WO2009125948A2 - 긴급 통신 지원방법 - Google Patents
긴급 통신 지원방법 Download PDFInfo
- Publication number
- WO2009125948A2 WO2009125948A2 PCT/KR2009/001742 KR2009001742W WO2009125948A2 WO 2009125948 A2 WO2009125948 A2 WO 2009125948A2 KR 2009001742 W KR2009001742 W KR 2009001742W WO 2009125948 A2 WO2009125948 A2 WO 2009125948A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- emergency
- mobile station
- station
- area
- information
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000005540 biological transmission Effects 0.000 claims description 34
- 230000008859 change Effects 0.000 claims description 9
- 238000001731 electrophoresis-mass spectrometry Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 10
- 238000010295 mobile communication Methods 0.000 description 4
- 235000008694 Humulus lupulus Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241000760358 Enodes Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/90—Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/50—Connection management for emergency connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2603—Arrangements for wireless physical layer control
- H04B7/2606—Arrangements for base station coverage control, e.g. by using relays in tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/045—Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
Definitions
- the present invention relates to a wireless access system, and more particularly, to a method for supporting emergency communication in a relay system.
- RS relay station
- IEEE 802.16 introduced IEEE 802.16-2004, a standard for fixed subscriber stations, and IEEE 802.16e-2005, a standard for providing subscriber mobility. Since publication, standardization projects under the new theme of multi-hop relay are underway. The project, which is undertaken by Task Group j within IEEE 802.16, has had its first official meeting in May 2006, and since its second meeting in July 2006, the usage model, terminology and technical requirements Technical discussion has begun in earnest.
- the IEEE 802.16 working group j will be abbreviated as "802.16j”.
- RS is expected to be widely used in next generation wireless communication system.
- the concept of a relay station considered in IEEE 802.16j will be described for ease of explanation.
- the concept of the relay station to be described below can be assumed to be substantially the same concept for the relay station considered in the 3GPP IMT-A (LTE-A).
- the 802.16j PAR (Project Authorization Request) specifies two purposes of the standardization work going forward.
- 1 is a conceptual diagram of a multi-hop relay system.
- reference numeral 101 denotes a base station
- reference numerals 102a to 102d denote a relay station
- reference numerals 103a to 103d denote a terminal.
- signal transmission through the relay stations 102a and 102b may be possible even in an area outside the area of the base station 101.
- a high-quality path having a high level of adaptive modulation and coding (AMC) through the relay station 102d can be set to the same radio resource. Increased system capacity can be achieved.
- AMC adaptive modulation and coding
- the standard that will be created by this project is based on the existing IEEE 802.16-2004 and IEEE 802.16e-2005 standards, and the mobile terminal should be able to communicate with the relay station without any function.
- the range is likely to be limited by the addition of some functions for controlling the relay station to the existing base station.
- the relay station can be thought of as a type of subscriber station that performs the operations of the physical layer and the media access control layer.
- the relay station is mainly controlled by the base station, but if necessary, may have a certain degree of control itself.
- the utilization models currently under consideration take into account not only fixed relay stations, but also mobile stations for provision of temporary services to specific areas and relay stations that can be mounted in cars or subways.
- a mobile station supporting a multi-hop relay may use a base station to determine whether to relay through a repeater in an initial network entry procedure with a base station or a relay station at the initial network entry.
- the mobile station may attempt direct communication with the base station. If the channel state is less than or equal to a certain reference value or the terminal cannot receive a signal from the base station and the channel state with the adjacent relay station is good, the path is set to the relay station.
- the mobile station when the mobile station requests emergency service when performing an initial network entry procedure to register with the base station, or when the mobile station requests emergency service while communicating with the base station or relay station, the mobile station has a channel condition with the base station or relay station below a certain reference value.
- the procedure for establishing a connection with a neighboring terminal is not defined in.
- FIG. 2 is a diagram illustrating an example of an emergency situation.
- BS base station
- FBS femto base station
- RS relay station
- a disaster situation may occur in the relay station, and thus the mobile station may not be provided with a service from the serving relay station. At this time, the mobile station may transition to an emergency mode and perform a communication service in an emergency mode situation.
- Another object of the present invention is to provide sufficient cell coverage and performance for a base station (BS), a relay station (RS), or a femto base station (FBS: Femto BS) to communicate with a mobile station.
- BS base station
- RS relay station
- FBS femto base station
- a method and / or apparatus for setting uplink and downlink of a neighboring mobile station as a communication path when capacity is not supported will be described.
- the present invention relates to a wireless access system, and more particularly to a method for supporting emergency communication in a relay system.
- a method for supporting emergency communication in a wireless access system includes one of a base station (BS), a relay station (RS), and a femto base station (FBS) and a first mobile station (E-MS) and an emergency mode; 1 establishing a path for emergency communication with at least one second mobile station (N-MS) located in the vicinity of the mobile station and allocating a first resource area (eg an uplink resource area) for emergency communication of the first mobile station; And transmitting allocation information about the first resource zone to at least one of the first mobile station and the second mobile station and receiving emergency data through the first resource zone.
- BS base station
- RS relay station
- FBS femto base station
- E-MS femto base station
- the step of establishing a path for emergency communication may include receiving an emergency request signal (eg ranging code, emergency signal or E-mode request indicator) from a first mobile station, a base station (BS), Allocating a second resource area (eg an uplink area or an emergency area) to the first mobile station and at least one second mobile station at one of the relay station (FRS) and the femto base station (FBS) and to the second resource area. Transmitting allocation information (eg mode change indicator, transmission mode start point information, and emergency area location information) to the first mobile station and at least one second mobile station, and channel status with the first mobile station from the at least one second mobile station, respectively.
- Receiving channel information eg, CQI information, SINR information, etc.
- It may include the step of selecting.
- the allocation information about the second resource zone is a mode change indicator indicating a time point when the second mobile station switches to the reception mode, and a transmission mode indicating a time point when the second mobile station switches from the reception mode to the transmission mode. It may include area information indicating the start information and the location of the second resource area.
- the allocation information about the second resource region may be broadcasted to the first mobile station and one or more second mobile stations through a broadcast channel.
- allocation information about the second resource zone may be transmitted to one or more second mobile stations in unicast format, and the one or more second mobile stations may be grouped into a predetermined group.
- the first resource region may be allocated to an uplink access region.
- a method for supporting emergency communication in a wireless access system includes transmitting an emergency request signal for requesting emergency communication from a first mobile station to a base station (or one of a relay station (RS) and a femto base station (FBS)). Receiving a message including information on the first emergency zone allocated for emergency communication from the base station; and transmitting an emergency signal to the second mobile station using the information on the first emergency zone. can do.
- RS relay station
- FBS femto base station
- a message including information regarding a second emergency area allocated for emergency communication from a second mobile station, and transmitting an emergency signal to the second mobile station using information about the second emergency area. It may further comprise the step.
- the second mobile station is preferably an intermediate mobile station sharing uplink and downlink resources with the first mobile station for emergency communication.
- the allocation information for the first emergency zone is a mode change indicator indicating a time point when the second mobile station switches to the reception mode, and a transmission mode indicating a time point when the second mobile station switches from the reception mode to the transmission mode. It may include area information indicating the start information and the location of the first emergency area.
- the allocation information about the first emergency zone may be broadcasted through a broadcast channel.
- the allocation information about the first emergency zone may be transmitted to one or more second mobile stations in unicast format. At this time, one or more second mobile stations are preferably grouped into a predetermined group.
- the present invention has the following effects.
- a method and / or apparatus for efficiently providing emergency data communication may be implemented using the technical idea of the present invention.
- the mobile station uses the uplink and downlink of a neighboring mobile station to communicate with another base station or another relay station. Can be done.
- 1 is a conceptual diagram of a multi-hop relay system.
- FIG. 2 is a diagram illustrating an example of an emergency situation.
- FIG. 3 is a diagram illustrating a relay frame structure to which embodiments of the present invention can be applied.
- FIG. 4 is a diagram illustrating one method of setting a path for supporting emergency communication according to an embodiment of the present invention.
- FIG. 5 is a diagram illustrating one method for allocating an uplink resource region by a relay station according to another embodiment of the present invention.
- FIG. 6 is a diagram illustrating one method for allocating an uplink resource region by a relay station according to another embodiment of the present invention.
- FIG. 7 is a diagram illustrating an example of a frame structure including an emergency zone to which embodiments of the present invention can be applied.
- FIG. 8 is a diagram illustrating another example of a frame structure including an emergency zone to which embodiments of the present invention can be applied.
- FIG. 9 is a diagram illustrating one method for allocating an uplink resource region by a relay station according to another embodiment of the present invention.
- each component or feature may be considered to be optional unless otherwise stated.
- Each component or feature may be embodied in a form that is not combined with other components or features.
- some components and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
- the base station is meant as a terminal node of a network that directly communicates with a mobile station.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
- various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
- the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), and an access point.
- the term 'mobile station' may be replaced with terms such as a user equipment (UE), a subscriber station (SS), a mobile subscriber station (MSS), a mobile terminal, or a terminal.
- the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
- the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
- the mobile station includes a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a global system for mobile (GSM) phone, a wideband CDMA (WCDMA) phone, a mobile broadband system (MBS) phone, and the like. Can be used.
- the mobile station includes a personal digital assistant (PDA), a hand-held PC, a notebook PC, a smart phone, a multi-mode multi-band (MM-MB) terminal. And so on.
- a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal. have.
- a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
- CDMA code division multiple access
- WCDMA wideband CDMA
- Embodiments of the invention may be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs Field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document. In particular, embodiments of the present invention may be supported by one or more of the standard documents P802.16-2004, P802.16e-2005, and P802.16Rev2 documents of the IEEE 802.16 system.
- a relay station may be used with the same meaning as a term such as a relay, a relay system.
- the use model of the relay station considered in the 802.16j system can be classified into the following four types.
- the fixed infrastructure is to expand the data rate and cell coverage of the base station (BS), the relay station is installed by the service provider as a fixed (fixed RS) similar to the base station, or purchased by the subscriber who wants the convenience of network access Can be installed.
- BS base station
- the relay station is often installed and operated in locations that provide base station and LOS (??) channel environments.
- the relay station may be installed by the service provider or subscriber to solve the service shadow area inside the building and increase the transmission rate.
- This type of relay station is a fixed RS and a nomadic RS that provides some mobility services in a limited area.
- Such a relay station may be installed and used in a tunnel or subway station.
- the fixed RS is temporarily used to supplement a place where the coverage and channel capacity of the base station cannot be sufficiently provided, and may be provided in the form of a nomadic relay station.
- Temporary coverage usage models can be provided for emergency or disaster recovery.
- the temporary coverage usage model may be temporarily used for smooth service by dividing excessive service traffic to neighboring base stations at an event site crowded with many users.
- Mobile RS may be used to provide users with stable services on vehicles such as trains, buses and passenger ships that are densely packed with users.
- FIG. 3 is a diagram illustrating a relay frame structure to which embodiments of the present invention can be applied.
- FIG. 3 shows a frame structure supporting multi-hop relay as discussed in IEEE 802.16m.
- the 16m relay frame structure supports multi-hop non-transparent RSs.
- the opacity mode is used when the mobile station exists outside the cell boundary or cell coverage of the base station, and indicates that the relay station transmits control signals or map information to the mobile station.
- the transparency mode means that the mobile station can directly receive a control signal (eg, SCH or BCH) or map information from the base station. That is, in the transparency mode, the base station may control the relay station to transmit control signals to the mobile station.
- a control signal eg, SCH or BCH
- the 16m DL access zone of a downlink subframe is a section in which BS and RS transmit synchronization and control information to a mobile station (MS) in each zone, and a downlink of a 16j non-transparent RS It works the same as the connection area.
- the multi-hop relay frame structure of odd-hop RS consists of a 16m downlink transmission zone and a 16m downlink DL receive zone
- the even-hop RS multi-hop relay frame structure has a 16m downlink. It consists of a DL Receive Zone and a 16m DL Transmit Zone.
- the uplink subframe is composed of a 16m UL Receive Zone and a 16m UL Transmit Zone in odd hops to compensate for the delay of the 16j UL relay region. On even hops, they are organized in reverse order.
- the 16m network coding zone may be selectively applied to the base station and the RS.
- the network coding transmission zone is preferably located in an odd hop RS that communicates directly with the base station, and the location of the network coding reception zone is a subframe of the even hop RS. It is preferable to be located at.
- the multi-hop frame structure of IEEE 802.16m as shown in FIG. 3 shows an example of supporting time division duplexing (TDD) within one frame of a 5 msec period, and extends to frequency division duplexing (FDD) or a plurality of frames. It may be interpreted as a TDD / FDD mode operation.
- the division of each region may be set in units of subframes for a frame composed of a plurality of subframes or in units of frames for a plurality of frames.
- FIG. 4 is a diagram illustrating one method of setting a path for supporting emergency communication according to an embodiment of the present invention.
- a mobile station communicating with a relay station and / or a base station through downlink and uplink routing with neighboring mobile stations is selected as an emergency mode mobile station (E-Mode MS).
- E-MS emergency mode mobile station
- Mobile Station hereinafter referred to as "E-MS"
- the E-MS may perform emergency communication with a base station, a relay station, or a femto base station.
- the E-MS will be described based on a process of establishing a path with the relay station (RS). .
- the process of the E-MS establishing a path with the base station or the femto base station may be equally applied.
- the E-MS may transmit an emergency request signal for requesting an emergency mode (E-Mode) to the RS (S401).
- E-Mode an emergency mode
- step S401 the emergency request signal may be transmitted in the following three cases.
- the E-MS may transmit an emergency request signal on a contention basis in a ranging procedure for initial network entry.
- the emergency request signal may be a predetermined ranging code or an E-Mode request indicator.
- the emergency mode request indicator may be included in a predetermined ranging MAC access message and transmitted to the relay station.
- the E-MS may transmit an emergency request signal to the relay station when the bandwidth is requested.
- the emergency request signal may be transmitted together with a bandwidth request message (BR) message or a BR header.
- BR bandwidth request message
- the E-MS may transmit a report message (e.g. REP-RSP) including an emergency request signal together.
- a report message e.g. REP-RSP
- the E-MS is not limited to the messages or indicators, and may transmit an emergency request signal to a relay station through various messages or channels.
- the emergency request signal may be transmitted through a predetermined emergency channel or may be transmitted through a radio channel designated by a relay station.
- the RS receiving the emergency request signal from the E-MS may allocate an emergency area for the E-MS to transmit an emergency message to an uplink subframe.
- the emergency area may mean all allocation areas associated with messages or signals for the E-MS to perform emergency communication (S402).
- the relay station or the like may transmit a specific message including the allocation information about the emergency area to the E-MS and / or N-MSs so that the N-MSs may receive the emergency messages transmitted by the E-MS (S403, S404). ).
- the allocation information about the emergency area is a mode change indicator for the N-MSs to switch from the transmission mode to the reception mode, and the reception mode information (or the transmission mode start time information at which the N-MS switches back to the transmission mode). ) And location information of the emergency area for transmitting the emergency message received from the E-MS.
- the specific message may be broadcast in the form of a broadcast channel (BCH). If the relay station or the like knows the location of the E-MS, the relay station may transmit the specific message in unicast format by grouping or designating neighboring mobile stations of the E-MS requesting the E-mode.
- BCH broadcast channel
- the mode change indicator may have a size of 1 bit, and in case of '0', may indicate a transmission mode (Tx Mode), and in case of '1', it may indicate a reception mode (Rx Mode).
- the reception mode information may be expressed as a duration value having a predetermined time length. If the reception mode information indicates information on the start time of switching to the transmission mode, the transmission mode start time may be represented by a start offset value or a frame number (or sub frame number).
- the E-MS may send an emergency signal or emergency message to one or more N-MSs. However, the E-MS may transmit an arbitrary signal to one or more N-MSs in addition to the emergency signal to measure channel conditions with the N-MSs (S405).
- one or more N-MSs may each measure a channel state with the E-MS in the process of receiving an emergency signal from the E-MS.
- the N-MSs may receive an emergency signal from the E-MS using the information received in step S403.
- the N-MSs may transmit channel information indicating the channel state with the E-MS to the relay station through the emergency area allocated in step S403 (S406).
- the relay station selects an intermediate mobile station (I-MS) to receive an emergency signal (or emergency message) of the E-MS from among one or more N-MSs around the E-MS based on the channel information and deliver it to the relay. To determine the path.
- I-MS intermediate mobile station
- one I-MS may be selected, and two or more I-MSs may be selected according to a communication environment, and one or more paths may be established (S407).
- FIG. 5 is a diagram illustrating one method for allocating an uplink resource region by a relay station according to another embodiment of the present invention.
- E-MS, N-MSs, and relay stations may establish one or more emergency paths for performing emergency communication.
- the emergency route may be set using the route setting process described with reference to FIG. 4 (S501).
- the RS may allocate an uplink resource zone for emergency communication to the M-MS and the I-MS.
- the uplink resource zone may be allocated to the E-MS and the I-MS in the same manner (S502).
- the I-MS and the E-MS may be configured in pairs and may be classified into a transmission mode or a reception mode.
- the E-MS may transmit emergency data to the I-MS, and the I-MS may receive emergency data.
- the RS may broadcast uplink resource region allocation information (e.g. UL allocation information) to the I-MS and the E-MS using the UL-MAP message or the USCCH (S503a).
- uplink resource region allocation information e.g. UL allocation information
- the RS may inform the I-MS and the E-MS of uplink resource region allocation information in unicast format instead of broadcasting UL allocation information using a UL-MAP message or USCCH. That is, since a path is established between the relay station and the I-MS through the path setting process in step S501, the relay station transmits UL allocation information to the I-MS using a predetermined message (S503b), and the I-MS transmits the E-MS. The UL allocation information may be transmitted to the MS (S503c).
- Steps S503a and S503b to S503c may be optionally used.
- the E-MS and the I-MS which have received the UL allocation information through step S503a or steps S503b to S503c may transmit emergency data to the uplink resource region indicated by the UL allocation information. That is, the E-MS may transmit emergency data to the I-MS through the allocated uplink resource region (S504), and the I-MS may transmit the received emergency data to the relay station (S505).
- the E-MS may transmit emergency data to a relay station or the like without passing through the I-MS.
- emergency data can be directly transmitted to the relay station without passing through the I-MS.
- FIG. 6 is a diagram illustrating one method for allocating an uplink resource region by a relay station according to another embodiment of the present invention.
- E-MS, N-MSs, and relay stations may establish one or more emergency paths for performing emergency communication.
- the emergency route may be set using the route setting process described with reference to FIG. 4 (S601).
- the RS may allocate a downlink resource zone for emergency communication to the E-MS and the I-MS.
- the downlink resource region may be allocated to the E-MS and the I-MS in the same manner (S602).
- the I-MS and the E-MS may be configured in pairs and may be classified into a transmission mode or a reception mode.
- the I-MS may transmit emergency data to the E-MS, and the E-MS may receive emergency data.
- the RS may broadcast downlink resource region allocation information (e.g. DL allocation information) to the I-MS and the E-MS using a DL-MAP message or a DSCCH.
- the RS may inform the I-MS and the E-MS of downlink resource region allocation information in unicast format.
- the RS may transmit a predetermined message including downlink resource region allocation information to the I-MS (S603), and the I-MS may transmit downlink resource region allocation information to the E-MS (S604). ).
- the RS transmits downlink traffic to the I-MS through the DL resource region allocated for the allocated emergency service (S605), and since the I-MS is connected with the E-MS, the RS transmits downlink traffic to the E-MS. Can be delivered (S606).
- the emergency signal used in step S405 of FIG. 4 a message of the same type or a different type as the emergency data used in step S504 may be used.
- the emergency area allocated in step S402 is used to set a path for I-MS and emergency communication, but may be set to the same area as the resource area allocated in step S502 or S602.
- the emergency area allocated in step S402 may be different from the resource area in step S502 or step S602.
- FIG. 7 is a diagram illustrating an example of a frame structure including an emergency zone to which embodiments of the present invention can be applied.
- FIG. 7 illustrates an uplink emergency region for emergency communication between an E-MS and an I-MS implemented on a frame structure configured with time division duplex (TDD).
- TDD time division duplex
- one frame has a length of 5 ms, and a ratio of a downlink subframe and an uplink subframe is 5: 3.
- the BS frame structure may be configured in the order of a legacy DL region, a 16m DL region, a legacy UL region, and a 16m UL region.
- the RS frame structure may be configured to correspond to the BS frame structure, and may be configured such that a transmission zone (Tx Zone), a reception zone (Rx Zone), a transmission zone, a reception zone, and a transmission zone are repeated.
- the emergency region for emergency communication may be included in the 16m uplink access region of the 16m UL region in the BS frame structure.
- an emergency zone may be allocated to a 16m uplink access zone that constitutes a reception zone (Rx Zone).
- the I-MS can transmit / receive data with the E-MS and the relay station through the emergency zone.
- the E-MS can transmit and receive emergency data with the I-MS through the emergency zone.
- the E-MS can transmit and receive emergency data through the emergency area directly with the relay station.
- FIG. 8 is a diagram illustrating another example of a frame structure including an emergency zone to which embodiments of the present invention can be applied.
- FIG. 8 shows an uplink emergency region for emergency communication between an E-MS and an I-MS implemented on a frame structure constituted by frequency division duplex (FDD).
- FDD frequency division duplex
- one frame has a length of 5 ms, and only one DL or UL region exists at one frequency.
- the processing interval between the BS / RS and the MS is 2 subframe intervals (1.23 ms).
- the emergency area may be located in an uplink subframe, and in particular, the emergency area may be allocated to an 802.16m access area.
- the emergency zone may be allocated to the downlink based on the same technical concept.
- 5 and 6 are preferably performed after the routing process of FIG. 4 is performed. 5 and 6 may be performed without the routing process of FIG. 4. In this case, the base station or the relay station may arbitrarily allocate a resource area for performing emergency communication to inform the E-MS and the I-MS.
- FIG. 9 is a diagram illustrating one method for allocating an uplink resource region by a relay station according to another embodiment of the present invention.
- an emergency situation such as a natural disaster may occur in the base station or the relay station.
- the base station or relay station can determine that it is an emergency without the request of the mobile station (eg, E-MS). Accordingly, the base station can allocate an emergency zone for the emergency mode mobile station (E-MS) to transmit an emergency message without requesting the mobile station (S901).
- E-MS emergency mode mobile station
- the uplink resource region and / or the downlink resource region may be allocated to the emergency region.
- the emergency area may mean all allocation areas related to messages or signals for performing an emergency communication by the E-MS.
- the base station or the like may transmit a broadcast channel, UL-MAP message or USCCH including E-MS and / or N-MSs to the N-MSs so that N-MSs can receive emergency messages transmitted by the E-MS. It can broadcast (S902).
- the base station may group or designate neighboring mobile stations of the E-MS to transmit the allocation information using a unicast message (S903a).
- the neighboring mobile station (N-MS) that has received the allocation information from the base station may transmit the allocation information to the E-MS (S903b).
- Steps S902 and S903a and S903b may be selectively used according to user requirements or channel environment.
- the allocation information about the emergency area includes a mode change indicator for switching the N-MSs from a transmission mode to a reception mode, and reception mode information in which the N-MS switches back to the transmission mode. (Or, transmission mode start time information) and location information (eg, downlink subframe and / or uplink subframe) of an emergency region for transmitting an emergency message received from the E-MS.
- the mode change indicator may have a size of 1 bit, and in case of '0', may indicate a transmission mode (Tx Mode), and in case of '1', it may indicate a reception mode (Rx Mode).
- the reception mode information may be expressed as a duration value having a predetermined time length. If the reception mode information indicates information on the start time of switching to the transmission mode, the transmission mode start time may be represented by a start offset value or a frame number (or sub frame number).
- the E-MS may send an emergency signal or emergency message to one or more N-MSs.
- the E-MS may transmit an arbitrary signal for measuring channel conditions with the N-MSs to one or more N-MSs in addition to the emergency signal (S904).
- One or more N-MSs may receive an emergency signal from the E-MS using the allocation information received in step S902 or S903a.
- each of the one or more N-MSs may measure the channel state with the E-MS in the process of receiving an emergency signal from the E-MS. Accordingly, the N-MSs may transmit channel information and emergency data indicating the channel state with the E-MS to the base station through the emergency area allocated in steps S902 to S903a (S905).
- a mobile station and a base station (or relay station) in which the embodiments of the present invention described with reference to FIGS. 3 to 9 are performed will be described.
- the mobile station can operate as a transmitter in uplink and as a receiver in downlink.
- the base station may operate as a receiver in the uplink, and may operate as a transmitter in the downlink. That is, the mobile station and base station can include a transmitter and a receiver for the transmission of information or data.
- the transmitter and receiver may include a processor, module, part, and / or means for carrying out the embodiments of the present invention.
- the transmitter and receiver may include a module (means) for encrypting the message, a module for interpreting the encrypted message, an antenna for transmitting and receiving the message, and the like.
- the mobile station used in embodiments of the present invention may include a low power radio frequency (RF) / intermediate frequency (IF) module.
- the mobile station may perform a controller function, a medium access control (MAC) frame variable control function, a handover function, authentication and encryption function, data according to a controller function, a service characteristic, and a propagation environment for performing the above-described embodiments of the present invention.
- the base station may transmit data received from the upper layer to the mobile station wirelessly or by wire.
- the base station may include a low power radio frequency (RF) / intermediate frequency (IF) module.
- RF radio frequency
- IF intermediate frequency
- the base station is a controller function for performing the above-described embodiments of the present invention, Orthogonal Frequency Division Multiple Access (OFDMA) packet scheduling, time division duplex (TDD) packet scheduling and channel multiplexing function MAC frame variable control function according to service characteristics and propagation environment, high speed traffic real time control function, hand over function, authentication and encryption function, packet modulation and demodulation function for data transmission, high speed packet channel coding function and real time modem control Means, modules or parts for performing functions and the like.
- OFDMA Orthogonal Frequency Division Multiple Access
- TDD time division duplex
- MAC frame variable control function according to service characteristics and propagation environment
- high speed traffic real time control function hand over function
- authentication and encryption function packet modulation and demodulation function for data transmission
- Embodiments of the present invention can be applied to various wireless access systems.
- various radio access systems include 3rd Generation Partnership Project (3GPP), 3GPP2 and / or IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) systems.
- 3GPP 3rd Generation Partnership Project
- 3GPP2 3rd Generation Partnership Project2
- IEEE 802.xx Institute of Electrical and Electronic Engineers 802
- Embodiments of the present invention can be applied not only to the various radio access systems, but also to all technical fields that apply the various radio access systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Public Health (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명은 릴레이 시스템을 지원하는 무선접속 시스템에서 긴급통신을 지원하는 다양한 방법들을 개시한다. 본 발명의 일 실시예로서 무선접속 시스템에서 긴급통신을 지원하는 방법은, 기지국(BS), 중계국(RS) 및 팸토 기지국(FBS) 중 하나와 긴급 모드 상태인 제 1 이동국(E-MS) 및 제 1 이동국의 인근에 위치한 하나 이상의 제 2 이동국(N-MS)과 긴급통신을 위한 경로를 설정하는 단계와 제 1 이동국의 긴급통신을 위한 제 1 자원영역을 할당하는 단계와 제 1 자원영역에 관한 할당정보를 제 1 이동국 및 제 2 이동국 중 하나 이상에 전송하는 단계와 제 1 자원영역을 통해 긴급 데이터를 수신하는 단계를 포함할 수 있다.
Description
본 발명은 무선접속 시스템에 관한 것으로, 특히 릴레이 시스템에서 긴급통신을 지원하는 방법에 관한 것이다.
이하에서는 본 발명에서 사용되는 중계국(RS: Relay Station)에 대하여 간략히 설명한다.
2006년도 IEEE(Institute of Electrical and Electronics Engineers, 미국 전기 전자 학회) 802.16에서는 고정 가입자 단말을 대상으로 하는 표준 규격인 IEEE 802.16-2004와 가입자 단말의 이동성을 제공하기 위한 표준 규격인 IEEE 802.16e-2005의 발간 후 현재 멀티홉 릴레이라는 새로운 주제의 표준화 프로젝트가 진행되고 있다. IEEE 802.16 내의 작업반(Task Group) j에서 담당하고 있는 이 프로젝트는 지난 2006년 5월 첫 공식 회의를 가진 이래 2006년 7월 두 번째 회의에서는 활용 모델(Usage Model), 관련 용어(Terminology), 기술적 요구사항(Technical Requirement)에 대해서 본격적으로 논의가 시작되었다. 이하 IEEE 802.16 작업반j를 줄여서 "802.16j"라고 표기하기로 한다.
차세대 무선통신 시스템에서 중계국(RS)이 널리 이용될 것으로 전망된다. 이하에서는 설명의 용이함을 위해 IEEE 802.16j 에서 고려하던 중계국 개념을 중심으로 설명하기로 한다. 다만, 이하에서 설명할 중계국의 개념은 3GPP IMT-A (LTE-A)에서 고려하고 있는 중계국에 대해서도 실질적으로 동일한 개념으로 가정할 수 있다.
802.16j의 PAR(Project Authorization Request, 프로젝트 승인 요청)에는 앞으로 진행될 표준화 작업의 다음과 같은 두 가지 목적이 명기되어 있다.
1. 서비스 지역의 확장(Coverage Extension)
2. 성능 강화(Throughput Enhancement)
도 1은 멀티홉 릴레이 시스템에 대한 개념도이다.
도 1에서 도면부호 101은 기지국을, 도면부호 102a 내지 102d는 중계기(Relay Station)를, 도면부호 103a 내지 103d는 단말을 나타낸다. 도 1에 나타난 바와 같이 기지국(101)의 영역 밖의 지역에도 중계국(102a 및 102b)을 통한 신호 전달이 가능해질 수 있다. 또한, 기지국(101) 영역 내에 있는 단말(103d)에 대해서는 중계국(102d)을 통한 높은 수준의 적응변조코딩(AMC: Adaptive Modulation and Coding) 방식을 가지는 고품질의 경로를 설정할 수 있도록 함으로써 동일한 무선 자원으로 시스템 용량의 증대를 꾀할 수 있다.
이 프로젝트에 의해서 만들어질 표준 규격은, 기존의 IEEE 802.16-2004와 IEEE 802.16e-2005 규격에 기반하여 구현된 이동단말은 어떤 기능의 추가 없이 중계국과의 통신이 가능해야 한다는 원칙하에, 중계국 자체와 기존 기지국에 중계국을 제어하기 위한 일부 기능 추가로 그 범위가 한정될 것으로 보인다.
중계국은 물리계층과 매체접근 제어계층의 동작을 수행하는 일종의 가입자 단말로 생각할 수 있으며, 주로 기지국에 의해서 제어되지만 필요한 경우 스스로도 어느 정도의 제어 기능을 가질 수 있다. 현재 논의 중인 활용 모델에는 고정 중계국뿐만 아니라 특정 지역에 대한 일시적인 서비스 제공을 위한 이동 중계국과 자동차나 지하철 등에 장착될 수 있는 중계국까지 고려되고 있다.
일반적으로 사용되는 멀티 홉 릴레이(multi-hop relay)를 지원하는 이동국은 초기 네트워크 진입 시 기지국 또는 중계국과의 초기 네트워크 엔트리 절차에서 중계기를 통한 릴레이 여부를 기지국이 결정할 수 있다.
예를 들어, 기지국과 이동국의 채널 상태가 특정 기준 값 이상이면, 이동국은 기지국과의 직접 통신을 시도할 수 있다. 만약, 채널 상태가 특정 기준 값 이하이거나 단말이 기지국의 신호를 수신할 수 없고 인접한 중계국과의 채널 상태가 양호할 경우 중계국으로 경로를 설정한다.
그러나, 이동국이 기지국에 등록하기 위해 초기 네트워크 진입 절차를 수행시 긴급 서비스를 요청하거나 이동국이 기지국 또는 중계국과 통신 중에 긴급 서비스를 요청하는 경우, 이동국은 기지국 또는 중계국과의 채널 상태가 특정 기준값 이하일 경우에 인접 단말과 연결 설정을 위한 절차가 정의되어 있지 않다.
도 2는 긴급 상황이 발생한 경우의 일례를 나타내는 도면이다.
도 2는 기지국(BS), 펨토 기지국(FBS) 또는 중계국(RS)에 천재지변이나 기타 재난 상황이 발생하여 BS, FBS 또는 RS가 정상적인 기능을 수행하지 못하는 경우를 나타낸다.
도 2를 참조하면, 중계국에 재난 상황이 발생하여 이동국이 현재 서빙 중계국으로부터 서비스를 제공받지 못할 수 있다. 이때, 이동국은 긴급모드로 천이하여 긴급모드 상황의 통신 서비스를 수행할 수 있다.
본 발명의 목적은 중계국 및/또는 펨토 기지국을 지원하는 이동통신 시스템에서 긴급 데이터 통신을 지원하기 위한 장치 및/또는 방법을 제공하는 것이다.
본 발명의 다른 목적은 통신 환경에 따라 기지국(BS: Base Station), 중계국(RS) 또는 펨토 기지국(FBS: Femto BS) 등이 이동국과 통신을 수행하기 위한 충분한 셀 커버리지(Cell Coverage)와 성능(capacity)을 지원하지 않을 때, 인근 이동국의 상향링크 및 하향링크를 통신 경로로 설정하기 위한 방법 및/또는 장치에 대하여 설명한다.
본 발명의 또 다른 목적은 이동국이 기지국에 등록하기 위한 초기 네트워크 진입 절차를 수행시 긴급 서비스를 요청하거나 이동국이 기지국 또는 중계국과 통신 중에 긴급 서비스를 요청하는 경우, 이동국은 기지국 또는 중계국과의 채널 상태가 특정 기준값 이하인 상황에서 인근 이동국과 연결을 설정하는 방법을 제공하는 것이다.
상기의 기술적 과제를 해결하기 위해, 본 발명은 무선접속 시스템에 관한 것으로, 특히 릴레이 시스템에서 긴급통신을 지원하는 방법들을 개시한다.
본 발명의 일 양태로서 무선접속 시스템에서 긴급통신을 지원하는 방법은, 기지국(BS), 중계국(RS) 및 팸토 기지국(FBS) 중 하나와 긴급 모드 상태인 제 1 이동국(E-MS) 및 제 1 이동국의 인근에 위치한 하나 이상의 제 2 이동국(N-MS)과 긴급통신을 위한 경로를 설정하는 단계와 제 1 이동국의 긴급통신을 위한 제 1 자원영역(e.g. 상향링크 자원영역)을 할당하는 단계와 제 1 자원영역에 관한 할당정보를 제 1 이동국 및 제 2 이동국 중 하나 이상에 전송하는 단계와 제 1 자원영역을 통해 긴급 데이터를 수신하는 단계를 포함할 수 있다.
상기 본 발명의 일 양태에서 긴급통신을 위한 경로를 설정하는 단계는, 제 1 이동국으로부터 긴급요청신호(e.g. 레인징 코드, 긴급신호 또는 E-mode 요청 지시자)를 수신하는 단계와 기지국(BS), 중계국(RS) 및 팸토 기지국(FBS) 중 하나에서 제 1 이동국 및 하나 이상의 제 2 이동국에 긴급통신을 위한 제 2 자원영역(e.g. 상향링크 영역 또는 긴급 영역)을 할당하는 단계와 제 2 자원영역에 관한 할당정보(e.g. 모드변경지시자, 전송모드 시작시점 정보 및 긴급영역의 위치정보)를 제 1 이동국 및 하나 이상의 제 2 이동국에 전송하는 단계와 하나 이상의 제 2 이동국으로부터 각각 제 1 이동국과의 채널 상태를 나타내는 채널정보(e.g. CQI 정보, SINR 정보 등)를 수신하는 단계와 하나 이상의 제 2 이동국으로부터 제 1 이동국과의 긴급통신을 수행하기 위한 중간 이동국을 선택하는 단계를 포함할 수 있다.
상기 본 발명의 일 양태에서, 제 2 자원영역에 관한 할당정보는 제 2 이동국이 수신모드로 전환하는 시점을 나타내는 모드변경지시자, 제 2 이동국이 수신모드에서 전송모드로 전환되는 시점을 나타내는 전송모드 시작정보 및 제 2 자원영역의 위치를 나타내는 영역정보를 포함할 수 있다.
이때, 제 2 자원영역에 관한 할당정보는, 방송채널을 통해 제 1 이동국 및 하나 이상의 제 2 이동국으로 방송될 수 있다. 또는, 제 2 자원영역에 관한 할당정보는 유니캐스트 형식으로 하나 이상의 제 2 이동국으로 전송될 수 있으며, 하나 이상의 제 2 이동국은 소정의 그룹으로 그룹핑될 수 있다.
상기 본 발명의 일 양태에서 제 1 자원영역은 상향링크 접속 영역에 할당될 수 있다.
본 발명의 다른 양태로서 무선접속 시스템에서 긴급통신을 지원하는 방법은, 제 1 이동국에서 긴급통신을 요청하기 위한 긴급요청 신호를 기지국(또는, 중계국(RS) 및 팸토 기지국(FBS) 중 하나)으로 전송하는 단계와 기지국으로부터 긴급통신을 위해 할당된 제 1 긴급영역에 관한 정보를 포함하는 메시지를 수신하는 단계와 제 1 긴급영역에 관한 정보를 이용하여 긴급신호를 제 2 이동국으로 전송하는 단계를 포함할 수 있다.
상기 본 발명의 다른 양태는 제 2 이동국으로부터 긴급통신 위해 할당된 제 2 긴급영역에 관한 정보를 포함하는 메시지를 수신하는 단계와 제 2 긴급영역에 관한 정보를 이용하여 제 2 이동국으로 긴급신호를 전송하는 단계를 더 포함할 수 있다.
상기 본 발명의 다른 양태에서 제 2 이동국은 긴급통신을 위해 제 1 이동국과 상향링크 및 하향링크 자원을 공유하는 중간 이동국인 것이 바람직하다.
상기 본 발명의 다른 양태에서 제 1 긴급영역에 관한 할당정보는, 제 2 이동국이 수신모드로 전환하는 시점을 나타내는 모드변경지시자, 제 2 이동국이 수신모드에서 전송모드로 전환되는 시점을 나타내는 전송모드 시작정보 및 제 1 긴급영역의 위치를 나타내는 영역정보를 포함할 수 있다. 이때, 제 1 긴급영역에 관한 할당정보는 방송채널을 통해 방송될 수 있다. 또는, 제 1 긴급영역에 관한 할당정보는 유니캐스트 형식으로 하나 이상의 제 2 이동국으로 전송될 수 있다. 이때, 하나 이상의 제 2 이동국은 소정의 그룹으로 그룹핑되는 것이 바람직하다.
본 발명은 다음과 같은 효과가 있다.
첫째, 본 발명의 기술적 사상을 이용하여 긴급 데이터 통신을 효율적으로 제공하는 방법 및/또는 장치를 구현할 수 있다.
둘째, 기지국 또는 중계국에 재난이 발생하는 등 통신환경이 열악해짐에 따라 이동국이 긴급 통신을 수행해야하는 경우에, 이동국은 인근 이동국의 상향링크 및 하향링크를 이용하여 다른 기지국 또는 다른 중계국과 긴급 통신을 수행할 수 있다.
셋째, 이동국이 인근 이동국을 통해 긴급 서비스를 요청하는 경우, 본 발명의 기술적 사상을 적용하면 효율적이고 안정적으로 인근 이동국과 연결을 설정할 수 있다.
도 1은 멀티홉 릴레이 시스템에 대한 개념도이다.
도 2는 긴급 상황이 발생한 경우의 일례를 나타내는 도면이다.
도 3은 본 발명의 실시예들이 적용될 수 있는 릴레이 프레임 구조를 나타내는 도면이다.
도 4는 본 발명의 일 실시예로서 긴급 통신을 지원하기 위한 경로를 설정하는 방법 중 하나를 나타내는 도면이다.
도 5는 본 발명의 다른 실시예로서 중계국 등이 상향링크 자원영역을 할당하는 방법 중 하나를 나타내는 도면이다.
도 6은 본 발명의 또 다른 실시예로서 중계국 등이 상향링크 자원영역을 할당하는 방법 중 하나를 나타내는 도면이다.
도 7은 본 발명의 실시예들이 적용될 수 있는 긴급 영역(Emergency Zone)을 포함하는 프레임 구조의 일례를 나타내는 도면이다.
도 8은 본 발명의 실시예들이 적용될 수 있는 긴급 영역(Emergency Zone)을 포함하는 프레임 구조의 다른 일례를 나타내는 도면이다.
도 9는 본 발명의 또 다른 실시예로서, 중계국 등이 상향링크 자원영역을 할당하는 방법 중 하나를 나타내는 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, '이동국(MS: Mobile Station)'은 UE(User Equipment), SS(Subscriber Station), MSS(Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 단말(Terminal) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
한편, 본 발명서 이동국으로 PDA(Personal Digital Assistant), 셀룰러폰, PCS(Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰 등이 이용될 수 있다. 또한, 이동국은 개인 휴대 단말기(PDA : Personal Digital Assistant), 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰, 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다.
또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시예들은 IEEE 802.16 시스템의 표준 문서인 P802.16-2004, P802.16e-2005 및 P802.16Rev2 문서들 중 하나 이상에 의해 뒷받침될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. 예를 들어, 중계국은 중계기, 릴레이 시스템(Relay System) 등의 용어와 동일한 의미로 사용될 수 있다.
802.16j 시스템에서 고려하고 있는 중계국의 사용 모델은 다음의 네 가지 형태로 분류될 수 있다.
1) 고정 인프라구조(Flexed Infrastructure)
고정 인프라구조는 기지국(BS)의 데이터 전송률과 셀 커버리지 확장을 위한 것으로, 중계국은 서비스 사업자에 의해 기지국과 유사하게 고정형(fixed RS)으로 설치되거나, 망 접속의 편리성을 원하는 가입자에 의해 구입되고 설치될 수 있다. 고정 인프라구조에서 중계국은 주로 기지국과 LOS (??) 채널 환경을 제공하는 위치에 설치되어 운영된다.
2) 건물 내부 커버리지(In-Building Coverage)
중계국은 건물 내부의 서비스 음영지역을 해결하고 전송률을 높이기 위해 서비스 제공자 혹은 가입자가 설치 할 수 있다. 이런 형태의 중계국은 고정형 중계국(fixed RS)과 한정된 지역에서 약간의 이동성이 보장되는 서비스를 제공하는 노마딕 중계국(nomadic RS)이 있다. 이러한 중계국은 터널 또는 지하철 역 등에 설치되어 사용될 수 있다.
3) 임시 커버리지(Temporary Coverage)
고정형 RS는 기지국의 커버리지와 채널 용량을 충분히 제공할 수 없는 장소를 보완하기 위해 일시적으로 사용되며, 노마딕 중계국의 형태로 제공될 수 있다. 임시 커버리지 사용 모델(Usage Model)은 비상 또는 재난 복구를 위해 제공될 수 있다. 또한, 임시 커버리지 사용모델은 많은 사용자들이 밀집하는 행사 장소에서 과도한 서비스 트래픽을 주변 기지국으로 나누어 줌으로써 원활한 서비스가 이루어지도록 하기 위해 임시적으로 사용될 수 있다.
4) 운송체 상의 커버리지(Coverage on a Mobile Vehicle)
사용자들이 밀집해 있고 고속으로 셀을 지나가는 기차나 버스, 여객선과 같은 운송체 상에서 사용자들에게 안정된 서비스를 제공하기 위해 이동 릴레이(Mobile RS)가 사용될 수 있다.
도 3은 본 발명의 실시예들이 적용될 수 있는 릴레이 프레임 구조를 나타내는 도면이다.
도 3은 IEEE 802.16m에서 논의되고 있는 멀티 홉 릴레이(multi-hop relay)를 지원하는 프레임 구조를 나타낸다. 16m 릴레이 프레임 구조는 멀티 홉의 불투명 중계국(non-transparent RS)을 지원한다. 이때, 불투명성 모드는 이동국이 기지국의 셀 경계 또는 셀 커버리지 밖에 존재하는 경우에 사용되며, 중계국이 이동국에 제어신호 또는 맵 정보 등을 전송하는 경우를 나타낸다. 또한, 투명성 모드는 이동국이 기지국으로부터 제어신호(예를 들어, SCH 또는 BCH) 또는 맵 정보 등을 바로 수신할 수 있는 것을 의미한다. 즉, 투명성 모드에서는 기지국이 중계국을 제어하여 이동국에 제어신호들을 전송할 수 있다.
하향링크 서브프레임의 16m 하향링크 접속 영역(DL Access Zone)은 BS 및 RS가 각 영역 내의 이동국(MS)으로 동기 및 제어 정보를 전송하는 구간이며, 16j 불투명 중계국(non-transparent RS)의 하향링크 접속 영역과 동일하게 동작한다.
홀수 홉 RS의 멀티홉 릴레이 프레임 구조는 16m 하향링크 전송영역(DL Transmit Zone), 16m 하향링크 수신 영역(DL Receive Zone)의 순서로 구성되고, 짝수 홉의 RS의 멀티홉 릴레이 프레임 구조는 16m 하향링크 수신 영역(DL Receive Zone), 16m 하향링크 전송 영역(DL Transmit Zone) 순서로 구성된다. 또한, 상향링크 서브프레임은 16j의 UL 릴레이 영역의 딜레이(delay)를 문제를 보완하기 위해 홀수 홉에서는 16m 상향링크 수신 영역(UL Receive Zone), 16m 상향링크 전송영역(UL Transmit Zone)으로 구성되고 짝수 홉에서는 역순으로 구성된다.
16m 네트워크 코딩 영역(Network Coding Zone)은 선택적으로 기지국과 RS에 적용할 수 있다. 이때, 네트워크 코딩 전송 영역(Network Coding Transmit Zone)은 기지국과 직접 통신하는 홀수 홉의 RS에 위치하는 것이 바람직하며, 네트워크 코딩 수신 영역(Network Coding Receive Zone)의 위치는 기지국과 짝수 홉 RS의 서브프레임에 위치하는 것이 바람직하다.
도 3과 같은 IEEE 802.16m의 멀티홉 프레임 구조는 5msec 주기의 하나의 프레임(frame) 내에서 시분할 이중화(TDD)를 지원하는 일예를 보이는 것으로, 주파수분할이중화(FDD)로의 확장이나 복수의 프레임에 대한 TDD/FDD 모드 동작으로 해석 가능할 수 있다. 또한, 각 영역의 구분은 복수의 서브프레임으로 구성된 프레임에 대해서 서브프레임 단위로 설정하거나, 복수의 프레임에 대해 프레임 단위로 설정될 수 있다.
도 4는 본 발명의 일 실시예로서 긴급 통신을 지원하기 위한 경로를 설정하는 방법 중 하나를 나타내는 도면이다.
본 발명의 실시예들에서 인근 이동국(N-MS: Neighbor MS)들과의 하향링크 및 상향링크 경로설정을 통해서 중계국 및/또는 기지국과 통신하는 이동국을 긴급모드 이동국(E-Mode MS: Emergency Mode Mobile Station, 이하 "E-MS")이라 부르기로 한다. 또한, 본원 발명의 실시예들에서 E-MS는 기지국, 중계국 또는 팸토 기지국과 긴급 통신을 수행할 수 있는데, 이하에서는 설명의 편의를 위해 중계국(RS)과 경로를 설정하는 과정을 중심으로 설명한다. 다만, E-MS가 기지국 또는 팸토 기지국과 경로를 설정하는 과정 역시 동일하게 적용될 수 있다.
E-MS는 RS로 긴급 모드(E-Mode)를 요청하기 위한 긴급요청신호를 전송할 수 있다(S401).
S401 단계에서 긴급요청신호는 다음 3 가지 경우로 전송될 수 있다.
첫 번째로, E-MS가 초기 네트워크 진입을 위한 레인징 절차에서 경쟁기반으로 긴급요청신호를 전송할 수 있다. 이러한 경우, 긴급요청신호는 소정의 레인징 코드(Ranging Code) 또는 긴급모드요청지시자(E-Mode request indicator)가 될 수 있다. 이때, 긴급모드요청지시자는 소정의 레인징 MAC 관리 메시지(raging Medium Access Control Management Message)에 포함되어 중계국 등으로 전송될 수 있다.
두 번째로, E-MS가 대역폭 요청시 긴급요청신호를 중계국 등으로 전송할 수 있다. 이러한 경우, 긴급요청신호는 대역폭 요청 메시지(BR: Bandwidth Request) 메시지 또는 BR 헤더와 함께 전송될 수 있다.
세 번째로, E-MS가 중계국 등으로 채널상태정보(CQI) 등을 보고하는 경우에도 긴급요청신호를 포함하는 보고 메시지(e.g. REP-RSP)를 함께 전송할 수 있다.
다만, 상기 세 가지 방법에서도 E-MS는 상기 메시지 또는 지시자 들에 한정되지 아니하고, 다양한 메시지 또는 채널을 통해 긴급요청신호를 중계국 등으로 전송할 수 있다. 이때, 긴급요청신호는 소정의 긴급채널을 통해 전송되거나, 중계국 등에서 지정한 무선채널을 통해 전송될 수 있다.
다시 도 4를 참조하면, E-MS로부터 긴급요청신호를 수신한 중계국 등은 E-MS가 긴급 메시지를 전송하기 위한 긴급영역을 상향링크 서브프레임에 할당할 수 있다. 이때, 긴급영역은 E-MS가 긴급 통신을 수행하기 위한 메시지 또는 신호들과 관련된 모든 할당영역을 의미할 수 있다(S402).
중계국 등은 N-MS들이 E-MS가 전송하는 긴급 메시지들을 수신할 수 있도록 긴급영역에 관한 할당 정보를 포함하는 특정 메시지를 E-MS 및/또는 N-MS들로 전송할 수 있다(S403, S404).
긴급영역에 관한 할당 정보는 N-MS들이 전송모드에서 수신모드로 전환하기 위한 모드변경지시자(Mode Change Indicator), N-MS가 전송모드로 다시 전환되는 수신모드정보(또는, 전송모드시작시점 정보) 및 E-MS로부터 수신한 긴급 메시지를 전송하기 위한 긴급영역의 위치정보를 포함할 수 있다.
S403 단계 및 S404 단계에서 상기 특정 메시지는 방송채널(BCH: Broadcast Channel)의 형태로 방송될 수 있다. 만약, 중계국 등에서 E-MS의 위치를 알고 있는 경우에는, 중계국은 E-mode를 요청한 E-MS의 인접 이동국들을 그룹화하거나 지정하여 상기 특정 메시지를 유니캐스트 형식으로 전송할 수 있다.
S403 및 S404 단계에서 모드변경지시자는 1 비트의 크기를 가질 수 있으며, '0'인 경우에는 전송모드(Tx Mode)를 나타내고, '1'인 경우에는 수신모드(Rx Mode)를 나타낼 수 있다. 수신모드정보는 소정의 시간길이를 갖는 듀레이션(Duration) 값으로 표현될 수 있다. 만약, 수신모드정보가 전송모드로 전환되는 시작시점에 관한 정보를 나타내는 경우에는, 전송모드 시작시점은 시작 오프셋값 또는 프레임 번호(또는 서브 프레임 번호)로 표현될 수 있다.
E-MS는 하나 이상의 N-MS들로 긴급신호 또는 긴급 메시지를 전송할 수 있다. 다만, E-MS는 긴급신호 이외에 N-MS들과의 채널 상태를 측정하기 위한 임의의 신호를 하나 이상의 N-MS로 전송할 수 있다(S405).
S405 단계에서, 하나 이상의 N-MS들은 각각 E-MS로부터 긴급신호를 수신하는 과정에서 E-MS와의 채널 상태를 측정할 수 있다. 이때, N-MS들은 S403 단계에서 수신한 정보들을 이용하여 E-MS로부터 긴급신호를 수신할 수 있다. 또한, N-MS들은 E-MS와의 채널 상태를 나타내는 채널정보를 S403 단계에서 할당받은 긴급영역을 통해 중계국 등으로 전송할 수 있다(S406).
중계국 등은 채널정보를 바탕으로 E-MS 주변의 하나 이상의 N-MS들 중에서 E-MS의 긴급 신호(또는, 긴급 메시지)를 수신하여 중계기로 전달할 중간 이동국(I-MS: Intermediate MS)을 선택하여 경로를 결정할 수 있다. 이때, I-MS는 하나가 선택될 수 있으며, 통신 환경에 따라 둘 이상의 I-MS가 선택되어 하나 이상의 경로가 설정될 수 있다(S407).
도 5는 본 발명의 다른 실시예로서 중계국 등이 상향링크 자원영역을 할당하는 방법 중 하나를 나타내는 도면이다.
도 5를 참조하면, E-MS, N-MS들 및 중계국 등(예를 들어, 매크로 기지국, 팸토 기지국 등을 포함)은 긴급 통신을 수행하기 위한 하나 이상의 긴급 경로를 설정할 수 있다. 이때, 긴급 경로는 도 4에서 설명한 경로설정과정을 이용하여 설정될 수 있다(S501).
중계국 등은 M-MS와 I-MS에 긴급 통신을 위한 상향링크 자원영역을 할당할 수 있다. 이때, 상향링크 자원영역은 E-MS와 I-MS에 동일하게 할당될 수 있다(S502).
즉, I-MS와 E-MS는 쌍(pair)으로 구성될 수 있으며, 전송모드 또는 수신모드로 구분될 수 있다. 예를 들어, 동일한 상향링크 자원영역에서 E-MS는 I-MS로 긴급 데이터를 전송하고, I-MS는 긴급 데이터를 수신할 수 있다.
중계국 등은 상향링크 자원영역 할당정보(e.g. UL 할당정보)를 I-MS 및 E-MS에 UL-MAP 메시지 또는 USCCH를 이용하여 방송할 수 있다(S503a).
S503a 단계에서, 중계국은 UL-MAP 메시지 또는 USCCH를 이용하여 UL 할당정보를 방송하는 대신에 유니캐스트 형식으로 상향링크 자원영역 할당정보를 I-MS 및 E-MS에 알려줄 수 있다. 즉, S501 단계의 경로설정 과정을 통해 중계국과 I-MS 사이에 경로가 설정된 상태이므로, 중계국은 I-MS에 UL 할당정보를 소정의 메시지를 이용하여 전송하고(S503b), I-MS는 E-MS로 UL 할당정보를 전달할 수 있다(S503c).
S503a 단계와 S503b 내지 S503c 단계는 선택적으로 사용될 수 있다. 또한, S503a 단계 또는 S503b 내지 S503c 단계를 통해 UL 할당정보를 수신한 E-MS 및 I-MS는 UL 할당정보가 나타내는 상향링크 자원영역으로 긴급 데이터를 전송할 수 있다. 즉, E-MS는 할당받은 상향링크 자원영역을 통해 I-MS로 긴급 데이터를 전송하고(S504), I-MS는 수신한 긴급 데이터를 중계국 등으로 전송할 수 있다(S505).
다만, 본 발명의 다른 측면으로서, E-MS는 I-MS를 경유하지 않고도 긴급 데이터를 중계국 등으로 전송할 수 있다. 긴급 상황에서는 다량의 데이터들이 송수시되지 아니하고, 또한 안정적이고 견고한 데이터들이 송수신되므로 연결상태가 미약한 경우에도 어느 정도의 통신이 가능하다. 또한, E-MS가 S503a 단계 또는 S503c 단계를 통해 상향링크 자원영역에 관한 할당정보를 알고 있으므로, I-MS를 거치지 않고 직접 중계국 등으로 긴급 데이터를 전송할 수 있다.
도 6은 본 발명의 또 다른 실시예로서 중계국 등이 상향링크 자원영역을 할당하는 방법 중 하나를 나타내는 도면이다.
도 6을 참조하면, E-MS, N-MS들 및 중계국 등(예를 들어, 매크로 기지국, 팸토 기지국 등을 포함)은 긴급 통신을 수행하기 위한 하나 이상의 긴급 경로를 설정할 수 있다. 이때, 긴급 경로는 도 4에서 설명한 경로설정과정을 이용하여 설정될 수 있다(S601).
중계국 등은 E-MS와 I-MS에 긴급 통신을 위한 하향링크 자원영역을 할당할 수 있다. 이때, 하향링크 자원영역은 E-MS와 I-MS에 동일하게 할당될 수 있다(S602).
이때, I-MS와 E-MS는 쌍(pair)으로 구성될 수 있으며, 전송모드 또는 수신모드로 구분될 수 있다. 예를 들어, 동일한 하향링크 자원영역에서 I-MS는 E-MS로 긴급 데이터를 전송하고, E-MS는 긴급 데이터를 수신할 수 있다.
중계국 등은 하향링크 자원영역 할당정보(e.g. DL 할당정보)를 I-MS 및 E-MS에 DL-MAP 메시지 또는 DSCCH를 이용하여 방송할 수 있다. 또한, 중계국 등은 하향링크 자원영역 할당정보를 유니캐스트 형식으로 I-MS 및 E-MS에 알려줄 수 있다. 예를 들어, 중계국은 I-MS에 하향링크 자원영역 할당정보를 포함하는 소정의 메시지를 전송할 수 있고(S603), I-MS는 E-MS로 하향링크 자원영역 할당정보를 전달할 수 있다(S604).
중계국은 할당한 긴급 서비스를 위해 할당한 DL 자원영역을 통해 I-MS로 하향링크 트래픽을 전송하고(S605), I-MS는 E-MS와 연결이 설정된 상태으므로 E-MS로 하향링크 트래픽을 전달할 수 있다(S606).
도 4의 S405 단계에서 사용되는 긴급신호는 S504 단계에서 사용되는 긴급 데이터와 동일한 종류 또는 다른 종류의 메시지가 사용될 수 있다. 또한, S402 단계에서 할당한 긴급영역은 I-MS 및 긴급통신을 위한 경로를 설정하기 위해 사용되지만, S502 단계 또는 S602 단계에서 할당한 자원영역과 동일한 영역으로 설정될 수도 있다. 물론, S402 단계에서 할당한 긴급영역은 S502 단계 또는 S602 단계의 자원영역과 다를 수 있다.
도 7은 본 발명의 실시예들이 적용될 수 있는 긴급 영역(Emergency Zone)을 포함하는 프레임 구조의 일례를 나타내는 도면이다.
도 7은 시분할 이중화 방식(TDD)으로 구성된 프레임 구조상에서 구현된 E-MS와 I-MS 간의 긴급 통신을 위한 상향링크 긴급영역을 나타낸다. 도 7에서 하나의 프레임은 5ms의 길이를 가지며, 하향링크 서브프레임 및 상향링크 서브프레임의 비율은 5:3인 경우를 나타낸다.
도 7에서 BS 프레임 구조는 레가시 DL 영역, 16m DL 영역, 레가시 UL 영역 및 16m UL 영역의 순서로 구성될 수 있다. 또한, RS 프레임 구조는 BS 프레임 구조에 상응하도록 구성될 수 있으며, 전송영역(Tx Zone), 수신영역(Rx Zone), 전송영역, 수신영역 및 전송영역이 반복되는 형태로 구성될 수 있다.
이때, 긴급 통신을 위한 긴급 영역은 BS 프레임 구조에서는 16m UL 영역의 16m 상향링크 접속 영역에 포함될 수 있다. 또한, RS 프레임에서는 수신 영역(Rx Zone)을 구성하는 16m 상향링크 접속영역에 긴급 영역이 할당될 수 있다.
I-MS는 긴급 영역을 통해 E-MS 및 중계국 등과 데이터를 송수신할 수 있다. 또한, E-MS는 긴급 영역을 통해 I-MS와 긴급 데이터를 송수신할 수 있다. 경우에 따라서는, E-MS는 중계국 등과 직접 긴급 영역을 통해 긴급 데이터를 송수신 할 수 있다.
도 8은 본 발명의 실시예들이 적용될 수 있는 긴급 영역(Emergency Zone)을 포함하는 프레임 구조의 다른 일례를 나타내는 도면이다.
도 8은 주파수 분할 이중화 방식(FDD)으로 구성된 프레임 구조상에서 구현된 E-MS와 I-MS 간의 긴급 통신을 위한 상향링크 긴급영역을 나타낸다. 도 8에서 하나의 프레임은 5ms의 길이를 가지며, 하나의 주파수에는 하나의 DL 또는 UL 영역만이 존재한다. 또한, BS/RS 및 MS 간의 프로세싱 인터벌(Processing Interval)은 2 서브프레임 간격(1.23ms)인 것을 가정한다. 도 8도 도 7과 마찬가지로, 긴급 영역은 상향링크 서브프레임에 위치할 수 있으며, 특히, 802.16m 접속영역에 할당되는 것이 바람직하다.
도 7 및 도 8은 긴급영역이 상향링크에 할당되는 경우만을 나타내었지만, 동일한 기술적 사상을 토대로 하향링크에 긴급영역이 할당될 수도 있다.
본 발명의 또 다른 실시예로서, 이하에서는 도 4의 경로설정과정이 없이도 기지국 및 이동국에서 긴급 통신을 지원할 수 있는 방법에 대해서 설명한다.
도 5 및 도 6은 도 4의 경로설정과정이 수행된 뒤에 수행되는 것이 바람직하다. 다만, 도 5 및 도 6은 도 4의 경로설정과정이 없이도 수행될 수 있다. 이러한 경우에, 기지국 또는 중계국은 긴급통신을 수행하기 위한 자원영역을 임의로 할당하여 E-MS 및 I-MS에 알려줄 수 있다.
도 9는 본 발명의 또 다른 실시예로서, 중계국 등이 상향링크 자원영역을 할당하는 방법 중 하나를 나타내는 도면이다.
이동국 및 기지국에서 데이터 통신을 수행하는 도중에, 기지국 또는 중계국 등에 천재지변 등 긴급 상황이 발생할 수 있다. 이러한 경우에, 기지국(또는, 중계국)은 이동국(예를 들어, E-MS)의 요청이 없이도 긴급상황이라고 판단할 수 있다. 따라서, 기지국은 이동국의 요청 없이도 긴급모드 이동국(E-MS)이 긴급 메시지를 전송하기 위한 긴급영역을 할당할 수 있다(S901).
S901 단계에서 긴급영역으로 상향링크 자원영역 및/또는 하향링크 자원영역이 할당될 수 있다. 이때, 긴급영역은 E-MS가 긴급 통신을 수행하기 위한 메시지 또는 신호들과 관련된 모든 할당영역을 의미할 수 있다.
기지국 등은 N-MS들이 E-MS가 전송하는 긴급 메시지들을 수신할 수 있도록 긴급영역에 관한 할당정보를 포함하는 방송채널, UL-MAP 메시지 또는 USCCH를 E-MS 및/또는 N-MS들로 방송할 수 있다(S902).
만약, 기지국 등에서 E-MS의 위치를 알고 있는 경우에는, 기지국은 E-MS의 인근 이동국들을 그룹화하거나 지정하여 상기 할당정보를 유니캐스트 메시지를 이용하여 전송할 수 있다(S903a). 또한, 기지국으로부터 할당정보를 수신한 인근 이동국(N-MS)은 E-MS에 할당정보를 전달할 수 있다(S903b).
S902 단계 및 S903a, S903b 단계는 사용자의 요구사항 또는 채널환경에 따라 선택적으로 사용될 수 있다.
S902 단계, S903a 및 S903b 단계에서 긴급영역에 관한 할당정보는 N-MS들이 전송모드에서 수신모드로 전환하기 위한 모드변경지시자(Mode Change Indicator), N-MS가 전송모드로 다시 전환되는 수신모드정보(또는, 전송모드시작시점 정보) 및 E-MS로부터 수신한 긴급 메시지를 전송하기 위한 긴급영역의 위치정보(e.g. 하향링크 서브프레임 및/또는 상향링크 서브프레임)를 포함할 수 있다.
모드변경지시자는 1 비트의 크기를 가질 수 있으며, '0'인 경우에는 전송모드(Tx Mode)를 나타내고, '1'인 경우에는 수신모드(Rx Mode)를 나타낼 수 있다. 수신모드정보는 소정의 시간길이를 갖는 듀레이션(Duration) 값으로 표현될 수 있다. 만약, 수신모드정보가 전송모드로 전환되는 시작시점에 관한 정보를 나타내는 경우에는, 전송모드 시작시점은 시작 오프셋값 또는 프레임 번호(또는 서브 프레임 번호)로 표현될 수 있다.
E-MS는 하나 이상의 N-MS들로 긴급신호 또는 긴급 메시지를 전송할 수 있다. 다만, E-MS는 긴급신호 이외에 N-MS들과의 채널 상태를 측정하기 위한 임의의 신호를 하나 이상의 N-MS로 전송할 수 있다(S904).
하나 이상의 N-MS들은 S902 또는 S903a 단계에서 수신한 할당정보를 이용하여 E-MS로부터 긴급신호를 수신할 수 있다. 또한, 하나 이상의 N-MS들은 각각 E-MS로부터 긴급신호를 수신하는 과정에서 E-MS와의 채널 상태를 측정할 수 있다. 따라서, N-MS들은 E-MS와의 채널 상태를 나타내는 채널정보 및 긴급 데이터를 S902 단계 내지 S903a 단계에서 할당받은 긴급영역을 통해 기지국 등으로 전송할 수 있다(S905).
본 발명의 또 다른 실시예로서, 상술한 도 3 내지 도 9에서 설명한 본 발명의 실시예들이 수행되는 이동국 및 기지국(또는 중계국)에 관하여 설명한다.
이동국은 상향링크에서는 송신기로 동작하고, 하향링크에서는 수신기로 동작할 수 있다. 또한, 기지국은 상향링크에서는 수신기로 동작하고, 하향링크에서는 송신기로 동작할 수 있다. 즉, 이동국 및 기지국은 정보 또는 데이터의 전송을 위해 송신기 및 수신기를 포함할 수 있다.
송신기 및 수신기는 본 발명의 실시예들이 수행되기 위한 프로세서, 모듈, 부분 및/또는 수단 등을 포함할 수 있다. 특히, 송신기 및 수신기는 메시지를 암호화하기 위한 모듈(수단), 암호화된 메시지를 해석하기 위한 모듈, 메시지를 송수신하기 위한 안테나 등을 포함할 수 있다.
본 발명의 실시예들에서 사용되는 이동국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 모듈을 포함할 수 있다. 또한, 이동국은 상술한 본 발명의 실시예들을 수행하기 위한 콘트롤러 기능, 서비스 특성 및 전파 환경에 따른 MAC(Medium Access Control) 프레임 가변 제어 기능, 핸드오버(Hand Over) 기능, 인증 및 암호화 기능, 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능 및 실시간 모뎀 제어 기능 등을 수행하는 수단, 모듈 또는 부분 등을 포함할 수 있다.
기지국은 상위 계층으로부터 수신한 데이터를 무선 또는 유선으로 이동국에 전송할 수 있다. 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 모듈을 포함할 수 있다. 또한, 기지국은 상술한 본 발명의 실시예들을 수행하기 위한 콘트롤러 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및 채널 다중화 기능, 서비스 특성 및 전파 환경에 따른 MAC 프레임 가변 제어 기능, 고속 트래픽 실시간 제어 기능, 핸드 오버(Hand Over) 기능, 인증 및 암호화 기능, 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능 및 실시간 모뎀 제어 기능 등을 수행하는 수단, 모듈 또는 부분 등을 포함할 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project), 3GPP2 및/또는 IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) 시스템 등이 있다. 본 발명의 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다.
Claims (12)
- 무선접속 시스템에서 긴급통신을 지원하는 방법에 있어서,긴급 모드 상태인 제 1 이동국 및 상기 제 1 이동국의 인근에 위치한 하나 이상의 제 2 이동국과 상기 긴급통신을 위한 경로를 설정하는 단계;상기 제 1 이동국의 상기 긴급통신을 위한 제 1 자원영역을 할당하는 단계;상기 제 1 자원영역에 관한 할당정보를 상기 제 1 이동국 및 상기 제 2 이동국 중 하나 이상에 전송하는 단계; 및상기 제 1 자원영역을 통해 긴급 데이터를 수신하는 단계를 포함하는, 긴급통신 지원방법.
- 제 1항에 있어서,상기 긴급통신을 위한 경로를 설정하는 단계는,상기 제 1 이동국으로부터 긴급요청신호를 수신하는 단계;상기 제 1 이동국 및 상기 하나 이상의 제 2 이동국에 상기 긴급통신을 위한 제 2 자원영역을 할당하는 단계;상기 제 2 자원영역에 관한 할당정보를 상기 제 1 이동국 및 상기 하나 이상의 제 2 이동국에 전송하는 단계;상기 하나 이상의 제 2 이동국으로부터 각각 상기 제 1 이동국과의 채널 상태를 나타내는 채널정보를 수신하는 단계; 및상기 하나 이상의 제 2 이동국으로부터 상기 제 1 이동국과의 긴급통신을 수행하기 위한 중간 이동국을 선택하는 단계를 포함하는, 긴급통신 지원방법.
- 제 2항에 있어서,상기 제 2 자원영역에 관한 할당정보는,상기 제 2 이동국이 수신모드로 전환하는 시점을 나타내는 모드변경지시자, 상기 제 2 이동국이 수신모드에서 전송모드로 전환되는 시점을 나타내는 전송모드 시작정보 및 상기 제 2 자원영역의 위치를 나타내는 영역정보를 포함하는 것을 특징으로 하는 긴급통신 지원방법.
- 제 2항에 있어서,상기 제 2 자원영역에 관한 할당정보는,방송채널을 통해 상기 제 1 이동국 및 상기 하나 이상의 제 2 이동국으로 방송되는 것을 특징으로 하는 긴급통신 지원방법.
- 제 2항에 있어서,상기 제 2 자원영역에 관한 할당정보는,유니캐스트 형식으로 상기 하나 이상의 제 2 이동국으로 전송되되,상기 하나 이상의 제 2 이동국은 소정의 그룹으로 그룹핑되는 것을 특징으로 하는 긴급통신 지원방법.
- 제 2항에 있어서,상기 제 1 자원영역은 상향링크 접속 영역에 할당되는 것을 특징으로 하는 긴급통신 지원방법.
- 무선접속 시스템에서 긴급통신을 지원하는 방법에 있어서,제 1 이동국에서 상기 긴급통신을 요청하기 위한 긴급요청 신호를 전송하는 단계;기지국으로부터 상기 긴급통신을 위해 할당된 제 1 긴급영역에 관한 정보를 포함하는 메시지를 수신하는 단계; 및상기 제 1 긴급영역에 관한 정보를 이용하여 긴급신호를 제 2 이동국으로 전송하는 단계를 포함하는, 긴급통신 지원방법.
- 제 7항에 있어서,상기 제 2 이동국으로부터 상기 긴급통신 위해 할당된 제 2 긴급영역에 관한 정보를 포함하는 메시지를 수신하는 단계; 및상기 제 2 긴급영역에 관한 정보를 이용하여 상기 제 2 이동국으로 상기 긴급신호를 전송하는 단계를 포함하는, 긴급통신 지원방법.
- 제 8항에 있어서,상기 제 2 이동국은 상기 긴급통신을 위해 상기 제 1 이동국과 상향링크 및 하향링크 자원을 공유하는 중간 이동국인 것을 특징으로 하는 긴급통신 지원방법.
- 제 7항에 있어서,상기 제 1 긴급영역에 관한 할당정보는,상기 제 2 이동국이 수신모드로 전환하는 시점을 나타내는 모드변경지시자, 상기 제 2 이동국이 수신모드에서 전송모드로 전환되는 시점을 나타내는 전송모드 시작정보 및 상기 제 1 긴급영역의 위치를 나타내는 영역정보를 포함하는 것을 특징으로 하는 긴급통신 지원방법.
- 제 7항에 있어서,상기 제 1 긴급영역에 관한 할당정보는,방송채널을 통해 방송되는 것을 특징으로 하는 긴급통신 지원방법.
- 제 7항에 있어서,상기 제 1 긴급영역에 관한 할당정보는,유니캐스트 형식으로 상기 하나 이상의 제 2 이동국으로 전송되되,상기 하나 이상의 제 2 이동국은 소정의 그룹으로 그룹핑되는 것을 특징으로 하는 긴급통신 지원방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/936,473 US8417213B2 (en) | 2008-04-06 | 2009-04-03 | Emergency communications support method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4276308P | 2008-04-06 | 2008-04-06 | |
US61/042,763 | 2008-04-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009125948A2 true WO2009125948A2 (ko) | 2009-10-15 |
WO2009125948A3 WO2009125948A3 (ko) | 2010-01-14 |
Family
ID=41162373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/001742 WO2009125948A2 (ko) | 2008-04-06 | 2009-04-03 | 긴급 통신 지원방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8417213B2 (ko) |
WO (1) | WO2009125948A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012110007A1 (en) * | 2011-02-18 | 2012-08-23 | Huawei Technologies Co., Ltd. | Method, system and apparatus for contacting a target mobile station using a secondary connection |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8391882B2 (en) * | 2008-10-22 | 2013-03-05 | Qualcomm Incorporated | Method and system for interference management in a spectrum shared by WAN and femto cells |
US9084283B2 (en) * | 2008-11-19 | 2015-07-14 | Qualcomm Incorporated | Peer-to-peer communication using a wide area network air interface |
KR101500339B1 (ko) * | 2008-12-23 | 2015-03-09 | 삼성전자주식회사 | 디지털방송 시스템의 패킷 통신 장치 및 방법 |
EP2389783B1 (fr) * | 2009-01-20 | 2013-10-23 | Alcatel Lucent | Procede de gestion du fonctionnement d'un point d'acces radio d'une infrastructure de reseau d'acces d'un reseau de radiocommunication |
KR101632739B1 (ko) * | 2009-06-18 | 2016-06-22 | 한국전자통신연구원 | 통신 시스템의 데이터 전송 방법 및 이를 수행하는 릴레이 장치 |
KR101710515B1 (ko) * | 2010-06-25 | 2017-03-09 | 삼성전자주식회사 | 고속 이동 환경에서 액세스 포인트 그룹화 방법 및 상기 방법을 이용하는 통신 시스템 |
JP2012114625A (ja) * | 2010-11-24 | 2012-06-14 | Nec Corp | 緊急無線接続システム及び緊急無線接続方法 |
US9344532B2 (en) * | 2012-10-10 | 2016-05-17 | Motorola Solutions, Inc. | Method and apparatus for operating a radio communication device to efficiently propagate emergency signals |
US9848311B1 (en) * | 2014-08-01 | 2017-12-19 | Catalyst Communications Technologies | System and method for managing communications |
US10524105B2 (en) * | 2015-01-23 | 2019-12-31 | Lg Electronics Inc. | Method and apparatus for sending uplink data in wireless communication system |
US10397938B2 (en) | 2015-06-26 | 2019-08-27 | Lg Electronics Inc. | Method for transmission and reception of uplink data in wireless communication system, and device therefor |
CN108476130B (zh) * | 2016-01-15 | 2021-10-22 | 索尼集团公司 | 控制无线电通信的方法和用于无线通信系统的用户设备 |
JP6959896B2 (ja) * | 2018-06-25 | 2021-11-05 | 本田技研工業株式会社 | 無線通信システム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6807158B2 (en) * | 2001-08-07 | 2004-10-19 | Hrl Laboratories, Llc | Method and apparatus for determining position and trajectory of gateways to optimize performance in hybrid non-terrestrial-terrestrial multi-hop mobile networks |
EP1852986A1 (en) * | 2005-03-14 | 2007-11-07 | Matsushita Electric Industrial Co., Ltd. | Wireless communication system |
US20080039016A1 (en) * | 2006-07-31 | 2008-02-14 | Motorola, Inc. | Method and system for positioning a relay in a wide area communication network |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7398097B2 (en) * | 2002-12-23 | 2008-07-08 | Scott Technologies, Inc. | Dual-mesh network and communication system for emergency services personnel |
US7894388B2 (en) * | 2007-01-05 | 2011-02-22 | Motorola Solutions, Inc. | Method and apparatus for relay zone bandwidth allocation |
-
2009
- 2009-04-03 WO PCT/KR2009/001742 patent/WO2009125948A2/ko active Application Filing
- 2009-04-03 US US12/936,473 patent/US8417213B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6807158B2 (en) * | 2001-08-07 | 2004-10-19 | Hrl Laboratories, Llc | Method and apparatus for determining position and trajectory of gateways to optimize performance in hybrid non-terrestrial-terrestrial multi-hop mobile networks |
EP1852986A1 (en) * | 2005-03-14 | 2007-11-07 | Matsushita Electric Industrial Co., Ltd. | Wireless communication system |
US20080039016A1 (en) * | 2006-07-31 | 2008-02-14 | Motorola, Inc. | Method and system for positioning a relay in a wide area communication network |
Non-Patent Citations (1)
Title |
---|
TAKAHIRO F. ET AL.: '24th International Conference on Distributed Computing Systems Workshops.', 2004, IEEE, NEW YORK article 'An Ad-hoc Routing Protocol in Hybrid Wireless Networks for Emergency Communications', pages 748 - 754 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012110007A1 (en) * | 2011-02-18 | 2012-08-23 | Huawei Technologies Co., Ltd. | Method, system and apparatus for contacting a target mobile station using a secondary connection |
US8831661B2 (en) | 2011-02-18 | 2014-09-09 | Futurewei Technologies, Inc. | Method, system and apparatus for contacting a target mobile station using a secondary connection |
Also Published As
Publication number | Publication date |
---|---|
US20110034145A1 (en) | 2011-02-10 |
US8417213B2 (en) | 2013-04-09 |
WO2009125948A3 (ko) | 2010-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009125948A2 (ko) | 긴급 통신 지원방법 | |
WO2020145556A1 (en) | Method for integrated access backhaul resource multiplexing | |
WO2018143763A1 (en) | Method for handling of a rrc connection request message of a remote ue by a relay ue in wireless communication system and a device therefor | |
WO2010074536A2 (ko) | 중계기에 대한 자원 할당 방법 | |
WO2018160048A1 (ko) | 무선 통신 시스템에서 단말의 신호 수신 전력 측정 방법 및 상기 방법을 이용하는 단말 | |
WO2018182263A1 (ko) | 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 단말 | |
WO2010082752A2 (ko) | 무선통신 시스템에서 mbsfn 서브프레임을 이용한 신호전송 방법 | |
WO2018199707A1 (ko) | 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 단말 | |
WO2017034175A1 (en) | Method for transmitting information for lte-wlan aggregation system and a device therefor | |
WO2018135920A1 (ko) | 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 장치 | |
WO2017099369A1 (ko) | 다중 tti 구조를 이용하여 통신 방법 및 장치 | |
WO2014185713A1 (en) | Interference measurement method and apparatus for controlling inter-cell interference in wireless communication system | |
WO2009110714A1 (ko) | 시스템 정보 전송방법 | |
WO2010095874A2 (ko) | 릴레이 통신 시스템에서 데이터 송수신 방법 및 장치 | |
WO2017022958A1 (en) | Method for receiving a priority for relay data in a d2d communication system and device therefor | |
WO2009145484A2 (en) | Method for transmitting a signal using a relay station in a wireless communication system | |
WO2018139829A1 (en) | Method for performing management of different ids in a relay ue in wireless communication system and a device therefor | |
WO2015170901A1 (ko) | 무선 통신 시스템에서 무선 인터페이스를 기반으로 하는 셀간 동기화 방법 및 장치 | |
WO2012124922A2 (ko) | 하향링크 신호 수신 방법 및 전송 방법과, 사용자기기 및 기지국 | |
WO2010074509A2 (ko) | 중계국을 포함하는 광대역 무선 접속 시스템에서의 단말의 이동성 관리 방법 | |
EP2080293A1 (en) | Framework to design new mac message exchange procedure related to mobile station (ms) handover in multi-hop relay broadband wireless access network | |
WO2017022959A1 (en) | Method for indicating a priority for relay data in a d2d communication system and device therefor | |
WO2012121569A2 (en) | Downlink transmission/reception method and apparatus for mobile communication system | |
WO2011025333A2 (ko) | 무선 통신 시스템에서 단말이 소정의 tdd 프레임 구조를 이용하여 신호를 송수신하는 방법 | |
WO2016010276A1 (ko) | 데이터 재전송 처리 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09731125 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12936473 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09731125 Country of ref document: EP Kind code of ref document: A2 |