WO2009127068A1 - Electrical anomaly detection method and system - Google Patents
Electrical anomaly detection method and system Download PDFInfo
- Publication number
- WO2009127068A1 WO2009127068A1 PCT/CA2009/000512 CA2009000512W WO2009127068A1 WO 2009127068 A1 WO2009127068 A1 WO 2009127068A1 CA 2009000512 W CA2009000512 W CA 2009000512W WO 2009127068 A1 WO2009127068 A1 WO 2009127068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anomaly
- value
- current
- voltage
- phase
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2513—Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/088—Aspects of digital computing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
Definitions
- This invention relates to electrical anomaly detection in electrical distribution and grounding networks and more particularly, to detecting an anomaly and providing course of action data.
- Electrical networks are used in industrial applications such as, for example, in production, manufacturing, industrial or agricultural facilities. These networks, when implemented in large scale facilities, may comprise various electrical equipments such as motors, pumps, heaters, and cooling systems to accomplish various industrial tasks. Electrical networks used in a large scale industrial application tend to be difficult to manage, for example, because of the number of electrical elements, their complexity in terms of electrical connections, the efficiency of the network planning, the lifetime of the network, etc. Inappropriate management, replacement or planning of electrical equipments in a large scale industrial application may affect the electrical network and render the electrical equipment or a part of the electrical network unusable, and thus decrease the electrical signal quality.
- the method comprises receiving real time sensor data including at least one measured value measured in real time by at least one sensor installed on a conductor of the electrical network in the facility while the electrical network is in use; retrieving an anomaly detection rule, the rule having an identification of a required input, a formula, and a threshold reference value, for a detection of an anomaly; extracting at least one relevant measured value from the at least one measured value using the identification of the required input; comparing the at least one relevant measured value to the threshold reference value according to the formula to determine one of a presence and an absence of the anomaly in the real time sensor data; and if the anomaly is determined to be present, retrieving and providing anomaly monitoring data, the anomaly monitoring data including an indication of a monitoring course of action to be carried out to address the anomaly determined to be present.
- the method further comprises generating an indication that the electrical anomaly is detected and outputting a message including the anomaly monitoring data.
- the method further comprises formatting the real time sensor data into formatted data, and wherein the outputting the message comprises including the formatted data with the anomaly monitoring data.
- the receiving real time sensor data comprises receiving real time sensor data including at least one measured value measured in real time by sixteen current sensors and a voltage sensor.
- the method further comprises : retrieving potential sources data for the anomaly determined to be present including a list of potential sources for the anomaly; retrieving installation data for the electrical network; determining a source of the electrical anomaly in the electrical network using the list of potential sources, the real time sensor data and the installation data; and wherein providing anomaly monitoring data comprises providing an indication of the determined source.
- the method further comprises : retrieving type data for the anomaly determined to be present including a list of types for the anomaly and a corresponding detection rule for each of the types; determining a type of the electrical anomaly in the electrical network using the list of types, the corresponding detection rule and the real time sensor data; and wherein providing anomaly monitoring data comprises providing an indication of the determined type.
- determining the type further comprises using the installation data.
- determining the type further comprises using the potential sources data.
- the anomaly is one of: an erroneous installation of the sensor, an electrical arc, a short circuit, an external intervention on a current limitation device, a bonding, a leakage of current, an overcurrent, a lost load, a harmonic distortion anomaly, a mechanical jam, an unbalanced current, an overload of a load, a repetitive start, a heavy start, a thermal protection anomaly, a power failure, an unbalanced voltage, a frequency value anomaly, a voltage value anomaly, a loss of a neutral conductor, and a temperature anomaly.
- the anomaly is the electrical arc
- the at least one sensor is a current sensor
- the at least one measured value is a current value
- the identification of the required input is a value for a current
- the formula is performing a standard deviation on a vector of subtractions of the value for the current for a previous cycle by another current value, for a number n of cycles, the another current value being one of a current value for a present cycle and a current value for an average cycle
- the threshold reference value is a reference value for the standard deviation
- extracting comprises extracting n current acquired signals from the real time sensor data
- comparing comprises applying the formula to the n current acquired signals and comparing the standard deviation to the reference value to determine one of a presence and an absence of the electrical arc.
- the method further comprises determining the current value for an average cycle by accumulating a number m of current values over m cycles and performing an average on the m current values to obtain the current value for the average cycle.
- the anomaly is the external intervention on the current limitation device
- the at least one sensor is a current sensor
- the at least one measured value is two sets of values from consecutive time periods, each set including a current presence value, a voltage presence value and a load presence value
- the identification of the required input is a status of a current, a status of a voltage and a status of a load
- the formula is subtracting each value from one of the two consecutive sets from a corresponding value in the other one of the two consecutive sets
- the threshold reference value is a transition value
- extracting comprises extracting an indication of a status of a current from the current presence value, of a status of a voltage from the voltage presence value and a status of a load from the load presence value from the real time sensor data
- comparing comprises applying the formula and comparing the obtained set of subtracted values to the transition value to determine an occurrence of a abnormal transition if one of the transition for each of the voltage, the current and the load is from a present status to an absent status over the two
- the method further comprises determining the current presence value by comparing a measured current value with a current presence threshold value, determining the voltage presence value by comparing a measured voltage value with a voltage presence threshold value and determining the load presence value by comparing a measured load value with a load presence threshold value.
- the anomaly is the erroneous installation of the sensor
- the at least one sensor is a current sensor having at least two conductor holes
- the at least one measured value is a measured voltage value for each of the at least two conductor holes of the sensor
- the identification of the required input is a value for a voltage
- the threshold reference value is a threshold voltage value
- the formula is subtracting the value for the voltage by the threshold voltage value; wherein comparing comprises applying the formula to each the measured voltage value and further comprises : if the measured voltage value is greater than the threshold voltage value, determining the corresponding one of the sensor holes to be a line conductor; if the measured voltage value is smaller than the threshold voltage value, determining the corresponding one of the sensor holes to be a neutral conductor; determining a number of holes having been determined to be a neutral conductor to be neutral holes, if the number of neutral holes is greater than one, determining a presence of the erroneous installation anomaly and determining a type of the erroneous installation anomaly
- comparing further comprises : determining a number of holes having been determined to be a line conductor to be a number of live holes; if the number of live holes is zero, determining a presence of the erroneous installation anomaly and determining a type of the erroneous installation anomaly to be a number of live holes anomaly.
- the at least one measured value includes a measured phase value for each of the at least two conductor holes of the sensor
- the identification of the required input includes a value for a phase
- the threshold reference value includes a single phase threshold phase value and a three-phase threshold phase value
- the formula further includes subtracting a phase shift between phases of each line conductors with one of the single phase threshold phase value and the three-phase threshold phase value; wherein comparing further comprises : if the number of live holes is two, determining a phase shift between the phase measured value of the line conductors, comparing the phase shift with the single phase threshold phase value, if the erroneous installation anomaly is determined to be present, determining a type of the erroneous installation anomaly to be a phase shift anomaly; if the number of live holes is three, determining three phase shifts between the phase measured value of the line conductors, comparing each of the three phase shifts with the three-phase threshold phase value, if the erroneous installation anomaly is determined to be present
- the system comprises a sensor data receiver for receiving real time sensor data including at least one measured value measured in real time by at least one sensor installed on a conductor of the electrical network in the facility while the electrical network is in use; an anomaly detector for retrieving an anomaly detection rule from an anomaly detection rule database, the rule having an identification of a required input, a formula, and a threshold reference value, for a detection of an anomaly; receiving the real time sensor data from the sensor data receiver and extracting at least one relevant measured value from the at least one measured value using the identification of the required input; comparing the at least one relevant measured value to the threshold reference value according to the formula to determine one of a presence and an absence of the anomaly in the real time sensor data; an event generator controlled by the processor for retrieving and providing anomaly monitoring data if the anomaly is determined to be present by the processor, the anomaly monitoring data including an indication of a monitoring course of action to be carried out to address the anomaly determined to be present.
- system further comprises an event display for generating an indication that the electrical anomaly is detected and outputting a message including the anomaly monitoring data.
- system further comprises a sensor data formatter for formatting the real time sensor data into formatted data, and wherein the event display outputs the message including the formatted data with the anomaly monitoring data.
- the system further comprises a source locator for retrieving potential sources data for the anomaly determined to be present from the anomaly detection rule database including a list of potential sources for the anomaly; retrieving installation data for the electrical network from a system installation database; and determining a source of the electrical anomaly in the electrical network using the list of potential sources, the real time sensor data and the installation data; wherein the event generator provides an indication of the determined source.
- the system further comprises a type determiner for: retrieving type data for the anomaly determined to be present from the anomaly detection rule database including a list of types for the anomaly and a corresponding detection rule for each of the types; and determining a type of the electrical anomaly in the electrical network using the list of types, the corresponding detection rule and the real time sensor data; wherein the event generator provides an indication of the determined type.
- the type determiner further uses the installation data. In one embodiment, the type determiner uses the potential sources data.
- the anomaly is the electrical arc
- the at least one sensor is a current sensor
- the at least one measured value is a current value
- the identification of the required input is a value for a current
- the formula is performing a standard deviation on a vector of subtractions of the value for the current for a previous cycle by another current value, for a number n of cycles, the another current value being one of a current value for a present cycle and a current value for an average cycle
- the threshold reference value is a reference value for the standard deviation
- the anomaly detector extracts n current acquired signals from the real time sensor data and applies the formula to the n current acquired signals and compares the standard deviation to the reference value to determine one of a presence and an absence of the electrical arc.
- the anomaly is the external intervention on a current limitation device
- the at least one sensor is a current sensor
- the at least one measured value is two sets of values from consecutive time periods, each set including a current presence value, a voltage presence value and a load presence value
- the identification of the required input is a status of a current, a status of a voltage and a status of a load
- the formula is subtracting each value from one of the two consecutive sets from a corresponding value in the other one of the two consecutive sets
- the threshold reference value is a transition value
- the anomaly detector extracts an indication of a status of a current from the current presence value, of a status of a voltage from the voltage presence value and a status of a load from the load presence value from the real time sensor data; applies the formula and compares the obtained set of subtracted values to the transition value to determine an occurrence of a abnormal transition if one of the transition for each of the voltage, the current and the load is from a present status to an absent status over the two consecutive time periods
- the anomaly is an erroneous installation of the sensor
- the at least one sensor is a current sensor having at least two conductor holes
- the at least one measured value is a measured voltage value for each of the at least two conductor holes of the sensor
- the identification of the required input is a value for a voltage
- the threshold reference value is a threshold voltage value
- the formula is subtracting the value for the voltage by the threshold voltage value; wherein the anomaly detector applies the formula to each the measured voltage value; if the measured voltage value is greater than the threshold voltage value, determines the corresponding one of the sensor holes to be a line conductor, if the measured voltage value is smaller than the threshold voltage value, determines the corresponding one of the sensor holes to be a neutral conductor; determines a number of holes having been determined to be a neutral conductor to be neutral holes, if the number of neutral holes is greater than one, determines a presence of the erroneous installation anomaly and determines a type of the erroneous installation anomaly to be
- the anomaly detector determines a number of holes having been determined to be a line conductor to be a number of live holes; if the number of live holes is zero, determines a presence of the erroneous installation anomaly and determines a type of the erroneous installation anomaly to be a number of live holes anomaly.
- the at least one measured value includes a measured phase value for each of the at least two conductor holes of the sensor
- the identification of the required input includes a value for a phase
- the threshold reference value includes a single phase threshold phase value and a three-phase threshold phase value
- the formula further includes subtracting a phase shift between phases of each line conductors with one of the single phase threshold phase value and the three-phase threshold phase value; wherein the anomaly detector, if the number of live holes is two, determines a phase shift between the phase measured value of the line conductors, compares the phase shift with the single phase threshold phase value, if the erroneous installation anomaly is determined to be present, determines a type of the erroneous installation anomaly to be a phase shift anomaly; if the number of live holes is three, determines three phase shifts between the phase measured value of the line conductors, compares each of the three phase shifts with the three-phase threshold phase value, if the erroneous installation anomaly is determined to be present,
- Figure 1 is a block diagram showing an electrical network to be monitored for detecting anomalies in accordance with an embodiment
- Figure 2 is a block diagram of a distant access to the electrical network of Figure 1 in accordance with an embodiment
- FIG 3 is a bloc diagram of the control unit of Figure 1 in accordance with an embodiment
- Figure 4 is a block diagram of a detector of the control unit of Figure 2 in accordance with an embodiment
- Figure 5 is a block diagram of a current sensor of the electrical network of Figure 1 in accordance with an embodiment
- Figure 6 is a block diagram of an algorithm module of the current sensor of Figure 3 in accordance with an embodiment
- Figure 7 is a flow chart for illustrating the operations performed by a CETN element of the algorithm module of Figure 6 in accordance with an embodiment
- Figure 8 is a flow chart of a procedure to perform voltage validation to be executed by the algorithm module of Figure 6 in accordance with an embodiment
- Figure 9 is a flow chart of a procedure to perform phase validation to be executed by the algorithm module of Figure 6 in accordance with an embodiment
- Figure 10 is a schematic view a comparator of the algorithm module of Figure 6 in accordance with an embodiment
- Figure 11 is a diagram that represents thresholds to determine whether an event is detected by the comparator of Figure 10 in accordance with an embodiment
- Figure 12 is a flow chart of the operation performed in a short circuit element in the electrical network of Figure 1 in accordance with an embodiment
- Figure 13 is a block diagram of an electrical circuit for counting event occurring in the electrical network of Figure 1 in accordance with an embodiment
- Figure 14 is a block diagram of a voltage sensor for determining anomalies in the network of Figure 1 in accordance with an embodiment
- FIG 15 is a block diagram of an algorithm module of the voltage sensor of Figure 14 in accordance with an embodiment
- Figure 16a is a schematic view of an electric circuit to be analyzed in accordance with an embodiment
- Figure 16b is a schematic view of an electric circuit to be analyzed in accordance with an embodiment
- Figure 17 illustrates a window of a graphical user interface in accordance with an embodiment
- Figure 18 illustrates a window of a graphical user interface in accordance with an embodiment
- Figure 19 illustrates a window of a graphical user interface in accordance with an embodiment
- Figure 20 illustrates a window of a graphical user interface in accordance with an embodiment
- Figure 21 illustrates a window of a graphical user interface in accordance with an embodiment
- Figure 22 illustrates an example power signal, subtracted signal (cycle 1 miinus cycle 2) and standard deviation signal over C1-C2, for which there is no electrical arc;
- Figure 23 comprises Figure 23a and Figure 23b
- Figure 23a is an example power signal, subtracted signal (cycle 1 (C1) minus cycle 2 (C2)) and standard deviation signal over C1-C2, for which there is an electrical arc present
- Figure 23b is a zoomed-in version of Figure 23a to show the standard deviation amplitude variations in more detail.
- FIG. 1 is a block diagram showing an electrical network 1 to be monitored for detecting anomalies.
- the facility can be an agricultural facility, a farm, an industrial complex, a commercial building or any other building with electrical equipments to be monitored.
- the network 1 is monitored to allow system updates, remote debugging, threshold adjustments, general monitoring, detect network disturbances, equipment malfunctions or the like, and to identify the type of anomaly, and to prevent equipment breakdown with early detection of anomalies prior to a failure occurring.
- the network 1 can be monitored to analyze long term recurrent problem of temporary and uncorrelated problem.
- the electricity is provided to the network 1 by a traditional electricity supplier 4 connected to an electrical entry 3.
- FIG. 2 is a block diagram of a distant access to the electrical network 1 in accordance with an embodiment.
- a user can communicate with the network 1 via an external access network 110 such as the Internet via a user device 115.
- the user device 115 can be, for example, any type of Personal Computer (PC), Portable computer, Personal Digital Assistant (PDA), mobile phone or the like.
- PC Personal Computer
- PDA Personal Digital Assistant
- the external access could be provided via any distant access. This external access can allow system updates, remote debugging, threshold adjustments and general monitoring.
- the monitoring system constantly verifies the electrical network even when no loads are active.
- the system permanently reads and analyses all sensor parameters. For example, the system can easily identify, quantify and locate electrical arcs, voltage drops, motor problems, conductor and neutral overloads, current leakages, equipment overcharges, THD, etc.
- the system verifies the panel and room temperature where the panel is located. The system can differentiate whether the panel temperature increase is caused by an electrical defect or if the room temperature itself is increasing. In both cases, the system advises the network manager to take immediate action.
- the monitoring system details the anomaly detected and proposes a course of action to address the anomaly and eventually solve the issue. This reduces the debugging time and minimizes the downtime by proposing preventive maintenance.
- the monitoring system addresses multiple types of motor problems such as the motor thermal protection or the circuit breakers are not set properly, the motor is in overload due to a voltage drop or in a mechanical jam, the motor lost his load, the motor was stopped by an external intervention (such as a human intervention on a breaker, an accidental physical triggering of a breaker or a remote controlling of an electronic breaker), etc.
- the system also has the capability to detect, quantify and locate anomalies over standard loads, such as electrical arcs, bounding faults, current leakage, THD, etc. Finally events affecting electrical power quality or security of the local electrical network are detected.
- Figure 3 is a schematic view of the control unit 11 in accordance with an embodiment.
- the control unit 11 can be a personal computer (PC) or a server that can process received data from any communication medium.
- the control unit 11 can be local or remotely located, for example, in another building like building 10.
- the control unit 11 can be hardware, software of any combination thereto.
- the control unit 11 may comprise a computer medium embodied therein to manage and operate the control unit 11. Solid lines represent data links while the dashed lines are electrical supply connections.
- the control unit 11 receives at a physical layer 205, events, data, and command feedback from the network 1.
- the physical layer forwards the events, data, and command feedback from the network 1 to a communication manager 208.
- the control unit 11 also sends data and commands to the network 1. Events, data and command feedback are forwarded to a general manager 210, which receives the error code from the detector.
- the general manager 205 retrieves from a database 18 an error message and the Proposed course of action is sent to a graphic user interface (GUI) 215.
- the database can be any persistent repository, or non-volatile storage that stores information related to each of the sensors such as the breaker information (number, rating, type, etc), the load information, the panel information (number, location, manufacturer, etc), cable information, etc.
- the GUI 215 displays the information received and processed at the general manager 210 to a user.
- the GUI 215 also sends data input from the user. For each alarm or warning related to a anomaly or a failure, the system shows over the user device 115 screen of the GUI 215 a comprehensive written description of the anomaly and the related solution or the course of action to resolve/address the issue.
- FIG 4 is a block diagram of a detector 220 of the control unit of Figure 3 in accordance with an embodiment.
- the control unit 11 comprises detectors that receive all the events at the same time.
- Each detector 220 has a different event filter 221 to receive events relative to its state machine 222.
- Some detectors may use a timer and/or an event counter 223.
- the state machine 222 verifies if a rule is violated using a threshold for that rule 224. In case of a rule violation, the detector 220 then sends an error code and any related data to the general manager 210.
- a router 12 is connected to the control unit 11 via a Radio Frequency (RF) link or the like.
- the router can be an ethernet router, a hub, a switch, a wireless router or the like. All hubs are preferably linked to the user device 115 via a standard Ethernet network. The network can be built using wired or wireless interconnection.
- the router 12 is also connected to gateways 13. In Figure 1 , gateways 13 are directly connected to the router 12, and alternatively the gateways 13 may also be connected in series from one another.
- the gateways 13 are connected to electrical panels (EP) like electrical panels EP1 , EP2, EP3, EP4 and EP5, which are distributed within a building 20.
- Each electrical panel EP1 , EP2, EP3, EP4, EP5 monitors and measures data to be are forwarded to a control unit 11.
- Figure 1 shows one configuration of an electrical anomaly detection system. In the embodiment shown in Figure 1 , there are five electrical panels (EP1 to EP5) in building 2.
- Each electrical panel comprises sensors each connected to a gateway 13.
- the gateways 13, the router 12 and the control unit 11 can be, for example, interconnected via cable, Wireless Fidelity (Wi-Fi), RF or any other medium using Ethernet protocol for example.
- the system can include sensors (C and V) in one or multiple buildings or the like.
- the gateways 13 may have multiple branches with different types, sizes or sensor grades connected to it.
- sensors 14 are typically daisy chained in groups, preferably of up to eight sensors. Those sensors are connected to a hub 13.
- the hub can manage up to, preferably, eight groups of eight sensors.
- the sensors 14, 15 and the hub 13 can communicate using different protocols. Examples of such protocols are CANOPEN 2.0, TCP/IP, TCP/MODBUS RS485 SERIAL/MODBUS.
- the network 1 may comprise two types of sensors: current (C) sensors 14 and voltage (V) sensors 15, which are each identified with sensor unique ID.
- the current sensor 14 may be connected to each electrical line of the network 1 to perform current measurements on its associated line, as it will be described below.
- a voltage sensor 15 is disposed at an electrical entry 3 of the electric supply network and performs voltage measurements.
- Current sensors 14 and voltage sensors 15 are connected to a gateway 13 to send measurement data to the gateway 13, the control unit 11.
- a single voltage (V) sensor 15 may be used in electrical connection with the EP2.
- the voltage (V) sensor 15 may in fact be connected to any of gateway 13. The measurement data are then sent to the router 12 to be processed by the control unit 11.
- the network 1 may comprise sensors of any type like voltage, current, temperature, pressure, etc.
- the sensors can be any size such as two holes, three holes, etc.
- the sensors can be of any grade (15A, 3OA, 600V, etc.) can be connected to the same gateway 13.
- the sensors 14, 15 are provided in different sizes, quantities of holes (1 to 4), type (current or voltage) and family (intrusive or nonintrusive).
- the sensors 14, 15 can be located anywhere over the electrical network.
- the sensors 14, 15 can be in the electrical panel, over a cable close to a motor or even in a machine tool to verify some solenoids.
- the current sensor 14 can be similar to sensors described in U.S. Patent Pub. No. US 2006/0255793 A1 , published on November 16, 2006.
- the sensors used with the present invention are commercially available from Nuvolt Corporation Inc. under the brand SmartScan tm .
- SmartScan tm sensors are easily installed, as follows : select a SmartScan tm sensor having the same number of hole as the wired circuit, pass any wire through any hole of the sensor, connect the wire to the circuit breaker as usual and use the Ethernet cable to link the sensor to the hub or to the previously installed sensor.
- the monitoring system will automatically determine the configuration between the holes and conductors.
- the SmartScan connector pinout for the sensor is as follows
- the current sensor 14 is equipped with a processor like processing unit (CPU) that verifies a list of characteristics of the electrical circuit it monitors such as the voltage, current and harmonic content or the like.
- CPU processor like processing unit
- the current sensor 14 constantly analyses the electrical current on its associated conductors and sends a message to the software when any threshold is reached, a rule is broken or if periodic information is required by the control unit 11.
- FIG. 5 is a block diagram of a current sensor 14 of the electrical network 1 in accordance with an embodiment.
- the current sensor 14 is composed of physical sensor 140 where raw data 141 can be obtained from a conductor (not shown).
- the raw data pass through an analog circuit 142, which reshapes the raw data.
- the Analog/Digital converter (AJO) 146 receives the reshaped data and converts the data received into a digital signal.
- an algorithm module 144 extracts relevant measured value from the digital signal.
- the algorithm module 144 compares the relevant measured value to a threshold reference value in a threshold module 150.
- the algorithm module 144 detects an anomaly of the circuit state in the network 1 like passing from a normal operation of the circuit to an overload, or passing from an overload to a normal operation, a general manager 154 formats the algorithm information and sends it to the communication manager 148, which encapsulates or de-capsulates messages and data from the communication protocol.
- the current sensor 14 comprises a physical layer 152 which translates information for incoming/outgoing transmission, from a voltage level, for example a processor level, to another voltage level like a voltage level based protocol requirements and vice versa.
- the current sensor can further comprise a temperature sensor 156 to determine the temperature of a monitored element.
- the one-hole current sensor 14 can be used in conjunction with other one-hole sensors over large conductor gauges.
- the current sensor 14 will be able to operate with one or many empty holes. The system will determine that a hole is an empty hole when the load is in operation and no current flows through a specific hole.
- sensors 14 can include more holes than the number shown in the embodiment of Figure 5.
- a current sensor 14 that comprises a plurality of holes would comprise a corresponding number buses and lines to convey digital an analog data.
- the current sensor 14 is mounted to a group of electrical conductors for monitoring electrical disturbances on the group of electrical conductors.
- a current sensor 14 is mounted on two conductors corresponding to one phase and one neutral.
- the current sensor is mounted up to four conductors corresponding to three phases and one neutral.
- the current sensor 14 typically measures the amplitude of the current (i.e. the 60-Hz component) on each conductor and the magnitude of at least the first current harmonic.
- the current sensor 14 also measures the temperature of each conductor.
- each current sensor 14 collects the measurement data and sends it to its associated gateway 13 which transmits it to the control unit 11.
- the gateway 13 multiplexes measurement data and sends the multiplexed data to the control unit 11 in order to be processed and analyzed by the computer medium. If more information is needed by the control unit 11 to find a precise Diagnosis Condition, the control unit 11 may send commands to the sensors (C and V) to gather more information from sensors 14 and 15.
- the result of this analysis can be an error message, a warning message or an event message, and for each of these messages a course of action and/or solution may be provided, as it will be described below.
- a local electrical network (LEN) manager may be advised.
- these messages can be stored in the database 18.
- the control unit 11 receives data from the various sensors.
- the software via its connection to a database knows where the sensor is located in the electrical network.
- the control unit 11 also knows what kind of circuit the sensor interfaces with.
- this identifies the fault and the course of action that should be applied.
- the identified course of action is sent to the LEN manager.
- the result of this analysis can be an alarm message, a warning message or an event message. Those messages are logged in a database (e.g. database 18). In the case of the alarm and the warning messages, the LEN manager is also advised.
- the alarm or the warning message is resolved, the time and date of the resolution of the error is logged.
- the message sent to the LEN manager typically takes the form of a dialog window that contains the following elements:
- a specific circuit d. a specific panel, the number of times that an equipment starts, the power quality for a specific time.
- FIG. 1 and 2 where the control unit 11 is connected to a database 18.
- the database 18 stores the log of every event, message, warning or error. Attached with those events are all the data and the state of the sensors saved in the database. The history of every event helps to understand any past or upcoming problem. This tool can be used to analyze long term recurrent problem of temporary and not correlated problem.
- circuit ID circuit name
- panel ID load type
- conductor type conductor type
- protection type protection rating
- equipment supplier equipment supplier
- the system builds a signature for the event. With sufficient history, the system is able to predict an equipment failure. Statistics are cumulated and include : the frequency of failure for a. an equipment type, b. a manufacturer equipment, c. a specific circuit, d. a specific panel, the number of times that an equipment starts, the power quality for a specific time.
- the system analyses the electrical measurements provided by sensors distributed on critical portions of the electrical network 1 in order to detect network disturbances, equipment malfunctions or the like, and to identify the type of anomaly and prevent equipment breakdown with early detection of anomalies prior a failure occurs.
- a user accesses the control unit 11 directly as described in Figure 1 or remotely as described in Figure 2, the user is provided with an applet or window from the GUI 215.
- FIG 17 illustrates an example of a alarm screen window 2005 of the GUI 215.
- the alarm screen gives an overview of all active alarms.
- the alarms are preferably color coded and sorted by emergency level.
- the first alarm at the top is therefore preferably the most critical.
- Date for the first occurrence of the alarm, equipment, circuit breaker identification and alarm information fields are provided.
- An acknowledge checkbox can be used to allow a user of the GUI 215 to acknowledge having learned about the alarm.
- Figure 18 illustrates an image of a window 2010 of a graphical user interface in accordance with an embodiment.
- a user is provided with the history of alarms which comprises dates and times (appearance of event and disappearance of events), location, severity of event and description of an event.
- a check box can be used to allow the user to note an acknowledgement of the event.
- the user may have access to more details on a particular event or alarm. This is illustrated in Figure 19, which provides an alarm window 2015 of the GUI where messages, and recommended course of action and/or solutions, are provided to the user. Details on the location of the anomaly are given and the number of times the alarm has occurred since the first occurrence, namely the recurrence of an alarm, can also be provided to the user.
- the user may access a particular window for the status of sensors. This is illustrated in window 2020 of Figure 20. The location, electrical panel, circuit, description, sensor serial number, sensor firmware version number and status are shown for a refresh time and date shown at the bottom.
- the real time sensor measurement data can be obtained in another window, as illustrated in the window 2025 of Figure 21 , the user may access the live measurements performed by a current or voltage sensor. Thus, the user may have access to the data of any conductor of the network. Phase to phase data and phase-neutral data are available. Harmonic values can also be shown and compared to international standard thresholds.
- windows can be provided in GUI 215 to configure the system.
- windows include circuit management, panel configuration, user profiles, alarm profiles, equipment configuration, etc.
- the algorithm 144 may comprise various elements to perform various algorithms, as it will be described below.
- the algorithm module 144 receives data from the A/D 146, which are scaled by the scaling element 1440 before any element module of the algorithm module 144 can be able to process the data.
- the algorithm module 144 also calculates the Root mean square (RMS) version of the data.
- the algorithm module 144 may use the scaling data or/and the RMS version of the signal.
- the elements may use threshold data to compare with its results. If a maximum or a minimum value of threshold is reached or if certain results are obtained, an event is created by an event generator 1452.
- the event generator 1452 sends events and their related data the control unit to be displayed to an end user. Events are generated by circuits integrated in the event generator 1452. In another embodiment, events are only generated when the state of the circuit has changed.
- FIG. 7 is a flow chart for illustrating the operations performed by a CETN element 1460 in accordance with an embodiment.
- the CETN element 1460 allows an identification of conductors by the algorithm module 144.
- the algorithm module 144 identifies the nature of the conductors passing through the current sensors 14.
- the algorithm module identifies the type of electrical network when connected to the voltage sensor 15.
- a voltage validation and a phase validation is performed according to 800 and 850 to identify the conductors of the network 1 and thus determining a network topology. These are to determine, in a case of an incorrect installation, the location of the error. This procedure also verifies that the network works properly to prevent any damage to any electrical equipment.
- FIG. 8 is a flow chart of a procedure to perform voltage validation to be executed be the algorithm module 144 in accordance with an embodiment.
- a CETN code is sent to the control unit 11.
- the code corresponds to an error message and a recommended course of action and/or solution.
- the algorithm module 144 initializes the counters.
- the counters for the hole, the counter for the number of holes, the counter for the number of neutral wire, the counter for the number of active wires are initialized.
- the voltage the algorithm module 144 verifies the configuration of the wiring of the current sensors 14, and the algorithm module 144 retrieves the number of holes for the current sensors 14.
- the holes counter is compared with the number of holes, if the counter is equal or greater than the number of holes, then it is determined, at 915, if the number of active wires is smaller than the maximum number of active wires, namely 4, and if so, that the system is normal according to 920. Otherwise, according to 922, if the minimum requirements are not met the system issues a warning message.
- the holes counter is less than the number of holes, the voltage information of the holes is measured. According to 930, if the hole has a voltage presence, it is considered as an active wire and the counter is increased, at 935.
- the hole has no voltage, it is verified if there is already a neutral wire or if the number of hole is equal to zero. According to 950, if there is no neutral wire or if the number of hole is equal to zero, the neutral status is assigned to the hole and the neutral counter and the holes counter are incremented. According to 945, if there is already a neutral and a second neutral is detected, there is an installation error.
- FIG. 9 is a flow chart of a procedure to perform phase validation to be executed the algorithm module 144 in accordance with an embodiment.
- the algorithm module 144 verifies, depending on the configuration, if the phase shift is standard.
- the phase validation verifies and validates the type of network.
- the algorithm module 144 initializes the counters.
- the counters for the hole, the counter for the number of holes, the counter for the number of neutral wire, the counter for the number of active wires are initialized.
- the algorithm 144 retrieves the number of Hots (active wires) to determine if the system is a single-phase or a three-phase system.
- the algorithm module 144 in a case of a three-phase system, it is verified if the counter of hole is greater than one.
- the algorithm module 144 verifies whether each phase has a 120° or a 240° phase shift. The comparison is done by determining the difference between each of the phase one to another.
- the subtraction 1 is made between phase 1 and phase 2
- a subtraction 2 is made between phase 1 and phase 3
- a subtraction 3 is made between phase 2 and phase 3.
- the hole counter is incremented. If not, according to 1045, there is a phase anomaly and an error message is issued and sent to the control unit 11 and 1085.
- the system is a single-phase system. According to 1015, the system is evaluated if it is a phase-phase by determining whether the number of Hots is less than two.
- the algorithm 144 verifies whether the system is a phase-phase system. According to 1035, a subtraction is performed by the algorithm module 144 using the two phases to determine if the system has a 180° phase shift. Should that be the case then the system is normal, according to 1025. Otherwise, according to 1040, the algorithm 144 determines whether the phase shift the phase shit is between 0° and 180°. According to 1085, if the phase-shift is 0, there is a phase anomaly and an error message is issued. According to 1045, if the phase-shift is 0° a warning message is issued.
- FIG. 10 describes a schematic view a comparator element 1462 in accordance with an embodiment.
- Figure 11 is a diagram that represents thresholds to determine whether an event is detected by the comparator 1462 in accordance with an embodiment.
- the comparator element 1462 receives scaled data and is verifies if a threshold has been exceeded.
- Thresholds are programmable and can be stored in a threshold repository 1110, which can be located, for example, in the database 18. For each threshold value, there is a MAX and/or a MIN value. For MAX and MIN values, there is a corresponding hysteresis diagram 1200, as shown on the embodiment of Figure 11.
- the threshold is based either on electrical codes, on manufacturer data or on safety.
- the algorithm module 144 comprises a short-circuit element 1450 is to detect a short circuit in the network 1.
- the short circuit 1450 can generate, for example, 75A to 10 00OA or more. Such level of current may overload a channel.
- the short-circuit element 1450 verifies if the channel is saturated.
- the voltage presence is tested.
- this indicates the presence of a short-circuit.
- the algorithm module 144 comprises an unbalanced current element 1448, which is applied only to three-phased circuit.
- the unbalanced element verifies if a circuit is unbalanced. This is determined when detecting that Maximum deviation from the average divided by the average, for example, with measurements of 65A 75A 79A.
- the threshold to send an alarm could be 2% and beyond 5%, the load should be shed immediately before damage occurs to the equipment.
- the algorithm module 144 comprises a FFT element 1458, a FFT (Fast Fourrier Transform) computes the DFT (Discrete Fourrier transform) and produces exactly the same result as evaluating the DFT definition directly; the only difference is that a FFT is much faster.
- FFT Fast Fourrier Transform
- DFT Discrete Fourrier transform
- the algorithm module 144 comprises a FreqCalcul element 1456 calculates the freqency of the signal. If the frequency is higher or lower than the nominal frequency (60hz or 50hz depending where you are), an event is generated.
- the voltage detector signal is used to calculate the frequency.
- the voltage detector produces a square-wave signal and caculates the number of uppers and lowers samples. The addition of both indicates the frequency. Theses samples information also indicates the signal symetric when compariing of the upper and the lowers samples.
- the algorithm module 144 comprises an electrical arc element 1454.
- the electrical arc element 1454 is a chaotic signal.
- the electrical Arc Bloc subtracts the current cycle from the next cycle to isolate the electrical arc from the power signal.
- the result for each sample is stored in a vector memory. After a number of cycles such as five cycles, the standard deviation on the vector is performed. The trend of the standard deviation indicates if an electrical arc is present or not.
- a power signal which does not comprises an electrical arc is symmetrical, as shown in Fig. 22 as the sine curve for an example application.
- the result should be 0.
- the example application does not have an electrical arc and the subtracted cycle is very close to 0 and the standard deviation on the subtracted cycle is constant and of a value of about 0.
- Figure 23a is an example power signal, subtracted signal (cycle 1 (C1) minus cycle 2 (C2)) and standard deviation signal over C1-C2, for which there is an electrical arc present and
- Figure 23b is a zoomed-in version of Figure 23a to show the standard deviation amplitude variations in more detail.
- the electrical arc is added to the residual noise value to create a non- regular, ie chaotic, signal.
- the standard deviation of the subtracted signal therefore varies over time and is non-zero.
- the example application has an electrical arc from a time of about 3,48 sec.
- the power signal shows a slight variation in amplitude from that time
- the subtracted cycle shows a chaotic signal
- the standard deviation over the subtracted cycle shows a varying non-zero value.
- a half-cycle preprocessing is optional and occurs prior to the other calculations. It is a half-cycle slip.
- the current half-cycle is subtracted from the previous half-cycle.
- the result is a subtracted half-cycle.
- the process is repeated with the next two current and previous half-cycles.
- the two subtracted half cycles are cumulated to obtain a full subtracted cycle.
- the first method is the average cycle slipping method.
- the average signal for a number of cycles is done. Typically, 5 cycles are used.
- the result is an average cycle (or reference cycle).
- This average cycle is then subtracted from future cycles. Typically the five next cycles are used. Each newly acquired cycle is subtracted by the average cycle.
- the subtraction result is kept in a vector.
- the results are cumulated for the five next cycles.
- the standard deviation is performed on the vector.
- the standard deviation is compared to a pre-determined standard deviation threshold. If the calculated standard deviation on the vector is greater than the pre-determined standard deviation threshold, there is an electrical arc anomaly. In the example application of Fig. 22c, if a standard deviation threshold of 0.01 is used, the electrical arc will be detected.
- the standard deviation is performed on the vector. The standard deviation is compared to a pre-determined standard deviation threshold. If the calculated standard deviation on the vector is greater than the pre-determined standard deviation threshold, there is an electrical arc anomaly.
- the standard deviation is performed on the vector. The standard deviation is compared to a pre-determined standard deviation threshold. If the calculated standard deviation on the vector is greater than the pre-determined standard deviation threshold, there is an electrical arc anomaly.
- FIG. 13 is a block diagram of an electrical circuit of the Frequency calculation element 1456 for counting event occurring in the electrical network 1.
- a corresponding counter is incremented.
- Each counter 132 and 133 are incremented using a corresponding comparator 131 , 132.
- the electrical circuit adds and subtracts the upper and the lower counter.
- the addition of the lower and the upper counter in a clock 135 gives the period of the signal.
- This period is compared to the count threshold to verify of the signal period is according to a given standard.
- a comparator 138 verifies the difference of the upper and the lower counter and determines whether the signal is symmetrical. The result for a symmetrical signal is zero.
- Counters are reinitialized after a determined period of time. Any deviation of the result of the addition or the subtraction, generates an error code plus the related data.
- FIG. 14 is a block diagram of the voltage sensor 15 for determining anomalies in the network 1 in accordance with an embodiment.
- the voltage sensor 15 comprises modules referred to with the same numeral reference as those described for the current sensor 14, and for clarity, these descriptions of those will not be repeated.
- the voltage sensor comprises a physical sensor 175 where raw data 141 can be obtained from a conductor (not shown). The raw data pass through an analog circuit 142, which reshapes the raw data.
- Analog/Digital (A/D) 146 receives the reshaped data and converts the data receives the analog signal and converts it into a digital signal.
- an algorithm module 155 extracts relevant measured value from the digital signal.
- the algorithm module 144 compares the relevant measured value to a threshold reference value in a threshold module 150.
- the algorithm module 144 detects an anomaly of the circuit state in the network 1 like passing from a normal operation of the circuit to an overload, or passing from an overload to a normal operation, a general manager 152 formats the algorithm information and sends it to the communication manager 148, which encapsulates or de-capsulates messages and data from the communication protocol.
- the voltage sensor 15 comprises a physical layer 152 which translates information for incoming/outgoing transmission, from a voltage level, for example a processor level, to another voltage level like a voltage level based protocol requirements and vice versa.
- the voltage sensor 14 comprises a temperature sensor 156 to determine the temperature of a monitored conductor.
- Figure 15 is a block diagram of the algorithm module 155 of the voltage sensor 15 in accordance with an embodiment.
- the algorithm 155 may comprise various elements to perform various algorithms, as it will be described below.
- the algorithm module 155 receives data from the A/D 146, which are scaled by the scaling element 1440 before any element module of the algorithm module can be able to process the data.
- the algorithm module 155 also calculates the Root mean square (RMS) version of the data at a RMS voltage element 1542.
- An algorithm module 144 may use the scaling data or/and the RMS version of the signal.
- the elements may use threshold data to compare with its results. If a maximum or a minimum value of threshold is reached or if certain results are obtained, an event is created by an event generator 1452.
- the event generator 1452 sends events and their related data the control unit to be displayed to an end user. Events are generated by circuits integrated in the event generator. In another embodiment, events are only generated when the state of the circuit has changed.
- the algorithm module comprises a neutral loss 1554 to detect whether a neutral conductor is properly connected.
- the neutral loss element 1554 is used during electricity outage and when alternative supplies are used to provide electricity to the network 1.
- the voltage sensor comprises a CETN element 1560, which operates in a same way as described for CETN element of the current sensor 14.
- the CETN element 1560 differs form the CETN 1460 in that the CETN element 1460 comprises holes while the CETN element 1560 comprises physical junction attachments to attach the CETN element 1560 to a wire.
- the CETN element 1560 allows an identification of wires by the algorithm module 155, and the algorithm module 155 identifies the conductors attached to the voltage sensor.
- the CETN element 1560 also performs a similar voltage validation and phase validation as described for the description of Figure 7.
- a voltage validation is performed according to 800 and phase validation is performed according to 850 to identify and determine the location by the sensors, gateways and conductors of the network 1 occurs, and thus determining a network topology. These are to prevent inefficient installation and insure that the network works properly.
- the voltage sensor 15 comprises, an Unbalanced voltage element 1448, which is applied only for three-phased circuit.
- the Unbalanced voltage element 1448 calculates and verifies if a circuit is unbalanced: Maximum deviation from the average divided by the average. Ex.: 584V 610V 603V.
- the threshold to send an alarm is 2% and beyond 5%, the load should be shed immediately before damage occurs to the equipment.
- the Neutral Loss Detector Bloc detects a neutral loss conductor with these formulas: Formula Single-phase:
- the event sequence tables list the events sent by the sensors to the PC or the algorithm executed by the PC to identify a anomaly condition. The table also gives the conditions upon which the error message is sent to the user.
- the symbols used in the event sequence tables are the following :
- the function, the application, the explanation, the fault condition(s) and the event sequence(s) are provided.
- the error message that is provided to the display is also provided.
- An example event sequence table is as follows :
- Event #1 The Sensor sends a CurrentDetected event since the state of the current detected event changed from 0 at TO to 1 at T1.
- Event #2 The Sensor sends a IsqrT event since the state of the IsqrT event changed from 0 at TO to 1 at T1.
- Event #3 The Sensor sends the value of the IsqrT.
- Event #4 The PC creates a starting motor event, therefore changing the state of the starting motor event from 0 at TO to 1 at T1.
- Event #5 The PC reads in the database the average of the last three (3) IsqrT values.
- Event #6 The PC compares the IsqrT value sent by the sensor at event #3 with the value in the database that is the average of the last three (3) IsqrT and therefore is the threshold value.
- Event #7 The PC displays a message. All event sequence tables are provided in the same format and the sequence of events and steps carried out by the system can therefore be readily understood.
- the message to be displayed to the user via the user interface is provided.
- the message comprises an identification of the anomaly detected and the proposed course of action or solution.
- Variables are used in the message template and refer to variables in the event sequence table. For the user displayed message, the variable will be replaced by the actual value.
- the message template is The value of the IsqrT is ⁇ c ⁇ #3. And if the value of the calculated parameter at event #3 in the event table is 10.7, the message that will be displayed to the user when the system is in operation will be
- the value of the IsqrT is 10.7.
- CURRENT SENSOR DECISION RULES Electrical arc
- the objective of the electrical arc (serial, parallel and differential) fault detection algorithm is to identify the presence of an electrical arc, its amplitude and its location. This electrical fault detection algorithm can be applied to all applications.
- the sensor will be able to identify an electrical arc from the analysis of the current.
- an electrical arc is created for a very short period of time but the program will emit an alarm for those arcs.
- This fault can be detected even if the arc is with or without a load. It should be noted that an electrical arc creates a load.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the electrical arc is located between the circuit breaker and the switch. It is «AEgen».
- Anomaly An electrical arc has been identified over H1 and H2. Proposed course of action: The electrical arc is located between the circuit breaker and the load switch. This could be generated by an insulation defect between two wires. Open the circuit breaker immediately. Use a megger to locate and repair the defect.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the electrical arc is located between the circuit breaker and the load. It is «AEgen».
- the electrical arc is located between the circuit breaker and the load. This could be generated by a loose conductor at a terminal, a bad junction, a burned contact on a motor starter. Inspect all cable junctions, terminals and switches.
- the objective of the Overcurrent algorithm is to identify any exceeding of the circuit capacity.
- This electrical fault detection algorithm can be useful for the breaker panel and sub breaker panel.
- This electrical fault detection algorithm adds the fundamental and the harmonics currents to evaluate the circuit load and refers to the electrical code.
- the Overcurrent rules regroup the sensor events: MarginalCircuit, Overload and Overcurrent. Those events have the same message template.
- the anomaly is detected when circuit capacity exceeds 81 % of the normal circuit capacity for more than one (1) minute.
- the following is a table listing the events sent by the sensors to the control unit or the algorithm executed by the PC to identify the defect condition. The table also gives the conditions to send the error message to the display. Table for the first sequence of events
- Anomaly The total of 60 Hz current is over ⁇ v ⁇ #4% of the circuit capacity. Proposed course of action: Lower the 60 Hz load by a new load distribution. Example: Anomaly: The total of 60 Hz current is over 15% of the circuit capacity.
- Anomaly The total of 60 Hz current is over ⁇ v ⁇ #4% of the neutral capacity. This conductor is at risk.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- Anomaly The total of 60 Hz current is over 15% of the neutral capacity. This conductor is at risk.
- the following is a table listing the events sent by the sensors to the control unit or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The total of 60 Hz current is over ⁇ v ⁇ #4 % of the circuit capacity. Proposed course of action: Lower the 60 Hz load by a new load distribution.
- Anomaly The total of 60 Hz current is over ⁇ v ⁇ #4% of the neutral capacity. This conductor is at risk.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- Anomaly The total of 60 Hz current is over 35% of the neutral capacity. This conductor is at risk.
- the following is a table listing the events sent by the sensors to the control unit or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send an error message to the user. Table for the third sequence of events:
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- the following is a table listing the events sent by the sensors to the control unit or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send the error message to the user. Table for the fourth sequence of events:
- Proposed course of action Lower the 60 Hz and/or harmonic load by a new load distribution.
- Anomaly The total of 60 Hz and harmonic current is over ⁇ v ⁇ #4% of the neutral conductor capacity. This conductor is at risk.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- Proposed course of action The electrical load overpasses the capacity of the neutral conductor by 15%. Increase the capacity of the neutral conductor to meet the line conductor capacity.
- the following is a table listing the events sent by the sensors to the control unit or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Proposed course of action Lower the 60 Hz and/or harmonic load by a new load distribution.
- Anomaly The total of 60 Hz and harmonic current is over 35% of the circuit capacity.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- the following is a table listing the events sent by the sensors to the control unit or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The total of 60 Hz and harmonic current is over ⁇ v ⁇ #7% of the circuit capacity.
- Proposed course of action Lower the 60 Hz and/or harmonic load by a new load distribution.
- Anomaly The total of 60 Hz and harmonic current is over ⁇ v ⁇ #4% of the neutral conductor capacity. This conductor is at risk.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- Anomaly The total of 60 Hz and harmonic current is over 15% of the neutral conductor capacity. This conductor is at risk.
- the following table is a listing of events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The total harmonic current is over ⁇ v ⁇ #4% of the neutral conductor capacity. This conductor is at risk.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- Anomaly The total harmonic current is over 15% of the neutral conductor capacity. This conductor is at risk.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The total of harmonic current is over 35% of the circuit capacity.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- the following is a table listing the events sent by the sensors to the control unit 11or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send the error message to the user. Table for the ninth sequence of events:
- the following is a template for a type of message to be displayed to the user.
- Anomaly The total harmonic current is over ⁇ v ⁇ #7% of the circuit capacity.
- Anomaly The total of harmonic current is over 125% of the circuit capacity.
- Anomaly The total harmonic current is over ⁇ v ⁇ #4% of the neutral conductor capacity. This conductor is at risk.
- Proposed course of action Increase the capacity of the neutral conductor to meet the line conductor capacity.
- Anomaly The total harmonic current is over 125% of the neutral conductor capacity. This conductor is at risk. It should be noted that The sensor needs to send to the control unit 11 , the ratio between the 60 Hz current and the harmonic contents.
- the objective of the High THDi fault detection algorithm is to Identify the harmonic distortion on a circuit.
- This electrical fault detection algorithm can be applied to any application.
- THD ( ⁇ power of harmonics)/total power.
- the circumstances in which this fault is detected are when a Refer to the Utility or International convention for threshold.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the objective of the External Intervention fault detection algorithm is to identify and locate a current limitation device triggered by an external intervention.
- the current limitation device can be a breaker, a fuse, a current overload, etc.
- the external intervention can be voluntary or accidental.
- Voluntary interventions include a human intervention by a person in the facility wishing to rapidly stop operation of a motor or a load, or a remote controlling of an electronic current limitation device by an external system.
- Accidental interventions include an accidental physical triggering of a breaker by a human or an animal or by a hard piece of material, such as displacement of a breaker by a moving cow or displacement of a breaker by a piece of equipment falling to the floor.
- Both types of interventions must be identified because stopping an equipment by triggering its breaker is not an appropriate way to control an equipment and can cause long-term damage to the equipment or other problems.
- An example of a problem would be contamination of a reservoir if the reservoir washing equipment was stopped by its breaker during a technician intervention on the reservoir and was not started again before a new milk production is introduced in the reservoir.
- This electrical fault detection algorithm can be applied to any application. In this electrical fault detection algorithm, it is a must for some equipment (Bulk tank, ventilation) to know the state of the breaker.
- the sensor 14, 15must validate if its load is present or not when the breaker opening is detected.
- the system must verify if the rules below are not activated: Overcurrent, Electrical arc, Temperature, Short-circuit, Repetitive starting.
- the current limitation device at «Hx_list» has been opened during load operation by an external intervention (such as a human intervention, an accidental physical triggering or a remote controlling) and is not an electrical fault.
- an external intervention such as a human intervention, an accidental physical triggering or a remote controlling
- Proposed course of action Locate the person, animal or remote system which has interrupted the load operation to correct the situation.
- the current limitation device at H1 has been opened during load operation by an external intervention (such as a human intervention, an accidental physical triggering or a remote controlling) and is not an electrical fault.
- an external intervention such as a human intervention, an accidental physical triggering or a remote controlling
- the current limitation device at «Hx_list» has been opened during load operation by an external intervention (such as a human intervention, an accidental physical triggering or a remote controlling) and is not an electrical fault.
- Proposed course of action Locate the person, animal or remote system which has interrupted the load operation to correct the situation.
- Anomaly The current limitation device at H1 has been opened during load operation by an external intervention (such as a human intervention, an accidental physical triggering or a remote controlling) and is not an electrical fault. It should be noted that such analysis is optional. The end user will have the possibility to activate it or not.
- the sensors 14, 15 need to send to the control unit 11 the ratio between the 60 Hz current and the harmonic contents
- the objective of the Bonding fault detection algorithm is to verify the presence of a bonding before the power is turned on.
- This electrical fault detection algorithm can be applied to the breaker panel and sub panel.
- the first sequence is the case where the sensor is located at the main entrance and detects a bonding, which is correct according to the first Proposed course of action.
- the second sequence is the case where the sensor is anywhere but at the main entrance and detects a bonding, which is incorrect according to the second Proposed course of action.
- the third sequence is the case where the sensor is located at the main entrance and does not detect a bonding, which is incorrect according to the third Proposed course of action.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the following messages relates to massages when a sensor is located at the main entrance 3.
- Anomaly The system has identified a neutral-ground bonding. This bonding confirms the physical link between a neutral link and the ground.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send the error message to the user. Table for the second sequence of events:
- the following messages relates to massages when a sensor is located at the main entrance 3.
- Anomaly The system has not identified a neutral-ground bonding.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the following messages relates to massages when a sensor is not located at the main entrance 3:
- Anomaly The system has identified a neutral-ground bonding but the electrical power is off. This indicates a physical bonding between the neutral and the ground.
- Proposed course of action The only bond that is in conformity with the regulation is in the main panel. Use a megger to locate other neutral-ground bondings and split them.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the following messages relates to massages when a sensor is located at the main entrance 3:
- the following is a template for a fourth type of message to be displayed to the user.
- Anomaly The system has not identified a neutral-ground bonding.
- Differential leakage current fault detection algorithm The objective of the Differential leakage current fault detection algorithm is to, locate and identify a differential leaking current, at the circuit breaker. This electrical fault detection algorithm can be applied to the breaker panel and sub panel.
- acurrent leakage to the ground may cause a hot conductor or a neutral conductor to be over a circuit with or without a load.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the following is a template for a second type of message to be displayed to the user.
- Anomaly The system has detected a ground fault for the conductor «Hx». This is a severe defect and immediate action is required.
- This link is located between the circuit breaker and the switch. With a megger, locate the defect and repair it.
- Anomaly The system has detected a ground fault for the conductor H2. This is a severe defect and immediate action is required. Proposed course of action: The conductor H2 has a link to the ground. This link is located between the circuit breaker and the switch. With a megger, locate the defect and repair it.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the system has detected a ground fault for the conductor «Hx». This is a severe defect and immediate action is required.
- This link is located between the circuit breaker and the load. With a megger, locate the defect and repair it.
- the conductor H2 has a link to the ground. This link is located between the circuit breaker and the load. With a megger, locate the defect and repair it. It should be noted that 0 to 1A reading is from the differential sensor. Over 1.1 A, it is a mathematic difference between the conductors. Locate the position of the sensor. Identify the current defect at 60 Hz and at HF. Identify the technology in cause with the harmonics signature. When IDiff is saturated, work with ⁇ (Hhxi - Hhx 2 - Hhx 3 ).
- the objective of the Mechanical load loss fault detection algorithm is to identify a mechanical load loss.
- a failure may create a mechanical load loss on some equipment.
- the load loss creates a current reduction compared to the normal operation of the equipment.
- This current reduction is used to detect a load loss.
- This electrical fault detection algorithm can be applied to any application. The circumstances in which this fault is detected are when a Current reduction of x% compared to the normal operation.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly Currently the motor operates without a load. The link between the motor and the mechanical load is broken.
- Proposed course of action Verify the link between the motor and the mechanical load. If conventional load, the following message can be used: Anomaly: The system has identified an abnormal low current. Proposed course of action: Verify all loads over this circuit.
- the objective of the Mechanical Jam fault detection algorithm is to identify a mechanical jam and the consequence on the circuit.
- This electrical fault detection algorithm can be applied to Motor annotations or Breaker Panel.
- a mechanical jam is a direct consequence of a mechanical failure.
- the thermal protection should open or the breaker should trip without any indication to the technician.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The system has identified a mechanical jam during operation. The direct consequence of this event is the opening of the circuit breaker «Hx». Proposed course of action: The setting of thermal protection of the load is incorrect. Call a certified technician to verify the thermal protection of the load, the motor and the load attached to it before resuming the operation.
- the breaker has opened or some fuses have blown.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send the error message to the user. Table for the second sequence of events:
- the following is a template for a second type of message to be displayed to the user.
- Anomaly The system has identified a mechanical jam. The thermal protection has opened. The load operation is halted. Proposed course of action: Call a certified technician to verify the motor and the load attached to it. Ask the technician to reset the thermal protection before resuming the operation.
- the thermal protection of the motor is activated (open) Repetitive start
- the objective of the Repetitive start fault detection algorithm is to validate the conformity of the command entered in the database based on the shutdown period and the number of startups per hour of the motor. This electrical fault detection algorithm can be applied to Motor annotations in the breaker panel only.
- a water pump should not run more than four (4) times per hour. More start-ups may indicate a leak, a burned connector or a mechanical jam of a limit switch.
- the circumstances in which this fault is detected are when a number of start-ups per hour are exceeding the threshold.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The number of startups per hour exceeds the programmed threshold.
- the activation command (pressure switch) of the startup might be defective.
- a voltage drop due to the inrush startup current may also influence the magnetization of the switch. Verify the switch viability.
- Unbalanced current fault detection algorithm determines the phase-to-phase current offset. This electrical fault detection algorithm can be applied to Motor annotations, in the Breaker panel only.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user. Table for the first sequence of events:
- Anomaly The system has identified an unbalanced current.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the following is a template for a second type of message to be displayed to the user.
- Anomaly The system has identified an unbalanced current.
- the current sensor must be associated with the voltage sensor to identify the type of network.
- the objective of the Overload of the Load fault detection algorithm is to Identify if an equipment is overloaded.
- This electrical fault detection algorithm can be applied to Motor annotations in the Breaker panel.
- the motor can be attached to a circuit breaker with higher tolerance such as a motor of 1OA over a 3OA circuit, verify if the motor is in normal operation.
- Message #1 is for the case in which no voltage drop has been detected.
- Message #2 is for the case in which a voltage drop has been detected.
- the circumstances in which this fault is detected are when a Current consumption higher than normal.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The system has detected that the equipment is overloaded.
- Proposed course of action Verify the mechanical load and the setting of the equipment protection.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the objective of the Heavy Start fault detection algorithm is to identify a heavy start.
- This electrical fault detection algorithm can be applied to Motor annotations and Breaker panel
- a heavy start is detected when the inrush current is higher than normal or when the equipment takes more time to finish its startup transition.
- the system needs to verify if the increase of inrush current is due to a voltage drop.
- Message #1 is for the case in which no voltage drop has been detected.
- Message #2 is for the case in which a voltage drop has been detected.
- the circumstances in which this fault is detected are when a voltage drop or mechanical failure of the load.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user. Table for the first sequence of events:
- Anomaly The system has detected a heavy start.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the system has detected a heavy start.
- the objective of the Short-Circuit fault detection algorithm is to identify a short-circuit.
- This electrical fault detection algorithm can be applied to any application.
- a short-circuit is produced when the current flows from a conductor to another conductor, to a neutral conductor or to the ground without any limitation or control.
- the system locates the short-circuit and indicates if a load was in operation during this time.
- the circumstances in which this fault is detected are when a Short-circuit between a phase and the neutral conductor, Short-circuit between two (2) phases, Short-circuit between a phase and the ground.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the short-circuit is located between the circuit breaker and the switch, loss of voltage on the conductors. With a megger, locate and repair the defect.
- Anomaly The system has identified a short-circuit over H1 and H2.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the system has identified a short-circuit over «Hx» and «Hx'».
- the short-circuit is located between the circuit breaker and the load. A voltage drop over conductors is present. With a megger, locate and repair the defect.
- Anomaly The system has identified a short-circuit over H1 and H2.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the following is a template for a fourth type of message to be displayed to the user.
- the message includes a Anomaly section and a Proposed course of action section.
- Anomaly The system has identified a short-circuit over «Hx» and the ground.
- the short-circuit is located between the circuit breaker and the switch. A voltage drop over conductors is present. With a megger, locate and repair the defect.
- Anomaly The system has identified a short-circuit over H1 and the ground.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the system has identified a short-circuit over «Hx» and the ground.
- Anomaly The system has identified a short-circuit over H1 and the ground.
- the objective of the leakage of an electrical fence controller fault detection algorithm is to identify the presence of an electrical fence controller with its differential signature. This electrical fault detection algorithm can be applied to any application.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- a leak from an electrical fence has been identified in this circuit breaker. This leak runs in the grounding system and puts the livestock at risk.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly A leak from an electrical fence has been identified in the main panel. This leak is from the outside of the building. It runs in the grounding system and puts the livestock at risk.
- Proposed course of action With the help of an electrical network adviser, proceed to the correction immediately.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send the error message to the user.
- the following is a template for a third type of message to be displayed to the user.
- a leak from an electrical fence has been identified in the main panel and its sub-panel. This leak runs in the grounding system and puts the livestock at risk.
- Proposed course of action With the help of an electrical network adviser, proceed to the correction immediately.
- the objective of the Thermal Protection fault detection algorithm is to verify the thermal protection setting and the influence of the room temperature.
- This electrical fault detection algorithm can be applied to Installation at the main panel.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user. Table for the first sequence of events:
- Anomaly The thermal protection of the motor is not properly set. As a result, the motor is not properly protected.
- Proposed course of action Ask an electrician to properly set the thermal protection.
- Figure 16a and 16b shows the different circuit configuration to be analyzed.
- the circumstances in which this fault is detected are when one conductor is missing can be, for example, open breakers, bad installation (L1-L1-N).
- the objective of the High Frequency fault detection algorithm is to Identify if the network frequency is higher than normal.
- This electrical fault detection algorithm can be applied to all applications. In this electrical fault detection algorithm, when the generator replaces the utility, the network frequency may deviate from the standard. The circumstances in which this fault is detected are when a Freq > Threshold.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The system has identified a frequency violation over the electrical network.
- the network frequency is above 60Hz.
- the objective of the Low Frequency fault detection algorithm is to Identify if the network frequency is higher than normal.
- This electrical fault detection algorithm can be applied to any application. In this electrical fault detection algorithm, when the generator replaces the utility, the network frequency may deviate from the standard. The circumstances in which this fault is detected are when a Freq ⁇ Threshold.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- Anomaly The system has identified a frequency violation over the electrical network.
- the network frequency is under 60Hz.
- Proposed course of action With an electrical network adviser, proceed to correction immediately.
- the objective of the Temperature fault detection algorithm is to identify the cause of the temperature raise. With the temperature sensor in the current sensor and the one in the gateway, it can be determined if the temperature raise is due to an electrical defect or if it is a room temperature raise. This electrical fault detection algorithm can be applied to Breaker panel and sub panel.
- the temperature can be raised for different causes.
- the thermal sensor temperature at the gateway 13 is the indicator of the room temperature. With the gateway's temperature, the system is able to determine if the temperature raise is at the breaker or if it is the room temperature that was raised to a certain level.
- Electrical defects that can make the conductor temperature increase include electrical Arc, repetitive startups, overcurrent.
- the circumstances in which this fault is detected are when a temperature threshold is reached and no electrical defect is detected.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user. Table for the first sequence of events:
- the following table is a description of variables from the previous table:
- the following is a template for a message to be displayed to the user:
- the conductor temperature is over 40 0 C. This situation is related to «Rule_message_x» and it reduces the equipment lifetime by 50%.
- Anomaly The conductor temperature is over 40 0 C. This situation is related to an electrical arc and it reduces the equipment lifetime by 50%.
- the electrical arc is located between the circuit breaker and the switch. This could be generated by a loose conductor at a terminal, a bad junction, a burned contact on a motor starter. Inspect all cable junctions, terminals and switches.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send the error message to the user. Table for the second sequence of events:
- the conductor temperature is over 50 0 C. This situation is related to «Rule_message_x» and it reduces the equipment lifetime by 70%.
- Anomaly The conductor temperature is over 50 0 C. This situation is related to an electrical arc and it reduces the equipment lifetime by 70%.
- the electrical arc is located between the circuit breaker and the switch. This could be generated by a loose conductor at a terminal, a bad junction, a burned contact on a motor starter. Inspect all cable junctions, terminals and switches.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition. The table also provides the conditions to send the error message to the user. Table for the third sequence of events:
- the following is a template for a third type of message to be displayed to the user.
- the following is a table listing the events sent by the sensors 14, 15 to the control unit 11 or the algorithm executed by the PC to identify the defect condition.
- the table also provides the conditions to send the error message to the user.
- the following is a template for a fourth type of message to be displayed to the user.
- Anomaly The room temperature is over 50°C. This situation reduces the equipment lifetime by 70%.
- the objective of the identification and localisation fault detection algorithm is to identify the voltage and the phase to validate the connection conformity and its characteristics.
- This electrical fault detection algorithm can be applied to any application.
- the sensor In this electrical fault detection algorithm, the sensor must be able to identify the type of connection (transformer of the utility) to confirm if the presence of the voltage is in conformity.
- the circumstances in which this fault is detected are when a breaker is opened at Hx, the connection polarity is defective. (L1-L1-N), and validation has to be done after any interruption.
- the system has identified the presence of the auxiliary power source.
- Anomaly The system has detected a Delta-Open network Proposed course of action: Some of the perturbations will be assigned to this type of power network e.g. delta open. Call Utility to rewire the transformer.
- Anomaly The system has identified a Scott power network
- the system has identified a phase inversion during the power up.
- Proposed course of action Immediately interrupt the power! Proceed to the wiring correction before resume operation.
- the power supply connection is reversely connected.
- the engine of the electrical equipment is at risk.
- Neutral Conductor Loss fault detection algorithm The objective of the neutral conductor Loss fault detection algorithm is to Verify the connection of the neutral conductor. This electrical fault detection algorithm can be applied to any application. The rule is applied to neutral conductor only.
- a neutral conductor can be removed from the main circuit inadvertently. This may cause a voltage rise of several tens of volts and put in jeopardy all equipment using the neutral conductor. Equipment supplied with the less loaded phase may have a voltage increase (sometimes until the composite voltage).
- Anomaly The neutral conductor has been opened during operation. The electrical network is in danger. Shut down the electrical network as soon as possible.
- Proposed course of action With a megger, locate and repair the defect. Verify the entire electrical load using a neutral conductor (120V, 277V or 347V) and verify all equipment before resuming operation.
- a neutral conductor 120V, 277V or 347V
- the following is a template for a second type of message to be displayed to the user.
- Proposed course of action With a megger, locate and repair the defect. Verify the entire electrical load using a neutral conductor (120V, 277V or 347V) and verify all equipment before resuming operation.
- a neutral conductor 120V, 277V or 347V
- the objective of the Interruption fault detection algorithm is to validate the length of the power interruption when the interruption duration is more than one (1) minute.
- This electrical fault detection algorithm can be applied to any application.
- the rule is applied by phase.
- Identifies the length and the number of the power interruption allows verifying the availability of the auxiliary source and its starting time.
- Anomaly - The power was interrupted for more than one (1) minute.
- Proposed course of action If you have an auxiliary source, verify its starting time. Upon receipt of the alarm, the system displays a warning, rounded at the minute. The warning should indicate:
- the power failure duration is: «hh:mm». undervoltage
- the objective of the undervoltage fault detection algorithm is to identify an undervoltage compared to the nominal voltage that may have an impact on the motor operation.
- This electrical fault detection algorithm can be applied to any application.
- the rule is applied by phase.
- Anomaly The voltage is 10% lower than the nominal value. This situation occurs for more than five (5) minutes.
- the objective of the voltage dips fault detection algorithm is to identify voltage dips.
- a voltage dip is defined by a fall of at least 10%of the nominal voltage on one or more phases for a short period of time varying from eight (8) milliseconds to one minute.
- This electrical fault detection algorithm can be applied to any applications. The rule is applied by phase.
- the voltage dips are mainly caused by a phenomenon leading to high currents which are caused by the impedances of the network elements.
- the voltage drop will have less low amplitude as the point of observation is far away from the electrical perturbation.
- Anomaly The system has identified an undervoltage over «Hx». This may damage the electrical equipment. This undervoltage has occurred more than two times in the last 24 hours.
- All events detected by this rule need to be logged and sorted by hour, week, month and year. All sorting categories need to be slipping time categories.
- the objective of the Power Failure fault detection algorithm is to identify a short power failure corresponding to the temporary power supply loss on all the phases for a period of time lower than one minute.
- This electrical fault detection algorithm can be applied to any application. The rule is applied by phase. The circumstances in which this fault is detected are when a ( V ⁇ 10% Vn ) & ( ⁇ t ⁇ 80ms ) transient, ( V ⁇ 10% Vn ) & (80 ms ⁇ ⁇ t ⁇ 1m ) short interruption, More than two times by slipping 24h.
- Anomaly The system has identified transient power failure over «Hx» more than 2 times in the last 24 hours.
- the following is a template for a second type of message to be displayed to the user.
- Anomaly The system has identified a short power failure over «Hx» more than 2 times in the last 24 hours.
- the objective of the Overvoltage fault detection algorithm is to identify a sudden increase of the voltage value on one or more phases for a short period of time.
- This electrical fault detection algorithm can be applied to all applications.
- the rule is applied by phase.
- an overvoltage is a sudden rise of the effective value of the tension of more than 10% of the nominal voltage, which is restored after a short period of time.
- the overvoltage duration is between eight milliseconds and one minute.
- the circumstances in which this fault is detected are when a V > 110% Vn / phase. Voltage increases more than 10% of the nominal voltage. Must persist more than five minutes per slipping hour.
- Anomaly The system has identified temporary overvoltage over the network. This overvoltage has happened on the conductor «Hx» for more than five minutes in the last hour. This affects the electrical equipment.
- Unbalanced Voltage fault detection algorithm is to identify a situation when the three tensions of the three-phase system are not equal in amplitude or are not shifted of 120° from ones to the others.
- This electrical fault detection algorithm can be applied to any application for three-phase network. The rule is applied by phase.
- the unbalanced voltage is defined, according to the method of the symmetrical components, like the existing relationship between the module of the opposite component of the tension and the direct component.
- the circumstances in which this fault is detected are when a V / V > Threshold. Warning: this formula is not applicable over certain types of network.
- the network has been identifying (identification and localisation). Acceptable: 95% of time / slipping week. Normally: ⁇ de 2%. Occasionally: ⁇ 3%.
- Anomaly An unbalanced voltage level of «x»% has been identified by the system. This unbalanced voltage is steady and puts the electrical equipment at risk.
- the objective of the Impulse (Transient overvoltage, spikes) fault detection algorithm is to identify the very fast increase of voltage at a high frequency, independently of the network.
- Overvoltage can take the form of a one-way impulse of negative polarity or a damped oscillation.
- This electrical fault detection algorithm can be applied to any application. The rule is applied by phase.
- the raising edge is typically between 0,5 ⁇ s and 5 ⁇ s, generally limited to 6 Kv.
- the circumstances in which this fault is detected are when a ⁇ t ⁇ T/2 & V > 110% Vn
- Anomaly The system has identified more than two transient overvoltages in the last 24 hours. Proposed course of action: With an electrician, verify if those impulses come from defective equipment. If not, contact the Utility with this problem. source Impedance
- the objective of the source Impedance fault detection algorithm is to calculate the source impedance.
- This electrical fault detection algorithm can be applied to any application.
- the rule is applied to the circuit.
- the current of the electronic drives combined with the source impedance may cause a distortion of the supplied voltage.
- This voltage distortion may produce parasitic currents and voltage in the environment even under ideal conditions of the power network.
- To prevent or limit this mode of production of parasitic tension there exist a relation between the gauge of a drive and the Utility source impedance.
- the objective of the Harmonic Content fault detection algorithm is to verify the harmonic threshold.
- This electrical fault detection algorithm can be applied to any application.
- the rule is applied by phase.
- the rates of the individual harmonics (Ti) and the total harmonic content (T) correspond to the effective value of the harmonic voltage measured on time intervals of integration in X minutes (10 m).
- the harmonic levels of voltage must be evaluated without any electrical perturbation like: fast transients, undervoltage, overvoltage, short dips and interruptions or when the phases voltage fall below 50% from the nominal voltage.
- Target values In the case of the harmonic voltage, the harmonic content (T) equal to 8% and the various individual harmonic contents should be lower than the values of the table below during 95% of time over one period of one week measurement.
- Anomaly The «#h» harmonic exceeding is threshold by «x»%. This affects the livestock and the electrical equipment. Proposed course of action: Contact an electrician to identify the defective load.
- High THDv The objective of the High THDv fault detection algorithm is to Identify if there is a harmonic distortion over the network. Verify if the distortion factor is higher than 5%.
- This electrical fault detection algorithm can be applied to any applications. The rule is applied by phase.
- THDv (V 2 (V1) 2 )/ (V1) 2 .
- the harmonic current combined with the source impedance may cause a distortion on the power network.
- the side effect of this voltage distortion is the production of stray currents and voltage in the animal environment even under ideal conditions of operation of the network Utility.
- the distortion factor is higher than x%. This distortion factor affects all the electrical equipment.
- Proposed course of action Lower the non-linear load or proceed to a complete evaluation of the source impedance.
- the objective of the Low Frequency fault detection algorithm is to Identify if the frequency is lower than the nominal frequency. This situation occurs when auxiliary power is used.
- This electrical fault detection algorithm can be applied to any application. The rule is applied by phase. In this electrical fault detection algorithm, Auxiliary powers are more inclined to create frequency variation. The circumstances in which this fault is detected are when a Freq ⁇ Threshold. The defect must be measured over a certain period of time.
- Anomaly The system has identified a lower frequency of the power supply. This affects the equipment operation. Proposed course of action: With the help of an electrician, fix the problem as soon as possible. If an auxiliary source is used, check it.
- the objective of the High Frequency fault detection algorithm is to Identify if the frequency is higher than the nominal frequency. This situation occurs when auxiliary power is used.
- This electrical fault detection algorithm can be applied to any application. The rule is applied by phase. In this electrical fault detection algorithm, the auxiliary powers are more inclined to create frequency variation. The circumstances in which this fault is detected are when a Freq > Threshold. The defect must be measured over a certain period of time.
- Anomaly The system has identified a higher frequency of the power supply. This affects the equipment operation.
- Proposed course of action With the help of an electrician, fix the problem as soon as possible. If an auxiliary source is used, check it.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Selective Calling Equipment (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09733378.5A EP2304452A4 (en) | 2008-04-14 | 2009-04-14 | Electrical anomaly detection method and system |
CN200980122312.7A CN102066956B (en) | 2008-04-14 | 2009-04-14 | Electrical anomaly detection method and system |
AU2009238183A AU2009238183B2 (en) | 2008-04-14 | 2009-04-14 | Electrical anomaly detection method and system |
CA2721250A CA2721250C (en) | 2008-04-14 | 2009-04-14 | Electrical anomaly detection method and system |
NZ589157A NZ589157A (en) | 2008-04-14 | 2009-04-14 | Detecting electrical anomalies by receiving sensor data with received anomaly detection rules |
US12/937,753 US8566047B2 (en) | 2008-04-14 | 2009-04-14 | Electrical anomaly detection method and system |
IL208663A IL208663A (en) | 2008-04-14 | 2010-10-12 | Electrical anomaly detection method and system |
HK11111254A HK1157016A1 (en) | 2008-04-14 | 2011-10-20 | Electrical anomaly detection method and system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4463108P | 2008-04-14 | 2008-04-14 | |
US61/044,631 | 2008-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009127068A1 true WO2009127068A1 (en) | 2009-10-22 |
Family
ID=41198747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2009/000512 WO2009127068A1 (en) | 2008-04-14 | 2009-04-14 | Electrical anomaly detection method and system |
Country Status (9)
Country | Link |
---|---|
US (1) | US8566047B2 (en) |
EP (1) | EP2304452A4 (en) |
CN (1) | CN102066956B (en) |
AU (1) | AU2009238183B2 (en) |
CA (1) | CA2721250C (en) |
HK (1) | HK1157016A1 (en) |
IL (1) | IL208663A (en) |
NZ (1) | NZ589157A (en) |
WO (1) | WO2009127068A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102841287A (en) * | 2012-08-27 | 2012-12-26 | 四川长虹电器股份有限公司 | Three-phase power circuit detection method and three-phase power circuit detection system |
CN103439613A (en) * | 2013-09-03 | 2013-12-11 | 苏州太谷电力股份有限公司 | Electric power security integrated monitoring device and analyzing method thereof |
FR2994275A1 (en) * | 2012-07-31 | 2014-02-07 | Schneider Electric Ind Sas | SYSTEM FOR DETECTING AN IMPEDANCE VARIATION OF A NEUTRAL CONDUCTOR, TRANSFORMATION STATION COMPRISING SUCH A SYSTEM AND METHOD FOR DETECTING AN IMPEDANCE VARIATION OF A NEUTRAL CONDUCTOR WITH SUCH A SYSTEM |
EP2702422A2 (en) * | 2011-04-29 | 2014-03-05 | UTILX Corporation | In-situ data acquisition systems and methods |
FR2997765A1 (en) * | 2012-11-08 | 2014-05-09 | Smart Impulse | System for analysis of power consumption of three-phase network in e.g. residential site, has processing unit for processing information from voltage sensors and current sensors, and pairing unit for pairing voltage and current sensors |
FR3003037A1 (en) * | 2013-03-05 | 2014-09-12 | Electricite De France | METHOD FOR DETECTING A SHORT CIRCUIT FAULT IN WINDINGS OF A ROTOR OF A ROTATING ELECTRIC MACHINE |
CN108051672A (en) * | 2017-12-11 | 2018-05-18 | 国网山东省电力公司郓城县供电公司 | A kind of power equipment safety monitoring system and monitoring method |
RU2667685C1 (en) * | 2017-04-20 | 2018-09-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" | Device for determining cable number |
CN108693493A (en) * | 2018-06-08 | 2018-10-23 | 广西电网有限责任公司电力科学研究院 | A kind of calibration system and calibration method for standard equipment for monitoring power quality |
CN108845281A (en) * | 2018-06-08 | 2018-11-20 | 广西电网有限责任公司电力科学研究院 | A kind of online Determination system of equipment for monitoring power quality and its detection method |
CN113258568A (en) * | 2021-06-09 | 2021-08-13 | 国网湖南省电力有限公司 | Low-voltage distribution station system based on Internet of things |
CN113295412A (en) * | 2021-05-26 | 2021-08-24 | 华能澜沧江水电股份有限公司 | Method for detecting reason of unbalanced stress of guide bearing of vertical water turbine generator set |
CN114113885A (en) * | 2021-11-19 | 2022-03-01 | 国网甘肃省电力公司电力科学研究院 | Redundancy check-based accurate positioning method for abnormal low-voltage phase-splitting line loss |
CN114217119A (en) * | 2021-12-07 | 2022-03-22 | 广西电网有限责任公司电力科学研究院 | Data distortion identification method and system based on sampling values at different moments |
CN114999095A (en) * | 2022-05-23 | 2022-09-02 | 山东建筑大学 | Building electrical fire monitoring method and system based on time and space fusion |
RU2807970C1 (en) * | 2023-08-15 | 2023-11-21 | Открытое Акционерное Общество "Российские Железные Дороги" | Unit for testing complexes of data collection and recording equipment on traction rolling stock |
US11918643B2 (en) | 2020-12-22 | 2024-03-05 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
CN117761454A (en) * | 2023-11-30 | 2024-03-26 | 淮阴工学院 | Detection device for power line signal |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5364530B2 (en) * | 2009-10-09 | 2013-12-11 | 株式会社日立製作所 | Equipment state monitoring method, monitoring system, and monitoring program |
US8483007B2 (en) * | 2010-10-18 | 2013-07-09 | Eaton Corporation | Acoustic sensor system for detecting electrical conductivity faults in an electrical distribution system |
US9099858B2 (en) * | 2011-03-31 | 2015-08-04 | General Electric Company | System and method for assuring utility network security and reliability |
CN102290866B (en) * | 2011-08-26 | 2014-08-13 | Tcl集团股份有限公司 | Control method and control system of intelligent releaser |
US20130073232A1 (en) * | 2011-09-15 | 2013-03-21 | Electronic Systems Protection, Inc. | Source Power Anomaly and Load Power Consumption Monitoring and Analysis |
CN102354427B (en) * | 2011-09-27 | 2013-05-01 | 赵怀军 | method and device for flexibly identifying residual current-type electrical fire on line |
US20130159560A1 (en) * | 2011-12-16 | 2013-06-20 | Mark Cave | Methods and systems to monitor a media device via a usb port |
US9009533B2 (en) * | 2011-12-29 | 2015-04-14 | Electronics And Telecommunications Research Institute | Home/building fault analysis system using resource connection map log and method thereof |
US9397521B2 (en) | 2012-01-20 | 2016-07-19 | Salesforce.Com, Inc. | Site management in an on-demand system |
TW201333484A (en) * | 2012-02-08 | 2013-08-16 | Ind Tech Res Inst | Apparatus and method for detecting equipment abnormal |
US10088335B2 (en) * | 2012-04-13 | 2018-10-02 | International Business Machines Corporation | Anomaly detection using usage data for metering system |
KR101667832B1 (en) * | 2012-04-23 | 2016-10-20 | 엘에스산전 주식회사 | Apparatus and method for correcting of acquired data |
US20130346917A1 (en) * | 2012-06-22 | 2013-12-26 | Microsoft Corporation | Client application analytics |
US10095659B2 (en) | 2012-08-03 | 2018-10-09 | Fluke Corporation | Handheld devices, systems, and methods for measuring parameters |
CN102937675B (en) * | 2012-10-22 | 2015-12-02 | 江苏省电力公司常州供电公司 | The method of work of Real-time Electrical Distribution Network Data collection and fault location system |
TWI512310B (en) * | 2012-12-24 | 2015-12-11 | Foxnum Technology Co Ltd | Three-phase source detection device |
US9506952B2 (en) * | 2012-12-31 | 2016-11-29 | Veris Industries, Llc | Power meter with automatic configuration |
CN103091593B (en) * | 2013-02-04 | 2015-10-21 | 广东电网公司电力调度控制中心 | The fault monitoring method of electric power communication device and device |
CN103123378B (en) * | 2013-02-05 | 2015-12-09 | 中国矿业大学 | Electric fault spark method of real-time and device |
US9098749B2 (en) | 2013-03-14 | 2015-08-04 | Xerox Corporation | Dictionary design for computationally efficient video anomaly detection via sparse reconstruction techniques |
EP2973071B1 (en) * | 2013-03-15 | 2020-05-06 | Fluke Corporation | Automatic recording and graphing of measurement data |
CN103198382A (en) * | 2013-03-29 | 2013-07-10 | 刘显茁 | Energy managing monitoring method of multiple power utilization systems and multiple user terminals |
US20140333286A1 (en) * | 2013-05-07 | 2014-11-13 | Eaton Corporation | Load panel branch circuit monitor employing an intelligent current sensor module |
EP3823121A1 (en) * | 2013-05-24 | 2021-05-19 | Delta Electronics (Thailand) Public Co., Ltd. | Arc detection based on the harmonic content in a signal spectrum of a dc current signal, in particular by summing up harmonics and by comparing the number of harmonics with a significant amplitude |
US9134818B2 (en) * | 2013-07-12 | 2015-09-15 | Facebook, Inc. | Isolating mobile device electrode |
US10145903B2 (en) * | 2013-08-09 | 2018-12-04 | Abb Schweiz Ag | Methods and systems for monitoring devices in a power distribution system |
CN103399239B (en) * | 2013-08-12 | 2016-03-02 | 四川大学 | The detection method of commercial unit voltage sag immunity |
US20150102824A1 (en) * | 2013-10-11 | 2015-04-16 | General Electric Company | Locating loose connections in an electrical circuit |
US20150154279A1 (en) * | 2013-12-04 | 2015-06-04 | Electronics And Telecommunications Research Institute | Apparatus and method for building relation model based on resource management architecture |
CN103744452B (en) * | 2013-12-13 | 2015-10-28 | 山东新华医疗器械股份有限公司 | Tunnel-type sterilizing oven heating monitoring control system and method |
US9766270B2 (en) | 2013-12-30 | 2017-09-19 | Fluke Corporation | Wireless test measurement |
CN103809059B (en) * | 2014-01-29 | 2017-04-05 | 中国神华能源股份有限公司 | A kind of signal detecting method and device |
WO2015165778A1 (en) | 2014-04-29 | 2015-11-05 | Abb Technology Ltd | Method and control system for handling a reclosing operation in a power system |
EP2942633A1 (en) * | 2014-05-06 | 2015-11-11 | Siemens Aktiengesellschaft | Method and device for detecting winding short circuits and electric machine |
CN104280632B (en) * | 2014-09-28 | 2017-01-11 | 国家电网公司 | Automatic detecting and early warning method for relay protection device and fault recorder |
US9722863B2 (en) * | 2015-01-13 | 2017-08-01 | International Business Machines Corporation | Isolating the sources of faults/potential faults within computing networks |
CN104635114B (en) * | 2015-03-04 | 2017-11-21 | 江苏省电力公司常州供电公司 | Electric energy quality disturbance source positioning system and positioning method |
CN107615611A (en) * | 2015-04-30 | 2018-01-19 | 依顿科技有限公司 | Power supply control |
CN104991629B (en) * | 2015-07-10 | 2017-11-24 | 英业达科技有限公司 | Power-fail detecting system and its method |
CN105096503A (en) * | 2015-08-31 | 2015-11-25 | 成都科创城科技有限公司 | Detection device based on intelligent household power supply circuit |
CN105093032A (en) * | 2015-08-31 | 2015-11-25 | 成都科创城科技有限公司 | Electricity abnormity early warning electrical cabinet based on intelligent household equipment |
CN105093030A (en) * | 2015-08-31 | 2015-11-25 | 成都科创城科技有限公司 | Electricity abnormity early warning apparatus based on intelligent household system |
CN105093031A (en) * | 2015-08-31 | 2015-11-25 | 成都科创城科技有限公司 | Intelligent household door with electricity abnormity early warning function |
CN105137239A (en) * | 2015-08-31 | 2015-12-09 | 成都科创城科技有限公司 | Electricity abnormality detection equipment based on smart home |
US11105948B2 (en) * | 2015-09-30 | 2021-08-31 | Schlumberger Technology Corporation | Downhole tool analysis using anomaly detection of measurement data |
EP3422521B1 (en) * | 2016-02-25 | 2020-09-16 | Kabushiki Kaisha Toshiba | Grid linkage facility |
GB2549116B (en) * | 2016-04-05 | 2018-10-17 | General Electric Technology Gmbh | Improvements in or relating to the detection of a fault on a power converter |
US20190271731A1 (en) * | 2016-06-13 | 2019-09-05 | Electrical Grid Monitoring Ltd. | A method and system for dynamic fault detection in an electric grid |
US10860012B2 (en) | 2016-11-09 | 2020-12-08 | Yokogawa Engineering Asia Pte. Ltd | KPI calculation rule builder for advance plant monitoring and diagnostics |
EP3542433B1 (en) * | 2016-11-15 | 2023-06-28 | Electrolux Appliances Aktiebolag | Monitoring arrangement for domestic or commercial electrical appliances |
US20180145497A1 (en) * | 2016-11-23 | 2018-05-24 | Schneider Electric USA, Inc. | Method to utilize multiple configuration software for df/cafi breakers |
EP3379272A1 (en) | 2017-03-21 | 2018-09-26 | Danfoss Mobile Electrification Oy | Method and system for detecting the occurrence and timing of events in an electric power system |
CN107121618A (en) * | 2017-03-29 | 2017-09-01 | 余晓东 | Thermal signal detecting system based on free electron warm-up movement |
US10212024B2 (en) | 2017-06-02 | 2019-02-19 | Sas Institute Inc. | Techniques for multi-stage analysis of measurement data with event stream processing |
US10691085B2 (en) | 2017-06-14 | 2020-06-23 | Inventus Holdings, Llc | Defect detection in power distribution system |
DE102017211121A1 (en) * | 2017-06-30 | 2019-01-03 | Siemens Aktiengesellschaft | Fire safety switch and method |
FR3070495B1 (en) * | 2017-08-28 | 2019-09-06 | Enedis | DETECTION DETECTION OF AN ELECTRICAL DISTRIBUTION NETWORK |
CN107766879A (en) * | 2017-09-30 | 2018-03-06 | 中国南方电网有限责任公司 | The MLP electric network fault cause diagnosis methods of feature based information extraction |
CN108062616B (en) * | 2017-11-20 | 2024-01-23 | 国网福建省电力有限公司 | Electricity consumption anomaly detection system with constraint conditions |
FR3075969B1 (en) * | 2017-12-21 | 2020-09-18 | Electricite De France | FAULT DETECTION DEVICE IN THE MONITORING OF AN ELECTRICAL NETWORK |
FR3075951B1 (en) * | 2017-12-21 | 2020-05-22 | Safran Aircraft Engines | INTERMITTENT CONTACT DETECTION ON MOTOR SENSOR |
CN108305352B (en) * | 2018-03-27 | 2023-12-15 | 中电科技扬州宝军电子有限公司 | Data processing apparatus |
ES2878773T3 (en) | 2018-04-03 | 2021-11-19 | Eli Dosh | Electrical panel monitoring system |
WO2019195582A1 (en) | 2018-04-04 | 2019-10-10 | Schneider Electric USA, Inc. | Systems and methods for managing smart alarms |
JP6895921B2 (en) * | 2018-04-23 | 2021-06-30 | 株式会社日立製作所 | Power converter and abnormality detection method |
US10715752B2 (en) | 2018-06-06 | 2020-07-14 | Cnh Industrial Canada, Ltd. | System and method for monitoring sensor performance on an agricultural machine |
CN108939296A (en) * | 2018-06-06 | 2018-12-07 | 广东紫薇星实业有限公司 | A method of for protecting Magnetotherapeutic apparatus power supply circuit over-voltage |
US11175349B2 (en) * | 2018-06-12 | 2021-11-16 | Eaton Intelligent Power Limited | Electrical system |
US10685159B2 (en) * | 2018-06-27 | 2020-06-16 | Intel Corporation | Analog functional safety with anomaly detection |
US11221353B2 (en) | 2018-07-06 | 2022-01-11 | Schneider Electric USA, Inc. | Systems and methods for analyzing power quality events in an electrical system |
CN109270316B (en) * | 2018-09-28 | 2021-02-26 | 国网河北省电力有限公司沧州供电分公司 | Power consumer power consumption abnormity identification method and device and terminal equipment |
CN109904841A (en) * | 2019-02-28 | 2019-06-18 | 西安交通大学 | The digital non-ionizing energy loss method of oil-immersed transformer based on pressure variety |
FR3094498B1 (en) * | 2019-03-25 | 2021-04-02 | Sagemcom Energy & Telecom Sas | Electricity meter comprising a circuit for detecting an open or closed state of a circuit breaker |
EP4002042A3 (en) * | 2019-04-04 | 2022-08-24 | Schneider Electric USA, Inc. | Systems and methods for managing smart alarms |
TW202043786A (en) * | 2019-05-21 | 2020-12-01 | 仁寶電腦工業股份有限公司 | Testing method and testing system |
CN110322368A (en) * | 2019-07-03 | 2019-10-11 | 厦门理工学院 | A kind of harmonic data method for detecting abnormality, terminal device and storage medium |
US11258659B2 (en) * | 2019-07-12 | 2022-02-22 | Nokia Solutions And Networks Oy | Management and control for IP and fixed networking |
US11460487B2 (en) | 2019-08-30 | 2022-10-04 | Cnh Industrial Canada, Ltd. | Operational control for agricultural agitator |
US10992696B2 (en) | 2019-09-04 | 2021-04-27 | Morgan Stanley Services Group Inc. | Enterprise-level security method and system |
CN110488159B (en) * | 2019-09-19 | 2024-03-22 | 广东电网有限责任公司 | Application method of distribution network operation and maintenance monitoring equipment |
CN110661294B (en) * | 2019-10-11 | 2020-07-14 | 四川大学 | DFIG-containing interval temporary frequency-reduction sub-estimation method based on adaptive kernel density estimation |
CN110806993B (en) * | 2019-11-05 | 2021-06-01 | 积成电子股份有限公司 | Customized modbus communication method and low-coupling telecontrol device using same |
US10973267B1 (en) * | 2020-04-16 | 2021-04-13 | Reciprotect Llc | Personal protective and monitoring device |
CN111409113A (en) * | 2020-05-09 | 2020-07-14 | 廊坊市智恒机器人科技有限公司 | Robot fault detection system |
CN111999677B (en) * | 2020-10-28 | 2021-02-02 | 江苏智臻能源科技有限公司 | Indoor and outdoor short circuit identification method based on meter box monitoring terminal and intelligent electric meter |
CN113011608B (en) * | 2021-02-25 | 2024-05-28 | 国网安徽省电力有限公司电力科学研究院 | Power grid management strategy system based on data management |
CN113435610B (en) * | 2021-06-22 | 2024-03-01 | 国家电网有限公司 | Method for determining classified line loss based on low-voltage internet of things sensing terminal |
CN113762507B (en) * | 2021-08-24 | 2023-12-29 | 浙江中辰城市应急服务管理有限公司 | Semi-supervised deep learning arc voltage anomaly detection method based on phase space reconstruction |
CN113976484B (en) * | 2021-12-28 | 2022-03-11 | 南京日托光伏新能源有限公司 | Grading electric leakage screening method for solar cell |
CN114254471B (en) * | 2022-03-02 | 2022-06-28 | 成都数联云算科技有限公司 | Element identification method, device, equipment and storage medium of power network |
WO2023235569A1 (en) * | 2022-06-02 | 2023-12-07 | Microchip Technology Incorporated | Programmable fault violation filter |
CN117616400A (en) * | 2022-06-22 | 2024-02-27 | 瞻博网络公司 | Anomaly detection for network devices using intent-based analysis |
FR3137178B1 (en) * | 2022-06-28 | 2024-05-10 | Sagemcom Energy & Telecom Sas | Detection of loss of neutral or phase |
CN115475267B (en) * | 2022-09-19 | 2023-12-01 | 上海莱陆科技有限公司 | Intelligent control system of object table disinfection equipment |
CN115575754B (en) * | 2022-11-21 | 2023-05-02 | 浙江万胜智能科技股份有限公司 | Intelligent industrial park electricity consumption anomaly identification method and system |
CN116520073B (en) * | 2023-03-17 | 2024-01-30 | 上海交通大学 | Fault positioning method for power supply system of submarine observation network |
CN116908524B (en) * | 2023-09-13 | 2023-12-01 | 中国建筑科学研究院有限公司 | Abnormal sensing monitoring system of building electrical system based on artificial intelligence |
CN117559640B (en) * | 2023-11-13 | 2024-08-06 | 国网江苏省电力有限公司南通供电分公司 | Sensing data monitoring method and system based on transformer substation communication power supply equipment |
CN118425672B (en) * | 2024-07-04 | 2024-09-03 | 传麒科技(北京)股份有限公司 | Method and device for detecting protection grid connection of high-voltage cable between cabins |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123017A (en) * | 1989-09-29 | 1992-06-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Remote maintenance monitoring system |
US5739698A (en) * | 1996-06-20 | 1998-04-14 | Csi Technology, Inc. | Machine fault detection using slot pass frequency flux measurements |
US6396283B1 (en) * | 2000-03-22 | 2002-05-28 | Mitsubishi Denki Kabushiki Kaisha | Device for detecting abnormality of sensor, and control device for vehicle |
JP2003032826A (en) * | 2001-07-12 | 2003-01-31 | Auto Network Gijutsu Kenkyusho:Kk | Inspection machine for acceptability of ground terminal insertion |
US20060255793A1 (en) | 2005-05-12 | 2006-11-16 | Michel Montreuil | Current sensor |
US20070005194A1 (en) | 2005-06-20 | 2007-01-04 | Liuchen Chang | System for three-phase voltage detection and protection |
JP2007046992A (en) * | 2005-08-09 | 2007-02-22 | Ricoh Co Ltd | Electric device |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911323A (en) * | 1974-02-19 | 1975-10-07 | Westinghouse Electric Corp | Ground fault protector with arcing fault indicator |
US4296450A (en) * | 1979-10-05 | 1981-10-20 | The United States Of America As Represented By The Secretary Of The Interior | Discriminating circuit breaker protection system direct current power distribution systems |
US4398188A (en) | 1981-10-07 | 1983-08-09 | Feigal Donn L | Ground circuit voltage detector |
US5250894A (en) | 1992-03-31 | 1993-10-05 | Bridges Electric, Inc. | Current sensing system having electronic compensation circuits for conditioning the outputs of current sensors |
US5452223A (en) | 1993-08-20 | 1995-09-19 | Eaton Corporation | Arc detection using current variation |
US5680025A (en) | 1994-10-07 | 1997-10-21 | Csi Technology, Inc. | Proactive motor monitoring for avoiding premature failures and for fault recognition |
US6144924A (en) | 1996-05-20 | 2000-11-07 | Crane Nuclear, Inc. | Motor condition and performance analyzer |
US5825170A (en) | 1997-01-24 | 1998-10-20 | Filtre-Expert | Magnetically coupled alternating stray current neutralizing method and system |
US5839092A (en) | 1997-03-26 | 1998-11-17 | Square D Company | Arcing fault detection system using fluctuations in current peaks and waveforms |
DE19744009C1 (en) | 1997-09-26 | 1999-08-19 | Siemens Ag | Three=phase short-circuit indicating signal generation method e.g. for three=phase electrical power transmission line |
US6292717B1 (en) | 1998-03-19 | 2001-09-18 | Siemens Energy & Automation, Inc. | Energy information device and graphical display for a circuit breaker |
US6917186B2 (en) | 2000-04-24 | 2005-07-12 | S & C Electric Co. | Monitoring and control for power electronic system |
US6631063B2 (en) | 2001-06-05 | 2003-10-07 | Hector P. Ortiz | System for monitoring electrical circuit operation |
JP3830824B2 (en) | 2002-01-28 | 2006-10-11 | 株式会社東芝 | Digital directional relay |
US7254004B2 (en) | 2003-06-13 | 2007-08-07 | Tdg Aerospace, Inc. | Systems and methods for fault-based power signal interruption |
US7236338B2 (en) | 2003-09-16 | 2007-06-26 | The Boeing Company | System and method for remotely detecting and locating faults in a power system |
US7050913B2 (en) * | 2004-02-19 | 2006-05-23 | Eaton Corporation | Method and apparatus for monitoring power quality in an electric power distribution system |
US7161393B1 (en) | 2004-06-03 | 2007-01-09 | National Semiconductor Corporation | Current regulation circuit |
CA2571477A1 (en) | 2004-06-29 | 2006-01-19 | Ssi Power, Llc | Electric power monitoring and response system |
US7400150B2 (en) | 2004-08-05 | 2008-07-15 | Cannon Technologies, Inc. | Remote fault monitoring in power lines |
US7460346B2 (en) * | 2005-03-24 | 2008-12-02 | Honeywell International Inc. | Arc fault detection and confirmation using voltage and current analysis |
EP1979794A4 (en) | 2006-02-03 | 2010-03-17 | Rech 2000 Inc | Intelligent monitoring system and method for building predictive models and detecting anomalies |
US7368918B2 (en) * | 2006-07-27 | 2008-05-06 | Siemens Energy & Automation | Devices, systems, and methods for adaptive RF sensing in arc fault detection |
US20080180866A1 (en) * | 2007-01-29 | 2008-07-31 | Honor Tone, Ltd. | Combined arc fault circuit interrupter and leakage current detector interrupter |
US20130060524A1 (en) * | 2010-12-01 | 2013-03-07 | Siemens Corporation | Machine Anomaly Detection and Diagnosis Incorporating Operational Data |
-
2009
- 2009-04-14 US US12/937,753 patent/US8566047B2/en not_active Expired - Fee Related
- 2009-04-14 EP EP09733378.5A patent/EP2304452A4/en not_active Withdrawn
- 2009-04-14 CN CN200980122312.7A patent/CN102066956B/en not_active Expired - Fee Related
- 2009-04-14 WO PCT/CA2009/000512 patent/WO2009127068A1/en active Application Filing
- 2009-04-14 CA CA2721250A patent/CA2721250C/en not_active Expired - Fee Related
- 2009-04-14 NZ NZ589157A patent/NZ589157A/en not_active IP Right Cessation
- 2009-04-14 AU AU2009238183A patent/AU2009238183B2/en not_active Ceased
-
2010
- 2010-10-12 IL IL208663A patent/IL208663A/en not_active IP Right Cessation
-
2011
- 2011-10-20 HK HK11111254A patent/HK1157016A1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123017A (en) * | 1989-09-29 | 1992-06-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Remote maintenance monitoring system |
US5739698A (en) * | 1996-06-20 | 1998-04-14 | Csi Technology, Inc. | Machine fault detection using slot pass frequency flux measurements |
US6396283B1 (en) * | 2000-03-22 | 2002-05-28 | Mitsubishi Denki Kabushiki Kaisha | Device for detecting abnormality of sensor, and control device for vehicle |
JP2003032826A (en) * | 2001-07-12 | 2003-01-31 | Auto Network Gijutsu Kenkyusho:Kk | Inspection machine for acceptability of ground terminal insertion |
US20060255793A1 (en) | 2005-05-12 | 2006-11-16 | Michel Montreuil | Current sensor |
US20070005194A1 (en) | 2005-06-20 | 2007-01-04 | Liuchen Chang | System for three-phase voltage detection and protection |
JP2007046992A (en) * | 2005-08-09 | 2007-02-22 | Ricoh Co Ltd | Electric device |
Non-Patent Citations (1)
Title |
---|
See also references of EP2304452A4 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2702422A2 (en) * | 2011-04-29 | 2014-03-05 | UTILX Corporation | In-situ data acquisition systems and methods |
EP2702422A4 (en) * | 2011-04-29 | 2014-12-10 | Utilx Corp | In-situ data acquisition systems and methods |
EP2693227A3 (en) * | 2012-07-31 | 2016-01-13 | Schneider Electric Industries SAS | System for detecting an impedance variation in a neutral conductor, transformer station including such a system and method for detecting an impedance variation in a neutral conductor with such a system |
FR2994275A1 (en) * | 2012-07-31 | 2014-02-07 | Schneider Electric Ind Sas | SYSTEM FOR DETECTING AN IMPEDANCE VARIATION OF A NEUTRAL CONDUCTOR, TRANSFORMATION STATION COMPRISING SUCH A SYSTEM AND METHOD FOR DETECTING AN IMPEDANCE VARIATION OF A NEUTRAL CONDUCTOR WITH SUCH A SYSTEM |
AU2013209382B2 (en) * | 2012-07-31 | 2017-01-12 | Schneider Electric Industries Sas | Detection system for detecting impedance variation in a neutral conductor, transformer station compising such a system and method for detecting impedance variation in a neutral conductor with such a system |
CN102841287B (en) * | 2012-08-27 | 2014-12-24 | 四川长虹电器股份有限公司 | Three-phase power circuit detection method and three-phase power circuit detection system |
CN102841287A (en) * | 2012-08-27 | 2012-12-26 | 四川长虹电器股份有限公司 | Three-phase power circuit detection method and three-phase power circuit detection system |
FR2997765A1 (en) * | 2012-11-08 | 2014-05-09 | Smart Impulse | System for analysis of power consumption of three-phase network in e.g. residential site, has processing unit for processing information from voltage sensors and current sensors, and pairing unit for pairing voltage and current sensors |
FR3003037A1 (en) * | 2013-03-05 | 2014-09-12 | Electricite De France | METHOD FOR DETECTING A SHORT CIRCUIT FAULT IN WINDINGS OF A ROTOR OF A ROTATING ELECTRIC MACHINE |
WO2014135785A3 (en) * | 2013-03-05 | 2014-11-20 | Electricite De France | Method for detecting a short-circuit fault in the windings of a rotor of a rotating electric machine |
CN103439613A (en) * | 2013-09-03 | 2013-12-11 | 苏州太谷电力股份有限公司 | Electric power security integrated monitoring device and analyzing method thereof |
RU2667685C1 (en) * | 2017-04-20 | 2018-09-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" | Device for determining cable number |
CN108051672A (en) * | 2017-12-11 | 2018-05-18 | 国网山东省电力公司郓城县供电公司 | A kind of power equipment safety monitoring system and monitoring method |
CN108845281A (en) * | 2018-06-08 | 2018-11-20 | 广西电网有限责任公司电力科学研究院 | A kind of online Determination system of equipment for monitoring power quality and its detection method |
CN108693493B (en) * | 2018-06-08 | 2021-03-09 | 广西电网有限责任公司电力科学研究院 | Calibration method for standard power quality monitoring device |
CN108693493A (en) * | 2018-06-08 | 2018-10-23 | 广西电网有限责任公司电力科学研究院 | A kind of calibration system and calibration method for standard equipment for monitoring power quality |
US11918643B2 (en) | 2020-12-22 | 2024-03-05 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
CN113295412B (en) * | 2021-05-26 | 2022-10-11 | 华能澜沧江水电股份有限公司 | Method for detecting cause of unbalanced stress of guide bearing of vertical water turbine generator set |
CN113295412A (en) * | 2021-05-26 | 2021-08-24 | 华能澜沧江水电股份有限公司 | Method for detecting reason of unbalanced stress of guide bearing of vertical water turbine generator set |
CN113258568A (en) * | 2021-06-09 | 2021-08-13 | 国网湖南省电力有限公司 | Low-voltage distribution station system based on Internet of things |
CN113258568B (en) * | 2021-06-09 | 2023-06-16 | 国网湖南省电力有限公司 | Low-voltage distribution transformer area system based on Internet of things |
CN114113885B (en) * | 2021-11-19 | 2023-09-22 | 国网甘肃省电力公司电力科学研究院 | Redundancy check-based abnormal low-voltage split-phase line loss accurate positioning method |
CN114113885A (en) * | 2021-11-19 | 2022-03-01 | 国网甘肃省电力公司电力科学研究院 | Redundancy check-based accurate positioning method for abnormal low-voltage phase-splitting line loss |
CN114217119A (en) * | 2021-12-07 | 2022-03-22 | 广西电网有限责任公司电力科学研究院 | Data distortion identification method and system based on sampling values at different moments |
CN114217119B (en) * | 2021-12-07 | 2023-12-19 | 广西电网有限责任公司电力科学研究院 | Data distortion identification method and system based on sampling values at different moments |
CN114999095A (en) * | 2022-05-23 | 2022-09-02 | 山东建筑大学 | Building electrical fire monitoring method and system based on time and space fusion |
CN114999095B (en) * | 2022-05-23 | 2023-11-14 | 山东建筑大学 | Building electrical fire monitoring method and system based on time and space fusion |
RU2807970C1 (en) * | 2023-08-15 | 2023-11-21 | Открытое Акционерное Общество "Российские Железные Дороги" | Unit for testing complexes of data collection and recording equipment on traction rolling stock |
CN117761454A (en) * | 2023-11-30 | 2024-03-26 | 淮阴工学院 | Detection device for power line signal |
Also Published As
Publication number | Publication date |
---|---|
CN102066956B (en) | 2014-06-11 |
EP2304452A4 (en) | 2014-12-03 |
CA2721250A1 (en) | 2009-10-22 |
NZ589157A (en) | 2013-06-28 |
EP2304452A1 (en) | 2011-04-06 |
AU2009238183A1 (en) | 2009-10-22 |
IL208663A (en) | 2015-03-31 |
CN102066956A (en) | 2011-05-18 |
US8566047B2 (en) | 2013-10-22 |
CA2721250C (en) | 2015-02-10 |
IL208663A0 (en) | 2010-12-30 |
HK1157016A1 (en) | 2012-06-22 |
AU2009238183B2 (en) | 2014-06-19 |
US20110153236A1 (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2721250C (en) | Electrical anomaly detection method and system | |
RU2475913C2 (en) | Apparatus and method for adaptive detection of faults in mv distribution grids | |
RU2263925C2 (en) | Method and device for detecting short-circuit ground and calculating its resistance | |
US8174268B2 (en) | Protective relay monitoring system and method of comparing behavior patterns | |
US9276396B2 (en) | Power transmission fault analysis system and related method | |
RU2622473C2 (en) | Method and device for electric plant maintenance | |
KR101003814B1 (en) | Switchgear for diagnosing electrical network disorder and method therefor | |
CN113049901A (en) | Electrical control and protection device | |
US11451042B2 (en) | Method for identifying a fault event in an electric power distribution grid sector | |
KR101497010B1 (en) | Operation Status Monitoring System for DC Power Line | |
KR101713076B1 (en) | Measuring value and operating state indicating system for protection function of protective relay | |
KR20110081008A (en) | Fault detecting and predicting apparatus for metering out fit | |
KR20070044419A (en) | System for digital diagnosising circuit breaker motion time of measurement and method therefor | |
KR100920946B1 (en) | Apparatus and method for fault detection and fault location decision on a distribution line using load current | |
US20220200281A1 (en) | Systems and methods for evaluating electrical phasors to identify, assess, and mitigate power quality issues | |
KR102086529B1 (en) | Shelf power relay and method for preventing operation error thereof | |
KR101302068B1 (en) | The integrated gis local controlling panel digital system | |
KR101277141B1 (en) | Electric watt-hour meter and method for monitoring power distribution system | |
JP2008004537A (en) | Three-phase circuit breaker characteristics measuring device, detecting method of three-phase circuit breaker unbalance abnormality and program for computer to perform unbalance abnormality detection of three-phase circuit breaker | |
KR20090022727A (en) | The failure monitoring apparatus for trip coil of circuit breaker | |
KR101020038B1 (en) | Motor controlling board for detecting electrical loose contact and arc | |
KR100953684B1 (en) | Distrtibuting board cabinet panel for tunnel lamp controlling with capability of detecting function loose contact and arc | |
WO2023135968A1 (en) | Plant monitoring system and plant monitoring device | |
KR20210034232A (en) | Apparatus for checking equipments of electrical substation in real time | |
KR101155106B1 (en) | A ground detection system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980122312.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09733378 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2721250 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12937753 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009238183 Country of ref document: AU Ref document number: 589157 Country of ref document: NZ |
|
REEP | Request for entry into the european phase |
Ref document number: 2009733378 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009733378 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7309/CHENP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2009238183 Country of ref document: AU Date of ref document: 20090414 Kind code of ref document: A |