WO2009125536A1 - Boundary acoustic wave device and method of manufacturing the same - Google Patents

Boundary acoustic wave device and method of manufacturing the same Download PDF

Info

Publication number
WO2009125536A1
WO2009125536A1 PCT/JP2009/000891 JP2009000891W WO2009125536A1 WO 2009125536 A1 WO2009125536 A1 WO 2009125536A1 JP 2009000891 W JP2009000891 W JP 2009000891W WO 2009125536 A1 WO2009125536 A1 WO 2009125536A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
boundary acoustic
wave device
electrode
groove
Prior art date
Application number
PCT/JP2009/000891
Other languages
French (fr)
Japanese (ja)
Inventor
野竹直弘
稲手謙二
三村昌和
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2009125536A1 publication Critical patent/WO2009125536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices

Definitions

  • the present invention relates to a boundary acoustic wave device and a manufacturing method thereof.
  • a surface acoustic wave device normally requires a package in which the surface acoustic wave element is hermetically sealed and a space is formed on the propagation surface of the surface acoustic wave element.
  • the boundary acoustic wave device In contrast, in the boundary acoustic wave device, the energy of the boundary acoustic wave is substantially confined in the boundary portion between the piezoelectric body and the dielectric body. Therefore, in the boundary acoustic wave device, it is not necessary to provide a package required in the surface acoustic wave device. Therefore, since the boundary acoustic wave device can be further reduced in size, it has been actively studied in recent years.
  • Patent Document 1 discloses a boundary acoustic wave device using an SH type boundary acoustic wave.
  • Patent Document 1 describes that a high resonance frequency of 1370 MHz and a high anti-resonance frequency of 1460 MHz can be obtained by reducing the period of the IDT and the reflector to 2.2 ⁇ m.
  • Patent Document 1 it is possible to realize a high resonance frequency and anti-resonance frequency by reducing the period of the IDT and the reflector.
  • the period of the IDT and the reflector is reduced in order to realize high frequency, there is a problem that the surge withstand voltage is lowered. Therefore, it has been difficult to increase the frequency while maintaining a high surge withstand voltage.
  • An object of the present invention is to increase the frequency while maintaining a high surge withstand voltage.
  • the boundary acoustic wave device includes a piezoelectric body, a dielectric layer laminated on one surface of the piezoelectric body, and an electrode disposed at a boundary between the piezoelectric body and the dielectric body, and an elastic property that propagates through the boundary.
  • the present invention relates to a boundary acoustic wave device using boundary waves.
  • the electrode includes a first comb electrode and a second comb electrode.
  • the first comb electrode has a plurality of electrode fingers.
  • the second comb electrode has a plurality of electrode fingers.
  • the plurality of electrode fingers of the second comb electrode are alternately arranged with the electrode fingers of the first comb electrode in the propagation direction of the boundary acoustic wave.
  • the second comb electrode is connected to a potential different from that of the first comb electrode.
  • a groove extending in the extending direction of the electrode finger is formed on the surface of the piezoelectric body on the dielectric side. The groove is located between the electrode fingers of the adjacent first comb electrode and the electrode fingers of the second comb electrode.
  • a groove located between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is formed on the surface of the piezoelectric body on the dielectric side.
  • the dielectric includes a first dielectric layer laminated on one surface of the piezoelectric body, and a first dielectric layer laminated on the first dielectric layer.
  • the resonance frequency and antiresonance frequency can be further increased.
  • the electrode fingers of the adjacent first comb electrodes and the second comb electrodes are formed by forming the groove and the second dielectric layer.
  • the pitch with the electrode fingers can be made relatively long. Therefore, the surge withstand voltage of the boundary acoustic wave device can be further increased.
  • the cross-sectional shape of the groove along the propagation direction of the boundary acoustic wave is rectangular.
  • the distance between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is further increased on the surface of the piezoelectric body, and the electrode of the adjacent first comb electrode
  • the dielectric constant of the region between the finger and the electrode finger of the second comb electrode can be further increased. Therefore, the surge withstand voltage of the boundary acoustic wave device can be further increased.
  • the cross-sectional shape of the groove along the propagation direction of the boundary acoustic wave is a trapezoid that becomes narrower in the depth direction.
  • the boundary acoustic wave device can be easily manufactured.
  • the method for manufacturing a boundary acoustic wave device according to the present invention relates to a method for manufacturing the boundary acoustic wave device according to the present invention.
  • the method for manufacturing a boundary acoustic wave device according to the present invention includes an electrode forming step of forming an electrode on a piezoelectric body, a groove forming step of forming a groove on the piezoelectric body, and a step of laminating a dielectric on one surface of the piezoelectric body. Is provided.
  • the groove located between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is formed on the dielectric side of the piezoelectric body. Formed on the surface. Therefore, the distance between the electrode fingers of the adjacent first comb electrode and the electrode finger of the second comb electrode is relatively long, and the adjacent first comb electrode The dielectric constant of the region between the electrode finger and the electrode finger of the second comb electrode can be made relatively low. Therefore, it is possible to manufacture a boundary acoustic wave device with a small surge between the electrode fingers of the adjacent first comb electrodes and the electrode fingers of the second comb electrodes and a high surge withstand voltage.
  • the order of performing the electrode forming step and the groove forming step is not particularly limited.
  • the groove forming process may be performed after performing the electrode forming process, or the electrode forming process may be performed after performing the groove forming process.
  • the method for manufacturing the boundary acoustic wave device includes a frequency of the piezoelectric body on which the first and second comb electrodes are formed after the electrode forming step.
  • a step of measuring the characteristics, and the groove forming step includes a frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristics and a predetermined target frequency of the boundary acoustic wave device.
  • the groove is formed so as to have a depth that reduces the difference from the characteristics.
  • the frequency characteristic is adjusted by adjusting the depth of the groove formed in accordance with the frequency characteristic of the piezoelectric body on which the first and second comb electrodes are measured before the groove is formed. Adjustments are made. For this reason, the dispersion
  • the groove depth is substantially the same as the frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device. It is preferable to be a step of forming a groove so as to have a depth. According to this, the dispersion
  • frequency characteristics refers to the overall characteristics related to frequency.
  • the frequency characteristics include, for example, a resonance frequency and an antiresonance frequency when the boundary acoustic wave device is a resonator, and a center frequency when the boundary acoustic wave device is a filter.
  • the method for manufacturing the boundary acoustic wave device includes: a piezoelectric body on which the first and second comb electrodes are formed after the groove forming step; The step of measuring the frequency characteristic and the depth of the groove reduce the difference between the frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device. And a step of deepening the groove formed in the groove forming step so as to obtain a depth to be formed.
  • the frequency characteristic is adjusted by adjusting the depth of the groove in accordance with the frequency characteristic of the piezoelectric body on which the first and second comb electrodes are formed measured after the groove forming step. Is called. For this reason, the dispersion
  • the groove depth is substantially equal to the frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device. It is preferable to deepen the grooves formed in the groove forming step so as to have the same depth. According to this, the dispersion
  • the method for manufacturing the boundary acoustic wave device includes a first dielectric layer on one surface of the piezoelectric body after the electrode forming step and the groove forming step.
  • the thicknesses of the first dielectric layers in the alternately arranged regions are determined based on the frequency characteristics of the boundary acoustic wave device according to the measured frequency characteristics and the target frequency characteristics of the predetermined boundary acoustic wave device.
  • the frequency characteristic is adjusted by adjusting the thickness of the first dielectric layer according to the frequency characteristic of the piezoelectric body on which the first dielectric layer is formed. For this reason, the dispersion
  • the step of increasing or decreasing the thickness of the first dielectric layer is performed in a region where the electrode fingers of the first comb electrode and the electrode fingers of the second comb electrode are alternately arranged in the propagation direction.
  • the thickness of the first dielectric layer is substantially the same as the frequency characteristic of the boundary acoustic wave device according to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device.
  • a step of increasing or decreasing the thickness is preferable. According to this, the dispersion
  • a groove located between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is formed on the surface of the piezoelectric body on the dielectric side.
  • FIG. 1 is a cross-sectional view showing a part of the boundary acoustic wave device according to the first embodiment.
  • FIG. 2 is a plan view of the boundary acoustic wave device.
  • FIG. 3 is a flowchart showing a manufacturing process of the boundary acoustic wave device according to the first embodiment.
  • FIG. 4 is a flowchart showing a manufacturing process of the boundary acoustic wave device according to the second embodiment.
  • FIG. 5 is a flowchart showing a manufacturing process of the boundary acoustic wave device according to the third embodiment.
  • FIG. 6 is a cross-sectional view illustrating a part of the boundary acoustic wave device according to the fourth embodiment.
  • FIG. 1 is a cross-sectional view showing a part of the boundary acoustic wave device according to the first embodiment.
  • FIG. 2 is a plan view of the boundary acoustic wave device.
  • FIG. 3 is a flowchart showing a manufacturing process of the
  • FIG. 7 is a cross-sectional view illustrating a part of the boundary acoustic wave device according to the fifth embodiment.
  • FIG. 8 is a cross-sectional view showing a part of the boundary acoustic wave device according to the sixth embodiment.
  • FIG. 9 is a flowchart illustrating an example of a manufacturing process of the boundary acoustic wave device according to the sixth embodiment.
  • FIG. 10 is an evaluation circuit diagram of a surge breakdown voltage in the first embodiment.
  • FIG. 11 is a graph showing the correlation between the surge breakdown voltage ratio and the depth of the groove 11 in Example 1.
  • FIG. 12 is a cross-sectional view of a boundary acoustic wave device having an FEM calculation model in the second embodiment.
  • FIG. 13 is a graph showing the results of TCF simulation in Example 2.
  • FIG. 10 is an evaluation circuit diagram of a surge breakdown voltage in the first embodiment.
  • FIG. 11 is a graph showing the correlation between the surge breakdown voltage ratio and the depth of the groove 11 in Example 1.
  • FIG. 14 is a graph showing the result of simulation of the electromechanical coupling coefficient in Example 2.
  • FIG. 15 is a graph showing the result of simulation of the sound velocity (V) in the second embodiment.
  • FIG. 16 is a graph showing TCF measurement results in Example 3.
  • FIG. 17 is a graph showing the measurement result of the resonance frequency in Example 3.
  • FIG. 18 is a graph showing the measurement result of the bandwidth ratio in Example 3.
  • FIG. 1 is a sectional view showing a part of a boundary acoustic wave device 1 according to the first embodiment.
  • FIG. 2 is a plan view of the boundary acoustic wave device 1.
  • the drawing of the dielectric 20 is omitted in FIG.
  • the boundary acoustic wave device is a resonator.
  • the boundary acoustic wave device is not limited to a resonator.
  • the boundary acoustic wave device may be, for example, a filter using a boundary acoustic wave.
  • Specific examples of the filter include a longitudinally coupled resonator type filter and a ladder type filter.
  • boundary acoustic wave is not particularly limited.
  • the boundary acoustic wave may be, for example, an SH type boundary acoustic wave or a Stoneley wave.
  • the boundary acoustic wave device 1 includes a piezoelectric body 10.
  • a dielectric 20 is stacked on one surface of the piezoelectric body 10.
  • An electrode 30 is disposed at the boundary between the piezoelectric body 10 and the dielectric body 20.
  • the piezoelectric body 10 and the dielectric body 20 are not particularly limited as long as the piezoelectric body 10 and the dielectric body 20 are a combination that generates a boundary acoustic wave at the boundary between the piezoelectric body 10 and the dielectric body 20.
  • the dielectric 20 is, SiO 2, SiON, or may be formed of SiN or the like.
  • the piezoelectric body 10 may be made of, for example, LiNbO 3 or LiTaO 3 . More specifically, the piezoelectric body 10 may be, for example, 15 ° Y-cut X-propagation LiNbO 3 .
  • the material of the electrode 30 is not particularly limited.
  • the electrode 30 can be formed of, for example, any one of Pt, Au, Cu, Ag, Al, and W, or an alloy obtained by adding other elements to Pt, Au, Cu, Ag, Al, and W.
  • the electrode 30 may be composed of a plurality of conductive layers made of different materials.
  • the electrode 30 may be configured by a metal layer or alloy layer having strong adhesion to the piezoelectric body 10 and the dielectric 20 and the metal layer or alloy layer. Examples of the metal or alloy having strong adhesion to the piezoelectric body 10 and the dielectric body 20 include NiCr, Ti, and Cr.
  • the electrode 30 includes an IDT 37 and grating reflectors 33 and 34.
  • the grating reflectors 33 and 34 are disposed on both sides of the IDT 37 in the propagation direction d of the boundary acoustic wave.
  • the IDT 37 includes a first comb electrode 31 and a second comb electrode 32.
  • the first comb electrode 31 is connected to the first terminal 35.
  • the second comb electrode 32 is connected to the second terminal 36.
  • the first terminal 35 and the second terminal 36 are connected to different potentials.
  • the first comb electrode 31 includes a first bus bar 31a and a plurality of first electrode fingers 31b connected to the first bus bar 31a.
  • the plurality of first electrode fingers 31b are arranged substantially parallel to each other.
  • the second comb electrode 32 includes a second bus bar 32a and a plurality of second electrode fingers 32b connected to the second bus bar 32a.
  • the plurality of second electrode fingers 32b are arranged in parallel to each other.
  • the plurality of second electrode fingers 32b are alternately arranged with the first electrode fingers 31b in the propagation direction d of the boundary acoustic wave.
  • the pitch (electrode finger center interval) between the first electrode finger 31b and the second electrode finger 32b is not particularly limited.
  • the pitch between the first electrode finger 31b and the second electrode finger 32b can be appropriately set according to the desired frequency characteristics.
  • the pitch between the first electrode finger 31b and the second electrode finger 32b is generally set to about 0.5 ⁇ m to 3 ⁇ m.
  • the pitch (distance between electrode finger centers) between the first electrode finger 31b and the second electrode 32b is represented by ⁇ / 2.
  • is the period of the IDT 37.
  • a plurality of grooves 11 are formed on the surface 10a of the piezoelectric body 10 on the dielectric 20 side.
  • the groove 11 extends in the extending direction of the electrode fingers 31b and 32b between the adjacent first electrode finger 31b and the second electrode finger 32b.
  • channel 11 is formed in all between the adjacent 1st electrode finger 31b and the 2nd electrode finger 32b.
  • the groove 11 does not necessarily have to be formed at all between the adjacent first electrode finger 31b and the second electrode finger 32b.
  • channel 11 may be formed in the whole between the adjacent 1st electrode finger 31b and the 2nd electrode finger 32b in planar view, and the adjacent 1st electrode finger 31b and 2nd You may form only in a part between electrode fingers 32b.
  • the first electrode finger 31b and the second electrode finger 32b adjacent to each other are formed on the entire surface. This is because the surge withstand voltage of the boundary acoustic wave device 1 can be increased and the frequency temperature coefficient (TCF) can be reduced.
  • TCF frequency temperature coefficient
  • the cross-sectional shape of the groove 11 along the propagation direction D is a rectangle.
  • the depth of the groove 11 is not particularly limited.
  • the depth of the groove 11 can be appropriately set according to a desired surge withstand voltage, frequency temperature coefficient (TCF), or the like.
  • the depth of the groove 11 can typically be set to about 0 to 500 nm.
  • the surge withstand voltage of the boundary acoustic wave device tends to decrease as the distance between the first electrode finger and the second electrode finger becomes shorter. For this reason, if the distance between the first electrode finger and the second electrode finger is shortened to increase the resonance frequency and anti-resonance frequency of the boundary acoustic wave device, the surge withstand voltage of the boundary acoustic wave device decreases. Become. That is, it is usually difficult to increase the resonance frequency and antiresonance frequency while maintaining the surge withstand voltage.
  • the groove 11 is formed between the first electrode finger 31b and the second electrode finger 32b.
  • the distance on the surface 10a of the piezoelectric body 10 between the 1st electrode finger 31b and the 2nd electrode finger 32b can be made comparatively large.
  • the substantial dielectric constant of the region between the adjacent first electrode finger 31b and the second electrode finger 32b can be made relatively small. Therefore, according to the present embodiment, the surge withstand voltage can be increased as compared with the case where the groove 11 is not formed between the first electrode finger 31b and the second electrode finger 32b. That is, according to the present embodiment, the surge withstand voltage can be increased even when the distance between the first electrode finger 31b and the second electrode finger 32b is short. Therefore, it is possible to increase the frequency of the boundary acoustic wave device 1 while maintaining the surge withstand voltage of the boundary acoustic wave device 1 high.
  • the frequency temperature coefficient can be adjusted by changing the depth of the groove 11. Therefore, the absolute value of the frequency temperature coefficient can be further reduced by adjusting the depth of the groove 11. Specifically, for example, when the piezoelectric body 10 has a negative temperature characteristic and the dielectric body 20 has a positive temperature characteristic, the frequency temperature coefficient can be shifted to the positive side by deepening the groove 11. it can. Usually, in the boundary acoustic wave device in which the groove 11 is not formed, when the piezoelectric body 10 has a negative temperature characteristic and the dielectric body 20 has a positive temperature characteristic, the frequency temperature coefficient is negative. For this reason, the frequency temperature coefficient can be shifted to the positive side by forming the groove 11. Therefore, the absolute value of the frequency temperature coefficient of the boundary acoustic wave device can be reduced.
  • the piezoelectric body 10 is formed of LiNbO 3 and the dielectric body 20 is formed of SiO 2 , a relatively large electromechanical coupling coefficient K 2 can be obtained.
  • LiNbO 3 has negative temperature characteristics, while SiO 2 has positive temperature characteristics.
  • the frequency temperature coefficient can be made relatively small by forming the piezoelectric body 10 from LiNbO 3 and forming the dielectric body 20 from SiO 2 .
  • the negative temperature characteristic of LiNbO 3 is larger than the positive temperature characteristic of SiO 2 , it is difficult to sufficiently reduce the absolute value of the frequency temperature coefficient.
  • the frequency temperature coefficient is shifted to the positive side by forming the groove 11. Therefore, the piezoelectric body 10 is formed of SiO 2 , the dielectric body 20 is formed of LiNbO 3 , and the groove 11 is formed, whereby an elastic boundary where the electromechanical coupling coefficient K 2 is large and the absolute value of the frequency temperature coefficient is small. A wave device can be realized.
  • the depth and the electromechanical coupling coefficient K 2 of the groove 11 has a correlation. Therefore, by adjusting the depth of the groove 11, it is possible to adjust the electromechanical coefficient K 2.
  • the depth of the groove 11 and the frequency characteristic of the boundary acoustic wave device 1 have a correlation as can be seen from the following examples. For this reason, the frequency characteristic of the boundary acoustic wave device 1 can be adjusted by adjusting the depth of the groove 11.
  • the depth of the groove 11 can be adjusted frequency temperature coefficient, the frequency characteristics of the electro-mechanical coupling coefficient K 2 and the boundary acoustic wave device 1. That is, by providing the groove 11, the temperature coefficient of frequency, the frequency characteristics of the electro-mechanical coupling coefficient K 2 and the boundary acoustic wave device 1 can be adjusted.
  • the cross-sectional shape of the groove 11 is preferably rectangular.
  • the distance on the surface 10a of the piezoelectric body 10 between the first electrode finger 31b and the second electrode finger 32b can be further increased. Therefore, the surge withstand voltage of the boundary acoustic wave device 1 can be further increased.
  • the frequency temperature coefficient of the boundary acoustic wave device can be effectively shifted to the temperature characteristic side of the dielectric 20. Therefore, the frequency temperature coefficient of the boundary acoustic wave device can be effectively reduced.
  • the manufacturing method of the boundary acoustic wave device 1 shown below is merely an example.
  • the manufacturing method of the boundary acoustic wave device according to the present invention is not limited to the following method.
  • step S1 the piezoelectric body 10 is prepared.
  • an electrode forming process for forming the electrode 30 on the piezoelectric body 10 is performed.
  • the electrode 30 can be formed, for example, by forming a metal film or an alloy film by a known thin film forming method and then patterning by a known patterning method.
  • the thin film forming method include an electron beam evaporation method and a sputtering method.
  • the patterning method include a photolithography method.
  • a groove forming step for forming the grooves 11 is performed.
  • the groove 11 can be formed by, for example, a known etching method.
  • Specific examples of the etching method include dry etching such as reactive ion etching, wet etching using an etchant, and the like.
  • Examples of ions used in the reactive ion etching method include fluorine ions.
  • An etchant used for wet etching includes, for example, hydrofluoric acid.
  • the groove 11 may be formed by milling using Ar ions, for example.
  • the electrode 30 may be used as a mask for patterning, and a separately formed oxide film such as SiO 2 or a nitride film such as Si 3 N 4 may be used as a mask for patterning. It may be used as
  • the boundary acoustic wave device 1 is completed by forming the dielectric 20 in step S4.
  • the method for forming the dielectric 20 is not particularly limited.
  • the dielectric 20 can be formed by, for example, a known film forming method.
  • the dielectric 20 can be formed by, for example, a sputtering method such as RF magnetron sputtering.
  • FIGS. 1 and 2 are referred to in common with the first embodiment.
  • members having substantially the same functions as those of the first embodiment are referred to by common reference numerals, and description thereof is omitted.
  • step S1 and step S2 are performed as shown in FIG.
  • step S5 is performed subsequent to step S2.
  • step S5 the frequency characteristic of the piezoelectric body 10 on which the electrode 30 is formed is measured.
  • the boundary acoustic wave device to be manufactured as in this embodiment is a resonator
  • step S5 for example, at least one of a resonance frequency and an anti-resonance frequency is measured.
  • the boundary acoustic wave device to be manufactured is a filter
  • step S5 for example, the center frequency is measured.
  • step S6 the depth of the groove 11 is determined. Specifically, the difference between the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S5 and the target frequency characteristic of the boundary acoustic wave device 1 determined in advance is reduced. As described above, the depth of the groove 11 is determined.
  • the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S5 is substantially the same as the target frequency characteristic of the predetermined boundary acoustic wave device 1. As described above, the depth of the groove 11 is determined.
  • step S7 the groove 11 is formed.
  • step S7 the groove 11 having the depth calculated in step S6 is formed.
  • the boundary acoustic wave device 1 is completed by forming the dielectric 20 in step S4.
  • the frequency characteristics of the produced boundary acoustic wave device may vary.
  • the frequency characteristic of the piezoelectric body 10 on which the electrode 30 is formed is measured, and the groove 11 having a depth determined based on the measurement result is formed.
  • the frequency characteristics of the boundary acoustic wave device can be finely adjusted. Therefore, variation in frequency characteristics of the produced boundary acoustic wave device 1 can be reduced.
  • the boundary acoustic wave device is a resonator, it is possible to suppress variation in at least one of the resonance frequency and the antiresonance frequency.
  • the boundary acoustic wave device is a filter, it is possible to suppress variations in the center frequency.
  • step S3 after the groove 11 having a predetermined depth is formed in step S3, the frequency characteristic may be measured in step S8.
  • step S8 the frequency characteristic of the piezoelectric body 10 in which the electrode 30 and the groove 11 are formed is measured.
  • step S9 the adjustment amount of the depth of the groove 11 is determined. Specifically, the difference between the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S8 and the target frequency characteristic of the boundary acoustic wave device 1 determined in advance is reduced. The depth of the groove 11 is calculated. Preferably, the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S8 is substantially the same as the target frequency characteristic of the predetermined boundary acoustic wave device 1. The depth of the groove 11 is calculated. An adjustment amount of the depth of the groove 11 is determined from the calculated preferable depth of the groove 11 and the current depth of the groove 11.
  • step S10 the depth of the groove 11 is adjusted. Specifically, the groove 11 is deepened so that the depth of the groove 11 becomes the depth calculated in step S9.
  • a method for deepening the groove 11 a known etching method, milling method, or the like can be used.
  • step S4 the boundary acoustic wave device 1 is completed by forming the dielectric 20.
  • the depth of the groove 11 is adjusted based on the measurement result of the frequency characteristic, similarly to the second embodiment, variation in the frequency characteristic of the boundary acoustic wave device 1 to be manufactured is reduced. be able to.
  • the cross-sectional shape of the groove 11 is rectangular.
  • the cross-sectional shape of the groove 11 is not limited to a rectangle.
  • the cross-sectional shape of the groove 11 may be, for example, a trapezoid that becomes narrower in the depth direction.
  • channel 11 may be a triangle which becomes narrow toward a depth direction, for example.
  • the dielectric 20 In the first embodiment, the example in which the dielectric 20 is configured by one dielectric layer has been described. However, the dielectric 20 may be formed of a plurality of dielectric layers as shown in FIG.
  • the dielectric 20 includes a first dielectric layer 21 and a second dielectric layer 22.
  • the first dielectric layer 21 is formed so as to cover the piezoelectric body 10 and the electrode 30.
  • the second dielectric layer 22 is formed on the first dielectric layer 21.
  • the sound speed of the second dielectric layer 22 is faster than the sound speed of the first dielectric layer 21.
  • the frequency characteristics of the boundary acoustic wave can be increased. Therefore, the distance between the first electrode finger 31b and the second electrode finger 32b adjacent to each other can be made relatively wide as compared with the case where the dielectric layer 20 is formed only by the first dielectric material 21. Therefore, the surge withstand voltage of the boundary acoustic wave device can be further increased.
  • the frequency characteristic of the boundary acoustic wave device obtained by adjusting the thickness of the first dielectric layer 21 can be adjusted. Therefore, it is possible to reduce variation in frequency characteristics of the manufactured boundary acoustic wave device 1.
  • FIG. 9 is a flowchart showing an example of a manufacturing process of the boundary acoustic wave device according to the sixth embodiment. As shown in FIG. 9, in this embodiment as well, in the same manner as in the first embodiment, the preparation of the piezoelectric body 10 in step S1, the formation of the electrode 30 in step S2, and the formation of the groove 11 in step S3 are sequentially performed. .
  • step S11 is performed following step S3.
  • step S11 the first dielectric layer 21 having a predetermined thickness is formed.
  • step S12 the frequency characteristics of the piezoelectric body 10 on which the first dielectric layer 21 is formed are measured.
  • step S13 the adjustment amount of the thickness of the first dielectric layer 21 is determined. Specifically, the difference between the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S12 and the target frequency characteristic of the boundary acoustic wave device 1 determined in advance is reduced. The thickness of the first dielectric layer 21 is calculated. Preferably, the frequency characteristics of the boundary acoustic wave device 1 estimated according to the frequency characteristics measured in step S12 are substantially the same as the target frequency characteristics of the predetermined boundary acoustic wave device 1. The thickness of the first dielectric layer 21 is calculated.
  • step S14 the thickness of the first dielectric layer 21 is adjusted. Specifically, the thickness of the first dielectric layer 21 is adjusted so that the thickness of the first dielectric layer 21 becomes the thickness determined in step S13.
  • step S15 the second dielectric layer 22 is formed, and the boundary acoustic wave device is completed.
  • the thickness of the first dielectric layer 21 is adjusted based on the measured frequency characteristics, variations in the frequency characteristics of the manufactured boundary acoustic wave device 1 can be reduced. .
  • the depth of the groove 11 may be adjusted by measuring the frequency characteristics before or after the formation of the groove 11.
  • Example 1 A one-port resonator 1 shown in FIGS. 1 and 2 was produced. Specifically, a 15 ° Y-cut LiNbO 3 single crystal substrate was used as the piezoelectric body 10. An electrode 30 having a total film thickness of 315 nm was formed on the piezoelectric body 10 by forming a film by electron beam evaporation and then patterning by photolithography. The structure of the electrode 30 is NiCr film (film thickness: 30 nm) / AlCu film (film thickness: 150 nm) / Ti film (film thickness: 10 nm) / Pt film (film thickness: 105 nm) / NiCr film (film) from the piezoelectric body side. (Thickness: 10 nm).
  • the groove 11 was formed by etching the piezoelectric body 10 by reactive ion etching using a fluorine-based gas using the NiCr film located on the uppermost layer of the electrode 30 as a mask. Thereafter, a dielectric 20 was formed by forming a SiO 2 film having a thickness of 5000 nm by RF magnetron sputtering, and the resonator 1 was obtained.
  • a machine model evaluation circuit shown in FIG. 10 was formed using the obtained resonator 1, and the surge breakdown voltage of the resonator 1 was measured based on the EIA / JESD22-A115-A standard. Specifically, first, the resonator 1 and the capacitor C having a capacitance of 200 pF were connected in parallel to the high voltage pulse power supply G. Then, a voltage was applied to the capacitor C by the high voltage pulse power source G with the switch SW connected to the high voltage pulse power source G side. Thereafter, the switch SW was switched to connect the capacitor C and the resonator 1, thereby applying a surge voltage to the resonator 1. Thereafter, whether or not the resonator 1 was broken was observed with a microscope, and impedance characteristics were measured. Repeat this inspection while increasing the voltage of the high-voltage pulse power supply in increments of 2 to 3 V. Surge breakdown voltage.
  • the surge breakdown voltage is increased by forming the groove 11. That is, it can be seen that the surge withstand voltage of the resonator can be increased by forming the groove 11. It can also be seen that the surge breakdown voltage can be further increased by deepening the groove 11.
  • Example 2 Next, using the boundary acoustic wave device shown in FIG. 12 as a calculation model, the depth of the groove 11, the specific bandwidth, the electromechanical coupling coefficient K 2 , the frequency temperature coefficient (TCF), and the speed of sound are each determined by a finite element method (FEM). The relationship was simulated. The simulation conditions are shown in Table 2 below. The simulation results are shown in Table 3 and FIGS.
  • FEM finite element method
  • the specific bandwidth is defined by the following formula (1).
  • TCF frequency temperature coefficient
  • TCF V ⁇ 1 (25 ° C.) ⁇ ⁇ (V (30 ° C.) ⁇ V (20 ° C.) ⁇ / 10 (° C.) ⁇ ⁇ S (2)
  • V (25 ° C.) speed of sound at 25 ° C.
  • V (30 ° C.) speed of sound at 30 ° C.
  • V (20 ° C.) speed of sound at 20 ° C.
  • ⁇ S linear expansion coefficient
  • the value of the frequency temperature coefficient (TCF) can be increased by deepening the groove 11. It can be seen that the absolute value of the frequency temperature coefficient can be reduced by forming the groove 11 as compared to the case where the groove 11 is not formed. From the results shown in Table 3 and FIG. 13, the depth of the groove 11 is preferably 0.05 ⁇ or more, and more preferably 0.1 ⁇ or more and 0.15 ⁇ or less. This is because the absolute value of the frequency temperature coefficient can be particularly reduced by doing so.
  • the specific bandwidth can be changed by changing the depth of the groove 11. Specifically, it can be seen that the specific bandwidth can be narrowed by deepening the groove 11.
  • the electromechanical coupling coefficient K 2 can be changed by changing the depth of the groove 11. Specifically, it can be seen that the electromechanical coupling coefficient K 2 can be reduced by deepening the groove 11.
  • the sound velocity (V) can be changed by changing the depth of the groove 11. Specifically, it can be seen that the sound velocity (V) can be increased by deepening the groove 11.
  • Example 3 A 1-port resonator similar to that in Example 1 was fabricated in the same procedure as in Example 1. For the obtained resonator, the frequency temperature coefficient, the resonance frequency, and the ratio band were measured. Specifically, the impedance temperature was measured, the frequency at each temperature was measured, and the frequency temperature coefficient (TCF), resonance frequency, and ratio band were obtained by applying the measurement results to the following formulas (3) and (4). .
  • Ratio band ⁇ (fa (25 ° C.) ⁇ Fr (25 ° C.)) / Fr (25 ° C.) ⁇ ⁇ 100 (4)
  • the frequency temperature coefficient is improved by deepening the groove 11 in the measurement results of this example as well as the simulation results.
  • channel 11 and each of a resonant frequency and a specific band have a correlation.
  • the resonance frequency is shifted to the lower frequency side by deepening the groove 11.
  • the ratio band is reduced by deepening the groove 11. From the above, it can be seen that each of the resonance frequency and the ratio band can be adjusted by adjusting the depth of the groove 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

The frequency is increased while maintaining high surge withstand pressure. A boundary acoustic wave device (1) is provided with a piezoelectric body (10), a dielectric body (20), and an electrode (30) disposed at the boundary between the piezoelectric body (10) and the dielectric body (20), and utilizes boundary acoustic waves propagating through the boundary. The electrode (30) comprises a first comb-tooth electrode (31) comprising a plurality of finger electrodes (31b), and a second comb-tooth electrode (32) comprising a plurality of finger electrodes (32b). The finger electrodes (32b) are arranged alternately with the finger electrodes (31b) in the propagation direction of the boundary acoustic waves. The second comb-tooth electrode (32) is connected to a potential different from that of the first comb-tooth electrode (31). In the surface (10a) of the piezoelectric body (10) on the side of the dielectric body (20), grooves (11) are formed extending in the direction in which the finger electrodes extend. The grooves (11) are positioned respectively between the finger electrodes (31b) and the finger electrodes (32b) respectively adjacent to each other.

Description

弾性境界波装置及びその製造方法Boundary acoustic wave device and manufacturing method thereof
 本発明は、弾性境界波装置及びその製造方法に関する。 The present invention relates to a boundary acoustic wave device and a manufacturing method thereof.
 従来、弾性波を利用した装置として、弾性表面波装置や弾性境界波装置などが知られている。弾性表面波装置では、通常、弾性表面波素子を気密に封止し、弾性表面波素子の伝搬面の上に空間を形成するパッケージが必要であった。 Conventionally, surface acoustic wave devices and boundary acoustic wave devices are known as devices using elastic waves. A surface acoustic wave device normally requires a package in which the surface acoustic wave element is hermetically sealed and a space is formed on the propagation surface of the surface acoustic wave element.
 これに対して、弾性境界波装置では、弾性境界波のエネルギーが圧電体と誘電体との境界部分に実質的に閉じ込められる。よって、弾性境界波装置では、弾性表面波装置において必要とされるパッケージを設ける必要がない。従って、弾性境界波装置は、さらなる小型化が可能であるため、近年盛んに研究されている。 In contrast, in the boundary acoustic wave device, the energy of the boundary acoustic wave is substantially confined in the boundary portion between the piezoelectric body and the dielectric body. Therefore, in the boundary acoustic wave device, it is not necessary to provide a package required in the surface acoustic wave device. Therefore, since the boundary acoustic wave device can be further reduced in size, it has been actively studied in recent years.
 例えば下記の特許文献1には、SHタイプの弾性境界波を利用した弾性境界波装置が開示されている。特許文献1には、IDT及び反射器の周期を2.2μmと小さくすることにより、1370MHzという高い共振周波数及び1460MHzという高い反共振周波数が得られる旨が記載されている。
WO2004/070946号 A1公報
For example, Patent Document 1 below discloses a boundary acoustic wave device using an SH type boundary acoustic wave. Patent Document 1 describes that a high resonance frequency of 1370 MHz and a high anti-resonance frequency of 1460 MHz can be obtained by reducing the period of the IDT and the reflector to 2.2 μm.
WO2004 / 070946 A1 Publication
 特許文献1において示されているように、IDT及び反射器の周期を小さくすることにより高い共振周波数及び反共振周波数を実現することが可能である。しかしながら、高周波化を実現するためにIDT及び反射器の周期を小さくした場合、サージ耐圧が低下するという問題があった。従って、高いサージ耐圧を維持しつつ、高周波化を図ることは困難であった。 As shown in Patent Document 1, it is possible to realize a high resonance frequency and anti-resonance frequency by reducing the period of the IDT and the reflector. However, when the period of the IDT and the reflector is reduced in order to realize high frequency, there is a problem that the surge withstand voltage is lowered. Therefore, it has been difficult to increase the frequency while maintaining a high surge withstand voltage.
 本発明の目的は、高いサージ耐圧を維持しつつ、高周波化を図ることにある。 An object of the present invention is to increase the frequency while maintaining a high surge withstand voltage.
 本発明に係る弾性境界波装置は、圧電体と、圧電体の一面に積層された誘電体と、圧電体と誘電体との間の境界に配置された電極とを備え、境界を伝搬する弾性境界波を利用した弾性境界波装置に関する。本発明に係る弾性境界波装置において、電極は、第1のくし歯電極と、第2のくし歯電極とを含む。第1のくし歯電極は、複数の電極指を有する。第2のくし歯電極は、複数の電極指を有する。第2のくし歯電極の複数の電極指は、弾性境界波の伝搬方向において第1のくし歯電極の電極指と交互に配置されている。第2のくし歯電極は、第1のくし歯電極とは異なる電位に接続される。圧電体の誘電体側の表面には、電極指の延びる方向に延びる溝が形成されている。溝は、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間に位置している。 The boundary acoustic wave device according to the present invention includes a piezoelectric body, a dielectric layer laminated on one surface of the piezoelectric body, and an electrode disposed at a boundary between the piezoelectric body and the dielectric body, and an elastic property that propagates through the boundary. The present invention relates to a boundary acoustic wave device using boundary waves. In the boundary acoustic wave device according to the present invention, the electrode includes a first comb electrode and a second comb electrode. The first comb electrode has a plurality of electrode fingers. The second comb electrode has a plurality of electrode fingers. The plurality of electrode fingers of the second comb electrode are alternately arranged with the electrode fingers of the first comb electrode in the propagation direction of the boundary acoustic wave. The second comb electrode is connected to a potential different from that of the first comb electrode. A groove extending in the extending direction of the electrode finger is formed on the surface of the piezoelectric body on the dielectric side. The groove is located between the electrode fingers of the adjacent first comb electrode and the electrode fingers of the second comb electrode.
 本発明に係る弾性境界波装置では、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間に位置する溝が圧電体の誘電体側の表面に形成されている。このため、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間の圧電体表面上の距離を比較的長くすると共に、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間の領域の誘電率を比較的低くすることができる。従って、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間のピッチが小さい弾性境界波装置においても、弾性境界波装置のサージ耐圧を高めることができる。すなわち、弾性境界波装置において、高いサージ耐圧を維持しつつ、高周波化を図ることができる。 In the boundary acoustic wave device according to the present invention, a groove located between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is formed on the surface of the piezoelectric body on the dielectric side. Yes. Therefore, the distance between the electrode fingers of the adjacent first comb electrode and the electrode finger of the second comb electrode is relatively long, and the adjacent first comb electrode The dielectric constant of the region between the electrode finger and the electrode finger of the second comb electrode can be made relatively low. Therefore, even in the boundary acoustic wave device having a small pitch between the electrode fingers of the adjacent first comb electrodes and the electrode fingers of the second comb electrodes, the surge withstand voltage of the boundary acoustic wave device can be increased. That is, in the boundary acoustic wave device, high frequency can be achieved while maintaining a high surge withstand voltage.
 本発明に係る弾性境界波装置のある特定の局面では、誘電体は、圧電体の一面に積層された第1の誘電体層と、第1の誘電体層に積層され、第1の誘電体層の音速よりも速い音速を有する第2の誘電体層を有する。この場合、共振周波数及び反共振周波数をさらに高周波化することができる。換言すれば、共振周波数や反共振周波数が同じである場合は、溝の形成と第2の誘電体層の形成により、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指とのピッチを比較的長くすることができる。従って、弾性境界波装置のサージ耐圧をより高めることができる。 In a specific aspect of the boundary acoustic wave device according to the present invention, the dielectric includes a first dielectric layer laminated on one surface of the piezoelectric body, and a first dielectric layer laminated on the first dielectric layer. A second dielectric layer having a speed of sound greater than the speed of sound of the layer. In this case, the resonance frequency and antiresonance frequency can be further increased. In other words, when the resonance frequency and the anti-resonance frequency are the same, the electrode fingers of the adjacent first comb electrodes and the second comb electrodes are formed by forming the groove and the second dielectric layer. The pitch with the electrode fingers can be made relatively long. Therefore, the surge withstand voltage of the boundary acoustic wave device can be further increased.
 本発明に係る弾性境界波装置の他の特定の局面では、弾性境界波の伝搬方向に沿った溝の断面形状は矩形である。この場合、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間の圧電体表面上の距離をさらに長くすると共に、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間の領域の誘電率をさらに高くすることができる。従って、弾性境界波装置のサージ耐圧をさらに高めることができる。 In another specific aspect of the boundary acoustic wave device according to the present invention, the cross-sectional shape of the groove along the propagation direction of the boundary acoustic wave is rectangular. In this case, the distance between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is further increased on the surface of the piezoelectric body, and the electrode of the adjacent first comb electrode The dielectric constant of the region between the finger and the electrode finger of the second comb electrode can be further increased. Therefore, the surge withstand voltage of the boundary acoustic wave device can be further increased.
 本発明に係る弾性境界波装置の別の特定の局面では、弾性境界波の伝搬方向に沿った溝の断面形状は、深さ方向に向かって幅狭となる台形である。この場合、堆積法により、誘電体を容易に形成することができるため、弾性境界波装置の製造が容易となる。 In another specific aspect of the boundary acoustic wave device according to the present invention, the cross-sectional shape of the groove along the propagation direction of the boundary acoustic wave is a trapezoid that becomes narrower in the depth direction. In this case, since the dielectric can be easily formed by the deposition method, the boundary acoustic wave device can be easily manufactured.
 本発明に係る弾性境界波装置の製造方法は、上記本発明に係る弾性境界波装置を製造する方法に関する。本発明に係る弾性境界波装置の製造方法は、圧電体上に電極を形成する電極形成工程と、圧電体に溝を形成する溝形成工程と、圧電体の一面に誘電体を積層する工程とを備える。 The method for manufacturing a boundary acoustic wave device according to the present invention relates to a method for manufacturing the boundary acoustic wave device according to the present invention. The method for manufacturing a boundary acoustic wave device according to the present invention includes an electrode forming step of forming an electrode on a piezoelectric body, a groove forming step of forming a groove on the piezoelectric body, and a step of laminating a dielectric on one surface of the piezoelectric body. Is provided.
 本発明に係る弾性境界波装置の製造方法によれば、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間に位置する溝が圧電体の誘電体側の表面に形成される。このため、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間の圧電体表面上の距離を比較的長くすると共に、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間の領域の誘電率を比較的低くすることができる。従って、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間のピッチが小さく、サージ耐圧の高い弾性境界波装置を製造することができる。 According to the method for manufacturing the boundary acoustic wave device of the present invention, the groove located between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is formed on the dielectric side of the piezoelectric body. Formed on the surface. Therefore, the distance between the electrode fingers of the adjacent first comb electrode and the electrode finger of the second comb electrode is relatively long, and the adjacent first comb electrode The dielectric constant of the region between the electrode finger and the electrode finger of the second comb electrode can be made relatively low. Therefore, it is possible to manufacture a boundary acoustic wave device with a small surge between the electrode fingers of the adjacent first comb electrodes and the electrode fingers of the second comb electrodes and a high surge withstand voltage.
 なお、電極形成工程と溝形成工程とを行う順番は特に限定されない。例えば、電極形成工程を行った後に溝形成工程を行ってもよいし、溝形成工程を行った後に電極形成工程を行ってもよい。 Note that the order of performing the electrode forming step and the groove forming step is not particularly limited. For example, the groove forming process may be performed after performing the electrode forming process, or the electrode forming process may be performed after performing the groove forming process.
 本発明に係る弾性境界波装置の製造方法のある特定の局面では、弾性境界波装置の製造方法は、電極形成工程の後に、第1及び第2のくし歯電極が形成された圧電体の周波数特性を測定する工程をさらに備え、溝形成工程は、溝の深さが、測定された周波数特性に応じた弾性境界波装置の周波数特性と、予め定められた弾性境界波装置の目標とする周波数特性との差を小さくする深さとなるように、溝を形成する工程である。この場合、溝が形成される前に測定された第1及び第2のくし歯電極が形成された圧電体の周波数特性に応じて形成される溝の深さが調節されることにより、周波数特性の調整が行われる。このため、製造される弾性境界波装置の周波数特性のばらつきを低減することができる。 In a specific aspect of the method for manufacturing the boundary acoustic wave device according to the present invention, the method for manufacturing the boundary acoustic wave device includes a frequency of the piezoelectric body on which the first and second comb electrodes are formed after the electrode forming step. A step of measuring the characteristics, and the groove forming step includes a frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristics and a predetermined target frequency of the boundary acoustic wave device. In this step, the groove is formed so as to have a depth that reduces the difference from the characteristics. In this case, the frequency characteristic is adjusted by adjusting the depth of the groove formed in accordance with the frequency characteristic of the piezoelectric body on which the first and second comb electrodes are measured before the groove is formed. Adjustments are made. For this reason, the dispersion | variation in the frequency characteristic of the boundary acoustic wave apparatus manufactured can be reduced.
 上記溝の形成工程は、溝の深さが、測定された周波数特性に応じた弾性境界波装置の周波数特性と、予め定められた弾性境界波装置の目標とする周波数特性とが実質的に同じになる深さとなるように、溝を形成する工程であることが好ましい。これによれば、製造される弾性境界波装置の周波数特性のばらつきをより低減することができる。 In the groove forming step, the groove depth is substantially the same as the frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device. It is preferable to be a step of forming a groove so as to have a depth. According to this, the dispersion | variation in the frequency characteristic of the elastic boundary wave apparatus manufactured can be reduced more.
 ここで、「周波数特性」とは、周波数に関連する特性の全般をいう。周波数特性には、例えば、弾性境界波装置が共振子である場合は、共振周波数や反共振周波数が含まれ、弾性境界波装置がフィルタである場合は、中心周波数などが含まれる。 Here, “frequency characteristics” refers to the overall characteristics related to frequency. The frequency characteristics include, for example, a resonance frequency and an antiresonance frequency when the boundary acoustic wave device is a resonator, and a center frequency when the boundary acoustic wave device is a filter.
 本発明に係る弾性境界波装置の製造方法の他の特定の局面では、弾性境界波装置の製造方法は、溝形成工程の後に、第1及び第2のくし歯電極が形成された圧電体の周波数特性を測定する工程と、溝の深さが、測定された周波数特性に応じた弾性境界波装置の周波数特性と、予め定められた弾性境界波装置の目標とする周波数特性との差を小さくする深さとなるように、溝形成工程において形成された溝を深くする工程とをさらに備える。この場合、溝形成工程の後に測定された第1及び第2のくし歯電極が形成された圧電体の周波数特性に応じて、溝の深さが調節されることにより、周波数特性の調整が行われる。このため、製造される弾性境界波装置の周波数特性のばらつきを低減することができる。 In another specific aspect of the method for manufacturing the boundary acoustic wave device according to the present invention, the method for manufacturing the boundary acoustic wave device includes: a piezoelectric body on which the first and second comb electrodes are formed after the groove forming step; The step of measuring the frequency characteristic and the depth of the groove reduce the difference between the frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device. And a step of deepening the groove formed in the groove forming step so as to obtain a depth to be formed. In this case, the frequency characteristic is adjusted by adjusting the depth of the groove in accordance with the frequency characteristic of the piezoelectric body on which the first and second comb electrodes are formed measured after the groove forming step. Is called. For this reason, the dispersion | variation in the frequency characteristic of the boundary acoustic wave apparatus manufactured can be reduced.
 上記溝を深くする工程は、溝の深さが、測定された周波数特性に応じた弾性境界波装置の周波数特性と、予め定められた弾性境界波装置の目標とする周波数特性とが実質的に同じになる深さとなるように、溝形成工程において形成された溝を深くする工程であることが好ましい。これによれば、製造される弾性境界波装置の周波数特性のばらつきをより低減することができる。 In the step of deepening the groove, the groove depth is substantially equal to the frequency characteristic of the boundary acoustic wave device corresponding to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device. It is preferable to deepen the grooves formed in the groove forming step so as to have the same depth. According to this, the dispersion | variation in the frequency characteristic of the elastic boundary wave apparatus manufactured can be reduced more.
 本発明に係る弾性境界波装置の製造方法の別の特定の局面では、弾性境界波装置の製造方法は、電極形成工程及び溝形成工程の後に、圧電体の一面に第1の誘電体層を形成する工程と、第1の誘電体層が形成された圧電体の周波数特性を測定する工程と、第1のくし歯電極の電極指と第2のくし歯電極の電極指とが伝搬方向において交互に配置されている領域における第1の誘電体層の厚さを、測定された周波数特性に応じた弾性境界波装置の周波数特性と、予め定められた弾性境界波装置の目標とする周波数特性との差を小さくする厚さにまで増加又は減少させる工程と、第1の誘電体層の音速よりも速い音速を有する第2の誘電体層を第1の誘電体層に積層することにより、第1の誘電体層と第2の誘電体層とを有する誘電体を形成する工程とをさらに備える。この場合、第1の誘電体層が形成された圧電体の周波数特性に応じて第1の誘電体層の厚さが調節されることにより、周波数特性の調整が行われる。このため、製造される弾性境界波装置の周波数特性のばらつきを低減することができる。 In another specific aspect of the method for manufacturing a boundary acoustic wave device according to the present invention, the method for manufacturing the boundary acoustic wave device includes a first dielectric layer on one surface of the piezoelectric body after the electrode forming step and the groove forming step. A step of measuring, a step of measuring frequency characteristics of the piezoelectric body on which the first dielectric layer is formed, and an electrode finger of the first comb electrode and an electrode finger of the second comb electrode in the propagation direction. The thicknesses of the first dielectric layers in the alternately arranged regions are determined based on the frequency characteristics of the boundary acoustic wave device according to the measured frequency characteristics and the target frequency characteristics of the predetermined boundary acoustic wave device. Increasing or decreasing to a thickness that reduces the difference between and a second dielectric layer having a speed of sound higher than the speed of sound of the first dielectric layer, and laminating the first dielectric layer, Forming a dielectric having a first dielectric layer and a second dielectric layer; Further comprising the step. In this case, the frequency characteristic is adjusted by adjusting the thickness of the first dielectric layer according to the frequency characteristic of the piezoelectric body on which the first dielectric layer is formed. For this reason, the dispersion | variation in the frequency characteristic of the boundary acoustic wave apparatus manufactured can be reduced.
 上記第1の誘電体層の厚さを増加または減少させる工程は、第1のくし歯電極の電極指と第2のくし歯電極の電極指とが伝搬方向において交互に配置されている領域における第1の誘電体層の厚さを、測定された周波数特性に応じた弾性境界波装置の周波数特性と、予め定められた弾性境界波装置の目標とする周波数特性とが実質的に同じになる厚さにまで増加又は減少させる工程であることが好ましい。これによれば、製造される弾性境界波装置の周波数特性のばらつきをより低減することができる。
(発明の効果)
The step of increasing or decreasing the thickness of the first dielectric layer is performed in a region where the electrode fingers of the first comb electrode and the electrode fingers of the second comb electrode are alternately arranged in the propagation direction. The thickness of the first dielectric layer is substantially the same as the frequency characteristic of the boundary acoustic wave device according to the measured frequency characteristic and the target frequency characteristic of the predetermined boundary acoustic wave device. A step of increasing or decreasing the thickness is preferable. According to this, the dispersion | variation in the frequency characteristic of the elastic boundary wave apparatus manufactured can be reduced more.
(The invention's effect)
 本発明に係る弾性境界波装置では、隣接する第1のくし歯電極の電極指と第2のくし歯電極の電極指との間に位置する溝が圧電体の誘電体側の表面に形成されている。このため、本発明によれば、弾性境界波装置において、高いサージ耐圧を維持しつつ、高周波化を図ることができる。 In the boundary acoustic wave device according to the present invention, a groove located between the electrode finger of the adjacent first comb electrode and the electrode finger of the second comb electrode is formed on the surface of the piezoelectric body on the dielectric side. Yes. For this reason, according to the present invention, in the boundary acoustic wave device, high frequency can be achieved while maintaining a high surge breakdown voltage.
図1は、第1の実施形態に係る弾性境界波装置の一部分を表す断面図である。FIG. 1 is a cross-sectional view showing a part of the boundary acoustic wave device according to the first embodiment. 図2は、弾性境界波装置の平面図である。FIG. 2 is a plan view of the boundary acoustic wave device. 図3は、第1の実施形態における弾性境界波装置の製造工程を表すフローチャートである。FIG. 3 is a flowchart showing a manufacturing process of the boundary acoustic wave device according to the first embodiment. 図4は、第2の実施形態における弾性境界波装置の製造工程を表すフローチャートである。FIG. 4 is a flowchart showing a manufacturing process of the boundary acoustic wave device according to the second embodiment. 図5は、第3の実施形態における弾性境界波装置の製造工程を表すフローチャートである。FIG. 5 is a flowchart showing a manufacturing process of the boundary acoustic wave device according to the third embodiment. 図6は、第4の実施形態に係る弾性境界波装置の一部分を表す断面図である。FIG. 6 is a cross-sectional view illustrating a part of the boundary acoustic wave device according to the fourth embodiment. 図7は、第5の実施形態に係る弾性境界波装置の一部分を表す断面図である。FIG. 7 is a cross-sectional view illustrating a part of the boundary acoustic wave device according to the fifth embodiment. 図8は、第6の実施形態に係る弾性境界波装置の一部分を表す断面図である。FIG. 8 is a cross-sectional view showing a part of the boundary acoustic wave device according to the sixth embodiment. 図9は、第6の実施形態における弾性境界波装置の製造工程の一例を表すフローチャートである。FIG. 9 is a flowchart illustrating an example of a manufacturing process of the boundary acoustic wave device according to the sixth embodiment. 図10は、実施例1におけるサージ破壊電圧の評価回路図である。FIG. 10 is an evaluation circuit diagram of a surge breakdown voltage in the first embodiment. 図11は、実施例1におけるサージ破壊電圧比と溝11の深さとの相関を表すグラフである。FIG. 11 is a graph showing the correlation between the surge breakdown voltage ratio and the depth of the groove 11 in Example 1. 図12は、実施例2においてFEM計算モデルとした弾性境界波装置の断面図である。FIG. 12 is a cross-sectional view of a boundary acoustic wave device having an FEM calculation model in the second embodiment. 図13は、実施例2におけるTCFのシミュレーションの結果を表すグラフである。FIG. 13 is a graph showing the results of TCF simulation in Example 2. 図14は、実施例2における電気機械結合係数のシミュレーションの結果を表すグラフである。FIG. 14 is a graph showing the result of simulation of the electromechanical coupling coefficient in Example 2. 図15は、実施例2における音速(V)のシミュレーションの結果を表すグラフである。FIG. 15 is a graph showing the result of simulation of the sound velocity (V) in the second embodiment. 図16は、実施例3におけるTCFの測定結果を表すグラフである。FIG. 16 is a graph showing TCF measurement results in Example 3. 図17は、実施例3における共振周波数の測定結果を表すグラフである。FIG. 17 is a graph showing the measurement result of the resonance frequency in Example 3. 図18は、実施例3における比帯域の測定結果を表すグラフである。FIG. 18 is a graph showing the measurement result of the bandwidth ratio in Example 3.
符号の説明Explanation of symbols
 1 …弾性境界波装置
10 …圧電体
10a…表面
11 …溝
20 …誘電体
21 …第1の誘電体層
22 …第2の誘電体層
30 …電極
31 …第1のくし歯電極
31a…第1のバスバー
31b…第1の電極指
32 …第2のくし歯電極
32a…第2のバスバー
32b…第2の電極指
33,34…グレーティング反射器
35 …第1の端子
36 …第2の端子
37 …IDT
DESCRIPTION OF SYMBOLS 1 ... Elastic boundary wave apparatus 10 ... Piezoelectric body 10a ... Surface 11 ... Groove 20 ... Dielectric material 21 ... 1st dielectric material layer 22 ... 2nd dielectric material layer 30 ... Electrode 31 ... 1st comb-tooth electrode 31a ... 1st 1 bus bar 31b ... 1st electrode finger 32 ... 2nd comb-tooth electrode 32a ... 2nd bus bar 32b ... 2nd electrode finger 33, 34 ... Grating reflector 35 ... 1st terminal 36 ... 2nd terminal 37 ... IDT
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 (第1の実施形態)
 図1は、第1の実施形態に係る弾性境界波装置1の一部分を表す断面図である。図2は、弾性境界波装置1の平面図である。なお、説明の便宜上、図2では、誘電体20の描画を省略している。
(First embodiment)
FIG. 1 is a sectional view showing a part of a boundary acoustic wave device 1 according to the first embodiment. FIG. 2 is a plan view of the boundary acoustic wave device 1. For convenience of explanation, the drawing of the dielectric 20 is omitted in FIG.
 本実施形態では、弾性境界波装置が共振子である例について説明する。但し、本発明において、弾性境界波装置は、共振子に限定されない。弾性境界波装置は、例えば、弾性境界波を用いたフィルタであってもよい。フィルタの具体例としては、例えば、縦結合共振子型フィルタやラダー型フィルタ等が挙げられる。 In this embodiment, an example in which the boundary acoustic wave device is a resonator will be described. However, in the present invention, the boundary acoustic wave device is not limited to a resonator. The boundary acoustic wave device may be, for example, a filter using a boundary acoustic wave. Specific examples of the filter include a longitudinally coupled resonator type filter and a ladder type filter.
 また、本発明において、弾性境界波の種類も特に限定されない。弾性境界波は、例えば、SHタイプの弾性境界波であってもよく、ストンリー波であってもよい。 In the present invention, the type of boundary acoustic wave is not particularly limited. The boundary acoustic wave may be, for example, an SH type boundary acoustic wave or a Stoneley wave.
 図1に示すように、弾性境界波装置1は、圧電体10を備えている。圧電体10の一面には、誘電体20が積層されている。圧電体10と誘電体20との間の境界には、電極30が配置されている。 As shown in FIG. 1, the boundary acoustic wave device 1 includes a piezoelectric body 10. A dielectric 20 is stacked on one surface of the piezoelectric body 10. An electrode 30 is disposed at the boundary between the piezoelectric body 10 and the dielectric body 20.
 圧電体10と誘電体20とは、圧電体10と誘電体20との間の境界において弾性境界波が発生する組み合わせである限りにおいて特に限定されない。例えば、誘電体20は、SiO、SiON、SiN等で形成されていてもよい。圧電体10は、例えば、LiNbO、LiTaO等で形成されていてもよい。より具体的には、圧電体10は、例えば、15°YカットX伝搬のLiNbOであってもよい。 The piezoelectric body 10 and the dielectric body 20 are not particularly limited as long as the piezoelectric body 10 and the dielectric body 20 are a combination that generates a boundary acoustic wave at the boundary between the piezoelectric body 10 and the dielectric body 20. For example, the dielectric 20 is, SiO 2, SiON, or may be formed of SiN or the like. The piezoelectric body 10 may be made of, for example, LiNbO 3 or LiTaO 3 . More specifically, the piezoelectric body 10 may be, for example, 15 ° Y-cut X-propagation LiNbO 3 .
 電極30の材質は特に限定されない。電極30は、例えば、Pt、Au、Cu、Ag、Al、Wのいずれか、またはPt、Au、Cu、Ag、Al、Wに他の元素を添加した合金により形成することができる。また、電極30は、材質の異なる複数の導電層からなるものであってもよい。例えば、電極30は、圧電体10及び誘電体20に対する密着力が強い金属層または合金層と、上記金属層または合金層により構成されていてもよい。圧電体10及び誘電体20に対する密着力が強い金属または合金としては、例えば、NiCr、Ti、Cr等が挙げられる。 The material of the electrode 30 is not particularly limited. The electrode 30 can be formed of, for example, any one of Pt, Au, Cu, Ag, Al, and W, or an alloy obtained by adding other elements to Pt, Au, Cu, Ag, Al, and W. The electrode 30 may be composed of a plurality of conductive layers made of different materials. For example, the electrode 30 may be configured by a metal layer or alloy layer having strong adhesion to the piezoelectric body 10 and the dielectric 20 and the metal layer or alloy layer. Examples of the metal or alloy having strong adhesion to the piezoelectric body 10 and the dielectric body 20 include NiCr, Ti, and Cr.
 図2に示すように、電極30は、IDT37と、グレーティング反射器33,34とを備えている。グレーティング反射器33,34は、弾性境界波の伝搬方向dにおいて、IDT37の両側に配置されている。IDT37は、第1のくし歯電極31と、第2のくし歯電極32とを備えている。 As shown in FIG. 2, the electrode 30 includes an IDT 37 and grating reflectors 33 and 34. The grating reflectors 33 and 34 are disposed on both sides of the IDT 37 in the propagation direction d of the boundary acoustic wave. The IDT 37 includes a first comb electrode 31 and a second comb electrode 32.
 第1のくし歯電極31は、第1の端子35に接続されている。第2のくし歯電極32は、第2の端子36に接続されている。第1の端子35と第2の端子36とは、相互に異なる電位に接続される。 The first comb electrode 31 is connected to the first terminal 35. The second comb electrode 32 is connected to the second terminal 36. The first terminal 35 and the second terminal 36 are connected to different potentials.
 第1のくし歯電極31は、第1のバスバー31aと、第1のバスバー31aに接続された複数の第1の電極指31bとを備えている。複数の第1の電極指31bは、相互に略平行に配置されている。 The first comb electrode 31 includes a first bus bar 31a and a plurality of first electrode fingers 31b connected to the first bus bar 31a. The plurality of first electrode fingers 31b are arranged substantially parallel to each other.
 第2のくし歯電極32は、第2のバスバー32aと、第2のバスバー32aに接続された複数の第2の電極指32bとを備えている。複数の第2の電極指32bは、相互に平行に配置されている。複数の第2の電極指32bは、弾性境界波の伝搬方向dにおいて、第1の電極指31bと交互に配置されている。 The second comb electrode 32 includes a second bus bar 32a and a plurality of second electrode fingers 32b connected to the second bus bar 32a. The plurality of second electrode fingers 32b are arranged in parallel to each other. The plurality of second electrode fingers 32b are alternately arranged with the first electrode fingers 31b in the propagation direction d of the boundary acoustic wave.
 第1の電極指31bと第2の電極指32bとのピッチ(電極指中心間隔)は特に限定されない。第1の電極指31bと第2の電極指32bとのピッチは所望する周波数特性に応じて適宜設定することができる。なお、第1の電極指31bと第2の電極指32bとのピッチは、一般的には、0.5μm~3μm程度に設定される。 The pitch (electrode finger center interval) between the first electrode finger 31b and the second electrode finger 32b is not particularly limited. The pitch between the first electrode finger 31b and the second electrode finger 32b can be appropriately set according to the desired frequency characteristics. The pitch between the first electrode finger 31b and the second electrode finger 32b is generally set to about 0.5 μm to 3 μm.
 なお、第1の電極指31bと第2の電極32bのピッチ(電極指中心間距離)はλ/2で表わされる。ここでλはIDT37の周期である。 The pitch (distance between electrode finger centers) between the first electrode finger 31b and the second electrode 32b is represented by λ / 2. Here, λ is the period of the IDT 37.
 図1に示すように、圧電体10の誘電体20側の表面10aには、複数の溝11が形成されている。溝11は、隣接する第1の電極指31bと第2の電極指32bとの間において、電極指31b、32bの延びる方向に延びている。なお、溝11は、隣接する第1の電極指31bと第2の電極指32bとの間の全てに形成されていることが好ましい。但し、溝11は、隣接する第1の電極指31bと第2の電極指32bとの間の全てに形成されている必要は必ずしもない。 As shown in FIG. 1, a plurality of grooves 11 are formed on the surface 10a of the piezoelectric body 10 on the dielectric 20 side. The groove 11 extends in the extending direction of the electrode fingers 31b and 32b between the adjacent first electrode finger 31b and the second electrode finger 32b. In addition, it is preferable that the groove | channel 11 is formed in all between the adjacent 1st electrode finger 31b and the 2nd electrode finger 32b. However, the groove 11 does not necessarily have to be formed at all between the adjacent first electrode finger 31b and the second electrode finger 32b.
 また、溝11は、平面視において、隣接する第1の電極指31bと第2の電極指32bとの間の全体に形成されていてもよく、隣接する第1の電極指31bと第2の電極指32bとの間の一部にのみ形成されていてもよい。但し、隣接する第1の電極指31bと第2の電極指32bとの間の全体に形成されていることが好ましい。これによれば、弾性境界波装置1のサージ耐圧を高めることができると共に、周波数温度係数(TCF)を小さくすることができるからである。 Moreover, the groove | channel 11 may be formed in the whole between the adjacent 1st electrode finger 31b and the 2nd electrode finger 32b in planar view, and the adjacent 1st electrode finger 31b and 2nd You may form only in a part between electrode fingers 32b. However, it is preferable that the first electrode finger 31b and the second electrode finger 32b adjacent to each other are formed on the entire surface. This is because the surge withstand voltage of the boundary acoustic wave device 1 can be increased and the frequency temperature coefficient (TCF) can be reduced.
 本実施形態における伝搬方向Dに沿った溝11の断面形状は矩形である。溝11の深さは、特に限定されない。溝11の深さは、所望のサージ耐圧、周波数温度係数(TCF)などにより適宜設定することができる。溝11の深さは、典型的には、0~500nm程度に設定することができる。 In the present embodiment, the cross-sectional shape of the groove 11 along the propagation direction D is a rectangle. The depth of the groove 11 is not particularly limited. The depth of the groove 11 can be appropriately set according to a desired surge withstand voltage, frequency temperature coefficient (TCF), or the like. The depth of the groove 11 can typically be set to about 0 to 500 nm.
 一般的に、弾性境界波装置のサージ耐圧は、第1の電極指と第2の電極指との間の距離が短くなるほど低くなる傾向にある。このため、弾性境界波装置の共振周波数及び反共振周波数を高周波化すべく第1の電極指と第2の電極指との間の距離を短くすると、弾性境界波装置のサージ耐圧が低下することとなる。すなわち、通常、サージ耐圧を保持しつつ、共振周波数及び反共振周波数を高周波化することは困難である。 Generally, the surge withstand voltage of the boundary acoustic wave device tends to decrease as the distance between the first electrode finger and the second electrode finger becomes shorter. For this reason, if the distance between the first electrode finger and the second electrode finger is shortened to increase the resonance frequency and anti-resonance frequency of the boundary acoustic wave device, the surge withstand voltage of the boundary acoustic wave device decreases. Become. That is, it is usually difficult to increase the resonance frequency and antiresonance frequency while maintaining the surge withstand voltage.
 これに対して本実施形態では、第1の電極指31bと第2の電極指32bとの間に溝11が形成されている。このため、第1の電極指31bと第2の電極指32bとの間の圧電体10の表面10a上の距離を比較的大きくすることができる。また、隣接する第1の電極指31bと第2の電極指32bとの間の領域の実質的な誘電率を比較的小さくすることができる。従って、本実施形態によれば、第1の電極指31bと第2の電極指32bとの間に溝11が形成されていない場合と比較して、サージ耐圧を高くすることができる。すなわち、本実施形態によれば、第1の電極指31bと第2の電極指32bとの間の距離が短い場合であっても、サージ耐圧を高くすることができる。従って、弾性境界波装置1のサージ耐圧を高く維持しつつ、弾性境界波装置1の高周波化を図ることができる。 In contrast, in the present embodiment, the groove 11 is formed between the first electrode finger 31b and the second electrode finger 32b. For this reason, the distance on the surface 10a of the piezoelectric body 10 between the 1st electrode finger 31b and the 2nd electrode finger 32b can be made comparatively large. In addition, the substantial dielectric constant of the region between the adjacent first electrode finger 31b and the second electrode finger 32b can be made relatively small. Therefore, according to the present embodiment, the surge withstand voltage can be increased as compared with the case where the groove 11 is not formed between the first electrode finger 31b and the second electrode finger 32b. That is, according to the present embodiment, the surge withstand voltage can be increased even when the distance between the first electrode finger 31b and the second electrode finger 32b is short. Therefore, it is possible to increase the frequency of the boundary acoustic wave device 1 while maintaining the surge withstand voltage of the boundary acoustic wave device 1 high.
 また、溝11の深さを変化させることにより周波数温度係数を調節することが可能である。従って、溝11の深さを調節することにより、周波数温度係数の絶対値をより小さくすることが可能となる。具体的には、例えば、圧電体10が負の温度特性を有し、誘電体20が正の温度特性を有する場合、溝11を深くすることにより、周波数温度係数を正側にシフトさせることができる。通常、溝11が形成されていない弾性境界波装置においては、圧電体10が負の温度特性を有し、誘電体20が正の温度特性を有する場合は、周波数温度係数は負となる。このため、溝11を形成することにより、周波数温度係数を正側にシフトさせることができる。従って、弾性境界波装置の周波数温度係数の絶対値を小さくすることが可能となる。 Also, the frequency temperature coefficient can be adjusted by changing the depth of the groove 11. Therefore, the absolute value of the frequency temperature coefficient can be further reduced by adjusting the depth of the groove 11. Specifically, for example, when the piezoelectric body 10 has a negative temperature characteristic and the dielectric body 20 has a positive temperature characteristic, the frequency temperature coefficient can be shifted to the positive side by deepening the groove 11. it can. Usually, in the boundary acoustic wave device in which the groove 11 is not formed, when the piezoelectric body 10 has a negative temperature characteristic and the dielectric body 20 has a positive temperature characteristic, the frequency temperature coefficient is negative. For this reason, the frequency temperature coefficient can be shifted to the positive side by forming the groove 11. Therefore, the absolute value of the frequency temperature coefficient of the boundary acoustic wave device can be reduced.
 例えば、圧電体10をLiNbOにより形成し、誘電体20をSiOにより形成した場合、比較的大きな電気機械結合係数Kを得ることができる。また、LiNbOは、負の温度特性を有する一方、SiOは、正の温度特性を有する。このため、圧電体10をLiNbOにより形成し、誘電体20をSiOにより形成することにより、周波数温度係数を比較的小さくすることができる。しかしながら、LiNbOの負の温度特性の方が、SiOの正の温度特性よりも大きいため、周波数温度係数の絶対値を十分に小さくすることが困難である。 For example, when the piezoelectric body 10 is formed of LiNbO 3 and the dielectric body 20 is formed of SiO 2 , a relatively large electromechanical coupling coefficient K 2 can be obtained. Moreover, LiNbO 3 has negative temperature characteristics, while SiO 2 has positive temperature characteristics. For this reason, the frequency temperature coefficient can be made relatively small by forming the piezoelectric body 10 from LiNbO 3 and forming the dielectric body 20 from SiO 2 . However, since the negative temperature characteristic of LiNbO 3 is larger than the positive temperature characteristic of SiO 2 , it is difficult to sufficiently reduce the absolute value of the frequency temperature coefficient.
 しかしながら、本実施形態では、溝11が形成されることにより、周波数温度係数が正側にシフトされている。したがって、圧電体10をSiOにより形成し、誘電体20をLiNbOにより形成するとともに、溝11を形成することにより、電気機械結合係数Kが大きく、周波数温度係数の絶対値が小さい弾性境界波装置を実現することができる。 However, in this embodiment, the frequency temperature coefficient is shifted to the positive side by forming the groove 11. Therefore, the piezoelectric body 10 is formed of SiO 2 , the dielectric body 20 is formed of LiNbO 3 , and the groove 11 is formed, whereby an elastic boundary where the electromechanical coupling coefficient K 2 is large and the absolute value of the frequency temperature coefficient is small. A wave device can be realized.
 また、溝11の深さと電気機械結合係数Kとは、下記実施例からもわかるように、相関関係を有する。よって、溝11の深さを調節することにより、電気機械結合係数Kを調節することができる。 Further, the depth and the electromechanical coupling coefficient K 2 of the groove 11, as can be seen from the following examples, has a correlation. Therefore, by adjusting the depth of the groove 11, it is possible to adjust the electromechanical coefficient K 2.
 さらに、溝11の深さと弾性境界波装置1の周波数特性とは、下記実施例からもわかるように、相関関係を有する。このため、溝11の深さを調節することにより、弾性境界波装置1の周波数特性を調節することができる。 Furthermore, the depth of the groove 11 and the frequency characteristic of the boundary acoustic wave device 1 have a correlation as can be seen from the following examples. For this reason, the frequency characteristic of the boundary acoustic wave device 1 can be adjusted by adjusting the depth of the groove 11.
 このように、溝11の深さを調節することにより、周波数温度係数、電気機械結合係数K及び弾性境界波装置1の周波数特性を調節することができる。すなわち、溝11を設けることにより、周波数温度係数、電気機械結合係数K及び弾性境界波装置1の周波数特性が調整可能となる。 Thus, by adjusting the depth of the groove 11, can be adjusted frequency temperature coefficient, the frequency characteristics of the electro-mechanical coupling coefficient K 2 and the boundary acoustic wave device 1. That is, by providing the groove 11, the temperature coefficient of frequency, the frequency characteristics of the electro-mechanical coupling coefficient K 2 and the boundary acoustic wave device 1 can be adjusted.
 なお、溝11の横断面形状は矩形であることが好ましい。溝11の横断面形状を矩形とすることで、第1の電極指31bと第2の電極指32bとの間の圧電体10の表面10a上の距離をより大きくすることができる。従って、弾性境界波装置1のサージ耐圧をより大きくすることができる。また、この場合は、弾性境界波装置の周波数温度係数を誘電体20の温度特性側に効果的にシフトさせることができる。従って、弾性境界波装置の周波数温度係数を効果的に小さくすることができる。 Note that the cross-sectional shape of the groove 11 is preferably rectangular. By making the cross-sectional shape of the groove 11 rectangular, the distance on the surface 10a of the piezoelectric body 10 between the first electrode finger 31b and the second electrode finger 32b can be further increased. Therefore, the surge withstand voltage of the boundary acoustic wave device 1 can be further increased. In this case, the frequency temperature coefficient of the boundary acoustic wave device can be effectively shifted to the temperature characteristic side of the dielectric 20. Therefore, the frequency temperature coefficient of the boundary acoustic wave device can be effectively reduced.
 次に、弾性境界波装置1の製造方法について説明する。但し、以下に示す弾性境界波装置1の製造方法は単なる一例である。本発明に係る弾性境界波装置の製造方法は以下の方法に限定されない。 Next, a method for manufacturing the boundary acoustic wave device 1 will be described. However, the manufacturing method of the boundary acoustic wave device 1 shown below is merely an example. The manufacturing method of the boundary acoustic wave device according to the present invention is not limited to the following method.
 図3に示すように、まず、ステップS1において、圧電体10を準備する。 As shown in FIG. 3, first, in step S1, the piezoelectric body 10 is prepared.
 次に、ステップS2において、圧電体10の上に、電極30を形成する電極形成工程を行う。電極30は、例えば、公知の薄膜形成方法により金属膜や合金膜を成膜した後、公知のパターニング方法によりパターニングすることにより形成することができる。薄膜形成方法としては、たとえば、電子ビーム蒸着法、スパッタリング法などが挙げられる。また、パターニング方法としては、例えば、フォトリソグラフィー法などが挙げられる。 Next, in step S2, an electrode forming process for forming the electrode 30 on the piezoelectric body 10 is performed. The electrode 30 can be formed, for example, by forming a metal film or an alloy film by a known thin film forming method and then patterning by a known patterning method. Examples of the thin film forming method include an electron beam evaporation method and a sputtering method. Examples of the patterning method include a photolithography method.
 次に、ステップS3において、溝11を形成する溝形成工程を行う。溝11は、例えば、公知のエッチング法などにより形成することができる。エッチング法の具体例としては、例えば、リアクティブイオンエッチング法などのドライエッチングや、エッチャントを用いたウエットエッチングなどが挙げられる。リアクティブイオンエッチング法に用いられるイオンとしては、例えばフッ素イオンなどが挙げられる。また、ウエットエッチングに用いられるエッチャントとしては、例えば、弗硝酸などが挙げられる。また、溝11は、例えばArイオンを用いたミリングなどにより形成してもよい。 Next, in step S3, a groove forming step for forming the grooves 11 is performed. The groove 11 can be formed by, for example, a known etching method. Specific examples of the etching method include dry etching such as reactive ion etching, wet etching using an etchant, and the like. Examples of ions used in the reactive ion etching method include fluorine ions. An etchant used for wet etching includes, for example, hydrofluoric acid. Further, the groove 11 may be formed by milling using Ar ions, for example.
 なお、溝11の形成においては、例えば、電極30をパターニングする際のマスクとして用いてもよく、別途形成したSiOなどの酸化膜やSiなどのチッ化膜などをパターニング用のマスクとして用いてもよい。 In formation of the groove 11, for example, the electrode 30 may be used as a mask for patterning, and a separately formed oxide film such as SiO 2 or a nitride film such as Si 3 N 4 may be used as a mask for patterning. It may be used as
 次に、ステップS4において、誘電体20を形成することにより、弾性境界波装置1を完成させる。誘電体20の形成方法は特に限定されない。誘電体20は、例えば、公知の成膜方法により形成することができる。具体的には、誘電体20は、例えば、RFマグネトロンスパッタなどのスパッタリング法などにより形成することができる。 Next, the boundary acoustic wave device 1 is completed by forming the dielectric 20 in step S4. The method for forming the dielectric 20 is not particularly limited. The dielectric 20 can be formed by, for example, a known film forming method. Specifically, the dielectric 20 can be formed by, for example, a sputtering method such as RF magnetron sputtering.
 (第2の実施形態)
 上記第1の実施形態では、予め定められた形状寸法の溝11を形成し、溝11の寸法の調整を行わない場合について説明した。但し、弾性境界波装置の製造工程において、周波数特性などを調節する目的で溝11の寸法を調節してもよい。以下、図4を参照しつつ、本実施形態における弾性境界波装置の製造工程について説明する。なお、以下の説明において、図1及び図2は上記第1の実施形態と共通に参照する。また、第1の実施形態と実質的に共通の機能を有する部材については、共通の符号で参照し、説明を省略する。
(Second Embodiment)
In the first embodiment, the case where the groove 11 having a predetermined shape and dimension is formed and the dimension of the groove 11 is not adjusted has been described. However, in the manufacturing process of the boundary acoustic wave device, the dimension of the groove 11 may be adjusted for the purpose of adjusting the frequency characteristics and the like. Hereinafter, the manufacturing process of the boundary acoustic wave device according to the present embodiment will be described with reference to FIG. In the following description, FIGS. 1 and 2 are referred to in common with the first embodiment. In addition, members having substantially the same functions as those of the first embodiment are referred to by common reference numerals, and description thereof is omitted.
 本実施形態においても、図4に示すように、ステップS1及びステップS2が行われる。第2の実施形態では、ステップS2に続いてステップS5が行われる。ステップS5では、電極30が形成された圧電体10の周波数特性が測定される。具体的に、本実施形態のように製造しようとする弾性境界波装置が共振子である場合は、ステップS5において、例えば、共振周波数及び反共振周波数のうちの少なくとも一方が測定される。例えば、製造しようとする弾性境界波装置がフィルタである場合は、ステップS5において、例えば中心周波数が測定される。 Also in this embodiment, step S1 and step S2 are performed as shown in FIG. In the second embodiment, step S5 is performed subsequent to step S2. In step S5, the frequency characteristic of the piezoelectric body 10 on which the electrode 30 is formed is measured. Specifically, when the boundary acoustic wave device to be manufactured as in this embodiment is a resonator, in step S5, for example, at least one of a resonance frequency and an anti-resonance frequency is measured. For example, when the boundary acoustic wave device to be manufactured is a filter, in step S5, for example, the center frequency is measured.
 次に、ステップS6において、溝11の深さが決定される。具体的には、ステップS5において測定された周波数特性に応じて推測される弾性境界波装置1の周波数特性と、予め定められた弾性境界波装置1の目標とする周波数特性との差が小さくなるように、溝11の深さが決定される。好ましくは、ステップS5において測定された周波数特性に応じて推測される弾性境界波装置1の周波数特性と、予め定められた弾性境界波装置1の目標とする周波数特性とが実質的に同じになるように、溝11の深さが決定される。 Next, in step S6, the depth of the groove 11 is determined. Specifically, the difference between the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S5 and the target frequency characteristic of the boundary acoustic wave device 1 determined in advance is reduced. As described above, the depth of the groove 11 is determined. Preferably, the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S5 is substantially the same as the target frequency characteristic of the predetermined boundary acoustic wave device 1. As described above, the depth of the groove 11 is determined.
 次に、ステップS7において、溝11が形成される。ステップS7では、ステップS6において算出された深さの溝11が形成される。その後、ステップS4において、誘電体20を形成することにより、弾性境界波装置1を完成させる。 Next, in step S7, the groove 11 is formed. In step S7, the groove 11 having the depth calculated in step S6 is formed. Thereafter, the boundary acoustic wave device 1 is completed by forming the dielectric 20 in step S4.
 ところで、電極30の形成ばらつきなどに起因して、製造される弾性境界波装置の周波数特性にばらつきが生じることがある。これに対して、本実施形態のように、電極30が形成された圧電体10の周波数特性を測定し、その測定結果に基づいて決定された深さの溝11を形成することにより、製造される弾性境界波装置の周波数特性を微調整することができる。従って、製造される弾性境界波装置1の周波数特性のばらつきを低減することができる。具体的には、例えば、弾性境界波装置が共振子である場合は、共振周波数及び反共振周波数のうちの少なくとも一方の値のばらつきを抑制することが可能となる。また、例えば、弾性境界波装置がフィルタである場合は、中心周波数のばらつきを抑制することが可能となる。 By the way, due to the formation variation of the electrode 30, the frequency characteristics of the produced boundary acoustic wave device may vary. On the other hand, as in this embodiment, the frequency characteristic of the piezoelectric body 10 on which the electrode 30 is formed is measured, and the groove 11 having a depth determined based on the measurement result is formed. The frequency characteristics of the boundary acoustic wave device can be finely adjusted. Therefore, variation in frequency characteristics of the produced boundary acoustic wave device 1 can be reduced. Specifically, for example, when the boundary acoustic wave device is a resonator, it is possible to suppress variation in at least one of the resonance frequency and the antiresonance frequency. For example, when the boundary acoustic wave device is a filter, it is possible to suppress variations in the center frequency.
 (第3の実施形態)
 上記第2の実施形態では、ステップS7における溝11の形成前に周波数特性の測定を行う例について説明した。但し、周波数特性の測定を行うタイミングは、溝11の形成前に限定されない。
(Third embodiment)
In the second embodiment, the example in which the frequency characteristic is measured before the formation of the groove 11 in step S7 has been described. However, the timing at which the frequency characteristic is measured is not limited to before the groove 11 is formed.
 例えば、図5に示すように、ステップS3において、予め定められた深さの溝11を形成した後に、ステップS8において周波数特性の測定を行ってもよい。ステップS8では、電極30と溝11が形成された圧電体10の周波数特性が測定される。 For example, as shown in FIG. 5, after the groove 11 having a predetermined depth is formed in step S3, the frequency characteristic may be measured in step S8. In step S8, the frequency characteristic of the piezoelectric body 10 in which the electrode 30 and the groove 11 are formed is measured.
 次に、ステップS9において、溝11の深さの調整量が決定される。具体的には、ステップS8において測定された周波数特性に応じて推測される弾性境界波装置1の周波数特性と、予め定められた弾性境界波装置1の目標とする周波数特性との差が小さくなる溝11の深さが算出される。好ましくは、ステップS8において測定された周波数特性に応じて推測される弾性境界波装置1の周波数特性と、予め定められた弾性境界波装置1の目標とする周波数特性とが実質的に同じになる溝11の深さが算出される。その算出された好適な溝11の深さと現在の溝11の深さとから溝11の深さの調整量が決定される。 Next, in step S9, the adjustment amount of the depth of the groove 11 is determined. Specifically, the difference between the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S8 and the target frequency characteristic of the boundary acoustic wave device 1 determined in advance is reduced. The depth of the groove 11 is calculated. Preferably, the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S8 is substantially the same as the target frequency characteristic of the predetermined boundary acoustic wave device 1. The depth of the groove 11 is calculated. An adjustment amount of the depth of the groove 11 is determined from the calculated preferable depth of the groove 11 and the current depth of the groove 11.
 次に、ステップS10において、溝11の深さの調整が行われる。具体的には、溝11の深さがステップS9において算出された深さとなるように、溝11が深くされる。溝11を深くする方法は、公知のエッチング方法やミリング方法などが挙げられる。 Next, in step S10, the depth of the groove 11 is adjusted. Specifically, the groove 11 is deepened so that the depth of the groove 11 becomes the depth calculated in step S9. As a method for deepening the groove 11, a known etching method, milling method, or the like can be used.
 その後、ステップS4において、誘電体20を形成することにより、弾性境界波装置1を完成させる。 Then, in step S4, the boundary acoustic wave device 1 is completed by forming the dielectric 20.
 本実施形態でも、上記第2の実施形態と同様に、周波数特性の測定結果に基づいて溝11の深さが調整されるため、製造される弾性境界波装置1の周波数特性のばらつきを低減することができる。 Also in the present embodiment, since the depth of the groove 11 is adjusted based on the measurement result of the frequency characteristic, similarly to the second embodiment, variation in the frequency characteristic of the boundary acoustic wave device 1 to be manufactured is reduced. be able to.
 (第4及び第5の実施形態)
 上記第1の実施形態では、溝11の横断面形状が矩形である場合について説明した。但し、溝11の横断面形状は、矩形に限定されない。例えば、図6に示すように、溝11の横断面形状は、例えば、深さ方向に向かって幅狭となる台形であってもよい。また、図7に示すように、溝11の横断面形状は、例えば、深さ方向に向かって幅狭となる三角形であってもよい。溝11の横断面形状を、深さ方向に向かって幅狭となる台形または三角形とすることにより、堆積法による誘電体20の形成が容易となる。
(Fourth and fifth embodiments)
In the first embodiment, the case where the cross-sectional shape of the groove 11 is rectangular has been described. However, the cross-sectional shape of the groove 11 is not limited to a rectangle. For example, as shown in FIG. 6, the cross-sectional shape of the groove 11 may be, for example, a trapezoid that becomes narrower in the depth direction. Moreover, as shown in FIG. 7, the cross-sectional shape of the groove | channel 11 may be a triangle which becomes narrow toward a depth direction, for example. By forming the cross-sectional shape of the groove 11 into a trapezoid or triangle that becomes narrower in the depth direction, the dielectric 20 can be easily formed by a deposition method.
 (第6の実施形態)
 上記第1の実施形態では、誘電体20がひとつの誘電体層により構成されている例について説明した。但し、誘電体20は、図8に示すように、複数の誘電体層によって形成されていてもよい。
(Sixth embodiment)
In the first embodiment, the example in which the dielectric 20 is configured by one dielectric layer has been described. However, the dielectric 20 may be formed of a plurality of dielectric layers as shown in FIG.
 図8に示す本実施形態に係る弾性境界波装置では、誘電体20は、第1の誘電体層21と第2の誘電体層22とを備えている。第1の誘電体層21は、圧電体10と電極30を覆うように形成されている。第2の誘電体層22は、第1の誘電体層21の上に形成されている。本実施形態では、第2の誘電体層22の音速は、第1の誘電体層21の音速よりも速い。このため、本実施形態によれば、弾性境界波の周波数特性を高周波化することができる。よって、第1の誘電体21のみで誘電体層20を形成した場合に比べて隣接する第1の電極指31bと第2の電極指32bとの間の間隔を比較的広くすることができる。従って、弾性境界波装置のサージ耐圧をより高くすることができる。 In the boundary acoustic wave device according to this embodiment shown in FIG. 8, the dielectric 20 includes a first dielectric layer 21 and a second dielectric layer 22. The first dielectric layer 21 is formed so as to cover the piezoelectric body 10 and the electrode 30. The second dielectric layer 22 is formed on the first dielectric layer 21. In the present embodiment, the sound speed of the second dielectric layer 22 is faster than the sound speed of the first dielectric layer 21. For this reason, according to the present embodiment, the frequency characteristics of the boundary acoustic wave can be increased. Therefore, the distance between the first electrode finger 31b and the second electrode finger 32b adjacent to each other can be made relatively wide as compared with the case where the dielectric layer 20 is formed only by the first dielectric material 21. Therefore, the surge withstand voltage of the boundary acoustic wave device can be further increased.
 また、第1の誘電体層21の厚さを調節することにより得られる弾性境界波装置の周波数特性を調整することができる。従って、製造される弾性境界波装置1の周波数特性のばらつきを低減することが可能となる。 Further, the frequency characteristic of the boundary acoustic wave device obtained by adjusting the thickness of the first dielectric layer 21 can be adjusted. Therefore, it is possible to reduce variation in frequency characteristics of the manufactured boundary acoustic wave device 1.
 図9は、第6の実施形態における弾性境界波装置の製造工程の一例を表すフローチャートである。図9に示すように、本実施形態においても、第1の実施形態と同様に、ステップS1における圧電体10の準備、ステップS2における電極30の形成、ステップS3における溝11の形成が順次行われる。 FIG. 9 is a flowchart showing an example of a manufacturing process of the boundary acoustic wave device according to the sixth embodiment. As shown in FIG. 9, in this embodiment as well, in the same manner as in the first embodiment, the preparation of the piezoelectric body 10 in step S1, the formation of the electrode 30 in step S2, and the formation of the groove 11 in step S3 are sequentially performed. .
 本実施形態では、ステップS3に続いて、ステップS11が行われる。ステップS11では、予め定められた厚さの第1の誘電体層21が形成される。その後、ステップS12において、第1の誘電体層21が形成された圧電体10の周波数特性を測定する。 In this embodiment, step S11 is performed following step S3. In step S11, the first dielectric layer 21 having a predetermined thickness is formed. Thereafter, in step S12, the frequency characteristics of the piezoelectric body 10 on which the first dielectric layer 21 is formed are measured.
 次に、ステップS13において、第1の誘電体層21の厚さの調整量が決定される。具体的には、ステップS12において測定された周波数特性に応じて推測される弾性境界波装置1の周波数特性と、予め定められた弾性境界波装置1の目標とする周波数特性との差が小さくなる第1の誘電体層21の厚さが算出される。好ましくは、ステップS12において測定された周波数特性に応じて推測される弾性境界波装置1の周波数特性と、予め定められた弾性境界波装置1の目標とする周波数特性とが実質的に同じになる第1の誘電体層21の厚さが算出される。 Next, in step S13, the adjustment amount of the thickness of the first dielectric layer 21 is determined. Specifically, the difference between the frequency characteristic of the boundary acoustic wave device 1 estimated according to the frequency characteristic measured in step S12 and the target frequency characteristic of the boundary acoustic wave device 1 determined in advance is reduced. The thickness of the first dielectric layer 21 is calculated. Preferably, the frequency characteristics of the boundary acoustic wave device 1 estimated according to the frequency characteristics measured in step S12 are substantially the same as the target frequency characteristics of the predetermined boundary acoustic wave device 1. The thickness of the first dielectric layer 21 is calculated.
 次に、ステップS14において第1の誘電体層21の厚さの調整が行われる。具体的には、第1の誘電体層21の厚さがステップS13において決定された厚さとなるように、第1の誘電体層21の厚さが調整される。 Next, in step S14, the thickness of the first dielectric layer 21 is adjusted. Specifically, the thickness of the first dielectric layer 21 is adjusted so that the thickness of the first dielectric layer 21 becomes the thickness determined in step S13.
 次にステップS15において、第2の誘電体層22が形成され、弾性境界波装置が完成される。 Next, in step S15, the second dielectric layer 22 is formed, and the boundary acoustic wave device is completed.
 この製造工程によれば、第1の誘電体層21の厚さが測定される周波数特性に基づいて調整されるため、製造される弾性境界波装置1の周波数特性のばらつきを低減することができる。 According to this manufacturing process, since the thickness of the first dielectric layer 21 is adjusted based on the measured frequency characteristics, variations in the frequency characteristics of the manufactured boundary acoustic wave device 1 can be reduced. .
 なお、本実施形態においても、溝11の形成前、または溝11の形成後において周波数特性を測定し、溝11の深さを調節するようにしてもよい。 In this embodiment, the depth of the groove 11 may be adjusted by measuring the frequency characteristics before or after the formation of the groove 11.
 以下、本発明の具体的な実施形態及び実施例を挙げることにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by giving specific embodiments and examples of the present invention.
 (実施例1)
 図1及び図2に示す1ポート型の共振子1を作製した。具体的には、15°YカットLiNbO単結晶基板を圧電体10として用いた。その圧電体10上に、電子ビーム蒸着法により成膜した後、フォトリソグラフィーによりパターニングすることにより、トータル膜厚が315nmの電極30を形成した。電極30の構成は、圧電体側から、NiCr膜(膜厚:30nm)/AlCu膜(膜厚:150nm)/Ti膜(膜厚:10nm)/Pt膜(膜厚:105nm)/NiCr膜(膜厚:10nm)とした。なお、λは1.6μmとし、電極指の幅を1/4λとした。次に、電極30の最上層に位置するNiCr膜をマスクとして用い、フッ素系のガスを使用してリアクティブイオンエッチングにより圧電体10をエッチングすることによって溝11を形成した。その後、RFマグネトロンスパッタにより、膜厚5000nmのSiO膜を成膜することによって誘電体20を形成し、共振子1を得た。
Example 1
A one-port resonator 1 shown in FIGS. 1 and 2 was produced. Specifically, a 15 ° Y-cut LiNbO 3 single crystal substrate was used as the piezoelectric body 10. An electrode 30 having a total film thickness of 315 nm was formed on the piezoelectric body 10 by forming a film by electron beam evaporation and then patterning by photolithography. The structure of the electrode 30 is NiCr film (film thickness: 30 nm) / AlCu film (film thickness: 150 nm) / Ti film (film thickness: 10 nm) / Pt film (film thickness: 105 nm) / NiCr film (film) from the piezoelectric body side. (Thickness: 10 nm). Note that λ is 1.6 μm, and the width of the electrode finger is 1 / 4λ. Next, the groove 11 was formed by etching the piezoelectric body 10 by reactive ion etching using a fluorine-based gas using the NiCr film located on the uppermost layer of the electrode 30 as a mask. Thereafter, a dielectric 20 was formed by forming a SiO 2 film having a thickness of 5000 nm by RF magnetron sputtering, and the resonator 1 was obtained.
 得られた共振子1を用いて図10に示すマシンモデルの評価回路を形成し、EIA/JESD22-A115-A規格に基づいて共振子1のサージ破壊電圧を測定した。具体的には、まず、高電圧パルス電源Gに、共振子1と、容量が200pFのコンデンサCとを並列に接続した。そして、スイッチSWを高電圧パルス電源G側に接続した状態で、高電圧パルス電源Gにより、コンデンサCに電圧を印加した。その後、スイッチSWを切り換えて、コンデンサCと共振子1とを接続することにより、共振子1にサージ電圧を印加した。その後、顕微鏡により共振子1に破壊箇所がないか否かを観察すると共に、インピーダンス特性を測定した。高圧パルス電源の電圧を2~3V刻みで高くしながら、この検査を繰り返し、顕微鏡観察により共振子1の破壊が認められた電圧及びインピーダンス特性が劣化したときの電圧のうちの低い方の電圧をサージ破壊電圧とした。 A machine model evaluation circuit shown in FIG. 10 was formed using the obtained resonator 1, and the surge breakdown voltage of the resonator 1 was measured based on the EIA / JESD22-A115-A standard. Specifically, first, the resonator 1 and the capacitor C having a capacitance of 200 pF were connected in parallel to the high voltage pulse power supply G. Then, a voltage was applied to the capacitor C by the high voltage pulse power source G with the switch SW connected to the high voltage pulse power source G side. Thereafter, the switch SW was switched to connect the capacitor C and the resonator 1, thereby applying a surge voltage to the resonator 1. Thereafter, whether or not the resonator 1 was broken was observed with a microscope, and impedance characteristics were measured. Repeat this inspection while increasing the voltage of the high-voltage pulse power supply in increments of 2 to 3 V. Surge breakdown voltage.
 溝11が形成されていない共振子のサージ破壊電圧で規格化したサージ破壊電圧の測定結果を下記表1及び図11に示す。 The measurement results of the surge breakdown voltage normalized with the surge breakdown voltage of the resonator in which the groove 11 is not formed are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1及び図11に示すように、溝11を形成することによりサージ破壊電圧が大きくなることが分かる。すなわち、溝11を形成することにより共振子のサージ耐圧を高くできることがわかる。また、溝11を深くすることで、さらにサージ耐圧を高くできることがわかる。 As shown in Table 1 and FIG. 11, it can be seen that the surge breakdown voltage is increased by forming the groove 11. That is, it can be seen that the surge withstand voltage of the resonator can be increased by forming the groove 11. It can also be seen that the surge breakdown voltage can be further increased by deepening the groove 11.
 (実施例2)
 次に、図12に示す弾性境界波装置を計算モデルとして有限要素法(FEM)により溝11の深さと、比帯域幅、電気機械結合係数K、周波数温度係数(TCF)及び音速のそれぞれとの関係をシミュレーションした。シミュレーションの条件を下記表2に示す。また、シミュレーションの結果を、表3及び図13~図15に示す。
(Example 2)
Next, using the boundary acoustic wave device shown in FIG. 12 as a calculation model, the depth of the groove 11, the specific bandwidth, the electromechanical coupling coefficient K 2 , the frequency temperature coefficient (TCF), and the speed of sound are each determined by a finite element method (FEM). The relationship was simulated. The simulation conditions are shown in Table 2 below. The simulation results are shown in Table 3 and FIGS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、比帯域幅は、下記式(1)により定義される。 The specific bandwidth is defined by the following formula (1).
 (比帯域幅)=Δf/fr=K/2=(Vo1-Vs1)/Vs1   ・・・・・(1)
 但し、
f:周波数、
fr:共振周波数、
Vo1:解放境界における境界波音速、
Vs1:短絡境界における境界波音速、
である。
(Fractional bandwidth) = Δf / fr = K 2 /2 = (Vo1-Vs1) / Vs1 ····· (1)
However,
f: frequency,
fr: resonance frequency,
Vo1: boundary wave sound velocity at the open boundary,
Vs1: boundary wave sound velocity at the short-circuit boundary,
It is.
 また、周波数温度係数(TCF)は、下記式(2)により定義される。 The frequency temperature coefficient (TCF) is defined by the following equation (2).
 TCF=V-1(25℃)×{(V(30℃)-V(20℃)}/10(℃)-αS   ・・・・・(2)
 但し、
V(25℃):25℃における音速、
V(30℃):30℃における音速、
V(20℃):20℃における音速、
αS:線膨張係数、
である。
TCF = V −1 (25 ° C.) × {(V (30 ° C.) − V (20 ° C.)} / 10 (° C.) − ΑS (2)
However,
V (25 ° C.): speed of sound at 25 ° C.
V (30 ° C.): speed of sound at 30 ° C.
V (20 ° C.): speed of sound at 20 ° C.
αS: linear expansion coefficient,
It is.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3及び図13に示すように、溝11を深くすることにより、周波数温度係数(TCF)の値を大きくすることができる。溝11を形成することにより、溝11を形成していない場合と比較して、周波数温度係数の絶対値を小さくできることが分かる。表3及び図13に示す結果から、溝11の深さは、0.05λ以上であることが好ましく、0.1λ以上0.15λ以下であることがより好ましい。そうすることによって、周波数温度係数の絶対値を特に小さくすることができるからである。 As shown in Table 3 and FIG. 13, the value of the frequency temperature coefficient (TCF) can be increased by deepening the groove 11. It can be seen that the absolute value of the frequency temperature coefficient can be reduced by forming the groove 11 as compared to the case where the groove 11 is not formed. From the results shown in Table 3 and FIG. 13, the depth of the groove 11 is preferably 0.05λ or more, and more preferably 0.1λ or more and 0.15λ or less. This is because the absolute value of the frequency temperature coefficient can be particularly reduced by doing so.
 また、表3に示すように、溝11の深さを変化させることにより、比帯域幅を変化させることができることが分かる。具体的には、溝11を深くすることで、比帯域幅を狭くできることが分かる。 Also, as shown in Table 3, it can be seen that the specific bandwidth can be changed by changing the depth of the groove 11. Specifically, it can be seen that the specific bandwidth can be narrowed by deepening the groove 11.
 また、上記表3及び図14に示すように、溝11の深さを変化させることにより、電気機械結合係数Kを変化させることができることが分かる。具体的には、溝11を深くすることで、電気機械結合係数Kを小さくできることが分かる。 Further, as shown in Table 3 and FIG. 14, it can be seen that the electromechanical coupling coefficient K 2 can be changed by changing the depth of the groove 11. Specifically, it can be seen that the electromechanical coupling coefficient K 2 can be reduced by deepening the groove 11.
 また、上記表3及び図15に示すように、溝11の深さを変化させることにより、音速(V)を変化させることができることが分かる。具体的には、溝11を深くすることで、音速(V)を大きくできることが分かる。 Also, as shown in Table 3 and FIG. 15, it can be seen that the sound velocity (V) can be changed by changing the depth of the groove 11. Specifically, it can be seen that the sound velocity (V) can be increased by deepening the groove 11.
 これらの結果から、溝11の深さを調節することにより、比帯域幅、電気機械結合係数K及び音速(V)のそれぞれを調節可能であることが分かる。 These results, by adjusting the depth of the groove 11, the relative bandwidth, it can be seen capable of adjusting the respective electromechanical coupling coefficient K 2 and the sound velocity (V).
 (実施例3)
 実施例1と同様の1ポート型の共振子を実施例1と同様の手順で作製した。得られた共振子について、周波数温度係数、共振周波数、比帯域を測定した。具体的には、インピーダンス特性を測定し、各温度における周波数を測定し、測定結果を下記式(3)、(4)に当てはめることにより周波数温度係数(TCF)、共振周波数、比帯域を得た。
(Example 3)
A 1-port resonator similar to that in Example 1 was fabricated in the same procedure as in Example 1. For the obtained resonator, the frequency temperature coefficient, the resonance frequency, and the ratio band were measured. Specifically, the impedance temperature was measured, the frequency at each temperature was measured, and the frequency temperature coefficient (TCF), resonance frequency, and ratio band were obtained by applying the measurement results to the following formulas (3) and (4). .
 fr:共振周波数
 fa:反共振周波数
 TCF={(fr(60℃)-fr(25℃))/fr(25℃)}/(60℃-25℃)   ・・・・・(3)
 比帯域={(fa(25℃)-fr(25℃))/fr(25℃)}×100   ・・・・・(4)
fr: resonance frequency fa: anti-resonance frequency TCF = {(fr (60 ° C.) − fr (25 ° C.)) / fr (25 ° C.)} / (60 ° C.-25 ° C.) (3)
Ratio band = {(fa (25 ° C.) − Fr (25 ° C.)) / Fr (25 ° C.)} × 100 (4)
 結果を下記表4及び図16~図18に示す。 The results are shown in the following Table 4 and FIGS.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4及び図16~図18に示すように、上記シミュレーションの結果と同様に、本実施例の測定結果においても、溝11を深くすることで、周波数温度係数が改善されることが分かる。また、溝11の深さと共振周波数及び比帯域のそれぞれとが相関関係を有することが分かる。具体的には、図17に示すように、溝11を深くすることで、共振周波数が低周波数側にシフトすることが分かる。また、図18に示すように、溝11を深くすることで、比帯域が小さくなることが分かる。以上より、溝11の深さを調整することで、共振周波数及び比帯域のそれぞれを調整可能であることが分かる。 As shown in Table 4 and FIGS. 16 to 18, it can be seen that the frequency temperature coefficient is improved by deepening the groove 11 in the measurement results of this example as well as the simulation results. Moreover, it turns out that the depth of the groove | channel 11 and each of a resonant frequency and a specific band have a correlation. Specifically, as shown in FIG. 17, it can be seen that the resonance frequency is shifted to the lower frequency side by deepening the groove 11. In addition, as shown in FIG. 18, it can be seen that the ratio band is reduced by deepening the groove 11. From the above, it can be seen that each of the resonance frequency and the ratio band can be adjusted by adjusting the depth of the groove 11.

Claims (8)

  1.  圧電体と、前記圧電体の一面に積層された誘電体と、前記圧電体と前記誘電体との間の境界に配置された電極とを備え、前記境界を伝搬する弾性境界波を利用した弾性境界波装置であって、
     前記電極は、複数の電極指を有する第1のくし歯電極と、前記弾性境界波の伝搬方向において前記第1のくし歯電極の電極指と交互に配置された複数の電極指を有し、前記第1のくし歯電極とは異なる電位に接続される第2のくし歯電極とを含み、
     前記圧電体の前記誘電体側の表面には、隣接する前記第1のくし歯電極の電極指と前記第2のくし歯電極の電極指との間に位置し、前記電極指の延びる方向に延びる溝が形成されている弾性境界波装置。
    A piezoelectric body, a dielectric layer laminated on one surface of the piezoelectric body, and an electrode disposed at a boundary between the piezoelectric body and the dielectric body, and elastic using boundary acoustic waves propagating through the boundary A boundary wave device,
    The electrode has a first comb electrode having a plurality of electrode fingers, and a plurality of electrode fingers alternately arranged with the electrode fingers of the first comb electrode in the propagation direction of the boundary acoustic wave, A second comb electrode connected to a potential different from that of the first comb electrode;
    The surface of the piezoelectric body on the dielectric side is positioned between the electrode fingers of the adjacent first comb electrodes and the electrode fingers of the second comb electrodes, and extends in the extending direction of the electrode fingers. A boundary acoustic wave device in which grooves are formed.
  2.  前記誘電体は、前記圧電体の一面に積層された第1の誘電体層と、前記第1の誘電体層に積層され、前記第1の誘電体層の音速よりも速い音速を有する第2の誘電体層を有する、請求項1に記載の弾性境界波装置。 The dielectric has a first dielectric layer laminated on one surface of the piezoelectric body, and a second dielectric layer laminated on the first dielectric layer and having a sound velocity faster than that of the first dielectric layer. The boundary acoustic wave device according to claim 1, comprising: a dielectric layer.
  3.  前記弾性境界波の伝搬方向に沿った前記溝の断面形状は矩形である、請求項1または2に記載の弾性境界波装置。 3. The boundary acoustic wave device according to claim 1, wherein a cross-sectional shape of the groove along a propagation direction of the boundary acoustic wave is a rectangle.
  4.  前記弾性境界波の伝搬方向に沿った前記溝の断面形状は、深さ方向に向かって幅狭となる台形である、請求項1または2に記載の弾性境界波装置。 3. The boundary acoustic wave device according to claim 1, wherein a cross-sectional shape of the groove along a propagation direction of the boundary acoustic wave is a trapezoid that becomes narrower in a depth direction.
  5.  請求項1に記載の弾性境界波装置の製造方法であって、
     前記圧電体上に前記電極を形成する電極形成工程と、
     前記圧電体に前記溝を形成する溝形成工程と、
     前記圧電体の一面に前記誘電体を積層する工程とを備える弾性境界波装置の製造方法。
    A method for manufacturing a boundary acoustic wave device according to claim 1,
    Forming an electrode on the piezoelectric body; and
    A groove forming step of forming the groove in the piezoelectric body;
    And a step of laminating the dielectric on one surface of the piezoelectric body.
  6.  前記電極形成工程の後に、前記第1及び第2のくし歯電極が形成された前記圧電体の周波数特性を測定する工程をさらに備え、
     前記溝形成工程は、前記溝の深さが、前記測定された周波数特性に応じた前記弾性境界波装置の周波数特性と、予め定められた前記弾性境界波装置の目標とする周波数特性との差を小さくする深さとなるように、前記溝を形成する工程である、請求項5に記載の弾性境界波装置の製造方法。
    After the electrode forming step, further comprising a step of measuring frequency characteristics of the piezoelectric body on which the first and second comb electrodes are formed,
    In the groove forming step, the depth of the groove is a difference between a frequency characteristic of the boundary acoustic wave device according to the measured frequency characteristic and a predetermined frequency characteristic of the boundary acoustic wave device. The method for manufacturing a boundary acoustic wave device according to claim 5, wherein the groove is formed so as to have a depth to reduce the depth.
  7.  前記溝形成工程の後に、前記第1及び第2のくし歯電極が形成された前記圧電体の周波数特性を測定する工程と、
     前記溝の深さが、前記測定された周波数特性に応じた前記弾性境界波装置の周波数特性と、予め定められた前記弾性境界波装置の目標とする周波数特性との差を小さくする深さとなるように、前記溝形成工程において形成された溝を深くする工程とをさらに備える請求項5に記載の弾性境界波装置の製造方法。
    Measuring the frequency characteristics of the piezoelectric body on which the first and second comb electrodes are formed after the groove forming step;
    The depth of the groove is a depth that reduces a difference between the frequency characteristic of the boundary acoustic wave device according to the measured frequency characteristic and a predetermined frequency characteristic of the boundary acoustic wave device. The method for manufacturing the boundary acoustic wave device according to claim 5, further comprising a step of deepening the groove formed in the groove forming step.
  8.  前記電極形成工程及び前記溝形成工程の後に、前記圧電体の一面に第1の誘電体層を形成する工程と、
     前記第1の誘電体層が形成された圧電体の周波数特性を測定する工程と、
     前記第1のくし歯電極の電極指と前記第2のくし歯電極の電極指とが前記伝搬方向において交互に配置されている領域における前記第1の誘電体層の厚さを、前記測定された周波数特性に応じた前記弾性境界波装置の周波数特性と、予め定められた前記弾性境界波装置の目標とする周波数特性との差を小さくする厚さにまで増加又は減少させる工程と、
     前記第1の誘電体層の音速よりも速い音速を有する第2の誘電体層を前記第1の誘電体層に積層することにより、前記第1の誘電体層と前記第2の誘電体層とを有する前記誘電体を形成する工程とをさらに備える請求項5に記載の弾性境界波装置の製造方法。
    Forming a first dielectric layer on one surface of the piezoelectric body after the electrode forming step and the groove forming step;
    Measuring the frequency characteristics of the piezoelectric body on which the first dielectric layer is formed;
    The thickness of the first dielectric layer in the region where the electrode fingers of the first comb electrode and the electrode fingers of the second comb electrode are alternately arranged in the propagation direction is measured. Increasing or decreasing to a thickness that reduces a difference between a frequency characteristic of the boundary acoustic wave device according to the frequency characteristic and a target frequency characteristic of the boundary acoustic wave device determined in advance;
    The first dielectric layer and the second dielectric layer are formed by laminating a second dielectric layer having a speed of sound higher than that of the first dielectric layer on the first dielectric layer. The method for manufacturing the boundary acoustic wave device according to claim 5, further comprising: forming the dielectric body including:
PCT/JP2009/000891 2008-04-10 2009-02-27 Boundary acoustic wave device and method of manufacturing the same WO2009125536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008102163 2008-04-10
JP2008-102163 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125536A1 true WO2009125536A1 (en) 2009-10-15

Family

ID=41161674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000891 WO2009125536A1 (en) 2008-04-10 2009-02-27 Boundary acoustic wave device and method of manufacturing the same

Country Status (1)

Country Link
WO (1) WO2009125536A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135469A (en) * 2009-12-25 2011-07-07 Murata Mfg Co Ltd Acoustic wave apparatus
WO2012102131A1 (en) * 2011-01-27 2012-08-02 京セラ株式会社 Elastic wave element and elastic wave apparatus using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199906A (en) * 1990-11-29 1992-07-21 Kokusai Electric Co Ltd Surface acoustic wave resonator
WO2005093949A1 (en) * 2004-03-29 2005-10-06 Murata Manufacturing Co., Ltd. Boundary acoustic wave device manufacturing method and boundary acoustic wave device
WO2006114930A1 (en) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. Boundary acoustic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199906A (en) * 1990-11-29 1992-07-21 Kokusai Electric Co Ltd Surface acoustic wave resonator
WO2005093949A1 (en) * 2004-03-29 2005-10-06 Murata Manufacturing Co., Ltd. Boundary acoustic wave device manufacturing method and boundary acoustic wave device
WO2006114930A1 (en) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. Boundary acoustic wave device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135469A (en) * 2009-12-25 2011-07-07 Murata Mfg Co Ltd Acoustic wave apparatus
WO2012102131A1 (en) * 2011-01-27 2012-08-02 京セラ株式会社 Elastic wave element and elastic wave apparatus using same
JPWO2012102131A1 (en) * 2011-01-27 2014-06-30 京セラ株式会社 Elastic wave device and elastic wave device using the same

Similar Documents

Publication Publication Date Title
US9035725B2 (en) Acoustic wave device
TWI762832B (en) Surface acoustic wave device
US10270424B2 (en) Acoustic wave resonator, filter, multiplexer, and method of fabricating acoustic wave resonator
JP6019146B2 (en) Elastic wave device with high-order transverse mode wave suppressed
JP5099151B2 (en) Method for manufacturing boundary acoustic wave device
US8471653B2 (en) Elastic wave resonator and ladder filter
JP5617936B2 (en) Surface acoustic wave device
WO2010016192A1 (en) Acoustic wave device
US20150123746A1 (en) Surface acoustic wave device and filter
WO2016111315A1 (en) Acoustic wave device
JP5187444B2 (en) Surface acoustic wave device
JP7001172B2 (en) Elastic wave device and ladder type filter
WO2020204036A1 (en) Elastic wave device
JP2005286945A (en) Resonator, filter and manufacture of resonator
KR20130088888A (en) Surface acoustic wave device
JP5687776B2 (en) Acoustic wave operating member and manufacturing method thereof
US9667226B2 (en) Surface acoustic wave device and filter with additional covering films
WO2015137089A1 (en) Acoustic wave device
WO2019082806A1 (en) Acoustic wave element
WO2009125536A1 (en) Boundary acoustic wave device and method of manufacturing the same
WO2022085624A1 (en) Elastic wave device
WO2023048256A1 (en) Elastic wave device
CN116781029B (en) Inclination angle determining method of resonator in filter, filter and radio frequency chip
WO2016039026A1 (en) Surface acoustic wave device
JP2008182511A (en) Bulk acoustic vibrator, compensating method for frequency temperature characteristic thereof, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP