WO2009125556A1 - Polyarylene sulfide resin composition and polyarylene sulfide resin moldings to be brought into contact with organic solvent - Google Patents

Polyarylene sulfide resin composition and polyarylene sulfide resin moldings to be brought into contact with organic solvent Download PDF

Info

Publication number
WO2009125556A1
WO2009125556A1 PCT/JP2009/001538 JP2009001538W WO2009125556A1 WO 2009125556 A1 WO2009125556 A1 WO 2009125556A1 JP 2009001538 W JP2009001538 W JP 2009001538W WO 2009125556 A1 WO2009125556 A1 WO 2009125556A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
sulfide resin
resin composition
weight
parts
Prior art date
Application number
PCT/JP2009/001538
Other languages
French (fr)
Japanese (ja)
Inventor
大西克平
小泉智義
昆野明寛
Original Assignee
ポリプラスチックス株式会社
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社, 株式会社クレハ filed Critical ポリプラスチックス株式会社
Priority to JP2010507139A priority Critical patent/JPWO2009125556A1/en
Publication of WO2009125556A1 publication Critical patent/WO2009125556A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene

Definitions

  • the present invention has excellent releasability and good organic solvent resistance under contact with various organic solvents, that is, it is caused by contact or immersion in an organic solvent typified by a fuel such as an automobile.
  • the present invention relates to a polyarylene sulfide resin composition and a molded article having a performance of small dimensional change and weight change.
  • PAS resin Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin, represented by polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) resin, has high heat resistance, mechanical properties, chemical resistance, dimensional stability and flame retardancy. Therefore, it is widely used in electrical / electronic equipment part materials, automotive equipment part materials, chemical equipment part materials, and the like.
  • PPS resin polyphenylene sulfide
  • PAS resin has very good chemical resistance, it is increasingly used in parts that come into contact with organic solvents in electrical / electronic equipment or automobile equipment.
  • the demand for organic solvent resistance has increased more than ever due to the higher performance of parts in contact with the environment and the higher use environment temperature, and it is necessary to improve the PAS resin.
  • Japanese Patent Publication No. 6-45693 describes the reduction of burrs
  • Japanese Patent No. 3568049 describes the improvement of mechanical properties.
  • the effect on the organic solvent resistance to be solved by the present invention is not described.
  • the addition amount or melt viscosity of the polyhaloaromatic compound implemented in Japanese Patent Publication No. 6-45693 and Japanese Patent No. 3568049 is insufficient as an effect on the organic solvent resistance aimed at by the present invention. Disclosure of the invention
  • the present invention provides an organic solvent resistance by greatly improving the performance of organic solvent resistance, that is, small change in size and weight caused by contact or immersion in an organic solvent such as automobile fuel.
  • the object is to provide a PAS resin composition and a molded article that are preferably used in contact applications.
  • the present invention (A) In an organic amide solvent, (a) at least one metal sulfide selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and (b) a dihaloaromatic compound in (c) molecule A polyarylene sulfide resin obtained by polymerizing in the presence of a polyhaloaromatic compound having 3 or more halogen substituents, [(c) / [(b) + (c)]] (molar ratio), which is the ratio of component (c) to the sum of components (b) and (c), is 0.001 to 0.01,
  • the melt viscosity ⁇ * 1000 is 5 to 60 Pa ⁇ s, [However, melt viscosity ⁇ * 1000 is a melt viscosity measured at 310 ° C.
  • a polyarylene sulfide resin having a branched structure derived from a polyhaloaromatic compound having a repeating unit of-(Ar-S)-(wherein Ar is an arylene group) and having 3 or more halogen substituents (B) A polyarylene sulfide resin composition comprising 150 to 300 parts by weight of an inorganic filler, and a polyarylene sulfide resin molded product in contact with an organic solvent obtained by molding the resin composition.
  • the PAS resin as the component (A) used in the present invention comprises (a) at least one metal sulfide selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent, and (b) A PAS resin obtained by polymerizing a dihaloaromatic compound in the presence of (c) a polyhaloaromatic compound having three or more halogen substituents in the molecule, [(c) / [(b) + (c)]] (molar ratio), which is the ratio of component (c) to the sum of components (b) and (c), is 0.001 to 0.01,
  • the melt viscosity ⁇ * 1000 is 5 to 60 Pa ⁇ s, [However, melt viscosity ⁇ * 1000 is a melt viscosity measured at 310 ° C.
  • the organic amide solvent used in the present invention includes an aprotic polar organic solvent that is usually used for the production of PAS resin and is stable against alkali at high temperatures.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl- ⁇ -caprolactam
  • 1,3-dialkyl-2-imidazolidinone 1,3-dialkyl-2-imidazolidinone and the like
  • metal sulfide selected from the group consisting of (a) alkali metal sulfides and alkali metal hydrosulfides is used as the sulfur source of the PAS resin.
  • alkali metal sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof.
  • the alkali metal sulfide any of an anhydride, a hydrate, and an aqueous solution may be used.
  • sodium sulfide is preferable from the viewpoint of being industrially available at a low cost and being easy to handle.
  • these alkali metal sulfides those which are commercially available as hydrates can be used in addition to being contained in alkali metal hydrosulfides as by-products.
  • alkali metal hydrosulfide examples include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more thereof.
  • the alkali metal hydrosulfide any of an anhydride, a hydrate, and an aqueous solution may be used.
  • sodium hydrosulfide and lithium hydrosulfide are preferable because they are industrially available at low cost.
  • These alkali metal hydrosulfides are preferably used as an aqueous mixture such as an aqueous solution (that is, a mixture with fluid water) from the viewpoints of processing operation and measurement.
  • the alkali metal hydrosulfide used in the present invention may contain a small amount of alkali metal sulfide.
  • the dihaloaromatic compound used in the present invention is a dihalogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring.
  • dihaloaromatic compound examples include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenylsulfone, dihalo Examples thereof include diphenyl sulfoxide and dihalodiphenyl ketone, and these dihaloaromatic compounds can be used alone or in combination of two or more.
  • the halogen atom refers to each atom of fluorine, chlorine, bromine and iodine, and in the same dihaloaromatic compound, the two halogen atoms may be the same or different.
  • the dihaloaromatic compound o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, or a mixture of two or more of these is often used. 4).
  • a polyhaloaromatic compound having 3 or more halogen substituents in the molecule is used as the component (c).
  • the halogen substituent is usually a group in which a halogen atom is directly bonded to an aromatic ring.
  • a halogen atom refers to each atom of fluorine, chlorine, bromine and iodine.
  • a plurality of halogen atoms may be the same or different.
  • Polyhaloaromatic compounds include 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,3,4-tetrachlorobenzene, 1, 2,4,5-tetrachlorobenzene, 1,3,5-trichloro-2,4,6-trimethylbenzene, 2,4,6-trichlorotoluene, 1,2,3-trichloronaphthalene, 1,2,4- Examples include trichloronaphthalene, 1,2,3,4-tetrachloronaphthalene, 2,4,2′-trichlorobenzophenone and the like.
  • polyhaloaromatic compounds can be used alone or in combination of two or more.
  • trihalobenzenes such as 1,2,4-trichlorobenzene and 1,3,5-trichlorobenzene are preferable, and trichlorobenzene is more preferable.
  • component (A) (a) a metal sulfide and (b) a dihaloaromatic compound in (c) a molecule having three or more halogen substituents in an organic amide solvent.
  • a PAS resin polymerized in the presence of a compound is used.
  • the ratio of the component (c) to the total of the components (b) and (c) [(c) / [(b) + (c)]] (molar ratio) is required to be 0.001 to 0.01. If this molar ratio is too small, the organic solvent resistance that is the object of the present invention cannot be sufficiently obtained, and if it is too large, the mechanical properties deteriorate, which is not preferable.
  • the PAS resin used in the present invention is manufactured by a method usually performed as a PAS resin.
  • a ratio (b) / (a) (molar ratio) of 1.0 to 1.2 which is the ratio of the component (b) to the component (a). . If this molar ratio is too small, the inside of the polymerization system becomes unstable, resulting in a decrease in yield. If it is too large, it becomes difficult to obtain the desired melt viscosity, or the polymerization time is very long. Therefore, it is not industrially preferable.
  • a catalyst or a polymerization aid in the polymerization reaction, a molecular weight adjusting agent such as a monohalogen aromatic compound or an active hydrogen-containing compound, a liquid property adjusting agent such as an alkali metal hydroxide, a reducing agent, etc. are appropriately used as desired. And can be added to the polymerization reaction system.
  • a molecular weight adjusting agent such as a monohalogen aromatic compound or an active hydrogen-containing compound
  • a liquid property adjusting agent such as an alkali metal hydroxide, a reducing agent, etc.
  • the organic amide solvent various components such as the component (a), the component (b), the component (c), the catalyst used as desired are charged at a predetermined ratio, and the moisture ratio is adjusted as necessary.
  • the obtained reaction solution is usually heated to a temperature in the range of 180 to 330 ° C., preferably 220 to 300 ° C., to carry out the polymerization reaction.
  • the reaction time varies depending on the type and ratio of each component used, the type of catalyst, and the like, and thus cannot be determined unconditionally, but is usually within 20 hours, preferably about 0.1 to 8 hours.
  • the mixture is usually at a temperature of 300 ° C. or less, preferably 100 to 250 ° C., usually 15 minutes to 24 hours, preferably The heating is performed for 30 minutes to 10 hours.
  • a heating method there are a method of maintaining a constant temperature, a method of raising the temperature stepwise or continuously, or a method of combining both.
  • the dehydration step is performed by a batch method, a continuous method, or a combination method of both methods.
  • the apparatus for performing the dehydration process may be the same as or different from the polymerization tank (reaction can) used in the polymerization process.
  • this polycondensation reaction can be carried out in an inert gas atmosphere such as nitrogen, argon, and carbon dioxide.
  • the reaction pressure is not particularly limited, but is usually from the self-pressure to 50 kg / cm 2 (absolute pressure) of a polycondensation reaction system such as a solvent.
  • the polycondensation reaction may be a one-stage reaction performed at a steady temperature, a multi-stage reaction in which the temperature is raised stepwise, or a reaction mode in which the temperature is gradually raised continuously.
  • the synthesized PAS resin is separated from the reaction vessel directly by a standard method such as filtration or centrifugation, or a condensed liquid such as water and / or diluted acid, for example. Can be isolated from the reaction solution after addition.
  • the isolated polymer is usually washed with water, methanol, acetone or the like, so that the alkali metal halide, alkali metal sulfide, polymerization auxiliary agent and side reaction product adhering to the polymer are obtained. Etc. are removed. Further, without isolating the polymer produced from the reaction-terminated liquid, the solvent can be removed by distillation, and the polymer can be obtained by washing the residue as described above. The recovered solvent can be reused.
  • the PAS resin thus obtained can be subjected to various desalting treatments as necessary to further reduce the salt content such as sodium chloride in the polymer.
  • the PAS resin as the base resin used in the present invention needs to have a melt viscosity ⁇ * 1000 as defined above of 5 to 60 Pa ⁇ s, preferably 10 to 60 Pa ⁇ s, particularly preferably 10 to 40 Pa ⁇ s. s. If the melt viscosity is too low, it is not preferable because the mechanical strength is not sufficient, and if the melt viscosity is too high, not only the fluidity during injection molding becomes poor and the molding operation becomes difficult, but also the resistance to organic solvents decreases. It is not preferable.
  • the (A) PAS resin used in the present invention may be used in combination with a linear PAS having no branched structure or a crosslinked PAS obtained by heat treatment within a range not impairing the organic solvent resistance effect. it can.
  • the melt viscosity is preferably 5 to 60 Pa ⁇ s, but is not limited as long as desired properties such as organic solvent resistance, mechanical properties and moldability are not impaired.
  • the (B) inorganic filler used in the present invention is not particularly limited, but is important for obtaining sufficient mechanical strength.
  • inorganic fillers include, for example, calcium carbonate such as light calcium carbonate, heavy or finely powdered calcium carbonate, special calcium-based fillers; calcined clay such as nepheline, feldspar fine powder, montmorillonite, bentonite, silane modified clay, etc.
  • Clay aluminum silicate powder
  • talc silica (silicon dioxide) powder such as fused silica and crystalline silica
  • silicic acid-containing compounds such as diatomaceous earth and silica sand
  • pulverization of natural minerals such as pumice powder, pumice balloon, slate powder and mica powder Products: Alumina, alumina colloids (alumina sol), alumina-containing compounds such as alumina white, aluminum sulfate, etc .; minerals such as barium sulfate, lithopone, calcium sulfate, molybdenum disulfide, graphite (graphite); glass fibers, glass beads, glass flakes Glass-based fillers such as foam glass beads; Yash sphere, volcanic glass hollow body, synthetic inorganic hollow body, single crystal potassium titanate, carbon nanotube, carbon hollow sphere, carbon 64 fullerene, anthracite powder, artificial cryolite, titanium oxide, magnesium oxide, basic Examples include magnesium, dolomite, potassium
  • the blending amount of the component (B) is 150 to 300 parts by weight, preferably 170 to 250 parts by weight with respect to 100 parts by weight of the PAS resin of the component (A). If the blending amount of component (B) is too small, sufficient mechanical strength and organic solvent resistance may not be obtained, and if it is too large, problems such as decreased toughness or deteriorated workability due to decreased fluidity A point is generated.
  • n is a straight chain having 15 or more Or it is preferable to mix
  • the olefin compound is not particularly limited as long as it has a linear or branched structure in which — (CH 2 ) n — is a basic structural unit and n is 15 or more. If n is less than 15 in the above formula, problems such as increased gas generated during molding due to low thermal stability.
  • the (C) olefin compound include high-density polyethylene, low-density polyethylene, and paraffin, and preferably low-density polyethylene (density 0.90 to 0.93 g / cm 3 ).
  • the blending amount of the (C) olefin compound is 0.01 to 1.0 part by weight, preferably 0.1 to 0.6 part by weight, particularly preferably 0.1 to 0.4 part by weight based on 100 parts by weight of the PAS resin as the component (A). .
  • the blending amount of the olefin compound is too small, it is difficult to release from the mold during molding. On the other hand, if it is too large, the organic solvent resistance is lowered, which is not preferable.
  • the effect of the present invention is further increased by further using (D) a crystal nucleating agent in combination.
  • a crystal nucleating agent used for this purpose, any of known organic nucleating agents and inorganic nucleating agents can be used.
  • inorganic materials include metal oxides such as ZnO, MgO, Al 2 O 3 , TiO 2 , MnO 2 , SiO 2 , and Fe 3 O 4 , nitrides such as boron nitride, Na 2 CO 3 , CaCO 3 , and MgCO 3.
  • organic salts such as calcium oxalate, sodium oxalate, calcium benzoate, calcium phthalate, calcium tartrate, magnesium stearate, heat-resistant polymers, cross-linked products of heat-resistant polymers, etc. be able to.
  • organic salts such as calcium oxalate, sodium oxalate, calcium benzoate, calcium phthalate, calcium tartrate, magnesium stearate, heat-resistant polymers, cross-linked products of heat-resistant polymers, etc. be able to.
  • Particularly preferred are boron nitride and carbon nanotubes.
  • the polymer compound having a crosslinked or branched structure is, for example, a polymer compound having a branched or crosslinked structure produced by polycondensation of a monomer having 3 or more functional groups, or an existing polymer. It may be any of those obtained by later giving a crosslinked or branched structure to the substance, and may be a crosslinked PAS.
  • the carbon nanotube used as the crystal nucleating agent is not particularly limited by the production method or structure, but is preferably a carbon nanotube having an average diameter of 5 to 100 nm and an average aspect ratio of 20 to 2500. If the average diameter is too small, it may be difficult to produce carbon nanotubes. On the other hand, if the average diameter is excessive, a sufficient effect as a crystal nucleating agent cannot be exhibited, and at the same time sufficient organic solvent resistance cannot be obtained, which is not preferable.
  • the average aspect ratio is preferably 50 or more for the purpose of obtaining sufficient nucleating agent performance and organic solvent resistance, but an excessive aspect ratio is not preferable because it is difficult to produce.
  • crystal nucleating agents overlap with inorganic fillers, and these substances can fulfill both functions, but the amount used as (C) crystal nucleating agent is (A) component 100 weight 0.01 to 3 parts by weight per part is sufficient, preferably 0.1 to 2 parts by weight. If it is less than 0.01 parts by weight, the organic solvent resistance is not sufficient.
  • thermoplastic elastomer can be used in combination as appropriate in order to improve the high and low temperature impact characteristics of the molded product.
  • thermoplastic elastomers include polyolefin elastomers, polyester elastomers, fluorine elastomers, silicone elastomers, butadiene elastomers, polyamide elastomers, polystyrene elastomers, urethane elastomers, and various particle elastomers with a cross-linked structure at the center. 1 type or 2 types or more can be used.
  • thermoplastic elastomer an olefin-based elastomer is preferable, and an olefin-based copolymer mainly containing an ⁇ -olefin and a glycidyl ester of ⁇ , ⁇ -unsaturated acid is used. Further, an olefin-based elastomer obtained by copolymerizing various graft copolymers with main components of ⁇ -olefin and glycidyl ester of ⁇ , ⁇ -unsaturated acid can also be preferably used.
  • the blending amount of the thermoplastic elastomer is 1 to 25 parts by weight, preferably 1 to 15 parts by weight, and more preferably 1 to 8 parts by weight with respect to 100 parts by weight of the PAS resin as the component (A). If the blending amount of the thermoplastic elastomer is too small, the effect of improving the high and low temperature impact characteristics is not sufficient, and if it is too large, there arises a problem that the mold deposit attached to the mold during molding is increased.
  • a silane compound can be blended in the resin composition of the PAS molded product of the present invention for the purpose of improving burrs and the like within a range not impairing the effects of the present invention.
  • the silane compound include various types such as vinyl silane, methacryloxy silane, epoxy silane, amino silane, mercapto silane, etc., for example, vinyl trichlorosilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysila. Examples include, but are not limited to, silane, ⁇ -aminopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and the like.
  • thermoplastic resins can be used in combination with a small amount in addition to the above components depending on the purpose.
  • the other thermoplastic resin used here may be any thermoplastic resin that is stable at high temperatures.
  • a known substance added to a general thermoplastic resin that is, a stabilizer such as an antioxidant, a flame retardant, and the like, within a range not impairing the effects of the present invention.
  • Colorants such as dyes and pigments, lubricants, crystallization accelerators, and the like can be appropriately added according to the required performance.
  • the resin composition of the molded product used in the present invention can be prepared by equipment and methods generally used for preparing a synthetic resin composition. Generally, necessary components are mixed, melt-kneaded using a single-screw or twin-screw extruder, and extruded to form pellets for molding. Also, it is one of preferred methods to melt-extrude the resin component and add and blend the fibrous filler in the middle.
  • the resin molding method used in the present invention is not particularly limited, and can be molded using generally known thermoplastic resin molding methods such as injection molding, extrusion molding, vacuum molding, compression molding, etc., but is most preferable. Is injection molding.
  • the mold temperature at the time of molding is preferably 120 to 180 ° C., particularly preferably 130 to 180 ° C., in order to sufficiently crystallize the PAS resin. If the mold temperature is too low, crystallization on the molding surface of the PAS resin becomes insufficient, resulting in a decrease in organic solvent resistance. If the mold temperature is too high, the molding cycle time becomes long. Produce.
  • the molded product used in the present invention is preferably subjected to heat treatment after molding.
  • the heat treatment conditions vary depending on the size, shape, and application of the molded product, but are generally performed at 120 to 240 ° C. If the heat treatment temperature is too low, the heat treatment takes a long time, which is not preferable in terms of production cost. If the heat treatment temperature is too high, the PAS resin deteriorates, which causes a decrease in mechanical strength.
  • the organic solvent with which the molded product used in the present invention is in contact is, for example, as shown below.
  • Alcohol solvents such as methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, acetone, methyl ethyl ketone, diethyl ketone solvent, dimethyl ether, dipropyl ether, tetrahydrofuran, 1,3-dioxolane, 1,4 -Ether solvents such as dioxane, nitrogen-containing solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, n-octane, isooctane, n -Aliphatic hydrocarbon solvents such as nonane and n-dode
  • p-DCB p-dichlorobenzene
  • TBC 1,2,4-trichlorobenzene
  • 13 g (0.071 mol) and 143 g of water were added, and the mixture was reacted at 220 ° C. for 3 hours while stirring at a rotational speed of 250 rpm of the stirrer to carry out pre-stage polymerization.
  • the mixture is cooled to near room temperature, the contents are passed through a 100 mesh screen, the granular polymer is sieved, washed with acetone three times, washed three times with water, and washed with an acetic acid aqueous solution adjusted to pH 4. And then again with water four times to obtain a washed granular polymer.
  • the granular polymer was dried at 100 ° C. overnight.
  • the granular polymer thus obtained had an average particle diameter of 480 ⁇ m and a melt viscosity of 20 Pa ⁇ s.
  • Branch PPS-2 A 20-liter autoclave was charged with 6006g of NMP, 2001g of sodium hydrosulfide (purity 62%) and 1170g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature was gradually raised to 200 ° C while stirring over about 4 hours. Then, 995 g of water, 1269 g of NMP, and 12 g of hydrogen sulfide were distilled out.
  • the number of revolutions of the stirrer was increased to 400 rpm, 444 g of water was injected while stirring was continued, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
  • Branch PPS-3 A 20 liter autoclave is charged with 6000 g of NMP, 2001 g of sodium hydrosulfide (purity 62%) and 1170 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C while stirring for about 4 hours. Then, 995 g of water, 1269 g of NMP, and 12 g of hydrogen sulfide were distilled out.
  • Branch PPS-4 A 20-liter autoclave is charged with 6000 g of NMP, 2000 g of sodium hydrosulfide (purity 62%), and 1180 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C. while stirring for about 4 hours. Then, 979 g of water, 1294 g of NMP, and 12 g of hydrogen sulfide were distilled out.
  • the mixture was cooled to 150 ° C., added with 3580 g (24.35 mol) of p-DCB, 3510 g of NMP, 22 g of TCB (0.12 mol), and 131 g of water, and reacted at 220 ° C. for 4 hours while stirring at a rotation speed of 250 rpm. And pre-stage polymerization was performed.
  • Branch PPS-5 A 20 liter autoclave is charged with 6000 g of NMP, 2001 g of sodium hydrosulfide (purity 62%), and 1180 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C. while stirring for about 4 hours. Then, 971 g of water, 1243 g of NMP, and 12 g of hydrogen sulfide were distilled out.
  • the mixture was cooled to 150 ° C., added with p-DCB 3634 g (24.72 mol), NMP 3461 g, TCB 32 g (0.17 mol), and 122 g of water, and reacted at 220 ° C. for 4 hours with stirring at 250 rpm. And pre-stage polymerization was performed.
  • Branch PPS-6 A 20 liter autoclave is charged with 6000 g of NMP, 2001 g of sodium hydrosulfide (purity 62%), and 1180 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C. while stirring for about 4 hours. Then, 978 g of water, 1245 g of NMP, and 12 g of hydrogen sulfide were distilled out.
  • the mixture was cooled to 150 ° C., added with 3964 g (26.97 mol) of p-DCB, 3463 g of NMP, 60 g of TCB (0.33 mol), and 129 g of water, and reacted at 220 ° C. for 4 hours while stirring at a rotation speed of 250 rpm. And pre-stage polymerization was performed.
  • the mixture is cooled to 150 ° C., 3398 g (23.12 mol) of p-DCB, 3456 g of NMP and 147 g of water are added, and the mixture is reacted at 220 ° C. for 4 hours while stirring at 250 rpm of the stirrer to carry out pre-stage polymerization. It was.
  • the number of revolutions of the stirrer was increased to 400 rpm, 444 g of water was injected while stirring was continued, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
  • the obtained resin composition pellets were put into an injection molding machine having a cylinder temperature of 320 ° C. and molded to produce a target molded product (test piece), and the above evaluation was performed. The results are shown in Table 1.

Abstract

A polyarylene sulfide (PAS) resin composition comprising (A) 100 parts by weight of a PAS resin and (B) 150 to 300 parts by weight of an inorganic filler, and moldings of the composition which are to be brought into contact with organic solvent, wherein the PAS resin is a resin which is obtained by polymerizing (a) at least one compound selected from among alkali metal sufides and alkali metal hydrogensulfides with (b) a dihaloaromatic compound in an organic amide solvent in the presence of (c) a polyhaloaromatic compound having three or more halogeno substituents in the molecule, which has a [(c)/[(b)+(c)]] molar ratio of 0.001 to 0.01 and a melt viscosity η*1000 of 5 to 60 Pa s [wherein melt viscosity η*1000 is a melt viscosity as determined at 310°C and a shear rate of 1000(1/s) by using Capirograph equipped with a nozzle having a bore diameter of 1.0mmΦ and a length of 20.0mm], and which comprises -(Ar-S)- repeating units (wherein Ar is arylene) as the main constituent and bears a branched structure resulting from the component (c).

Description

ポリアリーレンサルファイド樹脂組成物及び有機溶剤に接するポリアリーレンサルファイド樹脂成形品Polyarylene sulfide resin composition and polyarylene sulfide resin molded product in contact with organic solvent
 本発明は、優れた離型性を有し、且つ各種有機溶剤との接触下において良好な耐有機溶剤性、つまり、自動車等の燃料などに代表される有機溶媒に接触あるいは浸漬したことにより生じる寸法変化や重量変化の小さいという性能を有するポリアリーレンサルファイド樹脂組成物及び成形品に関する。
背景技術
The present invention has excellent releasability and good organic solvent resistance under contact with various organic solvents, that is, it is caused by contact or immersion in an organic solvent typified by a fuel such as an automobile. The present invention relates to a polyarylene sulfide resin composition and a molded article having a performance of small dimensional change and weight change.
Background art
 ポリフェニレンサルファイド(以下PPSと略す場合がある)樹脂に代表されるポリアリーレンサルファイド(以下PASと略す場合がある)樹脂は、高い耐熱性、機械的物性、耐薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。 Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin, represented by polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) resin, has high heat resistance, mechanical properties, chemical resistance, dimensional stability and flame retardancy. Therefore, it is widely used in electrical / electronic equipment part materials, automotive equipment part materials, chemical equipment part materials, and the like.
 また、PAS樹脂は、耐薬品性が極めて良好であることから、電気・電子機器あるいは自動車機器等における、有機溶剤に接する部品へも多く用いられるようになってきているが、近年、これら有機溶剤に接する部品の高性能化、あるいは使用環境温度の高温化により、耐有機溶剤性への要求がこれまで以上に一段と高まっており、PAS樹脂の改良が必要となっている。 In addition, since PAS resin has very good chemical resistance, it is increasingly used in parts that come into contact with organic solvents in electrical / electronic equipment or automobile equipment. The demand for organic solvent resistance has increased more than ever due to the higher performance of parts in contact with the environment and the higher use environment temperature, and it is necessary to improve the PAS resin.
 PAS樹脂改質の手法として、これまでに3個以上のハロゲン置換基を有するポリハロ芳香族化合物を重合系に添加し、ポリマー骨格に分岐構造を導入する方法が米国特許第4038261号明細書、特公昭54-8719号公報、特公昭57-334号公報、特公平6-45693号公報及び特許第3568049号公報で提案されている。 As a method for modifying a PAS resin, a method in which a polyhaloaromatic compound having three or more halogen substituents is added to a polymerization system and a branched structure is introduced into a polymer skeleton has been disclosed in US Pat. It has been proposed in Japanese Patent Publication No. 54-8719, Japanese Patent Publication No. 57-334, Japanese Patent Publication No. 6-45693, and Japanese Patent No. 3568049.
 ところが、これらの特許文献では溶融流動性の改良が主な目的であり、特公平6-45693号公報では低バリ化が、特許第3568049号公報では機械的物性の改善も目的として記載されているが、本発明で解決しようとする耐有機溶剤性に対する効果については記載されていない。更に、特公平6-45693号公報及び特許第3568049号公報で実施されるポリハロ芳香族化合物の添加量、あるいは溶融粘度では本発明の目的とする耐有機溶剤性に対する効果として不十分である。
発明の開示
However, in these patent documents, the main purpose is to improve the melt fluidity, Japanese Patent Publication No. 6-45693 describes the reduction of burrs, and Japanese Patent No. 3568049 describes the improvement of mechanical properties. However, the effect on the organic solvent resistance to be solved by the present invention is not described. Furthermore, the addition amount or melt viscosity of the polyhaloaromatic compound implemented in Japanese Patent Publication No. 6-45693 and Japanese Patent No. 3568049 is insufficient as an effect on the organic solvent resistance aimed at by the present invention.
Disclosure of the invention
 本発明は、耐有機溶剤性、つまり、自動車等の燃料などに代表される有機溶媒に接触あるいは浸漬したことにより生じる寸法変化や重量変化の小さいという性能を大幅に向上させることにより、有機溶剤に接する用途で好適に用いられるPAS樹脂組成物及び成形品の提供を目的とするものである。 The present invention provides an organic solvent resistance by greatly improving the performance of organic solvent resistance, that is, small change in size and weight caused by contact or immersion in an organic solvent such as automobile fuel. The object is to provide a PAS resin composition and a molded article that are preferably used in contact applications.
 本発明者らは上記目的を達成するため鋭意検討した結果、特定の溶融粘度を有する分岐PAS樹脂を使用することにより、耐有機溶剤性に優れたPAS樹脂成形品が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that by using a branched PAS resin having a specific melt viscosity, a PAS resin molded article excellent in organic solvent resistance can be obtained. The invention has been completed.
 即ち本発明は、
(A)有機アミド溶媒中で、(a)アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも1種の金属硫化物と(b)ジハロ芳香族化合物とを(c)分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物の存在下に重合反応させることにより得られるポリアリーレンサルファイド樹脂であって、
 (b)及び(c)成分の合計に対する(c)成分の割合である[(c)/[(b)+(c)]](モル比)が0.001~0.01であり、
 溶融粘度η 1000が5~60Pa・sであり、
〔ただし、溶融粘度η 1000は、内径1.0mmφ、長さ20.0mmのノズルを装着したキャピログラフを用い、310℃で、剪断速度1000(1/秒)で測定した溶融粘度である。〕
 -(Ar-S)-(但しArはアリーレン基)の繰返し単位を主構成要素とし、3個以上のハロゲン置換基を有するポリハロ芳香族化合物に由来する分岐構造を有するポリアリーレンサルファイド樹脂100重量部
(B)無機充填剤150~300重量部
からなるポリアリーレンサルファイド樹脂組成物、及び該樹脂組成物を成形して得られる、有機溶剤に接するポリアリーレンサルファイド樹脂成形品である。
発明の詳細な説明
That is, the present invention
(A) In an organic amide solvent, (a) at least one metal sulfide selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and (b) a dihaloaromatic compound in (c) molecule A polyarylene sulfide resin obtained by polymerizing in the presence of a polyhaloaromatic compound having 3 or more halogen substituents,
[(c) / [(b) + (c)]] (molar ratio), which is the ratio of component (c) to the sum of components (b) and (c), is 0.001 to 0.01,
The melt viscosity η * 1000 is 5 to 60 Pa · s,
[However, melt viscosity η * 1000 is a melt viscosity measured at 310 ° C. and a shear rate of 1000 (1 / second) using a capillograph equipped with a nozzle with an inner diameter of 1.0 mmφ and a length of 20.0 mm. ]
100 parts by weight of a polyarylene sulfide resin having a branched structure derived from a polyhaloaromatic compound having a repeating unit of-(Ar-S)-(wherein Ar is an arylene group) and having 3 or more halogen substituents
(B) A polyarylene sulfide resin composition comprising 150 to 300 parts by weight of an inorganic filler, and a polyarylene sulfide resin molded product in contact with an organic solvent obtained by molding the resin composition.
Detailed Description of the Invention
 以下本発明の構成成分について詳細に説明する。本発明に用いる(A) 成分としてのPAS樹脂は、有機アミド溶媒中で、(a)アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも1種の金属硫化物と(b)ジハロ芳香族化合物とを(c)分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物の存在下に重合反応させることにより得られるPAS樹脂であって、
 (b)及び(c)成分の合計に対する(c)成分の割合である[(c)/[(b)+(c)]](モル比)が0.001~0.01であり、
 溶融粘度η 1000が5~60Pa・sであり、
〔ただし、溶融粘度η 1000は、内径1.0mmφ、長さ20.0mmのノズルを装着したキャピログラフを用い、310℃で、剪断速度1000(1/秒)で測定した溶融粘度である。〕
 -(Ar-S)-(但しArはアリーレン基)の繰返し単位を主構成要素とし、3個以上のハロゲン置換基を有するポリハロ芳香族化合物に由来する分岐構造を有するPAS樹脂である。
1.有機アミド溶媒
 本発明に用いる有機アミド溶媒としては、通常、PAS樹脂の製造に用いられる、高温でアルカリに対し安定な非プロトン性極性有機溶媒が挙げられる。例えば、N-メチル-2-ピロリドン(NMP)、N-メチル-ε-カプロラクタム、1,3-ジアルキル-2-イミダゾリジノン等が挙げられる。
2.(a)金属硫化物
 本発明では、PAS樹脂の硫黄源として、(a)アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも1種の金属硫化物が用いられる。
Hereinafter, the constituent components of the present invention will be described in detail. The PAS resin as the component (A) used in the present invention comprises (a) at least one metal sulfide selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent, and (b) A PAS resin obtained by polymerizing a dihaloaromatic compound in the presence of (c) a polyhaloaromatic compound having three or more halogen substituents in the molecule,
[(c) / [(b) + (c)]] (molar ratio), which is the ratio of component (c) to the sum of components (b) and (c), is 0.001 to 0.01,
The melt viscosity η * 1000 is 5 to 60 Pa · s,
[However, melt viscosity η * 1000 is a melt viscosity measured at 310 ° C. and a shear rate of 1000 (1 / second) using a capillograph equipped with a nozzle with an inner diameter of 1.0 mmφ and a length of 20.0 mm. ]
It is a PAS resin having a branched structure derived from a polyhaloaromatic compound having a repeating unit of-(Ar-S)-(where Ar is an arylene group) as a main constituent and having 3 or more halogen substituents.
1. Organic Amide Solvent The organic amide solvent used in the present invention includes an aprotic polar organic solvent that is usually used for the production of PAS resin and is stable against alkali at high temperatures. For example, N-methyl-2-pyrrolidone (NMP), N-methyl-ε-caprolactam, 1,3-dialkyl-2-imidazolidinone and the like can be mentioned.
2. (a) Metal sulfide In the present invention, at least one metal sulfide selected from the group consisting of (a) alkali metal sulfides and alkali metal hydrosulfides is used as the sulfur source of the PAS resin.
 アルカリ金属硫化物としては、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、及びこれらの2種以上の混合物を挙げることができる。アルカリ金属硫化物は、無水物、水和物、水溶液のいずれを用いてもよい。これらの中でも、工業的に安価に入手可能であって、かつ取り扱いが容易であるという観点から、硫化ナトリウムが好ましい。これらのアルカリ金属硫化物は、アルカリ金属水硫化物中に副生物として含有されるほか、水和物として市販されているものを用いることができる。 Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof. As the alkali metal sulfide, any of an anhydride, a hydrate, and an aqueous solution may be used. Among these, sodium sulfide is preferable from the viewpoint of being industrially available at a low cost and being easy to handle. As these alkali metal sulfides, those which are commercially available as hydrates can be used in addition to being contained in alkali metal hydrosulfides as by-products.
 また、アルカリ金属水硫化物としては、例えば、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム、及びこれらの2種以上の混合物を挙げることができる。アルカリ金属水硫化物は、無水物、水和物、水溶液のいずれを用いてもよい。これらの中でも、工業的に安価に入手可能である点から、水硫化ナトリウム及び水硫化リチウムが好ましい。これらのアルカリ金属水硫化物は、水溶液等の水性混合物(即ち、流動性のある水との混合物)として用いることが、処理操作や計量などの観点から好ましい。アルカリ金属水硫化物の製造工程では、一般に少量のアルカリ金属硫化物が副生する、本発明で用いるアルカリ金属水硫化物の中には、少量のアルカリ金属硫化物が含有されていてもよい。
3.(b)ジハロ芳香族化合物
 本発明で用いられるジハロ芳香族化合物は、芳香環に直接結合した2個のハロゲン原子を有するジハロゲン化芳香族化合物である。ジハロ芳香族化合物としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等が挙げられ、これらのジハロ芳香族化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more thereof. As the alkali metal hydrosulfide, any of an anhydride, a hydrate, and an aqueous solution may be used. Among these, sodium hydrosulfide and lithium hydrosulfide are preferable because they are industrially available at low cost. These alkali metal hydrosulfides are preferably used as an aqueous mixture such as an aqueous solution (that is, a mixture with fluid water) from the viewpoints of processing operation and measurement. In the production process of the alkali metal hydrosulfide, a small amount of alkali metal sulfide is generally produced as a by-product. The alkali metal hydrosulfide used in the present invention may contain a small amount of alkali metal sulfide.
3. (b) Dihaloaromatic Compound The dihaloaromatic compound used in the present invention is a dihalogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring. Examples of the dihaloaromatic compound include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenylsulfone, dihalo Examples thereof include diphenyl sulfoxide and dihalodiphenyl ketone, and these dihaloaromatic compounds can be used alone or in combination of two or more.
 ここで、ハロゲン原子は、フッ素、塩素、臭素及びヨウ素の各原子を指し、同一ジハロ芳香族化合物において、2個のハロゲン原子は同じでも異なっていてもよい。ジハロ芳香族化合物としては、多くの場合、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、またはこれらの2種以上の混合物が用いられる。
4.(c)ポリハロ芳香族化合物
 本発明では、(c)成分として分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物を用いる。ハロゲン置換基は、通常、ハロゲン原子が直接芳香環に結合したものである。ハロゲン原子は、フッ素、塩素、臭素及びヨウ素の各原子を指し、同一ポリハロ芳香族化合物において、複数のハロゲン原子は同じでも異なっていてもよい。
Here, the halogen atom refers to each atom of fluorine, chlorine, bromine and iodine, and in the same dihaloaromatic compound, the two halogen atoms may be the same or different. As the dihaloaromatic compound, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, or a mixture of two or more of these is often used.
4). (c) Polyhaloaromatic Compound In the present invention, a polyhaloaromatic compound having 3 or more halogen substituents in the molecule is used as the component (c). The halogen substituent is usually a group in which a halogen atom is directly bonded to an aromatic ring. A halogen atom refers to each atom of fluorine, chlorine, bromine and iodine. In the same polyhaloaromatic compound, a plurality of halogen atoms may be the same or different.
 ポリハロ芳香族化合物としては、1,2,3-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,3,5-トリクロロベンゼン、ヘキサクロロベンゼン、1,2,3,4-テトラクロロベンゼン、1,2,4,5-テトラクロロベンゼン、1,3,5-トリクロロ-2,4,6-トリメチルベンゼン、2,4,6-トリクロロトルエン、1,2,3-トリクロロナフタレン、1,2,4-トリクロロナフタレン、1,2,3,4-テトラクロロナフタレン、2,4,2’-トリクロロベンゾフェノン等が挙げられる。 Polyhaloaromatic compounds include 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,3,4-tetrachlorobenzene, 1, 2,4,5-tetrachlorobenzene, 1,3,5-trichloro-2,4,6-trimethylbenzene, 2,4,6-trichlorotoluene, 1,2,3-trichloronaphthalene, 1,2,4- Examples include trichloronaphthalene, 1,2,3,4-tetrachloronaphthalene, 2,4,2′-trichlorobenzophenone and the like.
 これらのポリハロ芳香族化合物は、それぞれ単独で、或いは2種以上を組み合わせて用いることができる。ポリハロ芳香族化合物の中でも、1,2,4-トリクロロベンゼンや1,3,5-トリクロロベンゼン等のトリハロベンゼンが好ましく、トリクロロベンゼンはより好ましい。 These polyhaloaromatic compounds can be used alone or in combination of two or more. Among the polyhaloaromatic compounds, trihalobenzenes such as 1,2,4-trichlorobenzene and 1,3,5-trichlorobenzene are preferable, and trichlorobenzene is more preferable.
 本発明では、(A)成分として、有機アミド溶媒中で、(a)金属硫化物と(b)ジハロ芳香族化合物とを(c)分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物の存在下に重合反応させたPAS樹脂を用いるが、この反応を行うにあたって、(b)及び(c)成分の合計に対する(c)成分の割合である[(c)/[(b)+(c)]](モル比)が0.001~0.01であることが必要である。このモル比が過少であると、本発明の目的である耐有機溶剤性が十分に得られず、また過大であると、機械的物性が低下するため好ましくない。 In the present invention, as component (A), (a) a metal sulfide and (b) a dihaloaromatic compound in (c) a molecule having three or more halogen substituents in an organic amide solvent. A PAS resin polymerized in the presence of a compound is used. In performing this reaction, the ratio of the component (c) to the total of the components (b) and (c) [(c) / [(b) + (c)]] (molar ratio) is required to be 0.001 to 0.01. If this molar ratio is too small, the organic solvent resistance that is the object of the present invention cannot be sufficiently obtained, and if it is too large, the mechanical properties deteriorate, which is not preferable.
 本発明に用いるPAS樹脂は、PAS樹脂の製造として通常行われる方法によって製造される。有機アミド溶媒中の反応によりPAS樹脂を得るにあたっては、(a)成分に対する(b)成分の割合である[(b)/(a)](モル比)が1.0~1.2で重合することが好ましい。このモル比が過少であると、重合系内が不安定となるため収率低下が生じ、また過大であると、目的の溶融粘度を得るのが困難となるか、あるいは重合時間が非常に長くなるため工業上好ましくない。 The PAS resin used in the present invention is manufactured by a method usually performed as a PAS resin. In obtaining a PAS resin by a reaction in an organic amide solvent, it is preferable to polymerize at a ratio (b) / (a) (molar ratio) of 1.0 to 1.2 which is the ratio of the component (b) to the component (a). . If this molar ratio is too small, the inside of the polymerization system becomes unstable, resulting in a decrease in yield. If it is too large, it becomes difficult to obtain the desired melt viscosity, or the polymerization time is very long. Therefore, it is not industrially preferable.
 また、重合反応に際し、所望に応じて、触媒もしくは重合助剤、モノハロゲン芳香族化合物や活性水素含有化合物等の分子量調整剤、アルカリ金属水酸化物等の液性調整剤、還元剤等を適当に選択して重合反応系に添加することができる。 In addition, in the polymerization reaction, a catalyst or a polymerization aid, a molecular weight adjusting agent such as a monohalogen aromatic compound or an active hydrogen-containing compound, a liquid property adjusting agent such as an alkali metal hydroxide, a reducing agent, etc. are appropriately used as desired. And can be added to the polymerization reaction system.
 例えば、有機アミド溶媒中に前記(a)成分、(b)成分、(c)成分、前記の所望により用いられる触媒等の各種成分を所定の割合で仕込み、必要により水分の割合を調整して得られた反応液を、通常、180~330℃、好ましくは220~300℃の範囲の温度に加熱して重合反応を行う。反応時間は、使用する各成分の種類や量の割合、触媒の種類等により異なるので一概に定めることはできないが、通常、20時間以内、好ましくは0.1~8時間程度である。 For example, in the organic amide solvent, various components such as the component (a), the component (b), the component (c), the catalyst used as desired are charged at a predetermined ratio, and the moisture ratio is adjusted as necessary. The obtained reaction solution is usually heated to a temperature in the range of 180 to 330 ° C., preferably 220 to 300 ° C., to carry out the polymerization reaction. The reaction time varies depending on the type and ratio of each component used, the type of catalyst, and the like, and thus cannot be determined unconditionally, but is usually within 20 hours, preferably about 0.1 to 8 hours.
 PAS樹脂の硫黄源として、金属硫化物の水性混合物或いは水和物を用いる場合には、水分量を調整するため、重合反応に先立って脱水工程を設けることが可能である。この場合、反応槽へ原料である金属硫化物及び有機アミド溶媒を投入した後、これら混合物を通常300℃以下、好ましくは100~250℃の温度範囲内で、通常15分間~24時間、好ましくは30分間~10時間、加熱する方法により行われる。加熱方法は、一定温度を保持する方法、段階的または連続的に昇温する方法、あるいは両者を組み合わせた方法がある。脱水工程は、バッチ式、連続式、または両方式の組み合わせ方式等により行われる。脱水工程を行う装置は、重合工程に用いられる重合槽(反応缶)と同じであっても、あるいは異なるものであってもよい。 When an aqueous mixture or hydrate of metal sulfide is used as the sulfur source of the PAS resin, it is possible to provide a dehydration step prior to the polymerization reaction in order to adjust the water content. In this case, after charging the raw material metal sulfide and organic amide solvent into the reaction vessel, the mixture is usually at a temperature of 300 ° C. or less, preferably 100 to 250 ° C., usually 15 minutes to 24 hours, preferably The heating is performed for 30 minutes to 10 hours. As a heating method, there are a method of maintaining a constant temperature, a method of raising the temperature stepwise or continuously, or a method of combining both. The dehydration step is performed by a batch method, a continuous method, or a combination method of both methods. The apparatus for performing the dehydration process may be the same as or different from the polymerization tank (reaction can) used in the polymerization process.
 本発明においては、この重縮合反応を窒素、アルゴン、および二酸化炭素等の不活性ガス雰囲気下で行うことができる。 In the present invention, this polycondensation reaction can be carried out in an inert gas atmosphere such as nitrogen, argon, and carbon dioxide.
 反応圧力については特に制限はないが、通常、溶媒等の重縮合反応系の自圧~50kg/cm2(絶対圧)である。また、重縮合反応は定常温度で行う一段反応でもよいし、段階的に温度を上げる多段反応でもよく、あるいは徐々に温度を連続的に上げていく反応様式を用いてもよい。 The reaction pressure is not particularly limited, but is usually from the self-pressure to 50 kg / cm 2 (absolute pressure) of a polycondensation reaction system such as a solvent. The polycondensation reaction may be a one-stage reaction performed at a steady temperature, a multi-stage reaction in which the temperature is raised stepwise, or a reaction mode in which the temperature is gradually raised continuously.
 前記重合反応を終了した後、合成されたPAS樹脂は、例えば濾過または遠心分離等による標準的な方法により、直接に反応容器から分別し、あるいは、例えば水及び/又は希釈した酸等の凝集液を添加した後に反応溶液から分別して、単離することができる。 After completion of the polymerization reaction, the synthesized PAS resin is separated from the reaction vessel directly by a standard method such as filtration or centrifugation, or a condensed liquid such as water and / or diluted acid, for example. Can be isolated from the reaction solution after addition.
 次いで、単離した重合体を、通常、水、メタノール、アセトン等を用いて洗浄することにより、この重合体に付着しているアルカリ金属ハロゲン化物、アルカリ金属硫化物、重合助剤および副反応物等を除去する。また、反応終了液から生成した重合体を単離することなく、溶媒を留去して回収し、残渣を前述のように洗浄することによって重合体を得ることもできる。尚、回収した溶媒は再使用に供することができる。 Next, the isolated polymer is usually washed with water, methanol, acetone or the like, so that the alkali metal halide, alkali metal sulfide, polymerization auxiliary agent and side reaction product adhering to the polymer are obtained. Etc. are removed. Further, without isolating the polymer produced from the reaction-terminated liquid, the solvent can be removed by distillation, and the polymer can be obtained by washing the residue as described above. The recovered solvent can be reused.
 このようにして得られたPAS樹脂は、必要に応じて種々の脱塩処理を行って、重合体中の塩化ナトリウム等の塩含有量をさらに低減することができる。 The PAS resin thus obtained can be subjected to various desalting treatments as necessary to further reduce the salt content such as sodium chloride in the polymer.
 本発明に使用する基体樹脂としてのPAS樹脂は、前記定義の溶融粘度η 1000が5~60Pa・sであることが必要であり、好ましくは10~60Pa・s、特に好ましくは10~40Pa・sである。溶融粘度が過小の場合は機械的強度が十分でないため好ましくなく、溶融粘度が過大であると射出成形時の流動性が悪く成形作業が困難になるばかりでなく、耐有機溶剤性が低下するため好ましくない。 The PAS resin as the base resin used in the present invention needs to have a melt viscosity η * 1000 as defined above of 5 to 60 Pa · s, preferably 10 to 60 Pa · s, particularly preferably 10 to 40 Pa · s. s. If the melt viscosity is too low, it is not preferable because the mechanical strength is not sufficient, and if the melt viscosity is too high, not only the fluidity during injection molding becomes poor and the molding operation becomes difficult, but also the resistance to organic solvents decreases. It is not preferable.
 尚、本発明に使用する(A)PAS樹脂には、耐有機溶剤性の効果を損なわない範囲で、分岐構造を有しないリニアPAS、あるいは熱処理によって得られる架橋PASを併用して使用することができる。また、その場合の溶融粘度は5~60Pa・sが好ましいが、耐有機溶剤性、機械的物性、成形性等の所望の特性を損なわなければその限りではない。 The (A) PAS resin used in the present invention may be used in combination with a linear PAS having no branched structure or a crosslinked PAS obtained by heat treatment within a range not impairing the organic solvent resistance effect. it can. In this case, the melt viscosity is preferably 5 to 60 Pa · s, but is not limited as long as desired properties such as organic solvent resistance, mechanical properties and moldability are not impaired.
 次に、本発明で使用する(B) 無機充填剤は、特に種類を限定されないが十分な機械的強度を得るために重要である。無機充填剤としては、例えば軽質炭酸カルシウム、重質ないし微粉化炭酸カルシウム、特殊カルシウム系充填材等の炭酸カルシウム;霞石、閃長石微粉末、モンモリロナイト、ベントナイト等の焼成クレー、シラン改質クレー等のクレー(珪酸アルミニウム粉末);タルク;溶融シリカ、結晶シリカ等のシリカ(二酸化珪素)粉末;珪藻土、珪砂等の珪酸含有化合物;軽石粉、軽石バルーン、スレート粉、雲母粉等の天然鉱物の粉砕品;アルミナ、アルミナコロイド(アルミナゾル)、アルミナ・ホワイト、硫酸アルミニウム等のアルミナ含有化合物;硫酸バリウム、リトポン、硫酸カルシウム、二硫化モリブデン、グラファイト(黒鉛)等の鉱物;ガラス繊維、ガラスビーズ、ガラスフレーク、発泡ガラスビーズ等のガラス系フィラー;フライアッシュ球、火山ガラス中空体、合成無機中空体、単結晶チタン酸カリウム、カーボンナノチューブ、炭素中空球、炭素64フラーレン、無煙炭粉末、人造氷晶石(クリオライト)、酸化チタン、酸化マグネシウム、塩基性マグネシウム、ドロマイト、チタン酸カリウム、亜硫酸カルシウム、マイカ、アスベスト、珪酸カルシウム、アルモニウム粉、硫化モリブデン、ボロン繊維、炭化珪素繊維等が挙げられる。特に好ましくは、ガラス繊維、ガラスフレーク、ガラスビーズ及び炭酸カルシウムから選ばれる1種又は2種以上である。 Next, the (B) inorganic filler used in the present invention is not particularly limited, but is important for obtaining sufficient mechanical strength. Examples of inorganic fillers include, for example, calcium carbonate such as light calcium carbonate, heavy or finely powdered calcium carbonate, special calcium-based fillers; calcined clay such as nepheline, feldspar fine powder, montmorillonite, bentonite, silane modified clay, etc. Clay (aluminum silicate powder); talc; silica (silicon dioxide) powder such as fused silica and crystalline silica; silicic acid-containing compounds such as diatomaceous earth and silica sand; pulverization of natural minerals such as pumice powder, pumice balloon, slate powder and mica powder Products: Alumina, alumina colloids (alumina sol), alumina-containing compounds such as alumina white, aluminum sulfate, etc .; minerals such as barium sulfate, lithopone, calcium sulfate, molybdenum disulfide, graphite (graphite); glass fibers, glass beads, glass flakes Glass-based fillers such as foam glass beads; Yash sphere, volcanic glass hollow body, synthetic inorganic hollow body, single crystal potassium titanate, carbon nanotube, carbon hollow sphere, carbon 64 fullerene, anthracite powder, artificial cryolite, titanium oxide, magnesium oxide, basic Examples include magnesium, dolomite, potassium titanate, calcium sulfite, mica, asbestos, calcium silicate, aluminum powder, molybdenum sulfide, boron fiber, and silicon carbide fiber. Particularly preferably, it is one or more selected from glass fibers, glass flakes, glass beads and calcium carbonate.
 (B)成分の配合量は、(A)成分のPAS樹脂100重量部に対し、150~300重量部であり、好ましくは170~250重量部である。(B)成分の配合量が過少であると十分な機械的強度と耐有機溶剤性が得られない場合があり、また過大であると靱性の低下あるいは流動性低下による加工性の悪化等の問題点が発生する。 The blending amount of the component (B) is 150 to 300 parts by weight, preferably 170 to 250 parts by weight with respect to 100 parts by weight of the PAS resin of the component (A). If the blending amount of component (B) is too small, sufficient mechanical strength and organic solvent resistance may not be obtained, and if it is too large, problems such as decreased toughness or deteriorated workability due to decreased fluidity A point is generated.
 次に、本発明においては特に必須ではないが、成形時の離型性を向上させる目的で、(C)成分として -(CH2)n-を基本構造単位とし、nが15以上の直鎖或いは分岐構造を有するオレフィン化合物を配合することが好ましい。オレフィン化合物としては、-(CH2)n-を基本構造単位とし、nが15以上の直鎖或いは分岐構造を有するものであれば特に限定はない。上記式においてnが15未満であると、熱安定性が低いため成形時の発生ガスが多くなる等の問題を生じる。(C)オレフィン化合物としては、例えば高密度ポリエチレン、低密度ポリエチレン、パラフィン等が挙げられ、好ましくは低密度ポリエチレン(密度0.90~0.93g/cm3)である。 Next, although not particularly essential in the present invention, for the purpose of improving the releasability at the time of molding, as a component (C),-(CH 2 ) n -is a basic structural unit, and n is a straight chain having 15 or more Or it is preferable to mix | blend the olefin compound which has a branched structure. The olefin compound is not particularly limited as long as it has a linear or branched structure in which — (CH 2 ) n — is a basic structural unit and n is 15 or more. If n is less than 15 in the above formula, problems such as increased gas generated during molding due to low thermal stability. Examples of the (C) olefin compound include high-density polyethylene, low-density polyethylene, and paraffin, and preferably low-density polyethylene (density 0.90 to 0.93 g / cm 3 ).
 (C)オレフィン化合物の配合量は、(A)成分のPAS樹脂100重量部に対し、0.01~1.0重量部であり、好ましくは0.1~0.6重量部、特に好ましくは0.1~0.4重量部にである。オレフィン化合物の配合量が過少であると成形時における金型からの離型が困難となる。また過大であると耐有機溶剤性能が低下するため好ましくない。 The blending amount of the (C) olefin compound is 0.01 to 1.0 part by weight, preferably 0.1 to 0.6 part by weight, particularly preferably 0.1 to 0.4 part by weight based on 100 parts by weight of the PAS resin as the component (A). . When the blending amount of the olefin compound is too small, it is difficult to release from the mold during molding. On the other hand, if it is too large, the organic solvent resistance is lowered, which is not preferable.
 次に、本発明においては特に必須ではないが、更に(D)結晶核剤を併用することにより、本発明の効果は一段と増大する。この目的に使用する結晶核剤としては、公知の有機質核剤、無機核剤のいずれも使用することができる。無機物としては、ZnO、MgO、Al、TiO、MnO、SiO、Feなどの金属酸化物、ボロンナイトライドなどの窒化物、NaCO、CaCO、MgCO、CaSO、CaSiO、BaSO、Ca(POなどの無機塩、シリカ、タルク、カオリン、クレー、白土、カーボンナノチューブなどが挙げられる。又、有機物としては、シュウ酸カルシウム、シュウ酸ナトリウム、安息香酸カルシウム、フタル酸カルシウム、酒石酸カルシウム、ステアリン酸マグネシウムなどの有機塩類、耐熱性の高分子、耐熱性高分子の架橋物などを使用することができる。特に好ましいものは、ボロンナイトライドとカーボンナノチューブである。ここで、架橋又は分岐構造を有する高分子化合物とは、例えばモノマーの一部に3ケ以上の官能基を有するものの重縮合によって生じた分岐又は架橋構造を有する高分子化合物、或いは既成の高分子物質に後で架橋又は分岐構造を付与したものの何れにてもよく、架橋PASであってもよい。 Next, although not essential in the present invention, the effect of the present invention is further increased by further using (D) a crystal nucleating agent in combination. As the crystal nucleating agent used for this purpose, any of known organic nucleating agents and inorganic nucleating agents can be used. Examples of inorganic materials include metal oxides such as ZnO, MgO, Al 2 O 3 , TiO 2 , MnO 2 , SiO 2 , and Fe 3 O 4 , nitrides such as boron nitride, Na 2 CO 3 , CaCO 3 , and MgCO 3. , CaSO 4 , CaSiO 3 , BaSO 4 , Ca 3 (PO 4 ) 3 and other inorganic salts, silica, talc, kaolin, clay, clay, carbon nanotubes and the like. As organic substances, use is made of organic salts such as calcium oxalate, sodium oxalate, calcium benzoate, calcium phthalate, calcium tartrate, magnesium stearate, heat-resistant polymers, cross-linked products of heat-resistant polymers, etc. be able to. Particularly preferred are boron nitride and carbon nanotubes. Here, the polymer compound having a crosslinked or branched structure is, for example, a polymer compound having a branched or crosslinked structure produced by polycondensation of a monomer having 3 or more functional groups, or an existing polymer. It may be any of those obtained by later giving a crosslinked or branched structure to the substance, and may be a crosslinked PAS.
 (D)結晶核剤として使用されるカーボンナノチューブは、製造法や構造によって特に制限されないが、平均直径が5~100nm、平均アスペクト比が20~2500であるカーボンナノチューブが望ましい。平均直径が過小であるとカーボンナノチューブの製造が困難になる場合があり好ましくない。一方、平均直径が過大であると結晶核剤として十分な効果が発揮されないと同時に十分な耐有機溶剤性能が得られず好ましくない。また、平均アスペクト比は十分な核剤性能と耐有機溶剤性能を得る目的から50以上が好ましいが、過大なアスペクト比は製造上困難であるため好ましくない。 (D) The carbon nanotube used as the crystal nucleating agent is not particularly limited by the production method or structure, but is preferably a carbon nanotube having an average diameter of 5 to 100 nm and an average aspect ratio of 20 to 2500. If the average diameter is too small, it may be difficult to produce carbon nanotubes. On the other hand, if the average diameter is excessive, a sufficient effect as a crystal nucleating agent cannot be exhibited, and at the same time sufficient organic solvent resistance cannot be obtained, which is not preferable. The average aspect ratio is preferably 50 or more for the purpose of obtaining sufficient nucleating agent performance and organic solvent resistance, but an excessive aspect ratio is not preferable because it is difficult to produce.
 尚、上記結晶核剤中には無機充填剤と重複するものも存在し、これらの物質は両機能を果たすことができるが、(C)結晶核剤としての使用量は(A)成分100重量部当たり0.01~3重量部あれば十分であり、好ましくは0.1~2重量部である。0.01重量部より過小の場合は耐有機溶剤性が十分でない。 In addition, some of the above crystal nucleating agents overlap with inorganic fillers, and these substances can fulfill both functions, but the amount used as (C) crystal nucleating agent is (A) component 100 weight 0.01 to 3 parts by weight per part is sufficient, preferably 0.1 to 2 parts by weight. If it is less than 0.01 parts by weight, the organic solvent resistance is not sufficient.
 本発明では、組成物成形品の高低温衝撃特性を改善するために、熱可塑性エラストマーを適宜併用することができる。熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、ポリエステル系エラストマー、フッ素系エラストマー、シリコーン系エラストマー、ブタジエン系エラストマー、ポリアミド系エラストマー、ポリスチレン系エラストマー、ウレタン系エラストマー、中心に架橋構造を持つ各種粒子系エラストマー等が挙げられ、これらの1種又は2種以上を用いることができる。 In the present invention, a thermoplastic elastomer can be used in combination as appropriate in order to improve the high and low temperature impact characteristics of the molded product. Examples of thermoplastic elastomers include polyolefin elastomers, polyester elastomers, fluorine elastomers, silicone elastomers, butadiene elastomers, polyamide elastomers, polystyrene elastomers, urethane elastomers, and various particle elastomers with a cross-linked structure at the center. 1 type or 2 types or more can be used.
 熱可塑性エラストマーとしては、オレフィン系エラストマーが好ましくは、さらに好ましくはα-オレフィンとα,β-不飽和酸のグリシジルエステルを主成分とするオレフィン系共重合体が用いられる。また、α-オレフィンとα,β-不飽和酸のグリシジルエステルの主成分に各種グラフト共重合体を共重合させた体とするオレフィン系エラストマーも好ましく用いることができる。 As the thermoplastic elastomer, an olefin-based elastomer is preferable, and an olefin-based copolymer mainly containing an α-olefin and a glycidyl ester of α, β-unsaturated acid is used. Further, an olefin-based elastomer obtained by copolymerizing various graft copolymers with main components of α-olefin and glycidyl ester of α, β-unsaturated acid can also be preferably used.
 熱可塑性エラストマーの配合量としては、(A)成分のPAS樹脂100重量部に対し、1~25重量部、好ましくは1~15重量部、さらに好ましくは1~8重量部である。熱可塑性エラストマーの配合量が過少であると高低温衝撃特性の改善効果が十分でなく、過大であると成形時に金型に付着するモールドデポジットが多くなる問題が発生する。 The blending amount of the thermoplastic elastomer is 1 to 25 parts by weight, preferably 1 to 15 parts by weight, and more preferably 1 to 8 parts by weight with respect to 100 parts by weight of the PAS resin as the component (A). If the blending amount of the thermoplastic elastomer is too small, the effect of improving the high and low temperature impact characteristics is not sufficient, and if it is too large, there arises a problem that the mold deposit attached to the mold during molding is increased.
 また、本発明のPAS成形品の樹脂組成物には、本発明の効果を損なわない範囲で、バリ等を改良する目的としてシラン化合物を配合することができる。シラン化合物としては、ビニルシラン、メタクリロキシシラン、エポキシシラン、アミノシラン、メルカプトシラン等の各種タイプが含まれ、例えば、ビニルトリクロルシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシランなどが例示されるが、これらに限定されるものではない。 また、本発明のPAS成形品の樹脂組成物には、その目的に応じ前記成分の他に、他の熱可塑性樹脂を補助的に少量併用することも可能である。ここで用いられる他の熱可塑性樹脂としては、高温において安定な熱可塑性樹脂であればいずれのものでもよい。 Moreover, a silane compound can be blended in the resin composition of the PAS molded product of the present invention for the purpose of improving burrs and the like within a range not impairing the effects of the present invention. Examples of the silane compound include various types such as vinyl silane, methacryloxy silane, epoxy silane, amino silane, mercapto silane, etc., for example, vinyl trichlorosilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysila. Examples include, but are not limited to, silane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, and the like. Further, in the resin composition of the PAS molded product of the present invention, other thermoplastic resins can be used in combination with a small amount in addition to the above components depending on the purpose. The other thermoplastic resin used here may be any thermoplastic resin that is stable at high temperatures.
 更に、本発明のPAS成形品の樹脂組成物には、本発明の効果を損なわない範囲で、一般の熱可塑性樹脂に添加される公知の物質、即ち酸化防止剤等の安定剤、難燃剤、染・顔料等の着色剤、潤滑剤および結晶化促進剤等も要求性能に応じ適宜添加することができる。 Furthermore, in the resin composition of the PAS molded product of the present invention, a known substance added to a general thermoplastic resin, that is, a stabilizer such as an antioxidant, a flame retardant, and the like, within a range not impairing the effects of the present invention. Colorants such as dyes and pigments, lubricants, crystallization accelerators, and the like can be appropriately added according to the required performance.
 本発明で用いる成形品の樹脂組成物の調製は、一般に合成樹脂組成物の調製に用いられる設備と方法により調製することができる。一般的には必要な成分を混合し、一軸又は二軸の押出機を使用して溶融混練し、押出して成形用ペレットとすることができる。また、樹脂成分を溶融押出し、その途中で繊維状充填物を添加配合するのも好ましい方法の一つである。 The resin composition of the molded product used in the present invention can be prepared by equipment and methods generally used for preparing a synthetic resin composition. Generally, necessary components are mixed, melt-kneaded using a single-screw or twin-screw extruder, and extruded to form pellets for molding. Also, it is one of preferred methods to melt-extrude the resin component and add and blend the fibrous filler in the middle.
 本発明で用いる樹脂成形法は特に限定されるものではなく、射出成形、押出成形、真空成形、圧縮成形等、一般に公知の熱可塑性樹脂の成形法を用いて成形することができるが、最も好ましいのは射出成形である。成形時の金型温度は、PAS樹脂を十分結晶化させるために、120~180℃が好ましく、特に好ましくは130~180℃である。金型温度が低すぎると、PAS樹脂の成形表面での結晶化が不十分となるため、耐有機溶剤性が低下してしまい、金型温度が高すぎると、成形サイクル時間が長くなるといった問題を生じる。 The resin molding method used in the present invention is not particularly limited, and can be molded using generally known thermoplastic resin molding methods such as injection molding, extrusion molding, vacuum molding, compression molding, etc., but is most preferable. Is injection molding. The mold temperature at the time of molding is preferably 120 to 180 ° C., particularly preferably 130 to 180 ° C., in order to sufficiently crystallize the PAS resin. If the mold temperature is too low, crystallization on the molding surface of the PAS resin becomes insufficient, resulting in a decrease in organic solvent resistance. If the mold temperature is too high, the molding cycle time becomes long. Produce.
 本発明で用いる成形品は、成形後、熱処理を施すのが好ましい。熱処理の条件は、成形品の大きさ、形状、あるいは用途によって異なるが、一般的には120~240℃で行われる。熱処理温度が低すぎると、熱処理が長時間となり製造コスト的に好ましくなく、熱処理温度が高すぎると、PAS樹脂が劣化するため、機械的強度の低下を引き起こし、好ましくない。 The molded product used in the present invention is preferably subjected to heat treatment after molding. The heat treatment conditions vary depending on the size, shape, and application of the molded product, but are generally performed at 120 to 240 ° C. If the heat treatment temperature is too low, the heat treatment takes a long time, which is not preferable in terms of production cost. If the heat treatment temperature is too high, the PAS resin deteriorates, which causes a decrease in mechanical strength.
 本発明で用いる成形品が接する有機溶剤とは、例えば、以下に示すようなものである。メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール等のアルコール系溶剤、アセトン、メチルエチルケトン、ジエチルケトン系溶剤、ジメチルエーテル、ジプロピルエーテル、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン等のエーテル系溶剤、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等の含窒素系溶剤、n-ペンタン、イソペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、イソヘプタン、n-オクタン、イソオクタン、n-ノナン、n-ドデカン等の脂肪族炭化水素系溶剤、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、メチルシクロペンタン等の脂環式炭化水素系溶剤、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族化合物、クロロホルム、塩化メチレン、トリクロロエチレン、1-クロロエタン、ジクロロエタン等のハロゲン系溶剤、重油、ガソリン、軽油、灯油等の燃料類、潤滑油、ギヤー油、作動油、シリンダー油、グリース等の機械用オイル類が挙げられる。本発明の成形品は、有機溶剤の単独、あるいは2種以上に接する用途に用いることができる。 The organic solvent with which the molded product used in the present invention is in contact is, for example, as shown below. Alcohol solvents such as methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, acetone, methyl ethyl ketone, diethyl ketone solvent, dimethyl ether, dipropyl ether, tetrahydrofuran, 1,3-dioxolane, 1,4 -Ether solvents such as dioxane, nitrogen-containing solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, n-octane, isooctane, n -Aliphatic hydrocarbon solvents such as nonane and n-dodecane, alicyclic hydrocarbon solvents such as cyclopentane, cyclohexane, cycloheptane, cyclooctane and methylcyclopentane; Aromatic compounds such as toluene, xylene, chlorobenzene, halogen solvents such as chloroform, methylene chloride, trichloroethylene, 1-chloroethane, dichloroethane, fuels such as heavy oil, gasoline, light oil, kerosene, lubricating oil, gear oil, operation Examples include machine oils such as oil, cylinder oil, and grease. The molded article of the present invention can be used for an application in contact with two or more organic solvents alone.
 次に実施例、比較例で本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例に用いた各(A) 、(B) 、(C) 、(D) の具体的物質は以下の通りである。
(A)ポリフェニレンサルファイド(PPS)樹脂
・(A-1) 分岐PPS-1
 20リットルのオートクレーブに、N-メチル-2-ピロリドン(以下、「NMP」と略記)6003g、水硫化ソーダ(純度62%)2001g、苛性ソーダ(純度74%)1140gを仕込み、窒素ガスで置換後、約4時間かけて撹拌しながら、徐々に200℃まで昇温して、水983g、NMP1163g、及び硫化水素12gを溜出させた。
Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. The specific substances (A), (B), (C) and (D) used in Examples and Comparative Examples are as follows.
(A) Polyphenylene sulfide (PPS) resin / (A-1) Branched PPS-1
A 20 liter autoclave was charged with 6003 g of N-methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”), 2001 g of sodium hydrosulfide (purity 62%), 1140 g of caustic soda (purity 74%), and replaced with nitrogen gas. While stirring over about 4 hours, the temperature was gradually raised to 200 ° C. to distill 983 g of water, 1163 g of NMP, and 12 g of hydrogen sulfide.
 上記脱水工程の後、150℃まで冷却し、p-ジクロロベンゼン(以下、「p-DCB」と略記)3527g(124.0モル)、NMP3277g、1,2,4-トリクロロベンゼン(以下、「TCB」と略記)13g(0.071モル)、及び水143gを加え、攪拌機の回転数250rpmで撹拌しながら、220℃で3時間反応させ、前段重合を行った。 After the dehydration step, the mixture was cooled to 150 ° C. and 3527 g (124.0 mol) of p-dichlorobenzene (hereinafter abbreviated as “p-DCB”), 3277 g of NMP, 1,2,4-trichlorobenzene (hereinafter “TCB”) Abbreviation) 13 g (0.071 mol) and 143 g of water were added, and the mixture was reacted at 220 ° C. for 3 hours while stirring at a rotational speed of 250 rpm of the stirrer to carry out pre-stage polymerization.
 次に、攪拌機の回転数を400rpmに上げ、攪拌を続けながら水449gを圧入し、255℃に昇温して、4時間反応させ、後段重合を行った。 Next, the number of revolutions of the stirrer was increased to 400 rpm, 449 g of water was injected while continuing stirring, the temperature was raised to 255 ° C., and the reaction was carried out for 4 hours to carry out post polymerization.
 後段重合終了後、室温付近まで冷却してから、内容物を100メッシュのスクリーンに通して粒状ポリマーを篩別し、アセトン洗いを3回、水洗を3回、pH4に調整した酢酸水溶液洗を1回、その後再び水洗を4回行い、洗浄した粒状ポリマーを得た。粒状ポリマーは、100℃で一昼夜時間乾燥した。このようにして得られた粒状ポリマーは、平均粒子径480μm、溶融粘度20Pa・sであった。
・(A-2) 分岐PPS-2
 20リットルのオートクレーブに、NMP6006g、水硫化ソーダ(純度62%)2001g、苛性ソーダ(純度74%)1170gを仕込み、窒素ガスで置換後、約4時間かけて撹拌しながら、徐々に200℃まで昇温して、水995g、NMP1269g、及び硫化水素12gを溜出させた。
After the latter polymerization is completed, the mixture is cooled to near room temperature, the contents are passed through a 100 mesh screen, the granular polymer is sieved, washed with acetone three times, washed three times with water, and washed with an acetic acid aqueous solution adjusted to pH 4. And then again with water four times to obtain a washed granular polymer. The granular polymer was dried at 100 ° C. overnight. The granular polymer thus obtained had an average particle diameter of 480 μm and a melt viscosity of 20 Pa · s.
・ (A-2) Branch PPS-2
A 20-liter autoclave was charged with 6006g of NMP, 2001g of sodium hydrosulfide (purity 62%) and 1170g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature was gradually raised to 200 ° C while stirring over about 4 hours. Then, 995 g of water, 1269 g of NMP, and 12 g of hydrogen sulfide were distilled out.
 上記脱水工程の後、150℃まで冷却し、p-DCB3517g(23.92モル)、NMP3484g、TCB13g(0.071モル)、及び水147gを加え、攪拌機の回転数250rpmで撹拌しながら、220℃で4時間反応させ、前段重合を行った。 After the above dehydration step, cool to 150 ° C, add p-DCB3517g (23.92mol), NMP3484g, TCB13g (0.071mol), and water 147g, react at 220 ° C for 4 hours with stirring at 250rpm. And pre-stage polymerization was performed.
 次に、攪拌機の回転数を400rpmに上げ、攪拌を続けながら水444gを圧入し、255℃に昇温して、5時間反応させ、後段重合を行った。 Next, the number of revolutions of the stirrer was increased to 400 rpm, 444 g of water was injected while stirring was continued, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
 その後は、分岐PPS-1の場合と同様にして、平均粒子径400μm、溶融粘度33Pa・sの粒状ポリマーを得た。
・(A-3) 分岐PPS-3
 20リットルのオートクレーブに、NMP6000g、水硫化ソーダ(純度62%)2001g、苛性ソーダ(純度74%)1170gを仕込み、窒素ガスで置換後、約4時間かけて撹拌しながら、徐々に200℃まで昇温して、水995g、NMP1269g、及び硫化水素12gを溜出させた。
Thereafter, in the same manner as in the case of the branched PPS-1, a granular polymer having an average particle diameter of 400 μm and a melt viscosity of 33 Pa · s was obtained.
・ (A-3) Branch PPS-3
A 20 liter autoclave is charged with 6000 g of NMP, 2001 g of sodium hydrosulfide (purity 62%) and 1170 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C while stirring for about 4 hours. Then, 995 g of water, 1269 g of NMP, and 12 g of hydrogen sulfide were distilled out.
 上記脱水工程の後、150℃まで冷却し、p-DCB3381g(23.0モル)、NMP3483g、TCB13g(0.071モル)、及び水147gを加え、攪拌機の回転数250rpmで撹拌しながら、220℃で4時間反応させ、前段重合を行った。 After the above dehydration step, cool to 150 ° C, add p-DCB3381g (23.0mol), NMP3483g, TCB13g (0.071mol), and water 147g and react at 220 ° C for 4 hours with stirring at 250rpm. And pre-stage polymerization was performed.
 次に、攪拌機の回転数を400rpmに上げ、攪拌を続けながら水446gを圧入し、255℃に昇温して、5時間反応させ、後段重合を行った。 Next, the number of revolutions of the stirrer was increased to 400 rpm, 446 g of water was injected while continuing stirring, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
 その後は、分岐PPS-1の場合と同様にして、平均粒子径430μm、溶融粘度100Pa・sの粒状ポリマーを得た。
・(A-4) 分岐PPS-4
 20リットルのオートクレーブに、NMP6000g、水硫化ソーダ(純度62%)2000g、苛性ソーダ(純度74%)1180gを仕込み、窒素ガスで置換後、約4時間かけて撹拌しながら、徐々に200℃まで昇温して、水979g、NMP1294g、及び硫化水素12gを溜出させた。
Thereafter, in the same manner as in the case of the branched PPS-1, a granular polymer having an average particle diameter of 430 μm and a melt viscosity of 100 Pa · s was obtained.
・ (A-4) Branch PPS-4
A 20-liter autoclave is charged with 6000 g of NMP, 2000 g of sodium hydrosulfide (purity 62%), and 1180 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C. while stirring for about 4 hours. Then, 979 g of water, 1294 g of NMP, and 12 g of hydrogen sulfide were distilled out.
 上記脱水工程の後、150℃まで冷却し、p-DCB3580g(24.35モル)、NMP3510g、TCB22g(0.12モル)、及び水131gを加え、攪拌機の回転数250rpmで撹拌しながら、220℃で4時間反応させ、前段重合を行った。 After the dehydration step, the mixture was cooled to 150 ° C., added with 3580 g (24.35 mol) of p-DCB, 3510 g of NMP, 22 g of TCB (0.12 mol), and 131 g of water, and reacted at 220 ° C. for 4 hours while stirring at a rotation speed of 250 rpm. And pre-stage polymerization was performed.
 次に、攪拌機の回転数を400rpmに上げ、攪拌を続けながら水446gを圧入し、255℃に昇温して、5時間反応させ、後段重合を行った。 Next, the number of revolutions of the stirrer was increased to 400 rpm, 446 g of water was injected while continuing stirring, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
 その後は、分岐PPS-1の場合と同様にして、平均粒子径380μm、溶融粘度28Pa・sの粒状ポリマーを得た。
・(A-5) 分岐PPS-5
 20リットルのオートクレーブに、NMP6000g、水硫化ソーダ(純度62%)2001g、苛性ソーダ(純度74%)1180gを仕込み、窒素ガスで置換後、約4時間かけて撹拌しながら、徐々に200℃まで昇温して、水971g、NMP1243g、及び硫化水素12gを溜出させた。
Thereafter, a granular polymer having an average particle diameter of 380 μm and a melt viscosity of 28 Pa · s was obtained in the same manner as in the case of branched PPS-1.
・ (A-5) Branch PPS-5
A 20 liter autoclave is charged with 6000 g of NMP, 2001 g of sodium hydrosulfide (purity 62%), and 1180 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C. while stirring for about 4 hours. Then, 971 g of water, 1243 g of NMP, and 12 g of hydrogen sulfide were distilled out.
 上記脱水工程の後、150℃まで冷却し、p-DCB3634g(24.72モル)、NMP3461g、TCB32g(0.17モル)、及び水122gを加え、攪拌機の回転数250rpmで撹拌しながら、220℃で4時間反応させ、前段重合を行った。 After the above dehydration step, the mixture was cooled to 150 ° C., added with p-DCB 3634 g (24.72 mol), NMP 3461 g, TCB 32 g (0.17 mol), and 122 g of water, and reacted at 220 ° C. for 4 hours with stirring at 250 rpm. And pre-stage polymerization was performed.
 次に、攪拌機の回転数を400rpmに上げ、攪拌を続けながら水446gを圧入し、255℃に昇温して、5時間反応させ、後段重合を行った。 Next, the number of revolutions of the stirrer was increased to 400 rpm, 446 g of water was injected while continuing stirring, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
 その後は、分岐PPS-1の場合と同様にして、平均粒子径378μm、溶融粘度33Pa・sの粒状ポリマーを得た。
・(A-6) 分岐PPS-6
 20リットルのオートクレーブに、NMP6000g、水硫化ソーダ(純度62%)2001g、苛性ソーダ(純度74%)1180gを仕込み、窒素ガスで置換後、約4時間かけて撹拌しながら、徐々に200℃まで昇温して、水978g、NMP1245g、及び硫化水素12gを溜出させた。
Thereafter, in the same manner as in the case of the branched PPS-1, a granular polymer having an average particle diameter of 378 μm and a melt viscosity of 33 Pa · s was obtained.
・ (A-6) Branch PPS-6
A 20 liter autoclave is charged with 6000 g of NMP, 2001 g of sodium hydrosulfide (purity 62%), and 1180 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C. while stirring for about 4 hours. Then, 978 g of water, 1245 g of NMP, and 12 g of hydrogen sulfide were distilled out.
 上記脱水工程の後、150℃まで冷却し、p-DCB3964g(26.97モル)、NMP3463g、TCB60g(0.33モル)、及び水129gを加え、攪拌機の回転数250rpmで撹拌しながら、220℃で4時間反応させ、前段重合を行った。 After the dehydration step, the mixture was cooled to 150 ° C., added with 3964 g (26.97 mol) of p-DCB, 3463 g of NMP, 60 g of TCB (0.33 mol), and 129 g of water, and reacted at 220 ° C. for 4 hours while stirring at a rotation speed of 250 rpm. And pre-stage polymerization was performed.
 次に、攪拌機の回転数を400rpmに上げ、攪拌を続けながら水446gを圧入し、255℃に昇温して、5時間反応させ、後段重合を行った。 Next, the number of revolutions of the stirrer was increased to 400 rpm, 446 g of water was injected while continuing stirring, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
 その後は、分岐PPS-1の場合と同様にして、平均粒子径400μm、溶融粘度25Pa・sの粒状ポリマーを得た。
・(A-7) リニアPPS
 20リットルのオートクレーブに、NMP6000g、水硫化ソーダ(純度62%)2001g、苛性ソーダ(純度74%)1180gを仕込み、窒素ガスで置換後、約4時間かけて撹拌しながら、徐々に200℃まで昇温して、水1001g、NMP1276g、及び硫化水素12gを溜出させた。
Thereafter, in the same manner as in the case of the branched PPS-1, a granular polymer having an average particle diameter of 400 μm and a melt viscosity of 25 Pa · s was obtained.
・ (A-7) Linear PPS
A 20 liter autoclave is charged with 6000 g of NMP, 2001 g of sodium hydrosulfide (purity 62%), and 1180 g of caustic soda (purity 74%). After replacing with nitrogen gas, the temperature is gradually raised to 200 ° C. while stirring for about 4 hours. Then, 1001 g of water, 1276 g of NMP, and 12 g of hydrogen sulfide were distilled out.
 上記脱水工程の後、150℃まで冷却し、p-DCB3398g(23.12モル)、NMP3456g、及び水147gを加え、攪拌機の回転数250rpmで撹拌しながら、220℃で4時間反応させ、前段重合を行った。 After the dehydration step, the mixture is cooled to 150 ° C., 3398 g (23.12 mol) of p-DCB, 3456 g of NMP and 147 g of water are added, and the mixture is reacted at 220 ° C. for 4 hours while stirring at 250 rpm of the stirrer to carry out pre-stage polymerization. It was.
 次に、攪拌機の回転数を400rpmに上げ、攪拌を続けながら水444gを圧入し、255℃に昇温して、5時間反応させ、後段重合を行った。 Next, the number of revolutions of the stirrer was increased to 400 rpm, 444 g of water was injected while stirring was continued, the temperature was raised to 255 ° C., and the reaction was allowed to proceed for 5 hours to perform post-stage polymerization.
 その後は、分岐PPS-1の場合と同様にして、平均粒子径410μm、溶融粘度30Pa・sの粒状ポリマーを得た。
(B) 無機充填剤
・(B-1) ガラス繊維(日本電気硝子(株)製、13μmφチョップドストランド(ECS03T-717))
・(B-2) 炭酸カルシウム(東洋ファインケミカル(株)製、ホワイトンP-30)
・(B-3) ガラスフレーク(日本電気硝子(株)製、マイクログラスフレカREFG-108)
(C)オレフィン化合物
・(C-1) 低密度ポリエチレン(三洋化成工業(株)製、サンワックス165P、基本構造単位-(CH2)n-のn=約350、密度0.91g/cm3
・(C'-1) ペンタエリスリトールテトラステアレート(日本油脂(株)製、ユニスターH476)
(D)結晶核剤
・(D-1) ボロンナイトライド(川崎製鉄(株)製、FS-1)
・(D-2) カーボンナノチューブ(ハイペリオン・インターナショナル製、RMB7015-01、ポリフェニレンサルファイド樹脂の15重量%マスターバッチ、カーボンナノチューブの平均直径10nm、アスペクト比100~1000)
 また、実施例および比較例での評価方法は以下の通りである。
[耐有機溶剤性の評価]
 ISO3167に準じた試験片(幅10mm、厚み4mm)を金型温度150℃で成形し、レギュラーガソリン(85%)/メタノール(15%)の混合溶剤中に80℃、1000時間浸漬した時の試験片の重量部変化率(重量増(wt%))および寸法変化量(厚み変化量(μm))を評価した。
実施例1~8、比較例1~3
 表1に示す各原料成分をヘンシェルミキサーで5分間混合し、これをシリンダー温度320℃の二軸押出機に投入し(ガラス繊維(B-1) は押出機のサイドフィード部より別添加)、樹脂温度350℃にて溶融混練し、樹脂組成物のペレットを作った。
Thereafter, in the same manner as in the case of branched PPS-1, a granular polymer having an average particle diameter of 410 μm and a melt viscosity of 30 Pa · s was obtained.
(B) Inorganic filler (B-1) Glass fiber (manufactured by Nippon Electric Glass Co., Ltd., 13 μmφ chopped strand (ECS03T-717))
・ (B-2) Calcium carbonate (Toyo Fine Chemical Co., Ltd., Whiten P-30)
・ (B-3) Glass Flake (manufactured by Nippon Electric Glass Co., Ltd., Micro Glass Fleka REFG-108)
(C) Olefin compound (C-1) Low density polyethylene (manufactured by Sanyo Chemical Industries, Ltd., sun wax 165P, basic structural unit-(CH 2 ) n -n = about 350, density 0.91 g / cm 3 )
・ (C'-1) Pentaerythritol tetrastearate (manufactured by NOF Corporation, Unistar H476)
(D) Crystal nucleating agent (D-1) Boron nitride (manufactured by Kawasaki Steel Corporation, FS-1)
・ (D-2) Carbon nanotubes (Hyperion International, RMB7015-01, 15% by weight masterbatch of polyphenylene sulfide resin, average diameter of carbon nanotubes 10 nm, aspect ratio 100-1000)
Moreover, the evaluation method in an Example and a comparative example is as follows.
[Evaluation of organic solvent resistance]
Test when a test piece (width 10mm, thickness 4mm) according to ISO3167 is molded at a mold temperature of 150 ° C and immersed in a mixed solvent of regular gasoline (85%) / methanol (15%) at 80 ° C for 1000 hours The weight part change rate (weight increase (wt%)) and dimensional change amount (thickness change amount (μm)) of the piece were evaluated.
Examples 1 to 8, Comparative Examples 1 to 3
Each raw material component shown in Table 1 is mixed with a Henschel mixer for 5 minutes, and this is put into a twin screw extruder with a cylinder temperature of 320 ° C. (glass fiber (B-1) is added separately from the side feed part of the extruder) Melt-kneading was performed at a resin temperature of 350 ° C. to produce pellets of the resin composition.
 得られた樹脂組成物のペレットを、シリンダー温度320℃の射出成形機に投入して成形し、目的の成形品(試験片)を作成し、上記評価を行った。結果を表1に示す。 The obtained resin composition pellets were put into an injection molding machine having a cylinder temperature of 320 ° C. and molded to produce a target molded product (test piece), and the above evaluation was performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1. (A)有機アミド溶媒中で、(a)アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも1種の金属硫化物と(b)ジハロ芳香族化合物とを(c)分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物の存在下に重合反応させることにより得られるポリアリーレンサルファイド樹脂であって、
     (b)及び(c)成分の合計に対する(c)成分の割合である[(c)/[(b)+(c)]](モル比)が0.001~0.01であり、
     溶融粘度η 1000が5~60Pa・sであり、
    〔ただし、溶融粘度η 1000は、内径1.0mmφ、長さ20.0mmのノズルを装着したキャピログラフを用い、310℃で、剪断速度1000(1/秒)で測定した溶融粘度である。〕
     -(Ar-S)-(但しArはアリーレン基)の繰返し単位を主構成要素とし、3個以上のハロゲン置換基を有するポリハロ芳香族化合物に由来する分岐構造を有するポリアリーレンサルファイド樹脂100重量部及び
    (B)無機充填剤150~300重量部
    からなるポリアリーレンサルファイド樹脂組成物。
    (A) In an organic amide solvent, (a) at least one metal sulfide selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and (b) a dihaloaromatic compound in (c) molecule A polyarylene sulfide resin obtained by polymerizing in the presence of a polyhaloaromatic compound having 3 or more halogen substituents,
    [(c) / [(b) + (c)]] (molar ratio), which is the ratio of component (c) to the sum of components (b) and (c), is 0.001 to 0.01,
    The melt viscosity η * 1000 is 5 to 60 Pa · s,
    [However, melt viscosity η * 1000 is a melt viscosity measured at 310 ° C. and a shear rate of 1000 (1 / second) using a capillograph equipped with a nozzle with an inner diameter of 1.0 mmφ and a length of 20.0 mm. ]
    100 parts by weight of a polyarylene sulfide resin having a branched structure derived from a polyhaloaromatic compound having a repeating unit of-(Ar-S)-(wherein Ar is an arylene group) and having 3 or more halogen substituents as well as
    (B) A polyarylene sulfide resin composition comprising 150 to 300 parts by weight of an inorganic filler.
  2.  (A)ポリアリーレンサルファイド樹脂として溶融粘度η 1000が10~40Pa・sのものを用いる請求項1記載のポリアリーレンサルファイド樹脂組成物。 The polyarylene sulfide resin composition according to claim 1, wherein the (A) polyarylene sulfide resin has a melt viscosity η * 1000 of 10 to 40 Pa · s.
  3.  更に、(A)ポリアリーレンサルファイド樹脂100重量部当たり、(C)成分として -(CH2)n-を基本構造単位とし、nが15以上の直鎖或いは分岐構造を有するオレフィン化合物0.01~1重量部を配合した請求項1又は2記載のポリアリーレンサルファイド樹脂組成物。 Further, (A) 100 to 100 parts by weight of a polyarylene sulfide resin, 0.01 to 1 weight of an olefin compound having a linear or branched structure in which-(CH 2 ) n -is a basic structural unit and n is 15 or more as component (C) The polyarylene sulfide resin composition of Claim 1 or 2 which mix | blended the part.
  4.  (C)オレフィン化合物の配合量が(A)ポリアリーレンサルファイド樹脂100重量部当たり0.1~0.4重量部であるポリアリーレンサルファイド樹脂組成物を用いる請求項3記載のポリアリーレンサルファイド樹脂組成物。 4. The polyarylene sulfide resin composition according to claim 3, wherein the polyarylene sulfide resin composition is used in an amount of (C) 0.1 to 0.4 parts by weight per 100 parts by weight of the (A) polyarylene sulfide resin.
  5.  更に、(A)ポリアリーレンサルファイド樹脂100重量部当たり、(D)結晶核剤0.01~3重量部を配合した請求項1~4の何れか1項記載のポリアリーレンサルファイド樹脂組成物。 The polyarylene sulfide resin composition according to any one of claims 1 to 4, further comprising (D) 0.01 to 3 parts by weight of a crystal nucleating agent per 100 parts by weight of (A) polyarylene sulfide resin.
  6.  (D)結晶核剤がボロンナイトライド及びカーボンナノチューブから選ばれる1種又は2種以上である請求項5記載のポリアリーレンサルファイド樹脂組成物。 6. The polyarylene sulfide resin composition according to claim 5, wherein (D) the crystal nucleating agent is one or more selected from boron nitride and carbon nanotubes.
  7.  (B)無機充填剤として、ガラス繊維、ガラスフレーク及び炭酸カルシウムから選ばれる1種又は2種以上を配合した請求項1~6の何れか1項記載のポリアリーレンサルファイド樹脂組成物。 The polyarylene sulfide resin composition according to any one of claims 1 to 6, wherein (B) one or more selected from glass fibers, glass flakes, and calcium carbonate is blended as the inorganic filler.
  8.  請求項1~7の何れか1項記載のポリアリーレンサルファイド樹脂組成物を成形して得られる、有機溶剤に接するポリアリーレンサルファイド樹脂成形品。 A molded product of polyarylene sulfide resin in contact with an organic solvent obtained by molding the polyarylene sulfide resin composition according to any one of claims 1 to 7.
  9.  請求項1~7の何れか1項記載のポリアリーレンサルファイド樹脂組成物を、金型温度120~180℃で成形した後、120~240℃で熱処理して得られることを特徴とする、有機溶剤に接するポリアリーレンサルファイド樹脂成形品。 8. An organic solvent obtained by molding the polyarylene sulfide resin composition according to any one of claims 1 to 7 at a mold temperature of 120 to 180 ° C. and then heat-treating at 120 to 240 ° C. Polyarylene sulfide resin molded product in contact with
PCT/JP2009/001538 2008-04-09 2009-04-01 Polyarylene sulfide resin composition and polyarylene sulfide resin moldings to be brought into contact with organic solvent WO2009125556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507139A JPWO2009125556A1 (en) 2008-04-09 2009-04-01 Polyarylene sulfide resin composition and polyarylene sulfide resin molded product in contact with organic solvent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-100977 2008-04-09
JP2008100977 2008-04-09

Publications (1)

Publication Number Publication Date
WO2009125556A1 true WO2009125556A1 (en) 2009-10-15

Family

ID=41161693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001538 WO2009125556A1 (en) 2008-04-09 2009-04-01 Polyarylene sulfide resin composition and polyarylene sulfide resin moldings to be brought into contact with organic solvent

Country Status (3)

Country Link
JP (1) JPWO2009125556A1 (en)
TW (1) TW200951181A (en)
WO (1) WO2009125556A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719098A (en) * 2011-06-03 2012-10-10 湖北孚龙管业科技有限公司 Composite modified polyphenylene sulfide material for water supply pipe insert and preparation method thereof
JP2013023608A (en) * 2011-07-22 2013-02-04 Tosoh Corp Polyarylene sulfide-based composition
WO2013090163A1 (en) * 2011-12-16 2013-06-20 Ticona Llc Boron-containing nucleating agent for polyphenylene sulfide
WO2013090168A1 (en) * 2011-12-16 2013-06-20 Ticona Llc Injection molding of polyarylene sulfide compositions
US10647818B2 (en) 2015-01-09 2020-05-12 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide
WO2021161864A1 (en) * 2020-02-14 2021-08-19 ポリプラスチックス株式会社 Polyarylene sulfide resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4215586A1 (en) * 2020-09-15 2023-07-26 DIC Corporation Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298669A (en) * 2004-04-12 2005-10-27 Polyplastics Co Polyarylene sulfide resin composition and its molded article
WO2007046451A1 (en) * 2005-10-19 2007-04-26 Polyplastics Co., Ltd. Polyarylene sulfide resin composition and polyarylene sulfide resin molded article having chance of contacting with organic solvent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298669A (en) * 2004-04-12 2005-10-27 Polyplastics Co Polyarylene sulfide resin composition and its molded article
WO2007046451A1 (en) * 2005-10-19 2007-04-26 Polyplastics Co., Ltd. Polyarylene sulfide resin composition and polyarylene sulfide resin molded article having chance of contacting with organic solvent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719098A (en) * 2011-06-03 2012-10-10 湖北孚龙管业科技有限公司 Composite modified polyphenylene sulfide material for water supply pipe insert and preparation method thereof
JP2013023608A (en) * 2011-07-22 2013-02-04 Tosoh Corp Polyarylene sulfide-based composition
WO2013090163A1 (en) * 2011-12-16 2013-06-20 Ticona Llc Boron-containing nucleating agent for polyphenylene sulfide
WO2013090168A1 (en) * 2011-12-16 2013-06-20 Ticona Llc Injection molding of polyarylene sulfide compositions
US10647818B2 (en) 2015-01-09 2020-05-12 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide
WO2021161864A1 (en) * 2020-02-14 2021-08-19 ポリプラスチックス株式会社 Polyarylene sulfide resin composition
JP2021127403A (en) * 2020-02-14 2021-09-02 ポリプラスチックス株式会社 Polyarylene sulfide resin composition

Also Published As

Publication number Publication date
TW200951181A (en) 2009-12-16
JPWO2009125556A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5222474B2 (en) Polyarylene sulfide resin composition and method for producing the same
EP2578637B1 (en) Resin composition for blow-molded hollow article and method for producing said resin composition, blow-molded hollow article and its production process
TWI542634B (en) Method for manufacturing polyphenylene sulfide resin composition
WO2009125556A1 (en) Polyarylene sulfide resin composition and polyarylene sulfide resin moldings to be brought into contact with organic solvent
JP2008144002A (en) Polyarylene sulfide composition
KR20130138538A (en) Polyarylene sulfide resin composition and a preparation method thereof
JP4961921B2 (en) Polyarylene sulfide composition
EP2787042A1 (en) Polyphenylene sulfide resin composition, method for producing same, and reflective plate
JP2018009148A (en) Method for producing polyarylene sulfide resin composition
JP6194623B2 (en) Polyarylene sulfide resin composition
JP2005298669A (en) Polyarylene sulfide resin composition and its molded article
JP3618018B2 (en) Polyphenylene sulfide resin composition
JP7424181B2 (en) Polyphenylene sulfide resin composition and molded article
JP2012131968A (en) Reflector plate with metal film formed thereon
JP4954516B2 (en) Polyarylene sulfide resin composition
KR102502509B1 (en) Polyarylene sulfide resin composition having improved flowability
JP2010007014A (en) Polyphenylene sulfide resin composition
JPWO2007046451A1 (en) Polyarylene sulfide resin composition and polyarylene sulfide resin molded product in contact with organic solvent
JP5601171B2 (en) Polyarylene sulfide composition
JP2015101632A (en) Polyarylene sulfide-based composition
JP4090880B2 (en) Polyarylene sulfide resin
JP3501165B2 (en) Polyarylene sulfide resin composition
JP6056504B2 (en) High-strength polyarylene sulfide composition
CN114729189A (en) Polyphenylene sulfide resin composition for automobile cooling part and automobile cooling part
JP6926729B2 (en) Polyarylene sulfide composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507139

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09729459

Country of ref document: EP

Kind code of ref document: A1