WO2009125462A1 - Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same - Google Patents

Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same Download PDF

Info

Publication number
WO2009125462A1
WO2009125462A1 PCT/JP2008/056861 JP2008056861W WO2009125462A1 WO 2009125462 A1 WO2009125462 A1 WO 2009125462A1 JP 2008056861 W JP2008056861 W JP 2008056861W WO 2009125462 A1 WO2009125462 A1 WO 2009125462A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic compound
strain
microorganism
decomposing
aromatic
Prior art date
Application number
PCT/JP2008/056861
Other languages
French (fr)
Japanese (ja)
Inventor
祐子 向井
八千代 川本
豊一 横田
学 佐見
Original Assignee
アサヒビール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アサヒビール株式会社 filed Critical アサヒビール株式会社
Priority to PCT/JP2008/056861 priority Critical patent/WO2009125462A1/en
Publication of WO2009125462A1 publication Critical patent/WO2009125462A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/02Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by biological methods, i.e. processes using enzymes or microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention is characterized by cleaving a heterocycle when a substrate is an aromatic heterocycle by introducing two hydroxyl groups into the aromatic ring, and cleaving an ether bond when the substrate is phenol ether.
  • the present invention relates to a microorganism having a gene encoding a characteristic enzyme and a novel method for decomposing aromatic compounds including dioxins using the microorganism.
  • One method of purifying soil and riverbed mud contaminated with dioxins is bioaugmentation.
  • This is a method for purifying dioxins by spraying microorganisms that decompose dioxins on contaminated soil, and the microorganisms to be sprayed are white-rot fungi (Patent Document 1 “Method for Degrading Chlorinated Dioxins”)
  • Patent Document 2 The microorganism must have a dioxin-degrading ability, such as the dioxin-degrading bacterium Sphingomonas sp. KA1 strain (FERM P-19744).
  • Such a decomposition method is cheaper in processing cost than a generally known physicochemical purification method.
  • the period required for the purification is generally long, and in order to maintain the decomposition ability of microorganisms. , Soil aeration, moisturizing, and application of nutrients.
  • the degrading enzyme is almost always an inducing enzyme, it is necessary to realize a state in which the microbial enzyme is induced in the environment.
  • dioxin degrading enzyme is induced in the presence of carbazole, so that the bacterium is cultured with carbazole, and dioxin is effectively decomposed by adding carbazole to contaminated soil.
  • culturing and spraying with carbazole to increase the degradation effect not only increases the treatment cost, but may cause new environmental contamination by carbazole, which is a major problem in practical use.
  • CARDO carbazole 1,9a-dioxygenase
  • CARDOI and CARDOII are multi-component enzymes composed of ferredoxin and ferredoxin reductase in addition to the main body (terminal oxygenase), and the genes encoding them are all found on the plasmid pCAR3 held by the KA1 strain.
  • the terminal oxygenase genes are called carAaI and carAaII, respectively, and the homology between them is about 75% at the amino acid level. As a result of the examinations so far, it has been revealed that they show almost the same activity.
  • the operon formed by these gene groups is called a carbazole degrading operon.
  • the operon promoter site is normally suppressed by the repressor protein CarRI produced by the transcriptional control gene carRI.
  • the problem to be solved by the present invention is to provide a microorganism that produces a dioxin-degrading enzyme without requiring an inducer such as carbazole that may cause environmental pollution.
  • the present inventors succeeded in breeding a mutant strain of KA1 strain that is always produced by dioxin degrading enzyme. That is, the KA1 strain was subcultured in a culture system containing carbazole, which is considered to have been released from suppression of CARDO expression. As a result, mutant strains KA1G1 and KA1G2 carrying plasmids having a size different from that of pCAR3 were obtained at the 63rd passage. In these mutants, carAaI was deleted from the two cardo terminal oxygenase genes carAaI and carAaII encoded on pCAR3.
  • the present inventors have also succeeded in breeding mutant strains that are more active than the KA1G1 and KA1G2 strains while constantly producing dioxin degrading enzymes. That is, the KA1G2 strain was subcultured in a culture system containing carbazole, and as a result, a mutant strain KA1G2-13012 having a plasmid of a size different from KA1G2 was obtained at the number of passages 67 times. While this mutant strain maintained the property of constitutive expression of CARDO, the CARDO activity was about twice that of the KA1 strain at the time of induction.
  • KA1G1 strain, KA1G2 strain and KA1G2-13012 strain were deposited internationally at the National Institute of Advanced Industrial Science and Technology, Patent Microorganism Depositary, respectively, with accession numbers FERM BP-10861 (deposit date: July 19, 2006), FERM BP -10862 (Deposit date: July 19, 2006) and FERM BP-10954 (Deposit date: March 4, 2008).
  • the present invention has the following gist.
  • a method for decomposing an aromatic compound comprising using a microorganism having a carAaI or carAaII derived from a Sphingomonas sp. Strain KA1 and a promoter whose expression suppression mechanism is canceled by mutation or deletion of the transcriptional control gene carRI.
  • the degradation method according to item (1), wherein the microorganism is a Sphingomonas sp. KA1 strain or a strain derived therefrom.
  • Item 6 The method for decomposing an aromatic compound according to any one of Items (1) to (3), wherein the ether bond of phenol ether is cleaved.
  • (6) 6.
  • the decomposition method according to claim 1. (9) Sphingomonas sp. KA1G1 strain (FERM BP-10861), an aromatic compound-degrading microorganism. (10) An aromatic compound-degrading microorganism which is Sphingomonas sp. KA1G2 strain (FERM BP-10862).
  • the aromatic compound is at least one selected from benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin, and diphenyl ether, any of (12) to (15) Decomposition method according to the above.
  • the microorganism that constitutively expresses the dioxin-degrading enzyme of the present invention has the following advantages compared to the microorganism that is induced and expressed by conventional carbazole. (1) Any medium may be used for the growth as long as the microorganism can grow, and the bacterial cells can be produced at low cost. (2) There is no worry of causing new environmental pollution by the inducer.
  • various pollutants in the soil for example, aromatic compounds such as dioxins, benzene, toluene, naphthalene, anthracene, and fluoranthene can be efficiently purified. .
  • the aromatic compound to be decomposed according to the present invention is selected from chlorinated dioxins or benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin and diphenyl ether. At least one.
  • the microorganism used may be a promoter that does not require induction and that has carAaI or carAaII derived from the Sphingomonas sp. KA1 strain under its control.
  • a promoter that does not require induction is a promoter in which transcription of mRNA is not repressed even if the strain is cultured under any culture conditions.
  • the nptII promoter, and the like It includes a promoter that is in a state in which induction suppression is not caused by mutation or deletion.
  • the gene expressed under the control of such a promoter may be any gene as long as it contains the enzyme genes carAaI or carAaII that are the main components of dioxin degradation.
  • these enzymes are combined with ferredoxin that conducts electrons and ferredoxin reductase. It is better to have it.
  • ferredoxin examples include carAcI and carAcII possessed by the KA1 strain.
  • ferredoxin reductase include fdrI and fdrII possessed by the KA1 strain.
  • Sphingomonas sp. KA1G1, KA1G2 and KA1G2-13012 are mutant strains obtained by mutation from the dioxin-degrading bacterium Sphingomonas sp. KA1 in order to satisfy these conditions.
  • CARDO thus expressed promotes the spontaneous cleavage of the heterocycle by introducing two hydroxyl groups into the benzene ring of carbazole and produces 2′-aminobiphenyl-2,3-diol.
  • This enzyme has a relatively wide substrate specificity and can introduce two hydroxyl groups into an aromatic compound having a similar reaction site structure.
  • the heteroatom is an oxygen atom instead of a nitrogen atom as in dibenzofuran
  • the heterocycle is cleaved in the same manner as carbazole.
  • dibenzo-p-dioxin and its chlorinated compound the corresponding cleavage compound is produced.
  • the decomposed bacteria and the pollutant may be contacted by spraying the decomposing bacteria over the contaminated sites.
  • the spraying method may be any form such as spraying the culture solution as it is if the degrading bacteria are alive, or immobilizing on activated carbon, diatomaceous earth, or the like.
  • the treatment temperature may be in a range called normal temperature, but is preferably 10 ° C. to 35 ° C., more preferably 25 ° C. to 30 ° C.
  • the degrading bacteria do not always survive in the contaminated area for a long time and do not always continue to decompose the pollutants. It is possible to further purify by repeatedly spraying the decomposed bacteria cultured on the surface.
  • Two mutant strains KA1G1 and KA1G2 were isolated from the main culture. When plasmids were extracted from each of them and subjected to DNA sequencing, it was found that both mutants had a large portion of plasmid pCAR3 possessed by KA1 strain deleted at least about 60 kb.
  • the deletion site included an operon containing carAaI and a catechol-degrading operon responsible for metabolism downstream of carbazole.
  • KA1G2 strain a portion not related to the carbazole degradation gene was further deleted from the KA1G1 strain by about 300b.
  • the mutant strain was able to grow using carbazole as the sole carbon source because the operon containing another carbazole-degrading gene carAaII on the plasmid and on the chromosome downstream of catechol. This is because a gene group exists. Furthermore, as a result of intensive studies, it was found that the deletion site contained carRI that regulates the transcription of operons including carAaI and carAaII. It was inferred that this gene was lost because carAaII was constitutively expressed.
  • Dioxin-degrading gene expression level (activity) When CARDO acts on naphthalene, it produces cis-1,2-dihydroxy-1,2-dihydronaphthalene.
  • CARDO acts on naphthalene
  • naphthalene it produces cis-1,2-dihydroxy-1,2-dihydronaphthalene.
  • the KA1 strain, KA1G1 strain, KA1G2 strain, and KA1G2-13012 strain were compared in CARDO activity.
  • the results are shown in Table 1.
  • the unit unit used here represents the ng number of cis-1,2-dihydroxy-1,2-dihydronaphthalene produced in one hour in this reaction system.
  • the KA1G1 and KA1G2 strains showed a production rate of about 40% of the KA1 strain induced with carbazole without adding carbazole.
  • the KA1G2-13012 strain showed about twice the production rate of the KA1 strain. From these results, it was confirmed that all these mutants expressed constitutive expression of CARDO.
  • the KA1G1 and KA1G2 strains are less active than the KA1 strain in which CARDO was induced because one of the two enzyme genes was deleted in the mutant strain. it is conceivable that.
  • the high activity of the KA1G2-13012 strain is considered to be due to duplication of carAaII in the genome. It is not clear whether the effect is only due to the large number of genes or whether the transcriptional activity is also increased.
  • Table 2 shows the ratio (%) of the recovered remaining substrate. All strains degraded the test substance well. In particular, in the KA1G2-113012 strain, many substances were degraded at a high degradation rate. On the other hand, the detected decomposition products were dibenzofuran, dibenzothiophene and diphenyl ether, except for compounds to dihydrodiol, dibenzofuran to trihydroxybiphenyl and dibenzofurandihydrodiol, dibenzothiophene to dibenzothiophene dihydrodiol and dibenzothiophene-5- To oxide, diphenyl ether was converted to catechol and phenol. As a result, it was confirmed that these mutant strains degraded the aromatic compound by the same mechanism as the parent strain KA1.
  • tetrachlorinated dioxin 5 ml of 50 mM phosphate buffer (pH 7.2) was placed in a 30 ml Erlenmeyer flask, and cultured in the same manner as in Example 3.
  • 10 ng of 2,3,7,8-TeCDD was added and stirred at 30 ° C. for 24 hours. Residual substrates were extracted and quantified from these samples, and the decomposition rates as shown in the table below were obtained.
  • As a control cells obtained by autoclaving the KA1G1 strain at 121 ° C. for 5 minutes were used, and the degradation rate was calculated based on the ratio to the recovered amount from this control.
  • any of the obtained mutant strains decomposes 2,3,7,8-TeCDD even when a culture medium without carbazole is used for the culture.
  • the KA1G2-113012 strain decomposed the added 2,3,7,8-TeCDD by 60% or more in 24 hours and was shown to have a very strong 2,3,7,8-TeCDD degradation ability.
  • the amount of dioxin added is 10 ng for tetrachlorinated dioxins, pentachlorinated dioxins, tetrachlorinated dibenzofurans, pentachlorinated dibenzofurans, and coplanar PCBs, 50 ng for octachlorinated dioxins and octachlorinated dibenzofurans, and other dioxins for dioxins 20 ng.
  • the residual substrate was extracted and quantified, and the residual ratio as shown in FIG. 1 was obtained.
  • As a control microbial cells obtained by autoclaving the KA1G1 strain at 121 ° C. for 5 minutes were used, and the residual rate was calculated as a ratio to the recovered amount from this control.
  • the KA1, KA1G1 and KA1G2-13012 strains can decompose various toxic chlorinated dioxins other than 2,3,7,8-TeCDD. Particularly high in 2,3,7,8-TeCDF, 3,4,4 ′, 5-TeCB, 3,3 ′, 4,4′-TeCB, 3,3 ′, 4,4 ′, 5-PeCB, etc. The decomposition rate could be obtained.
  • the KA1G2 strain not used in this test has the same degradation activity as the KA1G1 strain.
  • TeCDF Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HpCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran TeCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HpCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TeCB: Tetrachlorobiphenyl PeCB: Pentachlorobiphenyl HxCB: Hexachlorobiphenyl HpCB: Heptachlorobiphenyl
  • the present invention can decompose aromatic compounds without causing environmental pollution, the present invention is extremely useful as an environmental purification technique.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

[PROBLEMS] To provide a microorganism capable of inducing an enzyme by which aromatic compounds including dioxin can be decomposed without using carbazole possibly posing a risk of environmental pollution. [MEANS FOR SOLVING PROBLEMS] A method of decomposing aromatic compounds characterized by comprising using a microorganism which has a promoter not needing induction and carAaI or carAaII originating in Sphingomonas sp. KAI strain and being under control thereby.

Description

芳香族化合物分解微生物及びそれを用いた芳香族化合物の分解方法Aromatic compound degrading microorganism and method for decomposing aromatic compound using the same
 本発明は、芳香環に2つの水酸基を導入することにより、基質が芳香族へテロ環の場合はヘテロ環を開裂することを特徴とし、基質がフェノールエーテルの場合はエーテル結合を切断することを特徴とする酵素をコードする遺伝子を有する微生物および該微生物を用いたダイオキシンを含む芳香族化合物の新規な分解方法に関する。 The present invention is characterized by cleaving a heterocycle when a substrate is an aromatic heterocycle by introducing two hydroxyl groups into the aromatic ring, and cleaving an ether bond when the substrate is phenol ether. The present invention relates to a microorganism having a gene encoding a characteristic enzyme and a novel method for decomposing aromatic compounds including dioxins using the microorganism.
 ダイオキシンに汚染された土壌・河川底泥を浄化する方法の1つに、バイオオーギュメンテーションがある。これは、ダイオキシンを分解する微生物を汚染土壌に散布することによりダイオキシンを浄化する方法であり、散布する微生物は、白色腐朽菌(特許文献1「塩素化ダイオキシン類の分解方法」)、特許文献2に開示されているダイオキシン分解菌Sphingomonas sp. KA1株(FERM P-19744)など、ダイオキシン分解力を有した微生物でなくてはならない。 One method of purifying soil and riverbed mud contaminated with dioxins is bioaugmentation. This is a method for purifying dioxins by spraying microorganisms that decompose dioxins on contaminated soil, and the microorganisms to be sprayed are white-rot fungi (Patent Document 1 “Method for Degrading Chlorinated Dioxins”), Patent Document 2 The microorganism must have a dioxin-degrading ability, such as the dioxin-degrading bacterium Sphingomonas sp. KA1 strain (FERM P-19744).
 このような分解方法は、一般に知られているような物理化学的浄化方法と比較して処理費用が安価であるが、浄化に要する期間は一般に長く、また、微生物の分解力を維持するために、土壌の通気、保湿、栄養剤の散布などを行う必要がある。さらに、分解酵素は、誘導酵素である場合がほとんどであるので、微生物の酵素が誘導される状態を環境中で実現する必要がある。 Such a decomposition method is cheaper in processing cost than a generally known physicochemical purification method. However, the period required for the purification is generally long, and in order to maintain the decomposition ability of microorganisms. , Soil aeration, moisturizing, and application of nutrients. Furthermore, since the degrading enzyme is almost always an inducing enzyme, it is necessary to realize a state in which the microbial enzyme is induced in the environment.
 前述の白色腐朽菌の場合は、炭素・窒素欠乏下で分解酵素が誘導されるので、窒素の豊富な汚染土壌へは適用が困難である。 In the case of the above-mentioned white rot fungus, degrading enzymes are induced under carbon / nitrogen deficiency, so that it is difficult to apply to contaminated soil rich in nitrogen.
 また、KA1株の場合は、カルバゾール存在下においてダイオキシン分解酵素を誘導するので、本菌をカルバゾールを用いて培養し、かつ汚染土壌にもカルバゾールを添加することによりダイオキシンの分解を効果的に行う。しかし、分解効果をあげるためにカルバゾールで培養したり散布することは、処理コストを上昇させるだけでなく、カルバゾールによる新たな環境汚染を引き起こす可能性があり実用化上の大きな課題となっている。 Also, in the case of KA1 strain, dioxin degrading enzyme is induced in the presence of carbazole, so that the bacterium is cultured with carbazole, and dioxin is effectively decomposed by adding carbazole to contaminated soil. However, culturing and spraying with carbazole to increase the degradation effect not only increases the treatment cost, but may cause new environmental contamination by carbazole, which is a major problem in practical use.
 ここで、ダイオキシン分解菌Sphingomonas sp. KA1株(FERM P-19744)について概要を述べる。KA1株が産生するCarbazole 1,9a-dioxygenase (CARDO)は、2種類見出されており、それぞれCARDOI、CARDOIIと呼ばれている。これらの酵素は本来の基質であるカルバゾールのみならず、ダイオキシンをはじめとする様々な芳香族化合物を酸化することができるため、ダイオキシン分解酵素として環境浄化への応用が期待されている。
 CARDOI、CARDOIIは、本体(ターミナルオキシゲナーゼ)のほか、フェレドキシン、フェレドキシンレダクターゼにより構成されるマルチコンポーネント酵素で、それらをコードする遺伝子は全てKA1株の保有するプラスミドpCAR3上に見出されている。ターミナルオキシゲナーゼ遺伝子はそれぞれcarAaI、carAaIIと呼ばれており、両者の相同性はアミノ酸レベルで約75%であり、今までの検討の結果、ほぼ同一の活性を示すことが明らかとなっている。
 これらの遺伝子群が形成しているオペロンは、カルバゾール分解オペロンと呼称される。このオペロンのプロモーター部位は、ふだんは転写制御遺伝子carRIにより産生される抑制タンパクCarRIにより発現が抑制されているが、カルバゾール存在下では抑制が外れることによりプロモーターが活性化し、下流のターミナルオキシゲナーゼ遺伝子carAaI、carAaII等が発現する。
特開2001-136957号公報 特開2005-333874号公報
Here, an outline of the dioxin degrading bacterium Sphingomonas sp. KA1 strain (FERM P-19744) will be described. Two types of carbazole 1,9a-dioxygenase (CARDO) produced by the KA1 strain have been found and are called CARDOI and CARDOII, respectively. Since these enzymes can oxidize not only the original substrate carbazole but also various aromatic compounds including dioxin, they are expected to be applied to environmental purification as dioxin degrading enzymes.
CARDOI and CARDOII are multi-component enzymes composed of ferredoxin and ferredoxin reductase in addition to the main body (terminal oxygenase), and the genes encoding them are all found on the plasmid pCAR3 held by the KA1 strain. The terminal oxygenase genes are called carAaI and carAaII, respectively, and the homology between them is about 75% at the amino acid level. As a result of the examinations so far, it has been revealed that they show almost the same activity.
The operon formed by these gene groups is called a carbazole degrading operon. The operon promoter site is normally suppressed by the repressor protein CarRI produced by the transcriptional control gene carRI. However, in the presence of carbazole, the promoter is activated by removal of the repressor, and the downstream terminal oxygenase gene carAaI, carAaII and the like are expressed.
JP 2001-136957 A JP 2005-333874 A
 本発明が解決しようとしている課題は、環境汚染を引きおこす可能性のあるカルバゾールなどの誘導物質を必要とせずにダイオキシン分解酵素を産生する微生物を提供することにある。 The problem to be solved by the present invention is to provide a microorganism that produces a dioxin-degrading enzyme without requiring an inducer such as carbazole that may cause environmental pollution.
 本発明では、ダイオキシン分解菌Sphingomonas sp. KA1株(FERM P-19744、特許文献2)について、カルバゾールの有無によらず、常にダイオキシン分解能力を発現する株が取得できれば、さらに安価で効果的にダイオキシンのバイオオーギュメンテーションが実現すると考えた。 In the present invention, a dioxin-decomposing bacterium, Sphingomonas sp. We thought that bioaugmentation would be realized.
 本発明においては、鋭意検討の結果、ダイオキシン分解酵素が常に産生するKA1株の変異株を育種することに成功した。すなわち、CARDO発現抑制が解除された状態と考えられる、カルバゾールを含む培養系でKA1株の継代培養を行った。その結果、継代回数63回目にpCAR3とは異なるサイズのプラスミドを保有する変異株KA1G1及びKA1G2株を得た。これらの変異株ではpCAR3上にコードされる2種のCARDOのターミナルオキシゲナーゼ遺伝子carAaI 、carAaIIのうち、carAaIが欠失していた。RT-PCR法によりcarAaIIのmRNAへの転写の有無を調べたところ、親株ではカルバゾール非存在下で転写が見られなかったがKA1G1株、KA1G2株では転写が見られ、これらの変異株はCARDOの構成発現株であることが推定できた。LB培地を用いてKA1G1株、KA1G2株それぞれを培養し、その菌体とジベンゾ-p-ダイオキシンを緩衝液中で振盪したところ、顕著なジベンゾ-p-ダイオキシンの低減がみられ、誘導物質であるカルバゾールを添加しなくても分解酵素を発現する、すなわち構成発現することが確認できた。
 本発明においては、さらに、ダイオキシン分解酵素を常に産生しつつもKA1G1株、KA1G2株よりも活性の高い変異株を育種することにも成功した。すなわち、カルバゾールを含む培養系でKA1G2株の継代培養を行い、その結果、継代回数67回目にKA1G2とは異なるサイズのプラスミドを保有する変異株KA1G2-13012株を得た。本変異株はCARDOを構成発現する性質を維持しつつも、CARDO活性は誘導時のKA1株の約2倍であった。
 KA1G1株、KA1G2株及びKA1G2-13012株は、独立行政法人 産業技術総合研究所 特許微生物寄託センターに国際寄託され、それぞれ受託番号 FERM BP-10861(寄託日:2006年7月19日)、FERM BP-10862(寄託日:2006年7月19日)、FERM BP-10954(寄託日:2008年3月4日)が付与されている。
In the present invention, as a result of intensive studies, the present inventors succeeded in breeding a mutant strain of KA1 strain that is always produced by dioxin degrading enzyme. That is, the KA1 strain was subcultured in a culture system containing carbazole, which is considered to have been released from suppression of CARDO expression. As a result, mutant strains KA1G1 and KA1G2 carrying plasmids having a size different from that of pCAR3 were obtained at the 63rd passage. In these mutants, carAaI was deleted from the two cardo terminal oxygenase genes carAaI and carAaII encoded on pCAR3. When the presence or absence of transcription of carAaII into mRNA was examined by RT-PCR, transcription was not seen in the parent strain in the absence of carbazole, but transcription was seen in the KA1G1 and KA1G2 strains. It was estimated that it was a constitutive expression strain. When KA1G1 and KA1G2 strains were cultured using LB medium and the cells and dibenzo-p-dioxin were shaken in a buffer solution, significant reduction of dibenzo-p-dioxin was observed, which is an inducer. It was confirmed that the degrading enzyme was expressed, that is, constitutively expressed without adding carbazole.
In the present invention, the present inventors have also succeeded in breeding mutant strains that are more active than the KA1G1 and KA1G2 strains while constantly producing dioxin degrading enzymes. That is, the KA1G2 strain was subcultured in a culture system containing carbazole, and as a result, a mutant strain KA1G2-13012 having a plasmid of a size different from KA1G2 was obtained at the number of passages 67 times. While this mutant strain maintained the property of constitutive expression of CARDO, the CARDO activity was about twice that of the KA1 strain at the time of induction.
KA1G1 strain, KA1G2 strain and KA1G2-13012 strain were deposited internationally at the National Institute of Advanced Industrial Science and Technology, Patent Microorganism Depositary, respectively, with accession numbers FERM BP-10861 (deposit date: July 19, 2006), FERM BP -10862 (Deposit date: July 19, 2006) and FERM BP-10954 (Deposit date: March 4, 2008).
 すなわち本発明は、下記を要旨とするものである。
(1)
 転写制御遺伝子carRIの変異または欠失により発現抑制機構が解除されたプロモーターと、Sphingomonas sp. KA1株由来のcarAaIまたはcarAaIIを有する微生物を用いることを特徴とする芳香族化合物の分解方法。
(2)
 上記の微生物がSphingomonas属細菌である(1)項に記載の分解方法。
(3)
 上記の微生物がSphingomonas sp. KA1株またはその由来菌株である(1)項に記載の分解方法。
(4)
 芳香族へテロ環化合物のヘテロ環を開裂することを特徴とする、(1)-(3)項のいずれか1項に記載の芳香族化合物の分解方法。
(5)
 フェノールエーテルのエーテル結合を切断することを特徴とする、(1)-(3)項のいずれか1項に記載の芳香族化合物の分解方法。
(6)
 芳香族化合物の芳香環に水酸基を導入し、ジヒドロジオール体を生成することを特徴とする(1)-(3)項のいずれか1項に記載の芳香族化合物の分解方法。
(7)
 芳香族化合物が塩素化ダイオキシンである(1)-(6)項のいずれか1項に記載の分解方法。
(8)
 芳香族化合物がベンゼン、トルエン、キシレン、ナフタレン、ビフェニル、アントラセン、ジベンゾフラン、ジベンゾチオフェン、フルオレン、フルオランテン、キサンテン、フェノキサチインおよびジフェニルエーテルから選ばれる少なくとも1種である(1)-(6)項のいずれか1項に記載の分解方法。
(9)
 Sphingomonas sp. KA1G1株(FERM BP-10861)である芳香族化合物分解微生物。
(10)
 Sphingomonas sp. KA1G2株(FERM BP-10862)である芳香族化合物分解微生物。
(11)
 Sphingomonas sp. KA1G2-13012株(FERM BP-10954)である芳香族化合物分解微生物。
(12)
 (9)項ないし(11)項のいずれかに記載の微生物を用いることを特徴とする芳香族化合物の分解方法。
(13)
 (9)項ないし(11)項のいずれかに記載の微生物を用いて芳香族へテロ環化合物のヘテロ環を開裂することを特徴とする芳香族化合物の分解方法。
(14)
 (9)項ないし(11)項のいずれかに記載の微生物を用いてフェノールエーテルのエーテル結合を切断することを特徴とする、芳香族化合物の分解方法。
(15)
 (9)項ないし(11)項のいずれかに記載の微生物を用いて芳香族化合物の芳香環に水酸基を導入し、ジヒドロジオール体を生成することを特徴とする芳香族化合物の分解方法。
(16)
 芳香族化合物が塩素化ダイオキシンである(12)項ないし(15)項のいずれかに記載の分解方法。
(17)
 芳香族化合物がベンゼン、トルエン、キシレン、ナフタレン、ビフェニル、アントラセン、ジベンゾフラン、ジベンゾチオフェン、フルオレン、フルオランテン、キサンテン、フェノキサチインおよびジフェニルエーテルから選ばれる少なくとも1種である(12)項ないし(15)項いずれかに記載の分解方法。
That is, the present invention has the following gist.
(1)
A method for decomposing an aromatic compound, comprising using a microorganism having a carAaI or carAaII derived from a Sphingomonas sp. Strain KA1 and a promoter whose expression suppression mechanism is canceled by mutation or deletion of the transcriptional control gene carRI.
(2)
The degradation method according to item (1), wherein the microorganism is a genus Sphingomonas.
(3)
The degradation method according to item (1), wherein the microorganism is a Sphingomonas sp. KA1 strain or a strain derived therefrom.
(4)
Item 6. The method for decomposing an aromatic compound according to any one of items (1) to (3), wherein the heterocycle of the aromatic heterocyclic compound is cleaved.
(5)
Item 6. The method for decomposing an aromatic compound according to any one of Items (1) to (3), wherein the ether bond of phenol ether is cleaved.
(6)
6. The method for decomposing an aromatic compound according to any one of items (1) to (3), wherein a hydroxyl group is introduced into an aromatic ring of the aromatic compound to produce a dihydrodiol.
(7)
The decomposition method according to any one of items (1) to (6), wherein the aromatic compound is chlorinated dioxin.
(8)
Any of the items (1) to (6), wherein the aromatic compound is at least one selected from benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin and diphenyl ether The decomposition method according to claim 1.
(9)
Sphingomonas sp. KA1G1 strain (FERM BP-10861), an aromatic compound-degrading microorganism.
(10)
An aromatic compound-degrading microorganism which is Sphingomonas sp. KA1G2 strain (FERM BP-10862).
(11)
An aromatic compound-degrading microorganism which is Sphingomonas sp. KA1G2-113012 strain (FERM BP-10954).
(12)
(9) A method for decomposing an aromatic compound, comprising using the microorganism according to any one of items (11) to (11).
(13)
(9) A method for decomposing an aromatic compound, comprising cleaving a heterocycle of an aromatic heterocyclic compound using the microorganism according to any one of (11) to (11).
(14)
(9) A method for decomposing an aromatic compound, which comprises cleaving an ether bond of phenol ether using the microorganism according to any one of items (11) to (11).
(15)
(9) A method for decomposing an aromatic compound, wherein a hydroxyl group is introduced into the aromatic ring of the aromatic compound using the microorganism according to any one of (11) to (11) to produce a dihydrodiol.
(16)
The decomposition method according to any one of (12) to (15), wherein the aromatic compound is chlorinated dioxin.
(17)
The aromatic compound is at least one selected from benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin, and diphenyl ether, any of (12) to (15) Decomposition method according to the above.
 本発明のダイオキシン分解酵素を構成発現する微生物には、従来のカルバゾールで誘導発現する微生物と比較して以下の利点がある。
(1)当該微生物が増殖可能ならば増殖にどのような培地を用いても良く、菌体を安価に生産することができる。
(2)誘導物質により新たな環境汚染を引き起こす心配がない。
The microorganism that constitutively expresses the dioxin-degrading enzyme of the present invention has the following advantages compared to the microorganism that is induced and expressed by conventional carbazole.
(1) Any medium may be used for the growth as long as the microorganism can grow, and the bacterial cells can be produced at low cost.
(2) There is no worry of causing new environmental pollution by the inducer.
 従って、本発明の微生物を用いてバイオオーギュメンテーションを行えば、土壌中の様々な汚染物質、例えばダイオキシン類、ベンゼン、トルエン、ナフタレン、アントラセン、フルオランテンなどの芳香族化合物が、効率的に浄化できる。 Therefore, when bioaugmentation is performed using the microorganism of the present invention, various pollutants in the soil, for example, aromatic compounds such as dioxins, benzene, toluene, naphthalene, anthracene, and fluoranthene can be efficiently purified. .
ダイオキシン類の分解率を示すグラフ。The graph which shows the decomposition rate of dioxins.
 本発明の分解の対象となる芳香族化合物とは、塩素化ダイオキシン又は、ベンゼン、トルエン、キシレン、ナフタレン、ビフェニル、アントラセン、ジベンゾフラン、ジベンゾチオフェン、フルオレン、フルオランテン、キサンテン、フェノキサチインおよびジフェニルエーテルから選ばれる少なくとも1種である。 The aromatic compound to be decomposed according to the present invention is selected from chlorinated dioxins or benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin and diphenyl ether. At least one.
 用いる微生物は、誘導を要さないプロモーターと、その制御下にSphingomonas sp. KA1株由来のcarAaIまたはcarAaIIを有するものであれば良い。 The microorganism used may be a promoter that does not require induction and that has carAaI or carAaII derived from the Sphingomonas sp. KA1 strain under its control.
 誘導を要さないプロモーターとは、どのような培養条件によって菌株を培養してもmRNAの転写が抑制されないプロモーターであり、gfpプロモーター、nptIIプロモーターなどのほか、本菌株のように、転写制御因子の変異または欠失によって誘導抑制を生じない状態となっているプロモーターを含む。 A promoter that does not require induction is a promoter in which transcription of mRNA is not repressed even if the strain is cultured under any culture conditions. In addition to the gfp promoter, the nptII promoter, and the like, It includes a promoter that is in a state in which induction suppression is not caused by mutation or deletion.
 このようなプロモーターの制御下で発現する遺伝子は、ダイオキシン分解の主体となる酵素遺伝子carAaIまたはcarAaIIを含むものであれば良いが、望ましくはこれらの酵素に電子伝達を行うフェレドキシン、及びフェレドキシンレダクターゼをあわせ持つ方が良い。フェレドキシンをコードする遺伝子には例えばKA1株の保有するcarAcI、carAcIIなどがある。また、フェレドキシンレダクターゼをコードする遺伝子には例えばKA1株の保有するfdrI、fdrIIがある。 The gene expressed under the control of such a promoter may be any gene as long as it contains the enzyme genes carAaI or carAaII that are the main components of dioxin degradation. Preferably, these enzymes are combined with ferredoxin that conducts electrons and ferredoxin reductase. It is better to have it. Examples of the gene encoding ferredoxin include carAcI and carAcII possessed by the KA1 strain. Examples of genes encoding ferredoxin reductase include fdrI and fdrII possessed by the KA1 strain.
 Sphingomonas sp. KA1G1株、KA1G2株及びKA1G2-13012株はこのような条件を満たすべく、ダイオキシン分解菌Sphingomonas sp. KA1株より突然変異によって取得された変異株である。 Sphingomonas sp. KA1G1, KA1G2 and KA1G2-13012 are mutant strains obtained by mutation from the dioxin-degrading bacterium Sphingomonas sp. KA1 in order to satisfy these conditions.
 KA1G1株、KA1G2株ではpCAR3上に変異が起こり、2種のCARDO のターミナルオキシゲナーゼcarAaI、carAaIIのうち、carAaIが欠失したが、同時に転写制御因子であるcarRIも欠失したためにプロモーター部位の発現抑制が解除されて、残ったcarAaIIが常時発現する。
 さらに、carAaIIの下流には電子伝達を行うフェレドキシン遺伝子carAcIIもコードされ、一本のmRNAとして同時に転写されるので、これらの株が生育するどのような条件を用いて培養してもCARDO活性が発現する。また、KA1G2-13012株ではcarAaIIがKA1株の少なくとも2倍検出され、遺伝子数の増加がCARDO活性増強に寄与しているものと推察される。
In KA1G1 and KA1G2 strains, mutations occurred in pCAR3, and carAaI was deleted from the two cardo terminal oxygenases carAaI and carAaII. Is released and the remaining carAaII is constantly expressed.
Furthermore, the ferredoxin gene carAcII, which conducts electron transfer, is also encoded downstream of carAaII and is simultaneously transcribed as a single mRNA, so that CARDO activity is expressed regardless of the conditions under which these strains grow. To do. In addition, in the KA1G2-13012 strain, carAaII was detected at least twice that of the KA1 strain, and it is assumed that the increase in the number of genes contributed to the enhancement of CARDO activity.
 このようにして発現したCARDOはカルバゾールのベンゼン環に2つの水酸基を導入することにより、ヘテロ環の自然開裂を促し、2’-アミノビフェニル-2,3-ジオールを生成する。
 本酵素は比較的基質特異性が広く、反応部位の構造が似ている芳香族化合物にも2つの水酸基を導入することができる。ジベンゾフランのように、ヘテロ原子が窒素原子ではなく酸素原子の場合、カルバゾールと同様にヘテロ環が開裂する。ジベンゾ-p-ダイオキシン及びその塩素化化合物の場合も同様に、それぞれ対応する開裂化合物を生成する。
 分解しようとする芳香族化合物が、ジフェニルエーテルのようにヘテロ環を有せず、フェノールエーテルに属する場合も全く同様に反応が起こり、エーテル結合が切断され、2つの分子が生成する。
 分解しようとする芳香族化合物がベンゼン、ナフタレンのようにヘテロ環もフェノール結合も有しない場合、CARDOは芳香環に水酸基を導入し、ジヒドロジオール体を生成する。すなわち、CARDOが作用したベンゼン環は二重結合を2つ有する6員環に変換される。
 このようにCARDOはさまざまな芳香族化合物に作用するので、これらSphingomonas sp. KA1G1株、KA1G2株及びKA1G2-13012株は実用性の高い分解菌といえる。
CARDO thus expressed promotes the spontaneous cleavage of the heterocycle by introducing two hydroxyl groups into the benzene ring of carbazole and produces 2′-aminobiphenyl-2,3-diol.
This enzyme has a relatively wide substrate specificity and can introduce two hydroxyl groups into an aromatic compound having a similar reaction site structure. When the heteroatom is an oxygen atom instead of a nitrogen atom as in dibenzofuran, the heterocycle is cleaved in the same manner as carbazole. Similarly, in the case of dibenzo-p-dioxin and its chlorinated compound, the corresponding cleavage compound is produced.
When the aromatic compound to be decomposed does not have a heterocycle like diphenyl ether and belongs to phenol ether, the reaction occurs in exactly the same manner, and the ether bond is cleaved to generate two molecules.
When the aromatic compound to be decomposed has neither a heterocycle nor a phenol bond, such as benzene and naphthalene, CARDO introduces a hydroxyl group into the aromatic ring to form a dihydrodiol. That is, the benzene ring on which CARDO has acted is converted to a 6-membered ring having two double bonds.
Thus, since CARDO acts on various aromatic compounds, these Sphingomonas sp. Strains KA1G1, KA1G2 and KA1G2-13012 can be said to be highly practical degrading bacteria.
 これらの分解菌を用いて汚染された土壌などを浄化するには、分解菌を汚染箇所に散布することにより、分解菌と汚染物質の接触をはかればよい。散布の方法は、分解菌が生存した状態であれば培養液のまま散布する、活性炭、珪藻土などに固定化して散布する、などどのような形態でも良い。また、処理温度は常温と呼ばれる範囲であればよいが、望ましくは10℃から35℃、さらに望ましくは25℃から30℃が好適である。ただし、このように散布しても、必ずしも汚染箇所で分解菌が長期にわたり生存し続け、汚染物質の分解をつづけるとは限らないので、分解菌の死滅により分解活性が失われた場合は、新たに培養した分解菌を繰り返し散布することによって更なる浄化を行うことが可能である。
(実施例)
 次に、実施例により本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
In order to purify soil contaminated with these decomposing bacteria, the decomposed bacteria and the pollutant may be contacted by spraying the decomposing bacteria over the contaminated sites. The spraying method may be any form such as spraying the culture solution as it is if the degrading bacteria are alive, or immobilizing on activated carbon, diatomaceous earth, or the like. The treatment temperature may be in a range called normal temperature, but is preferably 10 ° C. to 35 ° C., more preferably 25 ° C. to 30 ° C. However, even if sprayed in this way, the degrading bacteria do not always survive in the contaminated area for a long time and do not always continue to decompose the pollutants. It is possible to further purify by repeatedly spraying the decomposed bacteria cultured on the surface.
(Example)
EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited to a following example.
ダイオキシン分解酵素を構成発現する突然変異株の取得方法
 18φ径のガラス製試験管にCFMM培地(1リットル当りNa2HPO42.2 g, KH2PO40.8 g, NH4NO3 3.0 g, MgSO4・7H2O 0.2 g, FeCl3・6H2O 50 mg, CaCl2・2H2O 10 mg)5ml及び、カルバゾール溶液(100mg/ml DMSO溶液)50μl を添加しSphingomonas sp. KA1株を接種した。これを30℃で振盪培養し、同じ培養条件で3日ごとに継代培養を繰り返した。63回目の培養で、培養液の色がこれまで白色または淡黄色だったものが褐色に変化したので、培養液を中性条件下で酢酸エチルを用いて抽出し、抽出成分をGC-MSにて継代培養前のKA1株の培養液と比較検討したところ、継代培養後の培養液にカテコールおよびアントラニル酸の顕著な蓄積が認められ、継代培養によりKA1株に何らかの変異が起こっていることが示唆された。
Method for obtaining mutant strains that express dioxin degrading enzyme CFMM medium (Na 2 HPO 4 2.2 g, KH 2 PO 4 0.8 g, NH 4 NO 3 3.0 g, MgSO 4 per liter) · 7H 2 O 0.2 g, FeCl 3 · 6H 2 O 50 mg, CaCl 2 · 2H 2 O 10 mg) 5ml and was added carbazole solution (100 mg / ml DMSO solution) 50 [mu] l was inoculated with Sphingomonas sp. KA1 strain. This was cultured with shaking at 30 ° C., and subculture was repeated every 3 days under the same culture conditions. During the 63rd culture, the white or pale yellow color of the culture broth changed to brown, so the culture broth was extracted with ethyl acetate under neutral conditions and the extracted components were converted to GC-MS. In comparison with the culture solution of KA1 strain before subculture, significant accumulation of catechol and anthranilic acid was observed in the culture solution after subculture, and some mutations occurred in KA1 strain by subculture It has been suggested.
 本培養液から、2つの変異株KA1G1株、KA1G2株を単離した。それぞれからプラスミドを抽出し、DNAシークエンスを行ったところ、両変異株ともKA1株の有するプラスミドpCAR3の少なくとも約60kbにわたる大きな部分が欠失したものであることがわかった。欠失部位には、ダイオキシンを分解する2つの遺伝子群のうち、carAaIを含むオペロンや、カルバゾールの下流の代謝を担う、カテコール分解オペロンが含まれていた。KA1G2株はKA1G1株よりカルバゾール分解系遺伝子とは関係のない部分がさらに約300b欠失していた。 Two mutant strains KA1G1 and KA1G2 were isolated from the main culture. When plasmids were extracted from each of them and subjected to DNA sequencing, it was found that both mutants had a large portion of plasmid pCAR3 possessed by KA1 strain deleted at least about 60 kb. Among the two gene groups that degrade dioxins, the deletion site included an operon containing carAaI and a catechol-degrading operon responsible for metabolism downstream of carbazole. In the KA1G2 strain, a portion not related to the carbazole degradation gene was further deleted from the KA1G1 strain by about 300b.
 これらの遺伝子群が欠失しても変異株がカルバゾールを唯一の炭素源として生育できたのは、プラスミド上に別のカルバゾール分解遺伝子carAaIIを含むオペロンが、また、染色体上にもカテコールより下流の遺伝子群が存在しているためである。さらに、鋭意検討の結果、欠失部位にはcarAaI、carAaIIを含むオペロンの転写調節を行うcarRIが含まれていたことが明らかとなった。carAaIIが構成的に発現するに至ったのは、この遺伝子が失われたためであると推論できた。 Even when these gene groups were deleted, the mutant strain was able to grow using carbazole as the sole carbon source because the operon containing another carbazole-degrading gene carAaII on the plasmid and on the chromosome downstream of catechol. This is because a gene group exists. Furthermore, as a result of intensive studies, it was found that the deletion site contained carRI that regulates the transcription of operons including carAaI and carAaII. It was inferred that this gene was lost because carAaII was constitutively expressed.
ダイオキシン分解酵素を高レベルに構成発現する突然変異株KA1G2-13012株の取得方法
 実施例1と同様の方法でKA1G2株の継代培養を行った。67回目の培養で、培養液の色がこれまで褐色であったものが淡黄色に変化したので、継代培養によりKA1G2株に何らかの変異が起こっていることが示唆された。
 本培養液から、変異株KA1G2-13012株を単離した。それぞれから全DNAを抽出し、リアルタイムPCR法でcarAaII及び16SrDNAの存在比を解析したところ、本変異株はその値がKA1G2株の2倍以上を示した。このことより、この変異株はcarAaIIを含む領域が、相同組換え等によりゲノム上で重複した株であると推論できた。
Method for Obtaining Mutant Strain KA1G2-13012 Constitutively Expressing Dioxin Degrading Enzyme Strain KA1G2 was subcultured in the same manner as in Example 1. In the 67th culture, the brown color of the culture broth changed to pale yellow, suggesting that subculturing caused some mutation in the KA1G2 strain.
A mutant strain KA1G2-13012 was isolated from the main culture. Total DNA was extracted from each, and the abundance ratio of carAaII and 16SrDNA was analyzed by real-time PCR. As a result, the value of this mutant strain was more than twice that of the KA1G2 strain. From this, it was inferred that this mutant strain was a strain in which the region containing carAaII was duplicated on the genome by homologous recombination or the like.
ダイオキシン分解遺伝子の発現量(活性)
 CARDOは、ナフタレンに作用させると、cis-1,2-ジヒドロキシ-1,2-ジヒドロナフタレンを生成する。この反応を用い、生成物を液体クロマトグラフィーで定量することで、KA1株とKA1G1株、KA1G2株及びKA1G2-13012株のCARDO活性を比較した。
Dioxin-degrading gene expression level (activity)
When CARDO acts on naphthalene, it produces cis-1,2-dihydroxy-1,2-dihydronaphthalene. By using this reaction and quantifying the product by liquid chromatography, the KA1 strain, KA1G1 strain, KA1G2 strain, and KA1G2-13012 strain were compared in CARDO activity.
φ10mmのガラス製試験管にリン酸緩衝液2ml、ナフタレン5mg、及び培養したKA1株、KA1G1株、KA1G2株、KA1G2-13012株のいずれかの菌体をOD600=0.5となるよう懸濁した。KA1株を培養するには、CFMM培地にカルバゾールを0.01%添加したものを用いた。KA1G1株、KA1G2株およびKA1G2-13012株を培養するには、CFMM培地にコハク酸ナトリウムを0.01%添加したものを用いた。反応後培養液をろ過し、ろ液中のcis-1,2-ジヒドロキシ-1,2-ジヒドロナフタレンを液体クロマトグラフィーで定量、その初期生成速度を測定した。 Suspend 2 ml of phosphate buffer solution, 5 mg of naphthalene, and cultured cells of KA1, KA1G1, KA1G2, and KA1G2-113012 in an Ø10 mm glass test tube so that OD 600 = 0.5 did. In order to culture the KA1 strain, a CFMM medium supplemented with 0.01% carbazole was used. In order to culture the KA1G1 strain, the KA1G2 strain, and the KA1G2-113012 strain, a CFMM medium supplemented with 0.01% sodium succinate was used. After the reaction, the culture broth was filtered, cis-1,2-dihydroxy-1,2-dihydronaphthalene in the filtrate was quantified by liquid chromatography, and the initial production rate was measured.
 結果を表1に示した。ここで用いた単位unitは、この反応系で1時間に生成したcis-1,2-ジヒドロキシ-1,2-ジヒドロナフタレンのng数を示す。KA1G1株及びKA1G2株はカルバゾールを添加せずともカルバゾールで誘導したKA1株の4割程度の生成速度を示した。また、KA1G2-13012株はKA1株の約2倍の生成速度を示した。このことから、これらすべての変異株はCARDOを構成発現していることが確認できた。CARDOが誘導された状態のKA1株と比較して、KA1G1株とKA1G2株の活性が低いのは、2つ存在していた酵素遺伝子のうち、変異株では片方が欠失しているからであると考えられる。一方、KA1G2-13012株の活性が高いのは、carAaIIがゲノム内で重複したためと考えられる。遺伝子数が多いことのみによる効果か、転写活性も上がっているのかは明らかではない。 The results are shown in Table 1. The unit unit used here represents the ng number of cis-1,2-dihydroxy-1,2-dihydronaphthalene produced in one hour in this reaction system. The KA1G1 and KA1G2 strains showed a production rate of about 40% of the KA1 strain induced with carbazole without adding carbazole. Moreover, the KA1G2-13012 strain showed about twice the production rate of the KA1 strain. From these results, it was confirmed that all these mutants expressed constitutive expression of CARDO. The KA1G1 and KA1G2 strains are less active than the KA1 strain in which CARDO was induced because one of the two enzyme genes was deleted in the mutant strain. it is conceivable that. On the other hand, the high activity of the KA1G2-13012 strain is considered to be due to duplication of carAaII in the genome. It is not clear whether the effect is only due to the large number of genes or whether the transcriptional activity is also increased.
取得された変異株の芳香族化合物の分解能力
 50mMリン酸緩衝液(pH7.2)1mlを20ml容ガラス製バイアルに入れ、実施例3に述べる方法と同様にして培養したKA1株、KA1G1株、KA1G2株、及びKA1G2-13012株をOD600=1.5となるよう懸濁した。これら菌体懸濁液にベンゼン、トルエン、キシレン、ナフタレン、ビフェニル、アントラセン、ジベンゾフラン、ジベンゾチオフェン、フルオレン、フルオランテン、キサンテン、フェノキサチイン、ジフェニルエーテルをそれぞれ10μg添加し、密栓後、30℃で24時間反応させ、ベンゼン、トルエン、キシレンの場合は残存物質を気相より、生成物を液相より抽出し、GC-MS分析に供した。そのほかの供試物質の場合は、液相より残存基質及び生成物を抽出、GC-MS分析に供した。
 回収された残存基質の割合(%)を表2に示す。いずれの株も供試物質を良好に分解した。特に、KA1G2-13012株においては多くの物質を高い分解率で分解した。
 一方、検出された分解生成物は、ジベンゾフラン、ジベンゾチオフェンおよびジフェニルエーテルを除く化合物はそれぞれジヒドロジオール体へ、ジベンゾフランはトリヒドロキシビフェニルとジベンゾフランジヒドロジオールへ、ジベンゾチオフェンはジベンゾチオフェンジヒドロジオールおよびジベンゾチオフェン-5-オキサイドへ、ジフェニルエーテルはカテコールとフェノールへと変換された。これにより、これらの変異株は親株であるKA1株と同様な機構で芳香族化合物を分解していることが確認できた。
Degradation ability of the aromatic compound of the obtained mutant strain 1 ml of 50 mM phosphate buffer (pH 7.2) was placed in a 20 ml glass vial and cultured in the same manner as described in Example 3, KA1 strain, KA1G1 strain, The KA1G2 strain and the KA1G2-113012 strain were suspended so that OD 600 = 1.5. 10 μg each of benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin, and diphenyl ether was added to these cell suspensions, and the mixture was sealed and reacted at 30 ° C. for 24 hours. In the case of benzene, toluene and xylene, the remaining material was extracted from the gas phase and the product was extracted from the liquid phase and subjected to GC-MS analysis. In the case of other test substances, residual substrates and products were extracted from the liquid phase and subjected to GC-MS analysis.
Table 2 shows the ratio (%) of the recovered remaining substrate. All strains degraded the test substance well. In particular, in the KA1G2-113012 strain, many substances were degraded at a high degradation rate.
On the other hand, the detected decomposition products were dibenzofuran, dibenzothiophene and diphenyl ether, except for compounds to dihydrodiol, dibenzofuran to trihydroxybiphenyl and dibenzofurandihydrodiol, dibenzothiophene to dibenzothiophene dihydrodiol and dibenzothiophene-5- To oxide, diphenyl ether was converted to catechol and phenol. As a result, it was confirmed that these mutant strains degraded the aromatic compound by the same mechanism as the parent strain KA1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
四塩素化ダイオキシンの分解能力
 50mMリン酸緩衝液(pH7.2)5mlを30ml容三角フラスコに入れ、実施例3と同様に培養したKA1株、KA1G1株、KA1G2株、及びKA1G2-13012株をOD600=1.5となるよう懸濁した。これに、2,3,7,8-TeCDDを10ng添加し、30℃で24時間攪拌した。これらのサンプルより残存基質を抽出・定量し、下表のとおりの分解率を得た。なお、コントロールとしては、KA1G1株を121℃で5分間オートクレーブ処理した菌体を用い、分解率はこのコントロールからの回収量に対する割合をもとに算出した。
Decomposition ability of tetrachlorinated dioxin 5 ml of 50 mM phosphate buffer (pH 7.2) was placed in a 30 ml Erlenmeyer flask, and cultured in the same manner as in Example 3. KA1, KA1G1, KA1G2 and KA1G2-113012 were OD. It was suspended to 600 = 1.5. To this, 10 ng of 2,3,7,8-TeCDD was added and stirred at 30 ° C. for 24 hours. Residual substrates were extracted and quantified from these samples, and the decomposition rates as shown in the table below were obtained. As a control, cells obtained by autoclaving the KA1G1 strain at 121 ° C. for 5 minutes were used, and the degradation rate was calculated based on the ratio to the recovered amount from this control.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように、取得されたいずれの変異株も、培養にカルバゾールを用いない培地を用いても、2,3,7,8-TeCDDを分解することが明らかとなった。特に、KA1G2-13012株は添加した2,3,7,8-TeCDDを24時間で60%以上分解し、非常に強い2,3,7,8-TeCDD分解能力を有することが示された。 Thus, it was revealed that any of the obtained mutant strains decomposes 2,3,7,8-TeCDD even when a culture medium without carbazole is used for the culture. In particular, the KA1G2-113012 strain decomposed the added 2,3,7,8-TeCDD by 60% or more in 24 hours and was shown to have a very strong 2,3,7,8-TeCDD degradation ability.
高塩素化ダイオキシン類の分解能力
 50mMリン酸緩衝液(pH7.2)5mlを30ml容三角フラスコに入れ、実施例3と同様に培養したKA1株、KA1G1株及びKA1G2-13012株をOD600=1.5となるよう懸濁した。これに、ダイオキシン混合液を添加し30℃で24時間攪拌した。ダイオキシンの添加量は、四塩素化ダイオキシン、五塩素化ダイオキシン、四塩素化ジベンゾフラン、五塩素化ジベンゾフラン、及びコプラナーPCB類は10ng、八塩素化ダイオキシン及び八塩素化ジベンゾフランは50ng、その他のダイオキシン類は20ngとした。これらのサンプルは残存基質を抽出・定量し、図1のとおりの残存率を得た。なお、コントロールとしては、KA1G1株を121℃で5分間オートクレーブ処理した菌体を用い、残存率はこのコントロールからの回収量に対する割合として算出した。
Decomposition capacity of highly chlorinated dioxins 5 ml of 50 mM phosphate buffer (pH 7.2) was placed in a 30 ml Erlenmeyer flask and cultured in the same manner as in Example 3. KA1 strain, KA1G1 strain and KA1G2-13012 strain were OD 600 = 1 Suspended to be .5. A dioxin mixed solution was added thereto and stirred at 30 ° C. for 24 hours. The amount of dioxin added is 10 ng for tetrachlorinated dioxins, pentachlorinated dioxins, tetrachlorinated dibenzofurans, pentachlorinated dibenzofurans, and coplanar PCBs, 50 ng for octachlorinated dioxins and octachlorinated dibenzofurans, and other dioxins for dioxins 20 ng. In these samples, the residual substrate was extracted and quantified, and the residual ratio as shown in FIG. 1 was obtained. As a control, microbial cells obtained by autoclaving the KA1G1 strain at 121 ° C. for 5 minutes were used, and the residual rate was calculated as a ratio to the recovered amount from this control.
 この図1に示すように、KA1株およびKA1G1株及びKA1G2-13012株は、2,3,7,8-TeCDD以外にもさまざまな有毒な塩素化ダイオキシンを分解できることがわかった。
 特に2,3,7,8-TeCDF、3,4,4’,5-TeCB、3,3’,4,4’-TeCB、3,3’,4,4’,5-PeCBなどにおいて高い分解率を得ることができた。
 実施例3及び実施例5に述べた試験結果を考慮すると、この試験で用いなかったKA1G2株においても、KA1G1株と同等の分解活性を有するものと推測される。
As shown in FIG. 1, it was found that the KA1, KA1G1 and KA1G2-13012 strains can decompose various toxic chlorinated dioxins other than 2,3,7,8-TeCDD.
Particularly high in 2,3,7,8-TeCDF, 3,4,4 ′, 5-TeCB, 3,3 ′, 4,4′-TeCB, 3,3 ′, 4,4 ′, 5-PeCB, etc. The decomposition rate could be obtained.
Considering the test results described in Example 3 and Example 5, it is presumed that the KA1G2 strain not used in this test has the same degradation activity as the KA1G1 strain.
 なお、図1中の略語は以下の化合物を指す。
TeCDF:Tetrachlorodibenzofuran
PeCDF:Pentachlorodibenzofuran
HxCDF:Hexachlorodibenzofuran
HpCDF:Heptachlorodibenzofuran
OCDF:Octachlorodibenzofuran
TeCDD:Tetrachlorodibenzo-p-dioxin
PeCDD:Pentachlorodibenzo-p-dioxin
HxCDD:Hexachlorodibenzo-p-dioxin
HpCDD:Heptachlorodibenzo-p-dioxin
OCDD:Octachlorodibenzo-p-dioxin
TeCB:Tetrachlorobiphenyl
PeCB:Pentachlorobiphenyl
HxCB:Hexachlorobiphenyl
HpCB: Heptachlorobiphenyl
In addition, the abbreviation in FIG. 1 points out the following compounds.
TeCDF: Tetrachlorodibenzofuran
PeCDF: Pentachlorodibenzofuran
HxCDF: Hexachlorodibenzofuran
HpCDF: Heptachlorodibenzofuran
OCDF: Octachlorodibenzofuran
TeCDD: Tetrachlorodibenzo-p-dioxin
PeCDD: Pentachlorodibenzo-p-dioxin
HxCDD: Hexachlorodibenzo-p-dioxin
HpCDD: Heptachlorodibenzo-p-dioxin
OCDD: Octachlorodibenzo-p-dioxin
TeCB: Tetrachlorobiphenyl
PeCB: Pentachlorobiphenyl
HxCB: Hexachlorobiphenyl
HpCB: Heptachlorobiphenyl
 本発明により、環境汚染を引きおこすことなく芳香族化合物を分解できるので、本発明は環境浄化技術として極めて有用である。 Since the present invention can decompose aromatic compounds without causing environmental pollution, the present invention is extremely useful as an environmental purification technique.

Claims (17)

  1.  転写制御遺伝子carRIの変異または欠失により発現抑制機構が解除されたプロモーターと、Sphingomonas sp. KA1株由来のcarAaIまたはcarAaIIを有する微生物を用いることを特徴とする芳香族化合物の分解方法。 A method for decomposing aromatic compounds, comprising using a microorganism having a carAaI or carAaII derived from a Sphingomonas sp. KA1 strain and a promoter whose expression suppression mechanism is released by mutation or deletion of the transcriptional control gene carRI.
  2.  上記の微生物がSphingomonas属細菌である請求項1に記載の分解方法。 The degradation method according to claim 1, wherein the microorganism is a genus Sphingomonas.
  3.  上記の微生物がSphingomonas sp. KA1株またはその由来菌株である請求項1に記載の分解方法。 The degradation method according to claim 1, wherein the microorganism is Sphingomonas sp. KA1 strain or a strain derived therefrom.
  4.  芳香族へテロ環化合物のヘテロ環を開裂することを特徴とする、請求項1-3のいずれか1項に記載の芳香族化合物の分解方法。 The method for decomposing an aromatic compound according to any one of claims 1 to 3, wherein the heterocycle of the aromatic heterocyclic compound is cleaved.
  5.  フェノールエーテルのエーテル結合を切断することを特徴とする、請求項1-3のいずれか1項に記載の芳香族化合物の分解方法。 The method for decomposing an aromatic compound according to any one of claims 1 to 3, wherein the ether bond of phenol ether is cleaved.
  6.  芳香族化合物の芳香環に水酸基を導入し、ジヒドロジオール体を生成することを特徴とする請求項1-3のいずれか1項に記載の芳香族化合物の分解方法。 The method for decomposing an aromatic compound according to any one of claims 1 to 3, wherein a hydroxyl group is introduced into the aromatic ring of the aromatic compound to produce a dihydrodiol form.
  7.  芳香族化合物が塩素化ダイオキシンである請求項1-6のいずれか1項に記載の分解方法。 The decomposition method according to any one of claims 1 to 6, wherein the aromatic compound is chlorinated dioxin.
  8.  芳香族化合物がベンゼン、トルエン、キシレン、ナフタレン、ビフェニル、アントラセン、ジベンゾフラン、ジベンゾチオフェン、フルオレン、フルオランテン、キサンテン、フェノキサチインおよびジフェニルエーテルから選ばれる少なくとも1種である請求項1-6のいずれか1項に記載の分解方法。 The aromatic compound is at least one selected from benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin and diphenyl ether. The disassembly method described in 1.
  9.  Sphingomonas sp. KA1G1株(FERM BP-10861)である芳香族化合物分解微生物。 Aromatic compound-degrading microorganism, which is Sphingomonas sp.
  10.  Sphingomonas sp. KA1G2株(FERM BP-10862)である芳香族化合物分解微生物。 Aromatic compound-degrading microorganisms, which are Sphingomonas sp.
  11.  Sphingomonas sp. KA1G2-13012株(FERM BP-10954)である芳香族化合物分解微生物。 Aromatic compound-degrading microorganism, Sphingomonas sp. KA1G2-113012 strain (FERM BP-10954).
  12.  請求項9-11のいずれか1項に記載の微生物を用いることを特徴とする芳香族化合物の分解方法。 A method for decomposing an aromatic compound, comprising using the microorganism according to any one of claims 9-11.
  13.  請求項9-11のいずれか1項に記載の微生物を用いて芳香族へテロ環化合物のヘテロ環を開裂することを特徴とする芳香族化合物の分解方法。 A method for decomposing an aromatic compound, comprising cleaving a heterocycle of an aromatic heterocyclic compound using the microorganism according to any one of claims 9-11.
  14.  請求項9-11のいずれか1項に記載の微生物を用いてフェノールエーテルのエーテル結合を切断することを特徴とする、芳香族化合物の分解方法。 A method for decomposing an aromatic compound, comprising cleaving an ether bond of phenol ether using the microorganism according to any one of claims 9-11.
  15.  請求項9-11のいずれか1項に記載の微生物を用いて芳香族化合物の芳香環に水酸基を導入し、ジヒドロジオール体を生成することを特徴とする芳香族化合物の分解方法。 A method for decomposing an aromatic compound, comprising using the microorganism according to any one of claims 9 to 11 to introduce a hydroxyl group into an aromatic ring of the aromatic compound to produce a dihydrodiol form.
  16.  芳香族化合物が塩素化ダイオキシンである請求項12-15のいずれか1項に記載の分解方法。 The decomposition method according to any one of claims 12 to 15, wherein the aromatic compound is chlorinated dioxin.
  17.  芳香族化合物がベンゼン、トルエン、キシレン、ナフタレン、ビフェニル、アントラセン、ジベンゾフラン、ジベンゾチオフェン、フルオレン、フルオランテン、キサンテン、フェノキサチインおよびジフェニルエーテルから選ばれる少なくとも1種である請求項12-15のいずれか1項に記載の分解方法。 The aromatic compound is at least one selected from benzene, toluene, xylene, naphthalene, biphenyl, anthracene, dibenzofuran, dibenzothiophene, fluorene, fluoranthene, xanthene, phenoxathiin and diphenyl ether. The disassembly method described in 1.
PCT/JP2008/056861 2008-04-07 2008-04-07 Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same WO2009125462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056861 WO2009125462A1 (en) 2008-04-07 2008-04-07 Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056861 WO2009125462A1 (en) 2008-04-07 2008-04-07 Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same

Publications (1)

Publication Number Publication Date
WO2009125462A1 true WO2009125462A1 (en) 2009-10-15

Family

ID=41161607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056861 WO2009125462A1 (en) 2008-04-07 2008-04-07 Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same

Country Status (1)

Country Link
WO (1) WO2009125462A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111875A1 (en) * 2011-02-15 2012-08-23 이화여자대학교 산학협력단 Novel sphingomonas sp. microorganism, and method for decomposing methane or odor-producing compounds using same
KR101509861B1 (en) 2012-08-24 2015-04-07 현대자동차주식회사 Detecting Method of Spoil Odor from Air Conditioner and Reproducing Method thereof, and the Spoil Odor Composition the same
CN107058155A (en) * 2016-12-22 2017-08-18 江苏省农业科学院 One plant of diphenyl ether degradation bacteria and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244294A (en) * 1997-03-05 1998-09-14 Agency Of Ind Science & Technol Method for bio-denitrification of hardly removable aromatic organic nitrogen compound
JPH1146756A (en) * 1997-08-05 1999-02-23 Showa Shell Sekiyu Kk Cleanup of environmental pollutant using microorganism
JP2005333874A (en) * 2004-05-27 2005-12-08 Asahi Breweries Ltd Method for degrading tetrachlorodioxin
JP2007215403A (en) * 2005-11-21 2007-08-30 Asahi Breweries Ltd Method for decomposing environmental pollutant by using microorganism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244294A (en) * 1997-03-05 1998-09-14 Agency Of Ind Science & Technol Method for bio-denitrification of hardly removable aromatic organic nitrogen compound
JPH1146756A (en) * 1997-08-05 1999-02-23 Showa Shell Sekiyu Kk Cleanup of environmental pollutant using microorganism
JP2005333874A (en) * 2004-05-27 2005-12-08 Asahi Breweries Ltd Method for degrading tetrachlorodioxin
JP2007215403A (en) * 2005-11-21 2007-08-30 Asahi Breweries Ltd Method for decomposing environmental pollutant by using microorganism

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
GAI Z ET AL.: "Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain", APPL. ENVIRON. MICROBIOL., vol. 73, no. 9, 2007, pages 2832 - 2838 *
HABE H ET AL.: "Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil", FEMS MICROBIOL. LETT., vol. 211, no. 1, 2002, pages 43 - 49 *
INOUE K ET AL.: "Characterization of novel carbazole catabolism genes from gram-positive carbazole degrader Nocardioides aromaticivorans IC177", APPL. ENVIRON. MICROBIOL., vol. 72, no. 5, 2006, pages 3321 - 3329 *
INOUE K ET AL.: "Divergent structures of carbazole degradative car operons isolated from gram-negative bacteria", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 68, no. 7, 2004, pages 1467 - 1480 *
INOUE K ET AL.: "Diversity of carbazole- degrading bacteria having the car gene cluster: isolation of a novel gram-positive carbazole- degrading bacterium", FEMS MICROBIOL. LETT., vol. 245, no. 1, 2005, pages 145 - 153, XP025393935, DOI: doi:10.1016/j.femsle.2005.03.009 *
KILBANE JJ II ET AL.: "Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 297, no. 2, 2002, pages 242 - 248 *
MIYAKOSHI M ET AL.: "Differentiation of carbazole catabolic operons by replacement of the regulated promoter via transposition of an insertion sequence", J. BIOL. CHEM., vol. 281, no. 13, 2006, pages 8450 - 8457 *
NOJIRI H ET AL.: "Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10", J. BACTERIOL., vol. 183, no. 12, 2001, pages 3663 - 3679 *
NOJIRI H. ET AL.: "Dioxine Bunshi o Hakai suru Koso", KAGAKU TO SEIBUTSU, vol. 38, no. 7, 2000, pages 429 - 431 *
SAIKI Y ET AL.: "Rhizoremediation of dioxin- like compounds by a recombinant Rhizobium tropici strain expressing carbazole 1,9a- dioxygenase constitutively", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 67, no. 5, 2003, pages 1144 - 1148 *
SAIKI Y. ET AL.: "Sphingomonas sp. KA1 Kabu o Mochiita Dioxine Jitsuosendo no Joka Shiken", CHIKASUI'DOJO OSEN TO SONO BOSHI TAISAKU NI KANSURU KENKYU SHUKAI KOENSHU, vol. 12, 2006, pages 22 - 29 *
SHINTANI M ET AL.: "The Sphingomonas plasmid pCAR3 is involved in complete mineralization of carbazole", J. BACTERIOL., vol. 189, no. 5, 2007, pages 2007 - 2020 *
TAKAHASHI Y. ET AL.: "Shukushu Senshokutai ni Kitei sareru Saibonai Kankyo ni Tekio shita Plasmid no Idenshi Kozo Henka", JOURNAL OF THE AGRICULTURAL CHEMICAL SOCIETY OF JAPAN, 5 March 2008 (2008-03-05), pages 95 *
URATA M ET AL.: "Plasmid pCAR3 contains multiple gene sets involved in the conversion of carbazole to anthranilate", APPL.ENVIRON. MICROBIOL., vol. 72, no. 5, 2006, pages 3198 - 3205 *
VAN DER MEER JR ET AL.: "Molecular mechanisms of genetic adaptation to xenobiotic compounds", MICROBIOL. REV., vol. 56, no. 4, 1992, pages 677 - 694 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111875A1 (en) * 2011-02-15 2012-08-23 이화여자대학교 산학협력단 Novel sphingomonas sp. microorganism, and method for decomposing methane or odor-producing compounds using same
KR101241546B1 (en) 2011-02-15 2013-03-11 이화여자대학교 산학협력단 Novel Sphingomonas sp. strain and method for decomposition methane or compounds inducing malodor using the same
JP2013532967A (en) * 2011-02-15 2013-08-22 イファ ユニバーシティ−インダストリー コラボレーション ファウンデーション Novel sphingomonas microorganism and method for decomposing methane or malodor-inducing compound using the same
US8748154B2 (en) 2011-02-15 2014-06-10 Ewha University-Industry Collaboration Foundation Sphingomonas sp. microorganism and method for decomposing methane or odor-producing compounds using the same
KR101509861B1 (en) 2012-08-24 2015-04-07 현대자동차주식회사 Detecting Method of Spoil Odor from Air Conditioner and Reproducing Method thereof, and the Spoil Odor Composition the same
CN107058155A (en) * 2016-12-22 2017-08-18 江苏省农业科学院 One plant of diphenyl ether degradation bacteria and its application
CN107058155B (en) * 2016-12-22 2019-06-07 江苏省农业科学院 One plant of diphenyl ether degradation bacteria and its application

Similar Documents

Publication Publication Date Title
Wang et al. Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls
Kumar et al. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F
Feng et al. Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition
Zhao et al. Biodegradation of di-n-butylphthalate and phthalic acid by a novel Providencia sp. 2D and its stimulation in a compost-amended soil
Essam et al. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1
Mao et al. Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor
Festa et al. Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil
Zhao et al. Functional genomic analysis of phthalate acid ester (PAE) catabolism genes in the versatile PAE-mineralising bacterium Rhodococcus sp. 2G
Ntougias et al. Diversity and efficiency of anthracene-degrading bacteria isolated from a denitrifying activated sludge system treating municipal wastewater
Alamri Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake
Xiang et al. Recent advances in the biodegradation of polychlorinated biphenyls
Sam et al. Phenol and p-nitrophenol biodegradations by acclimated activated sludge: Influence of operational conditions on biodegradation kinetics and responding microbial communities
Wang et al. Nitrate stimulation of N-Methylpyrrolidone biodegradation by Paracoccus pantotrophus: Metabolite mechanism and Genomic characterization
Jia et al. Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval
Ma et al. Biodegradation of skatole by Burkholderia sp. IDO3 and its successful bioaugmentation in activated sludge systems
Nguyen et al. Biodegradation of dioxins by Burkholderia cenocepacia strain 869T2: Role of 2-haloacid dehalogenase
Cai et al. Degradation of piperazine by Paracoccus sp. TOH isolated from activated sludge
Zhang et al. Anaerobic biodegradation of phenanthrene by a newly isolated nitrate‐dependent Achromobacter denitrificans strain PheN1 and exploration of the biotransformation processes by metabolite and genome analyses
Palatucci et al. Aerobic biodegradation of 2, 3-and 3, 4-dichloronitrobenzene
Selvakumaran et al. Diversity of aromatic ring-hydroxylating dioxygenase gene in Citrobacter
Di Gioia et al. Characterization of four olive-mill-wastewater indigenous bacterial strains capable of aerobically degrading hydroxylated and methoxylated monocyclic aromatic compounds
Zhou et al. A novel strategy for enhancing bioremediation of polychlorinated biphenyl-contaminated soil with resuscitation promoting factor and resuscitated strain
Ren et al. Genetic bioaugmentation of activated sludge with dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52
Tu et al. Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: Microcosm, pilot-scale, and gene studies
Deng et al. Biodegradation of pyrene by a novel strain of Castellaniella sp. under denitrifying condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP