WO2009125600A1 - Liquid crystal image display unit - Google Patents

Liquid crystal image display unit Download PDF

Info

Publication number
WO2009125600A1
WO2009125600A1 PCT/JP2009/001658 JP2009001658W WO2009125600A1 WO 2009125600 A1 WO2009125600 A1 WO 2009125600A1 JP 2009001658 W JP2009001658 W JP 2009001658W WO 2009125600 A1 WO2009125600 A1 WO 2009125600A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse
video
liquid crystal
image
Prior art date
Application number
PCT/JP2009/001658
Other languages
French (fr)
Japanese (ja)
Inventor
安部玲央
西田保洋
渡辺一幸
Original Assignee
株式会社ナナオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナナオ filed Critical 株式会社ナナオ
Priority to JP2010507178A priority Critical patent/JP5132763B2/en
Publication of WO2009125600A1 publication Critical patent/WO2009125600A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0237Switching ON and OFF the backlight within one frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images

Definitions

  • the present invention relates to a liquid crystal image display device, and more particularly to a lighting method of a backlight, and relates to a technique for appropriately generating a light control signal of the backlight according to the movement of a video image.
  • the batch intermittent lighting method in which all backlights are lit collectively and the backlight are divided into several phases, and the backlights of each phase are sequentially lit according to the writing of liquid crystal pixels.
  • CFF critical fusion frequency
  • this critical fusion frequency becomes high due to the conditions under which the liquid crystal display is viewed, the enlargement of the liquid crystal display and the increase in luminance.
  • the critical fusion frequency was previously said to be lower than 60 Hz, but has recently exceeded 60 Hz. From this, flickering is felt when it is intermittently turned on in synchronization with the vertical sync signal of 60 Hz in a still image.
  • the Weber's law in the discrimination of brightness is that the ratio of ⁇ S to S, ⁇ S / S, is constant. According to this law, when the frequency of the dimming pulse is instantaneously switched, the amount of change in the amount of light accumulated in the human eye becomes equal to or greater than ⁇ S along with the instantaneous change in luminance. Are felt.
  • the solid line is the luminance emitted by the light source
  • the broken line is a square wave of the dimming pulse.
  • the amount of change in integral of the luminance at the transition of the pattern from high frequency to low frequency is equal to or greater than ⁇ S of Weber's law, and it can be perceived by the human eye as an instantaneous luminance change.
  • Patent Document 1 and Patent Document 2 still have the following unsolvable problems. This problem arises from the fact that the number of dimming pulses in a unit vertical synchronization period is different for each type of frequency because there are multiple types of frequencies of dimming pulses.
  • the number of falling of the dimming pulse in the unit vertical synchronization period is different before and after the switching of the dimming pulse. That is, the number of fall of the dimming pulse in the unit vertical synchronization period is different between the moving image determination and the still image determination.
  • Patent Document 1 when the light adjustment pulse at the time of moving image judgment is 60 Hz, the number of falling of the light adjustment pulse in the unit vertical synchronization period is one, and when the light adjustment pulse at the still image judgment is 240 Hz The number of falling of the dimming pulse in the unit vertical synchronization period is four. As a result of the difference in the number of falling edges of the dimming pulse, when the moving image determination and the still image determination are compared, chromaticity change and luminance change constantly occur on the screen.
  • a fluorescent tube is usually used as a backlight of a liquid crystal image display device.
  • Red, green, and blue phosphors are applied to the inner surface of the glass of the fluorescent tube, and the green phosphor has an afterglow characteristic that the afterglow time is longer than that of other reds and blues.
  • a green afterglow occurs. That is, the number of times of occurrence of the green afterglow is different in each image judgment because the number of falling of the light adjustment pulse in the unit vertical synchronization period is different between the moving image determination and the still image determination.
  • the whole screen has a greenish chromaticity than the moving image determination.
  • the luminance has a non-linear waveform.
  • the luminance is a non-linear curvilinear wave. From this, even if the duty ratio per unit vertical synchronization period of each frequency is the same, the luminances do not match. Even if the duty ratio is the same, the luminance is not simply superimposed, so the screen with a high frequency is slightly lower in luminance than the screen with a low frequency. That is, the brightness of the screen at the still image determination with the narrow pulse width and the large pulse number is darker than that in the moving image determination with the wide pulse width and one pulse number, even if the duty ratio is the same. As a result, when the luminances of the moving image determination, the still image determination, and the screen are compared, the entire screen becomes slightly darker at the still image determination.
  • the present invention has been made in view of such circumstances, and the lighting mode of the backlight is instantaneously changed in luminance (flushing phenomenon) when switching between a moving image and a still image, and steady before and after the switching. It is an object of the present invention to provide a liquid crystal image display device which does not display image contour blurring at the time of moving image and flicker at the time of still image without causing any luminance change and chromaticity change.
  • a light control signal consisting of a pulse train formed of a plurality of predetermined pulses and a video judgment means for transmitting a video judgment signal predetermined based on the video signal is vertical It comprises: a light control signal generating unit that generates each synchronization signal; a light emitting unit driven by the light control signal sent from the light control signal generating unit; and a liquid crystal image display unit that emits light by the light emitting unit.
  • the light adjustment signal generation means when the first image discrimination signal is sent from the image discrimination means, maintains the number of pulses constituting the light adjustment signal, and the pulse interval in the pulse train is maintained.
  • the pulse interval in the pulse train is set while maintaining the number of pulses constituting the light adjustment signal. Gradually Characterized by widely.
  • the liquid crystal image display device of the present invention in order to shift the lighting method of the backlight to either the moving image mode or the still image mode by the video image discrimination signal sent based on the video signal, every vertical synchronization period The phase of each pulse generated in the same number is displaced. That is, the moving image mode and the still image mode are switched by adjusting the interval of each pulse in the pulse train. It is a feature of the present invention to adjust the intervals of a plurality of pulses generated in the same number in the unit vertical synchronization period.
  • the number of pulses in the unit vertical synchronization period is the same in both modes, the number of falling edges of the pulse in the unit vertical synchronization period is the same. Therefore, since the green afterglow characteristics of approximately the same amount appear in either mode, the change in chromaticity upon switching between the moving image mode and the still image mode is largely suppressed. In addition, since the number of falling edges of the pulse in the unit vertical synchronization period is the same, the non-linear waveform of the backlight is the same, and the steady luminance change at the time of switching between the moving image mode and the still image mode is significantly suppressed. .
  • the chromaticity change and the luminance change are reduced to such an extent that a human does not feel a change by appropriately setting the pulse interval in the moving image mode.
  • the progressive change described in claim 1 notices the change of the mode switching with the human eye. It also means adjusting the pulse interval steplessly to the extent that it can not
  • the dimming signal generation means gradually narrows the pulse interval in the pulse train while maintaining the number of pulses constituting the dimming signal.
  • a pulse train formed by a plurality of pulses can be regarded as one pulse in a pseudo manner, and when the second image discrimination signal is sent from the image discrimination means, a light control signal is formed.
  • the pulse train is equivalent to a pulse train represented by a frequency obtained by multiplying the number of pulses in the dimming signal by the number of pulses in the dimming signal by gradually widening the pulse interval in the pulse train while maintaining the number of pulses. It is desirable to make it
  • the pulse train formed from a plurality of pulses shifts to a moving image mode in which it is regarded as one pulse in a pseudo manner. Then, when an image discrimination signal different from the above is sent, the interval of the pulses in the pulse train is gradually extended, and the pseudo one pulse is shifted to the independent pulse. Then, in the still image mode, the phase of the pulse having the widest pulse interval in the dimming signal becomes the same phase as the pulse of the frequency obtained by multiplying the number of pulses in the unit vertical synchronization period by the vertical synchronization frequency. . From this, at the time of switching from the moving image mode to the still image mode, and at the reverse switching time, the instantaneous luminance change (flushing phenomenon) of the backlight is eliminated.
  • the pulse train is virtually regarded as one pulse, and the lighting period and the lighting-off period of the fluorescent tube are approximately divided into two within the unit vertical synchronization period,
  • the continuous black insertion period within the unit vertical synchronization period becomes long. Thereby, the image outline blurring of a moving image can be reduced.
  • the video discrimination means discriminates whether the video is a video which is not likely to sense flicker or is a video which is likely to sense a flicker based on the video signal, and when it is determined that the video is unlikely to sense flicker, the first video discrimination signal
  • the second image discrimination signal may be transmitted when it is determined that the image is transmitted and flicker is easy to feel. From this, the image discrimination means discriminates whether the image is an image which is easy to sense flicker or not so as to send each image discrimination signal, so that the image displayed on the liquid crystal image display device can be displayed.
  • a suitable backlight can be lit.
  • the light adjustment signal generation unit may be provided with a screen brightness adjustment signal reception unit that adjusts the brightness of the liquid crystal screen by adjusting the pulse duty ratio of the light adjustment signal by receiving the screen brightness adjustment signal.
  • a screen brightness adjustment signal reception unit that adjusts the brightness of the liquid crystal screen by adjusting the pulse duty ratio of the light adjustment signal by receiving the screen brightness adjustment signal.
  • the adjustment of the brightness of the liquid crystal screen is performed by changing the duty ratio of the pulse forming the dimming signal, the switching between the moving image mode and the still image mode of the dimming signal and the adjustment of the brightness of the screen are performed. Can be performed by one dimming signal generation circuit.
  • the light emitting means may have a plurality of light sources, and the lighting method of the light sources may be an intermittent lighting method in sequence.
  • the lighting method of the light sources may be an intermittent lighting method in sequence.
  • the light emitting means may comprise a light source consisting of three or more layers. Since the liquid crystal display is controlled by the sequential intermittent lighting of three or more layers even in the case of a large screen, it is possible to efficiently reduce the image outline blurring of a moving image.
  • liquid crystal image display device According to the liquid crystal image display device according to the present invention, instantaneous luminance change (flushing phenomenon) does not occur at the time of switching between the moving image mode and the still image mode of the backlight. In addition, it is possible to provide an image in which steady change in chromaticity and change in luminance before and after switching are significantly suppressed.
  • FIG. 1 is a block diagram showing a schematic configuration of a liquid crystal image display device according to a first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of a video image discrimination circuit provided in the first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of a light adjustment signal generation circuit provided in the first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of a backlight module provided in the first embodiment.
  • FIG. 5 is a schematic view showing a dimming signal generated in the dimming signal generation circuit of the first embodiment. 5 is a flowchart showing a process of calculating pulse intervals in a pulse interval calculation unit provided in the dimming signal generation circuit of the first embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a liquid crystal image display device according to a first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of a video image discrimination circuit provided in the first embodiment.
  • FIG. 2 is a block diagram showing a
  • FIG. 7 is a diagram showing dimming signals generated in the moving image mode in the three dimming signal generation circuits of the first embodiment. It is the figure which compared the light control signal of the backlight in Example 1 and a prior art example, and the brightness perceived through a liquid crystal panel.
  • FIG. 6 is a diagram showing luminance and chromaticity in a moving image mode and a still image mode of the first embodiment. It is a figure which shows the brightness
  • FIG. 1 is a block diagram showing the configuration of the liquid crystal image display device according to the first embodiment.
  • This device determines whether the image is a video that does not easily sense flicker or a flicker based on a video signal and sends out a video discrimination signal, and an optimal dimming according to the image based on a video discrimination signal.
  • a light control signal generation circuit 3 for generating a signal, a backlight module 5 for emitting a backlight by the light control signal, and a liquid crystal panel 7 for emitting light by the backlight module 5 to display an image.
  • Video discrimination circuit 2 calculates the sum of image differences between the signal of the previous frame image 10 and the signal of the current frame image 8 based on the image signal branched from the image signal sent to the liquid crystal panel 7 It asks with the vessel 9. This operation is a function included in a general video processing IC, and this embodiment is also used. Next, by comparing the sum of the differences of the image signals with the threshold set in advance by the discriminator 11, it is determined whether the current frame image 8 is a video that is hard to sense flicker or a video that is prone to flicker Make a decision.
  • a signal of '1' (moving image) is sent as a video discrimination signal, and when it is discriminated that the video is easy to feel flicker, '0' (still image Send a signal of).
  • the light control signal generation circuit 3 is instructed to determine whether the video image is a moving image or a still image.
  • the video is a moving image, it is difficult to sense flicker, and if it is a still image, flicker is likely to be felt.
  • moving pictures and still pictures are mixed in the display screen in practice, and if moving pictures are included in the display screen, it can not be immediately determined to be moving pictures.
  • a video that is hard to sense flicker means a video that is substantially moving.
  • a substantially moving image refers to a moving image as a whole, even if a part of the screen includes a non-moving image.
  • an image that is susceptible to flicker means an image that is substantially motionless.
  • a substantially motionless video refers to a video that has no motion as a whole, even if the portion of the screen includes a motional video.
  • the dimming signal generation circuit 3 generates an optimal dimming signal according to the image in accordance with the image discrimination signal.
  • three parameters of pulse interval, duty ratio, and pulse generation timing are calculated to generate a dimming signal.
  • a three-phase dimming signal is sent to the backlight module. The generation of the dimming signal will be described in detail later.
  • the backlight module 5 includes light sources 23a, 23b, 23c and inverters IC 21a, 21b, 21c for controlling them.
  • a light source in the present embodiment, two CCFL tubes are provided for each light source. That is, the backlight module 5 has a total of six CCFL (Cold Cathode Fluorescent Lamp) tubes.
  • CCFL Cold Cathode Fluorescent Lamp
  • the respective dimming frequencies are synchronized by the respective inverters IC 21 a, 21 b and 21 c. Have control.
  • the light sources 23a, 23b, and 23c are intermittently turned on one after another to illuminate the liquid crystal panel 7.
  • the number of fluorescent tubes, the number of fluorescent tubes to be controlled by the inverter IC, and the like may be determined by a designer who is considered to be optimum.
  • the liquid crystal panel 7 includes a drive circuit of the liquid crystal panel, and uses an active matrix liquid crystal display panel using thin film transistors (TFTs).
  • TFTs thin film transistors
  • the illumination of light from the backlight module 5 adapted to the video signal makes it possible for the viewer not to feel a momentary change in luminance when switching between the moving image mode and the still image mode.
  • a comfortable video can be provided without the viewer being able to feel a steady change in chromaticity and a change in luminance before and after switching.
  • Dimming signal generation circuit 3 The operation of the dimming signal generation circuit 3 will be described below.
  • the video discrimination signal sent out by the video discrimination circuit 2 is taken into the pulse interval calculation unit 13, and the pulse interval of the pulse train in the dimming signal is calculated frame by frame by the vertical synchronization signal and the video discrimination signal.
  • the pulse interval means the interval between each pulse forming the pulse train within the unit vertical synchronization period.
  • the number of pulses of the pulse train of the dimming signal in the unit vertical synchronization period is three.
  • the pulse train forming the dimming signal has the same phase as the pulse train generated at a frequency of 180 Hz.
  • the vertical synchronization frequency is 60 Hz in the case of the NTSC signal standard.
  • the number of pulses of the pulse train in the unit vertical synchronization period is not limited to three and may be plural.
  • the pulse train of the dimming signal in the still image mode is the same as the pulse train generated at the frequency of (number of pulses) ⁇ (vertical synchronization frequency). Furthermore, it is preferable that (number of pulses) ⁇ (vertical synchronization frequency) exceeds the critical fusion frequency.
  • the pulse interval calculation unit 13 has the smallest pulse interval, the most suitable moving image mode for moving image display (FIG. 5 (b)), and the largest pulse interval, the most suitable still image mode for still image display (FIG. 5). 5 (d) and the interval between the light control pulses of the four states of moving picture mode transition state from still picture mode to moving picture mode transition state and vice versa transition state from moving picture mode to still picture mode calculate.
  • the dimming signal having the smallest pulse interval can be regarded as pseudo in that a pulse train formed by three pulses is formed by one pulse.
  • a pulse train with the same phase as three independent pulses at 180 Hz in still image mode can be regarded as one pulse of 60 Hz in a pseudo manner by reducing the pulse interval in the pulse train in moving image mode. it can.
  • the fluorescent tube lighting period and the light-off period are approximately divided into two in the unit vertical synchronization period in the moving image mode, backlight irradiation is optimal for moving image display.
  • Pulse interval calculation The flow of pulse interval calculation performed by the pulse interval calculation unit 13 is shown in FIG. In this calculation flow, calculation of the pulse interval is started when the vertical synchronization signal is input.
  • a video discrimination signal is input from the video discrimination circuit 2, in step S1, video discrimination is performed to determine whether the signal is larger than '0'. If the video image discrimination signal is '1' (moving image), the process proceeds to step S2. If the video image discrimination signal is' 0 '(still image), the process proceeds to step S2'.
  • the case where the video image discrimination signal is a moving image and the process proceeds to step S2 will be described.
  • step S2 an operation to reduce the pulse interval is performed.
  • Space is a pulse interval
  • ⁇ X is a pulse interval displacement amount in a unit vertical synchronization period. This ⁇ X is a value determined by the vertical synchronization frequency, the number of pulses, the duty ratio, and the number of frames applied to transition from the moving image mode to the still image mode.
  • the setting amount of the pulse interval displacement amount ⁇ X determines the speed of transition from the moving image mode to the still image mode or transition from the still image mode to the moving image mode.
  • the pulse interval displacement amount ⁇ X is made large, the switching of the mode becomes fast, so that the luminance change due to the instantaneous switching occurs.
  • the pulse interval displacement amount ⁇ X is made small, the mode switching is delayed, so there is a time difference until the flicker disappears while the image is switched from the moving image to the still image, and the image changes from the still image to the moving image Even though the image is switched to the above, there is a time difference until the image outline blurring of the moving image disappears.
  • step S2 since the image discrimination is determined to be a moving image, in step S2, the pulse interval displacement amount ⁇ X is subtracted from the previous pulse interval.
  • step S3 the subtracted pulse interval is compared with a preset minimum value. If the subtracted pulse interval is greater than the minimum value, the subtracted pulse interval is output as the calculated result. As a result, the pulse interval is smaller than that of the previous pulse train, and the light adjustment signal closer to moving image display is approached.
  • the pulse interval subtracted in step S4 is reset to the minimum value, and the minimum value is output as the calculation result.
  • the smallest pulse interval most suitable for moving image display is output as long as the video discrimination signal continues to send '1' (moving image). It is a process to continue.
  • the minimum pulse interval in this moving picture mode differs depending on the frequency of the vertical synchronization signal of the NTSC system, PAL system or the like, the length of the fluorescent tube, and the color gamut.
  • the upper limit is also determined by how much continuous black insertion time (fluorescent tube off time) in the vertical synchronization period is secured in the moving image mode, and the degree of chromaticity before and after switching between the moving image mode and the still image mode
  • the lower limit value is determined depending on whether or not a change occurs, so it is necessary to set appropriately.
  • the upper limit value of the minimum pulse interval in the moving image mode can be determined as follows. When the number of pulses in the pulse train is three, if the continuous black insertion time in the unit vertical synchronization period is 50% of the unit vertical synchronization period and the dimming ratio is 10%, the remaining 40% Can be used as a pulse interval, so that 20% of the unit vertical synchronization period can be a pulse interval per pulse train. If the unit vertical synchronization period is 16.6 msec, 3.32 msec is the upper limit value of the minimum pulse interval. However, as described above, since the upper limit value of the minimum pulse interval is determined by the number of pulses in the pulse train, the black insertion time, and the dimming ratio, it can be set appropriately.
  • the lower limit value of the minimum pulse interval in the moving image mode is a numerical value determined depending on how much chromaticity change is not generated before and after switching between the moving image mode and the still image mode, as described above. Then, it is 0.1 msec or more, more preferably 0.5 msec or more.
  • step S1 When the image discrimination signal '0' (still image) is input in step S1, the process proceeds to step S2 '.
  • the pulse interval displacement amount ⁇ X is added to the previous pulse interval. As a result, an operation to increase the pulse interval is performed.
  • step S3 ' the added pulse interval is compared with a preset maximum value. If the added pulse interval is smaller than the maximum value, the added pulse interval is output as the calculated result. As a result, the pulse interval is larger than that of the previous dimming pulse signal, and the dimming pulse closer to still image display is approached.
  • step S4 If the pulse interval added in step S3 'is equal to or greater than the maximum value, the added pulse interval is reset to the maximum value in step S4', and the maximum value is output as the calculation result.
  • the widest pulse most suitable for still image display after reaching the most suitable pulse interval for still image display, the widest pulse most suitable for still image display as long as the video discrimination signal continues to send' 0 '(still image). It is a process of continuing to output the interval.
  • the maximum value of the pulse interval in the still image mode is a value determined by the vertical synchronization frequency, the number of pulses, and the duty ratio.
  • the pulse interval calculation unit 13 sends the pulse interval to the pulse generation timing control unit 15.
  • the vertical synchronization signal and the duty ratio are sent to the pulse generation timing control unit 15 in addition to the pulse interval.
  • the duty ratio is set by sending a screen brightness adjustment signal of the brightness setting value of the liquid crystal screen display device selected by the user to the screen brightness adjustment signal receiving unit 17.
  • each adjustment is performed such that the pulse phase of each of the light adjustment signal generation circuits 19a, 19b, 19c is shifted by 1/3 period in the vertical synchronization period.
  • the first pulse rise command for light signal generation, trigger 1, trigger 2, trigger 3 is sent out. Since the pulse phases to be sent to the respective dimming signal generation circuits 19a, 19b and 19c are shifted by 1/3 each, the three light sources provided in the backlight module 5 are only driven by driving the fluorescent tubes in accordance with the sent dimming signal. Turns on and off three phases sequentially.
  • the numeral 1/3 means that three-phase control is performed as the light source in the present embodiment, and when the light source is controlled with N phases, it is shifted by 1 / N.
  • the pulse rise timing is calculated using the pulse interval and the duty ratio as parameters after receiving the vertical synchronization signal, and the trigger command position of the first pulse rise is determined.
  • the first pulse generated by each of the dimming signal generation circuits 19a, 19b, and 19c is shifted so that the phase of the pulse train of the dimming signal generated by each dimming signal generation circuit is shifted by 1/3 period. Calculate the startup timing.
  • the phases of the pulse trains generated in the respective light control signal generation circuits are shifted, and as the respective pulse trains shift to the moving image mode, the fluorescent tube lighting period and the light off period in the light control signal are substantially Since the intermittent lighting becomes more prominent sequentially by being divided into two, it becomes an image display which reduces the image outline blurring of a moving image.
  • the width of the pulse is determined based on the duty ratio sent from the screen brightness adjustment signal receiving unit 17, and the pulse interval sent by the pulse interval calculation unit 13 is The pulse interval is determined, and three pulses are generated according to the trigger sent by the pulse generation timing control unit 15. Thus, the dimming signal is sent to the backlight module 5.
  • FIG. 8A shows the luminance (solid line) emitted by the light source within the unit vertical synchronization period in the moving image mode obtainable from the present embodiment and the square wave (dashed line) of the dimming pulse.
  • FIG. 8 (b) shows the luminance (solid line) emitted by the light source within the unit vertical synchronization period in the moving image mode obtainable from the conventional example and the square wave (broken line) of the dimming pulse.
  • FIG. 8A shows the luminance (solid line) emitted by the light source within the unit vertical synchronization period in the moving image mode obtainable from the present embodiment and the square wave (dashed line) of the dimming pulse.
  • FIG. 8 (b) shows the luminance (solid line) emitted by the light source within the unit vertical synchronization period in the moving image mode obtainable from the conventional example and the square wave (broken line) of the dimming pulse.
  • FIG. 8C shows the luminance (solid line) emitted by the light source in the still image mode within the unit vertical synchronization period and the square wave (dashed line) of the dimming pulse which can be obtained from this embodiment and the conventional example.
  • the luminance generates a non-linear curved wave according to the number of pulses. Since this and the number of falling of the non-linear curvilinear wave of luminance in the still image mode are the same, steady-state luminance change and chromaticity change are suppressed.
  • the flushing phenomenon occurs.
  • the mode switching is performed by gradually adjusting the transition between the moving image mode of FIG. 8A and the still image mode of FIG. 8C, the flushing phenomenon does not occur.
  • FIGS. 9 and 10 show the measurement results of luminance and chromaticity in the above-described moving image mode and still image mode.
  • FIG. 9 shows the luminance and chromaticity of the moving image mode and the still image mode according to the present embodiment
  • FIG. 9A is obtained through the dimming rate of the dimming pulse and the liquid crystal screen in the unit vertical synchronization period.
  • 9B shows only the chromaticity information obtained by removing the lightness component Y of the xy Y color system of the CIE color system from the color space in the moving image mode and the still image mode. It is shown.
  • the minimum pulse interval in the pulse train in FIG. 9 is set to 0.5 msec.
  • the minimum pulse interval in the pulse train is set to 0.05 msec.
  • FIG.9 (b) and FIG.10 (b) are compared, the difference of the graph of FIG.9 (b) with the graph of each chromaticity of moving image mode and still image mode is narrower. That is, according to this embodiment, it is shown that the change in chromaticity is suppressed in the moving image mode and the still image mode.
  • the video discrimination circuit 2 determines whether the video is a video that is hard to sense flicker or a video that is prone to flicker, and sends out a video discrimination signal of a moving image or a still image.
  • the pulse interval in the pulse train is narrowed to make the pulse train virtually into one pulse.
  • the pulse interval in the light control signal is made wide to evenly take the light off period of the fluorescent tube in the light control signal.
  • the lighting period and the extinguishing period of the fluorescent tube are divided into approximately two in the dimming signal when transitioning to the moving image mode, blurring of the image outline of the moving image is reduced, and the dimming signal is transitioned to the still image mode. Does not feel flicker on the liquid crystal screen because it has the same phase as the pulse train beyond the critical fusion frequency. Then, in the switching from the moving image mode to the still image mode, and also in the reverse switching, the brightness change is suppressed to less than ⁇ S in Weber's law by gradually adjusting the pulse interval. As a result, the viewer does not feel a momentary change in luminance, nor does it feel any steady change in chromaticity or change in luminance before and after switching.
  • one inverter IC is made to correspond to a plurality of CCFL tubes and the light source is controlled in three phases to efficiently match intermittent lighting to the writing response of the liquid crystal Crowded. While simplifying the control of the backlight, the response to the image outline blurring of the moving image is efficiently improved.
  • the configuration of the backlight control becomes simpler.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the light source is one
  • the inverter IC is one
  • the dimming pulse generation circuit is one as in a notebook personal computer
  • the intermittent lighting is controlled sequentially by the pulse generation timing control unit 15.
  • the phases of the respective light adjustment signals may be shifted in the back light module and the intermittent lighting may be sequentially performed.
  • the dimming signal 1 is sent to the backlight module, and a pulse whose phase is shifted is generated based on this signal.
  • the phase of the pulse may be shifted before the rewriting of the pixel signal according to the response speed of the liquid crystal, or the phase of the pulse may be shifted after the rewriting.
  • the video discrimination circuit 2 performs video discrimination based on the video signal sent in real time, and transmits the video discrimination signal to the dimming signal generation circuit 3, but this is replaced by the video prediction circuit. May be Based on the video signal, the video prediction circuit predicts whether the video image will be a video that is not likely to sense flicker or is likely to be a flicker and the video prediction signal is sent to the dimming signal generation circuit 3. Therefore, it is possible to realize the lighting of the back light with high responsiveness to moving pictures and still pictures.
  • a CCFL tube is used for the backlight module, but EL (electroluminescence) coated with a fluorescent paint may be used. Steady-state chromaticity changes can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

At the time of display of a video picture (motion image) that is hard to sense flickering and at the time of display of a video picture (still image) that is easy to sense flickering, the liquid crystal image display unit controls modulated light pulses for a backlight by changing phases of pulses within a unit vertical synchronization period instead of changing the number of a plurality of modulated light pulses to be generated within the unit vertical synchronization period. At the time of display of the motion image, pulse intervals are reduced to combine a plurality of pulses into a single pseudo pulse. At the time of display of the still image, the pulse intervals are equalized. This generates, in a pseudo manner, the modulated light pulses different in frequency for display of the motion image and still image. In reality, any frequencies of the modulated light pulses are never changed, thus variations in chroma and luminance of the images at the time of display of the motion image and the still image can be constrained, and further blurring on the motion image and flickering on the still image can be constrained.

Description

液晶画像表示装置Liquid crystal image display
 本発明は、液晶画像表示装置、特にバックライトの点灯方式に係り、映像画像の動きに応じてバックライトの調光信号を適正に生成する技術に関するものである。 The present invention relates to a liquid crystal image display device, and more particularly to a lighting method of a backlight, and relates to a technique for appropriately generating a light control signal of the backlight according to the movement of a video image.
 液晶画像表示の問題として動画の画像輪郭ボケ及び静止画のフリッカ(画像のちらつき)がある。もともと液晶画像表示装置は、ホールド型画像表示装置であるのでインパルス型画像表示装置であるCRTの様に、動画の表示には向いていない。そこで従来より動画の画像輪郭ボケを改善するために、インパルス型にバックライトを点滅(以下、間欠点灯と呼ぶ)させ、動画の画像輪郭ボケの改善を図ってきた。このバックライトの間欠点灯の周波数はTVの垂直同期信号である60Hzに同期させている。また、この間欠点灯の方式には、バックライトを全て一括点灯させる一括間欠点灯方式と、バックライトをいくつかの相に分けて、液晶の画素書き込みに合わして各相のバックライトを順次点灯させる順次間欠点灯方式とがある。これらの点灯方式により、動画の画像輪郭ボケは大幅に改善された。 As problems of liquid crystal image display, there are image outline blurring of a moving image and flicker of a still image (flickering of an image). Since a liquid crystal image display device is originally a hold type image display device, it is not suitable for displaying moving images as in a CRT which is an impulse type image display device. Therefore, in order to improve the image outline blurring of a moving image, the backlight of the impulse type is blinked (hereinafter referred to as intermittent lighting) to improve the image outline blurring of the moving image. The frequency of intermittent lighting of this backlight is synchronized to 60 Hz which is a vertical synchronization signal of the TV. In this intermittent lighting method, the batch intermittent lighting method in which all backlights are lit collectively and the backlight are divided into several phases, and the backlights of each phase are sequentially lit according to the writing of liquid crystal pixels. There is an intermittent lighting method sequentially. By these lighting methods, the image outline blurring of the moving image is greatly improved.
 ところが60Hzの間欠点灯をすると、動画においては感じられなかったフリッカが静止画においては感じられる。これは、人間の眼の特性上、バックライトの間欠点灯の周波数が低いと、静止画のように動きが乏しい映像ではフリッカを知覚してしまうのである。そこで、間欠点灯の周波数を高くすれば、フリッカを感じなくなる。このフリッカを全く感じない周波数は臨界融合周波数(CFF)と呼ばれている。 However, flickering that was not felt in moving pictures can be felt in still pictures when it is intermittently lit at 60 Hz. This is because, due to the characteristics of the human eye, when the frequency of intermittent lighting of the backlight is low, flicker is perceived in an image such as a still image where movement is poor. Therefore, if the frequency of intermittent lighting is increased, the flicker will not be felt. The frequency which does not feel this flicker at all is called critical fusion frequency (CFF).
 この臨界融合周波数は液晶画像表示装置を観る条件、液晶画像表示装置の大型化や高輝度化により高くなることが知られている。以前は臨界融合周波数は60Hzよりも低いといわれていたが、近年は60Hzを越えている。これより、静止画において垂直同期信号の60Hzに同期させて間欠点灯するとフリッカが感じられる。 It is known that this critical fusion frequency becomes high due to the conditions under which the liquid crystal display is viewed, the enlargement of the liquid crystal display and the increase in luminance. The critical fusion frequency was previously said to be lower than 60 Hz, but has recently exceeded 60 Hz. From this, flickering is felt when it is intermittently turned on in synchronization with the vertical sync signal of 60 Hz in a still image.
 この問題を解決するために、特許文献1に開示された技術では、映像画像を動画であるか静止画であるかを動き検出回路により判断する。そして動画であると判断した時には、垂直同期信号と同一の周波数の第1の調光パルス(60Hz)を発生する。そして、静止画であると判断した場合は、垂直同期信号よりも高い周波数の第2の調光パルス(240Hz)を発生させる。こうすることによって、動画においてはバックライトを間欠点灯して動画画像輪郭ボケを改善し、静止画においては臨界融合周波数を越える周波数でバックライトを点灯させフリッカを低減している。 In order to solve this problem, in the technology disclosed in Patent Document 1, it is determined by the motion detection circuit whether the video image is a moving image or a still image. When it is determined to be a moving image, a first dimming pulse (60 Hz) having the same frequency as that of the vertical synchronization signal is generated. When it is determined that the image is a still image, a second dimming pulse (240 Hz) having a frequency higher than that of the vertical synchronization signal is generated. In this way, in the case of a moving image, the backlight is intermittently turned on to improve the blurring of the moving image image, and in the case of a still image, the backlight is turned on at a frequency exceeding the critical fusion frequency to reduce flicker.
 しかしながら、特許文献1の技術では、以下の問題点が残っている。それは、動画判断時の調光パルス(60Hz)から静止画判断時の調光パルス(240Hz)へ切り替える時、また、その逆の切り替え時に、この切り替えをセレクタ回路で瞬時に行っている。このため、瞬間的な輝度変化(フラッシング現象)を人間の眼には感じられる。これは、人間の眼の視細胞は光をある一定時間における積分量として蓄える性質から起因する。眼に蓄積される一定時間における光の積分量が調光パルスの周波数を瞬時に切り替えることで急激に変化し、これを瞬間的な明るさの変化として人間の眼には感じられる。 However, in the technique of Patent Document 1, the following problems remain. That is, when switching from the light control pulse (60 Hz) at the time of moving image judgment to the light control pulse (240 Hz) at the still image judgment, and at the reverse switching, this switching is instantaneously performed by the selector circuit. For this reason, a momentary change in luminance (flashing phenomenon) can be felt by the human eye. This is caused by the nature of the photoreceptors of the human eye storing light as an integral quantity over a certain period of time. The integral amount of light in a fixed time accumulated in the eye changes rapidly by switching the frequency of the dimming pulse instantaneously, and this can be felt by the human eye as a momentary change in brightness.
 さらに詳しく説明すると、人間の眼の明るさの変化に対する感知能力について、精神物理学の分野におけるウェーバー則が知られている。この法則によれば、人間の眼は明るさがある一定量変化しなければ明るさが変ったことに気付かない。図11(a)において、人間の眼に光量Sからさらに明るさを増した光量S’を与えた時に、明るさの違いを感じることができる光量SとS’との差の最小値を、明るさに対する弁別閾ΔSと呼んでいる。つまり、明るさの変化がΔS以上であれば人間は明るさの変化を認識でき、明るさの変化がΔS未満であれば人間はこの明るさの変化を認識できない。そして図11(b)によれば、このΔSとSの比、ΔS/Sが一定であるというのが明るさの弁別におけるウェーバー則である。この法則によれば、調光パルスの周波数を瞬時に切り替えると、瞬間的な輝度変化に伴って人間の眼に蓄えられる光量の変化量がΔS以上になるので、急激な明るさの変化として視聴者は感じられる。 More specifically, Weber's law in the field of psychophysics is known for its ability to sense changes in human eye brightness. According to this law, the human eye does not notice that the brightness has changed unless the brightness changes by a certain amount. In FIG. 11 (a), when a light amount S 'obtained by increasing the brightness further from the light amount S is given to the human eye, the minimum value of the difference between the light amounts S and S' at which the difference in brightness can be felt is It is called the discrimination threshold ΔS for brightness. That is, if the change in brightness is ΔS or more, the human can recognize the change in brightness, and if the change in brightness is less than ΔS, the human can not recognize this change in brightness. Then, according to FIG. 11B, the Weber's law in the discrimination of brightness is that the ratio of ΔS to S, ΔS / S, is constant. According to this law, when the frequency of the dimming pulse is instantaneously switched, the amount of change in the amount of light accumulated in the human eye becomes equal to or greater than ΔS along with the instantaneous change in luminance. Are felt.
 これを図12により説明する。図12(b)において、実線は光源の発する輝度であり、破線は調光パルスの方形波である。周波数が高い調光パルスから周波数が低い調光パルスへ切り替わる際、輝度変化のパターンが大きく変化する。そして、切り替わった後は、それ以後同じ輝度変化のパターンが続く。図12(a)のグラフは、図12(b)の任意の時点において、各時点からさかのぼって16.6msの期間に画面が発した輝度を積分した積分量をその時点の輝度として示している。人間が感じる輝度も、眼が受けた過去約16.6ms程度の期間積分した値である。これより、高周波数から低周波数へのパターンの変わり目の輝度の積分量の変化量が、ウェーバー則のΔS以上になるので、瞬間的な輝度変化として人間の眼には感じられる。以上の理由で、バックライトを静止画判断時から動画判断時へ切り替えた時、又はその逆の切り替え時に、フラッシング現象が生じ、液晶画像表示装置を観る者に不快感を起こす。 This will be described with reference to FIG. In FIG. 12B, the solid line is the luminance emitted by the light source, and the broken line is a square wave of the dimming pulse. When switching from a dimming pulse with a high frequency to a dimming pulse with a low frequency, the pattern of luminance change greatly changes. Then, after switching, the same pattern of change in luminance continues thereafter. The graph of FIG. 12A shows, as the luminance at that time, the integral amount obtained by integrating the luminance emitted by the screen in a period of 16.6 ms going back from each point at an arbitrary time point of FIG. 12B. . The luminance felt by humans is also a value integrated over a period of about 16.6 ms in the past received by the eye. As a result, the amount of change in integral of the luminance at the transition of the pattern from high frequency to low frequency is equal to or greater than ΔS of Weber's law, and it can be perceived by the human eye as an instantaneous luminance change. For the above reasons, when the backlight is switched from the still image determination to the moving image determination, or vice versa, a flushing phenomenon occurs to cause an unpleasant feeling to the viewer of the liquid crystal display device.
 そこで、特許文献2の技術では調光パルスの周波数の種類をより多くしている。動画判断時から静止画判断時へ、またその逆の切り替え時には、徐々に調光パルスの周波数を高くもしくは、低くすることによって、フラッシング現象を抑えている。つまり、人間の眼に蓄えられる一定時間における光量の積分量の変化を緩やかにすることによって、変化量をウェーバー則におけるΔS未満に抑え、人間の眼に瞬間的な輝度変化を感じさせていない。
特開2002-287700号公報 特開2006-018200号公報
Therefore, in the technique of Patent Document 2, the types of frequencies of dimming pulses are increased. From the moving image determination to the still image determination, and vice versa, the flashing phenomenon is suppressed by gradually increasing or decreasing the frequency of the dimming pulse. That is, by making the change of the integral of the light amount in a certain time stored in the human eye slow, the amount of change is suppressed to less than ΔS in Weber's rule, and the human eye does not feel an instantaneous luminance change.
JP 2002-287700 A JP, 2006-018200, A
 しかしながら、特許文献1及び特許文献2に開示されている技術においても、依然、以下に示す解決できない問題点がある。この問題点は、調光パルスの周波数の種類が複数あるため、各周波数の種類において、単位垂直同期期間における調光パルスの個数が異なっている点から起因する。 However, the techniques disclosed in Patent Document 1 and Patent Document 2 still have the following unsolvable problems. This problem arises from the fact that the number of dimming pulses in a unit vertical synchronization period is different for each type of frequency because there are multiple types of frequencies of dimming pulses.
 調光パルスの切り替えの前後で周波数が異なっていることから、単位垂直同期期間における調光パルスの立下がり回数が調光パルスの切り替え前後で異なる。つまり、動画判断時と静止画判断時とでは、単位垂直同期期間内の調光パルスの立下がり回数が異なる。特許文献1でいえば、動画判断時の調光パルスが60Hzの時は単位垂直同期期間の調光パルスの立下がり回数は1回であり、静止画判断時の調光パルスが240Hzの時は単位垂直同期期間の調光パルスの立下がり回数は4回である。この調光パルスの立下がり回数が異なる結果、動画判断時と静止画判断時とを比べると、画面に色度変化と輝度変化が定常的に発生する。 Since the frequency is different before and after the switching of the dimming pulse, the number of falling of the dimming pulse in the unit vertical synchronization period is different before and after the switching of the dimming pulse. That is, the number of fall of the dimming pulse in the unit vertical synchronization period is different between the moving image determination and the still image determination. According to Patent Document 1, when the light adjustment pulse at the time of moving image judgment is 60 Hz, the number of falling of the light adjustment pulse in the unit vertical synchronization period is one, and when the light adjustment pulse at the still image judgment is 240 Hz The number of falling of the dimming pulse in the unit vertical synchronization period is four. As a result of the difference in the number of falling edges of the dimming pulse, when the moving image determination and the still image determination are compared, chromaticity change and luminance change constantly occur on the screen.
 この原因は次の通りである。液晶画像表示装置のバックライトとして、通常、蛍光管が使われる。この蛍光管のガラス内面には、赤、緑、青の蛍光体が塗布されており、緑色の蛍光体は、残光時間が他の赤や青色よりも長いという残光特性がある。これより、調光パルスが一回立下がりする度ごとに、つまり、蛍光管が点灯状態から消灯状態に切り替るごとに緑色の残光が生じる。つまり、動画判断時と静止画判断時とにおいて、単位垂直同期期間内の調光パルスの立下り回数が異なることで、緑色の残光発生回数がそれぞれの画像判断時において異なり、残光回数の多い状態、つまり、調光パルスの周波数が高い静止画判断時の方が、動画判断時よりも画面全体が緑がかった色度になる。 The cause is as follows. A fluorescent tube is usually used as a backlight of a liquid crystal image display device. Red, green, and blue phosphors are applied to the inner surface of the glass of the fluorescent tube, and the green phosphor has an afterglow characteristic that the afterglow time is longer than that of other reds and blues. From this, every time the dimming pulse falls once, that is, every time the fluorescent tube is switched from the lighting state to the extinguishing state, a green afterglow occurs. That is, the number of times of occurrence of the green afterglow is different in each image judgment because the number of falling of the light adjustment pulse in the unit vertical synchronization period is different between the moving image determination and the still image determination. In a large number of states, that is, when the still image determination has a high dimming pulse frequency, the whole screen has a greenish chromaticity than the moving image determination.
 また、蛍光管の特性として、輝度が非線形な波形をしていることが上げられる。図12(b)に示すように、調光パルスが矩形波であっても輝度は非線形な曲線波である。これより、各周波数の単位垂直同期期間あたりのデューティ比が同じであっても輝度は一致しない。デューティ比が同じであっても輝度は単なる重ね合わせとならないので、周波数の高い画面は周波数の低い画面よりも若干輝度が下がる。つまり、パルス幅が広くパルス個数が1個の動画判断時の画面よりも、パルス幅が狭くパルス個数の多い静止画判断時の画面の方が、デューティ比が同じでも、輝度が暗くなる。これにより、動画判断時と静止画判断時と画面の輝度を比べると、静止画判断時の方が画面全体が若干暗くなる。 Further, as a characteristic of the fluorescent tube, it can be raised that the luminance has a non-linear waveform. As shown in FIG. 12B, even if the dimming pulse is a rectangular wave, the luminance is a non-linear curvilinear wave. From this, even if the duty ratio per unit vertical synchronization period of each frequency is the same, the luminances do not match. Even if the duty ratio is the same, the luminance is not simply superimposed, so the screen with a high frequency is slightly lower in luminance than the screen with a low frequency. That is, the brightness of the screen at the still image determination with the narrow pulse width and the large pulse number is darker than that in the moving image determination with the wide pulse width and one pulse number, even if the duty ratio is the same. As a result, when the luminances of the moving image determination, the still image determination, and the screen are compared, the entire screen becomes slightly darker at the still image determination.
 本発明は、このような事情に鑑みてなされたものであって、バックライトの点灯モードを、動画と静止画との切り替え時に、瞬間的な輝度変化(フラッシング現象)、及び切り替え前後の定常的な輝度変化ならびに色度変化を起こすことなく、動画時の画像輪郭ボケ、さらには静止画時のフリッカを表示させない液晶画像表示装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and the lighting mode of the backlight is instantaneously changed in luminance (flushing phenomenon) when switching between a moving image and a still image, and steady before and after the switching. It is an object of the present invention to provide a liquid crystal image display device which does not display image contour blurring at the time of moving image and flicker at the time of still image without causing any luminance change and chromaticity change.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明の液晶画像表示装置は、映像信号に基づき予め定めされた映像判別信号を送信する映像判別手段と、予め定められた複数個のパルスで形成されるパルス列からなる調光信号を垂直同期信号ごとに生成する調光信号生成手段と、前記調光信号生成手段から送られる前記調光信号により駆動される発光手段と、前記発光手段により光を照射される液晶画像表示手段とを備え、前記調光信号生成手段は、前記映像判別手段から第1映像判別信号が送られた時は、前記調光信号を構成しているパルスの個数を維持した状態で、前記パルス列内のパルス間隔を漸次に狭くし、一方、前記映像判別手段から第2映像判別信号が送られた時は、前記調光信号を構成しているパルスの個数を維持した状態で、前記パルス列内のパルス間隔を漸次に広くすることを特徴とする。
The present invention has the following configuration in order to achieve such an object.
That is, in the liquid crystal image display device of the present invention, a light control signal consisting of a pulse train formed of a plurality of predetermined pulses and a video judgment means for transmitting a video judgment signal predetermined based on the video signal is vertical It comprises: a light control signal generating unit that generates each synchronization signal; a light emitting unit driven by the light control signal sent from the light control signal generating unit; and a liquid crystal image display unit that emits light by the light emitting unit. The light adjustment signal generation means, when the first image discrimination signal is sent from the image discrimination means, maintains the number of pulses constituting the light adjustment signal, and the pulse interval in the pulse train is maintained. Are gradually narrowed, and when the second image discrimination signal is sent from the image discrimination means, the pulse interval in the pulse train is set while maintaining the number of pulses constituting the light adjustment signal. Gradually Characterized by widely.
 本発明の液晶画像表示装置によれば、映像信号を基に送られてくる映像判別信号により、バックライトの点灯方式を動画モードと静止画モードのどちらかに移行させるために、垂直同期期間ごとに複数個、同じ個数生成される各パルスの位相を変位させる。つまり、パルス列内の各パルスの間隔を調節することで動画モードと静止画モードの切り替えを行っている。この単位垂直同期期間に複数個、同じ個数生成されるパルスの間隔を調節することが本発明の特徴である。 According to the liquid crystal image display device of the present invention, in order to shift the lighting method of the backlight to either the moving image mode or the still image mode by the video image discrimination signal sent based on the video signal, every vertical synchronization period The phase of each pulse generated in the same number is displaced. That is, the moving image mode and the still image mode are switched by adjusting the interval of each pulse in the pulse train. It is a feature of the present invention to adjust the intervals of a plurality of pulses generated in the same number in the unit vertical synchronization period.
 また、動画モードと静止画モードにおいて、どちらのモードにおいても、単位垂直同期期間のパルスの個数は同じであるので、単位垂直同期期間のパルスの立下がり回数は同じである。よって、どちらのモードにおいてもほぼ同じ量の緑色の残光特性が出るので、動画モードと静止画モードとの切り替え時の色度変化を大幅に抑制している。また、単位垂直同期期間のパルスの立下がり回数は同じであるので、バックライトの非線形な波形が同じであり、動画モードと静止画モード切り替え時の定常的な輝度変化を大幅に抑制している。これらの理由で動画モードと静止画モードの切り替え前後において、色度変化及び輝度変化を動画モードにおけるパルス間隔を適切に設定することで、人間が変化を感じない程度に軽減している。また、請求項1記載の漸次にとは、人間の眼ではモードの切り替えの変化に気付くことができない程度に段階的にパルス間隔を調節する他、人間の眼ではモードの切り替えの変化に気付くことができない程度に無段階にパルス間隔を調節することもいう。 Further, in the moving image mode and the still image mode, since the number of pulses in the unit vertical synchronization period is the same in both modes, the number of falling edges of the pulse in the unit vertical synchronization period is the same. Therefore, since the green afterglow characteristics of approximately the same amount appear in either mode, the change in chromaticity upon switching between the moving image mode and the still image mode is largely suppressed. In addition, since the number of falling edges of the pulse in the unit vertical synchronization period is the same, the non-linear waveform of the backlight is the same, and the steady luminance change at the time of switching between the moving image mode and the still image mode is significantly suppressed. . For these reasons, before and after the switching between the moving image mode and the still image mode, the chromaticity change and the luminance change are reduced to such an extent that a human does not feel a change by appropriately setting the pulse interval in the moving image mode. Moreover, in addition to adjusting the pulse interval in a stepwise manner to such an extent that the human eye can not notice the change of the mode switching, the progressive change described in claim 1 notices the change of the mode switching with the human eye. It also means adjusting the pulse interval steplessly to the extent that it can not
 また、調光信号生成手段は、映像判別手段から第1映像判別信号が送られた時は、調光信号を構成しているパルスの個数を維持した状態でパルス列内のパルス間隔を漸次に狭くすることにより、複数個のパルスで形成されるパルス列を擬似的に1つのパルスとみなされる状態にし、一方、映像判別手段から第2映像判別信号が送られた時は、調光信号を構成しているパルスの個数を維持した状態でパルス列内のパルス間隔を漸次に広くすることにより、パルス列が、垂直同期周波数に調光信号内のパルスの個数を乗算した周波数で表されるパルス列と等価になる状態にするのが望ましい。 In addition, when the first image discrimination signal is sent from the image discrimination means, the dimming signal generation means gradually narrows the pulse interval in the pulse train while maintaining the number of pulses constituting the dimming signal. Thus, a pulse train formed by a plurality of pulses can be regarded as one pulse in a pseudo manner, and when the second image discrimination signal is sent from the image discrimination means, a light control signal is formed. The pulse train is equivalent to a pulse train represented by a frequency obtained by multiplying the number of pulses in the dimming signal by the number of pulses in the dimming signal by gradually widening the pulse interval in the pulse train while maintaining the number of pulses. It is desirable to make it
 パルス間隔の調節(位相の変位)について以下詳しく説明する。送られてくる映像判別信号により、パルス列内のパルスの間隔を徐々に狭めることで、複数のパルスから形成されるパルス列が擬似的に一つのパルスへとみなされる動画モードへ移行する。そして、上記とは別の映像判別信号が送られてくると、パルス列内のパルスの間隔を徐々に広げ、擬似的に一つのパルスとされていたものが各々独立したパルスへと移行する。そして、静止画モードでは、調光信号内でパルスの間隔が一番広くなったパルスの位相が、垂直同期周波数に単位垂直同期期間内のパルスの個数を乗算した周波数のパルスと同じ位相になる。これより、動画モードから静止画モードへの切り替え時、また逆の切り替え時において、バックライトの瞬間的な輝度変化(フラッシング現象)を無くしている。 The adjustment of the pulse interval (displacement of the phase) will be described in detail below. By gradually narrowing the interval of the pulses in the pulse train based on the transmitted image discrimination signal, the pulse train formed from a plurality of pulses shifts to a moving image mode in which it is regarded as one pulse in a pseudo manner. Then, when an image discrimination signal different from the above is sent, the interval of the pulses in the pulse train is gradually extended, and the pseudo one pulse is shifted to the independent pulse. Then, in the still image mode, the phase of the pulse having the widest pulse interval in the dimming signal becomes the same phase as the pulse of the frequency obtained by multiplying the number of pulses in the unit vertical synchronization period by the vertical synchronization frequency. . From this, at the time of switching from the moving image mode to the still image mode, and at the reverse switching time, the instantaneous luminance change (flushing phenomenon) of the backlight is eliminated.
 送られてくる映像判別信号により、パルス列内のパルス間隔が狭まることでパルス列が擬似的に1つのパルスとみなされ、蛍光管の点灯期間と消灯期間が単位垂直同期期間内でほぼ2分され、単位垂直同期期間内の連続した黒挿入期間が長くなる。これにより、動画の画像輪郭ボケを低減できる。フリッカを感じやすい映像を表示する時には、臨界融合周波数を越える周波数にてバックライトを点灯させることと同じことになるので、フリッカを感じない。 By narrowing the pulse interval in the pulse train by the transmitted image discrimination signal, the pulse train is virtually regarded as one pulse, and the lighting period and the lighting-off period of the fluorescent tube are approximately divided into two within the unit vertical synchronization period, The continuous black insertion period within the unit vertical synchronization period becomes long. Thereby, the image outline blurring of a moving image can be reduced. When displaying an image that is easy to sense flicker, it is the same as turning on the backlight at a frequency exceeding the critical fusion frequency, and therefore no flicker is felt.
 また、映像判別手段は、映像信号に基づきフリッカを感じにくい映像であるか、あるいは、フリッカを感じやすい映像であるかを判別し、フリッカを感じにくい映像と判別したときは第1映像判別信号を送信し、フリッカを感じやすい映像と判別したときは第2映像判別信号を送信してもよい。これより、映像判別手段により映像をフリッカが感じやすい映像であるか、フリッカを感じにくい映像であるかを判別してそれぞれの映像判別信号を送るので、液晶画像表示装置に表示されている映像に適したバックライトの点灯をすることができる。 Further, the video discrimination means discriminates whether the video is a video which is not likely to sense flicker or is a video which is likely to sense a flicker based on the video signal, and when it is determined that the video is unlikely to sense flicker, the first video discrimination signal The second image discrimination signal may be transmitted when it is determined that the image is transmitted and flicker is easy to feel. From this, the image discrimination means discriminates whether the image is an image which is easy to sense flicker or not so as to send each image discrimination signal, so that the image displayed on the liquid crystal image display device can be displayed. A suitable backlight can be lit.
 また、調光信号生成手段は、画面明るさ調節信号を受信することで、液晶画面の明るさ調整を調光信号のパルスのデューティ比の調整により行う画面明るさ調節信号受信部を備えてもよい。これより、液晶画面の明るさの調節を調光信号を構成するパルスのデューティ比を変化させることで行うので、調光信号の動画モードと静止画モードとの切り替えと、画面の明るさの調節を、1つの調光信号生成回路で行うことができる。 In addition, the light adjustment signal generation unit may be provided with a screen brightness adjustment signal reception unit that adjusts the brightness of the liquid crystal screen by adjusting the pulse duty ratio of the light adjustment signal by receiving the screen brightness adjustment signal. Good. Since the adjustment of the brightness of the liquid crystal screen is performed by changing the duty ratio of the pulse forming the dimming signal, the switching between the moving image mode and the still image mode of the dimming signal and the adjustment of the brightness of the screen are performed. Can be performed by one dimming signal generation circuit.
 また、発光手段には複数の光源があり、光源の点灯方式が順次間欠点灯方式であってもよい。これより、光源が複数個あることで、液晶の応答速度に応じてバックライトを順次間欠点灯することができる。これにより、動画の画像輪郭ボケがより一層低減される。 The light emitting means may have a plurality of light sources, and the lighting method of the light sources may be an intermittent lighting method in sequence. Thus, by providing a plurality of light sources, it is possible to intermittently turn on the backlight sequentially according to the response speed of the liquid crystal. This further reduces blurring of the image outline of the moving image.
 また、発光手段は3相またはそれよりも多い層からなる光源を備えてもよい。液晶画像表示装置が大画面においても3相またはそれよりも多い層の順次間欠点灯で制御するので、効率よく動画の画像輪郭ボケを低減することができる。 Also, the light emitting means may comprise a light source consisting of three or more layers. Since the liquid crystal display is controlled by the sequential intermittent lighting of three or more layers even in the case of a large screen, it is possible to efficiently reduce the image outline blurring of a moving image.
 この発明に係る液晶画像表示装置によれば、バックライトの動画モードと静止画モードとの切り替え時において、瞬間的な輝度変化(フラッシング現象)を起こさない。また、切り替え前後の定常的な色度変化と輝度変化を大幅に抑制した映像を提供することができる。 According to the liquid crystal image display device according to the present invention, instantaneous luminance change (flushing phenomenon) does not occur at the time of switching between the moving image mode and the still image mode of the backlight. In addition, it is possible to provide an image in which steady change in chromaticity and change in luminance before and after switching are significantly suppressed.
実施例1に係る液晶画像表示装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a liquid crystal image display device according to a first embodiment. 実施例1に備わる映像判別回路の概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a video image discrimination circuit provided in the first embodiment. 実施例1に備わる調光信号生成回路の概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a light adjustment signal generation circuit provided in the first embodiment. 実施例1に備わるバックライトモジュールの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a backlight module provided in the first embodiment. 実施例1の調光信号生成回路において生成された調光信号を示す模式図である。FIG. 5 is a schematic view showing a dimming signal generated in the dimming signal generation circuit of the first embodiment. 実施例1の調光信号生成回路内に備わるパルス間隔計算部においてパルス間隔の計算過程を示すフローチャートである。5 is a flowchart showing a process of calculating pulse intervals in a pulse interval calculation unit provided in the dimming signal generation circuit of the first embodiment. 実施例1の3つの調光信号生成回路において動画モードのときに生成された調光信号を示す図である。FIG. 7 is a diagram showing dimming signals generated in the moving image mode in the three dimming signal generation circuits of the first embodiment. 実施例1と従来例におけるバックライトの調光信号と液晶パネルを通して感じられる輝度を比較した図である。It is the figure which compared the light control signal of the backlight in Example 1 and a prior art example, and the brightness perceived through a liquid crystal panel. 実施例1の動画モードおよび静止画モードにおける輝度および色度を示す図である。FIG. 6 is a diagram showing luminance and chromaticity in a moving image mode and a still image mode of the first embodiment. 従来例の動画モードおよび静止画モードにおける輝度および色度を示す図である。It is a figure which shows the brightness | luminance and chromaticity in moving image mode in a prior art example, and still image mode. 人間の明るさの弁別におけるウェーバー則を示す図である。It is a figure which shows the Weber's law in discrimination of human brightness. バックライトの調光信号と液晶パネルを通して感じられる輝度を示す図である。It is a figure which shows the luminance sensed through the light control signal of a backlight, and a liquid crystal panel.
 2 … 映像判別回路
 3 … 調光信号生成回路
 5 … バックライトモジュール
 7 … 液晶パネル
2 ... Image discrimination circuit 3 ... Dimming signal generation circuit 5 ... Backlight module 7 ... Liquid crystal panel
 以下、図面を参照して本発明の実施例1を説明する。
 図1は、実施例1に係る液晶画像表示装置の構成を示すブロック図である。この装置は、映像信号により画像がフリッカを感じにくい映像であるかフリッカを感じやすい映像であるか判別し映像判別信号を送り出す映像判別回路2と、映像判別信号により画像に応じた最適な調光信号を生成させる調光信号生成回路3と、調光信号によりバックライトを発光させるバックライトモジュール5と、バックライトモジュール5により光が照射され画像を表示する液晶パネル7により構成される。
The first embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the liquid crystal image display device according to the first embodiment. This device determines whether the image is a video that does not easily sense flicker or a flicker based on a video signal and sends out a video discrimination signal, and an optimal dimming according to the image based on a video discrimination signal. A light control signal generation circuit 3 for generating a signal, a backlight module 5 for emitting a backlight by the light control signal, and a liquid crystal panel 7 for emitting light by the backlight module 5 to display an image.
 以下、各部の構成をより詳細に説明する。
《映像判別回路》
 図2を参照して映像判別回路2の構成を説明する。映像判別回路2は、液晶パネル7へ送られる映像信号から分岐された映像信号を基に、1つ前のフレーム画像10の信号と現在のフレーム画像8の信号との画像の差分の総和を演算器9にて求める。この演算は一般的な映像処理ICに含まれる機能であり、本実施例でもこれを利用している。次に、画像信号の差分の総和を判別器11にて予め設定された閾値と比較することで、現在のフレーム画像8がフリッカを感じにくい映像であるか、フリッカを感じやすい映像であるかの判別を行う。そして、フリッカを感じにくい映像であると判別した場合、映像判別信号として、例えば、‘1’(動画)の信号を送り、フリッカを感じやすい映像であると判別した場合、‘0’(静止画)の信号を送る。これにより、映像画像が動画であるか静止画であるかの判別が、調光信号生成回路3に指令される。既に周知されているように、映像が動画であればフリッカを感じにくく静止画であればフリッカを感じやすい。しかしながら、実際には表示画面中に動画と静止画が混在するときもあり、表示画面に動画が含まれれば、即、動画であると判別できない。そこで、フリッカを感じにくい映像とは、実質的に動きのある映像を意味する。実質的に動きのある映像とは、画面の一部に動きのない映像を含んでいても、全体として動きのある映像をいう。また同様に、フリッカを感じやすい映像とは実質的に動きのない映像を意味する。実質的に動きのない映像とは、画面の一部に動きのある映像を含んでいても、全体として動きのない映像をいう。
 この映像判別方法は上記方法にとらわれず設計者により適宜選択し、動画であるか静止画であるかの判別信号を送り出せばよい。
The configuration of each part will be described in more detail below.
<< Video discrimination circuit >>
The configuration of the video image discrimination circuit 2 will be described with reference to FIG. The image discrimination circuit 2 calculates the sum of image differences between the signal of the previous frame image 10 and the signal of the current frame image 8 based on the image signal branched from the image signal sent to the liquid crystal panel 7 It asks with the vessel 9. This operation is a function included in a general video processing IC, and this embodiment is also used. Next, by comparing the sum of the differences of the image signals with the threshold set in advance by the discriminator 11, it is determined whether the current frame image 8 is a video that is hard to sense flicker or a video that is prone to flicker Make a decision. Then, when it is determined that the video is hard to feel flicker, for example, a signal of '1' (moving image) is sent as a video discrimination signal, and when it is discriminated that the video is easy to feel flicker, '0' (still image Send a signal of). Thereby, the light control signal generation circuit 3 is instructed to determine whether the video image is a moving image or a still image. As well known, if the video is a moving image, it is difficult to sense flicker, and if it is a still image, flicker is likely to be felt. However, there are cases where moving pictures and still pictures are mixed in the display screen in practice, and if moving pictures are included in the display screen, it can not be immediately determined to be moving pictures. Therefore, a video that is hard to sense flicker means a video that is substantially moving. A substantially moving image refers to a moving image as a whole, even if a part of the screen includes a non-moving image. Similarly, an image that is susceptible to flicker means an image that is substantially motionless. A substantially motionless video refers to a video that has no motion as a whole, even if the portion of the screen includes a motional video.
This image discrimination method may be appropriately selected by the designer regardless of the above method, and a discrimination signal as to whether it is a moving image or a still image may be sent out.
《調光信号生成回路》
 次に、図3を参照して調光信号生成回路3の構成の説明をする。調光信号生成回路3は、映像判別信号に従い、画像に応じた最適な調光信号を生成する。ここでは、パルス間隔、デューティ比、パルス発生タイミングの3つのパラメータを演算し、調光信号を生成している。本実施例では3相の調光信号をバックライトモジュールへ送っている。調光信号の生成については、後に詳細に説明する。
Dimming signal generation circuit
Next, the configuration of the dimming signal generation circuit 3 will be described with reference to FIG. The dimming signal generation circuit 3 generates an optimal dimming signal according to the image in accordance with the image discrimination signal. Here, three parameters of pulse interval, duty ratio, and pulse generation timing are calculated to generate a dimming signal. In the present embodiment, a three-phase dimming signal is sent to the backlight module. The generation of the dimming signal will be described in detail later.
《バックライトモジュール》
 次に、図4を参照してバックライトモジュール5の構成の説明をする。バックライトモジュール5は、光源23a、23b、23cとこれらを制御するインバータIC21a、21b、21cを備える。光源として本実施例ではCCFL管を各光源毎に2本備わっている。すなわち、バックライトモジュール5には、合計6本のCCFL(Cold Cathode Fluorescent Lamp)管がある。これを2本ずつ、調光信号生成回路3により生成された調光信号1、調光信号2、調光信号3に従って、それぞれのインバータIC21a、21b、21cにより調光周波数の同期をとりながら独立して制御している。これにより光源23a、23b、23cが順次間欠点灯し、液晶パネル7を照射する。上記以外にも、蛍光管の本数や、インバータICに何本の蛍光管を制御させるか等は、設計者が最適と思われる選択で決めれば良い。
Backlight module
Next, the configuration of the backlight module 5 will be described with reference to FIG. The backlight module 5 includes light sources 23a, 23b, 23c and inverters IC 21a, 21b, 21c for controlling them. As a light source, in the present embodiment, two CCFL tubes are provided for each light source. That is, the backlight module 5 has a total of six CCFL (Cold Cathode Fluorescent Lamp) tubes. Depending on the dimming signal 1, the dimming signal 2, and the dimming signal 3 generated by the dimming signal generation circuit 3 two by two, the respective dimming frequencies are synchronized by the respective inverters IC 21 a, 21 b and 21 c. Have control. As a result, the light sources 23a, 23b, and 23c are intermittently turned on one after another to illuminate the liquid crystal panel 7. In addition to the above, the number of fluorescent tubes, the number of fluorescent tubes to be controlled by the inverter IC, and the like may be determined by a designer who is considered to be optimum.
《液晶パネル》
 液晶パネル7は本実施例では、液晶パネルの駆動回路を備え、薄膜トランジスタ(TFT)を用いたアクティブマトリックス型の液晶表示パネルを用いている。映像信号に適応したバックライトモジュール5の光の照射により、動画モードと静止画モードの両モード間の切り替え時に瞬間的な輝度変化を視聴者は感じなくてすむ。また切り替え前後における定常的な色度変化及び輝度変化を視聴者に感じられることなく、快適な映像を提供することができる。
"LCD panel"
In this embodiment, the liquid crystal panel 7 includes a drive circuit of the liquid crystal panel, and uses an active matrix liquid crystal display panel using thin film transistors (TFTs). The illumination of light from the backlight module 5 adapted to the video signal makes it possible for the viewer not to feel a momentary change in luminance when switching between the moving image mode and the still image mode. In addition, a comfortable video can be provided without the viewer being able to feel a steady change in chromaticity and a change in luminance before and after switching.
《調光信号生成回路》
 以下に調光信号生成回路3の動作説明を行う。
 映像判別回路2で送り出された映像判別信号は、パルス間隔計算部13に取り込まれ、垂直同期信号と映像判別信号とにより1フレーム毎に調光信号内のパルス列のパルス間隔を計算している。ここでパルス間隔とは本実施例の図5に示すように、単位垂直同期期間内のパルス列を構成している各パルス間の間隔をいう。
Dimming signal generation circuit
The operation of the dimming signal generation circuit 3 will be described below.
The video discrimination signal sent out by the video discrimination circuit 2 is taken into the pulse interval calculation unit 13, and the pulse interval of the pulse train in the dimming signal is calculated frame by frame by the vertical synchronization signal and the video discrimination signal. Here, as shown in FIG. 5 of this embodiment, the pulse interval means the interval between each pulse forming the pulse train within the unit vertical synchronization period.
 また、図5に示すように本実施例では単位垂直同期期間における調光信号のパルス列ののパルスの数は3個である。また、静止画モードにおいて、調光信号を構成しているパルス列は、周波数が180Hzで生成されるパルス列と同じ位相になる。これにより、静止画モードにおいては、フリッカが発生しない臨界融合周波数より高い周波数であるので、快適に静止画を観ることができる。なお、垂直同期周波数はNTSC信号規格であれば60Hzである。 Further, as shown in FIG. 5, in the present embodiment, the number of pulses of the pulse train of the dimming signal in the unit vertical synchronization period is three. Also, in the still image mode, the pulse train forming the dimming signal has the same phase as the pulse train generated at a frequency of 180 Hz. Thus, in the still image mode, since the frequency is higher than the critical fusion frequency in which flicker does not occur, the still image can be viewed comfortably. The vertical synchronization frequency is 60 Hz in the case of the NTSC signal standard.
 単位垂直同期期間におけるパルス列のパルスの数は3個に限らず複数個であればよい。そして静止画モードの調光信号のパルス列は、(パルスの個数)×(垂直同期周波数)の周波数で生成されるパルス列と同一になる。さらには、(パルスの個数)×(垂直同期周波数)が臨界融合周波数を越えていることが好ましい。 The number of pulses of the pulse train in the unit vertical synchronization period is not limited to three and may be plural. The pulse train of the dimming signal in the still image mode is the same as the pulse train generated at the frequency of (number of pulses) × (vertical synchronization frequency). Furthermore, it is preferable that (number of pulses) × (vertical synchronization frequency) exceeds the critical fusion frequency.
 そして、パルス間隔計算部13では、パルス間隔が最も小さく動画表示に一番最適な動画モード(図5(b))と、パルス間隔が最も大きく静止画表示に一番最適な静止画モード(図5(d))と、静止画モードから動画モードへ移行の動画モード移行状態と、又逆に動画モードから静止画モードへ移行の静止画モード移行状態の4つの状態の調光パルスの間隔を算出する。 The pulse interval calculation unit 13 has the smallest pulse interval, the most suitable moving image mode for moving image display (FIG. 5 (b)), and the largest pulse interval, the most suitable still image mode for still image display (FIG. 5). 5 (d) and the interval between the light control pulses of the four states of moving picture mode transition state from still picture mode to moving picture mode transition state and vice versa transition state from moving picture mode to still picture mode calculate.
 このパルス間隔が最も小さい調光信号は、パルス3個で形成されているパルス列を1個のパルスで形成されていると擬似的にみなすことができる。つまり静止画モードでは180Hzで各々独立した3個のパルスと同じ位相のパルス列が、動画モードではパルス列内のパルス間隔を小さくすることで、パルス列が60Hzの1個のパルスと擬似的にみなすことができる。これにより、動画モードでは蛍光管点灯期間と消灯期間が単位垂直同期期間内でほぼ2分されるので、動画表示に最適なバックライト照射となる。 The dimming signal having the smallest pulse interval can be regarded as pseudo in that a pulse train formed by three pulses is formed by one pulse. In other words, a pulse train with the same phase as three independent pulses at 180 Hz in still image mode can be regarded as one pulse of 60 Hz in a pseudo manner by reducing the pulse interval in the pulse train in moving image mode. it can. As a result, since the fluorescent tube lighting period and the light-off period are approximately divided into two in the unit vertical synchronization period in the moving image mode, backlight irradiation is optimal for moving image display.
《パルス間隔計算》
 このパルス間隔計算部13で行われているパルス間隔の計算フローは図6に示されている。この計算フローでは、垂直同期信号が入るとパルス間隔の計算を開始する。映像判別回路2より映像判別信号が入力されると、ステップS1において、その信号が‘0’よりも大きいかどうかの映像判別を行う。映像判別信号が‘1’(動画)であれば、ステップS2へ進む。映像判別信号が‘0’(静止画)であれば、ステップS2´へ進む。まず、映像判別信号が動画であり、ステップS2へ進む場合を説明する。
<< Pulse interval calculation >>
The flow of pulse interval calculation performed by the pulse interval calculation unit 13 is shown in FIG. In this calculation flow, calculation of the pulse interval is started when the vertical synchronization signal is input. When a video discrimination signal is input from the video discrimination circuit 2, in step S1, video discrimination is performed to determine whether the signal is larger than '0'. If the video image discrimination signal is '1' (moving image), the process proceeds to step S2. If the video image discrimination signal is' 0 '(still image), the process proceeds to step S2'. First, the case where the video image discrimination signal is a moving image and the process proceeds to step S2 will be described.
 ステップS2では、パルスの間隔を小さくする演算が行われる。ここで、Spaceはパルス間隔であり、ΔXは単位垂直同期期間におけるパルス間隔変位量である。このΔXは、垂直同期周波数とパルスの個数とデューティ比と動画モードから静止画モードへの移行にかけるフレーム数とによって決定される値である。 In step S2, an operation to reduce the pulse interval is performed. Here, Space is a pulse interval, and ΔX is a pulse interval displacement amount in a unit vertical synchronization period. This ΔX is a value determined by the vertical synchronization frequency, the number of pulses, the duty ratio, and the number of frames applied to transition from the moving image mode to the still image mode.
 このパルス間隔変位量ΔXの設定量により、動画モードから静止画モードへの移行、または静止画モードから動画モードへの移行の速さが決まる。パルス間隔変位量ΔXを大きくとると、モードの切り替えが速くなるので、瞬時の切り替えによる輝度変化が生じる。また、パルス間隔変位量ΔXを小さくとると、モードの切り替えが遅くなるので、画像が動画から静止画に切り替わっているのにフリッカが消えるまで時間差が生じていたり、また、画像が静止画から動画に切り替わっているのに、動画の画像輪郭ボケが消えるまで時間差が生じることになる。そこで、上記モード間の移行に伴う瞬間的な輝度変化を感じないパルス間隔変位量ΔXを模索した結果、モード間の切り替えに約1秒(約60フレーム)程度かけることが本実施例では最適であることが判明した。このパルス間隔変位量ΔXは種々の条件により変わる値なので最適な値を設定し、それに伴い、モード間の切り替え時間も1秒にとらわれることなく最適な時間を設定すればよい。 The setting amount of the pulse interval displacement amount ΔX determines the speed of transition from the moving image mode to the still image mode or transition from the still image mode to the moving image mode. When the pulse interval displacement amount ΔX is made large, the switching of the mode becomes fast, so that the luminance change due to the instantaneous switching occurs. In addition, if the pulse interval displacement amount ΔX is made small, the mode switching is delayed, so there is a time difference until the flicker disappears while the image is switched from the moving image to the still image, and the image changes from the still image to the moving image Even though the image is switched to the above, there is a time difference until the image outline blurring of the moving image disappears. Therefore, as a result of searching for a pulse interval displacement amount ΔX that does not feel an instantaneous luminance change accompanying the transition between the modes, it is optimal in the present embodiment that switching between modes takes about 1 second (about 60 frames). It turned out to be. Since this pulse interval displacement amount ΔX is a value which changes depending on various conditions, an optimum value may be set, and accordingly, the switching time between modes may be set without being caught by one second.
 そして、映像判別が動画と判別されたので、ステップS2では、パルス間隔変位量ΔX分だけ、前のパルス間隔よりも減算される。 Then, since the image discrimination is determined to be a moving image, in step S2, the pulse interval displacement amount ΔX is subtracted from the previous pulse interval.
 次に、S3ステップでは減算されたパルス間隔を予め設定されている最小値と比較する。減算されたパルス間隔が最小値よりも大きければ、そのまま減算されたパルス間隔が計算された結果として出力される。これにより、パルス間隔が1つ前のパルス列よりも小さくなり、より動画表示に適した調光信号に近づいている。 Next, in step S3, the subtracted pulse interval is compared with a preset minimum value. If the subtracted pulse interval is greater than the minimum value, the subtracted pulse interval is output as the calculated result. As a result, the pulse interval is smaller than that of the previous pulse train, and the light adjustment signal closer to moving image display is approached.
 ところが、減算されたパルス間隔が最小値以下であれば、ステップS4にて減算されたパルス間隔を最小値に設定し直して、最小値を計算結果として出力される。このS4の処理は、動画表示に一番最適なパルス間隔に到達した後は、映像判別信号が‘1’(動画)を送り続ける限り、動画表示に一番最適な最も小さいパルス間隔を出力し続ける処理である。 However, if the subtracted pulse interval is equal to or less than the minimum value, the pulse interval subtracted in step S4 is reset to the minimum value, and the minimum value is output as the calculation result. In the process of S4, after reaching the most suitable pulse interval for moving image display, the smallest pulse interval most suitable for moving image display is output as long as the video discrimination signal continues to send '1' (moving image). It is a process to continue.
 この動画モードにおける最小のパルス間隔は、NTSC方式やPAL方式等の垂直同期信号の周波数や、蛍光管の長さや色域により異なる。また、動画モードにおける、垂直同期期間内の連続した黒挿入時間(蛍光管消灯時間)をどれだけ確保するかによっても上限値が決まり、動画モードと静止画モードとの切り替え前後でどの程度色度変化を出さないかによって下限値が決まるので、適宜設定することが必要である。 The minimum pulse interval in this moving picture mode differs depending on the frequency of the vertical synchronization signal of the NTSC system, PAL system or the like, the length of the fluorescent tube, and the color gamut. The upper limit is also determined by how much continuous black insertion time (fluorescent tube off time) in the vertical synchronization period is secured in the moving image mode, and the degree of chromaticity before and after switching between the moving image mode and the still image mode The lower limit value is determined depending on whether or not a change occurs, so it is necessary to set appropriately.
 動画モードにおける最小のパルス間隔の上限値を例示すると次のように求めることができる。パルス列内のパルスの個数が3個の場合、単位垂直同期期間内の連続した黒挿入時間を単位垂直同期期間の50%とし、かつ、調光比を10%とした場合は、残りの40%をパルス間隔として使用することが可能なので、単位垂直同期期間の20%をパルス列内の1個当たりのパルス間隔とすることができる。単位垂直同期期間が16.6msecであれば、3.32msecが最小のパルス間隔の上限値となる。しかし、上記のように、最小のパルス間隔の上限値は、パルス列内のパルスの個数、および黒挿入時間、並びに調光比によって定まるので、適宜設定できる。 The upper limit value of the minimum pulse interval in the moving image mode can be determined as follows. When the number of pulses in the pulse train is three, if the continuous black insertion time in the unit vertical synchronization period is 50% of the unit vertical synchronization period and the dimming ratio is 10%, the remaining 40% Can be used as a pulse interval, so that 20% of the unit vertical synchronization period can be a pulse interval per pulse train. If the unit vertical synchronization period is 16.6 msec, 3.32 msec is the upper limit value of the minimum pulse interval. However, as described above, since the upper limit value of the minimum pulse interval is determined by the number of pulses in the pulse train, the black insertion time, and the dimming ratio, it can be set appropriately.
 また、動画モードにおける最小のパルス間隔の下限値は、前述の通り、動画モードと静止画モードとの切り替え前後でどの程度色度変化を出さないかによって決まる数値であるが、本実施例において例示すると、0.1msec以上であり、さらに好ましくは0.5msec以上である。 Further, the lower limit value of the minimum pulse interval in the moving image mode is a numerical value determined depending on how much chromaticity change is not generated before and after switching between the moving image mode and the still image mode, as described above. Then, it is 0.1 msec or more, more preferably 0.5 msec or more.
 少し戻って、ステップS1に映像判別信号‘0’(静止画)が入力された場合、ステップS2´へ進む。ここではステップS2とは逆に、パルス間隔変位量ΔX分だけ、前のパルス間隔に加算される。これによりパルスの間隔を大きくする演算が行われる。 When the image discrimination signal '0' (still image) is input in step S1, the process proceeds to step S2 '. Here, contrary to step S2, the pulse interval displacement amount ΔX is added to the previous pulse interval. As a result, an operation to increase the pulse interval is performed.
 次に、ステップS3´では、加算されたパルス間隔が予め設定された最大値と比較する。加算されたパルス間隔が最大値よりも小さければ、そのまま加算されたパルス間隔が計算された結果として出力される。これにより、パルス間隔が1つ前の調光パルス信号よりも大きくなり、より静止画表示に適した調光パルスに近づいている。 Next, in step S3 ', the added pulse interval is compared with a preset maximum value. If the added pulse interval is smaller than the maximum value, the added pulse interval is output as the calculated result. As a result, the pulse interval is larger than that of the previous dimming pulse signal, and the dimming pulse closer to still image display is approached.
 ステップS3´において加算されたパルス間隔が最大値以上であれば、ステップS4´にて、加算されたパルス間隔を最大値に設定し直して、最大値を計算結果として出力される。このS4´の処理は、静止画表示に一番最適なパルス間隔に到達した後は、映像判別信号が‘0’(静止画)を送り続ける限り、静止画表示に一番最適な最も広いパルス間隔を出力し続ける処理である。 If the pulse interval added in step S3 'is equal to or greater than the maximum value, the added pulse interval is reset to the maximum value in step S4', and the maximum value is output as the calculation result. In the process of S4 ', after reaching the most suitable pulse interval for still image display, the widest pulse most suitable for still image display as long as the video discrimination signal continues to send' 0 '(still image). It is a process of continuing to output the interval.
 この静止画モードにおけるパルス間隔の最大値というのは、垂直同期周波数とパルスの個数とデューティ比によって決定される値である。 The maximum value of the pulse interval in the still image mode is a value determined by the vertical synchronization frequency, the number of pulses, and the duty ratio.
《調光信号生成》
 そして、パルス間隔計算部13よりパルス間隔がパルス発生タイミング制御部15へ送られる。このパルス発生タイミング制御部15にはパルス間隔以外に、垂直同期信号とデューティ比が送られてくる。このデューティ比は、ユーザーが選択した液晶画面表示装置の明るさ設定値の画面明るさ調節信号が画面明るさ調節信号受信部17に送られることにより設定される。
Dimming signal generation
The pulse interval calculation unit 13 sends the pulse interval to the pulse generation timing control unit 15. The vertical synchronization signal and the duty ratio are sent to the pulse generation timing control unit 15 in addition to the pulse interval. The duty ratio is set by sending a screen brightness adjustment signal of the brightness setting value of the liquid crystal screen display device selected by the user to the screen brightness adjustment signal receiving unit 17.
 パルス発生タイミング制御部15では、図3および図7に示すように、各調光信号生成回路19a、19b、19cのパルス位相が垂直同期期間内の各々1/3周期ずつずれるように、各調光信号生成の最初のパルス立ち上げ指令であるトリガー1、トリガー2、トリガー3を送り出す。各調光信号生成回路19a、19b、19cに送るパルス位相が1/3ずつずれているので、送られてくる調光信号に従って蛍光管を駆動するだけで、バックライトモジュール5に備わる3つの光源が3相の順次間欠点灯をする。この1/3という数字は本実施例が光源として3相の制御をしているからであって、光源をN相で制御をする場合は1/Nずつずらすことになる。 In the pulse generation timing control unit 15, as shown in FIG. 3 and FIG. 7, each adjustment is performed such that the pulse phase of each of the light adjustment signal generation circuits 19a, 19b, 19c is shifted by 1/3 period in the vertical synchronization period. The first pulse rise command for light signal generation, trigger 1, trigger 2, trigger 3 is sent out. Since the pulse phases to be sent to the respective dimming signal generation circuits 19a, 19b and 19c are shifted by 1/3 each, the three light sources provided in the backlight module 5 are only driven by driving the fluorescent tubes in accordance with the sent dimming signal. Turns on and off three phases sequentially. The numeral 1/3 means that three-phase control is performed as the light source in the present embodiment, and when the light source is controlled with N phases, it is shifted by 1 / N.
 このパルス立ち上げのタイミングは、垂直同期信号を受けた後にパルス間隔とデューティ比をパラメータとして演算し、最初のパルス立ち上げのトリガー指令位置が決められる。次に、各調光信号生成回路で生成される調光信号のパルス列の位相が各々1/3周期ずつずれるように、各調光信号生成回路19a、19b、19cで生成される最初のパルスの立ち上げタイミングを演算する。 The pulse rise timing is calculated using the pulse interval and the duty ratio as parameters after receiving the vertical synchronization signal, and the trigger command position of the first pulse rise is determined. Next, the first pulse generated by each of the dimming signal generation circuits 19a, 19b, and 19c is shifted so that the phase of the pulse train of the dimming signal generated by each dimming signal generation circuit is shifted by 1/3 period. Calculate the startup timing.
 さらに、このパルス発生タイミング演算結果から、各調光信号生成回路でパルスを立ち上げる3つのタイミングデータがパルス発生タイミング制御部15内の図示しないループカウンタへ送られる。そして、ループカウンタが決められた3つの値に達したとき、各調光信号生成回路19a、19b、19cにそれぞれ最初のパルス立ち上げ信号としてトリガー1、トリガー2、トリガー3が送られる。 Further, from the pulse generation timing calculation result, three timing data for raising the pulse in each light adjustment signal generation circuit are sent to a loop counter (not shown) in the pulse generation timing control unit 15. Then, when the loop counter reaches the determined three values, Trigger 1, Trigger 2, and Trigger 3 are sent as the first pulse rise signals to the respective dimming signal generation circuits 19a, 19b, 19c.
 上記のように、各調光信号生成回路において生成されるパルス列の位相が各々ずれていることと、各パルス列が動画モードにシフトするにつれ、調光信号内の蛍光管点灯期間と消灯期間がほぼ2分されることとで、順次間欠点灯がより顕著になるので動画の画像輪郭ボケを低減する画像表示となる。 As described above, the phases of the pulse trains generated in the respective light control signal generation circuits are shifted, and as the respective pulse trains shift to the moving image mode, the fluorescent tube lighting period and the light off period in the light control signal are substantially Since the intermittent lighting becomes more prominent sequentially by being divided into two, it becomes an image display which reduces the image outline blurring of a moving image.
 調光信号生成回路19a、19b、19cでは、画面明るさ調節信号受信部17より送られるデューティ比をもとにパルスの幅が決められ、パルス間隔計算部13により送られたパルス間隔をもとにパルスの間隔が決められ、パルス発生タイミング制御部15により送られてきたトリガーに従い3個のパルスを生成する。このようにして、調光信号がバックライトモジュール5へ送られる。 In the dimming signal generation circuits 19a, 19b and 19c, the width of the pulse is determined based on the duty ratio sent from the screen brightness adjustment signal receiving unit 17, and the pulse interval sent by the pulse interval calculation unit 13 is The pulse interval is determined, and three pulses are generated according to the trigger sent by the pulse generation timing control unit 15. Thus, the dimming signal is sent to the backlight module 5.
《本実施例効果》
 上述した液晶画像表示装置により、図8に示される輝度を液晶画像表示装置から得ることができる。図8(a)は本実施例より得ることができる動画モードにおける単位垂直同期期間内の光源の発する輝度(実線)および調光パルスの方形波(破線)である。図8(b)は従来例より得ることができる動画モードにおける単位垂直同期期間内の光源の発する輝度(実線)および調光パルスの方形波(破線)である。図8(c)は本実施例および従来例より得ることができる単位垂直同期期間内の静止画モードにおける光源の発する輝度(実線)および調光パルスの方形波(破線)である。本実施例によれば、動画モードにおいても各パルス間に間隔が空けられており、輝度はパルスの個数に応じた非線形の曲線波を生じている。これと、静止画モードにおける輝度の非線形の曲線波との立下り回数が同じであるので、定常的な輝度変化および色度変化が抑制される。
<< Effect of this embodiment >>
By the liquid crystal image display device described above, the luminance shown in FIG. 8 can be obtained from the liquid crystal image display device. FIG. 8A shows the luminance (solid line) emitted by the light source within the unit vertical synchronization period in the moving image mode obtainable from the present embodiment and the square wave (dashed line) of the dimming pulse. FIG. 8 (b) shows the luminance (solid line) emitted by the light source within the unit vertical synchronization period in the moving image mode obtainable from the conventional example and the square wave (broken line) of the dimming pulse. FIG. 8C shows the luminance (solid line) emitted by the light source in the still image mode within the unit vertical synchronization period and the square wave (dashed line) of the dimming pulse which can be obtained from this embodiment and the conventional example. According to this embodiment, even in the moving image mode, intervals are provided between the pulses, and the luminance generates a non-linear curved wave according to the number of pulses. Since this and the number of falling of the non-linear curvilinear wave of luminance in the still image mode are the same, steady-state luminance change and chromaticity change are suppressed.
 これに対し、図8(b)に示されるように、従来の動画モードにおいては、パルス列内の各パルス間に間隔が無いか、上述した最小のパルス間隔の下限値を下回るのでパルス間隔が無いとみなされる場合である。この場合、単位垂直同期期間のパルス列内の調光パルスが1つであるので、輝度の曲線波の立下り回数が静止画モードにおける輝度の曲線波の立下り回数と異なるので、定常的な輝度変化および色度変化が本実施例に比べて大きい。 On the other hand, as shown in FIG. 8 (b), in the conventional moving image mode, there is no interval between each pulse in the pulse train or no pulse interval because it falls below the lower limit of the above-mentioned minimum pulse interval. It is considered to be. In this case, since there is only one dimming pulse in the pulse train in the unit vertical synchronization period, the number of falling edges of the luminance curve wave is different from the number of falling edges of the luminance curve wave in the still image mode. The change and the change in chromaticity are larger than those in this embodiment.
 また、従来例では、図8(b)の動画モードと図8(c)の静止画モードとの移行をセレクタ回路による切り替えでモードの切り替え行っていたので、フラッシング現象が生じていた。しかしながら、本実施例では図8(a)の動画モードと図8(c)の静止画モードとの移行をパルス間隔を漸次に調節することでモードの切り替えを行うのでフラッシング現象を生じさせない。 Further, in the conventional example, since the transition between the moving image mode of FIG. 8B and the still image mode of FIG. 8C is performed by switching by the selector circuit, the flushing phenomenon occurs. However, in the present embodiment, since the mode switching is performed by gradually adjusting the transition between the moving image mode of FIG. 8A and the still image mode of FIG. 8C, the flushing phenomenon does not occur.
 図9および図10には上述した動画モードと静止画モードにおける輝度および色度の測定結果が示されている。図9は本実施例に係る動画モードと静止画モードの輝度および色度が示されており、図9(a)は単位垂直同期期間内の調光パルスの調光率と液晶画面を通して得ることができる輝度との関係が示されており、図9の(b)は動画モードと静止画モードにおける色空間をCIE表色系のxyY表色系の明度成分Yを取り除いた色度情報だけが示されている。図9におけるパルス列内の最小パルス間隔は0.5msecに設定されている。これに対し、図10はパルス列内の最小パルス間隔が0.05msecに設定されている。 FIGS. 9 and 10 show the measurement results of luminance and chromaticity in the above-described moving image mode and still image mode. FIG. 9 shows the luminance and chromaticity of the moving image mode and the still image mode according to the present embodiment, and FIG. 9A is obtained through the dimming rate of the dimming pulse and the liquid crystal screen in the unit vertical synchronization period. 9B shows only the chromaticity information obtained by removing the lightness component Y of the xy Y color system of the CIE color system from the color space in the moving image mode and the still image mode. It is shown. The minimum pulse interval in the pulse train in FIG. 9 is set to 0.5 msec. On the other hand, in FIG. 10, the minimum pulse interval in the pulse train is set to 0.05 msec.
 図9(a)において、動画モード(丸印)と静止画モード(菱印)における輝度にほとんど差がみられないのに対し、図10(a)においては、動画モード(丸印)と静止画モード(菱印)とでは輝度に差がみられる。つまり、パルス列内の最小パルス間隔が0.05msecでは、パルス間隔がほぼ無いものみなされる。また、この図から示されるように、本願の構成によれば、動画モードと静止画モードとにおいて、定常的な輝度変化を抑制することができる。 While there is almost no difference in luminance between the moving image mode (circle) and the still image mode (rhombic) in FIG. 9 (a), the moving image mode (circle) and still in FIG. 10 (a) There is a difference in luminance between the image mode (diamonds). That is, when the minimum pulse interval in the pulse train is 0.05 msec, it is considered that there is almost no pulse interval. Further, as shown from this figure, according to the configuration of the present application, it is possible to suppress a steady change in luminance in the moving image mode and the still image mode.
 また、図9(b)と図10(b)とを比較すると、図9(b)のグラフの方が、動画モードと静止画モードとのそれぞれの色度のグラフとの差が狭い。つまり、本実施例により、動画モードと静止画モードにおいて、色度の変化が抑制されていることが示されている。 Moreover, when FIG.9 (b) and FIG.10 (b) are compared, the difference of the graph of FIG.9 (b) with the graph of each chromaticity of moving image mode and still image mode is narrower. That is, according to this embodiment, it is shown that the change in chromaticity is suppressed in the moving image mode and the still image mode.
 以上説明したように、本実施例によれば、以下の効果が得られる。
 送られて来る映像信号をもとに映像判別回路2において、映像がフリッカを感じにくい映像であるか、フリッカを感じやすい映像であるかを判別し、動画又は静止画の映像判別信号を送り出す。この映像判別信号により、動画判別時にはパルス列内のパルス間隔を狭くしてパルス列を擬似的に1つのパルスとする。そして、静止画判別時には調光信号内のパルス間隔を広くとることで調光信号内の蛍光管の消灯期間を均等にとる。これにより、動画モードへ遷移した時には蛍光管の点灯期間と消灯期間が調光信号内でほぼ2分されるので動画の画像輪郭ボケが低減され、また、静止画モードへ遷移した時には調光信号が臨界融合周波数を越えたパルス列と同じ位相になるので液晶画面上にフリッカを感じない。そして、動画モードから静止画モードへの切り替え、また、逆の切り替えも、パルスの間隔を漸次に調節することで、ウェーバーの法則でいうΔS未満に輝度変化を抑える。これにより、視聴者が瞬間的な輝度変化を感じることも無く、また、切り替え前後の定常的な色度変化や輝度変化を感じることも無い。
As described above, according to this embodiment, the following effects can be obtained.
Based on the video signal sent, the video discrimination circuit 2 determines whether the video is a video that is hard to sense flicker or a video that is prone to flicker, and sends out a video discrimination signal of a moving image or a still image. By this image discrimination signal, at the time of moving image discrimination, the pulse interval in the pulse train is narrowed to make the pulse train virtually into one pulse. Then, at the time of still image discrimination, the pulse interval in the light control signal is made wide to evenly take the light off period of the fluorescent tube in the light control signal. As a result, since the lighting period and the extinguishing period of the fluorescent tube are divided into approximately two in the dimming signal when transitioning to the moving image mode, blurring of the image outline of the moving image is reduced, and the dimming signal is transitioned to the still image mode. Does not feel flicker on the liquid crystal screen because it has the same phase as the pulse train beyond the critical fusion frequency. Then, in the switching from the moving image mode to the still image mode, and also in the reverse switching, the brightness change is suppressed to less than ΔS in Weber's law by gradually adjusting the pulse interval. As a result, the viewer does not feel a momentary change in luminance, nor does it feel any steady change in chromaticity or change in luminance before and after switching.
 さらに、液晶パネルが大画面であってもCCFL管を複数本に対し1つのインバータICを対応させて光源を3相で制御することで、液晶の書き込み応答に対して順次間欠点灯を効率よく合わせこんでいる。バックライトの制御を簡素化しながらも、動画の画像輪郭ボケに対する応答性を効率よく向上させている。 Furthermore, even if the liquid crystal panel has a large screen, one inverter IC is made to correspond to a plurality of CCFL tubes and the light source is controlled in three phases to efficiently match intermittent lighting to the writing response of the liquid crystal Crowded. While simplifying the control of the backlight, the response to the image outline blurring of the moving image is efficiently improved.
 また、液晶画面の明るさ調整をパルスデューティ比の調節と、映像判別によるパルス位相調節をパルス生成時に同じパルス生成回路内で行うので、バックライト制御の構成がより簡素なものとなる。 Further, since the brightness adjustment of the liquid crystal screen and the pulse phase adjustment based on the image discrimination are performed in the same pulse generation circuit at the time of pulse generation, the configuration of the backlight control becomes simpler.
 本発明は、上記の実施例に限らず、次のように変形実施することができる。
 (1)実施例1においてはバックライトモジュールに6本のCCFL管を用いたが、これは何本でもよく、また、調光信号生成回路3の個数に制限はない。設計者の適宜の判断で選択すればよい。さらに、ノートパソコンのように光源が1本、インバータICが1個、調光パルス生成回路も1個という構成でも本願発明の効果を得ることができる。動画モードと静止画モードとの切り替え時に、瞬時の輝度差が生じることなく、モードの切り替え前後においても、定常的な色度変化や輝度変化が生じることもない。
The present invention is not limited to the above embodiment, and can be modified as follows.
(1) In the first embodiment, six CCFL tubes are used for the backlight module, but any number of CCFL tubes may be used, and the number of dimming signal generation circuits 3 is not limited. It may be selected by the designer's appropriate judgment. Furthermore, even when the light source is one, the inverter IC is one, and the dimming pulse generation circuit is one as in a notebook personal computer, the effect of the present invention can be obtained. At the time of switching between the moving image mode and the still image mode, an instantaneous luminance difference does not occur, and neither a steady chromaticity change nor a luminance change occurs even before and after the mode switching.
 (2)実施例1において、順次間欠点灯をパルス発生タイミング制御部15で制御していたが、バックライトモジュール内にて各調光信号の位相をずらして順次間欠点灯してもよい。この場合、調光信号1だけがバックライトモジュールに送られ、この信号を基に位相をずらしたパルスが生成される。また、バックライトモジュール内で位相をずらす手段として、例えばインバータICがあるがこれに限らなくてもよい。また、液晶の応答速度により画素信号の書き換えの前にパルスの位相をずらしてもよいし、書き換えの後にパルスの位相をずらしてもよい。 (2) In the first embodiment, the intermittent lighting is controlled sequentially by the pulse generation timing control unit 15. However, the phases of the respective light adjustment signals may be shifted in the back light module and the intermittent lighting may be sequentially performed. In this case, only the dimming signal 1 is sent to the backlight module, and a pulse whose phase is shifted is generated based on this signal. Further, as means for shifting the phase in the backlight module, for example, although there is an inverter IC, it may not be limited to this. Further, the phase of the pulse may be shifted before the rewriting of the pixel signal according to the response speed of the liquid crystal, or the phase of the pulse may be shifted after the rewriting.
 (3)実施例1において、映像判別回路2ではリアルタイムで送られる映像信号を基に映像判別を行い、映像判別信号を調光信号生成回路3へ送っているが、これを映像予測回路に代えてもよい。映像信号を基に、映像予測回路により、映像画像がフリッカを感じにくい映像になるか、フリッカを感じやすい映像になるかを予測し、映像予測信号を調光信号生成回路3に送ることで、より、動画、静止画への応答性のよいバックライトの点灯が実現できる。 (3) In the first embodiment, the video discrimination circuit 2 performs video discrimination based on the video signal sent in real time, and transmits the video discrimination signal to the dimming signal generation circuit 3, but this is replaced by the video prediction circuit. May be Based on the video signal, the video prediction circuit predicts whether the video image will be a video that is not likely to sense flicker or is likely to be a flicker and the video prediction signal is sent to the dimming signal generation circuit 3. Therefore, it is possible to realize the lighting of the back light with high responsiveness to moving pictures and still pictures.
 (4)実施例1においてはバックライトモジュールにCCFL管を用いたが、蛍光塗料が塗られたEL(エレクトロルミネセンス)を用いても良い。定常的な色度変化を抑制することができる。 (4) In the first embodiment, a CCFL tube is used for the backlight module, but EL (electroluminescence) coated with a fluorescent paint may be used. Steady-state chromaticity changes can be suppressed.

Claims (6)

  1.  映像信号に基づき予め定められた映像判別信号を送る映像判別手段と、
     予め定められた複数個のパルスで形成されるパルス列からなる調光信号を垂直同期信号ごとに生成する調光信号生成手段と、
     前記調光信号生成手段から送られる前記調光信号により駆動される発光手段と、
     前記発光手段により光を照射される液晶画像表示手段
    とを備え、
     前記調光信号生成手段は、
     前記映像判別手段から第1映像判別信号が送られた時は、前記調光信号を構成しているパルスの個数を維持した状態で、前記パルス列内のパルス間隔を漸次に狭くし、一方、
     前記映像判別手段から第2映像判別信号が送られた時は、前記調光信号を構成しているパルスの個数を維持した状態で、前記パルス列内のパルス間隔を漸次に広くする
     ことを特徴とする液晶画像表示装置。
    Video discrimination means for transmitting a predetermined video discrimination signal based on the video signal;
    Dimmer signal generating means for generating, for each vertical synchronization signal, a dimmer signal comprising a pulse train formed of a plurality of predetermined pulses;
    Light emitting means driven by the dimming signal sent from the dimming signal generation means;
    Liquid crystal image display means irradiated with light by the light emitting means;
    The dimming signal generation means
    When the first image discrimination signal is sent from the image discrimination means, the pulse interval in the pulse train is gradually narrowed while maintaining the number of pulses constituting the light adjustment signal,
    When the second image discrimination signal is sent from the image discrimination means, the pulse interval in the pulse train is gradually widened while maintaining the number of pulses constituting the light adjustment signal. Liquid crystal image display device.
  2.  請求項1記載の液晶画像表示装置において、
     前記調光信号生成手段は、前記映像判別手段から前記第1映像判別信号が送られた時は、前記調光信号を構成しているパルスの個数を維持した状態で前記パルス列内のパルス間隔を漸次に狭くすることにより、複数個のパルスで形成される前記パルス列を擬似的に1つのパルスとみなされる状態にし、一方、
     前記映像判別手段から前記第2映像判別信号が送られた時は、前記調光信号を構成しているパルスの個数を維持した状態で前記パルス列内のパルス間隔を漸次に広くすることにより、前記パルス列が、垂直同期周波数に前記調光信号内のパルスの個数を乗算した周波数で表されるパルス列と等価になる状態にする
    液晶画像表示装置。
    In the liquid crystal image display device according to claim 1,
    The dimming signal generation means, when the first image discrimination signal is sent from the image discrimination means, sets the pulse interval in the pulse train while maintaining the number of pulses constituting the dimming signal. By gradually narrowing, the pulse train formed of a plurality of pulses is made to be regarded as one pulse in a pseudo manner, while
    When the second image discrimination signal is sent from the image discrimination means, the pulse interval in the pulse train is gradually widened while maintaining the number of pulses constituting the light adjustment signal. A liquid crystal image display device in which a pulse train is in a state equivalent to a pulse train represented by a frequency obtained by multiplying a vertical synchronization frequency by the number of pulses in the dimming signal.
  3.  請求項1または2に記載の液晶画像表示装置において、
    前記映像判別手段は、前記映像信号に基づきフリッカを感じにくい映像であるか、あるいは、フリッカを感じやすい映像であるかを判別し、
     フリッカを感じにくい映像と判別したときは前記第1映像判別信号を送信し、
     フリッカを感じやすい映像と判別したときは前記第2映像判別信号を送信する
    ことを特徴とする液晶画像表示装置。
    In the liquid crystal image display device according to claim 1 or 2,
    The video judging means judges, based on the video signal, whether the video is a video which is hard to sense flicker or a video which is easy to feel flicker,
    When it is determined that the video is hard to sense flicker, the first video discrimination signal is transmitted,
    A liquid crystal image display device characterized in that the second video image discrimination signal is transmitted when it is discriminated as a video image in which flicker is easily felt.
  4.  請求項1から3いずれか1つに記載の液晶画像表示装置において、
     前記調光信号生成手段は、画面明るさ調節信号を受信することで、液晶画面の明るさ調整を前記調光信号のパルスのデューティ比の調整により行う画面明るさ調節信号受信部を備えた液晶画像表示装置。
    The liquid crystal image display device according to any one of claims 1 to 3.
    The light control signal generation unit is a liquid crystal having a screen brightness control signal receiving unit that adjusts the brightness of the liquid crystal screen by adjusting the pulse duty ratio of the light control signal by receiving the screen brightness control signal. Image display device.
  5.  請求項1から4のいずれか1つに記載の液晶画像表示装置において、
     前記発光手段には複数の光源があり、前記光源の点灯方式が順次間欠点灯方式である液晶画像表示装置。
    The liquid crystal image display device according to any one of claims 1 to 4.
    The liquid-crystal image display apparatus which has a several light source in the said light emission means, and the lighting system of the said light source is an intermittent lighting system one by one.
  6.  請求項5記載の液晶画像表示装置において、
    前記発光手段は3相またはそれよりも多い相からなる光源を備えた液晶画像表示装置。
    In the liquid crystal image display device according to claim 5,
    The liquid crystal image display device, wherein the light emitting means comprises a light source consisting of three or more phases.
PCT/JP2009/001658 2008-04-11 2009-04-09 Liquid crystal image display unit WO2009125600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507178A JP5132763B2 (en) 2008-04-11 2009-04-09 Liquid crystal image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-103916 2008-04-11
JP2008103916 2008-04-11

Publications (1)

Publication Number Publication Date
WO2009125600A1 true WO2009125600A1 (en) 2009-10-15

Family

ID=41161736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001658 WO2009125600A1 (en) 2008-04-11 2009-04-09 Liquid crystal image display unit

Country Status (2)

Country Link
JP (1) JP5132763B2 (en)
WO (1) WO2009125600A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135389A1 (en) * 2010-04-27 2011-11-03 Thomson Licensing Method and apparatus for adaptive main back-light blanking in liquid crystal displays
WO2012165304A1 (en) * 2011-05-27 2012-12-06 シャープ株式会社 Liquid crystal display device and method for driving liquid crystal display device
JP2013218190A (en) * 2012-04-11 2013-10-24 Sharp Corp Liquid crystal display device
JP2013222081A (en) * 2012-04-17 2013-10-28 Sharp Corp Liquid crystal display device
WO2015136569A1 (en) * 2014-03-11 2015-09-17 パナソニック液晶ディスプレイ株式会社 Display device and driving method therefor
WO2015136571A1 (en) * 2014-03-11 2015-09-17 パナソニック液晶ディスプレイ株式会社 Display device and driving method therefor
US9142188B2 (en) 2010-03-25 2015-09-22 Nokia Technologies Oy Methods and apparatus for reducing flickering and motion blur in a display device
JP2015166755A (en) * 2014-03-03 2015-09-24 株式会社メガチップス Duty ratio control circuit and backlight adjustment circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256678A (en) * 2006-03-23 2007-10-04 Sharp Corp Liquid crystal display apparatus, method for driving the same, backlight device to be used for liquid crystal display apparatus, and method for driving backlight device
JP2008052131A (en) * 2006-08-25 2008-03-06 Taiyo Yuden Co Ltd Liquid crystal backlight driving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256678A (en) * 2006-03-23 2007-10-04 Sharp Corp Liquid crystal display apparatus, method for driving the same, backlight device to be used for liquid crystal display apparatus, and method for driving backlight device
JP2008052131A (en) * 2006-08-25 2008-03-06 Taiyo Yuden Co Ltd Liquid crystal backlight driving device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142188B2 (en) 2010-03-25 2015-09-22 Nokia Technologies Oy Methods and apparatus for reducing flickering and motion blur in a display device
US10991338B2 (en) 2010-03-25 2021-04-27 Nokia Technologies Oy Apparatus, display module and method for adaptive blank frame insertion
WO2011135389A1 (en) * 2010-04-27 2011-11-03 Thomson Licensing Method and apparatus for adaptive main back-light blanking in liquid crystal displays
CN102859573A (en) * 2010-04-27 2013-01-02 汤姆森特许公司 Method and apparatus for adaptive main back-light blanking in liquid crystal displays
WO2012165304A1 (en) * 2011-05-27 2012-12-06 シャープ株式会社 Liquid crystal display device and method for driving liquid crystal display device
JP2013218190A (en) * 2012-04-11 2013-10-24 Sharp Corp Liquid crystal display device
JP2013222081A (en) * 2012-04-17 2013-10-28 Sharp Corp Liquid crystal display device
JP2015166755A (en) * 2014-03-03 2015-09-24 株式会社メガチップス Duty ratio control circuit and backlight adjustment circuit
WO2015136569A1 (en) * 2014-03-11 2015-09-17 パナソニック液晶ディスプレイ株式会社 Display device and driving method therefor
WO2015136571A1 (en) * 2014-03-11 2015-09-17 パナソニック液晶ディスプレイ株式会社 Display device and driving method therefor
US9972264B2 (en) 2014-03-11 2018-05-15 Panasonic Liquid Crystal Display Co., Ltd. Display device and driving method thereof
US10102817B2 (en) 2014-03-11 2018-10-16 Panasonic Liquid Crystal Display Co., Ltd. Display device and driving method thereof

Also Published As

Publication number Publication date
JPWO2009125600A1 (en) 2011-08-04
JP5132763B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2009125600A1 (en) Liquid crystal image display unit
JP3535799B2 (en) Liquid crystal display device and driving method thereof
JP3450842B2 (en) Color liquid crystal display
JP4337673B2 (en) Display device and method, recording medium, and program
JP5036694B2 (en) Backlight driving circuit and driving method thereof
US20090122087A1 (en) Display device
US20100225574A1 (en) Image display device and image display method
EP1701332A2 (en) Backlit display device with reduced flickering and blur
JP2009134237A (en) Display device
JP6282601B2 (en) Display device
JP2002287700A (en) Device and method for displaying picture
JP2009086133A (en) Video display apparatus
JP2009069835A (en) Image display device and method capable of adjusting brightness
TW201935454A (en) Display device and backlight control method
JP2006235461A (en) Liquid crystal display device
JP3583124B2 (en) Liquid crystal display device and display control method
JP6050601B2 (en) Liquid crystal display
JP2005321423A (en) Image display device
JP2008268540A (en) Liquid crystal display device
JP6896507B2 (en) Display device and its control method
JP2009058718A (en) Liquid crystal display
JP2008020611A (en) Liquid crystal display device and method for reducing afterimage in same
KR100846797B1 (en) Method and system for displaying a pixilated input image
JP2008065228A (en) Light emitting device and liquid crystal display device
JP2004272275A (en) Picture display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731241

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010507178

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731241

Country of ref document: EP

Kind code of ref document: A1