WO2009125676A1 - Inspection system - Google Patents

Inspection system Download PDF

Info

Publication number
WO2009125676A1
WO2009125676A1 PCT/JP2009/056092 JP2009056092W WO2009125676A1 WO 2009125676 A1 WO2009125676 A1 WO 2009125676A1 JP 2009056092 W JP2009056092 W JP 2009056092W WO 2009125676 A1 WO2009125676 A1 WO 2009125676A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pump
unit
inspection system
detection unit
Prior art date
Application number
PCT/JP2009/056092
Other languages
French (fr)
Japanese (ja)
Inventor
晋治 原田
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2010507209A priority Critical patent/JPWO2009125676A1/en
Publication of WO2009125676A1 publication Critical patent/WO2009125676A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers

Definitions

  • the present invention relates to an inspection system.
  • the present applicant encloses a reagent or the like in the microchannel of the microchip, injects a driving liquid into the microchannel by a micropump, moves the liquid such as the specimen and the reagent, and flows the liquid to the reaction unit and then to the detection unit Therefore, a test system capable of measuring the reaction result with a specimen such as blood has been proposed (for example, see Patent Document 2).
  • This invention is made in view of the said subject, Comprising: It aims at providing the test
  • the object of the present invention can be achieved by the following configuration.
  • An inspection system that measures the result of injecting or aspirating a fluid into a microchip channel using a pump, moving a sample and a reagent stored in the channel to fill a detection unit, and reacting them.
  • a liquid reservoir for storing liquid flowing in the flow path; Liquid detecting means for detecting the liquid accumulated in the liquid reservoir, Pump drive control means for controlling the drive of the pump; Arrival determination means for determining the presence or absence of the liquid based on the detection output of the liquid detection means; Have The pump drive control means controls the drive of the pump based on the determination of the arrival determination means.
  • the liquid reservoir is 2.
  • the microchip is A mixing unit that mixes the sample and the reagent in a flow channel upstream of the detection unit;
  • the liquid reservoir is 3.
  • the liquid reservoir is 4.
  • the inspection system according to any one of 1 to 3, wherein the inspection system is provided in a flow channel on a downstream side close to a flow channel in which the specimen or the reagent is stored.
  • the liquid reservoir is 5.
  • the microchip is A divided flow path for dividing the reagent or the specimen;
  • the liquid reservoir is The inspection system according to any one of 1 to 5, wherein the inspection system is provided in a flow path downstream of the divided flow path.
  • the pump drive control means includes The inspection system according to any one of claims 1 to 6, wherein the driving of the pump is stopped based on the determination of the arrival determination means.
  • the pump drive control means includes 8. The inspection system according to any one of claims 1 to 7, wherein a flow rate of fluid injected or sucked from the pump into the flow path of the microchip is changed based on the determination of the arrival determination means.
  • the pump drive control means includes 9. The inspection system according to any one of claims 1 to 8, wherein the fluid is sucked or injected in a direction opposite to the direction in which the pump has been infused or sucked until then based on the determination of the arrival judging means. .
  • the fluid is a gas, and has a valve that opens the pressure of the gas applied to the flow path of the microchip to the atmosphere side
  • the pump drive control means includes 10.
  • the inspection system according to any one of 1 to 9, wherein the valve is opened to the atmosphere side based on the determination of the arrival determination means.
  • a liquid reservoir that accumulates the liquid flowing in the flow path and a liquid detection means that detects the liquid accumulated in the liquid reservoir, and the arrival determination means is based on the detection output of the liquid detection means. Based on the result of determining the presence or absence, the pump drive control means controls the drive of the pump. In this way, it is possible to provide an inspection system that can move or stop the top of the liquid in the flow path to a desired position.
  • FIG. It is an external view of the test
  • FIG. It is a perspective view which shows an example of an internal structure of the test
  • FIG. 1 is an external view of an inspection apparatus 80 according to an embodiment of the present invention.
  • the inspection device 80 is a device that automatically detects a reaction between a specimen previously injected into the microchip 1 and a reagent, and displays the result on the display unit 84.
  • the housing 82 of the inspection apparatus 80 has an insertion port 83, and the microchip 1 is inserted into the insertion port 83 and set inside the housing 82.
  • the insertion port 83 is sufficiently higher than the thickness of the microchip 1 so as not to contact the insertion port 83 when the microchip 1 is inserted.
  • Reference numeral 85 denotes a memory card slot
  • 86 denotes a print output port
  • 87 denotes an operation panel
  • 88 denotes an input / output terminal
  • 89 denotes a power switch.
  • the inspector turns on the power switch 89, inserts the microchip 1 in the direction of the arrow in FIG. 1, and operates the operation panel 87 to start the inspection.
  • the reaction in the microchip 1 is automatically inspected, and when the inspection is completed, the result is displayed on the display unit 84 constituted by a liquid crystal panel or the like.
  • the inspection result can be output from the print output port 86 or stored in a memory card inserted into the memory card slot 85 by operating the operation panel 87. Further, data can be stored in the personal computer or the like from the external input / output terminal 88 using, for example, a LAN cable.
  • the person in charge of inspection takes out the microchip 1 from the insertion slot 83 after the inspection is completed.
  • FIG. 2 is an external view of the microchip 1 according to the first embodiment of the present invention
  • FIG. 3 is an enlarged view of the periphery of the detection unit 111.
  • the microchip 1 includes a groove forming substrate 108 and a covering substrate 109 that covers the groove forming substrate 108.
  • An arrow in FIG. 2A indicates an insertion direction in which the microchip 1 is inserted into the inspection apparatus 80.
  • FIG. 2B is a plan view of the microchip 1, and illustrates the grooves of the groove forming substrate 108 that can be seen through the transparent coated substrate 109.
  • a flow path is formed by covering the grooves of the groove forming substrate 108 with the covering substrate 109.
  • the microchip 1 is provided with minute groove-like channels 250 (microchannels) and functional parts (channel elements) for performing inspections, sample processing, and the like in an appropriate manner according to the application. Has been.
  • the flow path is formed in the order of micrometers, for example, the width is several ⁇ m to several hundred ⁇ m, preferably 10 to 200 ⁇ m, and the depth is about 25 to 500 ⁇ m, preferably 25 to 250 ⁇ m.
  • microchip 1 used for the process of performing amplification and detection of a specific gene will be described as an example.
  • 110a and 110b are injection ports communicating with the flow path inside the microchip 1, and a driving liquid is injected from each injection port 110 to drive an internal specimen or reagent.
  • the configuration of the flow path starting from the injection port 110a is completely the same as the configuration of the flow path starting from the injection port 110b. Distinguish between calls.
  • Each component is distinguished by adding a and b.
  • the sample storage units 121a and 121b are sample storage units for storing samples.
  • the sample storage units 121a and 121b have deeper grooves than other flow paths in order to store a predetermined amount of sample.
  • a description will be given assuming that samples are stored in the sample storage units 121a and 121b in advance.
  • 120a and 120b are reagent storage units for storing the first reagent
  • 122a and 122b are reagent storage units for storing the second reagent
  • 123a and 123b are reagent storage units for storing the third reagent.
  • the sample stored in the sample storage units 121a and 121b is pushed out to the flow channel 250 and is injected into the downstream reagent storage units 120a and 120b, respectively.
  • the sample and the first reagent pushed out from the reagent storage units 120a and 120b are respectively injected into the downstream reagent storage units 122a and 122b through the flow channel 250.
  • the specimen and the first reagent push out the second reagent from the reagent storage parts 122a and 122b.
  • the specimen, the first reagent, and the second reagent are respectively injected into the downstream reagent storage units 123a and 123b through the flow path 250 to push out the third reagent.
  • a mixing unit 130a, a mixing unit 130b, a mixing unit 131a, and a mixing unit 131b are provided downstream of the reagent storage units 123a and 123b.
  • the flow channel 250aa, the sample flowing through the flow channel 250ba, the first reagent, The second reagent and the third reagent are mixed in each mixing unit.
  • Liquid reservoirs 140a and 140b are provided in the flow channel 250aa and the flow channel 250ba on the upstream side near the mixing unit 130a and the mixing unit 130b.
  • the liquid reservoirs 140a and 140b are provided to detect that the third reagent has been pushed out of the reagent storage parts 123a and 123b and the leading portion has reached the vicinity of the mixing part 130a and the mixing part 130b.
  • the liquid reservoirs 140 a and 140 b have shallower grooves than the mixing parts 130 a and 130 b and deeper grooves than the other flow paths 250.
  • the depth of the grooves of the mixing portion 131a and the mixing portion 131b is, for example, 1.5 mm
  • the depth of the grooves of the liquid reservoir portions 140a, 140b is, for example, 0.6 mm
  • the depth of the grooves of the other flow paths is, for example, 0.25 mm. is there.
  • the mixing unit 130a, the mixing unit 130b and the mixing unit 131a, and the specimen, the first reagent, the second reagent, and the third reagent mixed in the mixing unit 131b are injected into the detection units 111a and 111b.
  • the detection units 111a and 111b are heated or absorbed in the inspection apparatus 80 to cause the specimen and the reagent to react at a predetermined temperature for a predetermined time.
  • the detection units 111a and 111b are provided for optically detecting the reaction between the specimen and the reagent, and have a groove deeper than the other flow paths to accommodate a predetermined amount of the specimen and the reagent.
  • Liquid reservoirs 141a and 141b are provided downstream of the detection units 111a and 111b, so that it can be detected that the detection units 111a and 111b are filled with a liquid such as a reagent or a specimen.
  • the liquid reservoirs 141a and 141b are shallower than the detectors 111a and 111b, and deeper than the other channels.
  • FIG. 3A is a plan view
  • FIG. 3B is a cross-sectional view of the detection unit 111.
  • the groove depth d3 of the detectors 111a and 111b is, for example, 1.5 mm
  • the groove depth d2 of the liquid reservoirs 141a and 141b is, for example, 0.6 mm
  • the groove depth d1 of the other flow paths is, for example, 0.25 mm. It is. It is desirable that the liquid reservoirs 141a and 141b be provided as close as possible to the downstream of the detection units 111a and 111b so that it can be detected as soon as possible that the detection units 111a and 111b are filled.
  • Reference numeral 20 denotes a liquid detector using, for example, a photo reflector, which irradiates the liquid reservoirs 141a and 141b with light to detect reflected light and outputs an electrical signal.
  • the detection unit 22 measures the amount of fluorescence and displays the reaction result. measure.
  • the microchip 1 is desired to be excellent in processability, non-water absorption, chemical resistance, weather resistance, cost and the like.
  • the material of chip 1 is selected. Various known materials can be used as the material, and usually the substrate and the flow path element are formed by appropriately combining one or more materials in accordance with individual material characteristics.
  • a chip for a large number of measurement specimens, especially clinical specimens at risk of contamination and infection be of a disposable type. Therefore, a plastic resin that can be mass-produced, is lightweight, is strong against impact, and can be easily discarded by incineration, for example, polystyrene that is excellent in transparency, mechanical properties, and moldability and is easy to be finely processed is preferable.
  • a resin having excellent heat resistance for example, polycarbonate.
  • polypropylene when protein adsorption becomes a problem, it is preferable to use polypropylene.
  • Resin and glass have low thermal conductivity, and by using these materials in the locally heated region of the microchip, heat conduction in the surface direction is suppressed, and only the heated region is selectively heated. Can do.
  • the detection unit 111 optically detects a color reaction product or a fluorescent substance
  • at least this portion of the coated substrate 109 is made of a light-transmitting material (for example, alkali glass, quartz glass, transparent plastics). It is necessary to use and transmit light.
  • At least the portion covering the liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b of the coated substrate 109 is It is necessary to configure with a transparent member such as glass or resin.
  • a transparent member such as glass or resin.
  • FIG. 4 is a perspective view for explaining an example of the internal configuration of the inspection apparatus 80 according to the first embodiment of the present invention.
  • FIG. 5 is an example of the internal configuration of the inspection apparatus 80 according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram for explaining the liquid filled in the detection unit 111. Each part will be described with reference to the coordinate axes of X, Y, and Z shown in FIGS.
  • the inspection device 80 includes a temperature adjustment unit 152, a detection unit 22, a micro pump unit 75, a packing 90, a driving liquid tank 91, a feed screw 301, a feed screw 351, a joint 302, a joint 352, a detection board drive motor 60, and a detection unit drive. It is composed of a motor 61 and the like. 4 and 5 show a state in which the microchip 1 is in close contact with the packing 90b.
  • the temperature adjustment unit 152 and the microchip 1 are driven by a driving member (not shown) and can move in the Z-axis direction.
  • the temperature adjustment unit 152 is raised from the state of FIG. 4 by the thickness of the microchip 1 by the driving member.
  • the microchip 1 can be inserted and removed in the Y-axis direction, and the person inspecting inserts the microchip 1 from the insertion port 83 until it comes into contact with a regulating member (not shown).
  • the chip detection unit 95 using a photo interrupter or the like detects the microchip 1 and is turned on.
  • the temperature adjustment unit 152 includes a Peltier element, a power supply device, a temperature control device, etc., performs heat generation or heat absorption to adjust the surface of the microchip 1 to a predetermined temperature, and reacts the liquid filled in the detection unit 111. It is a unit to promote.
  • the temperature adjustment unit 152 and the microchip 1 are lowered by the driving member, and the microchip 1 is brought into close contact with the temperature adjustment unit 152 and the packing 90b.
  • the range that can be heated by the temperature adjustment unit 152 is up to the liquid reservoir 141.
  • FIG. 5 illustrates the liquid detection unit 20 in a position where the liquid stored in the liquid storage unit 140 (any one of the liquid storage units 140a and 140b) can be optically detected.
  • liquid detection unit 20 For example, light is irradiated from the liquid detection unit 20 to the liquid storage unit 140, and the light reflected by the liquid storage unit 140 is received by the liquid detection unit 20, and the liquid storage unit 140 is filled with liquid due to a change in the amount of light and color.
  • the detection of the liquid storage unit 141 is performed in the same procedure.
  • the liquid detection unit 20 shown in FIG. 5 is a photo reflector provided with, for example, a light emitting unit and a light receiving unit, and the liquid detection unit 20 is mounted on a detection substrate 21. As will be described later, in the present embodiment, two liquid detection units 20 a and 20 b are mounted on the detection substrate 21.
  • the liquid detector 20 is a liquid detector of the present invention.
  • FIG. 6A shows a state where the detection unit 111 is not sufficiently filled with the liquid 57
  • FIG. 6B shows a state where the detection unit 111 is filled with the liquid 57.
  • the liquid reservoir 140 is also filled with the liquid 57. Therefore, it is possible to know that the detection unit 111 is filled with the liquid 57 by detecting the liquid 57 in the liquid reservoir 140 with the liquid detection unit 20.
  • the number of liquid detection units 20 is not limited to two, and may be any number as long as it is one or more.
  • liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b are irradiated with light and reflected light is detected, but the liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b are described. You may make it detect the light, an ultrasonic wave, or an electromagnetic wave which permeate
  • one end of the detection substrate 21 is supported by a guide member 354 having a screw portion screwed with the feed screw 351, and moves in the Y-axis direction when the feed screw 351 rotates.
  • the other end of the detection substrate 21 is supported by a member (not shown) through which the guide rod 353 passes, and the detection substrate 21 moves in parallel with the microchip channel 250.
  • the liquid detection units 20a and 20b can detect the liquid in the liquid detection units 20a and 20b at the central portions of the liquid storage units 140a and 140b and the liquid storage units 141a and 141b. It is arranged on the detection substrate 21 so that various ranges coincide with each other.
  • the liquid reservoirs 140a and 140b or the liquid reservoirs 141a and 141b are sequentially irradiated with light, the reflected light is received, and an electrical signal is output.
  • the feed screw 351 is driven by the detection board drive motor 60 via the joint 352.
  • the detection board drive motor 60 is a pulse motor, for example, and rotates by a predetermined amount by a pulse.
  • the first position sensor 40 is a sensor such as a photo reflector provided for detecting the initial position of the detection substrate 21 or a mechanical switch.
  • the detection unit 22 includes a light emitting unit and a light receiving unit, and is configured to optically separate the fluorescence emitted from the reagent that has reacted with the specimen by irradiating the detection unit 111 with light and to receive the light in the light receiving unit.
  • the detection unit 22 has a screw portion that is screwed with the feed screw 301, and moves in the X-axis direction when the feed screw 301 rotates.
  • the feed screw 301 is disposed in parallel with the straight line F, and when the detection unit 22 is moved by the feed screw 301, the optical axis of the lens 23 of the detection unit 22 coincides with the center of each of the detection units 111a and 111b.
  • the detection unit 22 sequentially irradiates the detection units 111a and 111b with excitation light from the lens 23, receives fluorescence emitted from the fluorescent material, and outputs an electrical signal.
  • the feed screw 301 is driven via the joint 302 by the detection unit drive motor 61.
  • the detection unit drive motor 61 is a pulse motor, for example, and rotates by a predetermined amount by a pulse.
  • the second position sensor 41 is a sensor such as a photo reflector or a mechanical switch provided to detect the initial position of the detection unit 22.
  • the detection unit 22 is provided with a guide hole (not shown in FIG. 4) for preventing rotation, and moves along a guide rod that penetrates the guide hole.
  • the guide bar is disposed in parallel with the feed screw 301.
  • the number of the detection units 111 may be any number as long as it is one or more.
  • FIG. 5 illustrates a case where the liquid detection unit 20 (any one of the liquid detection units 20a and 20b) is in a position for detecting the liquid in the liquid storage unit 140 (any one of the liquid storage units 140a and 140b). ing. Moreover, the case where the detection unit 22 exists in the position which can optically detect the reaction result of the reagent which occurs in the detection part 111 (any of detection part 111a, 111b) is illustrated.
  • the injection port 110 of the microchip 1 is provided at a position communicating with a corresponding opening provided in the packing 90b.
  • the suction port 145 of the micropump unit 75 is connected to a driving liquid tank 91 via a packing 90a, and sucks the driving liquid filled in the driving liquid tank 91 via the packing 90a.
  • the discharge port 146 communicates with the injection port 110 of the microchip 1 through the packing 90b.
  • the driving liquid sent out from the micropump unit 75 is injected from the injection port 110 of the microchip 1 into the channel 250 formed in the microchip 1. In this way, the driving liquid is injected from the micropump unit 75 into the injection port 110.
  • the micro pump unit 75 is provided with at least one micro pump. When the microchip 1 illustrated in FIG. 2 is driven, two micropumps corresponding to the two inlets 110a and 110b are necessary.
  • FIG. 7 is a circuit block diagram of the detection device 80 according to the first embodiment of the present invention.
  • the control unit 99 includes a CPU 98 (central processing unit), a RAM 97 (Random Access Memory), a ROM 96 (Read Only Memory), and the like, and reads a program stored in the ROM 96 which is a nonvolatile storage unit to the RAM 97. Each part of the detection device 80 is centrally controlled according to the program.
  • the control unit 99 is a control means of the present invention.
  • the arrival determination unit 412 compares the output signal obtained by detecting the light reflected by the liquid reservoir 140a or the liquid reservoir 141a with the light emitted from the liquid detection unit 20a, and determines the result. Similarly, the output signal obtained by detecting the light reflected from the liquid reservoir 140b or the liquid reservoir 141b by the light emitted from the liquid detector 20b is compared with a predetermined signal level to determine the result.
  • the detection unit drive control unit 413 instructs the detection unit drive detection unit drive motor 61 to move the detection unit 22.
  • the pump drive unit 500 drives the piezoelectric element 112 of each micropump. Based on the program, the pump drive control unit 411 controls the pump drive unit 500 to inject or suck a predetermined amount of drive fluid. The pump drive unit 500 receives a command from the pump drive control unit 411 and generates a drive voltage to drive the piezoelectric element 112.
  • the CPU 98 performs inspection in a predetermined sequence and stores the inspection result in the RAM 97.
  • the inspection result can be stored in the memory card 501 by the operation of the operation unit 87 or printed by the printer 503.
  • FIG. 8 is a flowchart for explaining a main routine in which the inspection apparatus 80 of the first embodiment performs an inspection
  • FIG. 9 shows that the inspection apparatus 80 of the first embodiment of the present invention reaches the liquid reservoir at the top of the liquid. It is a flowchart explaining the subroutine which detects this.
  • FIG. 10 is a flowchart for explaining a subroutine in which the inspection apparatus 80 of the embodiment performs reaction measurement.
  • the microchip 1 is set at a position where inspection can be performed as shown in FIG. 5, and the CPU is instructed to start inspection by operating the operation unit 87. Moreover, the detection board
  • S201 This is a step for performing calibration.
  • the arrival determination unit 412 causes the liquid detection unit 20a and the liquid detection unit 20b to emit light, and outputs the output signals detected by the liquid detection unit 20a and the liquid detection unit 20b respectively from the light reflected from the liquid storage unit 140a and the liquid storage unit 140b. Compare with a predetermined signal level. If it is not within the predetermined signal level range, the arrival determination unit 412 performs calibration so that the current flowing through the light emitting units of the liquid detection unit 20a and the liquid detection unit 20b is increased or decreased to be within the predetermined signal level range.
  • S202 This is a step of starting the pump.
  • the pump drive control unit 411 instructs the pump drive unit 500 to send liquid from the micropump unit 75 to the microchip 1.
  • step S204 If the error flag is 1 (step S204; Yes), the process proceeds to step S205.
  • step S210 If the error flag is 1 (step S210; Yes), the process proceeds to step S211.
  • the control unit 99 displays an error warning on the display unit 84 and stops the inspection device 80.
  • step S105 If output signal level ⁇ threshold (step S105; No), the process proceeds to step S107.
  • a second embodiment will be described with reference to FIGS.
  • a syringe is used to inject a gas into a microchip flow path, and a specimen and a reagent are fed.
  • the difference between the first embodiment and the liquid feeding method will be mainly described, and the description of the parts common to the first embodiment will be omitted.
  • the 2nd Embodiment demonstrates the example by which the liquid detection part is arrange
  • FIG. The liquid detector 26 is disposed at a position corresponding to the liquid reservoir 142, the liquid detector 27 is disposed at a position corresponding to the liquid reservoir 140, and the liquid detector 28 is disposed at a position corresponding to the liquid reservoir 141.
  • the liquid detection unit 26, the liquid detection unit 27, and the liquid detection unit 28 are also arranged in the a and b channels, respectively.
  • the arrival determination unit 412 causes the liquid detection unit 26, the liquid detection unit 27, and the liquid detection unit 28 to emit light, and reflects light reflected from the liquid storage unit 140, the liquid storage unit 141, and the liquid storage unit 142.
  • the output signals detected by the unit 27 and the liquid detection unit 28 are compared with predetermined signal levels. When it is not within the predetermined signal level range, the arrival determination unit 412 increases or decreases the current flowing through the light emitting units of the liquid detection unit 26, the liquid detection unit 27, and the liquid detection unit 28 so as to be within the predetermined signal level range. Perform calibration.
  • the arrival determination unit 412 sets a threshold value for determining the arrival of the liquid based on the output voltage at that time. Determine and store in RAM 97. Also, the error flag is initialized and the value is set to zero.
  • S401 A step of driving the pump in the discharge direction at a speed A.
  • the pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the discharge direction at the drive pulse rate A as shown in FIG. Then, as shown in FIG. 14 (e), the flow rate is 0 for a while even after starting to drive the syringe pump 10, but suddenly starts to flow at a large flow rate after a while.
  • S403 This is a step of comparing the received light level with the threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 26 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S403 If the received light level ⁇ the threshold value (step S403; No), the process returns to step S402.
  • step S403 If the light reception level ⁇ the threshold value (step S403; Yes), the process proceeds to step S404.
  • S404 This is a step of stopping the pump.
  • the pump drive control unit 411 stops the syringe pump 10. When the leading portion of the liquid reaches the liquid reservoir 142, the liquid reservoir 142 is filled with the liquid and the light receiving level ⁇ threshold. When this state is detected at t ⁇ b> 1 in FIG. 14A, the pump drive control unit 411 stops the syringe pump 10.
  • S405 A step of waiting for a predetermined time.
  • the pump drive control unit 411 stops the syringe pump 10 and waits for a predetermined time. Thereby, the step-out of the pulse motor that drives the syringe pump 10 can be prevented.
  • the period from t1 to t2 in FIG. 14A is the standby time.
  • S406 This is a step of driving the pump at the speed B in the suction direction.
  • the pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction at the drive pulse rate B from t2 to t3 in FIG. As a result, the pressure in the flow path is lowered so that the flow rate does not increase rapidly, so that a flow rate within a predetermined range can be obtained as shown in FIG.
  • S408 This is a step of driving the pump at the speed C in the discharge direction.
  • S409 A step of measuring the reflected light of the liquid reservoir 140.
  • the liquid detector 27 measures the reflected light of the liquid reservoir 140.
  • S410 This is a step of comparing the light reception level with the threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 27 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • S411 This is a step of driving the pump in the discharge direction at a speed D.
  • S412 This is a step of measuring the reflected light of the liquid reservoir 141.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S413 If the received light level ⁇ the threshold value (step S413; No), the process proceeds to step S414.
  • S414 This is a step of determining time over.
  • the CPU 98 determines that an error has occurred and ends the process.
  • step S414 If the time is over (step S414; Yes), the process ends.
  • S415 This is a step of stopping the pump.
  • the pump drive control unit 411 stops the syringe pump 10. When the leading portion of the liquid reaches the liquid reservoir 141, the liquid reservoir 141 is filled with the liquid, and the light receiving level ⁇ threshold. When this state is detected at t ⁇ b> 6 in FIG. 14A, the pump drive control unit 411 stops the syringe pump 10.
  • the pump drive control unit 411 switches the switching valve inside the three-way valve 25 so that the pipe 16 communicates with the pipe 50 whose one end is open to the atmosphere side. As a result, the pressure of the gas applied to the flow path of the microchip 1 can be released to the atmosphere, and the liquid can be prevented from moving.
  • S417 This is a step of waiting for a minute time.
  • the pump drive control unit 411 waits for a minute time.
  • S418 This is a step of switching the three-way valve 25 so that the pipe 15 and the pipe 16 communicate with each other.
  • S419 This is a step for starting the amplification reaction process.
  • CPU 98 instructs temperature adjustment unit 152 to heat to a predetermined temperature.
  • S420 This is a step of measuring the reflected light of the liquid reservoir 141.
  • the liquid detector 28 measures the reflected light of the liquid reservoir 141.
  • the gas that drives the liquid may expand, and the leading portion of the liquid may be pushed downstream from the liquid reservoir 141.
  • the reflected light of the liquid reservoir 141 is measured in this step, and the head portion of the liquid is moved backward until it cannot be detected by the liquid reservoir 141 in the following steps.
  • S421 This is a step of comparing the received light level with a threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S421 If received light level ⁇ threshold (step S421; No), the process proceeds to step S425.
  • step S421 If the light reception level ⁇ the threshold value (step S421; Yes), the process proceeds to step S422.
  • S422 This is a step of driving the pump in the suction direction at a speed E.
  • S423 This is a step of waiting for a predetermined time.
  • the pump drive control unit 411 waits for a predetermined time.
  • S424 This is a step of stopping the pump.
  • the pump drive control unit 411 stops the syringe pump 10.
  • S425 This is a step of determining whether or not the amplification reaction time has ended.
  • CPU 98 determines whether or not the predetermined amplification reaction time has ended.
  • step S425 If the amplification reaction time has not ended (step S425; No), the process returns to step S420.
  • the syringe pump 10 is driven in the suction direction for a predetermined time at timings indicated by t7, t8, and t9 in FIG. The leading position of the liquid is retracted until the liquid can no longer be detected.
  • step S425 If the amplification reaction time has ended (step S425; Yes), the process proceeds to step S213.
  • FIG. 15 is an external view of the microchip 1 according to the third embodiment of the present invention.
  • the microchip 1 used in the third embodiment has a sample injection port 156 for injecting a sample and a division quantification unit 151 for dividing and quantifying the sample, and performs a test by dividing and quantifying the sample injected from the sample injection port 156.
  • Other configurations are almost the same as those of the microchip 1 described in the first embodiment and the second embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 15 is a plan view of the microchip 1, and illustrates the grooves of the groove forming substrate 108 that can be seen through the transparent coated substrate 109.
  • 410e, 410f, 410g, and 410h are suction ports that communicate with the flow path inside the microchip 1, and inhale air from each suction port 410 to drive the specimens, reagents, and the like inside.
  • the configuration of the flow path starting from the injection port 410f and the configuration of the flow path starting from the suction port 410g are exactly the same, and are hereinafter referred to as f channel and g channel. .
  • Each component is distinguished by adding f and g.
  • a flow path starting from the suction port 410e is a dummy flow path 251e through which an extra specimen flows.
  • the flow path starting from the suction port 410h is also a dummy flow path 251h provided for sucking the specimen.
  • a liquid reservoir 144 is provided between the dummy channel 251h and the divided quantification unit 151.
  • 155f and 155g are divided flow paths for dividing and sending the sample from the divided quantification unit 151.
  • Liquid reservoirs 147f and 147g are provided downstream of the divided flow paths 155f and 155g.
  • 120f and 120g are reagent storage units for storing the first reagent
  • 122f and 122g are reagent storage units for storing the second reagent
  • 123f and 123g are reagent storage units for storing the third reagent.
  • a mixing unit 130f, a mixing unit 130g, a mixing unit 131f, and a mixing unit 131g are provided downstream of the reagent storage units 123f and 123g, and the sample, the first reagent, the second reagent, and the third reagent are mixed. Mixed in parts.
  • the mixing unit 130f, the mixing unit 130g and the mixing unit 131f, and the specimen, the first reagent, the second reagent, and the third reagent mixed in the mixing unit 131g are injected into the detection units 111f and 111g.
  • the detection units 111f and 111g are heated inside the inspection apparatus 80, and the specimen and the reagent are reacted at a predetermined temperature for a predetermined time.
  • Liquid reservoirs 141f and 141g are provided downstream of the detection units 111f and 111g so that it can be detected that the detection units 111f and 111g are filled with a liquid such as a reagent or a specimen.
  • FIG. 16 is a block diagram of a detection apparatus 80 according to the third embodiment of the present invention.
  • the difference from the first embodiment is mainly shown, and the drawing is simplified.
  • one flow path of the three-way valve 25 branches into four by the branch piping 17, and is connected with valve 58e, 58f, 58g, 58h. ing.
  • the valves 58e, 58f, 58g, and 58h are connected to the pipes 18e, 18f, 18g, and 18h, and communicate with the suction ports 410e, 410f, 410g, and 410h.
  • valves 58e, 58f, 58g, and 58h open and close the flow paths between the syringe pump 10 and the suction ports 410e, 410f, 410g, and 410h, respectively, according to a control signal from the control unit 99.
  • the three-way valve 25 has a switching valve that allows the pipe 15 and the branch pipe 17 to communicate with each other according to a control signal from the control unit 99, or allows the pipe 15 and one end to communicate with the pipe 50 that is open to the atmosphere side. .
  • the liquid detection units 28, 29, and 30 are arranged at positions corresponding to the respective liquid reservoirs of the inspection apparatus 80.
  • the liquid detector 30 is disposed at a position corresponding to the liquid reservoir 144
  • the liquid detector 29 is disposed at a position corresponding to the liquid reservoir 147
  • the liquid detector 28 is disposed at a position corresponding to the liquid reservoir 141.
  • the liquid detection unit 28 and the liquid detection unit 29 are also arranged in the f and g channels, respectively.
  • FIGS. 17, 18, and 19 are flowcharts illustrating a main routine in which the inspection apparatus 80 according to the third embodiment performs an inspection.
  • the inspection is performed using the microchip 1 described with reference to FIG.
  • FIG. 20 is a plan view of the microchip 1 illustrating the liquid feeding state for each step of liquid feeding control.
  • S201 This is a step for performing calibration.
  • the arrival determination unit 412 causes the liquid detection unit 28, the liquid detection unit 29, and the liquid detection unit 30 to emit light, and the light reflected from the liquid storage unit 144, the liquid storage unit 147, and the liquid storage unit 141.
  • the output signals detected by the unit 29 and the liquid detection unit 30 are compared with predetermined signal levels. When it is not within the predetermined signal level range, the arrival determination unit 412 increases or decreases the current flowing through the light emitting units of the liquid detection unit 28, the liquid detection unit 29, and the liquid detection unit 30 so as to be within the predetermined signal level range. Perform calibration.
  • the arrival determination unit 412 sets a threshold value for determining the arrival of the liquid based on the output voltage at that time. Determine and store in RAM 97. Also, the error flag is initialized and the value is set to zero.
  • S501 This is a step of opening the valve 58h by switching the three-way valve to the pump side.
  • the pump drive control unit 411 switches the three-way valve 25 so that the branch pipe 17 and the pipe 15 communicate with each other, and opens the valve 58h.
  • S502 This is a step of driving the pump in the suction direction.
  • the pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction.
  • S503 This is a step of measuring the reflected light of the liquid reservoir 144.
  • the liquid detection unit 30 measures the reflected light from the liquid reservoir 144.
  • S504 This is a step of comparing the light reception level with the threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 30 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S504 If the received light level ⁇ the threshold (step S504; No), the process returns to step S503.
  • step S504 If the received light level ⁇ the threshold value (step S504; Yes), the process proceeds to step S505.
  • S505 This is a step of opening the three-way valve to the atmosphere and stopping the pump.
  • the pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10. As shown in FIG. 20A, when the leading portion of the specimen 35 reaches the liquid reservoir 144, the liquid reservoir 144 is filled with the specimen 35, and the light receiving level ⁇ threshold. When this state is detected, the pump drive control unit 411 stops the syringe pump 10.
  • S506 This is a step of closing the valve 58h.
  • the pump drive control unit 411 closes the valve 58h.
  • S507 This is a step of opening the valve 58e.
  • the pump drive control unit 411 opens the valve 58e.
  • S508 This is a step of driving the pump in the suction direction.
  • the pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
  • S509 This is a step of closing the valve 58e.
  • the pump drive control unit 411 closes the valve 58e. As shown in FIG. 20B, when an extra sample 35 is caused to flow through the dummy channel 251e, a predetermined amount of the sample 35 remains in the divided quantification unit 151.
  • S510 This is a step of opening the valve 58f.
  • the pump drive control unit 411 opens the valve 58f.
  • S511 This is a step of measuring the reflected light of the liquid reservoir 147f.
  • the liquid detector 30 measures the reflected light of the liquid reservoir 147f.
  • S512 This is a step of comparing the received light level with a threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 29f with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S512 If the received light level ⁇ the threshold value (step S512; No), the process returns to step S512.
  • step S512 If received light level ⁇ threshold (step S512; Yes), the process proceeds to step S513.
  • S513 This is a step of opening the three-way valve to the atmosphere and stopping the pump.
  • the pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10.
  • the liquid reservoir 147f is filled with the specimen 35, and the light receiving level ⁇ threshold.
  • the pump drive control unit 411 stops the syringe pump 10. In this way, a predetermined amount of the specimen 35f is filled in the divided flow path 155f.
  • the pump drive control unit 411 closes the valve 58f.
  • S515 This is a step of opening the valve 58g.
  • the pump drive control unit 411 opens the valve 58g.
  • S516 This is a step of driving the pump in the suction direction.
  • the pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
  • S517 This is a step of measuring the reflected light of the liquid reservoir 147g.
  • the liquid detector 30 measures the reflected light of the liquid reservoir 147g.
  • S518 This is a step of comparing the light reception level with the threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 29g with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S518 If the light reception level ⁇ the threshold value (step S518; No), the process returns to step S518.
  • step S518 If received light level ⁇ threshold (step S518; Yes), the process proceeds to step S519.
  • S519 This is a step of opening the three-way valve to the atmosphere and stopping the pump.
  • the pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10.
  • the pump drive control unit 411 stops the syringe pump 10. In this way, a predetermined amount of the specimen 35 is filled in the divided flow path 155g.
  • the sample 35 is divided into the sample 35f and the sample 35g in equal amounts and filled in the divided flow path 155f and the divided flow path 155g.
  • the pump drive control unit 411 closes the valve 58g.
  • the CPU 98 instructs the temperature adjustment unit 152 to heat to a predetermined temperature, and waits until the temperature reaches the predetermined temperature.
  • S522 This is a step of opening the valve 58f.
  • the pump drive control unit 411 opens the valve 58f.
  • S523 This is a step of driving the pump in the suction direction.
  • the pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
  • S524 This is a step of measuring the reflected light of the liquid reservoir 141f.
  • the liquid detector 28 measures the reflected light of the liquid reservoir 141.
  • S525 This is a step of comparing the received light level with a threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S525 If the received light level ⁇ the threshold value (step S525; No), the process returns to step S525.
  • step S525 If the received light level ⁇ the threshold value (step S525; Yes), the process proceeds to step S526.
  • S526 A step of opening the three-way valve to the atmosphere and stopping the pump.
  • the pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10.
  • the liquid 57f mixed when the specimen 35f and the first reagent, the second reagent, and the third reagent pass through the mixing sections 130f and 131f is detected by the detection section 111f. Is filled.
  • the pump drive control unit 411 closes the valve 58f.
  • the pump drive control unit 411 opens the valve 58g.
  • S529 This is a step of driving the pump in the suction direction.
  • the pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
  • S530 This is a step of measuring the reflected light of the liquid reservoir 141g.
  • the liquid detector 28 measures the reflected light of the liquid reservoir 141g.
  • S531 A step of comparing the light reception level with the threshold value.
  • the arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level ⁇ the threshold. .
  • step S531 If the light reception level ⁇ the threshold value (step S531; No), the process returns to step S531.
  • step S531 If the received light level ⁇ the threshold value (step S531; Yes), the process proceeds to step S532.
  • S532 This is a step of opening the three-way valve to the atmosphere and stopping the pump.
  • the pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10.
  • the liquid 57g mixed when the specimen 35g and the first reagent, the second reagent, and the third reagent pass through the mixing sections 130g and 131g is detected by the detection section 111g. Is filled.
  • S533 This is a step of closing the valve 58g.
  • the pump drive control unit 411 closes the valve 58g.
  • S534 This is a step of determining whether or not the time for the amplification reaction has ended.
  • CPU 98 determines whether or not the predetermined amplification reaction time has ended.
  • step S534 If the amplification reaction time has not ended (step S534; No), the process returns to step S534.
  • step S534 If the amplification reaction time has ended (step S534; Yes), the process proceeds to step S213.
  • the CPU 98 calls a reaction measurement routine and measures the reaction result from the detection unit 111g and the detection unit 111h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An inspection system includes: a liquid pool for pooling liquid flowing through a liquid channel; liquid detection means for detecting a liquid pooled in the liquid pool; pump drive means for driving a pump; pump drive control means for controlling the pump drive means; and achievement judgment means for judging whether liquid is present according the detection output from the liquid detection means. The pump drive control means controls pump drive according to the judgment made by the achievement judgment means.

Description

検査システムInspection system
 本発明は、検査システムに関する。 The present invention relates to an inspection system.
 近年、マイクロマシン技術および超微細加工技術を駆使することにより、従来の試料調製、化学分析、化学合成などを行うための装置、手段(例えばポンプ、バルブ、流路、センサなど)を微細化して1チップ上に集積化したシステムが開発されている(例えば、特許文献1参照)。これは、μ-TAS(Micro Total Analysis System:マイクロ総合分析システム)、バイオリアクタ、ラボ・オン・チップ(Lab-on-chips)、バイオチップとも呼ばれ、医療検査・診断分野、環境測定分野、農産製造分野でその応用が期待されている。特に遺伝子検査に見られるように、煩雑な工程、熟練した手技、機器類の操作が必要とされる場合には、μ-TASを用いることによりコスト、必要試料量、所要時間を削減できる。 In recent years, by making full use of micromachine technology and ultrafine processing technology, devices and means (for example, pumps, valves, flow paths, sensors, etc.) for performing conventional sample preparation, chemical analysis, chemical synthesis, etc. have been miniaturized. A system integrated on a chip has been developed (see, for example, Patent Document 1). This is also called μ-TAS (Micro Total Analysis System), bioreactor, lab-on-chip, biochip, medical inspection / diagnosis field, environmental measurement field, Its application is expected in the field of agricultural production. In particular, as seen in genetic testing, when complicated processes, skilled procedures, and equipment operations are required, the use of μ-TAS can reduce costs, required sample amount, and required time.
 本出願人は、マイクロチップの微細流路内に試薬などを封入し、マイクロポンプによって微細流路に駆動液を注入して検体と試薬などの液体を移動させ、反応部、次いで検出部へ流すことにより、血液など検体との反応結果を測定することができる検査システムを提案している(例えば、特許文献2参照)。 The present applicant encloses a reagent or the like in the microchannel of the microchip, injects a driving liquid into the microchannel by a micropump, moves the liquid such as the specimen and the reagent, and flows the liquid to the reaction unit and then to the detection unit Therefore, a test system capable of measuring the reaction result with a specimen such as blood has been proposed (for example, see Patent Document 2).
 このような検査システムでは、流路内の液体の先頭位置を正確に制御することが重要である。特に、流路や検出部などから成る検査チャネルを複数有するマイクロチップを用いて各検査チャネルで同時に反応させた結果を測定する検査システムでは、試薬や検体を各検査チャネルの検出部に同時に流入させて反応時間を等しくする必要がある。 In such an inspection system, it is important to accurately control the leading position of the liquid in the flow path. In particular, in a test system that measures the results of simultaneous reaction in each test channel using a microchip having a plurality of test channels consisting of flow paths and detection units, reagents and specimens are allowed to flow into the detection unit of each test channel simultaneously. It is necessary to equalize the reaction time.
 一方、流路を流れる液体の移動を制御する方法として、流路に液体の通過を検出する通過検出器を設け、通過検出器からの出力に基づいて液体の移動または停止を制御する方法が提案されている(例えば、特許文献3参照)。
特開2004-28589号公報 特開2006-149379号公報 特開2005-283163号公報
On the other hand, as a method for controlling the movement of the liquid flowing in the flow path, a method is proposed in which a flow detector for detecting the passage of the liquid is provided in the flow path and the movement or stop of the liquid is controlled based on the output from the passage detector (For example, see Patent Document 3).
JP 2004-28589 A JP 2006-149379 A JP 2005-283163 A
 しかしながら、特許文献3に開示されている方法では、液体が流路に設けられた通過検出器を通過したことを検出して液体の流れを制御するので、制御に遅れが生じ液体の先頭位置がばらついてしまう。そのため、複数の検査チャネルを有するマイクロチップに適用すると、液体の先頭位置が検査チャネル間でばらつくため反応結果に誤差が生じるという問題が生じる。 However, in the method disclosed in Patent Document 3, since the liquid flow is controlled by detecting that the liquid has passed through the passage detector provided in the flow path, the control is delayed and the leading position of the liquid is It will vary. Therefore, when applied to a microchip having a plurality of inspection channels, there is a problem that an error occurs in the reaction result because the liquid leading position varies between inspection channels.
 本発明は、上記課題に鑑みてなされたものであって、流路内の液体の先頭部分を所望の位置に移動または停止させることができる検査システムを提供することを目的とする。 This invention is made in view of the said subject, Comprising: It aims at providing the test | inspection system which can move or stop the head part of the liquid in a flow path to a desired position.
 本発明の目的は、下記構成により達成することができる。 The object of the present invention can be achieved by the following configuration.
 1.
ポンプを用いて流体をマイクロチップの流路に注入または吸引し、該流路に貯蔵された液体である検体と試薬とを移動させて検出部に充填し、反応させた結果を測定する検査システムにおいて、
前記流路を流れる液体を溜める液溜部と、
前記液溜部に溜まった前記液体を検知する液体検知手段と、
前記ポンプの駆動を制御するポンプ駆動制御手段と、
前記液体検知手段の検知出力に基づいて前記液体の有無を判定する到達判定手段と、
を有し、
前記ポンプ駆動制御手段は、前記到達判定手段の判定に基づいて前記ポンプの駆動を制御することを特徴とする検査システム。
1.
An inspection system that measures the result of injecting or aspirating a fluid into a microchip channel using a pump, moving a sample and a reagent stored in the channel to fill a detection unit, and reacting them. In
A liquid reservoir for storing liquid flowing in the flow path;
Liquid detecting means for detecting the liquid accumulated in the liquid reservoir,
Pump drive control means for controlling the drive of the pump;
Arrival determination means for determining the presence or absence of the liquid based on the detection output of the liquid detection means;
Have
The pump drive control means controls the drive of the pump based on the determination of the arrival determination means.
 2.
前記液溜部は、
前記検出部の下流側の流路に設けられていることを特徴とする1に記載の検査システム。
2.
The liquid reservoir is
2. The inspection system according to 1, wherein the inspection system is provided in a flow path on a downstream side of the detection unit.
 3.
前記マイクロチップは、
前記検出部の上流側の流路に前記検体と前記試薬とを混合する混合部を有し、
前記液溜部は、
前記混合部に近い上流側の流路に設けられていることを特徴とする1または2に記載の検査システム。
3.
The microchip is
A mixing unit that mixes the sample and the reagent in a flow channel upstream of the detection unit;
The liquid reservoir is
3. The inspection system according to 1 or 2, wherein the inspection system is provided in a flow path on the upstream side near the mixing unit.
 4.
前記液溜部は、
前記検体または前記試薬が貯蔵された流路に近い下流側の流路に設けられていることを特徴とする1から3の何れか1項に記載の検査システム。
4).
The liquid reservoir is
4. The inspection system according to any one of 1 to 3, wherein the inspection system is provided in a flow channel on a downstream side close to a flow channel in which the specimen or the reagent is stored.
 5.
前記マイクロチップの一部を外側から加熱して前記流路の内部にある前記液体を加熱する加熱手段を有し、
前記液溜部は、
前記流路の前記加熱手段により加熱可能な先頭の位置に設けられていることを特徴とする1から4の何れか1項に記載の検査システム。
5).
Heating means for heating a part of the microchip from the outside to heat the liquid in the flow path;
The liquid reservoir is
5. The inspection system according to claim 1, wherein the inspection system is provided at a leading position of the flow path that can be heated by the heating unit.
 6.
前記マイクロチップは、
前記試薬または前記検体を分割する分割流路を有し、
前記液溜部は、
前記分割流路の下流の流路に設けられていることを特徴とする1から5の何れか1項に記載の検査システム。
6).
The microchip is
A divided flow path for dividing the reagent or the specimen;
The liquid reservoir is
The inspection system according to any one of 1 to 5, wherein the inspection system is provided in a flow path downstream of the divided flow path.
 7.
前記ポンプ駆動制御手段は、
前記到達判定手段の判定に基づいて前記ポンプの駆動を停止することを特徴とする1から6の何れか1項に記載の検査システム。
7).
The pump drive control means includes
The inspection system according to any one of claims 1 to 6, wherein the driving of the pump is stopped based on the determination of the arrival determination means.
 8.
前記ポンプ駆動制御手段は、
前記到達判定手段の判定に基づいて前記ポンプから前記マイクロチップの流路に注入または吸引する流体の流量を変更することを特徴とする1乃至7の何れか1項に記載の検査システム。
8).
The pump drive control means includes
8. The inspection system according to any one of claims 1 to 7, wherein a flow rate of fluid injected or sucked from the pump into the flow path of the microchip is changed based on the determination of the arrival determination means.
 9.
前記ポンプ駆動制御手段は、
前記到達判定手段の判定に基づいてそれまで前記ポンプから注入または吸引している方向と逆方向に前記流体を吸引または注入することを特徴とする1から8の何れか1項に記載の検査システム。
9.
The pump drive control means includes
9. The inspection system according to any one of claims 1 to 8, wherein the fluid is sucked or injected in a direction opposite to the direction in which the pump has been infused or sucked until then based on the determination of the arrival judging means. .
 10.
前記流体は気体であり、前記マイクロチップの前記流路に加わっている前記気体の圧力を大気側に開放する弁を有し、
前記ポンプ駆動制御手段は、
前記到達判定手段の判定に基づいて前記弁を大気側に開放することを特徴とする1から9の何れか1項に記載の検査システム。
10.
The fluid is a gas, and has a valve that opens the pressure of the gas applied to the flow path of the microchip to the atmosphere side,
The pump drive control means includes
10. The inspection system according to any one of 1 to 9, wherein the valve is opened to the atmosphere side based on the determination of the arrival determination means.
 本発明によれば、流路を流れる液体を溜める液溜部と液溜部に溜まった前記液体を検知する液体検知手段とを設け、液体検知手段の検知出力に基づいて到達判定手段が液体の有無を判定した結果に基づいて、ポンプ駆動制御手段はポンプの駆動を制御する。このようにして、流路内の液体の先頭を所望の位置に移動または停止させることができる検査システムを提供することができる。 According to the present invention, there is provided a liquid reservoir that accumulates the liquid flowing in the flow path and a liquid detection means that detects the liquid accumulated in the liquid reservoir, and the arrival determination means is based on the detection output of the liquid detection means. Based on the result of determining the presence or absence, the pump drive control means controls the drive of the pump. In this way, it is possible to provide an inspection system that can move or stop the top of the liquid in the flow path to a desired position.
本発明の実施形態における検査装置80の外観図である。It is an external view of the test | inspection apparatus 80 in embodiment of this invention. 本発明の第1の実施形態に係わるマイクロチップ1の説明図である。It is explanatory drawing of the microchip 1 concerning the 1st Embodiment of this invention. 検出部111の周辺の拡大図である。It is an enlarged view of the periphery of the detection part 111. FIG. 本発明の第1の実施形態の検査装置80の内部構成の一例を示す斜視図である。It is a perspective view which shows an example of an internal structure of the test | inspection apparatus 80 of the 1st Embodiment of this invention. 本発明の第1の実施形態の検査装置80の内部構成の一例を示す断面図である。It is sectional drawing which shows an example of the internal structure of the test | inspection apparatus 80 of the 1st Embodiment of this invention. 検出部111に充填された液体を説明する説明図である。It is explanatory drawing explaining the liquid with which the detection part 111 was filled. 本発明の第1の実施形態における検査装置80の回路ブロック図である。It is a circuit block diagram of the inspection apparatus 80 in the 1st Embodiment of this invention. 第1の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャートである。It is a flowchart explaining the main routine which the test | inspection apparatus 80 of 1st Embodiment performs a test | inspection. 本発明の第1の実施形態の検査装置80が液溜部に液体が到達したことを検知するサブルーチンを説明するフローチャートである。It is a flowchart explaining the subroutine which the test | inspection apparatus 80 of the 1st Embodiment of this invention detects that the liquid reached | attained the liquid storage part. 第1の実施形態の検査装置80が反応測定を行うサブルーチンを説明するフローチャートである。It is a flowchart explaining the subroutine with which the test | inspection apparatus 80 of 1st Embodiment performs reaction measurement. 本発明の第2の実施形態におけるマイクロチップ1の外観図である。It is an external view of the microchip 1 in the 2nd Embodiment of this invention. 本発明の第2の実施形態における検出装置80のブロック図である。It is a block diagram of the detection apparatus 80 in the 2nd Embodiment of this invention. 第2の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャートである。It is a flowchart explaining the main routine which the test | inspection apparatus 80 of 2nd Embodiment performs a test | inspection. 第2の実施形態の送液制御を説明するためのタイムチャートである。It is a time chart for demonstrating the liquid feeding control of 2nd Embodiment. 本発明の第3の実施形態におけるマイクロチップ1の外観図である。It is an external view of the microchip 1 in the 3rd Embodiment of this invention. 本発明の第3の実施形態における検出装置80のブロック図である。It is a block diagram of the detection apparatus 80 in the 3rd Embodiment of this invention. 第3の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャート1である。It is the flowchart 1 explaining the main routine which the test | inspection apparatus 80 of 3rd Embodiment performs a test | inspection. 第3の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャート2である。It is the flowchart 2 explaining the main routine which the test | inspection apparatus 80 of 3rd Embodiment performs a test | inspection. 第3の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャート3である。It is the flowchart 3 explaining the main routine which the test | inspection apparatus 80 of 3rd Embodiment performs a test | inspection. 送液制御のステップ毎の送液状態を図示したマイクロチップ1の平面図である。It is a top view of the microchip 1 which illustrated the liquid feeding state for every step of liquid feeding control.
符号の説明Explanation of symbols
 1 マイクロチップ
 20、26、27、28、29、30 液体検知部
 21 検知基板
 22 検出ユニット
 60 検知基板駆動モータ
 61 検出ユニット駆動モータ
 75 マイクロポンプユニット
 80 検査装置
 82 筐体
 83 挿入口
 84 表示部
 87 操作ボタン
 90 パッキン
 110 注入口
 111 検出部
 121 検体収容部
 120、122、123 試薬収容部
 130、131 混合部
 140、141、142、144、147 液溜部
 150 光検出部
 152 温度調整ユニット
 156 検体注入口
 250 流路
 410 吸引口
 411 ポンプ駆動制御部
 412 到達判定部
DESCRIPTION OF SYMBOLS 1 Microchip 20, 26, 27, 28, 29, 30 Liquid detection part 21 Detection board 22 Detection unit 60 Detection board drive motor 61 Detection unit drive motor 75 Micro pump unit 80 Inspection apparatus 82 Case 83 Insertion port 84 Display part 87 Operation button 90 Packing 110 Inlet 111 Detection unit 121 Sample storage unit 120, 122, 123 Reagent storage unit 130, 131 Mixing unit 140, 141, 142, 144, 147 Liquid storage unit 150 Light detection unit 152 Temperature adjustment unit 156 Sample injection Inlet 250 Flow path 410 Suction port 411 Pump drive control unit 412 Arrival determination unit
 以下、図面に基づき本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態における検査装置80の外観図である。 FIG. 1 is an external view of an inspection apparatus 80 according to an embodiment of the present invention.
 検査装置80はマイクロチップ1に予め注入された検体と、試薬との反応を自動的に検出し、表示部84に結果を表示する装置である。 The inspection device 80 is a device that automatically detects a reaction between a specimen previously injected into the microchip 1 and a reagent, and displays the result on the display unit 84.
 検査装置80の筐体82には挿入口83があり、マイクロチップ1を挿入口83に差し込んで筐体82の内部にセットするようになっている。なお、挿入口83はマイクロチップ1を挿入時に挿入口83に接触しないように、マイクロチップ1の厚みより十分高さがある。85はメモリカードスロット、86はプリント出力口、87は操作パネル、88は入出力端子、89は電源スイッチである。 The housing 82 of the inspection apparatus 80 has an insertion port 83, and the microchip 1 is inserted into the insertion port 83 and set inside the housing 82. The insertion port 83 is sufficiently higher than the thickness of the microchip 1 so as not to contact the insertion port 83 when the microchip 1 is inserted. Reference numeral 85 denotes a memory card slot, 86 denotes a print output port, 87 denotes an operation panel, 88 denotes an input / output terminal, and 89 denotes a power switch.
 検査担当者は電源スイッチ89をオンにした後、図1の矢印方向にマイクロチップ1を挿入し、操作パネル87を操作して検査を開始させる。検査装置80の内部では、マイクロチップ1内の反応の検査が自動的に行われ、検査が終了すると液晶パネルなどで構成される表示部84に結果が表示される。検査結果は操作パネル87の操作により、プリント出力口86よりプリントを出力したり、メモリカードスロット85に挿入されたメモリカードに記憶することができる。また、外部入出力端子88から例えばLANケーブルを使って、パソコンなどにデータを保存することができる。 The inspector turns on the power switch 89, inserts the microchip 1 in the direction of the arrow in FIG. 1, and operates the operation panel 87 to start the inspection. Inside the inspection device 80, the reaction in the microchip 1 is automatically inspected, and when the inspection is completed, the result is displayed on the display unit 84 constituted by a liquid crystal panel or the like. The inspection result can be output from the print output port 86 or stored in a memory card inserted into the memory card slot 85 by operating the operation panel 87. Further, data can be stored in the personal computer or the like from the external input / output terminal 88 using, for example, a LAN cable.
 検査担当者は、検査終了後、マイクロチップ1を挿入口83から取り出す。 The person in charge of inspection takes out the microchip 1 from the insertion slot 83 after the inspection is completed.
 次に、本発明の第1の実施形態に係わるマイクロチップ1の一例について、図2を用いて説明する。 Next, an example of the microchip 1 according to the first embodiment of the present invention will be described with reference to FIG.
 図2は本発明の第1の実施形態におけるマイクロチップ1の外観図、図3は、検出部111の周辺の拡大図である。 FIG. 2 is an external view of the microchip 1 according to the first embodiment of the present invention, and FIG. 3 is an enlarged view of the periphery of the detection unit 111.
 図2(a)のマイクロチップ1の側面図に示すように、マイクロチップ1は溝形成基板108と、溝形成基板108を覆う被覆基板109から構成されている。図2(a)の矢印は、検査装置80にマイクロチップ1を挿入する挿入方向である。 As shown in the side view of the microchip 1 in FIG. 2A, the microchip 1 includes a groove forming substrate 108 and a covering substrate 109 that covers the groove forming substrate 108. An arrow in FIG. 2A indicates an insertion direction in which the microchip 1 is inserted into the inspection apparatus 80.
 図2(b)はマイクロチップ1の平面図であり、透明な被覆基板109を通して見える溝形成基板108の溝を図示している。溝形成基板108の溝を被覆基板109が覆うことにより流路を形成している。マイクロチップ1には、検査、試料の処理などを行うための、微小な溝状の流路250(微細流路)および機能部品(流路エレメント)が、用途に応じた適当な態様で配設されている。 FIG. 2B is a plan view of the microchip 1, and illustrates the grooves of the groove forming substrate 108 that can be seen through the transparent coated substrate 109. A flow path is formed by covering the grooves of the groove forming substrate 108 with the covering substrate 109. The microchip 1 is provided with minute groove-like channels 250 (microchannels) and functional parts (channel elements) for performing inspections, sample processing, and the like in an appropriate manner according to the application. Has been.
 流路はマイクロメーターオーダーで形成されており、例えば幅は数μm~数百μm、好ましくは10~200μmで、深さは25~500μm程度、好ましくは25~250μmである。 The flow path is formed in the order of micrometers, for example, the width is several μm to several hundred μm, preferably 10 to 200 μm, and the depth is about 25 to 500 μm, preferably 25 to 250 μm.
 本実施形態では、特定の遺伝子の増幅およびその検出を行う処理に用いるマイクロチップ1を例に説明する。 In this embodiment, the microchip 1 used for the process of performing amplification and detection of a specific gene will be described as an example.
 図2(b)の110a、110bはマイクロチップ1内部の流路に連通する注入口であり、各注入口110から駆動液を注入し内部の検体や試薬等を駆動する。本実施形態のマイクロチップ1では図2(b)に示すように注入口110aから始まる流路の構成と、注入口110bから始まる流路の構成は全く同じであり、以降aチャンネル、bチャンネルと呼び区別する。また、各構成要素にはa、bを付けて区別する。 In FIG. 2 (b), 110a and 110b are injection ports communicating with the flow path inside the microchip 1, and a driving liquid is injected from each injection port 110 to drive an internal specimen or reagent. In the microchip 1 of the present embodiment, as shown in FIG. 2B, the configuration of the flow path starting from the injection port 110a is completely the same as the configuration of the flow path starting from the injection port 110b. Distinguish between calls. Each component is distinguished by adding a and b.
 121a、121bは検体を収容する検体収容部である。検体収容部121a、121bは所定量の検体を収容するために他の流路より溝が深くなっている。本実施形態では予め、検体収容部121a、121bには検体が収容されているものとして説明する。 121a and 121b are sample storage units for storing samples. The sample storage units 121a and 121b have deeper grooves than other flow paths in order to store a predetermined amount of sample. In the present embodiment, a description will be given assuming that samples are stored in the sample storage units 121a and 121b in advance.
 120a、120bは第1の試薬を収容する試薬収容部、122a、122bは第2の試薬を収容する試薬収容部、123a、123bは第3の試薬を収容する試薬収容部である。 120a and 120b are reagent storage units for storing the first reagent, 122a and 122b are reagent storage units for storing the second reagent, and 123a and 123b are reagent storage units for storing the third reagent.
 注入口110a、110bから駆動液を注入すると、検体収容部121a、121bに収容された検体は流路250に押し出されて、それぞれ下流の試薬収容部120a、120bに注入される。検体と試薬収容部120a、120bから押し出された第1の試薬は、それぞれ流路250を通って下流の試薬収容部122a、122bに注入される。検体と第1の試薬は第2の試薬を試薬収容部122a、122bから押し出す。 When the driving liquid is injected from the injection ports 110a and 110b, the sample stored in the sample storage units 121a and 121b is pushed out to the flow channel 250 and is injected into the downstream reagent storage units 120a and 120b, respectively. The sample and the first reagent pushed out from the reagent storage units 120a and 120b are respectively injected into the downstream reagent storage units 122a and 122b through the flow channel 250. The specimen and the first reagent push out the second reagent from the reagent storage parts 122a and 122b.
 検体と第1の試薬と第2の試薬は、それぞれ流路250を通って下流の試薬収容部123a、123bに注入され第3の試薬を押し出す。 The specimen, the first reagent, and the second reagent are respectively injected into the downstream reagent storage units 123a and 123b through the flow path 250 to push out the third reagent.
 試薬収容部123a、123bの下流には混合部130a、混合部130bと混合部131a、混合部131bが設けられており、流路250aa、流路250baを流れてきた検体、第1の試薬、第2の試薬、第3の試薬は各混合部で混合される。 A mixing unit 130a, a mixing unit 130b, a mixing unit 131a, and a mixing unit 131b are provided downstream of the reagent storage units 123a and 123b. The flow channel 250aa, the sample flowing through the flow channel 250ba, the first reagent, The second reagent and the third reagent are mixed in each mixing unit.
 混合部130a、混合部130bの近くの上流側にあたる流路250aa、流路250baには液溜部140a、140bが設けられている。液溜部140a、140bは、第3の試薬が試薬収容部123a、123bから押し出されて、先頭部分が混合部130aと混合部130bの近くまで到達したことを検知するために設けられている。 Liquid reservoirs 140a and 140b are provided in the flow channel 250aa and the flow channel 250ba on the upstream side near the mixing unit 130a and the mixing unit 130b. The liquid reservoirs 140a and 140b are provided to detect that the third reagent has been pushed out of the reagent storage parts 123a and 123b and the leading portion has reached the vicinity of the mixing part 130a and the mixing part 130b.
 液溜部140a、140bは、混合部130a、混合部130bより溝が浅く、他の流路250より溝が深くなっている。混合部131a、混合部131bの溝の深さは例えば1.5mm、液溜部140a、140bの溝の深さは例えば0.6mm、他の流路の溝の深さは例えば0.25mmである。 The liquid reservoirs 140 a and 140 b have shallower grooves than the mixing parts 130 a and 130 b and deeper grooves than the other flow paths 250. The depth of the grooves of the mixing portion 131a and the mixing portion 131b is, for example, 1.5 mm, the depth of the grooves of the liquid reservoir portions 140a, 140b is, for example, 0.6 mm, and the depth of the grooves of the other flow paths is, for example, 0.25 mm. is there.
 混合部130a、混合部130bと混合部131a、混合部131bで混合された検体、第1の試薬、第2の試薬、第3の試薬は検出部111a、111bに注入される。後に説明するように、検査装置80の内部で検出部111a、111bを加熱または吸熱して所定の温度で検体と試薬とを所定の時間反応させる。 The mixing unit 130a, the mixing unit 130b and the mixing unit 131a, and the specimen, the first reagent, the second reagent, and the third reagent mixed in the mixing unit 131b are injected into the detection units 111a and 111b. As will be described later, the detection units 111a and 111b are heated or absorbed in the inspection apparatus 80 to cause the specimen and the reagent to react at a predetermined temperature for a predetermined time.
 検出部111a、111bは検体と試薬との反応を光学的に検出するために設けられ、所定量の検体と試薬を収容するために他の流路より溝が深くなっている。 The detection units 111a and 111b are provided for optically detecting the reaction between the specimen and the reagent, and have a groove deeper than the other flow paths to accommodate a predetermined amount of the specimen and the reagent.
 検出部111a、111bの下流には液溜部141a、141bが設けられており、検出部111a、111bが試薬や検体などの液体で充填されたことを検出できるようになっている。液溜部141a、141bは検出部111a、111bより溝が浅く、他の流路より溝が深くなっている。 Liquid reservoirs 141a and 141b are provided downstream of the detection units 111a and 111b, so that it can be detected that the detection units 111a and 111b are filled with a liquid such as a reagent or a specimen. The liquid reservoirs 141a and 141b are shallower than the detectors 111a and 111b, and deeper than the other channels.
 図3を用いて検出部111と液溜部141の形状例を説明する。図3(a)は平面図、図3(b)は検出部111の断面図である。 An example of the shapes of the detection unit 111 and the liquid storage unit 141 will be described with reference to FIG. FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view of the detection unit 111.
 検出部111a、111bの溝の深さd3は例えば1.5mm、液溜部141a、141bの溝の深さd2は例えば0.6mm、他の流路の溝の深さd1は例えば0.25mmである。検出部111a、111bが充填されたことをできるだけ早く検出できるように、液溜部141a、141bは検出部111a、111bの下流のできるだけ近い位置に設けることが望ましい。20は例えばフォトリフレクタなどを用いた液体検知部であり、液溜部141a、141bに光を照射して反射光を検知し、電気信号を出力する。 The groove depth d3 of the detectors 111a and 111b is, for example, 1.5 mm, the groove depth d2 of the liquid reservoirs 141a and 141b is, for example, 0.6 mm, and the groove depth d1 of the other flow paths is, for example, 0.25 mm. It is. It is desirable that the liquid reservoirs 141a and 141b be provided as close as possible to the downstream of the detection units 111a and 111b so that it can be detected as soon as possible that the detection units 111a and 111b are filled. Reference numeral 20 denotes a liquid detector using, for example, a photo reflector, which irradiates the liquid reservoirs 141a and 141b with light to detect reflected light and outputs an electrical signal.
 検出部111a、111bは、図3には図示せぬ検出ユニット22から光を照射すると、検体と反応した試薬が例えば蛍光を発光するので、検出ユニット22で蛍光の光量を測定して反応結果を計測する。 When the detection units 111a and 111b emit light from the detection unit 22 (not shown in FIG. 3), the reagent that has reacted with the specimen emits, for example, fluorescence. Therefore, the detection unit 22 measures the amount of fluorescence and displays the reaction result. measure.
 次に、マイクロチップ1を構成する溝形成基板108と被覆基板109に用いる材料について説明する。 Next, materials used for the groove forming substrate 108 and the covering substrate 109 constituting the microchip 1 will be described.
 マイクロチップ1は、加工成形性、非吸水性、耐薬品性、耐候性、コストなどに優れていることが望まれており、マイクロチップ1の構造、用途、検出方法などを考慮して、マイクロチップ1の材料を選択する。その材料としては従来公知の様々なものが使用可能であり、個々の材料特性に応じて通常は1以上の材料を適宜組み合わせて、基板および流路エレメントが成形される。 The microchip 1 is desired to be excellent in processability, non-water absorption, chemical resistance, weather resistance, cost and the like. In consideration of the structure, application, detection method, etc. of the microchip 1, The material of chip 1 is selected. Various known materials can be used as the material, and usually the substrate and the flow path element are formed by appropriately combining one or more materials in accordance with individual material characteristics.
 特に、多数の測定検体、とりわけ汚染、感染のリスクのある臨床検体を対象とするチップは、ディスポーサブルタイプであることが望ましい。そのため、量産可能であり、軽量で衝撃に強く、焼却廃棄が容易なプラステック樹脂、例えば、透明性、機械的特性および成型性に優れて微細加工がしやすいポリスチレンが好ましい。また、例えば分析においてチップを100℃近くまで加熱する必要がある場合には、耐熱性に優れる樹脂(例えばポリカーボネートなど)を用いることが好ましい。また、タンパク質の吸着が問題となる場合にはポリプロピレンを用いることが好ましい。樹脂やガラスなどは熱伝導率が小さく、マイクロチップの局所的に加熱される領域に、これらの材料を用いることにより、面方向への熱伝導が抑制され、加熱領域のみ選択的に加熱することができる。 Especially, it is desirable that a chip for a large number of measurement specimens, especially clinical specimens at risk of contamination and infection, be of a disposable type. Therefore, a plastic resin that can be mass-produced, is lightweight, is strong against impact, and can be easily discarded by incineration, for example, polystyrene that is excellent in transparency, mechanical properties, and moldability and is easy to be finely processed is preferable. For example, when it is necessary to heat the chip to near 100 ° C. in analysis, it is preferable to use a resin having excellent heat resistance (for example, polycarbonate). In addition, when protein adsorption becomes a problem, it is preferable to use polypropylene. Resin and glass have low thermal conductivity, and by using these materials in the locally heated region of the microchip, heat conduction in the surface direction is suppressed, and only the heated region is selectively heated. Can do.
 検出部111において、呈色反応の生成物や蛍光物質などの検出を光学的に行うので、少なくとも被覆基板109のこの部位は光透過性の材料(例えばアルカリガラス、石英ガラス、透明プラスチック類)を用い、光が透過するようにする必要がある。 Since the detection unit 111 optically detects a color reaction product or a fluorescent substance, at least this portion of the coated substrate 109 is made of a light-transmitting material (for example, alkali glass, quartz glass, transparent plastics). It is necessary to use and transmit light.
 液溜部140a、140b、液溜部141a、141bに収容されている液体を光学的に検知する場合は、少なくとも被覆基板109の液溜部140a、140b、液溜部141a、141bを覆う部分はガラスや樹脂などの透明な部材で構成する必要がある。なお、超音波、電波などを用いて液体を検知する場合は、必ずしも透明な部材を用いる必要はない。 When optically detecting the liquid stored in the liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b, at least the portion covering the liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b of the coated substrate 109 is It is necessary to configure with a transparent member such as glass or resin. In addition, when detecting a liquid using an ultrasonic wave, an electromagnetic wave, etc., it is not necessary to use a transparent member.
 図4は、本発明の第1の実施形態における検査装置80の内部構成の一例を説明するための斜視図、図5は、本発明の第1の実施形態における検査装置80の内部構成の一例を示す断面図、である。図6は検出部111に充填された液体を説明する説明図である。図4、図5に示すX、Y、Zの座標軸を基準に各部の説明を行う。 FIG. 4 is a perspective view for explaining an example of the internal configuration of the inspection apparatus 80 according to the first embodiment of the present invention. FIG. 5 is an example of the internal configuration of the inspection apparatus 80 according to the first embodiment of the present invention. FIG. FIG. 6 is an explanatory diagram for explaining the liquid filled in the detection unit 111. Each part will be described with reference to the coordinate axes of X, Y, and Z shown in FIGS.
 検査装置80は、温度調節ユニット152、検出ユニット22、マイクロポンプユニット75、パッキン90、駆動液タンク91、送りネジ301、送りネジ351、ジョイント302、ジョイント352、検知基板駆動モータ60、検出ユニット駆動モータ61などから構成される。図4、図5はマイクロチップ1をパッキン90bに密着させている状態を示している。 The inspection device 80 includes a temperature adjustment unit 152, a detection unit 22, a micro pump unit 75, a packing 90, a driving liquid tank 91, a feed screw 301, a feed screw 351, a joint 302, a joint 352, a detection board drive motor 60, and a detection unit drive. It is composed of a motor 61 and the like. 4 and 5 show a state in which the microchip 1 is in close contact with the packing 90b.
 以下、図4、図5、図6を用いて検査装置80の内部構成の例を説明する。 Hereinafter, an example of the internal configuration of the inspection apparatus 80 will be described with reference to FIGS. 4, 5, and 6.
 温度調節ユニット152とマイクロチップ1は、図示せぬ駆動部材により駆動され、Z軸方向に移動可能である。初期状態において、駆動部材により温度調節ユニット152を、図4の状態からマイクロチップ1の厚み以上上昇させる。すると、マイクロチップ1はY軸方向に挿抜可能であり、検査担当者は挿入口83から図示せぬ規制部材に当接するまでマイクロチップ1を挿入する。所定の位置までマイクロチップ1を挿入するとフォトインタラプタなどを用いたチップ検知部95がマイクロチップ1を検知し、オンになる。 The temperature adjustment unit 152 and the microchip 1 are driven by a driving member (not shown) and can move in the Z-axis direction. In the initial state, the temperature adjustment unit 152 is raised from the state of FIG. 4 by the thickness of the microchip 1 by the driving member. Then, the microchip 1 can be inserted and removed in the Y-axis direction, and the person inspecting inserts the microchip 1 from the insertion port 83 until it comes into contact with a regulating member (not shown). When the microchip 1 is inserted to a predetermined position, the chip detection unit 95 using a photo interrupter or the like detects the microchip 1 and is turned on.
 温度調節ユニット152は、ペルチェ素子、電源装置、温度制御装置などを内蔵し、発熱または吸熱を行ってマイクロチップ1の面を所定の温度に調整し、検出部111に充填された液体の反応を促進させるユニットである。 The temperature adjustment unit 152 includes a Peltier element, a power supply device, a temperature control device, etc., performs heat generation or heat absorption to adjust the surface of the microchip 1 to a predetermined temperature, and reacts the liquid filled in the detection unit 111. It is a unit to promote.
 駆動部材により温度調節ユニット152とマイクロチップ1は下降し、マイクロチップ1を温度調節ユニット152とパッキン90bに密着させる。 The temperature adjustment unit 152 and the microchip 1 are lowered by the driving member, and the microchip 1 is brought into close contact with the temperature adjustment unit 152 and the packing 90b.
 本実施形態では、温度調節ユニット152によって加熱可能な範囲は液溜部141までである。次に、マイクロチップ1の液溜部140a、140b、液溜部141a、141bにそれぞれ収容されている液体を光学的に検知する方法の一例を説明する。 In the present embodiment, the range that can be heated by the temperature adjustment unit 152 is up to the liquid reservoir 141. Next, an example of a method for optically detecting the liquid stored in the liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b of the microchip 1 will be described.
 図5の断面図では、液溜部140(液溜部140a、140bの何れか)に収容されている液体を光学的に検知できる位置にある液体検知部20を図示している。 The cross-sectional view of FIG. 5 illustrates the liquid detection unit 20 in a position where the liquid stored in the liquid storage unit 140 (any one of the liquid storage units 140a and 140b) can be optically detected.
 たとえば、液体検知部20から光を液溜部140に照射し、液溜部140で反射する光を液体検知部20で受光し、光量や色の変化から液溜部140に液体が充填されていることを検知する。後に詳しく説明する手順で駆動部60が液体検知部20を液溜部141を光学的に検知できる位置に移動させた後、液溜部141の検知も同様の手順で行う。 For example, light is irradiated from the liquid detection unit 20 to the liquid storage unit 140, and the light reflected by the liquid storage unit 140 is received by the liquid detection unit 20, and the liquid storage unit 140 is filled with liquid due to a change in the amount of light and color. Detect that After the drive unit 60 moves the liquid detection unit 20 to a position where the liquid storage unit 141 can be optically detected by a procedure described in detail later, the detection of the liquid storage unit 141 is performed in the same procedure.
 図5に示す液体検知部20は、例えば発光部と受光部を備えたフォトリフレクタであり、液体検知部20は検知基板21に搭載されている。後に説明するように本実施形態では検知基板21に2つの液体検知部20a、20bが搭載されている。液体検知部20は本発明の液体検知手段である。 The liquid detection unit 20 shown in FIG. 5 is a photo reflector provided with, for example, a light emitting unit and a light receiving unit, and the liquid detection unit 20 is mounted on a detection substrate 21. As will be described later, in the present embodiment, two liquid detection units 20 a and 20 b are mounted on the detection substrate 21. The liquid detector 20 is a liquid detector of the present invention.
 図6(a)は検出部111に液体57が十分充填されていない状態、図6(b)は検出部111に液体57が充填された状態を示している。図6(b)のように検出部111の下流側まで液体57の先頭部分が到達すると、液溜部140にも液体57が充填される。したがって、液体検知部20で液溜部140の液体57を検知することにより、検出部111が液体57で充填されたことを知ることができる。 6A shows a state where the detection unit 111 is not sufficiently filled with the liquid 57, and FIG. 6B shows a state where the detection unit 111 is filled with the liquid 57. As shown in FIG. 6B, when the leading portion of the liquid 57 reaches the downstream side of the detection unit 111, the liquid reservoir 140 is also filled with the liquid 57. Therefore, it is possible to know that the detection unit 111 is filled with the liquid 57 by detecting the liquid 57 in the liquid reservoir 140 with the liquid detection unit 20.
 なお、液体検知部20の数は2つに限定されるものではなく、1つ以上であればいくらでも良い。図2で説明したマイクロチップ1のように複数のチャネルで検査を行う場合は、チャネル毎に設けた液溜部141を同時に検査できるように複数の液体検知部20を設けると良い。 It should be noted that the number of liquid detection units 20 is not limited to two, and may be any number as long as it is one or more. When the inspection is performed with a plurality of channels as in the microchip 1 described with reference to FIG. 2, it is preferable to provide a plurality of liquid detection units 20 so that the liquid reservoirs 141 provided for the respective channels can be inspected simultaneously.
 なお、本実施形態では液溜部140a、140b、液溜部141a、141bに光を照射し、反射する光を検知する例を説明するが、液溜部140a、140b、液溜部141a、141bを透過する光や超音波または電波を検知するようにしても良い。 In this embodiment, an example will be described in which the liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b are irradiated with light and reflected light is detected, but the liquid reservoirs 140a and 140b and the liquid reservoirs 141a and 141b are described. You may make it detect the light, an ultrasonic wave, or an electromagnetic wave which permeate | transmits.
 図4に示すように、検知基板21の一端は、送りネジ351と螺合するネジ部を有するガイド部材354に支持され、送りネジ351が回転することによりY軸方向に移動する。検知基板21の他端は、ガイド棒353が貫通する図示せぬ部材に支持されており、検知基板21はマイクロチップの流路250と平行に移動する。 As shown in FIG. 4, one end of the detection substrate 21 is supported by a guide member 354 having a screw portion screwed with the feed screw 351, and moves in the Y-axis direction when the feed screw 351 rotates. The other end of the detection substrate 21 is supported by a member (not shown) through which the guide rod 353 passes, and the detection substrate 21 moves in parallel with the microchip channel 250.
 液体検知部20a、20bは、検知基板21が送りネジ351によって移動すると、液溜部140a、140b、液溜部141a、141bのそれぞれの中心部に、液体検知部20a、20bの液体を検知可能な範囲が一致するように検知基板21上に配置されている。 When the detection substrate 21 is moved by the feed screw 351, the liquid detection units 20a and 20b can detect the liquid in the liquid detection units 20a and 20b at the central portions of the liquid storage units 140a and 140b and the liquid storage units 141a and 141b. It is arranged on the detection substrate 21 so that various ranges coincide with each other.
 液体検知部20a、20bは、所定の位置に移動した後、液溜部140a、140bまたは液溜部141a、141bに順次光を照射し、反射光を受光して電気信号を出力する。 After the liquid detectors 20a and 20b have moved to predetermined positions, the liquid reservoirs 140a and 140b or the liquid reservoirs 141a and 141b are sequentially irradiated with light, the reflected light is received, and an electrical signal is output.
 送りネジ351は検知基板駆動モータ60によりジョイント352を介して駆動される。検知基板駆動モータ60は例えばパルスモータであり、パルスにより所定量回転する。第1位置センサ40は、検知基板21の初期位置を検知するために設けられたフォトリフレクタなどのセンサまたはメカニカルスイッチなどである。 The feed screw 351 is driven by the detection board drive motor 60 via the joint 352. The detection board drive motor 60 is a pulse motor, for example, and rotates by a predetermined amount by a pulse. The first position sensor 40 is a sensor such as a photo reflector provided for detecting the initial position of the detection substrate 21 or a mechanical switch.
 検出ユニット22は発光部と受光部から成り、検出部111に光を照射して検体と反応した試薬が発光する蛍光を、光学的に分離して受光部に受光するように構成されている。検出ユニット22は送りネジ301と螺合するネジ部を有し、送りネジ301が回転することによりX軸方向に移動する。送りネジ301は直線Fと平行に配設されており、検出ユニット22が送りネジ301によって移動すると、検出部111a、111bのそれぞれの中心部に、検出ユニット22のレンズ23の光軸が一致するように配置されている。検出ユニット22は、所定の位置に移動した後、検出部111a、111bにレンズ23から順次励起光を照射し、蛍光物質が発光する蛍光を受光して電気信号を出力する。 The detection unit 22 includes a light emitting unit and a light receiving unit, and is configured to optically separate the fluorescence emitted from the reagent that has reacted with the specimen by irradiating the detection unit 111 with light and to receive the light in the light receiving unit. The detection unit 22 has a screw portion that is screwed with the feed screw 301, and moves in the X-axis direction when the feed screw 301 rotates. The feed screw 301 is disposed in parallel with the straight line F, and when the detection unit 22 is moved by the feed screw 301, the optical axis of the lens 23 of the detection unit 22 coincides with the center of each of the detection units 111a and 111b. Are arranged as follows. After moving to a predetermined position, the detection unit 22 sequentially irradiates the detection units 111a and 111b with excitation light from the lens 23, receives fluorescence emitted from the fluorescent material, and outputs an electrical signal.
 送りネジ301は検出ユニット駆動モータ61によりジョイント302を介して駆動される。検出ユニット駆動モータ61は例えばパルスモータであり、パルスにより所定量回転する。第2位置センサ41は検出ユニット22の初期位置を検知するために設けられたフォトリフレクタなどのセンサまたはメカニカルスイッチなどである。 The feed screw 301 is driven via the joint 302 by the detection unit drive motor 61. The detection unit drive motor 61 is a pulse motor, for example, and rotates by a predetermined amount by a pulse. The second position sensor 41 is a sensor such as a photo reflector or a mechanical switch provided to detect the initial position of the detection unit 22.
 なお、検出ユニット22には回転防止用に図4には図示せぬガイド穴が設けられており、ガイド穴を貫通するガイド棒に沿って移動する。ガイド棒は送りネジ301と平行に配設されている。 The detection unit 22 is provided with a guide hole (not shown in FIG. 4) for preventing rotation, and moves along a guide rod that penetrates the guide hole. The guide bar is disposed in parallel with the feed screw 301.
 なお、本実施形態ではマイクロチップ1に検出部111a、111bが2つ設けられている場合について説明したが、検出部111の数は1つ以上であればいくつでも良い。 In the present embodiment, the case where two detection units 111a and 111b are provided in the microchip 1 has been described. However, the number of the detection units 111 may be any number as long as it is one or more.
 図5では、液体検知部20(液体検知部20a、20bの何れか)が液溜部140(液溜部140a、140bのうち対応する何れか)の液体を検知する位置にある場合を図示している。また、検出ユニット22は検出部111(検出部111a、111bの何れか)でおこる試薬の反応結果を光学的に検出できる位置にある場合を図示している。 FIG. 5 illustrates a case where the liquid detection unit 20 (any one of the liquid detection units 20a and 20b) is in a position for detecting the liquid in the liquid storage unit 140 (any one of the liquid storage units 140a and 140b). ing. Moreover, the case where the detection unit 22 exists in the position which can optically detect the reaction result of the reagent which occurs in the detection part 111 (any of detection part 111a, 111b) is illustrated.
 マイクロチップ1の注入口110は、マイクロチップ1をパッキン90bを介してマイクロポンプ75と密着させたときに、パッキン90bに設けられた対応する開口とそれぞれ連通する位置に設けられている。 When the microchip 1 is brought into close contact with the micropump 75 via the packing 90b, the injection port 110 of the microchip 1 is provided at a position communicating with a corresponding opening provided in the packing 90b.
 マイクロポンプユニット75の吸入口145は、パッキン90aを介して駆動液タンク91が接続され、駆動液タンク91に充填された駆動液をパッキン90aを介して吸い込むようになっている。一方、吐出口146はパッキン90bを介してマイクロチップ1の注入口110と連通している。 The suction port 145 of the micropump unit 75 is connected to a driving liquid tank 91 via a packing 90a, and sucks the driving liquid filled in the driving liquid tank 91 via the packing 90a. On the other hand, the discharge port 146 communicates with the injection port 110 of the microchip 1 through the packing 90b.
 圧電素子112を駆動することにより、マイクロポンプユニット75から送り出された駆動液は、マイクロチップ1の注入口110からマイクロチップ1内に形成された流路250に注入される。このようにして、マイクロポンプユニット75から注入口110に駆動液を注入する。 By driving the piezoelectric element 112, the driving liquid sent out from the micropump unit 75 is injected from the injection port 110 of the microchip 1 into the channel 250 formed in the microchip 1. In this way, the driving liquid is injected from the micropump unit 75 into the injection port 110.
 マイクロポンプユニット75には少なくとも一つのマイクロポンプが設けられている。図2に図示したマイクロチップ1を駆動する場合は、2つの注入口110a、110bに対応する2つのマイクロポンプが必要である。 The micro pump unit 75 is provided with at least one micro pump. When the microchip 1 illustrated in FIG. 2 is driven, two micropumps corresponding to the two inlets 110a and 110b are necessary.
 図7は、本発明の第1の実施形態における検出装置80の回路ブロック図である。 FIG. 7 is a circuit block diagram of the detection device 80 according to the first embodiment of the present invention.
 制御部99は、CPU98(中央処理装置)とRAM97(Random Access Memory),ROM96(Read Only Memory)等から構成され、不揮発性の記憶部であるROM96に記憶されているプログラムをRAM97に読み出し、当該プログラムに従って検出装置80の各部を集中制御する。制御部99は本発明の制御手段である。 The control unit 99 includes a CPU 98 (central processing unit), a RAM 97 (Random Access Memory), a ROM 96 (Read Only Memory), and the like, and reads a program stored in the ROM 96 which is a nonvolatile storage unit to the RAM 97. Each part of the detection device 80 is centrally controlled according to the program. The control unit 99 is a control means of the present invention.
 以下、いままでに説明した機能と同一機能を有する機能ブロックには同番号を付し、説明を省略する。 Hereafter, functional blocks having the same functions as those described above will be given the same reference numerals and description thereof will be omitted.
 CPU98はポンプ駆動制御部411、到達判定部412、検出ユニット駆動制御部413、検知基板駆動制御部414を有する。到達判定部412は本発明の到達判定手段、ポンプ駆動制御部411は本発明のポンプ駆動制御手段である。 The CPU 98 includes a pump drive control unit 411, an arrival determination unit 412, a detection unit drive control unit 413, and a detection board drive control unit 414. The arrival determination unit 412 is an arrival determination unit of the present invention, and the pump drive control unit 411 is a pump drive control unit of the present invention.
 本実施形態では、液体検知部20aと液体検知部20bの2つが検知基板21に搭載されている例について説明する。到達判定部412は、液体検知部20aの発光する光が液溜部140aまたは液溜部141aから反射した光を検出した出力信号を、所定の信号レベルと比較し結果を判定する。同様に、液体検知部20bの発光する光が液溜部140bまたは液溜部141bから反射した光を検出した出力信号を、所定の信号レベルと比較し結果を判定する。 In the present embodiment, an example in which two of the liquid detection unit 20a and the liquid detection unit 20b are mounted on the detection substrate 21 will be described. The arrival determination unit 412 compares the output signal obtained by detecting the light reflected by the liquid reservoir 140a or the liquid reservoir 141a with the light emitted from the liquid detection unit 20a, and determines the result. Similarly, the output signal obtained by detecting the light reflected from the liquid reservoir 140b or the liquid reservoir 141b by the light emitted from the liquid detector 20b is compared with a predetermined signal level to determine the result.
 検出ユニット駆動制御部413は、検出ユニット駆動検出ユニット駆動モータ61に指令し検出ユニット22を移動させる。 The detection unit drive control unit 413 instructs the detection unit drive detection unit drive motor 61 to move the detection unit 22.
 検知基板駆動制御部414は、検知基板駆動モータ60に指令し液体検知部20a、液体検知部20bを搭載した検知基板21を移動させる。 The detection substrate drive control unit 414 instructs the detection substrate drive motor 60 to move the detection substrate 21 on which the liquid detection unit 20a and the liquid detection unit 20b are mounted.
 ポンプ駆動部500は、各マイクロポンプの圧電素子112を駆動する。ポンプ駆動制御部411はプログラムに基づいて、所定量の駆動液を注入または吸入するようにポンプ駆動部500を制御する。ポンプ駆動部500はポンプ駆動制御部411の指令を受けて、駆動電圧を発生して圧電素子112を駆動する。 The pump drive unit 500 drives the piezoelectric element 112 of each micropump. Based on the program, the pump drive control unit 411 controls the pump drive unit 500 to inject or suck a predetermined amount of drive fluid. The pump drive unit 500 receives a command from the pump drive control unit 411 and generates a drive voltage to drive the piezoelectric element 112.
 CPU98は所定のシーケンスで検査を行い、検査結果をRAM97に記憶する。検査結果は、操作部87の操作によりメモリカード501に記憶したり、プリンタ503によってプリントすることができる。 The CPU 98 performs inspection in a predetermined sequence and stores the inspection result in the RAM 97. The inspection result can be stored in the memory card 501 by the operation of the operation unit 87 or printed by the printer 503.
 次に、本発明の第1の実施形態の検査装置80が検査を行う手順を図8~図10を用いて説明する。 Next, the procedure in which the inspection apparatus 80 according to the first embodiment of the present invention performs an inspection will be described with reference to FIGS.
 図8は第1の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャート、図9は本発明の第1の実施形態の検査装置80が液溜部に液体の先頭部分が到達したことを検知するサブルーチンを説明するフローチャートである。図10は実施形態の検査装置80が反応測定を行うサブルーチンを説明するフローチャートである。 FIG. 8 is a flowchart for explaining a main routine in which the inspection apparatus 80 of the first embodiment performs an inspection, and FIG. 9 shows that the inspection apparatus 80 of the first embodiment of the present invention reaches the liquid reservoir at the top of the liquid. It is a flowchart explaining the subroutine which detects this. FIG. 10 is a flowchart for explaining a subroutine in which the inspection apparatus 80 of the embodiment performs reaction measurement.
 最初に図8のフローチャートの順に検査の概略の手順を説明する。 First, the outline procedure of the inspection will be described in the order of the flowchart of FIG.
 マイクロチップ1は、図5のように検査が可能な位置にセットされ、操作部87の操作によってCPUに検査の開始が指令されているものとする。また、検知基板21と検出ユニット22は図5に示す初期位置にあるものとする。 Suppose that the microchip 1 is set at a position where inspection can be performed as shown in FIG. 5, and the CPU is instructed to start inspection by operating the operation unit 87. Moreover, the detection board | substrate 21 and the detection unit 22 shall be in the initial position shown in FIG.
 S201:キャリブレーションを行うステップである。 S201: This is a step for performing calibration.
 到達判定部412は、液体検知部20a、液体検知部20bを発光させ、液溜部140a、液溜部140bから反射した光を液体検知部20a、液体検知部20bがそれぞれ検出した出力信号を、所定の信号レベルと比較する。所定の信号レベルの範囲で無い場合、到達判定部412は液体検知部20a、液体検知部20bの発光部に流す電流を増加または減少させて所定の信号レベルの範囲になるようキャリブレーションを行う。到達判定部412は、液体検知部20a、液体検知部20bの出力信号がそれぞれ所定の信号レベルの範囲になると、そのときの出力電圧を基に液体の到達を判定する閾値を決定しRAM97に記憶する。また、エラーフラッグを初期化し値を0にする。 The arrival determination unit 412 causes the liquid detection unit 20a and the liquid detection unit 20b to emit light, and outputs the output signals detected by the liquid detection unit 20a and the liquid detection unit 20b respectively from the light reflected from the liquid storage unit 140a and the liquid storage unit 140b. Compare with a predetermined signal level. If it is not within the predetermined signal level range, the arrival determination unit 412 performs calibration so that the current flowing through the light emitting units of the liquid detection unit 20a and the liquid detection unit 20b is increased or decreased to be within the predetermined signal level range. When the output signals of the liquid detection unit 20a and the liquid detection unit 20b are in a predetermined signal level range, the arrival determination unit 412 determines a threshold value for determining the arrival of the liquid based on the output voltage at that time, and stores it in the RAM 97. To do. Also, the error flag is initialized and the value is set to zero.
 S202:ポンプを始動するステップである。 S202: This is a step of starting the pump.
 ポンプ駆動制御部411は、ポンプ駆動部500に指令しマイクロポンプユニット75からマイクロチップ1に送液を行う。 The pump drive control unit 411 instructs the pump drive unit 500 to send liquid from the micropump unit 75 to the microchip 1.
 S203:液到達を検知するステップである。 S203: This is a step of detecting the arrival of the liquid.
 到達判定部412は、後に詳しく説明する液到達検知ルーチンをコールし、液溜部140a、液溜部140bに液体の先頭部分が到達したことを検知してポンプの駆動を停止する。このステップでaチャンネル、bチャンネルの流路を流れる試薬等の先頭位置を液溜部140a、液溜部140bに揃えることができるので、後のステップ208でポンプを始動すると混合部130a、混合部130bに同時に試薬等を注入することができる。 The arrival determination unit 412 calls a liquid arrival detection routine which will be described in detail later, detects that the liquid leading portion has reached the liquid reservoir 140a and the liquid reservoir 140b, and stops driving the pump. In this step, since the leading position of the reagent or the like flowing through the flow channels of the a channel and the b channel can be aligned with the liquid reservoir 140a and the liquid reservoir 140b, the mixing unit 130a and the mixing unit are started when the pump is started in step 208 later. A reagent or the like can be simultaneously injected into 130b.
 S204:エラーフラッグを判定するステップである。 S204: This is a step of determining an error flag.
 到達判定部412は、エラーフラッグを判定する。液到達検知ルーチンが所定時間内に正常終了した場合はエラーフラッグが0であり、液溜部140a、液溜部140bに液体が到達した状態でマイクロポンプユニット75は停止している。一方、所定時間内に正常終了しなかった場合は、エラーフラッグが1になっている。 The arrival determination unit 412 determines an error flag. When the liquid arrival detection routine is normally completed within a predetermined time, the error flag is 0, and the micropump unit 75 is stopped while the liquid has reached the liquid reservoir 140a and the liquid reservoir 140b. On the other hand, the error flag is set to 1 when the process does not end normally within a predetermined time.
 エラーフラッグが1の場合、(ステップS204;Yes)、ステップS205に進む。 If the error flag is 1 (step S204; Yes), the process proceeds to step S205.
 S205:警告を表示するステップである。 S205: This is a step of displaying a warning.
 制御部99は、表示部84にエラーの警告を表示し、検査装置80を停止する。 The control unit 99 displays an error warning on the display unit 84 and stops the inspection device 80.
 エラーフラッグが0の場合、(ステップS204;No)、ステップS206に進む。 If the error flag is 0 (step S204; No), the process proceeds to step S206.
 S206:液体検知部20を移動するステップである。 S206: This is a step of moving the liquid detection unit 20.
 検知基板駆動制御部414は、検知基板駆動検知基板駆動モータ60に所定の数のパルスを送り図4の矢印S1方向に検知基板21を移動させ、検知基板21に実装されている液体検知部20a、液体検知部20bが液溜部141aと液溜部141bの充填状態を検知可能な位置に停止させる。 The detection substrate drive control unit 414 sends a predetermined number of pulses to the detection substrate drive detection substrate drive motor 60 to move the detection substrate 21 in the direction of the arrow S1 in FIG. 4 and the liquid detection unit 20a mounted on the detection substrate 21. The liquid detector 20b stops at a position where the filling state of the liquid reservoir 141a and the liquid reservoir 141b can be detected.
 S207:キャリブレーションを行うステップである。 S207: This is a step for performing calibration.
 到達判定部412は、液体検知部20a、液体検知部20bを発光させ、液溜部141a、液溜部141bから反射した光を液体検知部20a、液体検知部20bがそれぞれ検出した出力信号を、所定の信号レベルと比較する。所定の信号レベルの範囲で無い場合、到達判定部412は液体検知部20a、液体検知部20bの発光部に流す電流を増加または減少させて所定の信号レベルの範囲になるようキャリブレーションを行う。到達判定部412は、液体検知部20a、液体検知部20bの出力信号がそれぞれ所定の信号レベルの範囲になると、そのときの出力電圧を基に液体の到達を判定する閾値を決定しRAM97に記憶する。また、エラーフラッグを初期化し値を0にする。 The arrival determination unit 412 causes the liquid detection unit 20a and the liquid detection unit 20b to emit light, and the output signals detected by the liquid detection unit 20a and the liquid detection unit 20b respectively from the light reflected from the liquid storage unit 141a and the liquid storage unit 141b. Compare with a predetermined signal level. If it is not within the predetermined signal level range, the arrival determination unit 412 performs calibration so that the current flowing through the light emitting units of the liquid detection unit 20a and the liquid detection unit 20b is increased or decreased to be within the predetermined signal level range. When the output signals of the liquid detection unit 20a and the liquid detection unit 20b are in a predetermined signal level range, the arrival determination unit 412 determines a threshold value for determining the arrival of the liquid based on the output voltage at that time, and stores it in the RAM 97. To do. Also, the error flag is initialized and the value is set to zero.
 S208:ポンプを始動するステップである。 S208: This is the step of starting the pump.
 ポンプ駆動制御部411は、ポンプ駆動部500に指令し、マイクロポンプユニット75からマイクロチップ1に送液を行う。 The pump drive control unit 411 instructs the pump drive unit 500 to send liquid from the micropump unit 75 to the microchip 1.
 S209:液到達を検知するステップである。 S209: This is a step of detecting the arrival of the liquid.
 到達判定部412は液到達検知ルーチンをコールし、液溜部141a、液溜部141bに液体が到達したことを検知してポンプの駆動を停止する。このステップでaチャンネル、bチャンネルの流路を流れる検体と試薬の混合液の先頭部分を液溜部141a、液溜部141bに揃えるので、混合液が検出部111a、検出部111bに充填された状態にすることができる。 The arrival determination unit 412 calls the liquid arrival detection routine, detects that the liquid has reached the liquid reservoir 141a and the liquid reservoir 141b, and stops driving the pump. In this step, since the head portion of the mixed liquid of the specimen and the reagent flowing through the channel of the a channel and the b channel is aligned with the liquid reservoir 141a and the liquid reservoir 141b, the mixed liquid is filled in the detector 111a and the detector 111b. Can be in a state.
 S210:エラーフラッグを判定するステップである。 S210: A step of determining an error flag.
 到達判定部412は、エラーフラッグを判定する。液到達検知ルーチンが所定時間内に正常終了した場合はエラーフラッグが0であり、液溜部141a、液溜部141bに液体が到達した状態でマイクロポンプユニット75は停止している。一方、所定時間内に正常終了しなかった場合は、エラーフラッグが1になっている。 The arrival determination unit 412 determines an error flag. When the liquid arrival detection routine ends normally within a predetermined time, the error flag is 0, and the micropump unit 75 is stopped in a state where the liquid has reached the liquid reservoir 141a and the liquid reservoir 141b. On the other hand, the error flag is set to 1 when the process does not end normally within a predetermined time.
 エラーフラッグが1の場合、(ステップS210;Yes)、ステップS211に進む。 If the error flag is 1 (step S210; Yes), the process proceeds to step S211.
 S211:警告を表示するステップである。 S211: This is a step of displaying a warning.
 制御部99は、表示部84にエラーの警告を表示し、検査装置80を停止する。 The control unit 99 displays an error warning on the display unit 84 and stops the inspection device 80.
 エラーフラッグが0の場合、(ステップS210;No)、ステップS212に進む。 When the error flag is 0 (step S210; No), the process proceeds to step S212.
 S212:液体検知部20を移動するステップである。 S212: This is a step of moving the liquid detection unit 20.
 検知基板駆動制御部414は、検知基板駆動検知基板駆動モータ60に所定の数のパルスを送り図4の矢印S1と逆方向に検知基板21を移動させ所定の位置に退避させる。 The detection board drive control unit 414 sends a predetermined number of pulses to the detection board drive detection board drive motor 60, moves the detection board 21 in the direction opposite to the arrow S1 in FIG. 4 and retracts it to a predetermined position.
 S213:反応結果を測定するステップである。 S213: This is a step of measuring the reaction result.
 所定の時間経過後、CPU98は反応測定ルーチンをコールし、検出部111a、検出部111bから反応結果を測定する。 After a predetermined time has elapsed, the CPU 98 calls a reaction measurement routine and measures the reaction result from the detection unit 111a and the detection unit 111b.
 メインルーチンの説明は以上である。 This completes the explanation of the main routine.
 次に、図9のフローチャートを用いて液到達検知ルーチンを説明する。 Next, the liquid arrival detection routine will be described using the flowchart of FIG.
 以下の説明では、液溜部140aまたは液溜部141aをaチャンネルの液溜部、液溜部140bまたは液溜部141bをbチャンネルの液溜部、注入口110aから駆動液を注入するポンプをaチャンネルのポンプ、注入口110bから駆動液を注入するポンプをbチャンネルのポンプと呼ぶ。 In the following description, the liquid reservoir 140a or the liquid reservoir 141a is used as the a-channel liquid reservoir, the liquid reservoir 140b or the liquid reservoir 141b is used as the b-channel liquid reservoir, and the pump for injecting the driving liquid from the inlet 110a is used. An a-channel pump and a pump that injects the driving liquid from the inlet 110b are referred to as a b-channel pump.
 S101:aチャンネルの液溜部からの反射光を測定するステップである。 S101: This is a step of measuring the reflected light from the liquid reservoir of the a channel.
 到達判定部412は、液体検知部20aを発光させ、aチャンネルの液溜部から反射した光を受光した液体検知部20aの出力信号レベルを測定する。 The arrival determination unit 412 causes the liquid detection unit 20a to emit light and measures the output signal level of the liquid detection unit 20a that has received the light reflected from the liquid reservoir of the a channel.
 S102:受光レベルと閾値とを比較するステップである。 S102: This is a step of comparing the light reception level with the threshold value.
 到達判定部412は、液体検知部20aの受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、出力信号レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 20a with the threshold value obtained when the calibration is performed in step S201, and determines whether or not the output signal level <the threshold value. To do.
 受光レベル<閾値の場合、(ステップS102;Yes)、ステップS103に進む。 If received light level <threshold (step S102; Yes), the process proceeds to step S103.
 S103:aチャンネルのポンプを停止するステップである。 S103: This is a step of stopping the pump of the a channel.
 ポンプ駆動制御部411は、aチャンネルのポンプを停止する。aチャンネルの液溜部に液体の先頭部分が到達すると液溜部140aには液体が充填され受光信号レベル<閾値になる。この状態を検出するとポンプ駆動制御部411は、aチャンネルのポンプを停止し、bチャンネルと流路を流れる液体の先頭の位置を揃える。 The pump drive control unit 411 stops the pump of the a channel. When the leading portion of the liquid reaches the liquid reservoir of the a channel, the liquid reservoir 140a is filled with the liquid, and the light receiving signal level <threshold. When this state is detected, the pump drive control unit 411 stops the pump of the a channel and aligns the positions of the liquid channel flowing through the channel with the b channel.
 受光信号レベル≧閾値の場合、(ステップS102;No)、ステップS104に進む。 If the received light signal level ≧ the threshold value (step S102; No), the process proceeds to step S104.
 S104:bチャンネルの液溜部からの反射光を測定するステップである。 S104: This is a step of measuring the reflected light from the liquid reservoir of the b channel.
 到達判定部412は、液体検知部20bを発光させ、bチャンネルの液溜部から反射した光を受光した液体検知部20bの出力信号レベルを測定する。 The arrival determination unit 412 causes the liquid detection unit 20b to emit light and measures the output signal level of the liquid detection unit 20b that has received the light reflected from the b channel liquid reservoir.
 S105:受光レベルと閾値とを比較するステップである。 S105: This is a step of comparing the light reception level with the threshold value.
 到達判定部412は、液体検知部20bの受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 20b with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光信号レベル<閾値の場合、(ステップS105;Yes)、ステップS106に進む。 If the received light signal level <the threshold value (step S105; Yes), the process proceeds to step S106.
 S106:bチャンネルのポンプを停止するステップである。 S106: This is a step of stopping the pump of the b channel.
 ポンプ駆動制御部411は、bチャンネルのポンプを停止する。bチャンネルの液溜部に液体の先頭部分が到達するとbチャンネルの液溜部には液体が充填され出力信号レベル<閾値になる。この状態を検出するとポンプ駆動制御部411は、bチャンネルのポンプを停止し、aチャンネルと流路を流れる液体の先頭の位置を揃える。 The pump drive control unit 411 stops the b-channel pump. When the leading portion of the liquid reaches the liquid reservoir of the b channel, the liquid reservoir of the b channel is filled with the liquid, and the output signal level <threshold. When this state is detected, the pump drive control unit 411 stops the b-channel pump, and aligns the leading positions of the liquid flowing through the a-channel and the flow path.
 出力信号レベル≧閾値の場合、(ステップS105;No)、ステップS107に進む。 If output signal level ≧ threshold (step S105; No), the process proceeds to step S107.
 S107:a、b両チャンネルのポンプが停止したか、否か、を判定するステップである。 S107: A step of determining whether or not the pumps of both the channels a and b are stopped.
 ポンプ駆動制御部411は、a、b両チャンネルのポンプが停止したか、否か、を判定する。 The pump drive control unit 411 determines whether or not the pumps of both channels a and b are stopped.
 a、b両チャンネルのポンプが停止した場合、(ステップS107;Yes)、処理を終了し元のルーチンに戻る。 When the pumps of both channels a and b are stopped (step S107; Yes), the process is terminated and the process returns to the original routine.
 aまたはbチャンネルのポンプが停止していない場合、(ステップS107;No)、ステップS108に進む。 If the a or b channel pump is not stopped (step S107; No), the process proceeds to step S108.
 S108:タイムアウトか、否か、を判定するステップである。 S108: This is a step of determining whether it is time-out or not.
 CPU98は、内部タイマーから経過時間を読み取り、タイムアウトの時間を経過したか、否か、を判定する。 The CPU 98 reads the elapsed time from the internal timer and determines whether or not the timeout time has elapsed.
 タイムアウトの場合、(ステップS108;Yes)、ステップS109に進む。 In the case of timeout (step S108; Yes), the process proceeds to step S109.
 S109:エラーフラッグを1にするステップである。 S109: This is a step of setting the error flag to 1.
 CPU98は、エラーフラッグを1にして元のルーチンに戻る。 CPU 98 sets the error flag to 1 and returns to the original routine.
 タイムアウトではない場合、(ステップS108;No)、ステップS101に戻る。 If it is not time-out (step S108; No), the process returns to step S101.
 タイムアウトでない場合は、処理を継続し液溜部に液体が到達するのを待つ。 If not timed out, continue processing and wait for liquid to reach the reservoir.
 液到達ルーチンの説明は以上である。 This completes the explanation of the liquid arrival routine.
 次に、反応測定ルーチンについて図10のフローチャートの順に説明する。 Next, the reaction measurement routine will be described in the order of the flowchart of FIG.
 S301:検出ユニット22を移動するステップである。 S301: This is a step of moving the detection unit 22.
 検出ユニット駆動制御部413は、検出ユニット駆動モータ61に所定の数のパルスを送り図4の矢印S2方向に検出ユニット22を移動させ、検出ユニット22が検出部111aの反応結果を検出する位置に停止させる。 The detection unit drive control unit 413 sends a predetermined number of pulses to the detection unit drive motor 61 to move the detection unit 22 in the direction of the arrow S2 in FIG. 4, and the detection unit 22 detects the reaction result of the detection unit 111a. Stop.
 S302:反応結果を測定するステップである。 S302: This is a step of measuring the reaction result.
 所定の時間経過後、CPU98は、検出ユニット22の発光部を発光させ、検出ユニット22からの出力信号レベルを測定し、結果をRAM97に記憶する。 After a predetermined time has elapsed, the CPU 98 causes the light emitting unit of the detection unit 22 to emit light, measures the output signal level from the detection unit 22, and stores the result in the RAM 97.
 S303:検出ユニット22を移動するステップである。 S303: This is a step of moving the detection unit 22.
 検出ユニット駆動制御部413は、検出ユニット駆動検出ユニット駆動モータ61に所定の数のパルスを送り図4の矢印S2方向に検出ユニット22をさらに移動させ、検出部111bの反応結果を検出する位置に停止させる。 The detection unit drive control unit 413 sends a predetermined number of pulses to the detection unit drive detection unit drive motor 61 to further move the detection unit 22 in the direction of the arrow S2 in FIG. 4, and to a position where the detection result of the detection unit 111b is detected. Stop.
 S304:反応結果を測定するステップである。 S304: This is a step of measuring the reaction result.
 CPU98は、検出ユニット22の発光部を発光させ、検出ユニット22からの出力信号レベルを測定し、結果をRAM97に記憶する。 The CPU 98 causes the light emitting unit of the detection unit 22 to emit light, measures the output signal level from the detection unit 22, and stores the result in the RAM 97.
 以上検査を終了し、検出ユニット駆動制御部413は、検出ユニット22を初期位置に戻す。 The inspection is finished as described above, and the detection unit drive control unit 413 returns the detection unit 22 to the initial position.
 反応測定ルーチンの手順の説明は以上である。 This completes the explanation of the procedure for the reaction measurement routine.
 次に、図11、図12を用いて第2の実施形態について説明する。第2の実施形態ではシリンジポンプを用いて気体をマイクロチップの流路に注入し、検体と試薬を送液する例を説明する。第1の実施形態と送液方法の異なる点を中心に説明し、第1の実施形態と共通する部分については説明を省略する。 Next, a second embodiment will be described with reference to FIGS. In the second embodiment, an example will be described in which a syringe is used to inject a gas into a microchip flow path, and a specimen and a reagent are fed. The difference between the first embodiment and the liquid feeding method will be mainly described, and the description of the parts common to the first embodiment will be omitted.
 図11は本発明の第2の実施形態におけるマイクロチップ1の外観図である。第2の実施形態では注入口110a、110bから空気を注入し、検体や試薬を送液する。 FIG. 11 is an external view of the microchip 1 according to the second embodiment of the present invention. In the second embodiment, air is injected from the inlets 110a and 110b, and a specimen and a reagent are fed.
 マイクロチップ1の流路の第1の実施形態と異なる点は、液溜部142a、142bが試薬収容部123a、123bの近傍の下流側に設けられている点である。液溜部142a、142bを利用した送液制御について後に説明する。 The difference of the flow path of the microchip 1 from the first embodiment is that the liquid reservoirs 142a and 142b are provided on the downstream side in the vicinity of the reagent storage units 123a and 123b. Liquid feed control using the liquid reservoirs 142a and 142b will be described later.
 図12は本発明の第2の実施形態における検出装置80のブロック図である。図12では第1の実施形態と異なる点を中心に図示し、図を簡略化している。 FIG. 12 is a block diagram of the detection apparatus 80 in the second embodiment of the present invention. In FIG. 12, the difference from the first embodiment is mainly illustrated, and the drawing is simplified.
 10はシリンジポンプ、11はシリンジポンプ10を駆動するドライバである。三方弁25は制御部99からの制御信号により、配管15と配管16とを連通させるか、または配管16と一端が大気側に開放されている配管50に連通させるか、を切り替える切替弁を有している。シリンジポンプ10は、配管15と配管16が連通した状態でパッキン6を介してマイクロチップ1に空気を注入する。注入口110a、110bにはそれぞれ配管15、三方弁25、シリンジポンプ10、ドライバ11などからなる空気注入機構が接続されておりそれぞれ独立して制御できるが、本実施形態では一つのチャンネルの制御について説明する。 10 is a syringe pump, and 11 is a driver for driving the syringe pump 10. The three-way valve 25 has a switching valve that switches between communication between the pipe 15 and the pipe 16 or communication between the pipe 16 and the pipe 50 whose one end is open to the atmosphere side by a control signal from the control unit 99. is doing. The syringe pump 10 injects air into the microchip 1 through the packing 6 with the pipe 15 and the pipe 16 communicating with each other. The inlets 110a and 110b are connected to an air injection mechanism including a pipe 15, a three-way valve 25, a syringe pump 10, a driver 11, and the like, and can be controlled independently. In this embodiment, one channel is controlled. explain.
 第2の実施形態では、液体検知部が検査装置80の各液溜部に対応する位置に配置されている例を説明する。液体検知部26は液溜部142に対応する位置に、液体検知部27は液溜部140に対応する位置に、液体検知部28は液溜部141に対応する位置にそれぞれ配置されている。液体検知部26、液体検知部27、液体検知部28もa、bチャンネルにそれぞれ配置されている。 2nd Embodiment demonstrates the example by which the liquid detection part is arrange | positioned in the position corresponding to each liquid reservoir part of the test | inspection apparatus 80. FIG. The liquid detector 26 is disposed at a position corresponding to the liquid reservoir 142, the liquid detector 27 is disposed at a position corresponding to the liquid reservoir 140, and the liquid detector 28 is disposed at a position corresponding to the liquid reservoir 141. The liquid detection unit 26, the liquid detection unit 27, and the liquid detection unit 28 are also arranged in the a and b channels, respectively.
 次に、本発明の第2の実施形態の検査装置80が検査を行う手順を図13を用いて説明する。 Next, the procedure in which the inspection apparatus 80 according to the second embodiment of the present invention performs an inspection will be described with reference to FIG.
 図13は第2の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャート、図14は第2の実施形態の送液制御を説明するためのタイムチャートである。図14(a)はドライバ11の出力する駆動パルスレートPのタイムチャートである。図14(b)は液体検知部26の出力のタイムチャート、図14(c)は液体検知部27の出力のタイムチャート、図14(d)は液体検知部28の出力のタイムチャートである。図14(e)は流路を流れる液体の流量Qのタイムチャートである。 FIG. 13 is a flowchart for explaining a main routine in which the inspection apparatus 80 of the second embodiment performs an inspection, and FIG. 14 is a time chart for explaining the liquid feeding control of the second embodiment. FIG. 14A is a time chart of the drive pulse rate P output from the driver 11. 14B is a time chart of the output of the liquid detection unit 26, FIG. 14C is a time chart of the output of the liquid detection unit 27, and FIG. 14D is a time chart of the output of the liquid detection unit 28. FIG. 14E is a time chart of the flow rate Q of the liquid flowing through the flow path.
 図14のタイムチャートを参照しながら図13のフローチャートの順に検査の概略の手順を説明する。 Referring to the time chart of FIG. 14, the outline procedure of the inspection will be described in the order of the flowchart of FIG.
 マイクロチップ1は、図12のように検査が可能な位置にセットされ、操作部87の操作によってCPUに検査の開始が指令されているものとする。 Suppose that the microchip 1 is set at a position where inspection can be performed as shown in FIG. 12, and the start of inspection is instructed to the CPU by operation of the operation unit 87.
 S201:キャリブレーションを行うステップである。 S201: This is a step for performing calibration.
 到達判定部412は、液体検知部26、液体検知部27、液体検知部28を発光させ、液溜部140、液溜部141、液溜部142から反射した光を液体検知部26、液体検知部27、液体検知部28がそれぞれ検出した出力信号を、所定の信号レベルと比較する。所定の信号レベルの範囲で無い場合、到達判定部412は液体検知部26、液体検知部27、液体検知部28の発光部に流す電流を増加または減少させて所定の信号レベルの範囲になるようキャリブレーションを行う。到達判定部412は、液体検知部26、液体検知部27、液体検知部28の出力信号がそれぞれ所定の信号レベルの範囲になると、そのときの出力電圧を基に液体の到達を判定する閾値を決定しRAM97に記憶する。また、エラーフラッグを初期化し値を0にする。 The arrival determination unit 412 causes the liquid detection unit 26, the liquid detection unit 27, and the liquid detection unit 28 to emit light, and reflects light reflected from the liquid storage unit 140, the liquid storage unit 141, and the liquid storage unit 142. The output signals detected by the unit 27 and the liquid detection unit 28 are compared with predetermined signal levels. When it is not within the predetermined signal level range, the arrival determination unit 412 increases or decreases the current flowing through the light emitting units of the liquid detection unit 26, the liquid detection unit 27, and the liquid detection unit 28 so as to be within the predetermined signal level range. Perform calibration. When the output signals of the liquid detection unit 26, the liquid detection unit 27, and the liquid detection unit 28 are in a predetermined signal level range, the arrival determination unit 412 sets a threshold value for determining the arrival of the liquid based on the output voltage at that time. Determine and store in RAM 97. Also, the error flag is initialized and the value is set to zero.
 S401:ポンプを速度Aで吐出方向に駆動するステップである。 S401: A step of driving the pump in the discharge direction at a speed A.
 ポンプ駆動制御部411はドライバ11に指令し、図14(a)に示すように駆動パルスレートAで吐出方向にシリンジポンプ10を駆動する。すると、図14(e)に示すようにシリンジポンプ10の駆動を開始してもしばらく流量は0であるが、しばらくすると急に大きな流量で流れ始める。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the discharge direction at the drive pulse rate A as shown in FIG. Then, as shown in FIG. 14 (e), the flow rate is 0 for a while even after starting to drive the syringe pump 10, but suddenly starts to flow at a large flow rate after a while.
 S402:液溜部142の反射光を測定するステップである。 S402: This is a step of measuring the reflected light of the liquid reservoir 142.
 液体検知部26は液溜部142の反射光を測定する。 The liquid detector 26 measures the reflected light from the liquid reservoir 142.
 S403:受光レベルと閾値とを比較するステップである。 S403: This is a step of comparing the received light level with the threshold value.
 到達判定部412は、液体検知部26の受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 26 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS403;No)、ステップS402に戻る。 If the received light level ≧ the threshold value (step S403; No), the process returns to step S402.
 受光レベル<閾値の場合、(ステップS403;Yes)、ステップS404に進む。 If the light reception level <the threshold value (step S403; Yes), the process proceeds to step S404.
 S404:ポンプを停止するステップである。 S404: This is a step of stopping the pump.
 ポンプ駆動制御部411は、シリンジポンプ10を停止する。液溜部142に液体の先頭部分が到達すると液溜部142には液体が充填され受光レベル<閾値になる。図14(a)のt1でこの状態を検出するとポンプ駆動制御部411は、シリンジポンプ10を停止する。 The pump drive control unit 411 stops the syringe pump 10. When the leading portion of the liquid reaches the liquid reservoir 142, the liquid reservoir 142 is filled with the liquid and the light receiving level <threshold. When this state is detected at t <b> 1 in FIG. 14A, the pump drive control unit 411 stops the syringe pump 10.
 S405:所定時間待つステップである。 S405: A step of waiting for a predetermined time.
 ポンプ駆動制御部411は、シリンジポンプ10を停止して所定時間待機する。このことにより、シリンジポンプ10を駆動するパルスモータの脱調を防止することができる。図14(a)のt1~t2の期間が待機時間である。 The pump drive control unit 411 stops the syringe pump 10 and waits for a predetermined time. Thereby, the step-out of the pulse motor that drives the syringe pump 10 can be prevented. The period from t1 to t2 in FIG. 14A is the standby time.
 S406:ポンプを速度Bで吸引方向に駆動するステップである。 S406: This is a step of driving the pump at the speed B in the suction direction.
 ポンプ駆動制御部411はドライバ11に指令し、図14(a)のt2からt3まで駆動パルスレートBで吸引方向にシリンジポンプ10を駆動する。このことにより流路内の圧力を下げ流量が急激に増えないようにするので、図14(e)のように所定の範囲内の流量を得ることができる。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction at the drive pulse rate B from t2 to t3 in FIG. As a result, the pressure in the flow path is lowered so that the flow rate does not increase rapidly, so that a flow rate within a predetermined range can be obtained as shown in FIG.
 S407:所定時間待つステップである。 S407: This is a step of waiting for a predetermined time.
 ポンプ駆動制御部411は、シリンジポンプ10を駆動するパルスモータの脱調を防止するためシリンジポンプ10を停止して所定時間待機する。図14(a)のt3~t4の期間が待機時間である。 The pump drive control unit 411 stops the syringe pump 10 and waits for a predetermined time in order to prevent the pulse motor that drives the syringe pump 10 from stepping out. The period from t3 to t4 in FIG. 14A is the standby time.
 S408:ポンプを速度Cで吐出方向に駆動するステップである。 S408: This is a step of driving the pump at the speed C in the discharge direction.
 ポンプ駆動制御部411はドライバ11に指令し、t4から駆動パルスレートCで吐出方向にシリンジポンプ10を駆動する。この期間は比較的低いパルスレートCで駆動するので、図14(e)に示すように所定の安定した流量が得られる。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the discharge direction at the drive pulse rate C from t4. Since this period is driven at a relatively low pulse rate C, a predetermined stable flow rate can be obtained as shown in FIG.
 S409:液溜部140の反射光を測定するステップである。 S409: A step of measuring the reflected light of the liquid reservoir 140.
 液体検知部27は液溜部140の反射光を測定する。 The liquid detector 27 measures the reflected light of the liquid reservoir 140.
 S410:受光レベルと閾値とを比較するステップである。 S410: This is a step of comparing the light reception level with the threshold value.
 到達判定部412は、液体検知部27の受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 27 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS410;No)、ステップS409に戻る。 If the received light level ≧ the threshold value (step S410; No), the process returns to step S409.
 受光レベル<閾値の場合、(ステップS410;Yes)、ステップS411に進む。 If the received light level <the threshold value (step S410; Yes), the process proceeds to step S411.
 S411:ポンプを速度Dで吐出方向に駆動するステップである。 S411: This is a step of driving the pump in the discharge direction at a speed D.
 ポンプ駆動制御部411はドライバ11に指令し、t5から駆動パルスレートDで吐出方向にシリンジポンプ10を駆動する。液溜部140まで液体が到達した後は、さらに低い駆動パルスレートDで駆動し、図14(e)に示すように少ない流量で液体を駆動するようにする。このことにより混合部130、混合部131で泡の発生を抑えることができる。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the discharge direction at the drive pulse rate D from t5. After the liquid reaches the liquid reservoir 140, the liquid is driven at a lower driving pulse rate D, and the liquid is driven at a small flow rate as shown in FIG. As a result, the generation of bubbles can be suppressed in the mixing unit 130 and the mixing unit 131.
 S412:液溜部141の反射光を測定するステップである。 S412: This is a step of measuring the reflected light of the liquid reservoir 141.
 液体検知部28は液溜部141の反射光を測定する。 The liquid detector 28 measures the reflected light of the liquid reservoir 141.
 S413:受光レベルと閾値とを比較するステップである。 S413: This is a step of comparing the received light level with the threshold value.
 到達判定部412は、液体検知部28の受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS413;No)、ステップS414に進む。 If the received light level ≧ the threshold value (step S413; No), the process proceeds to step S414.
 S414:時間オーバーを判定するステップである。 S414: This is a step of determining time over.
 CPU98は、所定の時間までに液体が液溜部141に到達しない場合はエラーと判定し処理を終了する。 When the liquid does not reach the liquid reservoir 141 by a predetermined time, the CPU 98 determines that an error has occurred and ends the process.
 時間オーバーの場合、(ステップS414;Yes)、終了する。 If the time is over (step S414; Yes), the process ends.
 時間オーバーではない場合、(ステップS414;No)、ステップS412に戻る。 If the time is not over (step S414; No), the process returns to step S412.
 受光レベル<閾値の場合、(ステップS413;Yes)、ステップS415に進む。 If received light level <threshold (step S413; Yes), the process proceeds to step S415.
 S415:ポンプを停止するステップである。 S415: This is a step of stopping the pump.
 ポンプ駆動制御部411は、シリンジポンプ10を停止する。液溜部141に液体の先頭部分が到達すると液溜部141には液体が充填され受光レベル<閾値になる。図14(a)のt6でこの状態を検出するとポンプ駆動制御部411は、シリンジポンプ10を停止する。 The pump drive control unit 411 stops the syringe pump 10. When the leading portion of the liquid reaches the liquid reservoir 141, the liquid reservoir 141 is filled with the liquid, and the light receiving level <threshold. When this state is detected at t <b> 6 in FIG. 14A, the pump drive control unit 411 stops the syringe pump 10.
 S416:三方弁を大気方向に切り替えるステップである。 S416: This is a step of switching the three-way valve to the atmospheric direction.
 ポンプ駆動制御部411は、三方弁25の内部の切替弁を配管16と一端が大気側に開放されている配管50が連通するように切り替える。このことにより、マイクロチップ1の流路に加わっている気体の圧力を大気中に開放し、液体が移動しないようにすることができる。 The pump drive control unit 411 switches the switching valve inside the three-way valve 25 so that the pipe 16 communicates with the pipe 50 whose one end is open to the atmosphere side. As a result, the pressure of the gas applied to the flow path of the microchip 1 can be released to the atmosphere, and the liquid can be prevented from moving.
 S417:微小時間待つステップである。 S417: This is a step of waiting for a minute time.
 ポンプ駆動制御部411は、微小時間待機する。 The pump drive control unit 411 waits for a minute time.
 S418:三方弁25を配管15と配管16が連通するように切り替えるステップである。 S418: This is a step of switching the three-way valve 25 so that the pipe 15 and the pipe 16 communicate with each other.
 ポンプ駆動制御部411は、三方弁25の内部の切替弁を配管15と配管16が連通するように切り替える。 The pump drive control unit 411 switches the switching valve inside the three-way valve 25 so that the pipe 15 and the pipe 16 communicate with each other.
 S419:増幅反応の処理を開始するステップである。 S419: This is a step for starting the amplification reaction process.
 CPU98は、温度調節ユニット152に所定の温度に加熱するように指令する。 CPU 98 instructs temperature adjustment unit 152 to heat to a predetermined temperature.
 S420:液溜部141の反射光を測定するステップである。 S420: This is a step of measuring the reflected light of the liquid reservoir 141.
 液体検知部28は液溜部141の反射光を測定する。ステップS419で温度調節ユニット152によって加熱が開始されると、液体を駆動する気体が膨張し液体の先頭部分が液溜部141より下流に押し出されることがある。これを防止するため本ステップで液溜部141の反射光を測定し、以下のステップにより液体の先頭部分を液溜部141で検知できなくなるまで後退させる。 The liquid detector 28 measures the reflected light of the liquid reservoir 141. When heating is started by the temperature adjustment unit 152 in step S419, the gas that drives the liquid may expand, and the leading portion of the liquid may be pushed downstream from the liquid reservoir 141. In order to prevent this, the reflected light of the liquid reservoir 141 is measured in this step, and the head portion of the liquid is moved backward until it cannot be detected by the liquid reservoir 141 in the following steps.
 S421:受光レベルと閾値とを比較するステップである。 S421: This is a step of comparing the received light level with a threshold value.
 到達判定部412は、液体検知部28の受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS421;No)、ステップS425に進む。 If received light level ≧ threshold (step S421; No), the process proceeds to step S425.
 受光レベル<閾値の場合、(ステップS421;Yes)、ステップS422に進む。 If the light reception level <the threshold value (step S421; Yes), the process proceeds to step S422.
 S422:ポンプを速度Eで吸引方向に駆動するステップである。 S422: This is a step of driving the pump in the suction direction at a speed E.
 ポンプ駆動制御部411はドライバ11に指令し、駆動パルスレートEで吸引方向にシリンジポンプ10を駆動する。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction at the drive pulse rate E.
 S423:所定時間待つステップである。 S423: This is a step of waiting for a predetermined time.
 ポンプ駆動制御部411は、所定時間待機する。 The pump drive control unit 411 waits for a predetermined time.
 S424:ポンプを停止するステップである。 S424: This is a step of stopping the pump.
 ポンプ駆動制御部411は、シリンジポンプ10を停止する。 The pump drive control unit 411 stops the syringe pump 10.
 S425:増幅反応の時間が終了したか、否か、を判定するステップである。 S425: This is a step of determining whether or not the amplification reaction time has ended.
 CPU98は、所定の増幅反応の時間が終了したか、否か、を判定する。 CPU 98 determines whether or not the predetermined amplification reaction time has ended.
 増幅反応の時間が終了していない場合、(ステップS425;No)、ステップS420に戻る。増幅反応の間、図14の例では図14(a)のt7、t8、t9で示すタイミングで所定時間シリンジポンプ10を吸引方向に駆動し、図14(d)のように液溜部141で液体が検知できなくなるまで液体の先頭位置を後退させている。 If the amplification reaction time has not ended (step S425; No), the process returns to step S420. During the amplification reaction, in the example of FIG. 14, the syringe pump 10 is driven in the suction direction for a predetermined time at timings indicated by t7, t8, and t9 in FIG. The leading position of the liquid is retracted until the liquid can no longer be detected.
 増幅反応の時間が終了した場合、(ステップS425;Yes)、ステップS213に進む。 If the amplification reaction time has ended (step S425; Yes), the process proceeds to step S213.
 S213:反応結果を測定するステップである。 S213: This is a step of measuring the reaction result.
 所定の時間経過後、CPU98は反応測定ルーチンをコールし、検出部111a、検出部111bから反応結果を測定する。 After a predetermined time has elapsed, the CPU 98 calls a reaction measurement routine and measures the reaction result from the detection unit 111a and the detection unit 111b.
 第2の実施形態のメインルーチンの説明は以上である。 This completes the description of the main routine of the second embodiment.
 次に、本発明の第3の実施形態に係わるマイクロチップ1の一例について、図15を用いて説明する。 Next, an example of the microchip 1 according to the third embodiment of the present invention will be described with reference to FIG.
 図15は本発明の第3の実施形態におけるマイクロチップ1の外観図である。 FIG. 15 is an external view of the microchip 1 according to the third embodiment of the present invention.
 第3の実施形態で用いるマイクロチップ1は、検体を注入する検体注入口156と検体を分割定量する分割定量部151を有し、検体注入口156から注入した検体を分割定量して検査を行うことができる。それ以外の構成は、第1の実施形態、第2の実施形態で説明したマイクロチップ1とほとんど同じであり、同じ構成要素には同番号を付し説明を省略する。 The microchip 1 used in the third embodiment has a sample injection port 156 for injecting a sample and a division quantification unit 151 for dividing and quantifying the sample, and performs a test by dividing and quantifying the sample injected from the sample injection port 156. be able to. Other configurations are almost the same as those of the microchip 1 described in the first embodiment and the second embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 図15はマイクロチップ1の平面図であり、透明な被覆基板109を通して見える溝形成基板108の溝を図示している。 FIG. 15 is a plan view of the microchip 1, and illustrates the grooves of the groove forming substrate 108 that can be seen through the transparent coated substrate 109.
 図15の410e、410f、410g、410hはマイクロチップ1内部の流路に連通する吸引口であり、各吸引口410から空気を吸入し内部の検体や試薬等を駆動する。本実施形態のマイクロチップ1では図15に示すように注入口410fから始まる流路の構成と、吸入口410gから始まる流路の構成は全く同じであり、以降fチャンネル、gチャンネルと呼び区別する。また、各構成要素にはf、gを付けて区別する。吸引口410eから始まる流路は余分な検体を流すダミー流路251eである。また、吸引口410hから始まる流路も検体を吸引するために設けられたダミー流路251hである。ダミー流路251hと分割定量部151の間に液溜部144が設けられている。 In FIG. 15, 410e, 410f, 410g, and 410h are suction ports that communicate with the flow path inside the microchip 1, and inhale air from each suction port 410 to drive the specimens, reagents, and the like inside. In the microchip 1 of the present embodiment, as shown in FIG. 15, the configuration of the flow path starting from the injection port 410f and the configuration of the flow path starting from the suction port 410g are exactly the same, and are hereinafter referred to as f channel and g channel. . Each component is distinguished by adding f and g. A flow path starting from the suction port 410e is a dummy flow path 251e through which an extra specimen flows. The flow path starting from the suction port 410h is also a dummy flow path 251h provided for sucking the specimen. A liquid reservoir 144 is provided between the dummy channel 251h and the divided quantification unit 151.
 155f、155gは分割定量部151から検体を分割して送る分割流路である。分割流路155f、155gの下流には液溜部147f、147g設けられている。 155f and 155g are divided flow paths for dividing and sending the sample from the divided quantification unit 151. Liquid reservoirs 147f and 147g are provided downstream of the divided flow paths 155f and 155g.
 120f、120gは第1の試薬を収容する試薬収容部、122f、122gは第2の試薬を収容する試薬収容部、123f、123gは第3の試薬を収容する試薬収容部である。試薬収容部123f、123gの下流には混合部130f、混合部130gと混合部131f、混合部131gが設けられており、検体、第1の試薬、第2の試薬、第3の試薬は各混合部で混合される。 120f and 120g are reagent storage units for storing the first reagent, 122f and 122g are reagent storage units for storing the second reagent, and 123f and 123g are reagent storage units for storing the third reagent. A mixing unit 130f, a mixing unit 130g, a mixing unit 131f, and a mixing unit 131g are provided downstream of the reagent storage units 123f and 123g, and the sample, the first reagent, the second reagent, and the third reagent are mixed. Mixed in parts.
 混合部130f、混合部130gと混合部131f、混合部131gで混合された検体、第1の試薬、第2の試薬、第3の試薬は検出部111f、111gに注入される。第1、第2の実施形態と同様の手順で、検査装置80の内部で検出部111f、111gを加熱して所定の温度で検体と試薬とを所定の時間反応させる。 The mixing unit 130f, the mixing unit 130g and the mixing unit 131f, and the specimen, the first reagent, the second reagent, and the third reagent mixed in the mixing unit 131g are injected into the detection units 111f and 111g. In the same procedure as in the first and second embodiments, the detection units 111f and 111g are heated inside the inspection apparatus 80, and the specimen and the reagent are reacted at a predetermined temperature for a predetermined time.
 検出部111f、111gの下流には液溜部141f、141gが設けられており、検出部111f、111gが試薬や検体などの液体で充填されたことを検出できるようになっている。 Liquid reservoirs 141f and 141g are provided downstream of the detection units 111f and 111g so that it can be detected that the detection units 111f and 111g are filled with a liquid such as a reagent or a specimen.
 図16は本発明の第3の実施形態における検出装置80のブロック図である。図16では第1の実施形態と異なる点を中心に図示し、図を簡略化している。第2の実施形態における検出装置80のブロック図と同様の構成であるが、三方弁25の一方の流路は分岐配管17により4つに分岐し、バルブ58e、58f、58g、58hと接続されている。バルブ58e、58f、58g、58hは配管18e、18f、18g、18hと接続されており、吸引口410e、410f、410g、410hと連通している。バルブ58e、58f、58g、58hは制御部99からの制御信号によりシリンジポンプ10と吸引口410e、410f、410g、410hとの流路をそれぞれ開閉する。 FIG. 16 is a block diagram of a detection apparatus 80 according to the third embodiment of the present invention. In FIG. 16, the difference from the first embodiment is mainly shown, and the drawing is simplified. Although it is the same structure as the block diagram of the detection apparatus 80 in 2nd Embodiment, one flow path of the three-way valve 25 branches into four by the branch piping 17, and is connected with valve 58e, 58f, 58g, 58h. ing. The valves 58e, 58f, 58g, and 58h are connected to the pipes 18e, 18f, 18g, and 18h, and communicate with the suction ports 410e, 410f, 410g, and 410h. The valves 58e, 58f, 58g, and 58h open and close the flow paths between the syringe pump 10 and the suction ports 410e, 410f, 410g, and 410h, respectively, according to a control signal from the control unit 99.
 10はシリンジポンプ、11はシリンジポンプ10を駆動するドライバである。三方弁25は制御部99からの制御信号により、配管15と分岐配管17とを連通させるか、または配管15と一端が大気側に開放されている配管50に連通させる切替弁を有している。 10 is a syringe pump, and 11 is a driver for driving the syringe pump 10. The three-way valve 25 has a switching valve that allows the pipe 15 and the branch pipe 17 to communicate with each other according to a control signal from the control unit 99, or allows the pipe 15 and one end to communicate with the pipe 50 that is open to the atmosphere side. .
 第3の実施形態では、液体検知部28、29、30が検査装置80の各液溜部に対応する位置に配置されている例を説明する。液体検知部30は液溜部144に対応する位置に、液体検知部29は液溜部147に対応する位置に、液体検知部28は液溜部141に対応する位置にそれぞれ配置されている。液体検知部28、液体検知部29もf、gチャンネルにそれぞれ配置されている。 In the third embodiment, an example in which the liquid detection units 28, 29, and 30 are arranged at positions corresponding to the respective liquid reservoirs of the inspection apparatus 80 will be described. The liquid detector 30 is disposed at a position corresponding to the liquid reservoir 144, the liquid detector 29 is disposed at a position corresponding to the liquid reservoir 147, and the liquid detector 28 is disposed at a position corresponding to the liquid reservoir 141. The liquid detection unit 28 and the liquid detection unit 29 are also arranged in the f and g channels, respectively.
 次に、本発明の第3の実施形態の検査装置80が検査を行う手順を図17、図18、図19、図20を用いて説明する。 Next, the procedure in which the inspection apparatus 80 according to the third embodiment of the present invention performs an inspection will be described with reference to FIGS. 17, 18, 19, and 20.
 図17、図18、図19は第3の実施形態の検査装置80が検査を行うメインルーチンを説明するフローチャートである。本実施形態では図15で説明したマイクロチップ1を用いて検査を行う。図20は送液制御のステップ毎の送液状態を図示したマイクロチップ1の平面図である。 FIGS. 17, 18, and 19 are flowcharts illustrating a main routine in which the inspection apparatus 80 according to the third embodiment performs an inspection. In this embodiment, the inspection is performed using the microchip 1 described with reference to FIG. FIG. 20 is a plan view of the microchip 1 illustrating the liquid feeding state for each step of liquid feeding control.
 図17のフローチャートから順に手順を説明する。 The procedure will be described in order from the flowchart of FIG.
 なお、マイクロチップ1には予め検体注入口156から検体35が注入されているものとする。また、バルブ58は初期状態では全て閉じているものとする。三方弁25は初期状態では分岐配管17と配管50が連通している。 It is assumed that the sample 35 has been injected into the microchip 1 from the sample injection port 156 in advance. In addition, all the valves 58 are closed in the initial state. In the initial state of the three-way valve 25, the branch pipe 17 and the pipe 50 communicate with each other.
 S201:キャリブレーションを行うステップである。 S201: This is a step for performing calibration.
 到達判定部412は、液体検知部28、液体検知部29、液体検知部30を発光させ、液溜部144、液溜部147、液溜部141から反射した光を液体検知部28、液体検知部29、液体検知部30がそれぞれ検出した出力信号を、所定の信号レベルと比較する。所定の信号レベルの範囲で無い場合、到達判定部412は液体検知部28、液体検知部29、液体検知部30の発光部に流す電流を増加または減少させて所定の信号レベルの範囲になるようキャリブレーションを行う。到達判定部412は、液体検知部28、液体検知部29、液体検知部30の出力信号がそれぞれ所定の信号レベルの範囲になると、そのときの出力電圧を基に液体の到達を判定する閾値を決定しRAM97に記憶する。また、エラーフラッグを初期化し値を0にする。 The arrival determination unit 412 causes the liquid detection unit 28, the liquid detection unit 29, and the liquid detection unit 30 to emit light, and the light reflected from the liquid storage unit 144, the liquid storage unit 147, and the liquid storage unit 141. The output signals detected by the unit 29 and the liquid detection unit 30 are compared with predetermined signal levels. When it is not within the predetermined signal level range, the arrival determination unit 412 increases or decreases the current flowing through the light emitting units of the liquid detection unit 28, the liquid detection unit 29, and the liquid detection unit 30 so as to be within the predetermined signal level range. Perform calibration. When the output signals of the liquid detection unit 28, the liquid detection unit 29, and the liquid detection unit 30 are in a predetermined signal level range, the arrival determination unit 412 sets a threshold value for determining the arrival of the liquid based on the output voltage at that time. Determine and store in RAM 97. Also, the error flag is initialized and the value is set to zero.
 S501:三方弁をポンプ側に切り替えてバルブ58hを開くステップである。 S501: This is a step of opening the valve 58h by switching the three-way valve to the pump side.
 ポンプ駆動制御部411は、三方弁25を分岐配管17と配管15が連通するように切り替えるとともに、バルブ58hを開く。 The pump drive control unit 411 switches the three-way valve 25 so that the branch pipe 17 and the pipe 15 communicate with each other, and opens the valve 58h.
 S502:ポンプを吸引方向に駆動するステップである。 S502: This is a step of driving the pump in the suction direction.
 ポンプ駆動制御部411はドライバ11に指令し、吸引方向にシリンジポンプ10を駆動する。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction.
 S503:液溜部144の反射光を測定するステップである。 S503: This is a step of measuring the reflected light of the liquid reservoir 144.
 液体検知部30は液溜部144の反射光を測定する。 The liquid detection unit 30 measures the reflected light from the liquid reservoir 144.
 S504:受光レベルと閾値とを比較するステップである。 S504: This is a step of comparing the light reception level with the threshold value.
 到達判定部412は、液体検知部30の受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 30 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS504;No)、ステップS503に戻る。 If the received light level ≧ the threshold (step S504; No), the process returns to step S503.
 受光レベル<閾値の場合、(ステップS504;Yes)、ステップS505に進む。 If the received light level <the threshold value (step S504; Yes), the process proceeds to step S505.
 S505:三方弁を大気開放し、ポンプを停止するステップである。 S505: This is a step of opening the three-way valve to the atmosphere and stopping the pump.
 ポンプ駆動制御部411は、三方弁25を分岐配管17と配管50が連通するようにするとともに、シリンジポンプ10を停止する。図20(a)のように液溜部144に検体35の先頭部分が到達すると液溜部144には検体35が充填され受光レベル<閾値になる。この状態を検出するとポンプ駆動制御部411は、シリンジポンプ10を停止する。 The pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10. As shown in FIG. 20A, when the leading portion of the specimen 35 reaches the liquid reservoir 144, the liquid reservoir 144 is filled with the specimen 35, and the light receiving level <threshold. When this state is detected, the pump drive control unit 411 stops the syringe pump 10.
 S506:バルブ58hを閉じるステップである。 S506: This is a step of closing the valve 58h.
 ポンプ駆動制御部411は、バルブ58hを閉じる。 The pump drive control unit 411 closes the valve 58h.
 S507:バルブ58eを開くステップである。 S507: This is a step of opening the valve 58e.
 ポンプ駆動制御部411は、バルブ58eを開く。 The pump drive control unit 411 opens the valve 58e.
 S508:ポンプを吸引方向に駆動するステップである。 S508: This is a step of driving the pump in the suction direction.
 ポンプ駆動制御部411はドライバ11に指令し、所定時間吸引方向にシリンジポンプ10を駆動する。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
 S509:バルブ58eを閉じるステップである。 S509: This is a step of closing the valve 58e.
 ポンプ駆動制御部411は、バルブ58eを閉じる。図20(b)に示すように、余分な検体35をダミー流路251eに流すと、分割定量部151には所定の量の検体35が残る。 The pump drive control unit 411 closes the valve 58e. As shown in FIG. 20B, when an extra sample 35 is caused to flow through the dummy channel 251e, a predetermined amount of the sample 35 remains in the divided quantification unit 151.
 S510:バルブ58fを開くステップである。 S510: This is a step of opening the valve 58f.
 ポンプ駆動制御部411は、バルブ58fを開く。 The pump drive control unit 411 opens the valve 58f.
 S511:液溜部147fの反射光を測定するステップである。 S511: This is a step of measuring the reflected light of the liquid reservoir 147f.
 液体検知部30は液溜部147fの反射光を測定する。 The liquid detector 30 measures the reflected light of the liquid reservoir 147f.
 S512:受光レベルと閾値とを比較するステップである。 S512: This is a step of comparing the received light level with a threshold value.
 到達判定部412は、液体検知部29fの受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 29f with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS512;No)、ステップS512に戻る。 If the received light level ≧ the threshold value (step S512; No), the process returns to step S512.
 受光レベル<閾値の場合、(ステップS512;Yes)、ステップS513に進む。 If received light level <threshold (step S512; Yes), the process proceeds to step S513.
 S513:三方弁を大気開放し、ポンプを停止するステップである。 S513: This is a step of opening the three-way valve to the atmosphere and stopping the pump.
 ポンプ駆動制御部411は、三方弁25を分岐配管17と配管50が連通するようにするとともに、シリンジポンプ10を停止する。図20(c)のように液溜部147fに検体35が到達すると液溜部147fには検体35が充填され受光レベル<閾値になる。この状態を検出するとポンプ駆動制御部411は、シリンジポンプ10を停止する。このようにして分割流路155fには所定量の検体35fが充填される。 The pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10. When the specimen 35 reaches the liquid reservoir 147f as shown in FIG. 20C, the liquid reservoir 147f is filled with the specimen 35, and the light receiving level <threshold. When this state is detected, the pump drive control unit 411 stops the syringe pump 10. In this way, a predetermined amount of the specimen 35f is filled in the divided flow path 155f.
 S514:バルブ58fを閉じるステップである。 S514: This is a step of closing the valve 58f.
 ポンプ駆動制御部411は、バルブ58fを閉じる。 The pump drive control unit 411 closes the valve 58f.
 S515:バルブ58gを開くステップである。 S515: This is a step of opening the valve 58g.
 ポンプ駆動制御部411は、バルブ58gを開く。 The pump drive control unit 411 opens the valve 58g.
 S516:ポンプを吸引方向に駆動するステップである。 S516: This is a step of driving the pump in the suction direction.
 ポンプ駆動制御部411はドライバ11に指令し、所定時間吸引方向にシリンジポンプ10を駆動する。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
 S517:液溜部147gの反射光を測定するステップである。 S517: This is a step of measuring the reflected light of the liquid reservoir 147g.
 液体検知部30は液溜部147gの反射光を測定する。 The liquid detector 30 measures the reflected light of the liquid reservoir 147g.
 S518:受光レベルと閾値とを比較するステップである。 S518: This is a step of comparing the light reception level with the threshold value.
 到達判定部412は、液体検知部29gの受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 29g with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS518;No)、ステップS518に戻る。 If the light reception level ≧ the threshold value (step S518; No), the process returns to step S518.
 受光レベル<閾値の場合、(ステップS518;Yes)、ステップS519に進む。 If received light level <threshold (step S518; Yes), the process proceeds to step S519.
 S519:三方弁を大気開放し、ポンプを停止するステップである。 S519: This is a step of opening the three-way valve to the atmosphere and stopping the pump.
 ポンプ駆動制御部411は、三方弁25を分岐配管17と配管50が連通するようにするとともに、シリンジポンプ10を停止する。図20(d)のように液溜部147gに検体35が到達すると液溜部147gには検体35gが充填され受光レベル<閾値になる。この状態を検出するとポンプ駆動制御部411は、シリンジポンプ10を停止する。このようにして分割流路155gには所定量の検体35が充填される。 The pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10. When the specimen 35 reaches the liquid reservoir 147g as shown in FIG. 20D, the specimen 35g is filled in the liquid reservoir 147g, and the light receiving level <threshold. When this state is detected, the pump drive control unit 411 stops the syringe pump 10. In this way, a predetermined amount of the specimen 35 is filled in the divided flow path 155g.
 本ステップを終えると図20(d)のように検体35は検体35fと検体35gに等量に分割されて分割流路155f、分割流路155gに充填されている。 When this step is completed, as shown in FIG. 20D, the sample 35 is divided into the sample 35f and the sample 35g in equal amounts and filled in the divided flow path 155f and the divided flow path 155g.
 S520:バルブ58gを閉じるステップである。 S520: This is a step of closing the valve 58g.
 ポンプ駆動制御部411は、バルブ58gを閉じる。 The pump drive control unit 411 closes the valve 58g.
 S521:温度調整を行うステップである。 S521: Step for adjusting temperature.
 CPU98は、温度調節ユニット152に所定の温度に加熱するように指令し、所定の温度になるまで待機する。 The CPU 98 instructs the temperature adjustment unit 152 to heat to a predetermined temperature, and waits until the temperature reaches the predetermined temperature.
 S522:バルブ58fを開くステップである。 S522: This is a step of opening the valve 58f.
 ポンプ駆動制御部411は、バルブ58fを開く。 The pump drive control unit 411 opens the valve 58f.
 S523:ポンプを吸引方向に駆動するステップである。 S523: This is a step of driving the pump in the suction direction.
 ポンプ駆動制御部411はドライバ11に指令し、所定時間吸引方向にシリンジポンプ10を駆動する。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
 S524:液溜部141fの反射光を測定するステップである。 S524: This is a step of measuring the reflected light of the liquid reservoir 141f.
 液体検知部28は液溜部141の反射光を測定する。 The liquid detector 28 measures the reflected light of the liquid reservoir 141.
 S525:受光レベルと閾値とを比較するステップである。 S525: This is a step of comparing the received light level with a threshold value.
 到達判定部412は、液体検知部28の受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS525;No)、ステップS525に戻る。 If the received light level ≧ the threshold value (step S525; No), the process returns to step S525.
 受光レベル<閾値の場合、(ステップS525;Yes)、ステップS526に進む。 If the received light level <the threshold value (step S525; Yes), the process proceeds to step S526.
 S526:三方弁を大気開放し、ポンプを停止するステップである。 S526: A step of opening the three-way valve to the atmosphere and stopping the pump.
 ポンプ駆動制御部411は、三方弁25を分岐配管17と配管50が連通するようにするとともに、シリンジポンプ10を停止する。このステップでは図20(e)に示すように検体35fと第1の試薬、第2の試薬、第3の試薬とが混合部130f、131fを通過する際に混合された液体57fが検出部111fに充填されている。 The pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10. In this step, as shown in FIG. 20 (e), the liquid 57f mixed when the specimen 35f and the first reagent, the second reagent, and the third reagent pass through the mixing sections 130f and 131f is detected by the detection section 111f. Is filled.
 S527:バルブ58fを閉じるステップである。 S527: This is a step of closing the valve 58f.
 ポンプ駆動制御部411は、バルブ58fを閉じる。 The pump drive control unit 411 closes the valve 58f.
 S528:バルブ58gを開くステップである。 S528: This is a step of opening the valve 58g.
 ポンプ駆動制御部411は、バルブ58gを開く。 The pump drive control unit 411 opens the valve 58g.
 S529:ポンプを吸引方向に駆動するステップである。 S529: This is a step of driving the pump in the suction direction.
 ポンプ駆動制御部411はドライバ11に指令し、所定時間吸引方向にシリンジポンプ10を駆動する。 The pump drive control unit 411 instructs the driver 11 to drive the syringe pump 10 in the suction direction for a predetermined time.
 S530:液溜部141gの反射光を測定するステップである。 S530: This is a step of measuring the reflected light of the liquid reservoir 141g.
 液体検知部28は液溜部141gの反射光を測定する。 The liquid detector 28 measures the reflected light of the liquid reservoir 141g.
 S531:受光レベルと閾値とを比較するステップである。 S531: A step of comparing the light reception level with the threshold value.
 到達判定部412は、液体検知部28の受光レベルに比例する出力信号レベルと、ステップS201でキャリブレーションを行ったときに求めた閾値と比較し、受光レベル<閾値か、否か、を判定する。 The arrival determination unit 412 compares the output signal level proportional to the light reception level of the liquid detection unit 28 with the threshold obtained when the calibration is performed in step S201, and determines whether the light reception level <the threshold. .
 受光レベル≧閾値の場合、(ステップS531;No)、ステップS531に戻る。 If the light reception level ≧ the threshold value (step S531; No), the process returns to step S531.
 受光レベル<閾値の場合、(ステップS531;Yes)、ステップS532に進む。 If the received light level <the threshold value (step S531; Yes), the process proceeds to step S532.
 S532:三方弁を大気開放し、ポンプを停止するステップである。 S532: This is a step of opening the three-way valve to the atmosphere and stopping the pump.
 ポンプ駆動制御部411は、三方弁25を分岐配管17と配管50が連通するようにするとともに、シリンジポンプ10を停止する。このステップでは図20(f)に示すように検体35gと第1の試薬、第2の試薬、第3の試薬とが混合部130g、131gを通過する際に混合された液体57gが検出部111gに充填されている。 The pump drive controller 411 causes the three-way valve 25 to communicate with the branch pipe 17 and the pipe 50 and stops the syringe pump 10. In this step, as shown in FIG. 20 (f), the liquid 57g mixed when the specimen 35g and the first reagent, the second reagent, and the third reagent pass through the mixing sections 130g and 131g is detected by the detection section 111g. Is filled.
 S533:バルブ58gを閉じるステップである。 S533: This is a step of closing the valve 58g.
 ポンプ駆動制御部411は、バルブ58gを閉じる。 The pump drive control unit 411 closes the valve 58g.
 S534:増幅反応の時間が終了したか、否か、を判定するステップである。 S534: This is a step of determining whether or not the time for the amplification reaction has ended.
 CPU98は、所定の増幅反応の時間が終了したか、否か、を判定する。 CPU 98 determines whether or not the predetermined amplification reaction time has ended.
 増幅反応の時間が終了していない場合、(ステップS534;No)、ステップS534に戻る。 If the amplification reaction time has not ended (step S534; No), the process returns to step S534.
 増幅反応の時間が終了した場合、(ステップS534;Yes)、ステップS213に進む。 If the amplification reaction time has ended (step S534; Yes), the process proceeds to step S213.
 S213:反応結果を測定するステップである。 S213: This is a step of measuring the reaction result.
 所定の時間経過後、CPU98は反応測定ルーチンをコールし、検出部111g、検出部111hから反応結果を測定する。 After a predetermined time has elapsed, the CPU 98 calls a reaction measurement routine and measures the reaction result from the detection unit 111g and the detection unit 111h.
 第3の実施形態のメインルーチンの説明は以上である。 This completes the description of the main routine of the third embodiment.
 以上このように、本発明によれば、流路内の液体の先頭を所望の位置に移動させることができる検査システムを提供することができる。 As described above, according to the present invention, it is possible to provide an inspection system capable of moving the head of the liquid in the flow path to a desired position.

Claims (10)

  1. ポンプを用いて流体をマイクロチップの流路に注入または吸引し、該流路に貯蔵された液体である検体と試薬とを移動させて検出部に充填し、反応させた結果を測定する検査システムにおいて、
    前記流路を流れる液体を溜める液溜部と、
    前記液溜部に溜まった前記液体を検知する液体検知手段と、
    前記ポンプの駆動を制御するポンプ駆動制御手段と、
    前記液体検知手段の検知出力に基づいて前記液体の有無を判定する到達判定手段と、
    を有し、
    前記ポンプ駆動制御手段は、前記到達判定手段の判定に基づいて前記ポンプの駆動を制御することを特徴とする検査システム。
    An inspection system that measures the result of injecting or aspirating a fluid into a microchip channel using a pump, moving a sample and a reagent stored in the channel to fill a detection unit, and reacting them. In
    A liquid reservoir for storing liquid flowing in the flow path;
    Liquid detecting means for detecting the liquid accumulated in the liquid reservoir,
    Pump drive control means for controlling the drive of the pump;
    Arrival determination means for determining the presence or absence of the liquid based on the detection output of the liquid detection means;
    Have
    The pump drive control means controls the drive of the pump based on the determination of the arrival determination means.
  2. 前記液溜部は、
    前記検出部の下流側の流路に設けられていることを特徴とする請求の範囲第1項に記載の検査システム。
    The liquid reservoir is
    The inspection system according to claim 1, wherein the inspection system is provided in a flow path on a downstream side of the detection unit.
  3. 前記マイクロチップは、
    前記検出部の上流側の流路に前記検体と前記試薬とを混合する混合部を有し、
    前記液溜部は、
    前記混合部に近い上流側の流路に設けられていることを特徴とする請求の範囲第1項または第2項に記載の検査システム。
    The microchip is
    A mixing unit that mixes the sample and the reagent in a flow channel upstream of the detection unit;
    The liquid reservoir is
    3. The inspection system according to claim 1, wherein the inspection system is provided in a flow path on an upstream side close to the mixing unit.
  4. 前記液溜部は、
    前記検体または前記試薬が貯蔵された流路に近い下流側の流路に設けられていることを特徴とする請求の範囲第1項から第3項の何れか1項に記載の検査システム。
    The liquid reservoir is
    The inspection system according to any one of claims 1 to 3, wherein the inspection system is provided in a flow channel on a downstream side close to a flow channel in which the specimen or the reagent is stored.
  5. 前記マイクロチップの一部を外側から加熱して前記流路の内部にある前記液体を加熱する加熱手段を有し、
    前記液溜部は、
    前記流路の前記加熱手段により加熱可能な先頭の位置に設けられていることを特徴とする請求の範囲第1項から第4項の何れか1項に記載の検査システム。
    Heating means for heating a part of the microchip from the outside to heat the liquid in the flow path;
    The liquid reservoir is
    The inspection system according to any one of claims 1 to 4, wherein the inspection system is provided at a leading position of the flow path that can be heated by the heating unit.
  6. 前記マイクロチップは、
    前記試薬または前記検体を分割する分割流路を有し、
    前記液溜部は、
    前記分割流路の下流の流路に設けられていることを特徴とする請求の範囲第1項から第5項の何れか1項に記載の検査システム。
    The microchip is
    A divided flow path for dividing the reagent or the specimen;
    The liquid reservoir is
    The inspection system according to any one of claims 1 to 5, wherein the inspection system is provided in a flow path downstream of the divided flow path.
  7. 前記ポンプ駆動制御手段は、
    前記到達判定手段の判定に基づいて前記ポンプの駆動を停止することを特徴とする請求の範囲第1項から第6項の何れか1項に記載の検査システム。
    The pump drive control means includes
    The inspection system according to any one of claims 1 to 6, wherein driving of the pump is stopped based on determination by the arrival determination means.
  8. 前記ポンプ駆動制御手段は、
    前記到達判定手段の判定に基づいて前記ポンプから前記マイクロチップの流路に注入または吸引する流体の流量を変更することを特徴とする請求の範囲第1項から第7項の何れか1項に記載の検査システム。
    The pump drive control means includes
    The flow rate of the fluid that is injected or sucked into the flow path of the microchip from the pump is changed based on the determination of the arrival determining means, according to any one of claims 1 to 7. The inspection system described.
  9. 前記ポンプ駆動制御手段は、
    前記到達判定手段の判定に基づいてそれまで前記ポンプから注入または吸引している方向と逆方向に前記流体を吸引または注入することを特徴とする請求の範囲第1項から第8項の何れか1項に記載の検査システム。
    The pump drive control means includes
    The fluid according to any one of claims 1 to 8, wherein the fluid is sucked or injected in a direction opposite to the direction in which the pump has been infused or sucked until then based on the determination of the arrival judging means. The inspection system according to item 1.
  10. 前記流体は気体であり、前記マイクロチップの前記流路に加わっている前記気体の圧力を大気側に開放する弁を有し、
    前記ポンプ駆動制御手段は、
    前記到達判定手段の判定に基づいて前記弁を大気側に開放することを特徴とする請求の範囲第1項から第9項の何れか1項に記載の検査システム。
    The fluid is a gas, and has a valve that opens the pressure of the gas applied to the flow path of the microchip to the atmosphere side,
    The pump drive control means includes
    The inspection system according to any one of claims 1 to 9, wherein the valve is opened to the atmosphere side based on the determination of the arrival determination means.
PCT/JP2009/056092 2008-04-09 2009-03-26 Inspection system WO2009125676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507209A JPWO2009125676A1 (en) 2008-04-09 2009-03-26 Inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008101316 2008-04-09
JP2008-101316 2008-04-09

Publications (1)

Publication Number Publication Date
WO2009125676A1 true WO2009125676A1 (en) 2009-10-15

Family

ID=41161810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056092 WO2009125676A1 (en) 2008-04-09 2009-03-26 Inspection system

Country Status (2)

Country Link
JP (1) JPWO2009125676A1 (en)
WO (1) WO2009125676A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133997A1 (en) * 2009-05-20 2010-11-25 Koninklijke Philips Electronics N. V. Diagnostic device with sample application detector
EP2623988A1 (en) * 2010-09-28 2013-08-07 FUJIFILM Corporation Testing apparatus and method for control thereof, and reaction container for testing
WO2013175833A1 (en) * 2012-05-24 2013-11-28 ソニー株式会社 Microchip
JP2014098700A (en) * 2012-11-15 2014-05-29 Ortho Clinical Diagnostics Inc Quality/process control of lateral flow assay device based on flow monitoring
JP2014190925A (en) * 2013-03-28 2014-10-06 Oem System Co Ltd Body fluid sample transfer mechanism, body fluid sample transfer method, body fluid component analyzer and body fluid component analysis method
JP2015516583A (en) * 2012-05-15 2015-06-11 ウェルスタット ダイアグノスティクス,エルエルシー Clinical diagnostic system including instrument and cartridge
WO2016117042A1 (en) * 2015-01-21 2016-07-28 株式会社 日立ハイテクノロジーズ Analysis device
JP2018033460A (en) * 2014-07-08 2018-03-08 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196739A (en) * 1995-11-15 1997-07-31 Terametsukusu Kk Method and implement for detection of liquid
JP2007051881A (en) * 2005-08-15 2007-03-01 Canon Inc Reaction cartridge, reaction apparatus, and moving method for solution of the reaction cartridge
JP2007083190A (en) * 2005-09-22 2007-04-05 Konica Minolta Medical & Graphic Inc Microreacter
JP2007285777A (en) * 2006-04-13 2007-11-01 Hitachi Software Eng Co Ltd Inspection chip and system thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196739A (en) * 1995-11-15 1997-07-31 Terametsukusu Kk Method and implement for detection of liquid
JP2007051881A (en) * 2005-08-15 2007-03-01 Canon Inc Reaction cartridge, reaction apparatus, and moving method for solution of the reaction cartridge
JP2007083190A (en) * 2005-09-22 2007-04-05 Konica Minolta Medical & Graphic Inc Microreacter
JP2007285777A (en) * 2006-04-13 2007-11-01 Hitachi Software Eng Co Ltd Inspection chip and system thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133997A1 (en) * 2009-05-20 2010-11-25 Koninklijke Philips Electronics N. V. Diagnostic device with sample application detector
EP2623988A1 (en) * 2010-09-28 2013-08-07 FUJIFILM Corporation Testing apparatus and method for control thereof, and reaction container for testing
EP2623988A4 (en) * 2010-09-28 2014-04-09 Fujifilm Corp Testing apparatus and method for control thereof, and reaction container for testing
US9075048B2 (en) 2010-09-28 2015-07-07 Fujifilm Corporation Assay apparatus and its control method and reaction container for assay
JP2015516583A (en) * 2012-05-15 2015-06-11 ウェルスタット ダイアグノスティクス,エルエルシー Clinical diagnostic system including instrument and cartridge
WO2013175833A1 (en) * 2012-05-24 2013-11-28 ソニー株式会社 Microchip
JPWO2013175833A1 (en) * 2012-05-24 2016-01-12 ソニー株式会社 Microchip
EP2857846A4 (en) * 2012-05-24 2016-02-24 Sony Corp Microchip
US10509031B2 (en) 2012-11-15 2019-12-17 Ortho-Clinical Diagnostics, Inc. Quality/process control of a lateral flow assay device based on flow monitoring
JP2014098700A (en) * 2012-11-15 2014-05-29 Ortho Clinical Diagnostics Inc Quality/process control of lateral flow assay device based on flow monitoring
JP2014190925A (en) * 2013-03-28 2014-10-06 Oem System Co Ltd Body fluid sample transfer mechanism, body fluid sample transfer method, body fluid component analyzer and body fluid component analysis method
JP2021000106A (en) * 2014-07-08 2021-01-07 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method and chip for nucleic acid amplification
JP2019047812A (en) * 2014-07-08 2019-03-28 国立研究開発法人産業技術総合研究所 Nucleic acid amplification apparatus, nucleic acid amplification method, and nucleic acid amplification chip
JP2019150050A (en) * 2014-07-08 2019-09-12 国立研究開発法人産業技術総合研究所 Nucleic acid amplification apparatus, nucleic acid amplification method, and nucleic acid amplification chip
JP2018033460A (en) * 2014-07-08 2018-03-08 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
US11098347B2 (en) 2014-07-08 2021-08-24 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
JP6996717B2 (en) 2014-07-08 2022-02-03 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method and nucleic acid amplification chip
JP2022033853A (en) * 2014-07-08 2022-03-02 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and nucleic acid amplification chip
JP7250292B2 (en) 2014-07-08 2023-04-03 国立研究開発法人産業技術総合研究所 NUCLEIC ACID AMPLIFIER, NUCLEIC ACID AMPLIFICATION METHOD, AND NUCLEIC ACID AMPLIFICATION CHIP
US11781181B2 (en) 2014-07-08 2023-10-10 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
JP7542834B2 (en) 2014-07-08 2024-09-02 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and nucleic acid amplification chip
WO2016117042A1 (en) * 2015-01-21 2016-07-28 株式会社 日立ハイテクノロジーズ Analysis device

Also Published As

Publication number Publication date
JPWO2009125676A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2009125676A1 (en) Inspection system
EP1925366A1 (en) Microchip inspection system and microchip inspection system program
US8460607B2 (en) Microfluidic device having a flow channel
JP2008128706A (en) Microchip inspection system and program used for the microchip inspection system
JP2009109459A (en) Pipette chip, inspection system, pipette, and filling apparatus
WO2009113356A1 (en) Reaction detection device
JPWO2008053660A1 (en) Micropump unit and microchip inspection system
JPWO2008047533A1 (en) Microchip reaction detection system, reaction method in microchip flow path
JP2009062911A (en) Reaction detecting device
JP2009058352A (en) Inspection apparatus
WO2009139311A1 (en) Inspecting device
JP2009103641A (en) Inspection apparatus
JP2009058256A (en) Fluorescence detection unit, reaction detector and microchip inspection system
JP2009122021A (en) Inspection system
JPWO2009069449A1 (en) Inspection device and control method of inspection device
JP2009300149A (en) Inspection device
JP2009025014A (en) Reaction detection device and microchip inspection system
JP2009300256A (en) Inspecting system
JP2009097953A (en) Examination apparatus
WO2009096252A1 (en) Fluorescent detection unit and reaction detector
JP2009128277A (en) Inspection apparatus and inspection system
JP2007163344A (en) Reaction detector
JP2007225555A (en) Microchip, examination device using microchip, and examination system using microchip
JP2007225479A (en) Microchip, examination device using microchip, and examination system using microchip
JP2009133668A (en) Inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507209

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730131

Country of ref document: EP

Kind code of ref document: A1