチドプローブ群に含まれる各オリゴヌクレオチドプローブについて説明する。 Hereinafter, each oligonucleotide probe included in each oligonucleotide probe group will be described.
 オリゴヌクレオチドプローブ群(a):
オリゴヌクレオチドプローブ(a-1)は、配列番号1、2又は3の223~241番目の塩基(共通配列:配列番号8の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号1、2及び3は、241番目の塩基の下流37塩基も共通しており、従って、オリゴヌクレオチドプローブ(a-1)は、好ましくは、配列番号1、2又は3の223~252番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号1、2又は3の223~241番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号8の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(a-2)は、配列番号4の223~241番目の塩基(配列番号9の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号9の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(a-3)は、配列番号5又は6の223~241番目の塩基(共通配列:配列番号10の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号5及び6は、223~241番目の塩基の上流18塩基と下流85塩基も共通しており、従って、オリゴヌクレオチドプローブ(a-3)は、好ましくは、配列番号5又は6の213~252番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号5又は6の223~241番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号10の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(a-4)は、配列番号7の223~241番目の塩基(配列番号11の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号11の塩基配列からなるオリゴヌクレオチドプローブである。
Oligonucleotide probe group (a):
The oligonucleotide probe (a-1) is a base sequence of 30 bases or less including or complementary to the 223 to 241st bases of SEQ ID NO: 1, 2 or 3 (common sequence: the base sequence of SEQ ID NO: 8). It is an oligonucleotide probe consisting of a base sequence. SEQ ID NOs: 1, 2 and 3 also share 37 bases downstream of the 241st base, and therefore the oligonucleotide probe (a-1) is preferably 223 to 252 of SEQ ID NOs: 1, 2 or 3. A continuous base sequence of not more than 30 bases selected from these bases, which includes the 223th to 241st bases of SEQ ID NO: 1, 2 or 3, or a base sequence complementary thereto. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 8 is preferred. The oligonucleotide probe (a-2) is an oligonucleotide probe consisting of a base sequence of 30 bases or less including the bases 223 to 241 of SEQ ID NO: 4 (base sequence of SEQ ID NO: 9) or a base sequence complementary thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 9 is preferred. Oligonucleotide probe (a-3) is a nucleotide sequence of not more than 30 consecutive nucleotides including nucleotides 223 to 241 of SEQ ID NO: 5 or 6 (common sequence: nucleotide sequence of SEQ ID NO: 10) or a complementary nucleotide sequence thereto An oligonucleotide probe consisting of SEQ ID NOS: 5 and 6 also share 18 bases upstream and 85 bases downstream of the 223 to 241st bases. Therefore, the oligonucleotide probe (a-3) is preferably 213 to A continuous base sequence of 30 bases or less selected from the 252nd base, comprising the 223th to 241st bases of SEQ ID NO: 5 or 6, or a base sequence complementary thereto. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 10 is preferred. Oligonucleotide probe (a-4) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 223 to 241 of SEQ ID NO: 7 (base sequence of SEQ ID NO: 11) or a base sequence complementary thereto It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 11 is preferred.
 オリゴヌクレオチドプローブ群(b):
オリゴヌクレオチドプローブ(b-1)は、配列番号1、2又は4の271~290番目の塩基(共通配列:配列番号12の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号1、2及び4は、271~290番目の塩基の上流9塩基と下流3塩基も共通しており、従って、オリゴヌクレオチドプローブ(b-1)は、好ましくは、配列番号1、2又は4の262~293番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号1、2又は4の271~290番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号12の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(b-2)は、配列番号3の271~290番目の塩基(配列番号13の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号13の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(b-3)は、配列番号5又は6の271~290番目の塩基(共通配列:配列番号14の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号5及び6は、271~290番目の塩基の上流65塩基と下流37塩基も共通しており、従って、オリゴヌクレオチドプローブ(b-3)は、好ましくは、配列番号5又は6の261~300番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号5又は6の271~290番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号14の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(b-4)は、配列番号7の271~290番目の塩基(配列番号15の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号15の塩基配列からなるオリゴヌクレオチドプローブである。
Oligonucleotide probe group (b):
The oligonucleotide probe (b-1) is a base sequence of 30 bases or less including or complementary to the 271st to 290th bases of SEQ ID NO: 1, 2 or 4 (common sequence: the base sequence of SEQ ID NO: 12). It is an oligonucleotide probe consisting of a base sequence. SEQ ID NOs: 1, 2 and 4 have 9 bases upstream and 3 bases downstream of the 271st to 290th bases, and therefore the oligonucleotide probe (b-1) is preferably SEQ ID NO: 1, 2 or A continuous base sequence of 30 bases or less selected from the 262th to 293th bases of 4, comprising the 271st to 290th bases of SEQ ID NO: 1, 2, or 4, or a complementary base sequence thereof is there. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 12 is preferred. The oligonucleotide probe (b-2) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 271 to 290 of SEQ ID NO: 3 (base sequence of SEQ ID NO: 13) or a complementary base sequence thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 13 is preferred. The oligonucleotide probe (b-3) is a base sequence of 30 bases or less that includes nucleotides 271 to 290 of SEQ ID NO: 5 or 6 (common sequence: base sequence of SEQ ID NO: 14) or a complementary base sequence thereof An oligonucleotide probe consisting of SEQ ID NOs: 5 and 6 are common to 65 bases upstream and 37 bases downstream of the 271st to 290th bases. Therefore, the oligonucleotide probe (b-3) is preferably selected from 261 to A continuous base sequence of 30 bases or less selected from the 300th base, which includes the 271st to 290th bases of SEQ ID NO: 5 or 6, or a base sequence complementary thereto. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 14 is preferred. The oligonucleotide probe (b-4) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 271 to 290 of SEQ ID NO: 7 (base sequence of SEQ ID NO: 15) or a base sequence complementary thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 15 is preferred.
 オリゴヌクレオチドプローブ群(c):
オリゴヌクレオチドプローブ(c-1)は、配列番号1、4、5、6又は7の285~304番目の塩基(共通配列:配列番号16の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号1、4、5、6及び7は、285~304番の塩基の上流1塩基と下流23塩基も共通しており、従って、オリゴヌクレオチドプローブ(c-1)は、好ましくは、配列番号1、4、5、6又は7の284~314番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号1、4、5、6又は7の285~304番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号16の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(c-2)は、配列番号2又は3の285~304番目の塩基(共通配列:配列番号17の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号2及び3は、285~304番の塩基の上流5塩基と下流23塩基も共通しており、従って、オリゴヌクレオチドプローブ(c-2)は、好ましくは、配列番号2又は3の280~314番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号2又は3の285~304番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号17の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(c-3)は、配列番号7の285~304番目の塩基(配列番号18の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号18の塩基配列からなるオリゴヌクレオチドプローブである。
Oligonucleotide probe group (c):
The oligonucleotide probe (c-1) has a base sequence of 30 bases or less that includes the 285th to 304th bases of SEQ ID NO: 1, 4, 5, 6 or 7 (common sequence: base sequence of SEQ ID NO: 16) or It is an oligonucleotide probe consisting of a complementary base sequence. SEQ ID NOs: 1, 4, 5, 6 and 7 are common to the 1 base upstream and the 23 bases downstream of the bases of 285 to 304. Therefore, the oligonucleotide probe (c-1) is preferably SEQ ID NO: A continuous base sequence of 30 bases or less selected from the 284th to 314th bases of 1, 4, 5, 6 or 7 and the 285th to 304th bases of SEQ ID NO: 1, 4, 5, 6 or 7 Or a base sequence complementary thereto. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 16 is preferred. The oligonucleotide probe (c-2) is a base sequence of 30 bases or less that includes the 285th to 304th bases of SEQ ID NO: 2 or 3 (common sequence: the base sequence of SEQ ID NO: 17) or a base sequence complementary thereto. An oligonucleotide probe consisting of SEQ ID NOs: 2 and 3 are common to 5 bases upstream and 23 bases downstream of the bases of 285 to 304. Therefore, the oligonucleotide probe (c-2) is preferably 280 to A continuous base sequence of 30 bases or less selected from the 314th base, which contains the 285th to 304th bases of SEQ ID NO: 2 or 3, or a base sequence complementary thereto. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 17 is preferred. The oligonucleotide probe (c-3) is an oligonucleotide probe comprising a base sequence of 30 bases or less that includes the 285th to 304th bases of SEQ ID NO: 7 (base sequence of SEQ ID NO: 18) or a base sequence complementary thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 18 is preferred.
 オリゴヌクレオチドプローブ群(d):
オリゴヌクレオチドプローブ(d-1)は、配列番号1の53~72番目の塩基(配列番号19の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号19の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(d-2)は、配列番号2、4、5、6又は7の53~72番目の塩基(共通配列:配列番号20の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号2、4、5、6及び7は、53~72番目の塩基の上流52塩基と下流2塩基も共通しており、従って、オリゴヌクレオチドプローブ(d-2)は、好ましくは、配列番号2、4、5、6又は7の43~74番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号2、4、5、6又は7の53~72番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号20の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(d-3)は、配列番号3の53~72番目の塩基(配列番号21の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号21の塩基配列からなるオリゴヌクレオチドプローブである。
Oligonucleotide probe group (d):
Oligonucleotide probe (d-1) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 1 (base sequence of SEQ ID NO: 19) or a base sequence complementary thereto It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 19 is preferred. The oligonucleotide probe (d-2) has a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 2, 4, 5, 6 or 7 (common sequence: the base sequence of SEQ ID NO: 20) or It is an oligonucleotide probe consisting of a complementary base sequence. SEQ ID NOs: 2, 4, 5, 6 and 7 have 52 bases upstream and 2 bases downstream of the 53rd to 72nd bases. Therefore, the oligonucleotide probe (d-2) is preferably SEQ ID NO: A continuous base sequence of 30 or less bases selected from the 43rd to 74th bases of 2, 4, 5, 6 or 7 and the 53rd to 72nd bases of SEQ ID NO: 2, 4, 5, 6 or 7 Or a base sequence complementary thereto. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 20 is preferred. The oligonucleotide probe (d-3) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 3 (base sequence of SEQ ID NO: 21) or a base sequence complementary thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 21 is preferred.
 オリゴヌクレオチドプローブ群(e):
オリゴヌクレオチドプローブ(e-1)は、配列番号1、2、3又は4の81~100番目の塩基(共通配列:配列番号22の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号1、2、3及び4は、81~100番目の塩基の上流11塩基と下流1塩基も共通しており、従って、オリゴヌクレオチドプローブ(e-1)は、好ましくは、配列番号1、2、3又は4の71~101番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号1、2、3又は4の81~100番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号22の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(e-2)は、配列番号5又は6の81~100番目の塩基(共通配列:配列番号23の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。配列番号5及び6は、81~100番目の塩基の上流80塩基と下流17塩基も共通しており、従って、オリゴヌクレオチドプローブ(e-2)は、好ましくは、配列番号5又は6の71~110番目の塩基から選択される30塩基以下の連続した塩基配列であって、配列番号5又は6の81~100番目の塩基を含むもの、またはそれに相補的な塩基配列である。好ましくは配列番号23の塩基配列からなるオリゴヌクレオチドプローブである。オリゴヌクレオチドプローブ(e-3)は、配列番号7の81~100番目の塩基(配列番号24の塩基配列)を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブである。好ましくは配列番号24の塩基配列からなるオリゴヌクレオチドプローブである。
Oligonucleotide probe group (e):
The oligonucleotide probe (e-1) is a base sequence of 30 bases or less including or complementary to the 81st to 100th bases of SEQ ID NO: 1, 2, 3 or 4 (common sequence: the base sequence of SEQ ID NO: 22) It is an oligonucleotide probe consisting of a typical base sequence. SEQ ID NOs: 1, 2, 3 and 4 also share the 11 bases upstream and the 1 base downstream of the 81st to 100th bases. Therefore, the oligonucleotide probe (e-1) is preferably SEQ ID NO: 1, A continuous base sequence of 30 bases or less selected from 2, 3 or 4 71-101 bases, comprising 81st to 100th bases of SEQ ID NO: 1, 2, 3 or 4; or It is a complementary base sequence. An oligonucleotide probe consisting of the nucleotide sequence of SEQ ID NO: 22 is preferred. The oligonucleotide probe (e-2) is a base sequence of 30 bases or less that includes the 81st to 100th bases of SEQ ID NO: 5 or 6 (common sequence: the base sequence of SEQ ID NO: 23) or a base sequence complementary thereto. An oligonucleotide probe consisting of SEQ ID NOS: 5 and 6 are common to 80 bases upstream and 17 bases downstream of the 81st to 100th bases. Therefore, the oligonucleotide probe (e-2) is preferably selected from 71 to A continuous base sequence of 30 bases or less selected from the 110th base, which includes the 81st to 100th bases of SEQ ID NO: 5 or 6, or a complementary base sequence. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 23 is preferred. The oligonucleotide probe (e-3) is an oligonucleotide probe comprising a base sequence of 30 bases or less including the 81st to 100th bases of SEQ ID NO: 7 (base sequence of SEQ ID NO: 24) or a base sequence complementary thereto. It is. An oligonucleotide probe consisting of the base sequence of SEQ ID NO: 24 is preferred.
 上記記載において、配列番号XのY~Z番目の塩基を含む連続した30塩基以下の塩基配列からなるオリゴヌクレオチドプローブとは、換言すれば、配列番号Xで表される塩基配列における連続した30塩基以下の部分配列であって、該配列番号のY~Z番目の塩基を含むオリゴヌクレオチドプローブをさす。 In the above description, the oligonucleotide probe having a base sequence of 30 bases or less including the Y-Zth bases of SEQ ID NO: X is, in other words, 30 bases continuous in the base sequence represented by SEQ ID NO: X The following partial sequence refers to an oligonucleotide probe containing the Y to Z bases of the SEQ ID NO.
 上記本発明のオリゴヌクレオチドプローブの長さは、通常30塩基以下であり、好ましくは25塩基以下、より好ましくは23塩基以下である。 The length of the oligonucleotide probe of the present invention is usually 30 bases or less, preferably 25 bases or less, more preferably 23 bases or less.
 オリゴヌクレオチドプローブは、好ましくは核酸であり、より好ましくはDNAである。DNAには二本鎖も一本鎖も含まれるが、本発明のオリゴヌクレオチドプローブは好ましくは一本鎖DNAである。 The oligonucleotide probe is preferably a nucleic acid, more preferably DNA. Although DNA includes both double strands and single strands, the oligonucleotide probe of the present invention is preferably single-stranded DNA.
 配列番号1はIa型のVP1領域の塩基配列を表し、配列番号2はIb-1型のVP1領域の塩基配列を表し、配列番号3はIb-2型のVP1領域の塩基配列を表し、配列番号4はIc型のVP1領域の塩基配列を表し、配列番号5はII型のVP1領域の塩基配列を表し、配列番号6はIII型のVP1領域の塩基配列を表し、配列番号7はIV型のVP1領域の塩基配列を表す。なお、VP1領域の各ゲノム型の塩基配列は、例えば、NCBI(National Center for Biotechnology Information)の遺伝子データベースGenBankからも取得できる。 SEQ ID NO: 1 represents the nucleotide sequence of the Ia type VP1 region, SEQ ID NO: 2 represents the nucleotide sequence of the Ib-1 type VP1 region, SEQ ID NO: 3 represents the nucleotide sequence of the Ib-2 type VP1 region, No. 4 represents the base sequence of the Ic type VP1 region, SEQ ID NO: 5 represents the base sequence of the type II VP1 region, SEQ ID NO: 6 represents the base sequence of the type III VP1 region, SEQ ID NO: 7 represents the type IV Represents the nucleotide sequence of the VP1 region. The genome sequence of each genomic type in the VP1 region can also be obtained from the gene database GenBank of NCBI (National Center for Biotechnology Information), for example.
 本発明のオリゴヌクレオチドプローブは、例えば、核酸合成装置によって化学的に合成することで取得することができる。核酸合成装置としては、DNAシンセサイザー、全自動核酸合成装置、核酸自動合成装置等と呼ばれる装置を使用することができる。 The oligonucleotide probe of the present invention can be obtained by, for example, chemically synthesizing with a nucleic acid synthesizer. As the nucleic acid synthesizer, an apparatus called a DNA synthesizer, a fully automatic nucleic acid synthesizer, a nucleic acid automatic synthesizer, or the like can be used.
 本発明のオリゴヌクレオチドプローブのセットは、担体上に固定化することにより、マイクロアレイの形態で用いるのが好ましい。担体の材料としては、当技術分野で公知のものを使用でき、特に制限されない。例えば、白金、白金黒、金、パラジウム、ロジウム、銀、水銀、タングステン及びそれらの化合物などの貴金属、及びグラファイト、カ-ボンファイバ-に代表される炭素などの導電体材料;単結晶シリコン、アモルファスシリコン、炭化ケイ素、酸化ケイ素、窒化ケイ素などに代表されるシリコン材料、SOI(シリコン・オン・インシュレータ)などに代表されるこれらシリコン材料の複合素材;ガラス、石英ガラス、アルミナ、サファイア、セラミクス、フォルステライト、感光性ガラスなどの無機材料;ポリエチレン、エチレン、ポリプロビレン、環状ポリオレフィン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、ポリフェニレンオキサイド及びポリスルホンなどの有機材料等が挙げられる。担体の形状も特に制限されないが、好ましくは平板状である。 The oligonucleotide probe set of the present invention is preferably used in the form of a microarray by being immobilized on a carrier. As the material for the carrier, those known in the art can be used and are not particularly limited. For example, conductive materials such as platinum, platinum black, gold, palladium, rhodium, silver, mercury, tungsten and precious metals such as compounds thereof, and carbon represented by graphite and carbon fiber; single crystal silicon, amorphous Silicon materials typified by silicon, silicon carbide, silicon oxide, silicon nitride, etc., composite materials of these silicon materials typified by SOI (silicon on insulator), etc .; glass, quartz glass, alumina, sapphire, ceramics, Inorganic materials such as stellite and photosensitive glass; polyethylene, ethylene, polypropylene, cyclic polyolefin, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorine-containing resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol , Polyvinyl acetal, acrylic resin, polyacrylonitrile, polystyrene, acetal resin, polycarbonate, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, polyphenylene oxide and polysulfone And organic materials. The shape of the carrier is not particularly limited, but is preferably a flat plate shape.
 本発明においては、担体として、好ましくは表面にカーボン層と化学修飾基とを有する担体を用いる。表面にカーボン層と化学修飾基とを有する担体には、基板の表面にカーボン層と化学修飾基とを有するもの、及びカーボン層からなる基板の表面に化学修飾基を有するものが包含される。基板の材料としては、当技術分野で公知のものを使用でき、特に制限されず、上述の担体材料として挙げたものと同様のものを使用できる。 In the present invention, a carrier having a carbon layer and a chemical modification group on the surface is preferably used as the carrier. Carriers having a carbon layer and a chemical modification group on the surface include those having a carbon layer and a chemical modification group on the surface of the substrate, and those having a chemical modification group on the surface of the substrate made of the carbon layer. As the material for the substrate, those known in the art can be used, and are not particularly limited, and the same materials as those mentioned above as the carrier material can be used.
 本発明のマイクロアレイにおいては、微細な平板状の構造を有する担体が好適に用いられる。形状は、長方形、正方形及び丸形など限定されないが、通常、1~75mm四方のもの、好ましくは1~10mm四方のもの、より好ましくは3~5mm四方のものを用いる。微細な平板状の構造の担体を製造しやすいことから、シリコン材料や樹脂材料からなる基板を用いるのが好ましく、特に単結晶シリコンからなる基板の表面にカーボン層及び化学修飾基を有する担体がより好ましい。単結晶シリコンには、部分部分でごくわずかに結晶軸の向きが変わっているものや(モザイク結晶と称される場合もある)、原子的尺度での乱れ(格子欠陥)が含まれているものも包含される。 In the microarray of the present invention, a carrier having a fine flat plate structure is preferably used. The shape is not limited to a rectangle, a square, or a round shape, but a shape of 1 to 75 mm square, preferably 1 to 10 mm square, more preferably 3 to 5 mm square is usually used. Since it is easy to produce a carrier having a fine flat plate structure, it is preferable to use a substrate made of a silicon material or a resin material. In particular, a carrier having a carbon layer and a chemical modification group on the surface of a substrate made of single crystal silicon is more preferable. preferable. Single crystal silicon has a slight change in the orientation of the crystal axis in some parts (sometimes referred to as a mosaic crystal), or includes atomic scale disturbances (lattice defects) Are also included.
 本発明において基板上に形成させるカーボン層としては、特に制限されないが、合成ダイヤモンド、高圧合成ダイヤモンド、天然ダイヤモンド、軟ダイヤモンド(例えば、ダイヤモンドライクカーボン)、アモルファスカーボン、炭素系物質(例えば、グラファイト、フラーレン、カーボンナノチューブ)のいずれか、それらの混合物、又はそれらを積層させたものを用いることが好ましい。また、炭化ハフニウム、炭化ニオブ、炭化珪素、炭化タンタル、炭化トリウム、炭化チタン、炭化ウラン、炭化タングステン、炭化ジルコニウム、炭化モリブデン、炭化クロム、炭化バナジウム等の炭化物を用いてもよい。ここで、軟ダイヤモンドとは、いわゆるダイヤモンドライクカーボン(DLC:Diamond Like Carbon)等の、ダイヤモンドとカーボンとの混合体である不完全ダイヤモンド構造体を総称し、その混合割合は、特に限定されない。カーボン層は、化学的安定性に優れておりその後の化学修飾基の導入や分析対象物質との結合における反応に耐えることができる点、分析対象物質と静電結合によって結合するためその結合が柔軟性を持っている点、UV吸収がないため検出系UVに対して透明性である点、及びエレクトロブロッティングの際に通電可能な点において有利である。また、分析対象物質との結合反応において、非特異的吸着が少ない点においても有利である。前記のとおり基板自体がカーボン層からなる担体を用いてもよい。 In the present invention, the carbon layer formed on the substrate is not particularly limited, but synthetic diamond, high-pressure synthetic diamond, natural diamond, soft diamond (eg, diamond-like carbon), amorphous carbon, carbon-based material (eg, graphite, fullerene) , Carbon nanotubes), a mixture thereof, or a laminate of them is preferably used. Further, carbides such as hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide, uranium carbide, tungsten carbide, zirconium carbide, molybdenum carbide, chromium carbide, and vanadium carbide may be used. Here, the soft diamond is a generic term for an incomplete diamond structure that is a mixture of diamond and carbon, such as so-called diamond-like carbon (DLC), and the mixing ratio is not particularly limited. The carbon layer has excellent chemical stability, can withstand subsequent reactions in the introduction of chemical modification groups and binding to the analyte, and the binding is flexible because of the electrostatic binding to the analyte. It is advantageous in that it has the property of being transparent, it is transparent to the detection system UV because there is no UV absorption, and it can be energized during electroblotting. Further, it is advantageous in that nonspecific adsorption is small in the binding reaction with the analyte. As described above, a carrier whose substrate itself is made of a carbon layer may be used.
 本発明においてカーボン層の形成は公知の方法で行うことができる。例えば、マイクロ波プラズマCVD(Chemical vapor deposit)法、ECRCVD(Electric cyclotron resonance chemical vapor deposit)法、ICP(Inductive coupled plasma)法、直流スパッタリング法、ECR(Electric cyclotron resonance)スパッタリング法、イオン化蒸着法、アーク式蒸着法、レーザ蒸着法、EB(Electron beam)蒸着法、抵抗加熱蒸着法などが挙げられる。 In the present invention, the carbon layer can be formed by a known method. For example, microwave plasma CVD (Chemical vapor deposition) method, ECRCVD (Electric cyclotron resonance chemical vapor deposition) method, ICP (Inductive coupled plasma) method, DC sputtering method, ECR (Electric cyclotron resonance) sputtering method, ionization deposition method, arc Examples thereof include a vapor deposition method, a laser vapor deposition method, an EB (Electron beam) vapor deposition method, and a resistance heating vapor deposition method.
 高周波プラズマCVD法では、高周波によって電極間に生じるグロー放電により原料ガス(メタン)を分解し、基板上にカーボン層を合成する。イオン化蒸着法では、タングステンフィラメントで生成される熱電子を利用して、原料ガス(ベンゼン)を分解・イオン化し、バイアス電圧によって基板上にカーボン層を形成する。水素ガス1~99体積%と残りメタンガス99~1体積%からなる混合ガス中で、イオン化蒸着法によりカーボン層を形成してもよい。 In the high-frequency plasma CVD method, a raw material gas (methane) is decomposed by glow discharge generated between electrodes by a high frequency to synthesize a carbon layer on a substrate. In the ionization vapor deposition method, the source gas (benzene) is decomposed and ionized using thermoelectrons generated by a tungsten filament, and a carbon layer is formed on the substrate by a bias voltage. The carbon layer may be formed by ionized vapor deposition in a mixed gas composed of 1 to 99% by volume of hydrogen gas and 99 to 1% by volume of the remaining methane gas.
 アーク式蒸着法では、固体のグラファイト材料(陰極蒸発源)と真空容器(陽極)の間に直流電圧を印加することにより真空中でアーク放電を起こして陰極から炭素原子のプラズマを発生させ蒸発源よりもさらに負のバイアス電圧を基板に印加することにより基板に向かってプラズマ中の炭素イオンを加速しカーボン層を形成することができる。 In the arc evaporation method, an arc discharge is generated in a vacuum by applying a DC voltage between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode), and a plasma of carbon atoms is generated from the cathode to generate an evaporation source. Further, by applying a negative bias voltage to the substrate, carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
 レーザ蒸着法では、例えばNd:YAGレーザ(パルス発振)光をグラファイトのターゲット板に照射して溶融させ、ガラス基板上に炭素原子を堆積させることによりカーボン層を形成することができる。 In the laser vapor deposition method, for example, a carbon layer can be formed by irradiating a graphite target plate with Nd: YAG laser (pulse oscillation) light and melting it, and depositing carbon atoms on a glass substrate.
 基板の表面にカーボン層を形成する場合、カーボン層の厚さは、通常、単分子層~100μm程度であり、薄すぎると下地基板の表面が局部的に露出する可能性があり、逆に厚くなると生産性が悪くなるので、好ましくは2nm~1μm、より好ましくは5nm~500nmである。 When the carbon layer is formed on the surface of the substrate, the thickness of the carbon layer is usually a monomolecular layer to about 100 μm. If it is too thin, the surface of the base substrate may be locally exposed, and conversely thicker. In this case, productivity is deteriorated, so that the thickness is preferably 2 nm to 1 μm, more preferably 5 nm to 500 nm.
 カーボン層が形成された基板の表面に化学修飾基を導入することにより、オリゴヌクレオチドプローブを担体に強固に固定化できる。導入する化学修飾基は、当業者であれば適宜選択することができ、特に制限されないが、例えば、アミノ基、カルボキシル基、エポキシ基、ホルミル基、ヒドロキシル基及び活性エステル基が挙げられる。 The oligonucleotide probe can be firmly immobilized on the carrier by introducing a chemical modification group on the surface of the substrate on which the carbon layer is formed. The chemical modification group to be introduced can be appropriately selected by those skilled in the art and is not particularly limited, and examples thereof include an amino group, a carboxyl group, an epoxy group, a formyl group, a hydroxyl group, and an active ester group.
 アミノ基の導入は、例えば、カーボン層をアンモニアガス中で紫外線照射することにより又はプラズマ処理することにより実施できる。又は、カーボン層を塩素ガス中で紫外線を照射して塩素化し、さらにアンモニアガス中で紫外線照射することにより実施できる。又は、メチレンジアミン、エチレンジアミン等の多価アミン類ガス中で、塩素化したカーボン層と反応させることによって実施することもできる。 An amino group can be introduced, for example, by irradiating the carbon layer with ultraviolet light in ammonia gas or by plasma treatment. Alternatively, the carbon layer can be chlorinated by irradiation with ultraviolet rays in chlorine gas and further irradiated with ultraviolet rays in ammonia gas. Alternatively, the reaction can be carried out by reacting with a chlorinated carbon layer in a polyvalent amine gas such as methylenediamine or ethylenediamine.
 カルボキシル基の導入は、例えば、前記のようにアミノ化したカーボン層に適当な化合物を反応させることにより実施できる。カルボキシル基を導入するために用いられる化合物としては、例えば、式:X-R1-COOH(式中、Xはハロゲン原子、R1は炭素数10~12の2価の炭化水素基を表す)で示されるハロカルボン酸、例えばクロロ酢酸、フルオロ酢酸、ブロモ酢酸、ヨード酢酸、2-クロロプロピオン酸、3-クロロプロピオン酸、3-クロロアクリル酸、4-クロロ安息香酸;式:HOOC-R2-COOH(式中、R2は単結合又は炭素数1~12の2価の炭化水素基を表す)で示されるジカルボン酸、例えばシュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、フタル酸;ポリアクリル酸、ポリメタクリル酸、トリメリット酸、ブタンテトラカルボン酸などの多価カルボン酸;式:R3-CO-R4-COOH(式中、R3は水素原子又は炭素数1~12の2価の炭化水素基、R4は炭素数1~12の2価の炭化水素基を表す)で示されるケト酸又はアルデヒド酸;式:X-OC-R5-COOH(式中、Xはハロゲン原子、R5は単結合又は炭素数1~12の2価の炭化水素基を表す。)で示されるジカルボン酸のモノハライド、例えばコハク酸モノクロリド、マロン酸モノクロリド;無水フタル酸、無水コハク酸、無水シュウ酸、無水マレイン酸、無水ブタンテトラカルボン酸などの酸無水物が挙げられる。 The introduction of the carboxyl group can be carried out, for example, by reacting an appropriate compound with the carbon layer aminated as described above. As a compound used for introducing a carboxyl group, for example, represented by the formula: XR 1 -COOH (wherein X represents a halogen atom, R 1 represents a divalent hydrocarbon group having 10 to 12 carbon atoms) Halocarboxylic acids such as chloroacetic acid, fluoroacetic acid, bromoacetic acid, iodoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid, 3-chloroacrylic acid, 4-chlorobenzoic acid; formula: HOOC-R 2 -COOH ( Wherein R 2 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms), such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, phthalic acid; poly Polyvalent carboxylic acids such as acrylic acid, polymethacrylic acid, trimellitic acid, butanetetracarboxylic acid; formula: R 3 —CO—R 4 —COOH (where R 3 is a hydrogen atom or 2 having 1 to 12 carbon atoms) Valent hydrocarbon group, R 4 represents a divalent hydrocarbon group having 1 to 12 carbon atoms) Keto acid or aldehyde acid; formula: X—OC—R 5 —COOH (wherein X represents a halogen atom, R 5 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms). Monohalides of the indicated dicarboxylic acids such as succinic acid monochloride, malonic acid monochloride; acid anhydrides such as phthalic anhydride, succinic anhydride, oxalic anhydride, maleic anhydride, and butanetetracarboxylic anhydride.
 エポキシ基の導入は、例えば、前記のようにアミノ化したカーボン層に適当な多価エポキシ化合物を反応させることによって実施できる。あるいは、カーボン層が含有する炭素=炭素2重結合に有機過酸を反応させることにより得ることができる。有機過酸としては、過酢酸、過安息香酸、ジペルオキシフタル酸、過ギ酸、トリフルオロ過酢酸などが挙げられる。 The introduction of the epoxy group can be carried out, for example, by reacting a suitable polyvalent epoxy compound with the carbon layer aminated as described above. Or it can obtain by making an organic peracid react with the carbon = carbon double bond which a carbon layer contains. Examples of the organic peracid include peracetic acid, perbenzoic acid, diperoxyphthalic acid, performic acid, and trifluoroperacetic acid.
 ホルミル基の導入は、例えば、前記のようにアミノ化したカーボン層に、グルタルアルデヒドを反応させることにより実施できる。 The introduction of the formyl group can be carried out, for example, by reacting glutaraldehyde with the carbon layer aminated as described above.
 ヒドロキシル基の導入は、例えば、前記のように塩素化したカーボン層に、水を反応させることにより実施できる。 The introduction of the hydroxyl group can be carried out, for example, by reacting water with the carbon layer chlorinated as described above.
 活性エステル基は、エステル基のアルコール側に酸性度の高い電子求引性基を有して求核反応を活性化するエステル群、すなわち反応活性の高いエステル基を意味する。エステル基のアルコール側に、電子求引性の基を有し、アルキルエステルよりも活性化されたエステル基である。活性エステル基は、アミノ基、チオール基、水酸基等の基に対する反応性を有する。さらに具体的には、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、シアノメチルエステル、複素環ヒドロキシ化合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有する活性エステル基として知られている。より具体的には、活性エステル基としては、たとえばp-ニトロフェニル基、N-ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5-ノルボルネン-2,3-ジカルボキシイミド基等が挙げられ、特に、N-ヒドロキシスクシンイミド基が好ましく用いられる。 The active ester group means an ester group having a highly acidic electron-withdrawing group on the alcohol side of the ester group and activating a nucleophilic reaction, that is, an ester group having a high reaction activity. The ester group has an electron-withdrawing group on the alcohol side of the ester group and is activated more than the alkyl ester. The active ester group has reactivity with groups such as amino group, thiol group, and hydroxyl group. More specifically, an active ester group in which phenol esters, thiophenol esters, N-hydroxyamine esters, cyanomethyl esters, esters of heterocyclic hydroxy compounds, etc. have much higher activity than alkyl esters etc. Known as. More specifically, examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimide group, 5-norbornene-2,3-dicarboximide group and the like. In particular, an N-hydroxysuccinimide group is preferably used.
 活性エステル基の導入は、例えば、前記のように導入したカルボキシル基を、シアナミドやカルボジイミド(例えば、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド)などの脱水縮合剤とN-ヒドロキシスクシンイミドなどの化合物で活性エステル化することにより実施できる。この処理により、アミド結合を介して炭化水素基の末端に、N-ヒドロキシスクシンイミド基等の活性エステル基が結合した基を形成することができる(特開2001-139532)。 The introduction of the active ester group is performed, for example, by converting the carboxyl group introduced as described above into a dehydrating condensing agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N- It can be carried out by active esterification with a compound such as hydroxysuccinimide. By this treatment, a group in which an active ester group such as an N-hydroxysuccinimide group is bonded to the terminal of the hydrocarbon group via an amide bond can be formed (Japanese Patent Laid-Open No. 2001-139532).
 本発明のオリゴヌクレオチドプローブを、スポッティング用バッファーに溶解してスポッティング用溶液を調製し、これを96穴もしくは384穴プラスチックプレートに分注し、分注した溶液をスポッター装置等によって担体上にスポッティングすることにより、オリゴヌクレオチドプローブが担体に固定化されたマイクロアレイを製造することができる。又は、スポッティング溶液をマイクロピペッターにて手動でスポッティングしてもよい。 The oligonucleotide probe of the present invention is dissolved in a spotting buffer to prepare a spotting solution, which is dispensed into a 96-well or 384-well plastic plate, and the dispensed solution is spotted on a carrier by a spotter device or the like. By doing so, a microarray in which oligonucleotide probes are immobilized on a carrier can be produced. Alternatively, the spotting solution may be spotted manually with a micropipette.
 スポッティング後、オリゴヌクレオチドプローブが担体に結合する反応を進行させるため、インキュベーションを行うことが好ましい。インキュベーションは、通常-20~100℃、好ましくは0~90℃の温度で、通常0.5~16時間、好ましくは1~2時間にわたって行う。インキュベーションは、高湿度の雰囲気下、例えば、湿度50~90%の条件で行うのが望ましい。インキュベーションに続き、担体に結合していないDNAを除去するため、洗浄液(例えば、50mM TBS/0.05% Tween20、2×SSC/0.2% SDS溶液、超純水など)を用いて洗浄を行うことが好ましい。 After spotting, it is preferable to carry out incubation in order to advance the reaction in which the oligonucleotide probe binds to the carrier. Incubation is usually performed at a temperature of −20 to 100 ° C., preferably 0 to 90 ° C., usually for 0.5 to 16 hours, preferably 1 to 2 hours. Incubation is preferably performed in a high humidity atmosphere, for example, at a humidity of 50 to 90%. Following the incubation, it is preferable to perform washing with a washing solution (for example, 50 mM TBS / 0.05% Tween 20, 2 × SSC / 0.2% SDS solution, ultrapure water, etc.) to remove DNA not bound to the carrier. .
 本発明のオリゴヌクレオチドプローブのセットは、同一の担体に固定化されていてもよいし、異なる担体に固定化されていてもよいが、少なくとも同じオリゴヌクレオチドプローブ群に含まれるオリゴヌクレオチドプローブは、同一の担体に固定化されていることが好ましい。本発明のオリゴヌクレオチドプローブは、それぞれの条件を満たす限り、複数種のものが担体上に固定化されていてもよい。 The set of oligonucleotide probes of the present invention may be immobilized on the same carrier, or may be immobilized on different carriers, but at least the oligonucleotide probes contained in the same oligonucleotide probe group are the same. It is preferable to be immobilized on the carrier. A plurality of types of oligonucleotide probes of the present invention may be immobilized on a carrier as long as each condition is satisfied.
 本発明はまた、上記オリゴヌクレオチドプローブのセット又はマイクロアレイを用いて被検者に感染したBKウイルスのゲノム型を判定する方法に関する。本発明の判定方法は、
 被検者由来の試料からDNAを抽出する工程と、
 抽出したDNAを鋳型とし、BKウイルスゲノムのVP1領域をコードする核酸を増幅する工程と、
 本発明のオリゴヌクレオチドプローブのセット又はマイクロアレイを用いて、増幅された核酸を検出する工程と
を含む。
The present invention also relates to a method for determining the genome type of a BK virus that has infected a subject using the set of oligonucleotide probes or the microarray. The determination method of the present invention includes:
Extracting DNA from a sample derived from a subject;
Amplifying a nucleic acid encoding the VP1 region of the BK virus genome using the extracted DNA as a template;
Using the set of oligonucleotide probes or microarray of the present invention to detect the amplified nucleic acid.
 被検者は通常ヒトであり、被検者由来の試料は、BKウイルスが含まれうる試料であれば特に制限されない。例えば、血液関連試料(血液、血清及び血漿など)、リンパ液、汗、涙、唾液、尿、糞便、腹水及び髄液等の体液、並びに細胞、組織又は臓器(例えば、心臓、膵臓、肝臓、卵巣、肺、脳、骨髄、リンパ節及び腎臓など)の破砕物及び抽出液などが挙げられる。好ましくは、腎臓の破砕物及び抽出液が用いられる。被検者由来の試料は、人体から直接採取したものでなくてもよく、例えば、尿斑や血痕から採取した試料でもよい。 The subject is usually a human, and the subject-derived sample is not particularly limited as long as it can contain a BK virus. For example, blood-related samples (blood, serum, plasma, etc.), body fluids such as lymph, sweat, tears, saliva, urine, feces, ascites and cerebrospinal fluid, and cells, tissues or organs (eg heart, pancreas, liver, ovary) , Lungs, brain, bone marrow, lymph nodes, kidneys, etc.) and the like. Preferably, kidney crushed material and extract are used. The sample derived from the subject may not be collected directly from the human body, and may be, for example, a sample collected from urine spots or blood stains.
 まず、被検者から採取した試料からDNAを抽出する。抽出手段としては、特に限定されない。例えばフェノール/クロロホルム、エタノール、水酸化ナトリウム、CTABなどを用いたDNA抽出法を用いることができる。 First, DNA is extracted from a sample collected from the subject. The extraction means is not particularly limited. For example, a DNA extraction method using phenol / chloroform, ethanol, sodium hydroxide, CTAB or the like can be used.
 次に、得られたDNAを鋳型として用いて増幅反応を行い、BKウイルスのVP1領域をコードする核酸、好ましくはDNAを増幅させる。増幅反応としては、ポリメラーゼ連鎖反応(PCR)、LAMP(Loop-Mediated Isothermal Amplification)、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法等を適用することができる。増幅反応においては、増幅後の領域を識別できるように標識を付加することが望ましい。このとき、増幅された核酸を標識する方法としては、特に限定されないが、例えば増幅反応に使用するプライマーをあらかじめ標識しておく方法を使用してもよいし、増幅反応に標識ヌクレオチドを基質として使用する方法を使用してもよい。標識物質としては、特に限定されないが、放射性同位元素や蛍光色素、あるいはジゴキシゲニン(DIG)やビオチンなどの有機化合物などを使用することができる。 Next, an amplification reaction is performed using the obtained DNA as a template to amplify a nucleic acid encoding the VP1 region of the BK virus, preferably DNA. As the amplification reaction, polymerase chain reaction (PCR), LAMP (Loop-MediatedMediIsothermal Amplification), ICAN (Isothermal and Chimerichiprimer-initiated Amplification of Nucleic acids) method or the like can be applied. In the amplification reaction, it is desirable to add a label so that the amplified region can be identified. At this time, the method for labeling the amplified nucleic acid is not particularly limited. For example, a method in which a primer used in the amplification reaction is labeled in advance may be used, or a labeled nucleotide is used as a substrate in the amplification reaction. You may use the method to do. The labeling substance is not particularly limited, and radioisotopes, fluorescent dyes, or organic compounds such as digoxigenin (DIG) and biotin can be used.
 またこの反応系は、核酸増幅・標識に必要な緩衝剤、耐熱性DNAポリメラーゼ、BKウイルスのVP1領域に特異的なプライマー、標識ヌクレオチド三リン酸(具体的には蛍光標識等を付加したヌクレオチド三リン酸)、ヌクレオチド三リン酸及び塩化マグネシウム等を含む反応系である。 This reaction system also includes buffers necessary for nucleic acid amplification and labeling, heat-resistant DNA polymerase, primers specific to the VP1 region of BK virus, and labeled nucleotide triphosphates (specifically, nucleotide triphosphates to which a fluorescent label or the like is added). It is a reaction system containing phosphoric acid), nucleotide triphosphate, magnesium chloride and the like.
 増幅反応に用いるプライマーは、BKウイルスゲノムにおけるVP1領域を特異的に増幅できるものであれば特に制限されず、当業者であれば適宜設計できる。例えば、BKウイルスゲノムのVP1領域の1~20番目の塩基からなるプライマーと327~308番目の塩基からなるプライマーからなるプライマーセットが挙げられる。具体的には、
プライマー1:5'-CAAGTGCCAAAACTACTAAT-3'(配列番号25)及び
プライマー2:5'-TGCATGAAGGTTAAGCATGC-3'(配列番号26)
からなるプライマーのセットが挙げられる。
The primer used in the amplification reaction is not particularly limited as long as it can specifically amplify the VP1 region in the BK virus genome, and can be appropriately designed by those skilled in the art. For example, a primer set consisting of a primer consisting of the 1st to 20th bases and a primer consisting of the 327th to 308th bases in the VP1 region of the BK virus genome can be mentioned. In particular,
Primer 1: 5′-CAAGTGCCAAAACTACTAAT-3 ′ (SEQ ID NO: 25) and Primer 2: 5′-TGCATGAAGGTTAAGCATGC-3 ′ (SEQ ID NO: 26)
A set of primers consisting of
 上記のようにして得られた増幅核酸と本発明のオリゴヌクレオチドプローブとのハイブリダイゼーション反応を行い、各オリゴヌクレオチドプローブにハイブリダイズした核酸の量を、例えば標識を検出することにより測定できる。標識からのシグナルは、例えば、蛍光標識を用いた場合は、蛍光スキャナを用いて蛍光シグナル検出し、これを画像解析ソフトによって解析することによりシグナル強度を数値化することができる。また、オリゴヌクレオチドプローブにハイブリダイズした増幅核酸は、例えば、既知量のDNAを含む試料を用いて検量線を作成することにより、定量することもできる。ハイブリダイゼーション反応は、好ましくはストリンジェントな条件下で実施する。ストリンジェントな条件とは、特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、例えば、50℃で16時間ハイブリダイズ反応させた後、2×SSC/0.2% SDS、25℃、10分及び2×SSC、25℃、5分の条件で洗浄する条件をさす。 The amount of nucleic acid hybridized to each oligonucleotide probe can be measured, for example, by detecting a label, by carrying out a hybridization reaction between the amplified nucleic acid obtained as described above and the oligonucleotide probe of the present invention. For example, when a fluorescent label is used, the signal intensity from the label can be quantified by detecting the fluorescent signal using a fluorescent scanner and analyzing the detected signal with image analysis software. The amplified nucleic acid hybridized with the oligonucleotide probe can also be quantified by creating a calibration curve using a sample containing a known amount of DNA, for example. The hybridization reaction is preferably carried out under stringent conditions. Stringent conditions refer to conditions in which specific hybrids are formed and non-specific hybrids are not formed.For example, after hybridization at 50 ° C. for 16 hours, 2 × SSC / 0.2% SDS, 25 This refers to the conditions for washing at 5 ° C for 10 minutes and 2 x SSC at 25 ° C for 5 minutes.
 上記ハイブリダイゼーション反応においては、本発明のオリゴヌクレオチドプローブのセットが担体上に固定化されたマイクロアレイを用い、該マイクロアレイに増幅核酸を適用することが好ましい。 In the above hybridization reaction, it is preferable to use a microarray in which the set of oligonucleotide probes of the present invention is immobilized on a carrier, and apply the amplified nucleic acid to the microarray.
 本発明のBKウイルスのゲノム型の判定方法は、各オリゴヌクレオチドプローブにハイブリダイズした上記増幅核酸の量を、各オリゴヌクレオチドプローブ群内で比較することにより実施する。具体的には、オリゴヌクレオチドプローブ群内で、各オリゴヌクレオチドプローブにハイブリダイズした増幅核酸の量(例えば標識由来のシグナル強度に対応する)の順位づけを行う。各オリゴヌクレオチドプローブ群におけるその順位が、特定のゲノム型に特徴的なものである場合とそうでない場合があるので、被検者由来の試料について、どのゲノム型に特徴的なシグナルを有するかを判定することにより、その被検者に感染したBKウイルスのゲノム型を判定することができる。 The method for determining the genome type of the BK virus of the present invention is carried out by comparing the amount of the amplified nucleic acid hybridized to each oligonucleotide probe within each oligonucleotide probe group. Specifically, in the oligonucleotide probe group, the amount of amplified nucleic acid hybridized to each oligonucleotide probe (for example, corresponding to the signal intensity derived from the label) is ranked. Since the order in each oligonucleotide probe group may or may not be characteristic of a particular genomic type, which genomic type has a characteristic signal for a sample from a subject By determining, the genome type of the BK virus that has infected the subject can be determined.
 現在明らかとなっているBKウイルスのゲノム型について、VP1領域を増幅し、増幅核酸を本発明のオリゴヌクレオチドプローブのセットにハイブリダイズさせた場合、各オリゴヌクレオチドプローブにハイブリダイズする増幅核酸の量は、プローブ群ごとに以下のような特徴を示す。すなわち、各オリゴヌクレオチドプローブにハイブリダイズする増幅核酸の量の比がシグナル強度比として検出される。 When the VP1 region is amplified and the amplified nucleic acid is hybridized to the set of oligonucleotide probes of the present invention for the BK virus genomic type currently known, the amount of amplified nucleic acid hybridized to each oligonucleotide probe is Each probe group has the following characteristics. That is, the ratio of the amount of amplified nucleic acid that hybridizes to each oligonucleotide probe is detected as the signal intensity ratio.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例えば、被検者に感染したBKウイルスがIa型である場合、オリゴヌクレオチドプローブ群(a)について見たときに、オリゴヌクレオチドプローブ(a-1)にハイブリダイズした増幅核酸の量は、オリゴヌクレオチドプローブ(a-2)、(a-3)及び(a-4)のそれぞれにハイブリダイズした増幅核酸の量より多く検出される。 For example, when the BK virus infecting the subject is type Ia, the amount of amplified nucleic acid hybridized to the oligonucleotide probe (a-1) when viewed with respect to the oligonucleotide probe group (a) is More than the amount of amplified nucleic acid hybridized to each of the probes (a-2), (a-3) and (a-4) is detected.
 また、被検者に感染したBKウイルスがIV型である場合は、オリゴヌクレオチドプローブ群(c)について見たときに、オリゴヌクレオチドプローブ(c-1)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(c-2)及び(c-3)のそれぞれにハイブリダイズした増幅核酸の量より多く検出される場合と、オリゴヌクレオチドプローブ(c-3)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(c-1)及び(c-2)のそれぞれにハイブリダイズした増幅核酸の量より多く検出される場合がある。 In addition, when the BK virus infecting the subject is type IV, the amount of amplified nucleic acid hybridized to the oligonucleotide probe (c-1) when the oligonucleotide probe group (c) is viewed is When the amount of amplified nucleic acid hybridized to each of probes (c-2) and (c-3) is detected more than the amount of amplified nucleic acid hybridized to oligonucleotide probe (c-3) There may be cases where more than the amount of amplified nucleic acid hybridized to each of (c-1) and (c-2) is detected.
 上記表1に示されるシグナル強度比の中には、異なる遺伝子型に重複して見られるものもあるので、オリゴヌクレオチドプローブ群(a)~(e)におけるシグナル強度比を組み合わせて遺伝子型を判定することが好ましい。しかし、上記シグナル強度比の中には、特定の遺伝子型にしか見られないものもあるので、そのシグナル強度比が検出されれば他のシグナル強度比を見なくても遺伝子型を特定できる。従って、表1に示されるシグナル強度比のうち、遺伝子型の判定に有効なシグナル強度比を下記表2に示す。 Some of the signal intensity ratios shown in Table 1 above can be seen overlapping with different genotypes, so the genotype is determined by combining the signal intensity ratios in the oligonucleotide probe groups (a) to (e). It is preferable to do. However, some of the signal intensity ratios can be found only in a specific genotype, and therefore, if the signal intensity ratio is detected, the genotype can be specified without looking at other signal intensity ratios. Therefore, among the signal intensity ratios shown in Table 1, the signal intensity ratios effective for genotype determination are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 例えば、以下のように遺伝子型を特定することができる。
 オリゴヌクレオチドプローブ群(d)について見たときに、オリゴヌクレオチドプローブ(d-1)にハイブリダイズした増幅核酸の量が、オリゴヌクレオチドプローブ(d-2)及び(d-3)にハイブリダイズした増幅核酸の量より多かった場合は、他のオリゴヌクレオチドプローブ群を検討することなく、その被検者に感染したBKウイルスはIa型であると判定できる。
For example, the genotype can be specified as follows.
Amplification in which the amount of amplified nucleic acid hybridized to oligonucleotide probe (d-1) was hybridized to oligonucleotide probes (d-2) and (d-3) when viewed with respect to oligonucleotide probe group (d) If the amount is greater than the amount of nucleic acid, the BK virus that has infected the subject can be determined to be type Ia without examining other oligonucleotide probe groups.
 また、オリゴヌクレオチドプローブ群(b)について見たときに、オリゴヌクレオチドプローブ(b-1)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(b-2)、(b-3)及び(b-4)にハイブリダイズした増幅核酸の量より多く、かつ、オリゴヌクレオチドプローブ群(c)について見たときに、オリゴヌクレオチドプローブ(c-2)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(c-1)及び(c-3)にハイブリダイズした増幅核酸の量より多かった場合は、他のオリゴヌクレオチドプローブ群を検討することなく、その被検者に感染したBKウイルスはIb-1型であると判定できる。 Further, when the oligonucleotide probe group (b) is viewed, the amount of the amplified nucleic acid hybridized to the oligonucleotide probe (b-1) is the same as that of the oligonucleotide probes (b-2), (b-3) and (b- More than the amount of amplified nucleic acid hybridized to 4) and the amount of amplified nucleic acid hybridized to oligonucleotide probe (c-2) when viewed for oligonucleotide probe group (c) was -1) and the amount of amplified nucleic acid hybridized to (c-3), the BK virus that infects the subject is of type Ib-1 without examining other oligonucleotide probe groups. It can be determined that there is.
 オリゴヌクレオチドプローブ群(b)について見たときに、オリゴヌクレオチドプローブ(b-2)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(b-1)、(b-3)及び(b-4)にハイブリダイズした増幅核酸の量より多い場合は、他のオリゴヌクレオチドプローブ群を検討することなく、その被検者に感染したBKウイルスはIb-2型であると判定できる。また、オリゴヌクレオチドプローブ群(d)について見たときに、オリゴヌクレオチドプローブ(d-3)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(d-1)及び(d-2)にハイブリダイズした増幅核酸の量より多い場合も、他のオリゴヌクレオチドプローブ群を検討することなく、その被検者に感染したBKウイルスはIb-2型であると判定できる。 When the oligonucleotide probe group (b) is viewed, the amount of the amplified nucleic acid hybridized to the oligonucleotide probe (b-2) is the oligonucleotide probe (b-1), (b-3) and (b-4). If the amount of amplified nucleic acid hybridized to is greater than the amount of amplified nucleic acid, it can be determined that the BK virus infecting the subject is type Ib-2 without examining other oligonucleotide probe groups. When the oligonucleotide probe group (d) was viewed, the amount of amplified nucleic acid hybridized to the oligonucleotide probe (d-3) was hybridized to the oligonucleotide probes (d-1) and (d-2). Even when the amount of the amplified nucleic acid is larger, it is possible to determine that the BK virus infecting the subject is type Ib-2 without examining other oligonucleotide probe groups.
 オリゴヌクレオチドプローブ群(b)について見たときに、オリゴヌクレオチドプローブ(b-3)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(b-1)、(b-2)及び(b-4)にハイブリダイズした増幅核酸の量より多い場合は、他のオリゴヌクレオチドプローブ群を検討することなく、その被検者に感染したBKウイルスはII型又はIII型であると判定できる。また、オリゴヌクレオチドプローブ群(e)について見たときに、オリゴヌクレオチドプローブ(e-2)にハイブリダイズした増幅核酸の量がオリゴヌクレオチドプローブ(e-1)及び(e-3)にハイブリダイズした増幅核酸の量より多い場合も、他のオリゴヌクレオチドプローブ群を検討することなく、その被検者に感染したBKウイルスはII型又はIII型であると判定できる。 When the oligonucleotide probe group (b) is viewed, the amount of the amplified nucleic acid hybridized to the oligonucleotide probe (b-3) is the oligonucleotide probe (b-1), (b-2) and (b-4). If the amount of amplified nucleic acid hybridized to is greater than the amount of amplified nucleic acid, it can be determined that the BK virus infecting the subject is type II or type III without examining other oligonucleotide probe groups. When the oligonucleotide probe group (e) was viewed, the amount of amplified nucleic acid hybridized to the oligonucleotide probe (e-2) hybridized to the oligonucleotide probes (e-1) and (e-3) Even when the amount of the amplified nucleic acid is larger, it is possible to determine that the BK virus infecting the subject is type II or type III without examining other oligonucleotide probe groups.
 BKウイルスは、ヒト集団に蔓延しており、世界中において各ゲノム型がそれぞれ特有の分布域を持つことから、被検者に感染したBKウイルスのゲノム型を判定することにより、被検者の出身地を推定することができる。従って、本発明はまた、本発明のオリゴヌクレオチドプローブのセット又はマイクロアレイを用いる上記方法によって判定されたBKウイルスのゲノム型に基づいて被検者の出身地を推定する方法に関する。 Since BK virus is prevalent in the human population and each genome type has a unique distribution range around the world, by determining the genome type of the BK virus that has infected the subject, You can estimate your hometown. Therefore, the present invention also relates to a method for estimating the place of birth of a subject based on the BK virus genome type determined by the above method using the set of oligonucleotide probes or microarray of the present invention.
 各ゲノム型の分布域については、Microbes Infect. 9(2) (2007) 204-13に詳細に記載されている。7つの主なゲノム型の具体的な分布は、Ia型は、アフリカに分布しており、Ib-1型は、東南アジアに分布しており、Ib-2型は、ヨーロッパに分布しており、Ic型は、日本を中心とする極東アジアに分布しており、II型、III型は、地域差はないが、IV型のサブグループは、大陸アジアに分布している(J Mol Evol. 65(1) 2007  103-11.)。 The distribution range of each genome type is described in detail in Microbes Infect. 9 (2) (2007) 204-13. The specific distribution of the seven main genome types is that type Ia is distributed in Africa, type Ib-1 is distributed in Southeast Asia, type Ib-2 is distributed in Europe, Type Ic is distributed in Far East Asia centering on Japan. Type II and Type III have no regional difference, but type IV subgroups are distributed in continental Asia (J Mol Evol. 65 (1) 2007 103-11.).
実施例1 担体の作製
 3mm角のシリコン基板にイオン化蒸着法を用いて、下記の条件で2層のDLC層の製膜を行った。
Example 1 Production of Support A two-layer DLC layer was formed on a 3 mm square silicon substrate using the ionized vapor deposition method under the following conditions.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 得られた表面にDLC層を有するシリコン基板上に、下記の条件でアンモニアプラズマを用いて、アミノ基を導入した。 An amino group was introduced onto a silicon substrate having a DLC layer on the obtained surface using ammonia plasma under the following conditions.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 140mM 無水コハク酸及び0.1M ホウ酸ナトリウムを含む1-メチル-2-ピロリドン溶液に30分間浸漬し、カルボキシル基を導入した。0.1M リン酸カリウムバッファー、0.1M 1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、20mM N-ヒドロキシスクシイミドを含む溶液に30分間浸漬し、活性化を行い、シリコン基板表面にDLC層及び化学修飾基としてのN-ヒドロキシスクシイミド基を有する担体を得た。 It was immersed in a 1-methyl-2-pyrrolidone solution containing 140 mM succinic anhydride and 0.1 M sodium borate for 30 minutes to introduce carboxyl groups. Silicon substrate surface is activated by immersing in a solution containing 0.1M potassium phosphate buffer, 0.1M ア ミ ノ 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide, 20mM N-hydroxysuccinimide for 30 minutes A carrier having a DLC layer and an N-hydroxysuccinimide group as a chemical modification group was obtained.
実施例2 マイクロアレイの作製
 BKウイルスの7種類のゲノム型の塩基配列(配列番号1~7)に基づき、19又は20塩基の塩基配列からなり5'末端をアミノ基で修飾した17種のオリゴヌクレオチドプローブを合成した。各オリゴヌクレオチドプローブ(以下プローブと記載する)の配列を下記表5に示す。表5に記載したプローブについて、対応する本発明のオリゴヌクレオチドプローブ群及び各オリゴヌクレオチドプローブをプローブと記載した列に記載した。
Example 2 Preparation of microarray 17 oligonucleotides consisting of 19 or 20 bases based on 7 genomes of BK virus (SEQ ID NOs: 1 to 7) and modified at the 5 'end with an amino group A probe was synthesized. The sequences of the oligonucleotide probes (hereinafter referred to as probes) are shown in Table 5 below. Regarding the probes described in Table 5, the corresponding oligonucleotide probe group of the present invention and each oligonucleotide probe are described in the column described as probe.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示した17種のプローブを10 pmol/μlとなるようにスポットソリューション(Sol.6)に溶解し、スポッターSPBIO(日立ソフト社製)を用いて実施例1で作製した担体上にスポットした。80℃で1時間ベーキング後、2×SSC/0.2% SDS溶液(室温)で15分間洗浄し、さらに2×SSC/0.2% SDS溶液(95℃)で5分間洗浄した。超純水で3回リンスし、遠心機で水分を飛ばし乾燥させることにより17種のプローブが担体上に固定化されたマイクロアレイを得た。 The 17 types of probes shown in Table 5 were dissolved in a spot solution (Sol. 6) so as to have a concentration of 10 pmol / μl, and a spotter SPBIO (manufactured by Hitachi Software Co., Ltd.) was used on the carrier prepared in Example 1. Spotted. After baking at 80 ° C. for 1 hour, the plate was washed with 2 × SSC / 0.2% SDS solution (room temperature) for 15 minutes, and further washed with 2 × SSC / 0.2% SDS solution (95 ° C.) for 5 minutes. The microarray in which 17 kinds of probes were immobilized on the carrier was obtained by rinsing with ultrapure water three times, removing water with a centrifuge and drying.
実施例3 BKウイルスのゲノム型に特徴的シグナルの解析
 その被検者が有するBKウイルスのゲノム型(Ia型、Ib-1型、Ib-2型、Ic型、II型、III型、IV型)が、従来法(増幅したVP1領域の塩基配列を決定し、系統解析によりゲノム型を判定する方法、Forensic Sci. Int. 173(1) (2007) 54-60)ですでに特定されている被検者由来の試料(試料1~11)について、実施例2で作製したマイクロアレイを用いて増幅したVP1領域の検出を行った。
Example 3 Analysis of signals characteristic of BK virus genome type BK virus genome type (Ia type, Ib-1, Ib-2 type, Ic type, II type, III type, IV type) ) Has already been identified by the conventional method (method of determining the base sequence of the amplified VP1 region and determining the genome type by phylogenetic analysis, Forensic Sci. Int. 173 (1) (2007) 54-60) For the samples derived from the subjects (samples 1 to 11), the VP1 region amplified using the microarray prepared in Example 2 was detected.
 試料(腎臓組織の破砕物)を採取し、QiaAmp DNA(QIAGEN社製)を用いてDNAの抽出を行った。このDNAを鋳型DNAとし、BKウイルスのVP1領域(327bp)を増幅するよう、表6に示した組成でPCR反応液を作製した。 A sample (a crushed kidney tissue) was collected, and DNA was extracted using QiaAmp DNA (manufactured by QIAGEN). Using this DNA as a template DNA, a PCR reaction solution was prepared with the composition shown in Table 6 so as to amplify the VP1 region (327 bp) of the BK virus.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 用いたプライマーの配列は以下のとおりである。
プライマー1:5'-CAAGTGCCAAAACTACTAAT-3'(配列番号25)
プライマー2:5'-TGCATGAAGGTTAAGCATGC-3'(配列番号26)
 調製したPCR反応液に対し、GeneAmp PCR system 9700 (ABI)を用い、下記温度サイクルでPCR反応を行い、それぞれの試料についてBKウイルスゲノムのVP1領域を増幅した。
The primer sequences used are as follows.
Primer 1: 5'-CAAGTGCCAAAACTACTAAT-3 '(SEQ ID NO: 25)
Primer 2: 5′-TGCATGAAGGTTAAGCATGC-3 ′ (SEQ ID NO: 26)
A PCR reaction was performed on the prepared PCR reaction solution using GeneAmp PCR system 9700 (ABI) at the following temperature cycle, and the VP1 region of the BK virus genome was amplified for each sample.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 このときCy5-dCTPをPCR産物中に取り込ませることにより蛍光標識を行った。
 2μL PCR産物と1μL 3×SSC/0.3% SDSを混合し、実施例2で作製したマイクロアレイに滴下し、カバーを被せた。水を張ったタッパーに入れ、45℃で1時間インキュベートした。室温で2×SSC/0.2% SDSで2回、2×SSCで2回、洗浄を行った。
At this time, Cy5-dCTP was fluorescently labeled by incorporating it into the PCR product.
2 μL PCR product and 1 μL 3 × SSC / 0.3% SDS were mixed, dropped onto the microarray prepared in Example 2, and covered. Placed in a watered tapper and incubated at 45 ° C. for 1 hour. Washing was performed twice with 2 × SSC / 0.2% SDS and twice with 2 × SSC at room temperature.
 洗浄後のマイクロアレイを1000rpmで遠心し、乾燥した。続いてFLA 8000(フジフイルム社製)でスキャンを行い、蛍光画像からArray Gauge(フジフイルム社製)を用いて各スポットの蛍光強度を数値化した。 The washed microarray was centrifuged at 1000 rpm and dried. Subsequently, scanning was performed with FLA 8000 (manufactured by Fujifilm), and the fluorescence intensity of each spot was digitized from the fluorescence image using Array Gauge (manufactured by Fujifilm).
 各試料について得られたシグナル強度の値を下記表8に示す。各プローブ群において一番強いシグナルが得られたプローブにおけるシグナルに対応する数値に網掛けを付し、上記表2に基づいて遺伝子型を判定した。判定結果を最下行に記載した。 The signal intensity values obtained for each sample are shown in Table 8 below. The numerical value corresponding to the signal in the probe for which the strongest signal was obtained in each probe group was shaded, and the genotype was determined based on Table 2 above. The judgment results are listed in the bottom line.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 試料1、2、5及び7の結果を見ると、プローブ群(e)においてシグナル強度がe-3>e-1、e-2であることからIV型と判定できる。また、プローブ群(b)においてシグナル強度がb-4>b-1、b-2、b-3であることからもIV型と判定できる。試料3及び6の結果を見るとプローブ群(b)においてシグナル強度がb-2>b-1、b-3、b-4であることからIb-2型と判定でき、また、プローブ群(d)においてシグナル強度がd-3>d-1、d-2であることからもIb-2型と判定できる。試料4及び10の結果を見ると、プローブ群(b)においてシグナル強度がb-1>b-2、b-3、b-4であり、かつ、プローブ群(c)においてシグナル強度がc-2>c-1、c-3であることからIb-1型と判定できる。試料8の結果を見ると、プローブ群(a)においてシグナル強度がa-2>a-1、a-3、a-4であることからIc型と判定できる。試料9の結果を見るとプローブ群(b)においてシグナル強度がb-3>b-1、b-2、b-4であることからII型又はIII型と判定でき、また、プローブ群(e)においてシグナル強度がe-2>e-1、e-3であることからもII型又はIII型と判定できる。試料11の結果を見ると、プローブ群(d)においてシグナル強度がd-1>d-2、d-3であることからIa型と判定できる。 From the results of Samples 1, 2, 5 and 7, the signal intensity in the probe group (e) is e-3> e-1, e-2, so that it can be determined as type IV. Moreover, it can also be determined as type IV because the signal intensity in the probe group (b) is b-4> b-1, b-2, b-3. Looking at the results of samples 3 and 6, since the signal intensity in the probe group (b) is b-2> b-1, b-3, b-4, it can be determined as type Ib-2, and the probe group ( Since the signal intensity in d) is d-3> d-1, d-2, it can be determined as type Ib-2. Looking at the results of samples 4 and 10, in the probe group (b), the signal intensity is b-1> b-2, b-3, b-4, and in the probe group (c), the signal intensity is c- Since 2> c-1 and c-3, it can be determined as type Ib-1. Looking at the result of Sample 8, the signal intensity in the probe group (a) is a-2> a-1, a-3, a-4, and therefore it can be determined as the Ic type. Looking at the results of sample 9, since the signal intensity in probe group (b) is b-3> b-1, b-2, b-4, it can be determined as type II or type III, and probe group (e ), The signal intensity is e-2> e-1 and e-3, so that it can be determined as type II or type III. When the result of the sample 11 is seen, it can be determined as the type Ia because the signal intensity in the probe group (d) is d-1> d-2, d-3.
 マイクロアレイを用いて判定された遺伝子型の結果は、従来法(増幅したVP1領域の塩基配列を決定し、系統解析によりゲノム型を判定する方法)で判定された遺伝子型の結果と一致していた。 The genotype result determined using the microarray was consistent with the genotype result determined by the conventional method (method of determining the base sequence of the amplified VP1 region and determining the genome type by phylogenetic analysis). .
 以上から、本発明の方法により、被検者由来の試料から被検者が有するBKウイルスのゲノム型を簡便かつ正確に判定することができ、当該被検者の出身地を推定できることが示された。
 本明細書中で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書中にとり入れるものとする。
From the above, it is shown that the method of the present invention can easily and accurately determine the genome type of the BK virus possessed by the subject from the sample derived from the subject, and can estimate the birthplace of the subject. It was.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (6)

  1.  以下のオリゴヌクレオチドプローブを含む、被検者に感染したBKウイルスのゲノム型を判定するためのオリゴヌクレオチドプローブのセット:
     (a-1)配列番号1、2又は3の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (a-2)配列番号4の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (a-3)配列番号5又は6の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (a-4)配列番号7の223~241番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (b-1)配列番号1、2又は4の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (b-2)配列番号3の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (b-3)配列番号5又は6の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (b-4)配列番号7の271~290番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (c-1)配列番号1、4、5、6又は7の285~304番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (c-2)配列番号2又は3の285~304番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (c-3)配列番号7の285~304番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (d-1)配列番号1の53~72番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (d-2)配列番号2、4、5、6又は7の53~72番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (d-3)配列番号3の53~72番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (e-1)配列番号1、2、3又は4の81~100番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (e-2)配列番号5又は6の81~100番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ
     (e-3)配列番号7の81~100番目の塩基を含む連続した30塩基以下の塩基配列またはそれに相補的な塩基配列からなるオリゴヌクレオチドプローブ。
    A set of oligonucleotide probes for determining the genomic type of a BK virus that has infected a subject, including the following oligonucleotide probes:
    (a-1) an oligonucleotide probe comprising a base sequence of 30 or less bases including the bases 223 to 241 of SEQ ID NO: 1, 2 or 3 or a base sequence complementary thereto (a-2) of SEQ ID NO: 4 An oligonucleotide probe comprising a base sequence of not more than 30 consecutive bases including the 223 to 241st bases or a base sequence complementary thereto (a-3) a continuous 30 comprising the 223 to 241st bases of SEQ ID NO: 5 or 6 Oligonucleotide probe comprising a nucleotide sequence of less than or equal to the base sequence or a complementary nucleotide sequence thereof (a-4) From a nucleotide sequence of not more than 30 consecutive nucleotides including the 223 to 241st bases of SEQ ID NO: 7 or a complementary nucleotide sequence thereof An oligonucleotide probe (b-1) an oligonucleotide probe comprising a base sequence of 30 bases or less including the bases 271 to 290 of SEQ ID NO: 1, 2, or 4 or a base sequence complementary thereto (b-2) An oligonucleotide probe comprising a base sequence of not more than 30 bases including the bases 271 to 290 in column No. 3 or a base sequence complementary thereto (b-3) the bases 271 to 290 of SEQ ID NO: 5 or 6 An oligonucleotide probe comprising a continuous base sequence of 30 bases or less or a base sequence complementary thereto (b-4) a continuous base sequence of 30 bases or less including the 271th to 290th bases of SEQ ID NO: 7 or complementary thereto (C-1) consisting of a base sequence of 30 or fewer consecutive bases including the bases 285 to 304 of SEQ ID NO: 1, 4, 5, 6 or 7 or a base sequence complementary thereto Oligonucleotide probe (c-2) Oligonucleotide probe (c-3) comprising a base sequence of 30 nucleotides or less or a base sequence complementary thereto, including the 285th to 304th bases of SEQ ID NO: 2 or 3 An oligonucleotide probe consisting of a base sequence of 30 or less bases including the bases 285 to 304 in column No. 7 or a base sequence complementary thereto (d-1) a sequence containing the bases 53 to 72 of SEQ ID NO: 1 An oligonucleotide probe comprising a base sequence of 30 bases or less or a base sequence complementary thereto (d-2) comprising 30 to 53 bases in a row including the 53rd to 72nd bases of SEQ ID NO: 2, 4, 5, 6 or 7 Oligonucleotide probe comprising a base sequence or a base sequence complementary thereto (d-3) Oligonucleotide comprising a base sequence of 30 bases or less including the 53rd to 72nd bases of SEQ ID NO: 3 or a base sequence complementary thereto Probe (e-1) Oligonucleotide probe (e-2) sequence consisting of a base sequence of 30 or less bases including the 81st to 100th bases of SEQ ID NO: 1, 2, 3 or 4 or a complementary base sequence thereto An oligonucleotide probe comprising a base sequence of no more than 30 bases including the 81st to 100th bases of No. 5 or 6 or a base sequence complementary thereto (e-3) comprising the 81st to 100th bases of SEQ ID NO: 7 An oligonucleotide probe comprising a continuous base sequence of 30 bases or less or a base sequence complementary thereto.
  2.  請求項1記載のオリゴヌクレオチドプローブのセットが担体上に固定化されてなる、被検者に感染したBKウイルスのゲノム型を判定するためのマイクロアレイ。 A microarray for determining the genome type of a BK virus that has infected a subject, wherein the set of oligonucleotide probes according to claim 1 is immobilized on a carrier.
  3.  請求項1記載のオリゴヌクレオチドプローブのセットが担体上に固定化されてなる、被検者の出身地を推定するためのマイクロアレイ。 A microarray for estimating the place of birth of a subject, wherein the set of oligonucleotide probes according to claim 1 is immobilized on a carrier.
  4.  担体が、表面にカーボン層と化学修飾基とを有するものである、請求項2又は3記載のマイクロアレイ。 The microarray according to claim 2 or 3, wherein the carrier has a carbon layer and a chemical modification group on the surface.
  5.  被検者に感染したBKウイルスのゲノム型を判定する方法であって、
     被検者由来の試料からDNAを抽出する工程と、
     抽出したDNAを鋳型とし、BKウイルスゲノムのVP1領域をコードする核酸を増幅する工程と、
     請求項1記載のオリゴヌクレオチドプローブのセット又は請求項2~4のいずれか1項記載のマイクロアレイを用いて増幅された核酸を検出する工程と
    を含む、前記方法。
    A method for determining the genome type of a BK virus that has infected a subject,
    Extracting DNA from a sample derived from a subject;
    Amplifying a nucleic acid encoding the VP1 region of the BK virus genome using the extracted DNA as a template;
    Detecting the nucleic acid amplified using the set of oligonucleotide probes of claim 1 or the microarray of any one of claims 2-4.
  6.  請求項5記載の方法によって判定されたBKウイルスのゲノム型に基づいて被検者の出身地を推定する方法。 A method for estimating the place of birth of a subject based on the genome type of the BK virus determined by the method according to claim 5.
PCT/JP2009/057337 2008-04-17 2009-04-10 Oligonucleotide probe and microarray for determination of genome type of bk virus WO2009128399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508191A JPWO2009128399A1 (en) 2008-04-17 2009-04-10 Oligonucleotide probe and microarray for determining the genome type of BK virus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-108209 2008-04-17
JP2008108209 2008-04-17

Publications (1)

Publication Number Publication Date
WO2009128399A1 true WO2009128399A1 (en) 2009-10-22

Family

ID=41199092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057337 WO2009128399A1 (en) 2008-04-17 2009-04-10 Oligonucleotide probe and microarray for determination of genome type of bk virus

Country Status (2)

Country Link
JP (1) JPWO2009128399A1 (en)
WO (1) WO2009128399A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075142A (en) * 2004-09-06 2006-03-23 Hiroshi Iketani Method for estimating race or birthplace by organism, virus or the like with which human is infected

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075142A (en) * 2004-09-06 2006-03-23 Hiroshi Iketani Method for estimating race or birthplace by organism, virus or the like with which human is infected

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROSHI IKETANI ET AL.: "BK Virus o Mochiita Mimoto Fumei Shitai Shusshin Chiiki Suitei DNA Chip no Kaihatsu", JAPANESE JOURNAL OF FORENSIC SCIENCE AND TECHNOLOGY, vol. 13, 25 February 2008 (2008-02-25), pages 51 - 58 *
SEIF ISABELLE ET AL.: "The Genome of Human Papovavirus BKV", CELL, vol. 18, 1979, pages 963 - 977 *
TAKASAKA TOMOKAZU ET AL.: "Subtypes of BK virus prevalent in Japan and variation in their transcriptional control region", JOURNAL OF GENERAL VIROLOGY, vol. 85, 2004, pages 2821 - 2827 *
ZHENG HUAI-YING ET AL.: "Relationships between BK virus lineages and human populations", MICROBES AND INFECTION, vol. 9, 2007, pages 204 - 213 *

Also Published As

Publication number Publication date
JPWO2009128399A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP7108988B2 (en) Kit for evaluating gene mutations associated with myeloproliferative neoplasms
EP2476759B1 (en) Carrier for holding nucleic acids
JP4884899B2 (en) Method for determining risk of occurrence of side effects of irinotecan and kit therefor
JP2016192939A (en) Probe for detecting cyp2c19*2 and probe for detecting cyp2c19*3
JP7248982B2 (en) Gene Mutation Evaluation Method, Gene Mutation Evaluation Kit
WO2019182103A1 (en) Microsatellite detection microarray and microsatellite detection method using same
WO2011152272A1 (en) Method of determining the risk of adverse effects of irinotecan, and kit therefore
JP2016192940A (en) PROBE FOR DETECTING CYP3A4*1b AND PROBE FOR DETECTING CYP3A5*3
JP5607373B2 (en) Microarray detection method
JP2010000018A (en) Method for determining occurrence risk of adverse effect of irinotecan, and dna chip and kit used therefor
JP5318346B2 (en) Oligonucleotide probes and microarrays for determining genomic type
JPWO2009130797A1 (en) Probe set for determining ABO blood group
WO2021039958A1 (en) Kit for evaluating gene mutation related to myeloproliferative neoplasm
WO2009128399A1 (en) Oligonucleotide probe and microarray for determination of genome type of bk virus
JP6995604B2 (en) Design method and probe set for single nucleotide polymorphism detection probe
JP6028299B2 (en) Primer set and probe for judging animals
JP6028300B2 (en) Primer set and probe for determining ABO blood group
JP2008200012A (en) Microarray for detecting heat-resistant bacterium
JP2020162503A (en) Method for determining methylation in cpg island and methylation determination kit
JP7487040B2 (en) Kit for evaluating gene mutations associated with myeloproliferative neoplasms
JP7456739B2 (en) Kit for evaluating genetic mutations associated with myeloproliferative tumors
WO2017131153A1 (en) Method for predicting side effect due to gemcitabine and dna chip
JP2014103904A (en) Oligonucleotide probe for detecting mutation in k-ras
JP2015198581A (en) Probe for polymorphism detection in il28b gene, dna chip having the probe for polymorphism detection, and data acquisition method for predicting effect of chronic hepatitis c therapy using the probe for polymorphism detection
JP2016192941A (en) Probe for detecting cyp2c9*3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508191

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732167

Country of ref document: EP

Kind code of ref document: A1