WO2009128322A1 - Sound damping member and method for producing sound damping member, ultrasonic probe, and ultrasonic diagnosis device - Google Patents

Sound damping member and method for producing sound damping member, ultrasonic probe, and ultrasonic diagnosis device Download PDF

Info

Publication number
WO2009128322A1
WO2009128322A1 PCT/JP2009/055502 JP2009055502W WO2009128322A1 WO 2009128322 A1 WO2009128322 A1 WO 2009128322A1 JP 2009055502 W JP2009055502 W JP 2009055502W WO 2009128322 A1 WO2009128322 A1 WO 2009128322A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
ultrasonic
acoustic braking
braking member
piezoelectric
Prior art date
Application number
PCT/JP2009/055502
Other languages
French (fr)
Japanese (ja)
Inventor
悟 広瀬
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2010508159A priority Critical patent/JP5212468B2/en
Publication of WO2009128322A1 publication Critical patent/WO2009128322A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices

Definitions

  • the present invention relates to an acoustic braking member used for an ultrasonic probe that transmits ultrasonic waves into a subject and a method for manufacturing the same.
  • the present invention also relates to an ultrasonic probe using the acoustic braking member and an ultrasonic diagnostic apparatus including the ultrasonic probe.
  • Ultrasound generally refers to sound waves of 16000 Hz or higher, and can be examined non-destructively, harmlessly, and in real time, so that it is applied to various fields such as defect inspection and disease diagnosis.
  • an ultrasound that scans the inside of the subject with ultrasound and images the internal state of the subject based on a reception signal generated from the reflected wave (echo) of the ultrasound coming from inside the subject.
  • echo reflected wave
  • This ultrasonic diagnostic apparatus is smaller and less expensive for medical use than other medical imaging apparatuses, has no radiation exposure such as X-rays, is highly safe, and has a blood effect using the Doppler effect. It has various features such as the ability to display flow.
  • the ultrasonic diagnostic apparatus includes a circulatory system (eg, coronary artery of the heart), a digestive system (eg, gastrointestinal), an internal system (eg, liver, pancreas, and spleen), and a urinary system (eg, kidney and bladder). Widely used in obstetrics and gynecology.
  • a circulatory system eg, coronary artery of the heart
  • a digestive system eg, gastrointestinal
  • an internal system eg, liver, pancreas, and spleen
  • a urinary system eg, kidney and bladder
  • an ultrasonic probe that transmits and receives an ultrasonic wave (ultrasonic signal) to a subject is used.
  • This ultrasonic probe uses a piezoelectric phenomenon to generate an ultrasonic wave by mechanical vibration based on an electric signal transmitted, and to generate a reflected wave of the ultrasonic wave caused by an acoustic impedance mismatch inside the subject.
  • a plurality of piezoelectric elements that receive and generate received electrical signals are provided, and the plurality of piezoelectric elements are, for example, two-dimensionally arranged in an array.
  • a member called an acoustic braking member (acoustic load member, backing layer, damper layer, acoustic absorbing member) that absorbs ultrasonic waves is provided on one surface (back surface) of the plurality of piezoelectric elements.
  • a wiring for transmitting and receiving electrical signals is connected to each of the plurality of piezoelectric elements.
  • Patent Document 1 proposes a structure in which a hole structure is provided in an acoustic braking member to draw out wiring.
  • this acoustic braking member when the number of elements in the plurality of piezoelectric elements is increased and the element pitch is reduced, naturally the arrangement pitch of the hole structure needs to be reduced accordingly.
  • the aspect ratio of the hole structure becomes large and it becomes difficult to process the hole structure.
  • This aspect ratio is the ratio of the depth and diameter (diameter or radius) in the axial direction in the hole structure, that is, the depth / diameter.
  • Patent Document 2 a plurality of flexible printed circuit boards in which a plurality of linear wiring patterns are formed are stacked with a gap, and a resin that functions as an acoustic braking material is filled in the gap, and the resin is cured.
  • An acoustic braking member formed by doing so has been proposed.
  • the flexible printed circuit board exists in the acoustic braking member, the uniformity of the material in the acoustic braking member is lost, and the function of the acoustic braking member is degraded.
  • Patent Document 2 also proposes an acoustic braking member in which a lead wire is embedded in a resin, which is formed by filling a plurality of lead wires arranged in two dimensions with a resin that functions as an acoustic braking material. Yes.
  • this acoustic braking member uneven filling of the resin may occur, a gap is generated in the acoustic braking member, and the function of the acoustic braking member is degraded.
  • the size of the acoustic braking member is increased or the wiring pitch is reduced, it becomes difficult to fill the center portion with resin, and uneven filling of resin tends to occur.
  • Patent Document 3 a predetermined number of piezoelectric vibrators are mounted at the same pitch along one end, and a plurality of signal lines are formed to draw out electrical wiring from signal electrodes provided on each piezoelectric vibrator.
  • a two-dimensional array ultrasonic probe formed by inserting a plurality of printed circuit boards into a plurality of grooves formed in advance in a backing material at a predetermined pitch has been proposed.
  • this acoustic braking member backing material
  • the printed circuit board exists in the acoustic braking member, the uniformity of the material in the acoustic braking member is lost, and the function of the acoustic braking member is degraded.
  • Patent Document 4 proposes a backing material made of a composite material including a carbon fiber fiber material in which metal powder is dispersed and arranged in one direction and a resin, and the fiber material is used as a lead wire.
  • a metal powder for example, a tungsten metal powder is used to adjust the acoustic impedance. For this reason, if the fiber material is increased in order to increase the wiring density, the amount of metal powder that can be mixed into the acoustic braking member (backing material) is limited, and the acoustic impedance may not be sufficiently adjusted. .
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an acoustic braking member having a conductor wire in the acoustic braking body while reducing unevenness in characteristics of the acoustic braking body, a method for manufacturing the acoustic braking member, and the acoustic To provide an ultrasonic probe and an ultrasonic diagnostic apparatus provided with a braking member.
  • the acoustic braking member according to the present invention includes an acoustic braking body made of a polymer material, and in the polymeric material of the acoustic braking body, the acoustic impedance is adjusted and a predetermined one direction that functions as a lead wire is provided. A plurality of metallic fibrous conductors extending in the direction.
  • the acoustic braking member manufacturing method according to the present invention includes applying a fluid resin in which a metal powder conductor is mixed on the main surface of the substrate having a plurality of growth nuclei on one main surface. The resin of the fluid body is cured after applying a magnetic field in the normal direction of the main surface. According to this configuration, the conductor wire is provided in the acoustic braking body while the unevenness of characteristics in the acoustic braking body is reduced.
  • the ultrasonic probe and the ultrasonic diagnostic apparatus include such an acoustic braking member.
  • an ultrasonic probe and an ultrasonic diagnostic apparatus that include an acoustic braking member including a conductor wire in the acoustic braking body while reducing unevenness in characteristics of the acoustic braking body.
  • FIG. 2 is a block diagram showing an electrical configuration of the ultrasonic diagnostic apparatus shown in FIG. 1. It is a figure which shows the structure of the ultrasound probe in the ultrasound diagnosing device shown in FIG.
  • FIG. 4 is a perspective view showing a configuration of an acoustic braking member in the ultrasonic probe shown in FIG. 3. It is a figure for demonstrating the manufacturing method of the acoustic braking member shown in FIG.
  • FIG. 1 is a diagram illustrating an external configuration of an ultrasonic diagnostic apparatus according to an embodiment.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the ultrasonic diagnostic apparatus according to the embodiment.
  • FIG. 3 is a diagram illustrating a configuration of an ultrasound probe in the ultrasound diagnostic apparatus according to the embodiment.
  • the ultrasonic diagnostic apparatus S transmits an ultrasonic wave (first ultrasonic signal) to a subject such as a living body (not shown) and reflects the ultrasonic wave reflected by the subject.
  • the ultrasonic probe 2 that receives the reflected wave (echo, second ultrasonic signal) is connected to the ultrasonic probe 2 via the cable 3 and connected to the ultrasonic probe 2 via the cable 3.
  • the ultrasound probe 2 By transmitting an electrical signal transmission signal (transmission electrical signal), the ultrasound probe 2 transmits the first ultrasound signal to the subject, and the inside of the subject received by the ultrasound probe 2 An ultrasonic image that images the internal state of the subject as an ultrasound image based on a received signal (received electrical signal) of an electrical signal generated by the ultrasound probe 2 according to the second ultrasound signal coming from The diagnostic apparatus main body 1 is provided.
  • the ultrasonic diagnostic apparatus body 1 exchanges signals with the ultrasonic probe 2 as described above.
  • an operation input unit 11, a transmission unit 12, and a reception unit are provided.
  • the operation input unit 11 is for inputting data such as a command for instructing the start of diagnosis and personal information of the subject, for example, an operation panel or a keyboard provided with a plurality of input switches.
  • the transmission unit 12 is a circuit that supplies a transmission signal of an electrical signal to the ultrasonic probe 2 via the cable 3 under the control of the control unit 16 and causes the ultrasonic probe 2 to generate a first ultrasonic signal. is there.
  • the transmission unit 12 includes, for example, a high voltage pulse generator that generates a high voltage pulse.
  • the receiving unit 13 is a circuit that receives a reception signal of an electrical signal from the ultrasound probe 2 via the cable 3 under the control of the control unit 16, and outputs the reception signal to the image processing unit 14. For example, the receiver 13 amplifies the received signal with a predetermined amplification factor set in advance to compensate for transmission loss (transmission loss) of the cable 3, and the received signal amplified by the amplifier is an analog signal.
  • An analog-digital converter for converting from a digital signal to a digital signal is provided.
  • the image processing unit 14 is a circuit that generates an image (ultrasonic image) representing the internal state in the subject based on the received signal received by the receiving unit 13 under the control of the control unit 16.
  • the image processing unit 14 receives an ultrasonic signal having a frequency band substantially the same as the frequency band of the first ultrasonic signal as a second ultrasonic signal, and receives the received ultrasonic wave at the receiving unit 13. Based on the received reception signal, the image processing unit 14 Although it may be configured to generate an ultrasonic image, from the viewpoint of obtaining a higher-accuracy ultrasonic image, the image processing unit 14 receives a reception signal received by the receiving unit 13 using a harmonic imaging technique. The ultrasonic image of the subject may be generated based on the above.
  • the harmonic imaging technology is roughly classified into two methods, a filter method and a phase inversion method (pulse inversion method), as disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-286472.
  • This filter method is a method in which a fundamental wave component and a harmonic component are separated by a harmonic detection filter, only the harmonic component is extracted, and an ultrasonic image is generated from the harmonic component.
  • this phase inversion method transmits first and second transmission signals whose phases are successively inverted in the same direction, and first and second reception signals corresponding to the first and second transmission signals are transmitted.
  • a harmonic component is extracted by addition and an ultrasonic image is generated from the harmonic component.
  • the fundamental wave components in the first and second received signals are inverted in phase
  • the second harmonic component of the harmonic for example, is in phase, so by adding the first and second received signals This second harmonic component is extracted.
  • a harmonic component is extracted from the received signal by a filter method, and an ultrasonic image of the subject is generated using a harmonic imaging technique based on the extracted harmonic component. Further, for example, the image processing unit 14 extracts a harmonic component from the received signal by the phase inversion method, and generates an ultrasonic image of the subject based on the extracted harmonic component using a harmonic imaging technique.
  • the display unit 15 is a device that displays an ultrasonic image of the subject generated by the image processing unit 14 under the control of the control unit 16.
  • the display unit 15 is, for example, a display device such as a CRT display, LCD (liquid crystal display), organic EL display, or plasma display, or a printing device such as a printer.
  • the control unit 16 includes, for example, a microprocessor, a storage element, and peripheral circuits thereof, and the ultrasonic probe 2, the operation input unit 11, the transmission unit 12, the reception unit 13, the image processing unit 14, and a display. It is a circuit that performs overall control of the ultrasound diagnostic apparatus S by controlling the unit 15 according to the function.
  • the ultrasonic probe (ultrasonic probe) 2 is a device that transmits a first ultrasonic signal into a subject and receives a second ultrasonic signal coming from within the subject based on the first ultrasonic signal.
  • the ultrasonic probe 2 includes a flat acoustic braking member 21, a piezoelectric portion 22 laminated on one main surface of the acoustic braking member 21, and the piezoelectric
  • the acoustic matching layer 23 is laminated on the portion 22, and the acoustic lens 24 is laminated on the acoustic matching layer 23.
  • the acoustic braking member 21 is made of a material that absorbs ultrasonic waves (ultrasonic absorbing material), and absorbs ultrasonic waves radiated from the piezoelectric portion 22 toward the acoustic braking member 21.
  • the acoustic braking member 21 preferably has a sufficient thickness with respect to the wavelength of the ultrasonic wave to be used in order to keep the acoustic characteristics of the piezoelectric portion 22 good by sufficiently attenuating the ultrasonic wave.
  • the acoustic braking member 21 mechanically supports the piezoelectric unit 22 and acoustically applies braking so as to shorten the pulse waveform of the first ultrasonic signal.
  • the acoustic braking member 21 is generally also called an acoustic load member, a backing layer, a damper layer, or an acoustic absorbing member.
  • a plurality of fibrous conductors that are fibrous and are electrical conductors are embedded in a polymer material. The acoustic braking member 21 will be described in detail later.
  • the piezoelectric unit 22 includes a plurality of piezoelectric elements that are electrically connected to a plurality of fibrous conductors in the acoustic braking member 21 and convert electrical signals and ultrasonic signals to each other by using a piezoelectric phenomenon. Is done.
  • the piezoelectric unit 22 includes a plurality of piezoelectric elements that are two-dimensionally arranged in an array of m rows ⁇ n columns in two directions that are linearly independent in a plan view with a predetermined interval therebetween, for example, in two directions orthogonal to each other.
  • the gap generated by the predetermined interval is preferably filled with an ultrasonic absorber from the viewpoint of reducing crosstalk between the plurality of piezoelectric elements.
  • Each piezoelectric element includes an electrode on each of both opposing surfaces of a piezoelectric body made of a piezoelectric material. One electrode of each piezoelectric element is grounded, and the other electrode is electrically connected to one or more fibrous conductors of the acoustic braking member 21.
  • the thickness of the piezoelectric body is appropriately set depending on, for example, the frequency of ultrasonic waves to be transmitted / received and the type of piezoelectric material.
  • a transmission signal of an electric signal input from the transmitter 12 via the cable 3 to the ultrasonic probe 2 is input via each of the plurality of fibrous conductors. .
  • Each piezoelectric element converts this electric signal into an ultrasonic wave by using a piezoelectric phenomenon, generates an ultrasonic wave, and transmits the ultrasonic wave. Then, by applying the ultrasonic probe 2 to the subject, the ultrasonic waves generated by the piezoelectric elements of the piezoelectric unit 22 are transmitted into the subject as a first ultrasonic signal.
  • each piezoelectric element of the piezoelectric unit 22 receives a second ultrasonic signal coming from within the subject based on the first ultrasonic signal, and electrically converts the received second ultrasonic signal by using a piezoelectric phenomenon. This signal is converted into a signal and output. This electrical signal is output from the electrodes of each piezoelectric element via each of the plurality of fibrous conductors. This electrical signal is output from the ultrasound probe 2 to the receiving unit 13 of the ultrasound diagnostic apparatus body 1 via the cable 3.
  • the piezoelectric portion 22 includes a transmission piezoelectric portion 221 laminated on one main surface of the acoustic braking member 21 and an intermediate layer laminated on the transmission piezoelectric portion 221.
  • the layer 222 and the receiving piezoelectric portion 223 stacked on the intermediate layer 222 may be provided.
  • the transmission piezoelectric unit 221 includes an inorganic piezoelectric material, and converts a transmission electrical signal into a first ultrasonic signal by using a piezoelectric phenomenon.
  • the inorganic piezoelectric material examples include so-called PZT, quartz, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), lithium tantalate (LiTaO 3). And strontium titanate (SrTiO 3 ).
  • the intermediate layer (buffer layer) 222 is a member for laminating the transmission piezoelectric unit 221 and the reception piezoelectric unit 223. In the present embodiment, the intermediate layer 222 is a member that matches the acoustic impedances of the transmission piezoelectric unit 221 and the reception piezoelectric unit 223.
  • the receiving piezoelectric unit 223 includes an organic piezoelectric material, and converts the second ultrasonic signal coming from within the subject based on the first ultrasonic signal into a received electric signal by using a piezoelectric phenomenon. is there.
  • the organic piezoelectric material for example, a polymer of vinylidene fluoride can be used. Further, for example, a vinylidene fluoride (VDF) copolymer can be used as the organic piezoelectric material.
  • VDF vinylidene fluoride copolymer
  • This vinylidene fluoride copolymer is a copolymer (copolymer) of vinylidene fluoride and other monomers.
  • Examples of the other monomers include ethylene trifluoride, tetrafluoroethylene, perfluoroalkyl vinyl ether ( PFA), perfluoroalkoxyethylene (PAE), perfluorohexaethylene, and the like can be used.
  • the electromechanical coupling constant (piezoelectric effect) in the thickness direction varies depending on the copolymerization ratio. For example, an appropriate copolymerization ratio is adopted according to the specifications of the ultrasonic probe, etc. .
  • the piezoelectric unit 22 is functionally separated into the transmitting piezoelectric unit 221 and the receiving piezoelectric unit 223, and the transmitting piezoelectric unit 221 is configured to include an inorganic piezoelectric material. Therefore, it is possible to increase the transmission power with a relatively simple structure. For this reason, the ultrasonic probe 2 including the piezoelectric unit 22 can transmit the first ultrasonic signal of the fundamental wave with a relatively large power, and obtain a higher harmonic component of the second ultrasonic signal. be able to.
  • the receiving piezoelectric portion 223 is configured to include an organic piezoelectric material.
  • the ultrasonic probe 2 including the piezoelectric portion 22 can make the frequency band wide with a relatively simple structure, it can receive the harmonic component included in the second ultrasonic signal. Is possible. For this reason, this ultrasonic probe 2 can receive suitably the high frequency component of a 2nd ultrasonic signal.
  • the ultrasonic probe 2 including the piezoelectric unit 22 having such a configuration can suitably receive the harmonic component of the second ultrasonic signal, an ultrasonic image is formed by the harmonic imaging technique described above. This is suitable for the ultrasonic diagnostic apparatus S.
  • the piezoelectric portion 22 and the ultrasonic probe 2 can be reduced in size.
  • a receiving piezoelectric portion 223 is disposed between the transmitting and receiving surfaces of the first and second ultrasonic signals (the surface of the acoustic lens 24) and the transmitting piezoelectric portion 221. Therefore, it is possible to reduce the reception noise and improve the SN ratio.
  • the acoustic matching layer 23 is a member that matches the acoustic impedance of the piezoelectric portion 22 and the acoustic impedance of the subject.
  • the acoustic matching layer 23 may be composed of a single layer or may be composed of a plurality of layers.
  • the acoustic matching layer 23 is preferably composed of a plurality of layers.
  • the acoustic lens 24 is a member that converges the ultrasonic wave transmitted toward the subject, and has, for example, a shape that bulges in an arc as shown in FIG. Note that the acoustic matching layer 23 and the acoustic lens 24 may be integrally formed.
  • the ultrasonic diagnostic apparatus S having such a configuration, for example, when an instruction to start diagnosis is input from the operation input unit 11, a transmission signal of an electrical signal is generated by the transmission unit 12 under the control of the control unit 16.
  • the generated electrical signal transmission signal is supplied to the ultrasonic probe 2 via the cable 3.
  • the electric signal transmission signal is, for example, a voltage pulse repeated at a predetermined cycle.
  • each of the plurality of piezoelectric elements expands and contracts in the thickness direction, and ultrasonically vibrates in accordance with the electrical signal transmission signal.
  • the piezoelectric unit 22 radiates an ultrasonic wave (first ultrasonic signal) through the acoustic matching layer 23 and the acoustic lens 24.
  • first ultrasonic signal is transmitted from the ultrasonic probe 2 to the subject.
  • the ultrasound probe 2 may be used in contact with the surface of the subject, or may be used by being inserted into the subject, for example, being inserted into a body cavity of a living body. .
  • the first ultrasonic signal transmitted to the subject is reflected by one or a plurality of boundary surfaces having different acoustic impedances inside the subject, and becomes an ultrasonic reflected wave (second ultrasonic signal).
  • the second ultrasonic signal includes not only the frequency (fundamental fundamental frequency) component of the transmitted first ultrasonic signal but also a harmonic frequency component that is an integral multiple of the fundamental frequency. For example, second harmonic components such as twice, three times, and four times the fundamental frequency, third harmonic components, fourth harmonic components, and the like are also included. This second ultrasonic signal is received by the ultrasonic probe 2.
  • the second ultrasonic signal is received by the piezoelectric unit 22 via the acoustic lens 24 and the acoustic matching layer 23, and mechanical vibration is converted into an electric signal by the piezoelectric unit 22 as a received signal. It is taken out.
  • the extracted reception signal of the electrical signal is received from the ultrasonic probe 2 via the cable 3 by the receiving unit 13 of the ultrasonic diagnostic apparatus body 1.
  • the reception unit 13 performs reception processing on the input reception signal, more specifically, for example, after amplification, converts the analog signal into a digital signal, and outputs the converted signal to the image processing unit 14.
  • the first ultrasonic signal is sequentially transmitted from each piezoelectric element of the piezoelectric unit 22 toward the subject, and the second ultrasonic signal reflected by the subject is received by the piezoelectric unit 22.
  • the image processing unit 14 under the control of the control unit 16, the image processing unit 14 generates an ultrasonic image of the subject based on the reception signal received by the reception unit 13 from the time from transmission to reception, the reception intensity, and the like, and the display unit 15 displays the ultrasonic image of the subject generated by the image processing unit 14 under the control of the control unit 16.
  • the image processing unit 14 may generate an ultrasonic image of the subject by the above-described harmonic imaging technique.
  • FIG. 4 is a diagram illustrating a configuration of an acoustic braking member in the ultrasonic probe according to the embodiment.
  • 4A is a side view of the acoustic braking member
  • FIG. 4B is a perspective view of the acoustic braking member.
  • FIG. 4A also shows the piezoelectric portion 22.
  • the acoustic braking member 21 of the present embodiment includes an acoustic braking member 211 that is provided adjacent to the piezoelectric portion 22 and is made of a polymer material.
  • the molecular material includes a plurality of fibrous conductors 212 extending in a predetermined direction.
  • the acoustic brake member 211 is made of a resin such as a thermosetting resin or an ultraviolet curable resin, and is a rectangular, layered or plate-like member in plan view.
  • a thermosetting epoxy resin or an ultraviolet curable epoxy resin having two or more epoxy groups in the molecule is used as the acoustic braking body 211.
  • polyvinyl chloride, rubber or the like may be used for the acoustic braking body 211.
  • the fibrous conductor 212 has a function of adjusting acoustic impedance and functions as a lead wire.
  • the predetermined direction is the same as the vibration direction of the piezoelectric portion 22 when the piezoelectric portion 22 is ultrasonically vibrated in a state where the acoustic braking member 21 and the piezoelectric portion 22 are laminated.
  • the fibrous conductor 212 extends in the predetermined direction so as to penetrate the acoustic braking body 211. That is, one end of the fibrous conductor 212 is exposed on one main surface of the acoustic braking body 211, and the other end is exposed on the other main surface of the acoustic braking body 211.
  • the fibrous conductor 212 is, for example, a metal fiber in the present embodiment, and more specifically, for example, a tungsten metal fiber made of tungsten (W).
  • W tungsten
  • the fibrous conductor 212 may be made of ferrite.
  • the number of fibrous conductors 212 is larger than the number of the plurality of piezoelectric elements in the piezoelectric portion 22.
  • the pitch of the growth nuclei described later in the fibrous conductor 212 is set so as to be equal to or less than half of the element pitch of the piezoelectric elements in the piezoelectric portion 22, whereby the number of fibrous conductors 212 is larger than the number of piezoelectric elements.
  • the fibrous conductor 212 having such a configuration penetrates the acoustic braking body 211, it can be electrically connected from one main surface of the acoustic braking body 211 to the other main surface. Therefore, the fibrous conductor 212 can function as a lead wire. For this reason, when the piezoelectric part 22 is laminated
  • the fibrous conductor 212 of such a structure becomes an acoustic scatterer and can enlarge the attenuation factor of an ultrasonic wave. Therefore, the fibrous conductor 21 can adjust the acoustic impedance of the acoustic braking member 21.
  • the acoustic impedance of the acoustic braking member 21 is adjusted by the density of the fibrous conductor 212 and set to a predetermined value.
  • the density of the fibrous conductor 212 is adjusted by the number and the wire diameter, and is set to a predetermined value.
  • the fibrous conductor 212 is adjusted so that its diameter is about 100 nm to several ⁇ m, and its density is adjusted so as to be several volume percent to about 10 volume percent with respect to the resin. That is, in this embodiment, the resin and the fibrous conductor 212 constitute a material that absorbs ultrasonic waves (ultrasonic absorber).
  • the acoustic braking member 21 having such a configuration, only the plurality of fibrous conductors 212 are included in the acoustic braking body 211. Therefore, unlike the background art, there is no need to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body 211, and the material uniformity in the acoustic braking member 21 can be improved.
  • the fibrous conductor 212 can be formed, for example, by mixing a powdered conductor in a fluidized resin and growing the powdered conductor in the fluidized resin. Therefore, there is no need to fill the resin, and the unevenness of the resin can be reduced.
  • the acoustic braking body 211 includes a plurality of fibrous conductors 212, and the plurality of fibrous conductors 212 function as lead wires penetrating the acoustic braking body 211.
  • the function of adjusting the acoustic impedance of the acoustic braking body 211 is also exhibited. Therefore, even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the uniformity of the material of the acoustic braking member can be improved.
  • the acoustic braking member 21 and the piezoelectric portion 22 are stacked, and each of the plurality of piezoelectric elements in the piezoelectric portion 22 and the plurality of fibers in the acoustic braking member 21 are arranged.
  • the conductor 212 is electrically connected, since the number of the fibrous conductors 212 is larger than the number of the piezoelectric elements, it is possible to connect at least one fibrous conductor 212 to the piezoelectric element.
  • the alignment of the element and the plurality of fibrous conductors 212 is not necessarily performed. For this reason, the piezoelectric part 22 can be assembled to the acoustic braking member 21 more easily, and productivity can be improved.
  • the acoustic braking member 21 having such a configuration is manufactured as follows, for example.
  • FIG. 5 is a diagram for explaining a method of manufacturing the acoustic braking member.
  • the acoustic braking member manufacturing apparatus 31 includes a pair of coils 311 (311a, 311b) arranged at a predetermined interval from each other and a pair of the coils 311a, 311b to generate a magnetic field between the pair of coils 311a, 311b.
  • a power supply device 311c that supplies power to the coils 311a and 311b, and a plurality of growth nuclei 3121 are formed on one main surface, and the one main surface and the magnetic field direction are orthogonal to each other between the pair of coils 311a and 311b.
  • a resin supply member 313 for supplying a fluid resin in which a powdered conductor is mixed on one main surface of the substrate 312.
  • the coil 311 is configured, for example, by forming a coil winding conductor pattern on one main surface of a plate-like member.
  • the growth nuclei 3121 formed on the substrate 312 serve as a growth base point when the fibrous conductor 212 is grown from the powder conductor by applying a magnetic field.
  • the growth nucleus 3121 is, for example, a circular pattern (circular pad, circular dot) made of a magnetic material formed on a non-magnetic substrate 312. For example, the magnetic film formed on substantially the entire one main surface of the substrate. It is formed by etching.
  • the wire diameter of the fibrous conductor 212 can be adjusted by adjusting the size of the growth nucleus 3121.
  • the resin supply member 313 includes, for example, a cylindrical member having a slit-like discharge port that extends across the entire width of the substrate 312.
  • the resin supply member 313 is preferably configured to move relative to the substrate 312 in order to apply the resin substantially uniformly on the one main surface of the substrate 312 over the entire surface. .
  • the acoustic braking member manufacturing apparatus 31 having such a configuration when power is supplied from the power supply device 311c to the pair of coils 311a and 311b, between the pair of coils 311a and 311b, the coil 311 is connected to the other coil 311b. For example, a magnetic field is generated in the direction of the coil 311b toward the coil 311a. For this reason, the acoustic braking member manufacturing apparatus 31 having such a configuration can apply a magnetic field in the normal direction of one main surface of the substrate 312.
  • a fluid resin in which a metal powder conductor is mixed is prepared.
  • a fluid epoxy resin in which tungsten particles are dispersed substantially uniformly is prepared.
  • the resin mixed with the powder conductor is poured from the resin supply member 313 onto one main surface of the substrate 312, and the fluid resin mixed with the powder conductor becomes the substrate.
  • the one main surface of 312 a film is developed over substantially the entire surface, and one main surface of the substrate 312 is applied with this resin (application process).
  • the powder conductors in the resin are arranged in a straight line along the magnetic field direction starting from the growth nucleus 3121, and the powder conductors are connected in a fibrous form.
  • the powder conductor by subjecting the powder conductor to a surface treatment that covers the surface with a surface treatment agent having one or more halogen elements, the ease of movement of the powder conductor in the resin can be increased.
  • a flat lid member 315 for regulating the resin is placed on the resin, and the resin in a fluid state is cured (curing step).
  • the resin is a thermosetting resin
  • the resin is cured by applying heat.
  • the resin is an ultraviolet curable resin
  • the resin is cured by irradiating ultraviolet rays.
  • the fibrous conductor connected in a fibrous form is held in the fibrous form, and a fibrous conductor 212 embedded in the acoustic braking body 211 is formed.
  • a frame body may be provided between the substrate 312 and the lid member 315 so that the fluid resin does not flow out.
  • the acoustic braking body 211 including the fibrous conductor 212 is peeled off from the substrate 312 and peeled off from the lid member 315.
  • the substrate 312 and the lid member 315 are removed from the acoustic braking body 211 including the fibrous conductor 212 (separation step).
  • the acoustic braking member 21 including the acoustic braking body 211 including the fibrous conductor 212 is manufactured.
  • the edge part of the acoustic braking body 211 may be cut
  • the acoustic braking member 21 including the fibrous conductor 212 in the acoustic braking body 211 is manufactured through the application process, the application process, and the curing process. . Therefore, unlike the background art, there is no need to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body 211, and the material uniformity in the acoustic braking member 21 can be improved. Further, there is no need to fill the resin, and the unevenness of the resin can be reduced.
  • the fibrous conductor fulfills not only the lead wire function but also the acoustic impedance adjustment function, even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the material of the acoustic braking member can be adjusted. The uniformity can be improved.
  • An acoustic braking member is an acoustic braking member used for an ultrasonic probe that transmits ultrasonic waves into a subject, and includes an acoustic braking body formed of a polymer material, and the acoustic braking body
  • the polymer material includes a plurality of metallic fibrous conductors that adjust acoustic impedance and extend in one predetermined direction that function as lead wires.
  • the acoustic braking body includes a plurality of fibrous conductors. Therefore, unlike the background art, it is not necessary to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body, and the uniformity of the material in the acoustic braking member can be improved.
  • the fibrous conductor can be formed, for example, by mixing a powdered conductor with a fluidized resin and growing the powdered conductor in the fluidized resin. Therefore, there is no need to fill the resin, and the unevenness of the resin can be reduced.
  • the acoustic braking body includes a plurality of fibrous conductors, and the plurality of fibrous conductors not only function as lead wires penetrating the acoustic braking body, but also the acoustic braking body. It also has the function of adjusting the acoustic impedance. Therefore, even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the uniformity of the material of the acoustic braking member can be improved.
  • the metallic fibrous conductor is preferably made of tungsten.
  • the metallic fibrous conductor is made of tungsten, which is generally used for adjusting the acoustic impedance, it can be designed relatively easily to sufficiently adjust the acoustic impedance.
  • the acoustic braking member manufacturing method for manufacturing the above-described acoustic braking member includes a metal powder conductor on the main surface of the substrate on which a plurality of growth nuclei are formed on one main surface.
  • an acoustic braking member including a fibrous conductor in an acoustic braking body can be manufactured through the application process, the application process, and the curing process. Therefore, unlike the background art, it is not necessary to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body, and the uniformity of the material in the acoustic braking member can be improved. Further, there is no need to fill the resin, and the unevenness of the resin can be reduced. Even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the material uniformity of the acoustic braking member can be improved.
  • An ultrasonic probe is provided adjacent to the piezoelectric unit including a plurality of piezoelectric elements for generating ultrasonic waves by using a piezoelectric phenomenon, and the piezoelectric unit. Any one of the above-described acoustic braking members is provided, and the number of the metallic fibrous conductors is larger than the number of the plurality of piezoelectric elements.
  • the number of the fibrous conductors is larger than the number of the piezoelectric elements. Since there are many, at least one fibrous conductor can be connected to the piezoelectric element, it is not always necessary to align the plurality of piezoelectric elements and the plurality of fibrous conductors. For this reason, a piezoelectric part can be assembled
  • an ultrasonic diagnostic device includes the above-described ultrasonic probe and an ultrasonic diagnostic device main body that transmits and receives signals between the ultrasonic probe. is there.
  • an ultrasonic diagnostic apparatus using an ultrasonic probe provided with an acoustic braking member including a conductor wire in the acoustic braking body while reducing unevenness of the acoustic braking body is provided.
  • an acoustic braking member an acoustic braking member manufacturing method, an ultrasonic probe ultrasonic wave using the acoustic braking member, and an ultrasonic diagnostic apparatus using the ultrasonic probe. it can.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

A sound damping member (21) is equipped with a sound damper (211) made of a polymer material, and the polymer material of the sound damper (211) contains a plurality of metal fibrous conductors (212) that extend in one predetermined direction and function as a lead wire while adjusting the acoustic impedance. A method for producing the sound damping member (21) comprises a step of coating one major surface of a substrate on which a plurality of growth nucleus are formed with a resin in flowing state into which metal powder conductor is mixed, and a step of curing the resin after applying a magnetic field in the direction normal to the major surface. With such an arrangement, conductor wires are provided onto the sound damping member (21) while reducing irregularities of the sound damping material (21). Furthermore, an ultrasonic probe and an ultrasonic diagnosis device equipped with such a sound damping material (21) can be provided.

Description

音響制動部材および音響制動部材の製造方法ならびに超音波探触子および超音波診断装置Acoustic braking member, acoustic braking member manufacturing method, ultrasonic probe, and ultrasonic diagnostic apparatus
 本発明は、被検体内に超音波を送信する超音波探触子に用いられる音響制動部材およびその製造方法に関する。そして、この音響制動部材を用いた超音波探触子およびこの超音波探触子を備えた超音波診断装置に関する。 The present invention relates to an acoustic braking member used for an ultrasonic probe that transmits ultrasonic waves into a subject and a method for manufacturing the same. The present invention also relates to an ultrasonic probe using the acoustic braking member and an ultrasonic diagnostic apparatus including the ultrasonic probe.
 超音波は、通常、16000Hz以上の音波をいい、非破壊、無害および略リアルタイムでその内部を調べることが可能であることから、欠陥の検査や疾患の診断等の様々な分野に応用されている。その一つに、被検体内を超音波で走査し、被検体内から来た超音波の反射波(エコー)から生成した受信信号に基づいて当該被検体内の内部状態を画像化する超音波診断装置がある。この超音波診断装置は、医療用では、他の医療用画像装置に較べて小型で安価であり、そして、X線等の放射線被爆が無く安全性が高いこと、また、ドップラ効果を応用した血流表示が可能であること等の様々な特長を有している。このため、超音波診断装置は、循環器系(例えば心臓の冠動脈等)、消化器系(例えば胃腸等)、内科系(例えば肝臓、膵臓および脾臓等)、泌尿器系(例えば腎臓および膀胱等)および産婦人科系等で広く利用されている。 Ultrasound generally refers to sound waves of 16000 Hz or higher, and can be examined non-destructively, harmlessly, and in real time, so that it is applied to various fields such as defect inspection and disease diagnosis. . For example, an ultrasound that scans the inside of the subject with ultrasound and images the internal state of the subject based on a reception signal generated from the reflected wave (echo) of the ultrasound coming from inside the subject. There is a diagnostic device. This ultrasonic diagnostic apparatus is smaller and less expensive for medical use than other medical imaging apparatuses, has no radiation exposure such as X-rays, is highly safe, and has a blood effect using the Doppler effect. It has various features such as the ability to display flow. For this reason, the ultrasonic diagnostic apparatus includes a circulatory system (eg, coronary artery of the heart), a digestive system (eg, gastrointestinal), an internal system (eg, liver, pancreas, and spleen), and a urinary system (eg, kidney and bladder). Widely used in obstetrics and gynecology.
 この超音波診断装置には、被検体に対して超音波(超音波信号)を送受信する超音波探触子が用いられている。この超音波探触子は、圧電現象を利用することによって、送信の電気信号に基づいて機械振動して超音波を発生し、被検体内部で音響インピーダンスの不整合によって生じる超音波の反射波を受けて受信の電気信号を生成する複数の圧電素子を備え、これら複数の圧電素子が例えばアレイ状に2次元配列されて構成されている。そして、これら複数の圧電素子における一方面(背面)には、超音波を吸収する音響制動部材(音響負荷部材、バッキング層、ダンパ層、音響吸収部材)と呼ばれる部材が設けられており、また、これら複数の圧電素子のそれぞれに、電気信号を送受信するための配線が接続されている。 In this ultrasonic diagnostic apparatus, an ultrasonic probe that transmits and receives an ultrasonic wave (ultrasonic signal) to a subject is used. This ultrasonic probe uses a piezoelectric phenomenon to generate an ultrasonic wave by mechanical vibration based on an electric signal transmitted, and to generate a reflected wave of the ultrasonic wave caused by an acoustic impedance mismatch inside the subject. A plurality of piezoelectric elements that receive and generate received electrical signals are provided, and the plurality of piezoelectric elements are, for example, two-dimensionally arranged in an array. A member called an acoustic braking member (acoustic load member, backing layer, damper layer, acoustic absorbing member) that absorbs ultrasonic waves is provided on one surface (back surface) of the plurality of piezoelectric elements. A wiring for transmitting and receiving electrical signals is connected to each of the plurality of piezoelectric elements.
 例えば、特許文献1では、音響制動部材に穴構造を設けて配線を引き出す構造が提案されている。しかしながら、この音響制動部材では、複数の圧電素子における素子数が多くなって素子ピッチが小さくなると、これに応じて穴構造の配列ピッチも当然小さくする必要が生じる。この結果、穴構造のアスペクト比が大きくなって穴構造の加工が困難になってしまう。なお、このアスペクト比は、穴構造における軸方向の深さと径(直径または半径)との比、すなわち、深さ/径である。 For example, Patent Document 1 proposes a structure in which a hole structure is provided in an acoustic braking member to draw out wiring. However, in this acoustic braking member, when the number of elements in the plurality of piezoelectric elements is increased and the element pitch is reduced, naturally the arrangement pitch of the hole structure needs to be reduced accordingly. As a result, the aspect ratio of the hole structure becomes large and it becomes difficult to process the hole structure. This aspect ratio is the ratio of the depth and diameter (diameter or radius) in the axial direction in the hole structure, that is, the depth / diameter.
 また例えば、特許文献2では、線状の複数の配線パターンを形成したフレキシブルプリント基板を、隙間を空けて複数枚積層し、前記隙間に音響制動材として機能する樹脂を充填し、前記樹脂を硬化することで形成される音響制動部材が提案されている。しかしながら、この音響制動部材では、音響制動部材内にフレキシブルプリント基板が存在することになり、音響制動部材における材質の均一性が失われ、音響制動部材の機能が低下してしまう。また、特許文献2では、2次元に配列された複数のリード線に、音響制動材として機能する樹脂を充填することで形成される、リード線を樹脂内に埋設した音響制動部材も提案されている。しかしながら、この音響制動部材では、樹脂の充填ムラが生じる場合があり、音響制動部材内に空隙が生じ、音響制動部材の機能が低下してしまう。特に、音響制動部材の大きさが大きくなったり、配線ピッチが小さくなったりすると、その中央部に樹脂を充填することが難しくなり、樹脂の充填ムラが生じやすくなる。 Also, for example, in Patent Document 2, a plurality of flexible printed circuit boards in which a plurality of linear wiring patterns are formed are stacked with a gap, and a resin that functions as an acoustic braking material is filled in the gap, and the resin is cured. An acoustic braking member formed by doing so has been proposed. However, in this acoustic braking member, the flexible printed circuit board exists in the acoustic braking member, the uniformity of the material in the acoustic braking member is lost, and the function of the acoustic braking member is degraded. Patent Document 2 also proposes an acoustic braking member in which a lead wire is embedded in a resin, which is formed by filling a plurality of lead wires arranged in two dimensions with a resin that functions as an acoustic braking material. Yes. However, in this acoustic braking member, uneven filling of the resin may occur, a gap is generated in the acoustic braking member, and the function of the acoustic braking member is degraded. In particular, when the size of the acoustic braking member is increased or the wiring pitch is reduced, it becomes difficult to fill the center portion with resin, and uneven filling of resin tends to occur.
 また例えば、特許文献3では、所定数の圧電振動子が一端に沿って同ピッチで実装されるとともに、前記各圧電振動子に設けられた信号電極から電気配線を引き出す複数の信号ラインが形成された複数のプリント基板を、バッキング材に所定ピッチで予め形成されている複数の溝のそれぞれに挿入することで形成される2次元アレイ超音波プローブが提案されている。しかしながら、この音響制動部材(バッキング材)では、音響制動部材内にプリント基板が存在することになり、音響制動部材における材質の均一性が失われ、音響制動部材の機能が低下してしまう。 Further, for example, in Patent Document 3, a predetermined number of piezoelectric vibrators are mounted at the same pitch along one end, and a plurality of signal lines are formed to draw out electrical wiring from signal electrodes provided on each piezoelectric vibrator. A two-dimensional array ultrasonic probe formed by inserting a plurality of printed circuit boards into a plurality of grooves formed in advance in a backing material at a predetermined pitch has been proposed. However, in this acoustic braking member (backing material), the printed circuit board exists in the acoustic braking member, the uniformity of the material in the acoustic braking member is lost, and the function of the acoustic braking member is degraded.
 また例えば、特許文献4では、金属粉体が分散され一方向に配列した炭素繊維の繊維材と樹脂とを含む複合材から成り、前記繊維材がリード線として用いられるバッキング材が提案されている。しかしながら、この音響制動部材(バッキング材)では、繊維材がリード線として機能する一方で、音響インピーダンスの調整に金属粉体、例えば、タングステンの金属粉体が用いられている。このため、配線密度を増加させるために繊維材が増加されると、音響制動部材(バッキング材)に混入可能な金属粉体の量が制限され、充分に音響インピーダンスの調整ができなくなる虞がある。また、繊維材の存在によって金属粉体を均一に分散することが困難となり、音響制動部材における材質の均一性が失われ、音響制動部材の機能が低下してしまう。
米国特許第5267221号明細書 特開2000-166923号公報 特開2001-309493号公報 特開2007-134767号公報
Further, for example, Patent Document 4 proposes a backing material made of a composite material including a carbon fiber fiber material in which metal powder is dispersed and arranged in one direction and a resin, and the fiber material is used as a lead wire. . However, in this acoustic braking member (backing material), while the fiber material functions as a lead wire, a metal powder, for example, a tungsten metal powder is used to adjust the acoustic impedance. For this reason, if the fiber material is increased in order to increase the wiring density, the amount of metal powder that can be mixed into the acoustic braking member (backing material) is limited, and the acoustic impedance may not be sufficiently adjusted. . Moreover, it becomes difficult to uniformly disperse the metal powder due to the presence of the fiber material, the uniformity of the material in the acoustic braking member is lost, and the function of the acoustic braking member is degraded.
US Pat. No. 5,267,221 JP 2000-166923 A JP 2001-309493 A JP 2007-134767 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、音響制動体における特性のムラを低減しつつ導体線を音響制動体に備える音響制動部材およびその製造方法ならびにこの音響制動部材を備えた超音波探触子および超音波診断装置を提供することである。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an acoustic braking member having a conductor wire in the acoustic braking body while reducing unevenness in characteristics of the acoustic braking body, a method for manufacturing the acoustic braking member, and the acoustic To provide an ultrasonic probe and an ultrasonic diagnostic apparatus provided with a braking member.
 本発明にかかる音響制動部材は、高分子材料で構成された音響制動体を備え、この音響制動体の高分子材料中には、音響インピーダンスを調整するとともに、リード線として機能する所定の一方向に延びた複数の金属製繊維状導体を含むものである。また、本発明にかかる音響制動部材の製造方法は、一方主面に複数の成長核を形成した基板の前記主面上に、金属製の粉体の導体を混合した流動状態の樹脂を塗布し、前記主面の法線方向に磁界を印加した後に、前記流動状体の樹脂を硬化するものである。この構成によれば、音響制動体における特性のムラが低減されつつ導体線が音響制動体に備えられる。 The acoustic braking member according to the present invention includes an acoustic braking body made of a polymer material, and in the polymeric material of the acoustic braking body, the acoustic impedance is adjusted and a predetermined one direction that functions as a lead wire is provided. A plurality of metallic fibrous conductors extending in the direction. The acoustic braking member manufacturing method according to the present invention includes applying a fluid resin in which a metal powder conductor is mixed on the main surface of the substrate having a plurality of growth nuclei on one main surface. The resin of the fluid body is cured after applying a magnetic field in the normal direction of the main surface. According to this configuration, the conductor wire is provided in the acoustic braking body while the unevenness of characteristics in the acoustic braking body is reduced.
 また、本発明にかかる超音波探触子および超音波診断装置は、このような音響制動部材を備えるものである。この構成によれば、音響制動体における特性のムラを低減しつつ音響制動体に導体線を備える音響制動部材を備えた超音波探触子および超音波診断装置が提供される。 Further, the ultrasonic probe and the ultrasonic diagnostic apparatus according to the present invention include such an acoustic braking member. According to this configuration, there is provided an ultrasonic probe and an ultrasonic diagnostic apparatus that include an acoustic braking member including a conductor wire in the acoustic braking body while reducing unevenness in characteristics of the acoustic braking body.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の実施形態における超音波診断装置の外観構成を示す図である。It is a figure which shows the external appearance structure of the ultrasonic diagnosing device in embodiment of this invention. 図1に示す超音波診断装置の電気的な構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the ultrasonic diagnostic apparatus shown in FIG. 1. 図1に示す超音波診断装置における超音波探触子の構成を示す図である。It is a figure which shows the structure of the ultrasound probe in the ultrasound diagnosing device shown in FIG. 図3に示す超音波探触子における音響制動部材の構成を示す斜視図である。FIG. 4 is a perspective view showing a configuration of an acoustic braking member in the ultrasonic probe shown in FIG. 3. 図3に示す音響制動部材の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the acoustic braking member shown in FIG.
 以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号が用いられ、個別の構成を指す場合には添え字を付した参照符号が用いられる。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted. Further, in this specification, a reference symbol without a suffix is used when referring generically, and a reference symbol with a suffix is used when referring to an individual configuration.
 図1は、実施形態における超音波診断装置の外観構成を示す図である。図2は、実施形態における超音波診断装置の電気的な構成を示すブロック図である。図3は、実施形態の超音波診断装置における超音波探触子の構成を示す図である。 FIG. 1 is a diagram illustrating an external configuration of an ultrasonic diagnostic apparatus according to an embodiment. FIG. 2 is a block diagram illustrating an electrical configuration of the ultrasonic diagnostic apparatus according to the embodiment. FIG. 3 is a diagram illustrating a configuration of an ultrasound probe in the ultrasound diagnostic apparatus according to the embodiment.
 超音波診断装置Sは、図1および図2に示すように、図略の生体等の被検体に対して超音波(第1超音波信号)を送信すると共に、この被検体で反射した超音波の反射波(エコー、第2超音波信号)を受信する超音波探触子2と、超音波探触子2とケーブル3を介して接続され、超音波探触子2へケーブル3を介して電気信号の送信信号(送信電気信号)を送信することによって超音波探触子2に被検体に対して第1超音波信号を送信させると共に、超音波探触子2で受信された被検体内から来た第2超音波信号に応じて超音波探触子2で生成された電気信号の受信信号(受信電気信号)に基づいて被検体内の内部状態を超音波画像として画像化する超音波診断装置本体1とを備えて構成される。 As shown in FIGS. 1 and 2, the ultrasonic diagnostic apparatus S transmits an ultrasonic wave (first ultrasonic signal) to a subject such as a living body (not shown) and reflects the ultrasonic wave reflected by the subject. The ultrasonic probe 2 that receives the reflected wave (echo, second ultrasonic signal) is connected to the ultrasonic probe 2 via the cable 3 and connected to the ultrasonic probe 2 via the cable 3. By transmitting an electrical signal transmission signal (transmission electrical signal), the ultrasound probe 2 transmits the first ultrasound signal to the subject, and the inside of the subject received by the ultrasound probe 2 An ultrasonic image that images the internal state of the subject as an ultrasound image based on a received signal (received electrical signal) of an electrical signal generated by the ultrasound probe 2 according to the second ultrasound signal coming from The diagnostic apparatus main body 1 is provided.
 超音波診断装置本体1は、上述のように超音波探触子2との間で信号の授受を行い、例えば、図2に示すように、操作入力部11と、送信部12と、受信部13と、画像処理部14と、表示部15と、制御部16とを備えて構成されている。 The ultrasonic diagnostic apparatus body 1 exchanges signals with the ultrasonic probe 2 as described above. For example, as shown in FIG. 2, an operation input unit 11, a transmission unit 12, and a reception unit are provided. 13, an image processing unit 14, a display unit 15, and a control unit 16.
 操作入力部11は、例えば、診断開始を指示するコマンドや被検体の個人情報等のデータを入力するものであり、例えば、複数の入力スイッチを備えた操作パネルやキーボード等である。 The operation input unit 11 is for inputting data such as a command for instructing the start of diagnosis and personal information of the subject, for example, an operation panel or a keyboard provided with a plurality of input switches.
 送信部12は、制御部16の制御に従って、超音波探触子2へケーブル3を介して電気信号の送信信号を供給して超音波探触子2に第1超音波信号を発生させる回路である。送信部12は、例えば、高電圧のパルスを生成する高圧パルス発生器等を備えて構成される。受信部13は、制御部16の制御に従って、超音波探触子2からケーブル3を介して電気信号の受信信号を受信する回路であり、この受信信号を画像処理部14へ出力する。受信部13は、例えば、ケーブル3の伝送損失(伝送ロス)を補償すべく、受信信号を予め設定された所定の増幅率で増幅する増幅器、および、この増幅器で増幅された受信信号をアナログ信号からディジタル信号へ変換するアナログ-ディジタル変換器等を備えて構成される。 The transmission unit 12 is a circuit that supplies a transmission signal of an electrical signal to the ultrasonic probe 2 via the cable 3 under the control of the control unit 16 and causes the ultrasonic probe 2 to generate a first ultrasonic signal. is there. The transmission unit 12 includes, for example, a high voltage pulse generator that generates a high voltage pulse. The receiving unit 13 is a circuit that receives a reception signal of an electrical signal from the ultrasound probe 2 via the cable 3 under the control of the control unit 16, and outputs the reception signal to the image processing unit 14. For example, the receiver 13 amplifies the received signal with a predetermined amplification factor set in advance to compensate for transmission loss (transmission loss) of the cable 3, and the received signal amplified by the amplifier is an analog signal. An analog-digital converter for converting from a digital signal to a digital signal is provided.
 画像処理部14は、制御部16の制御に従って、受信部13で受信した受信信号に基づいて被検体内の内部状態を表す画像(超音波画像)を生成する回路である。 The image processing unit 14 is a circuit that generates an image (ultrasonic image) representing the internal state in the subject based on the received signal received by the receiving unit 13 under the control of the control unit 16.
 画像処理部14は、第1超音波信号の周波数帯と略同一の周波数帯の超音波信号を第2超音波信号して受信部13で受信し、この受信した受信信号に基づいて被検体の超音波画像を生成するように構成されてもよいが、より高精度の超音波画像を得る観点から、画像処理部14は、ハーモニックイメージング(Harmonic Imaging)技術によって、受信部13で受信した受信信号に基づいて被検体の超音波画像を生成するように構成されてもよい。 The image processing unit 14 receives an ultrasonic signal having a frequency band substantially the same as the frequency band of the first ultrasonic signal as a second ultrasonic signal, and receives the received ultrasonic wave at the receiving unit 13. Based on the received reception signal, the image processing unit 14 Although it may be configured to generate an ultrasonic image, from the viewpoint of obtaining a higher-accuracy ultrasonic image, the image processing unit 14 receives a reception signal received by the receiving unit 13 using a harmonic imaging technique. The ultrasonic image of the subject may be generated based on the above.
 このハーモニックイメージング技術には、例えば、日本国特許庁の特開2001-286472号公報等に開示されているように、大別すると、フィルタ法と位相反転法(パルスインバージョン法)との2つの方法がある。このフィルタ法は、高調波検出フィルタによって基本波成分と高調波成分とを分離し、高調波成分だけを抽出し、この高調波成分から超音波画像を生成する方法である。また、この位相反転法は、同一方向に続けて互いに位相が反転している第1および第2送信信号を送信し、これら第1および第2送信信号に対応する第1および第2受信信号を加算することによって高調波成分を抽出し、この高調波成分から超音波画像を生成する方法である。第1および第2受信信号における基本波成分は、位相が反転しているが、高調波の例えば第2次高調波成分は、同相となるため、第1および第2受信信号を加算することによってこの第2次高調波成分が抽出される。 The harmonic imaging technology is roughly classified into two methods, a filter method and a phase inversion method (pulse inversion method), as disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-286472. There is a way. This filter method is a method in which a fundamental wave component and a harmonic component are separated by a harmonic detection filter, only the harmonic component is extracted, and an ultrasonic image is generated from the harmonic component. Further, this phase inversion method transmits first and second transmission signals whose phases are successively inverted in the same direction, and first and second reception signals corresponding to the first and second transmission signals are transmitted. In this method, a harmonic component is extracted by addition and an ultrasonic image is generated from the harmonic component. Although the fundamental wave components in the first and second received signals are inverted in phase, the second harmonic component of the harmonic, for example, is in phase, so by adding the first and second received signals This second harmonic component is extracted.
 この画像処理部14では、例えば、フィルタ法によって受信信号から高調波成分が抽出され、この抽出された高調波成分に基づいてハーモニックイメージング技術を用いて被検体の超音波画像が生成される。また例えば、画像処理部14では、位相反転法によって受信信号から高調波成分が抽出され、この抽出された高調波成分に基づいてハーモニックイメージング技術を用いて被検体の超音波画像が生成される。 In the image processing unit 14, for example, a harmonic component is extracted from the received signal by a filter method, and an ultrasonic image of the subject is generated using a harmonic imaging technique based on the extracted harmonic component. Further, for example, the image processing unit 14 extracts a harmonic component from the received signal by the phase inversion method, and generates an ultrasonic image of the subject based on the extracted harmonic component using a harmonic imaging technique.
 表示部15は、制御部16の制御に従って、画像処理部14で生成された被検体の超音波画像を表示する装置である。表示部15は、例えば、CRTディスプレイ、LCD(液晶ディスプレイ)、有機ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。 The display unit 15 is a device that displays an ultrasonic image of the subject generated by the image processing unit 14 under the control of the control unit 16. The display unit 15 is, for example, a display device such as a CRT display, LCD (liquid crystal display), organic EL display, or plasma display, or a printing device such as a printer.
 制御部16は、例えば、マイクロプロセッサ、記憶素子およびその周辺回路等を備えて構成され、これら超音波探触子2、操作入力部11、送信部12、受信部13、画像処理部14および表示部15を当該機能に応じてそれぞれ制御することによって超音波診断装置Sの全体制御を行う回路である。 The control unit 16 includes, for example, a microprocessor, a storage element, and peripheral circuits thereof, and the ultrasonic probe 2, the operation input unit 11, the transmission unit 12, the reception unit 13, the image processing unit 14, and a display. It is a circuit that performs overall control of the ultrasound diagnostic apparatus S by controlling the unit 15 according to the function.
 超音波探触子(超音波プローブ)2は、被検体内に第1超音波信号を送信しこの第1超音波信号に基づく被検体内から来た第2超音波信号を受信する装置である。超音波探触子2は、例えば、図3(A)に示すように、平板状の音響制動部材21と、この音響制動部材21の一方主面上に積層された圧電部22と、この圧電部22上に積層された音響整合層23と、この音響整合層23上に積層された音響レンズ24とを備えて構成される。 The ultrasonic probe (ultrasonic probe) 2 is a device that transmits a first ultrasonic signal into a subject and receives a second ultrasonic signal coming from within the subject based on the first ultrasonic signal. . For example, as shown in FIG. 3A, the ultrasonic probe 2 includes a flat acoustic braking member 21, a piezoelectric portion 22 laminated on one main surface of the acoustic braking member 21, and the piezoelectric The acoustic matching layer 23 is laminated on the portion 22, and the acoustic lens 24 is laminated on the acoustic matching layer 23.
 音響制動部材21は、超音波を吸収する材料(超音波吸収材)から構成され、圧電部22から音響制動部材21方向へ放射される超音波を吸収するものである。音響制動部材21は、超音波を充分に減衰することによって圧電部22の音響的特性を良好に保つべく、使用される超音波の波長に対して充分な厚みを有していることが好ましい。また、音響制動部材21は、圧電部22を機械的に支持するものであり、また、第1超音波信号のパルス波形を短くすべく音響的に制動をかけるものである。音響制動部材21は、一般に、音響負荷部材、バッキング層、ダンパ層あるいは音響吸収部材とも呼ばれる。そして、この音響制動部材21には、繊維状であって電気的な導体である複数の繊維状導体が高分子材料に埋設されている。音響制動部材21については、後述でさらに詳述される。 The acoustic braking member 21 is made of a material that absorbs ultrasonic waves (ultrasonic absorbing material), and absorbs ultrasonic waves radiated from the piezoelectric portion 22 toward the acoustic braking member 21. The acoustic braking member 21 preferably has a sufficient thickness with respect to the wavelength of the ultrasonic wave to be used in order to keep the acoustic characteristics of the piezoelectric portion 22 good by sufficiently attenuating the ultrasonic wave. The acoustic braking member 21 mechanically supports the piezoelectric unit 22 and acoustically applies braking so as to shorten the pulse waveform of the first ultrasonic signal. The acoustic braking member 21 is generally also called an acoustic load member, a backing layer, a damper layer, or an acoustic absorbing member. In the acoustic braking member 21, a plurality of fibrous conductors that are fibrous and are electrical conductors are embedded in a polymer material. The acoustic braking member 21 will be described in detail later.
 圧電部22は、音響制動部材21における複数の繊維状導体と電気的にそれぞれ接続され、圧電現象を利用することによって電気信号と超音波信号とを相互に変換する複数の圧電素子を備えて構成される。 The piezoelectric unit 22 includes a plurality of piezoelectric elements that are electrically connected to a plurality of fibrous conductors in the acoustic braking member 21 and convert electrical signals and ultrasonic signals to each other by using a piezoelectric phenomenon. Is done.
 圧電部22は、これら複数の圧電素子が、互いに所定の間隔を空けて平面視にて線形独立な2方向に、例えば互いに直交する2方向にm行×n列でアレイ状に2次元配列されて、構成されている。m、nは、正の整数であり、例えば、m=n=128である。この場合、圧電素子の個数は、128×128=16384であり、これに応じて音響制動部材21の導体線も16384本となる。前記所定の間隔を空けることによって生じる隙間には、複数の圧電素子間のクロストークを低減する観点から、超音波吸収材が充填されていることが好ましい。各圧電素子は、圧電材料から成る圧電体における互いに対向する両面にそれぞれ電極を備えて構成されている。各圧電素子における電極の一方は、接地され、電極の他方は、音響制動部材21の1または複数の繊維状導体に電気的に接続される。この圧電体の厚みは、例えば、送受信すべき超音波の周波数や圧電材料の種類等によって適宜に設定される。これら複数の圧電素子のそれぞれには、送信部12からケーブル3を介して超音波探触子2に入力された電気信号の送信信号が、前記複数の繊維状導体のそれぞれを介して入力される。各圧電素子は、この電気信号を圧電現象を利用することによって超音波に変換して超音波を生成し、この超音波を送信する。そして、超音波探触子2が被検体に当てられることによって、圧電部22の各圧電素子で生成された超音波が第1超音波信号として被検体内へ送信される。一方、圧電部22の各圧電素子は、第1超音波信号に基づく被検体内から来た第2超音波信号を受信し、圧電現象を利用することによってこの受信した第2超音波信号を電気信号に変換してこの電気信号を出力する。この電気信号は、各圧電素子の電極から前記複数の繊維状導体のそれぞれを介して出力される。この電気信号は、超音波探触子2からケーブル3を介して超音波診断装置本体1の受信部13へ出力される。 The piezoelectric unit 22 includes a plurality of piezoelectric elements that are two-dimensionally arranged in an array of m rows × n columns in two directions that are linearly independent in a plan view with a predetermined interval therebetween, for example, in two directions orthogonal to each other. Configured. m and n are positive integers, for example, m = n = 128. In this case, the number of piezoelectric elements is 128 × 128 = 16384, and accordingly, the number of conductor wires of the acoustic braking member 21 is 16384. The gap generated by the predetermined interval is preferably filled with an ultrasonic absorber from the viewpoint of reducing crosstalk between the plurality of piezoelectric elements. Each piezoelectric element includes an electrode on each of both opposing surfaces of a piezoelectric body made of a piezoelectric material. One electrode of each piezoelectric element is grounded, and the other electrode is electrically connected to one or more fibrous conductors of the acoustic braking member 21. The thickness of the piezoelectric body is appropriately set depending on, for example, the frequency of ultrasonic waves to be transmitted / received and the type of piezoelectric material. In each of the plurality of piezoelectric elements, a transmission signal of an electric signal input from the transmitter 12 via the cable 3 to the ultrasonic probe 2 is input via each of the plurality of fibrous conductors. . Each piezoelectric element converts this electric signal into an ultrasonic wave by using a piezoelectric phenomenon, generates an ultrasonic wave, and transmits the ultrasonic wave. Then, by applying the ultrasonic probe 2 to the subject, the ultrasonic waves generated by the piezoelectric elements of the piezoelectric unit 22 are transmitted into the subject as a first ultrasonic signal. On the other hand, each piezoelectric element of the piezoelectric unit 22 receives a second ultrasonic signal coming from within the subject based on the first ultrasonic signal, and electrically converts the received second ultrasonic signal by using a piezoelectric phenomenon. This signal is converted into a signal and output. This electrical signal is output from the electrodes of each piezoelectric element via each of the plurality of fibrous conductors. This electrical signal is output from the ultrasound probe 2 to the receiving unit 13 of the ultrasound diagnostic apparatus body 1 via the cable 3.
 ここで、圧電部22は、図3(B)に示すように、音響制動部材21の一方主面上に積層された送信用圧電部221と、この送信用圧電部221上に積層された中間層222と、この中間層222上に積層された受信用圧電部223とを備えて構成されてもよい。送信用圧電部221は、無機圧電材料を備えて成り、圧電現象を利用することによって送信電気信号を第1超音波信号に変換するものである。無機圧電材料は、例えば、いわゆるPZT、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム(K(Ta,Nb)O)、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)およびチタン酸ストロンチウム(SrTiO)等である。中間層(バッファ層)222は、送信用圧電部221と受信用圧電部223とを積層するための部材である。本実施形態では、中間層222は、送信用圧電部221と受信用圧電部223との音響インピーダンスを整合させる部材である。受信用圧電部223は、有機圧電材料を備えて成り、圧電現象を利用することによって、第1超音波信号に基づく被検体内から来た第2超音波信号を受信電気信号に変換するものである。有機圧電材料は、例えば、フッ化ビニリデンの重合体を用いることができる。また例えば、有機圧電材料は、フッ化ビニリデン(VDF)系コポリマを用いることができる。このフッ化ビニリデン系コポリマは、フッ化ビニリデンと他の単量体との共重合体(コポリマ)であり、他の単量体としては、3フッ化エチレン、テトラフルオロエチレン、パーフルオロアルキルビニルエーテル(PFA)、パーフルオロアルコキシエチレン(PAE)およびパーフルオロヘキサエチレン等を用いることができる。フッ化ビニリデン系コポリマは、その共重合比によって厚み方向の電気機械結合定数(圧電効果)が変化するので、例えば、超音波探触子の仕様等に応じて適宜な共重合比が採用される。 Here, as shown in FIG. 3B, the piezoelectric portion 22 includes a transmission piezoelectric portion 221 laminated on one main surface of the acoustic braking member 21 and an intermediate layer laminated on the transmission piezoelectric portion 221. The layer 222 and the receiving piezoelectric portion 223 stacked on the intermediate layer 222 may be provided. The transmission piezoelectric unit 221 includes an inorganic piezoelectric material, and converts a transmission electrical signal into a first ultrasonic signal by using a piezoelectric phenomenon. Examples of the inorganic piezoelectric material include so-called PZT, quartz, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), lithium tantalate (LiTaO 3). And strontium titanate (SrTiO 3 ). The intermediate layer (buffer layer) 222 is a member for laminating the transmission piezoelectric unit 221 and the reception piezoelectric unit 223. In the present embodiment, the intermediate layer 222 is a member that matches the acoustic impedances of the transmission piezoelectric unit 221 and the reception piezoelectric unit 223. The receiving piezoelectric unit 223 includes an organic piezoelectric material, and converts the second ultrasonic signal coming from within the subject based on the first ultrasonic signal into a received electric signal by using a piezoelectric phenomenon. is there. As the organic piezoelectric material, for example, a polymer of vinylidene fluoride can be used. Further, for example, a vinylidene fluoride (VDF) copolymer can be used as the organic piezoelectric material. This vinylidene fluoride copolymer is a copolymer (copolymer) of vinylidene fluoride and other monomers. Examples of the other monomers include ethylene trifluoride, tetrafluoroethylene, perfluoroalkyl vinyl ether ( PFA), perfluoroalkoxyethylene (PAE), perfluorohexaethylene, and the like can be used. In the vinylidene fluoride copolymer, the electromechanical coupling constant (piezoelectric effect) in the thickness direction varies depending on the copolymerization ratio. For example, an appropriate copolymerization ratio is adopted according to the specifications of the ultrasonic probe, etc. .
 このような構成では、圧電部22が送信用圧電部221と受信用圧電部223とに機能分離されており、送信用圧電部221が無機圧電材料を備えて構成されている。したがって、送信パワーを比較的簡単な構造で大きくすることが可能である。このため、この圧電部22を備える超音波探触子2は、比較的大きなパワーで基本波の第1超音波信号を送信することができ、より大きな第2超音波信号の高調波成分を得ることができる。そして、受信用圧電部223が有機圧電材料を備えて構成されている。したがって、この圧電部22を備える超音波探触子2は、周波数帯域を比較的簡単な構造で広帯域にすることが可能であるため、第2超音波信号に含まれる高調波成分を受信することが可能となる。このため、この超音波探触子2は、第2超音波信号の高周波成分を好適に受信することができる。特に、このような構成の圧電部22を備える超音波探触子2は、第2超音波信号の高調波成分を好適に受信することができるので、上述のハーモニックイメージング技術によって超音波画像を形成する超音波診断装置Sに好適である。 In such a configuration, the piezoelectric unit 22 is functionally separated into the transmitting piezoelectric unit 221 and the receiving piezoelectric unit 223, and the transmitting piezoelectric unit 221 is configured to include an inorganic piezoelectric material. Therefore, it is possible to increase the transmission power with a relatively simple structure. For this reason, the ultrasonic probe 2 including the piezoelectric unit 22 can transmit the first ultrasonic signal of the fundamental wave with a relatively large power, and obtain a higher harmonic component of the second ultrasonic signal. be able to. The receiving piezoelectric portion 223 is configured to include an organic piezoelectric material. Therefore, since the ultrasonic probe 2 including the piezoelectric portion 22 can make the frequency band wide with a relatively simple structure, it can receive the harmonic component included in the second ultrasonic signal. Is possible. For this reason, this ultrasonic probe 2 can receive suitably the high frequency component of a 2nd ultrasonic signal. In particular, since the ultrasonic probe 2 including the piezoelectric unit 22 having such a configuration can suitably receive the harmonic component of the second ultrasonic signal, an ultrasonic image is formed by the harmonic imaging technique described above. This is suitable for the ultrasonic diagnostic apparatus S.
 また、図3(B)に示すように、送信用圧電部221と受信用圧電部223とが積層されているので、圧電部22および超音波探触子2を小型化することが可能となる。また、図3(B)に示すように、第1および第2超音波信号の送受信面(音響レンズ24の表面)と送信用圧電部221との間に受信用圧電部223が配置されているので、受信ノイズを低減してSN比を向上させることが可能となる。 Further, as shown in FIG. 3B, since the transmitting piezoelectric portion 221 and the receiving piezoelectric portion 223 are laminated, the piezoelectric portion 22 and the ultrasonic probe 2 can be reduced in size. . Further, as shown in FIG. 3B, a receiving piezoelectric portion 223 is disposed between the transmitting and receiving surfaces of the first and second ultrasonic signals (the surface of the acoustic lens 24) and the transmitting piezoelectric portion 221. Therefore, it is possible to reduce the reception noise and improve the SN ratio.
 図3(A)に戻って、音響整合層23は、圧電部22の音響インピーダンスと被検体の音響インピーダンスとの整合をとる部材である。音響整合層23は、単層で構成されてもよく、あるいは、複数層で構成されてもよい。例えば、受信周波数帯域を広帯域化する場合では、音響整合層23は、複数層で構成されることが好ましい。音響レンズ24は、被検体に向けて送信される超音波を収束する部材であり、例えば、図3に示すように、円弧状に膨出した形状とされている。なお、音響整合層23と音響レンズ24とは、一体に構成されてよい。 3A, the acoustic matching layer 23 is a member that matches the acoustic impedance of the piezoelectric portion 22 and the acoustic impedance of the subject. The acoustic matching layer 23 may be composed of a single layer or may be composed of a plurality of layers. For example, in the case where the reception frequency band is widened, the acoustic matching layer 23 is preferably composed of a plurality of layers. The acoustic lens 24 is a member that converges the ultrasonic wave transmitted toward the subject, and has, for example, a shape that bulges in an arc as shown in FIG. Note that the acoustic matching layer 23 and the acoustic lens 24 may be integrally formed.
 このような構成の超音波診断装置Sでは、例えば、操作入力部11から診断開始の指示が入力されると、制御部16の制御によって送信部12で電気信号の送信信号が生成される。この生成された電気信号の送信信号は、ケーブル3を介して超音波探触子2へ供給される。この電気信号の送信信号は、例えば、所定の周期で繰り返される電圧パルスである。圧電部22では、この電気信号の送信信号が供給されることによってその複数の圧電素子のそれぞれがその厚み方向に伸縮し、この電気信号の送信信号に応じて超音波振動する。この超音波振動によって、圧電部22は、音響整合層23および音響レンズ24を介して超音波(第1超音波信号)を放射する。超音波探触子2が被検体に例えば当接されていると、これによって超音波探触子2から被検体に対して第1超音波信号が送信される。 In the ultrasonic diagnostic apparatus S having such a configuration, for example, when an instruction to start diagnosis is input from the operation input unit 11, a transmission signal of an electrical signal is generated by the transmission unit 12 under the control of the control unit 16. The generated electrical signal transmission signal is supplied to the ultrasonic probe 2 via the cable 3. The electric signal transmission signal is, for example, a voltage pulse repeated at a predetermined cycle. In the piezoelectric unit 22, when the electrical signal transmission signal is supplied, each of the plurality of piezoelectric elements expands and contracts in the thickness direction, and ultrasonically vibrates in accordance with the electrical signal transmission signal. Due to this ultrasonic vibration, the piezoelectric unit 22 radiates an ultrasonic wave (first ultrasonic signal) through the acoustic matching layer 23 and the acoustic lens 24. For example, when the ultrasonic probe 2 is in contact with the subject, the first ultrasonic signal is transmitted from the ultrasonic probe 2 to the subject.
 なお、超音波探触子2は、被検体の表面上に当接して用いられてもよいし、被検体の内部に挿入して、例えば、生体の体腔内に挿入して用いられてもよい。 Note that the ultrasound probe 2 may be used in contact with the surface of the subject, or may be used by being inserted into the subject, for example, being inserted into a body cavity of a living body. .
 この被検体に対して送信された第1超音波信号は、被検体内部における音響インピーダンスが異なる1または複数の境界面で反射され、超音波の反射波(第2超音波信号)となる。この第2超音波信号には、送信された第1超音波信号の周波数(基本波の基本周波数)成分だけでなく、基本周波数の整数倍の高調波の周波数成分も含まれる。例えば、基本周波数の2倍、3倍および4倍等の第2次高調波成分、第3次高調波成分および第4次高調波成分等も含まれる。この第2超音波信号は、超音波探触子2で受信される。より具体的には、この第2超音波信号は、音響レンズ24および音響整合層23を介して圧電部22で受信され、圧電部22で機械的な振動が電気信号に変換されて受信信号として取り出される。この取り出された電気信号の受信信号は、超音波探触子2からケーブル3を介して超音波診断装置本体1の受信部13で受信される。受信部13は、この入力された受信信号を受信処理し、より具体的には、例えば増幅した後にアナログ信号からディジタル信号へ変換し、画像処理部14へ出力する。 The first ultrasonic signal transmitted to the subject is reflected by one or a plurality of boundary surfaces having different acoustic impedances inside the subject, and becomes an ultrasonic reflected wave (second ultrasonic signal). The second ultrasonic signal includes not only the frequency (fundamental fundamental frequency) component of the transmitted first ultrasonic signal but also a harmonic frequency component that is an integral multiple of the fundamental frequency. For example, second harmonic components such as twice, three times, and four times the fundamental frequency, third harmonic components, fourth harmonic components, and the like are also included. This second ultrasonic signal is received by the ultrasonic probe 2. More specifically, the second ultrasonic signal is received by the piezoelectric unit 22 via the acoustic lens 24 and the acoustic matching layer 23, and mechanical vibration is converted into an electric signal by the piezoelectric unit 22 as a received signal. It is taken out. The extracted reception signal of the electrical signal is received from the ultrasonic probe 2 via the cable 3 by the receiving unit 13 of the ultrasonic diagnostic apparatus body 1. The reception unit 13 performs reception processing on the input reception signal, more specifically, for example, after amplification, converts the analog signal into a digital signal, and outputs the converted signal to the image processing unit 14.
 ここで、上述において、圧電部22の各圧電素子から順次に第1超音波信号が被検体に向けて送信され、被検体で反射した第2超音波信号が圧電部22で受信される。 Here, in the above description, the first ultrasonic signal is sequentially transmitted from each piezoelectric element of the piezoelectric unit 22 toward the subject, and the second ultrasonic signal reflected by the subject is received by the piezoelectric unit 22.
 そして、画像処理部14は、制御部16の制御によって、受信部13で受信した受信信号に基づいて、送信から受信までの時間や受信強度等から被検体の超音波画像を生成し、表示部15は、制御部16の制御によって、画像処理部14で生成された被検体の超音波画像を表示する。なお、画像処理部14は、上述のハーモニックイメージング技術によって被検体の超音波画像を生成しても良い。 Then, under the control of the control unit 16, the image processing unit 14 generates an ultrasonic image of the subject based on the reception signal received by the reception unit 13 from the time from transmission to reception, the reception intensity, and the like, and the display unit 15 displays the ultrasonic image of the subject generated by the image processing unit 14 under the control of the control unit 16. Note that the image processing unit 14 may generate an ultrasonic image of the subject by the above-described harmonic imaging technique.
 次に、音響制動部材21についてさらに詳述する。 Next, the acoustic braking member 21 will be described in further detail.
 図4は、実施形態の超音波探触子における音響制動部材の構成を示す図である。図4(A)は、音響制動部材の側面図であり、図4(B)は、音響制動部材の斜視図である。図4(A)には、圧電部22も示されている。 FIG. 4 is a diagram illustrating a configuration of an acoustic braking member in the ultrasonic probe according to the embodiment. 4A is a side view of the acoustic braking member, and FIG. 4B is a perspective view of the acoustic braking member. FIG. 4A also shows the piezoelectric portion 22.
 本実施形態の音響制動部材21は、図4に示すように、圧電部22に隣接して設けられ、高分子材料で構成された音響制動体211を備え、この音響制動体211は、前記高分子材料中に、所定の一方向に延びた複数の繊維状導体212が含まれている。 As shown in FIG. 4, the acoustic braking member 21 of the present embodiment includes an acoustic braking member 211 that is provided adjacent to the piezoelectric portion 22 and is made of a polymer material. The molecular material includes a plurality of fibrous conductors 212 extending in a predetermined direction.
 音響制動体211は、例えば熱硬化性樹脂や紫外線硬化性樹脂等の樹脂から構成されて成り、平面視にて矩形の、層状または板状の部材である。音響制動体211は、例えば、本実施形態では、分子内に2個以上のエポキシ基を持つ熱硬化性エポキシ樹脂あるいは紫外線硬化性エポキシ樹脂が用いられる。また例えば、音響制動体211は、ポリ塩化ビニルやゴム等が用いられてもよい。 The acoustic brake member 211 is made of a resin such as a thermosetting resin or an ultraviolet curable resin, and is a rectangular, layered or plate-like member in plan view. In the present embodiment, for example, a thermosetting epoxy resin or an ultraviolet curable epoxy resin having two or more epoxy groups in the molecule is used as the acoustic braking body 211. Further, for example, polyvinyl chloride, rubber or the like may be used for the acoustic braking body 211.
 繊維状導体212は、音響インピーダンスを調整する機能を有するとともに、リード線として機能するものである。前記所定の一方向は、音響制動部材21と圧電部22とが積層された状態でこの圧電部22が超音波振動した場合に、この圧電部22の振動方向と同方向である。そして、繊維状導体212は、音響制動体211を貫通するように前記所定の一方向に延びている。すなわち、繊維状導体212は、その一方端が音響制動体211の一方主面に露出しているとともに、その他方端が音響制動体211の他方主面に露出している。繊維状導体212は、例えば、本実施形態では、金属製の繊維であり、より具体的には、例えば、タングステン(W)から成るタングステン金属繊維である。音響インピーダンスの調整に一般的に使用されているタングステンを用いることによって、充分に音響インピーダンスを調整すべく比較的容易に設計可能となる。また例えば、繊維状導体212は、フェライトが用いられてもよい。そして、繊維状導体212の個数は、本実施形態では、圧電部22における前記複数の圧電素子の個数よりも多い。例えば、圧電部22における圧電素子の素子ピッチの半分以下となるように繊維状導体212における後述の成長核のピッチが設定されることによって、繊維状導体212の個数が複数の圧電素子の個数よりも多くされている。 The fibrous conductor 212 has a function of adjusting acoustic impedance and functions as a lead wire. The predetermined direction is the same as the vibration direction of the piezoelectric portion 22 when the piezoelectric portion 22 is ultrasonically vibrated in a state where the acoustic braking member 21 and the piezoelectric portion 22 are laminated. The fibrous conductor 212 extends in the predetermined direction so as to penetrate the acoustic braking body 211. That is, one end of the fibrous conductor 212 is exposed on one main surface of the acoustic braking body 211, and the other end is exposed on the other main surface of the acoustic braking body 211. The fibrous conductor 212 is, for example, a metal fiber in the present embodiment, and more specifically, for example, a tungsten metal fiber made of tungsten (W). By using tungsten which is generally used for adjusting the acoustic impedance, it is possible to design relatively easily to sufficiently adjust the acoustic impedance. For example, the fibrous conductor 212 may be made of ferrite. In this embodiment, the number of fibrous conductors 212 is larger than the number of the plurality of piezoelectric elements in the piezoelectric portion 22. For example, the pitch of the growth nuclei described later in the fibrous conductor 212 is set so as to be equal to or less than half of the element pitch of the piezoelectric elements in the piezoelectric portion 22, whereby the number of fibrous conductors 212 is larger than the number of piezoelectric elements. There have also been many.
 このような構成の繊維状導体212は、音響制動体211を貫通しているので、音響制動体211の一方主面から他方主面へ電気的に導通させることができる。したがって、繊維状導体212は、リード線として機能することができる。このため、音響制動体211の一方主面上に圧電部22が積層された場合に、音響制動体211の他方主面から繊維状導体212を介して圧電部22へ電気的に接続することが可能となる。 Since the fibrous conductor 212 having such a configuration penetrates the acoustic braking body 211, it can be electrically connected from one main surface of the acoustic braking body 211 to the other main surface. Therefore, the fibrous conductor 212 can function as a lead wire. For this reason, when the piezoelectric part 22 is laminated | stacked on one main surface of the acoustic braking body 211, it can electrically connect to the piezoelectric part 22 via the fibrous conductor 212 from the other main surface of the acoustic braking body 211. It becomes possible.
 そして、このような構成の繊維状導体212は、音響散乱体となって超音波の減衰率を大きくすることができる。したがって、繊維状導体21は、音響制動部材21の音響インピーダンスを調整することができる。音響制動部材21の音響インピーダンスは、繊維状導体212の密度によって調整され、所定の値に設定される。繊維状導体212の密度は、その本数および線径によって調整され、所定の値に設定される。例えば、繊維状導体212は、その直径が約100nm~数μmとなるように調整され、また、その密度が樹脂に対して数体積パーセント~約10体積パーセントとなるように調整される。すなわち、本実施形態では、樹脂と繊維状導体212とによって、超音波を吸収する材料(超音波吸収材)が構成されている。 And the fibrous conductor 212 of such a structure becomes an acoustic scatterer and can enlarge the attenuation factor of an ultrasonic wave. Therefore, the fibrous conductor 21 can adjust the acoustic impedance of the acoustic braking member 21. The acoustic impedance of the acoustic braking member 21 is adjusted by the density of the fibrous conductor 212 and set to a predetermined value. The density of the fibrous conductor 212 is adjusted by the number and the wire diameter, and is set to a predetermined value. For example, the fibrous conductor 212 is adjusted so that its diameter is about 100 nm to several μm, and its density is adjusted so as to be several volume percent to about 10 volume percent with respect to the resin. That is, in this embodiment, the resin and the fibrous conductor 212 constitute a material that absorbs ultrasonic waves (ultrasonic absorber).
 このような構成の音響制動部材21では、音響制動体211内には複数の繊維状導体212のみが含まれる。したがって、背景技術のように配線パターンや信号ラインを備えたプリント基板を音響制動体211内に含む必要がなく、音響制動部材21における材質の均一性の向上が可能となる。また、繊維状導体212は、例えば、流動状態の樹脂に粉体の導体を混合し、この流動状体の樹脂内で粉体の導体を成長させることによって形成可能である。したがって、樹脂を充填する工程が必要なく、樹脂のムラの低減が可能となる。そして、このような構成の音響制動部材21では、音響制動体211内には複数の繊維状導体212が含まれ、この複数の繊維状導体212が音響制動体211内を貫通するリード線として機能するだけでなく音響制動体211の音響インピーダンスを調整する機能も奏する。したがって、配線密度を増加させたとしても、充分に音響インピーダンスの調整することが可能であり、また、音響制動部材における材質の均一性の向上が可能となる。 In the acoustic braking member 21 having such a configuration, only the plurality of fibrous conductors 212 are included in the acoustic braking body 211. Therefore, unlike the background art, there is no need to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body 211, and the material uniformity in the acoustic braking member 21 can be improved. The fibrous conductor 212 can be formed, for example, by mixing a powdered conductor in a fluidized resin and growing the powdered conductor in the fluidized resin. Therefore, there is no need to fill the resin, and the unevenness of the resin can be reduced. In the acoustic braking member 21 having such a configuration, the acoustic braking body 211 includes a plurality of fibrous conductors 212, and the plurality of fibrous conductors 212 function as lead wires penetrating the acoustic braking body 211. In addition, the function of adjusting the acoustic impedance of the acoustic braking body 211 is also exhibited. Therefore, even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the uniformity of the material of the acoustic braking member can be improved.
 また、このような構成の音響制動部材21では、音響制動部材21と圧電部22とを積層した状態で、この圧電部22における複数の圧電素子のそれぞれとこの音響制動部材21における複数の繊維状導体212とを電気的に接続する場合に、これら圧電素子の個数よりもこれら繊維状導体212の個数が多いので、圧電素子に少なくとも1つの繊維状導体212が接続可能となるから、複数の圧電素子と複数の繊維状導体212との位置合わせを必ずしも行う必要がない。このため、より容易に音響制動部材21に圧電部22を組み付けることができ、生産性の向上が可能となる。 Further, in the acoustic braking member 21 having such a configuration, the acoustic braking member 21 and the piezoelectric portion 22 are stacked, and each of the plurality of piezoelectric elements in the piezoelectric portion 22 and the plurality of fibers in the acoustic braking member 21 are arranged. When the conductor 212 is electrically connected, since the number of the fibrous conductors 212 is larger than the number of the piezoelectric elements, it is possible to connect at least one fibrous conductor 212 to the piezoelectric element. The alignment of the element and the plurality of fibrous conductors 212 is not necessarily performed. For this reason, the piezoelectric part 22 can be assembled to the acoustic braking member 21 more easily, and productivity can be improved.
 このような構成の音響制動部材21は、例えば、次のように製造される。図5は、音響制動部材の製造方法を説明するための図である。 The acoustic braking member 21 having such a configuration is manufactured as follows, for example. FIG. 5 is a diagram for explaining a method of manufacturing the acoustic braking member.
 音響制動部材21の製造には、図5に示す構成の音響制動部材製造装置31が用いられる。この音響制動部材製造装置31は、互いに所定の間隔を空けて配設された一対のコイル311(311a、311b)と、これら一対のコイル311a、311b間に磁界を発生させるために、これら一対のコイル311a、311bに電力を供給する電源装置311cと、一方主面に複数の成長核3121を形成し、この一方主面と磁界方向とが互いに直交するように、これら一対のコイル311a、311b間に配設された平板状の基板312と、この基板312の一方主面上に粉体の導体を混合した流動状体の樹脂を供給する樹脂供給部材313とを備えて構成されている。 For the production of the acoustic braking member 21, an acoustic braking member production apparatus 31 having the configuration shown in FIG. 5 is used. The acoustic braking member manufacturing apparatus 31 includes a pair of coils 311 (311a, 311b) arranged at a predetermined interval from each other and a pair of the coils 311a, 311b to generate a magnetic field between the pair of coils 311a, 311b. A power supply device 311c that supplies power to the coils 311a and 311b, and a plurality of growth nuclei 3121 are formed on one main surface, and the one main surface and the magnetic field direction are orthogonal to each other between the pair of coils 311a and 311b. And a resin supply member 313 for supplying a fluid resin in which a powdered conductor is mixed on one main surface of the substrate 312.
 コイル311は、例えば、板状部材の一方主面上にコイル巻き線状の導体パターンが形成されることによって構成される。基板312に形成される成長核3121は、磁界の印加によって粉体の導体から繊維状導体212を成長させる際に、成長の基点となるものである。成長核3121は、例えば、非磁性体の基板312に形成された磁性体から成る円形パターン(円形パッド、円形ドット)であり、例えば、基板の一方主面の略全面に形成された磁性体膜をエッチングすることによって形成される。この成長核3121の大きさを調整することによって繊維状導体212の線径を調整することができる。樹脂供給部材313は、例えば、基板312の幅全体に亘って延びるスリット状の吐出口を持つ筒状部材を備えて構成されている。なお、樹脂供給部材313は、樹脂を基板312の前記一方主面上にその全面に亘って略均等に塗布するために、基板312に対して相対的に移動するように構成されることが好ましい。 The coil 311 is configured, for example, by forming a coil winding conductor pattern on one main surface of a plate-like member. The growth nuclei 3121 formed on the substrate 312 serve as a growth base point when the fibrous conductor 212 is grown from the powder conductor by applying a magnetic field. The growth nucleus 3121 is, for example, a circular pattern (circular pad, circular dot) made of a magnetic material formed on a non-magnetic substrate 312. For example, the magnetic film formed on substantially the entire one main surface of the substrate. It is formed by etching. The wire diameter of the fibrous conductor 212 can be adjusted by adjusting the size of the growth nucleus 3121. The resin supply member 313 includes, for example, a cylindrical member having a slit-like discharge port that extends across the entire width of the substrate 312. The resin supply member 313 is preferably configured to move relative to the substrate 312 in order to apply the resin substantially uniformly on the one main surface of the substrate 312 over the entire surface. .
 このような構成の音響制動部材製造装置31では、これら一対のコイル311a、311bに電源装置311cから電力が供給されることによって、一対のコイル311a、311b間には、一方のコイル311から他方のコイルへ、例えばコイル311bからコイル311aへ向かう方向の磁界が発生する。このため、このような構成の音響制動部材製造装置31は、基板312における一方主面の法線方向に磁界を印加することができる。 In the acoustic braking member manufacturing apparatus 31 having such a configuration, when power is supplied from the power supply device 311c to the pair of coils 311a and 311b, between the pair of coils 311a and 311b, the coil 311 is connected to the other coil 311b. For example, a magnetic field is generated in the direction of the coil 311b toward the coil 311a. For this reason, the acoustic braking member manufacturing apparatus 31 having such a configuration can apply a magnetic field in the normal direction of one main surface of the substrate 312.
 音響制動部材21の製造に当たって、まず、金属製の粉体の導体を混合した流動状体の樹脂が用意される。例えば、タングステンの粉粒体を略均一に分散した流動状体のエポキシ樹脂が用意される。 In manufacturing the acoustic braking member 21, first, a fluid resin in which a metal powder conductor is mixed is prepared. For example, a fluid epoxy resin in which tungsten particles are dispersed substantially uniformly is prepared.
 次に、図5に示すように、この粉体の導体を混合した樹脂が樹脂供給部材313から基板312の一方主面上に流し落とされ、粉体の導体を混合した流動状態の樹脂が基板312の一方主面上に略全面に亘って膜状に展開し、基板312の一方主面がこの樹脂によって塗布される(塗布工程)。 Next, as shown in FIG. 5, the resin mixed with the powder conductor is poured from the resin supply member 313 onto one main surface of the substrate 312, and the fluid resin mixed with the powder conductor becomes the substrate. On the one main surface of 312, a film is developed over substantially the entire surface, and one main surface of the substrate 312 is applied with this resin (application process).
 次に、一対のコイル311a、311bに電源装置311cから電力が供給され、この樹脂を塗布した基板312に、この一方主面の法線方向に磁界が印加される(印加工程)。 Next, power is supplied to the pair of coils 311a and 311b from the power supply device 311c, and a magnetic field is applied to the substrate 312 coated with the resin in the normal direction of the one main surface (application process).
 磁界が印加されると、樹脂中における粉体の導体が成長核3121を基点に磁界方向に沿って直鎖状に配列し、粉体の導体が繊維状に繋がる。なお、粉体の導体にハロゲン元素の1つ以上を有する表面処理剤で表面を覆う表面処理を施すことによって、樹脂中における粉体の導体の移動し易さを大きくすることができる。 When a magnetic field is applied, the powder conductors in the resin are arranged in a straight line along the magnetic field direction starting from the growth nucleus 3121, and the powder conductors are connected in a fibrous form. In addition, by subjecting the powder conductor to a surface treatment that covers the surface with a surface treatment agent having one or more halogen elements, the ease of movement of the powder conductor in the resin can be increased.
 次に、磁界を印可してから所定時間の経過後に、樹脂を規制するための平板状の蓋部材315を樹脂上に載置し、流動状態の樹脂が硬化される(硬化工程)。樹脂が熱硬化性樹脂である場合には、熱を加えることによって樹脂が硬化され、樹脂が紫外線硬化性樹脂である場合には、紫外線を照射することによって樹脂が硬化される。これによって繊維状に繋がった粉体の導体がその繊維状形態で保持され、音響制動体211内に埋設された繊維状導体212が形成される。なお、流動状体の樹脂が流出しないように、基板312と蓋部材315との間に、枠体を備えていてもよい。 Next, after a predetermined time has elapsed since the magnetic field was applied, a flat lid member 315 for regulating the resin is placed on the resin, and the resin in a fluid state is cured (curing step). When the resin is a thermosetting resin, the resin is cured by applying heat. When the resin is an ultraviolet curable resin, the resin is cured by irradiating ultraviolet rays. As a result, the fibrous conductor connected in a fibrous form is held in the fibrous form, and a fibrous conductor 212 embedded in the acoustic braking body 211 is formed. Note that a frame body may be provided between the substrate 312 and the lid member 315 so that the fluid resin does not flow out.
 次に、繊維状導体212を含む音響制動体211が、基板312から剥離されるとともに蓋部材315から剥離される。あるいは、繊維状導体212を含む音響制動体211から、基板312が切除されるとともに蓋部材315が切除される(分離工程)。これによって繊維状導体212を含む音響制動体211を備える音響制動部材21が製造される。 Next, the acoustic braking body 211 including the fibrous conductor 212 is peeled off from the substrate 312 and peeled off from the lid member 315. Alternatively, the substrate 312 and the lid member 315 are removed from the acoustic braking body 211 including the fibrous conductor 212 (separation step). As a result, the acoustic braking member 21 including the acoustic braking body 211 including the fibrous conductor 212 is manufactured.
 なお、繊維状導体212が音響制動体211を貫通しているか否かを確認するために、音響制動体211の端部が切断され、その断面が露出するようにされてもよい。 In addition, in order to confirm whether the fibrous conductor 212 has penetrated the acoustic braking body 211, the edge part of the acoustic braking body 211 may be cut | disconnected and the cross section may be exposed.
 このような構成の音響制動部材21の製造方法では、塗布工程、印加工程および硬化工程の各工程と経ることによって、繊維状導体212を音響制動体211内に含む音響制動部材21が製造される。したがって、背景技術のように配線パターンや信号ラインを備えたプリント基板を音響制動体211内に含む必要がなく、音響制動部材21における材質の均一性の向上が可能となる。また、樹脂を充填する工程が必要なく、樹脂のムラの低減が可能となる。そして、繊維状導体がリード線機能だけでなく音響インピーダンス調整機能も果たすので、配線密度を増加させたとしても、充分に音響インピーダンスの調整することが可能であり、また、音響制動部材における材質の均一性の向上が可能となる。 In the manufacturing method of the acoustic braking member 21 having such a configuration, the acoustic braking member 21 including the fibrous conductor 212 in the acoustic braking body 211 is manufactured through the application process, the application process, and the curing process. . Therefore, unlike the background art, there is no need to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body 211, and the material uniformity in the acoustic braking member 21 can be improved. Further, there is no need to fill the resin, and the unevenness of the resin can be reduced. And since the fibrous conductor fulfills not only the lead wire function but also the acoustic impedance adjustment function, even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the material of the acoustic braking member can be adjusted. The uniformity can be improved.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる音響制動部材は、被検体内に超音波を送信する超音波探触子に用いられる音響制動部材であって、高分子材料で形成された音響制動体を備え、前記音響制動体の前記高分子材料中には、音響インピーダンスを調整するとともに、リード線として機能する所定の一方向に延びた複数の金属製繊維状導体を含むものである。 An acoustic braking member according to one aspect is an acoustic braking member used for an ultrasonic probe that transmits ultrasonic waves into a subject, and includes an acoustic braking body formed of a polymer material, and the acoustic braking body The polymer material includes a plurality of metallic fibrous conductors that adjust acoustic impedance and extend in one predetermined direction that function as lead wires.
 このような構成の音響制動部材では、音響制動体には複数の繊維状導体が含まれる。したがって、背景技術のように配線パターンや信号ラインを備えたプリント基板を音響制動体内に含む必要がなく、音響制動部材における材質の均一性の向上が可能となる。また、繊維状導体は、例えば、流動状態の樹脂に粉体の導体を混合し、この流動状体の樹脂内で粉体の導体を成長させることによって形成可能である。したがって、樹脂を充填する工程が必要なく、樹脂のムラの低減が可能となる。そして、このような構成の音響制動部材では、音響制動体内には複数の繊維状導体が含まれ、この複数の繊維状導体が音響制動体内を貫通するリード線として機能するだけでなく音響制動体の音響インピーダンスを調整する機能も奏する。したがって、配線密度を増加させたとしても、充分に音響インピーダンスの調整することが可能であり、また、音響制動部材における材質の均一性の向上が可能となる。 In the acoustic braking member having such a configuration, the acoustic braking body includes a plurality of fibrous conductors. Therefore, unlike the background art, it is not necessary to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body, and the uniformity of the material in the acoustic braking member can be improved. The fibrous conductor can be formed, for example, by mixing a powdered conductor with a fluidized resin and growing the powdered conductor in the fluidized resin. Therefore, there is no need to fill the resin, and the unevenness of the resin can be reduced. In the acoustic braking member having such a configuration, the acoustic braking body includes a plurality of fibrous conductors, and the plurality of fibrous conductors not only function as lead wires penetrating the acoustic braking body, but also the acoustic braking body. It also has the function of adjusting the acoustic impedance. Therefore, even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the uniformity of the material of the acoustic braking member can be improved.
 また、他の一態様では、上述の音響制動部材において、前記金属製繊維状導体は、好ましくは、タングステンから成るものである。 In another aspect, in the above-described acoustic braking member, the metallic fibrous conductor is preferably made of tungsten.
 この構成によれば、金属製繊維状導体が音響インピーダンスの調整に一般的に使用されているタングステンから成るので、充分に音響インピーダンスを調整すべく比較的容易に設計可能となる。 According to this configuration, since the metallic fibrous conductor is made of tungsten, which is generally used for adjusting the acoustic impedance, it can be designed relatively easily to sufficiently adjust the acoustic impedance.
 また、他の一態様では、上述の音響制動部材を製造する音響制動部材の製造方法は、一方主面に複数の成長核を形成した基板の前記主面上に、金属製の粉体の導体を混合した流動状態の樹脂を塗布する塗布工程と、前記樹脂を塗布した前記基板に、前記主面の法線方向に磁界を印加する印加工程と、前記磁界の印加後に、前記流動状体の樹脂を硬化する硬化工程とを備えたものである。 In another aspect, the acoustic braking member manufacturing method for manufacturing the above-described acoustic braking member includes a metal powder conductor on the main surface of the substrate on which a plurality of growth nuclei are formed on one main surface. An application step of applying a resin in a fluidized state, a step of applying a magnetic field in the normal direction of the main surface to the substrate on which the resin has been applied, and after applying the magnetic field, And a curing step for curing the resin.
 このような構成の音響制動部材の製造方法では、前記塗布工程、前記印加工程および前記硬化工程の各工程を経ることによって、繊維状導体を音響制動体に含む音響制動部材が製造可能となる。したがって、背景技術のように配線パターンや信号ラインを備えたプリント基板を音響制動体内に含む必要がなく、音響制動部材における材質の均一性の向上が可能となる。また、樹脂を充填する工程が必要なく、樹脂のムラの低減が可能となる。そして、配線密度を増加させたとしても、充分に音響インピーダンスの調整することが可能であり、また、音響制動部材における材質の均一性の向上が可能となる。 In the method of manufacturing an acoustic braking member having such a configuration, an acoustic braking member including a fibrous conductor in an acoustic braking body can be manufactured through the application process, the application process, and the curing process. Therefore, unlike the background art, it is not necessary to include a printed circuit board having a wiring pattern or a signal line in the acoustic braking body, and the uniformity of the material in the acoustic braking member can be improved. Further, there is no need to fill the resin, and the unevenness of the resin can be reduced. Even if the wiring density is increased, the acoustic impedance can be sufficiently adjusted, and the material uniformity of the acoustic braking member can be improved.
 また、他の一態様にかかる超音波探触子は、圧電現象を利用することによって超音波を生成するための複数の圧電素子を備えた圧電部と、前記圧電部に隣接して設けられたこれら上述の音響制動部材のうちのいずれかとを備え、前記金属製繊維状導体の個数は、前記複数の圧電素子の個数よりも多いものである。 An ultrasonic probe according to another aspect is provided adjacent to the piezoelectric unit including a plurality of piezoelectric elements for generating ultrasonic waves by using a piezoelectric phenomenon, and the piezoelectric unit. Any one of the above-described acoustic braking members is provided, and the number of the metallic fibrous conductors is larger than the number of the plurality of piezoelectric elements.
 この構成によれば、圧電部における複数の圧電素子のそれぞれとこの音響制動部材における複数の繊維状導体とを電気的に接続する場合に、これら圧電素子の個数よりもこれら繊維状導体の個数が多いので、圧電素子に少なくとも1つの繊維状導体が接続可能となるから、複数の圧電素子と複数の繊維状導体との位置合わせを必ずしも行う必要がない。このため、より容易に音響制動部材に圧電部を組み付けることができ、生産性の向上が可能となる。 According to this configuration, when each of the plurality of piezoelectric elements in the piezoelectric portion and the plurality of fibrous conductors in the acoustic braking member are electrically connected, the number of the fibrous conductors is larger than the number of the piezoelectric elements. Since there are many, at least one fibrous conductor can be connected to the piezoelectric element, it is not always necessary to align the plurality of piezoelectric elements and the plurality of fibrous conductors. For this reason, a piezoelectric part can be assembled | attached to an acoustic braking member more easily, and productivity can be improved.
 また、他の一態様にかかる超音波診断装置子は、上述の超音波探触子と、前記超音波探触子との間で信号の授受を行う超音波診断装置本体とを備えたものである。 Further, an ultrasonic diagnostic device according to another aspect includes the above-described ultrasonic probe and an ultrasonic diagnostic device main body that transmits and receives signals between the ultrasonic probe. is there.
 この構成によれば、音響制動体のムラを低減しつつ音響制動体に導体線を含む音響制動部材を備えた超音波探触子を使用した超音波診断装置が提供される。 According to this configuration, an ultrasonic diagnostic apparatus using an ultrasonic probe provided with an acoustic braking member including a conductor wire in the acoustic braking body while reducing unevenness of the acoustic braking body is provided.
 この出願は、2008年04月14日に出願された日本国特許出願特願2008-104739を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2008-104739 filed on Apr. 14, 2008, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、音響制動部材および音響制動部材の製造方法、この音響制動部材を用いた超音波探触子超音波ならびにこの超音波探触子を用いた超音波診断装置を提供することができる。 According to the present invention, it is possible to provide an acoustic braking member, an acoustic braking member manufacturing method, an ultrasonic probe ultrasonic wave using the acoustic braking member, and an ultrasonic diagnostic apparatus using the ultrasonic probe. it can.

Claims (5)

  1.  被検体内に超音波を送信する超音波探触子に用いられる音響制動部材であって、
     高分子材料で形成された音響制動体を備え、
     前記音響制動体の前記高分子材料中には、音響インピーダンスを調整するとともに、リード線として機能する所定の一方向に延びた複数の金属製繊維状導体を含むこと
     を特徴とする音響制動部材。
    An acoustic braking member used in an ultrasonic probe that transmits ultrasonic waves into a subject,
    It has an acoustic braking body made of a polymer material,
    An acoustic braking member, wherein the polymer material of the acoustic braking body includes a plurality of metallic fibrous conductors that adjust acoustic impedance and function as lead wires and extend in one predetermined direction.
  2.  前記金属製繊維状導体は、タングステンから成ること
     を特徴とする請求項1に記載の音響制動部材。
    The acoustic braking member according to claim 1, wherein the metallic fibrous conductor is made of tungsten.
  3.  請求項1に記載の音響制動部材を製造する音響制動部材の製造方法であって、
     主面に複数の成長核を形成した基板の前記主面上に、金属製の粉体の導体を混合した流動状態の樹脂を塗布する塗布工程と、
     前記樹脂を塗布した前記基板に、前記主面の法線方向に磁界を印加する印加工程と、
     前記磁界の印加後に、前記流動状体の樹脂を硬化する硬化工程とを備えたこと
     を特徴とする音響制動部材の製造方法。
    An acoustic braking member manufacturing method for manufacturing the acoustic braking member according to claim 1,
    On the main surface of the substrate having a plurality of growth nuclei formed on the main surface, an application step of applying a fluid resin in which a metal powder conductor is mixed;
    An application step of applying a magnetic field in the normal direction of the main surface to the substrate coated with the resin;
    A method of manufacturing an acoustic braking member, comprising: a curing step of curing the fluid resin after application of the magnetic field.
  4.  圧電現象を利用することによって超音波を生成するための複数の圧電素子を備えた圧電部と、
     前記圧電部に隣接して設けられた請求項1または請求項2に記載の音響制動部材とを備え、
     前記金属製繊維状導体の個数は、前記複数の圧電素子の個数よりも多いこと
     を特徴とする超音波探触子。
    A piezoelectric unit including a plurality of piezoelectric elements for generating ultrasonic waves by utilizing a piezoelectric phenomenon;
    The acoustic braking member according to claim 1 or 2 provided adjacent to the piezoelectric portion,
    The number of the metallic fiber conductors is larger than the number of the plurality of piezoelectric elements.
  5.  請求項4に記載の超音波探触子と、
     記超音波探触子との間で信号の授受を行う本体とを備えたこと
     を特徴とする超音波診断装置。
    The ultrasonic probe according to claim 4,
    An ultrasonic diagnostic apparatus comprising: a main body that transmits and receives signals to and from the ultrasonic probe.
PCT/JP2009/055502 2008-04-14 2009-03-19 Sound damping member and method for producing sound damping member, ultrasonic probe, and ultrasonic diagnosis device WO2009128322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508159A JP5212468B2 (en) 2008-04-14 2009-03-19 Method for manufacturing acoustic braking member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008104739 2008-04-14
JP2008-104739 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128322A1 true WO2009128322A1 (en) 2009-10-22

Family

ID=41199022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055502 WO2009128322A1 (en) 2008-04-14 2009-03-19 Sound damping member and method for producing sound damping member, ultrasonic probe, and ultrasonic diagnosis device

Country Status (2)

Country Link
JP (1) JP5212468B2 (en)
WO (1) WO2009128322A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147745A (en) * 1984-08-14 1986-03-08 Kanebo Ltd Electrically conductive thermoplastic resin composition
JPS62133899A (en) * 1985-12-06 1987-06-17 Tokyo Keiki Co Ltd Ultrasonic sensor
JPH03162839A (en) * 1989-11-21 1991-07-12 Olympus Optical Co Ltd Ultrasonic probe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068832A (en) * 1983-09-24 1985-04-19 株式会社島津製作所 Ultrasonic probe
JPS60114100A (en) * 1983-11-26 1985-06-20 Toshiba Corp Method for producing ultrasonic transducer
JP3319532B2 (en) * 1993-11-08 2002-09-03 株式会社東芝 Two-dimensional array type ultrasonic probe and manufacturing method thereof, two-dimensional array type ultrasonic convex probe
JP2000023297A (en) * 1998-07-02 2000-01-21 Sumitomo Electric Ind Ltd Production of anisotropic conductive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147745A (en) * 1984-08-14 1986-03-08 Kanebo Ltd Electrically conductive thermoplastic resin composition
JPS62133899A (en) * 1985-12-06 1987-06-17 Tokyo Keiki Co Ltd Ultrasonic sensor
JPH03162839A (en) * 1989-11-21 1991-07-12 Olympus Optical Co Ltd Ultrasonic probe

Also Published As

Publication number Publication date
JP5212468B2 (en) 2013-06-19
JPWO2009128322A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
Hu et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces
CN103946996B (en) The method of ultrasonic transducer and manufacture ultrasonic transducer
JP5282309B2 (en) Ultrasonic probe, manufacturing method thereof, and ultrasonic diagnostic apparatus
JP2013141243A (en) Ultrasonic probe and manufacturing method of the same
US20110257532A1 (en) Ultrasonic probe and method of preparing ultrasonic probe
JP2009296055A (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
JP5582139B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
EP3708263A1 (en) Flexible ultrasound array
WO2012023619A1 (en) Ultrasound probe and ultrasound diagnostic device using same
JP4528606B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
Vos et al. Transducer for harmonic intravascular ultrasound imaging
JP2007142555A (en) Ultrasonic probe and ultrasonic diagnostic equipment
KR101151844B1 (en) Manufacturing method of a conductive baking layer and two dimensional ultrasonic transducer with a conductive baking layer
JP5504921B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
WO2010092908A1 (en) Ultrasonic probe and ultrasonic diagnostic device
Song et al. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode
JP2011010794A (en) Ultrasonic probe and ultrasonic diagnostic apparatus equipped with the same
JP2009260481A (en) Sound damping member, method for manufacturing of sound damping member, ultrasonic probe and ultrasonic diagnostic apparatus
JP5212468B2 (en) Method for manufacturing acoustic braking member
KR20200081768A (en) Ultrasonic probe
WO2010092907A1 (en) Ultrasonic probe and ultrasonic diagnostic device
JP2009254447A (en) Ultrasonic probe, ultrasonic diagnostic device, and acoustic damping member
JP4709500B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5338389B2 (en) Ultrasonic probe manufacturing method, ultrasonic probe, ultrasonic diagnostic apparatus
Vos et al. A 20-40 MHz ultrasound transducer for intravascular harmonic imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732581

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508159

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732581

Country of ref document: EP

Kind code of ref document: A1