JPH10244294A - Method for bio-denitrification of hardly removable aromatic organic nitrogen compound - Google Patents

Method for bio-denitrification of hardly removable aromatic organic nitrogen compound

Info

Publication number
JPH10244294A
JPH10244294A JP5074497A JP5074497A JPH10244294A JP H10244294 A JPH10244294 A JP H10244294A JP 5074497 A JP5074497 A JP 5074497A JP 5074497 A JP5074497 A JP 5074497A JP H10244294 A JPH10244294 A JP H10244294A
Authority
JP
Japan
Prior art keywords
organic nitrogen
reaction
aromatic organic
nitrogen compound
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5074497A
Other languages
Japanese (ja)
Other versions
JP3243498B2 (en
Inventor
Ryuichiro Kurane
隆一郎 倉根
Shoji Usami
昭次 宇佐美
Kotaro Kirimura
光太郎 桐村
Kenji Tsuji
健司 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU KODAN
SEKYU KODAN
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SEKIYU KODAN
SEKYU KODAN
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU KODAN, SEKYU KODAN, Agency of Industrial Science and Technology filed Critical SEKIYU KODAN
Priority to JP05074497A priority Critical patent/JP3243498B2/en
Publication of JPH10244294A publication Critical patent/JPH10244294A/en
Application granted granted Critical
Publication of JP3243498B2 publication Critical patent/JP3243498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform two phase denitrification reaction of petroleum org. solvent/water system for decomposing and removing different arom. org. nitrogen compd. with carbazole skeleton and quinoline skeleton with one kind of microorganism by bringing continuously a resting bacillus of a microorganism for decomposing an arom. org. nitrogen compd. into contact with a substance contg. the arom. org. nitrogen compd. and decomposing them. SOLUTION: By using a bacterium isolated from the natural world by an accumulation cultivation method under a barely aerobic condition with an oxygen partial pressure condition being at most explosion limit and with assimilation and decomposition ability under an appropriate water content by using carbazole as a sole nitrogen source and a sole carbon source, quinoline which is another representative compd. with a skeleton as a hardly removable arom. compd. except carbazole is also assimilated and decomposed. From a view point for decomposing efficiently, e.g. the interface for bringing the denitrification bacterium into contact with the org. nitrogen compd. as a substrate is enlarged by using a surfactant and stirring appropriately the reaction system. As the result, the reaction in a petroleum fraction such as a crude oil and kerosene can be done in two phases of a petroleum org. solvent/water and a resting bacillus can be repeatedly used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微生物を利用した脱窒
素方法に関する。より詳細には、特定の菌株を用いて、
原油等の石油(製品)や、石炭等の芳香族類有機窒素化
合物を含む物質から脱窒素をする方法に関する。
The present invention relates to a method for denitrification using microorganisms. More specifically, using a specific strain,
The present invention relates to a method for denitrifying petroleum (product) such as crude oil and a substance containing an aromatic organic nitrogen compound such as coal.

【0002】[0002]

【従来の技術】世界における石油需要は、世界的な産業
活性化の必要性、発展途上国における消費の増加、石油
代替エネルギーの開発の頭打ち、省エネルギーの限界等
から、未だ底堅いものがある。特にガソリンや灯油、軽
油の需要は堅調で、石油の需要の構造は急速に軽質化の
方向に向かっている。掛かる軽質石油の需要の増大に伴
い、石油精製技術の一層の進歩・発展が望まれている。
2. Description of the Related Art The demand for oil in the world is still resilient due to the necessity of revitalizing the industry worldwide, increasing consumption in developing countries, halting the development of alternative energy to oil, and the limit of energy saving. In particular, demand for gasoline, kerosene, and gas oil is strong, and the structure of petroleum demand is rapidly moving toward lightening. With the increasing demand for light petroleum, further progress and development of petroleum refining technology are desired.

【0003】例えば、昨今の環境問題に対応した、より
環境への負担が少なくてすむ石油精製技術の確立が望ま
れている。産業界では「ボイラー燃焼においては、窒素
分の少ない良質燃料の選択も必要」という意見も唱えら
れており、脱窒素の必要性は増大しつつある。また、環
境汚染防止の観点においても、NOx規制と軽質系原油の
入手難により軽油・灯油中の窒素分を削減することが望
まれている。これら化石燃料中の窒素化合物は、燃焼に
よりNOxとなり、その結果として大きな環境問題たる酸
性雨の原因の一つとなっていると指摘されている。さら
に、原油等の含有窒素化合物の中には、カルバゾール類
のような難除去性芳香族有機窒素化合物も存在してお
り、石油精製の際の触媒劣化の問題、ならびに高温での
精製時における石油製品の着色の問題等がある。
[0003] For example, it is desired to establish a petroleum refining technology that responds to recent environmental problems and requires less burden on the environment. In the industry, there is an opinion that "in boiler combustion, it is necessary to select a high-quality fuel with low nitrogen content", and the need for denitrification is increasing. Also, from the viewpoint of preventing environmental pollution, it is desired to reduce the nitrogen content in light oil and kerosene due to NOx regulations and difficulty in obtaining light crude oil. It has been pointed out that nitrogen compounds in these fossil fuels become NOx by combustion, and as a result, one of the causes of acid rain, which is a major environmental problem. Furthermore, among the nitrogen compounds contained in crude oil and the like, there are also difficult-to-removable aromatic organic nitrogen compounds such as carbazoles. There are problems such as coloring of products.

【0004】また、現在の蒸留や化学反応を中心とした
精製技術は一面においては完成されたものであるが、高
温・高圧の操作条件を設定する必要があるエネルギー多
消費型プロセスであり、このような操作条件において
は、エネルギー負荷や安全性に関して問題がある。そこ
で、上記のようなエネルギー多消費型プロセスを必要と
しない、常温・常圧で石油精製が可能な手段の確立が現
在待たれている。
[0004] In addition, the current purification technology centering on distillation and chemical reaction has been completed in one aspect, but it is an energy-consuming process that requires setting operating conditions of high temperature and high pressure. Under such operating conditions, there is a problem with respect to energy load and safety. Therefore, establishment of a means that does not require the above-described energy-consuming process and that can perform petroleum refining at normal temperature and normal pressure is currently awaited.

【0005】ところで、石油中の窒素化合物含有量は産
地により0.01〜0.49%という幅があり、石油中に存在す
る有機窒素化合物の形態は、難除去性有機窒素化合物、
例えば非塩基性窒素化合物(主にピロール環、インドー
ル環を有するもの)や塩基性窒素化合物(主にピリジン
環、アクリジン環を有するもの)等多種類に及ぶ。特に
現行のプロセスにおいて除去が困難なカルバゾール(略
号CA)等の芳香族窒素化合物は、高温にすると石油製品
の変色、着色の原因となり、また石油精製工程で使用さ
れる触媒を劣化させることなど、石油精製工程上問題と
なっている。また、望ましくはそれらの脱窒素方法にお
いても、爆発等の事故が起こる危険性が少ない微好気条
件下で行うことのできる方法の確立が望まれている。
[0005] The content of nitrogen compounds in petroleum varies from 0.01 to 0.49% depending on the place of production, and the forms of organic nitrogen compounds present in petroleum are hardly removable organic nitrogen compounds,
For example, there are various types such as non-basic nitrogen compounds (mainly having a pyrrole ring and an indole ring) and basic nitrogen compounds (mainly having a pyridine ring and an acridine ring). In particular, aromatic nitrogen compounds such as carbazole (abbreviation CA), which are difficult to remove in the current process, can cause discoloration and coloring of petroleum products at high temperatures, and degrade the catalyst used in petroleum refining processes. This is a problem in the oil refining process. It is also desirable to establish a method that can be carried out under microaerobic conditions with a low risk of an accident such as an explosion also in these denitrification methods.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の常温
・常圧で石油の精製が可能な手段の一つとして、バイオ
テクノロジーを活用した方法の確立、さらに詳細には石
油や石炭に含まれる有機窒素化合物を特異的に分解した
り、当該化合物を容易に除去できる化合物に変換したり
することが可能な微生物を自然界から分離し、かかる微
生物を利用した石油等の脱窒素手段の確立を目的とす
る。特に、難除去性芳香族有機窒素化合物の双肩ともい
えるカルバゾール骨格ならびにキノリン骨格を有する異
なった芳香族有機窒素化合物を、一つの種類の微生物で
分解除去できる特徴を有する脱窒素手段の確立が望まれ
ている。さらにまた、反応対象が原油中の難除去性有機
窒素化合物であることより、微生物が本来的にもつ親水
性反応(水系反応)ではなく、石油系有機溶媒/水系よ
りなる二相系での脱窒素反応の確立を目的とする。
SUMMARY OF THE INVENTION The present invention relates to the establishment of a method utilizing biotechnology as one of the means capable of refining petroleum at normal temperature and normal pressure, and more specifically, to a method for refining petroleum and coal. Microorganisms capable of specifically decomposing organic nitrogen compounds or converting them into compounds that can be easily removed are separated from the natural world, and establishment of denitrification means for petroleum and the like using such microorganisms has been established. Aim. In particular, it is desired to establish a denitrification means having a feature that one type of microorganism can decompose and remove different aromatic organic nitrogen compounds having a carbazole skeleton and a quinoline skeleton, which can be regarded as double shoulders of an aromatic organic nitrogen compound which is difficult to remove. ing. Furthermore, since the reaction target is an organic nitrogen compound that is difficult to remove in crude oil, it is not a hydrophilic reaction (aqueous reaction) inherent in microorganisms, but a two-phase system composed of a petroleum organic solvent / water system. The purpose is to establish a nitrogen reaction.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題解
決のために鋭意検討を重ねた結果、特定の有機窒素化合
物を分解する能力を有する微生物を自然界から分離し
て、当該微生物をバイオ脱窒素法に適用することによ
り、当該課題を解決することができることを見出し、本
発明を完成した。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventors have separated microorganisms having the ability to decompose a specific organic nitrogen compound from the natural world, The present inventors have found that the problem can be solved by applying the method to the denitrification method, and have completed the present invention.

【0008】すなわち、本発明は芳香族類有機窒素化合
物を分解する能力を有する微生物を、芳香族類有機窒素
化合物を含有する物質と接触させ、前記芳香族類有機窒
素化合物を分解することを特徴とする微生物を用いた脱
窒素方法である。上記微生物としては、スフィンゴモナ
ス属に属する微生物等が挙げられ、さらに具体的にスフ
ィンゴモナス属CDH-7が挙げられる。そして、これらの
微生物は培養菌体または休止菌体のかたちで用いられ
る。また、上記芳香族類有機窒素化合物としては、カル
バゾール化合物類及び/又はキノリン化合物類等が挙げ
られる。
That is, the present invention is characterized in that a microorganism capable of decomposing an aromatic organic nitrogen compound is brought into contact with a substance containing the aromatic organic nitrogen compound to decompose the aromatic organic nitrogen compound. This is a denitrification method using a microorganism. Examples of the microorganism include microorganisms belonging to the genus Sphingomonas, and more specifically, CDH-7 of the genus Sphingomonas. These microorganisms are used in the form of cultured cells or quiescent cells. Examples of the aromatic organic nitrogen compounds include carbazole compounds and / or quinoline compounds.

【0009】上記微生物と芳香族類有機窒素化合物を含
有する物質との接触は好気的又は微好気的な条件下で行
う。また、上記脱窒素方法は油系有機溶媒/水系よりな
る二相系で行なうことができる。さらに、本発明は芳香
族類有機窒素化合物を分解する能力を有する微生物の休
止菌体と芳香族類有機窒素化合物を含有する物質とを連
続的に接触させ前記芳香族類有機窒素化合物を分解する
ことを特徴とする連続的脱窒素方法である。
The contact between the microorganism and a substance containing an aromatic organic nitrogen compound is carried out under aerobic or microaerobic conditions. The denitrification method can be carried out in a two-phase system consisting of an oil-based organic solvent / water system. Furthermore, the present invention decomposes the aromatic organic nitrogen compound by continuously contacting resting cells of a microorganism having the ability to decompose the aromatic organic nitrogen compound and a substance containing the aromatic organic nitrogen compound. It is a continuous denitrification method characterized by the above.

【0010】[0010]

【発明の実施の態様】以下、本発明について詳細に説明
する。本発明の脱窒素方法は、スフィンゴモナス属に属
し、有機窒素化合物を分解する能力を有する微生物を用
いたバイオ脱窒素法である。上記有機窒素化合物の中で
も、難除去性有機窒素化合物として代表的な化学物質で
あるカルバゾールがあげられるが、本発明者は、当該カ
ルバゾールを唯一窒素源ならびに唯一炭素源として資化
分解する能力を有する細菌を、微好気条件下で集積培養
法方により自然界から新たに単離した。さらに、本菌は
カルバゾール以外の難除去性芳香族化合物としての骨格
を持つもう一つの代表的な化合物であるキノリンも唯一
窒素源ならびに唯一炭素源として資化分解する。なお、
本発明にいう微好気的条件とは、爆発限界以下の酸素分
圧条件をいい、通常、酸素2%以下、望ましくは0.5%程度
が考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The denitrification method of the present invention is a biodenitrification method using a microorganism belonging to the genus Sphingomonas and capable of decomposing organic nitrogen compounds. Among the organic nitrogen compounds, carbazole, which is a typical chemical substance as a hard-to-removable organic nitrogen compound, is exemplified.The present inventor has the ability to assimilate and decompose the carbazole as a sole nitrogen source and sole carbon source. Bacteria were newly isolated from nature by the enrichment culture method under microaerobic conditions. Furthermore, the bacterium also assimilates quinoline, another typical compound having a skeleton as a hard-to-remove aromatic compound other than carbazole, as the sole nitrogen source and sole carbon source. In addition,
The microaerobic condition referred to in the present invention refers to an oxygen partial pressure condition below the explosion limit, which is usually 2% or less, preferably about 0.5%.

【0011】まず、本発明に用いる脱窒素細菌のスクリ
ーニングについて説明する。日本全国から採取してきた
土壌・廃水・原油スラッジ等(約350点)を用いて、現
行の石油精製プロセスでは除去が困難な有機窒素化合物
の代表的な化学物質である次式のカルバゾール(以下、
CAと略す。)
First, the screening of denitrifying bacteria used in the present invention will be described. Using soil, wastewater, crude oil sludge, etc. (approximately 350 points) collected from all over Japan, carbazole of the following formula, which is a typical chemical substance of organic nitrogen compounds that are difficult to remove by the current oil refining process (hereinafter,
Abbreviated as CA. )

【0012】[0012]

【化1】 Embedded image

【0013】を唯一窒素源として、実際の備蓄タンクの
条件に近い酸素抑圧条件下で生育する微生物をスクリー
ニングした。温度30℃で1週間集積培養を行った後、培
養液の2%を植え継ぎ、さらに集積培養を行った。この
操作を4回以上繰り返し、十分に集積された培養液の希
釈液をCAを含むRich寒天培地に塗布し、ここで出現した
コロニーを釣菌し、さらに液体培地で集積培養した。こ
の操作を2回以上繰り返し、生育するものを分離した。
The microorganisms that grew under oxygen-suppressing conditions close to the actual storage tank conditions were screened using only nitrogen as the sole nitrogen source. After performing enrichment culture at a temperature of 30 ° C. for 1 week, 2% of the culture solution was subcultured and further enrichment culture was performed. This operation was repeated four times or more, and the diluted solution of the culture solution that had been sufficiently accumulated was applied to a Rich agar medium containing CA. The colonies that appeared here were picked, and further cultured in an integrated manner in a liquid medium. This operation was repeated two or more times to separate those that grew.

【0014】特に、集積培養時にはスクリューキャップ
付試験管(50ml)に、スクリーニング培地20とともに土
壌サンプルとCAを加え、キャップにテフロンテープを巻
き、窒素でバブリングした後、30℃で7日間培養した。
なお、有機窒素化合物CAを唯一窒素源としたスクリーニ
ング培地は、次の表1に示すように、CAを唯一窒素源と
する完全合成培地CD培地を用いた。なお、CAの分散効果
を高めるために、n-ヘキサデカンを0.5%(v/v)の濃度
で培地に添付した。
In particular, at the time of the enrichment culture, a soil sample and CA were added to a test tube (50 ml) with a screw cap together with the screening medium 20, a Teflon tape was wrapped around the cap, and nitrogen was bubbled, followed by culturing at 30 ° C. for 7 days.
As shown in Table 1 below, a completely synthetic medium CD medium containing only CA as the nitrogen source was used as the screening medium containing only the organic nitrogen compound CA as the nitrogen source. In order to enhance the dispersing effect of CA, n-hexadecane was attached to the medium at a concentration of 0.5% (v / v).

【0015】[0015]

【表1】 CD培地 (pH 7.0) Carbazole 1.0 g or 0.5 g Na2HPO4 1.6 g KH2PO4 1.0 g MgSO4・7H2O 0.5 g MgCl2・6H2O 0.1 g CaCl2・2H2O 0.025 g 金属混合液 a) 2 ml ビタミン混合液 b) 1 ml 蒸留水を加えて全量1000 ml とする。 a) 金属混合液 b) ビタミン混合液 FeCl2・4H2O 1.5 g Ca-パントテネート 400mg CoCl2・6H2O 0.19 g ナイアシン 400mg MnCl2・4H2O 0.1 g ピリドキシン塩酸塩 400mg ZnCl2 0.07 g イノシトール 200mg H3BO3 0.062 g p-アミノベンゾエート 200mg Na2MoO4・2H2O 0.036 g シアノコバラミン 50mg NiCl2・6H2O 0.024 g 蒸留水を加えて全量1000 ml とする。 CuCl2・2H2O 0.017 g 蒸留水 1000 ml [Table 1] CD medium (pH 7.0) Carbazole 1.0 g or 0.5 g Na 2 HPO 4 1.6 g KH 2 PO 4 1.0 g MgSO 4 · 7H 2 O 0.5 g MgCl 2 · 6H 2 O 0.1 g CaCl 2 · 2H 2 O 0.025 g metal mixture Solution a) 2 ml Vitamin mixture b) 1 ml Add distilled water to make a total volume of 1000 ml. a) a metal mixture b) Vitamin mixture FeCl 2 · 4H 2 O 1.5 g Ca- pantothenate 400mg CoCl 2 · 6H 2 O 0.19 g Niacin 400mg MnCl 2 · 4H 2 O 0.1 g pyridoxine hydrochloride 400 mg ZnCl 2 0.07 g inositol 200mg H 3 BO 3 0.062 g p-aminobenzoate 200 mg Na 2 MoO 4 .2H 2 O 0.036 g cyanocobalamin 50 mg NiCl 2 .6H 2 O 0.024 g Distilled water is added to make a total volume of 1000 ml. CuCl 2 · 2H 2 O 0.017 g distilled water 1000 ml

【0016】以上のスクリーニングの結果、CAを唯一窒
素源として資化分解する数種の微生物を得た。取得した
数種のCA分解微生物の中で、CDH-7株が最も高いCA分解
能力を示した。本菌株の生理・生化学的諸性質を表2に
示す。表2に示す如く、本菌株はグラム陰性、カタラー
ゼ、オキシダーゼ陽性の桿菌であり、その他の諸性質よ
り、本菌株はスフィンゴモナス属に属するものと同定さ
れた。
As a result of the above screening, several kinds of microorganisms capable of assimilating and using CA as the sole nitrogen source were obtained. Among several types of CA-degrading microorganisms obtained, CDH-7 strain showed the highest CA degrading ability. Table 2 shows the physiological and biochemical properties of this strain. As shown in Table 2, this strain was a gram-negative, catalase- and oxidase-positive bacillus, and from other various properties, this strain was identified as belonging to the genus Sphingomonas.

【0017】[0017]

【表2】CDH-7株の生理・生化学的諸性質 細胞形態 桿菌 幅 μm 0.5 - 0.6 長さ μm 1.5 - 5.0 グラム染色 − 3% KOHによる溶菌 + アミノペプチダーゼ + 胞子 − オキシダーゼ + カタラーゼ + アルコールデヒドロゲナーゼ − NO3よりNO2の発生 − 脱窒 − ウレアーゼ − 加水分解 ゼラチン − エスクリン − 澱粉 − グルコースより酸の生成 − 炭素源としての利用 グルコース − アラビノース − キシロース − D-リボース − ラムノース − カプリル酸ト − クエン酸ト − レブリン酸 − リンゴ酸 − マンニトール −アドニトール − Table 2 Physiological and biochemical properties of CDH-7 strain Cell morphology Bacillus Width μm 0.5-0.6 Length μm 1.5-5.0 Gram staining-Lysis with 3% KOH + Aminopeptidase + Spores-Oxidase + Catalase + Alcohol dehydrogenase - NO 3 than NO 2 generation - denitrification - urease - hydrolysed gelatin - esculin - starch - acid formation from glucose - utilizing glucose as carbon source - arabinose - xylose - D-ribose - rhamnose - caprylic Sainte - citric Acid trebulic acid-malic acid-mannitol- adonitol-

【0018】さらに、CDH-7株の16SrDNAの塩基配列を決
定し、相同性を調べたところ、スフィンゴモナス属細菌
に属する細菌と96%の相同性を示した。表1ならびに16
SrDNAの結果より、本菌株はスフィンゴモナス属に属す
る細菌と同定した。本菌株は、スフィンゴモナス属 CDH
-7株(Sphingomonas sp.CDH-7)として、平成9年2月19
日付けで工業技術院生命工学工業技術研究所に寄託され
ており、その寄託番号は FERM P-16089である。
Furthermore, the nucleotide sequence of the 16S rDNA of the CDH-7 strain was determined, and the homology was examined. As a result, the homology was 96% with a bacterium belonging to the genus Sphingomonas. Tables 1 and 16
Based on the results of SrDNA, this strain was identified as a bacterium belonging to the genus Sphingomonas. The strain is Sphingomonas CDH
7 (Sphingomonas sp. CDH-7) as of February 19, 1997
It has been deposited with the National Institute of Bioscience and Biotechnology at the National Institute of Advanced Industrial Science and Technology, and its deposit number is FERM P-16089.

【0019】本発明において使用する微生物は、上記微
生物の他、芳香族類有機窒素化合物を分解する能力を有
する微生物であればいずれの微生物も使用できる。ま
た、これらの微生物はいずれも有機溶媒耐性能を有する
ものである。本菌株の菌体は、菌株を炭素源・窒素源と
してカルバゾールを含む培地に接種し、温度30℃、pH7.
0 で好気的に24〜48時間培養することにより得られる。
本発明の脱窒素方法は、上記のような脱窒素細菌を、芳
香族類有機窒素化合物を含む物質と接触させることによ
り、当該物質を分解して脱窒素することを特徴とする。
As the microorganism used in the present invention, any microorganism can be used as long as it has the ability to decompose aromatic organic nitrogen compounds, in addition to the above microorganisms. All of these microorganisms have organic solvent resistance. The cells of this strain are inoculated into a medium containing carbazole as a carbon source and nitrogen source at a temperature of 30 ° C. and a pH of 7.
It is obtained by culturing at 0 at aerobic for 24 to 48 hours.
The denitrification method of the present invention is characterized in that a denitrifying bacterium as described above is brought into contact with a substance containing an aromatic organic nitrogen compound to decompose and denitrify the substance.

【0020】有機窒素化合物を含む物質としては、原
油、石油、石炭液化油等があげられる。これらの物質は
そのまま用いることもできるが、基質としての有機窒素
化合物の分解を効率よく行うという観点から、例えば界
面活性剤を用いたり、反応系を適宜振とうに付するのが
望ましい。これによって、脱窒素細菌と、基質としての
有機窒素化合物との接触界面を大きくすることができ分
解を効率よく行うことができる。
Examples of the substance containing an organic nitrogen compound include crude oil, petroleum, and coal liquefied oil. These substances can be used as they are, but from the viewpoint of efficiently decomposing the organic nitrogen compound as a substrate, it is desirable to use, for example, a surfactant or to appropriately shake the reaction system. Thereby, the contact interface between the denitrifying bacteria and the organic nitrogen compound as a substrate can be increased, and the decomposition can be performed efficiently.

【0021】分解反応雰囲気中の空気の存在量は特に限
定されないが、好気的条件下では、通常の空気の存在下
でその反応が行われる。一方、反応雰囲気を完全な無酸
素状態である嫌気的条件にすることが考えられるが、実
際に適用するにあたっては、完全な嫌気状態を備えた施
設を設置することは多額の資金を要し、かつ運転コスト
も高くなることから、現実的な方法とは言えない。これ
らのことから、わずかに酸素が存在する状態の微好気条
件下、または通性嫌気的条件下で反応を行うのが好まし
い。また、反応の際の備蓄タンクの状態を考慮しても、
上記微好気的条件下で反応を行うのが好ましい。
The amount of air in the decomposition reaction atmosphere is not particularly limited, but under aerobic conditions, the reaction is carried out in the presence of ordinary air. On the other hand, it is conceivable to set the reaction atmosphere to an anaerobic condition that is completely anoxic, but in actual application, setting up a facility with a completely anaerobic condition requires a large amount of funds, In addition, since the operating cost is high, it cannot be said to be a practical method. For these reasons, it is preferable to carry out the reaction under microaerobic conditions in the presence of slight oxygen, or under facultative anaerobic conditions. Also, considering the state of the storage tank at the time of the reaction,
It is preferred to carry out the reaction under the above microaerobic conditions.

【0022】かかる微好気的条件における具体的な酸素
量は、爆発限界以下の2%以下、望ましくは0.5%(v/v)
程度であるのが好ましい。分解反応の際の温度は、脱窒
素細菌が作用しうる温度であれば特に限定されるもので
はないが、10〜45℃が一般的であり、その中では30℃付
近が好ましい。
The specific oxygen content under such microaerobic conditions is 2% or less below the explosion limit, preferably 0.5% (v / v).
It is preferred to be on the order of magnitude. The temperature at the time of the decomposition reaction is not particularly limited as long as it is a temperature at which the denitrifying bacteria can act, but generally 10 to 45 ° C, and preferably around 30 ° C.

【0023】分解反応系の構成成分としては、脱窒素細
菌及び有機窒素化合物を含む物質の他に、適切な水分が
あれば反応可能であるが、脱窒素細菌の反応性の向上を
図る目的で、無機体または一般的な易分解性な有機窒素
源や無機塩類等の栄養源を適宜反応系に添加するのが好
ましい。
As a component of the decomposition reaction system, in addition to a substance containing a denitrifying bacterium and an organic nitrogen compound, it can react if there is appropriate water, but for the purpose of improving the reactivity of the denitrifying bacterium. It is preferable to appropriately add an inorganic substance or a nutrient source such as a general easily decomposable organic nitrogen source or an inorganic salt to the reaction system.

【0024】当該反応はカラム法によってもバッチ法に
よっても行うことができる。カラム法で反応を行う場合
には、脱窒素細菌を適切な反応カラムに適切な方法で固
定化する必要がある。
The reaction can be performed by a column method or a batch method. When performing the reaction by the column method, it is necessary to immobilize the denitrifying bacteria on an appropriate reaction column by an appropriate method.

【0025】以上のようなバイオ脱窒素反応後は、通常
は公知の分離・精製の過程を適用する。例えば、脱窒素
後の石油を、現在一般的に使用されている石油精製装置
(トッパー)にそのまま付することもできる。ただし、
本発明は、脱窒素反応後これらの分離・精製工程に処す
ることを必須要件とするものではない。
After the biodenitrification reaction as described above, a known separation / purification process is usually applied. For example, the petroleum after denitrification can be directly applied to a petroleum refining device (topper) generally used at present. However,
In the present invention, it is not indispensable that the separation and purification steps be performed after the denitrification reaction.

【0026】対象反応物が原油中の難除去性芳香族化合
物であることから、本来、微生物が得意としている親水
性反応(水系反応)では反応基質としての原油等の濃度
が極端に低くコスト面で不可能であることから考えて、
さらに本発明における重要な課題として、いかにして反
応対象物である原油等の濃度を高くできるかがポイント
になる。かかる状況の下、難除去性有機窒素化合物分解
菌の培養菌体または休止菌体を用いて石油系有機溶媒/
水系よりなる二相系でCA分解反応を可能ならしめたこと
により、原油や灯油、軽油等の石油留分(製品)での本
反応を可能とした。また、培養した休止菌体は繰り返し
反応に使用できるものであることからコスト的に大きな
意味を持ち、休止菌体を用いる反応での連続化を可能と
した。
Since the target reactant is a hardly removable aromatic compound in crude oil, the concentration of crude oil or the like as a reaction substrate is extremely low in a hydrophilic reaction (aqueous reaction) which microorganisms are originally good at in terms of cost. Thinking that it is impossible in
Another important issue in the present invention is how to increase the concentration of the reaction target such as crude oil. Under such circumstances, a petroleum organic solvent /
By enabling the CA decomposition reaction in a two-phase system consisting of an aqueous system, this reaction has become possible with petroleum fractions (products) such as crude oil, kerosene, and light oil. In addition, since the cultured resting cells can be used repeatedly for the reaction, they have great significance in terms of cost, and the continuation of the reaction using the resting cells has been made possible.

【0027】[0027]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。ただし、本発明はこれらの実施例によりその
技術的範囲が限定されるものではない。
The present invention will be described more specifically with reference to the following examples. However, the technical scope of the present invention is not limited by these examples.

【0028】〔実施例1〕 CA分解試験 難除去性有機窒素化合物であるカルバゾール(CA)を炭
素源及び窒素源として含む脱窒素菌用培地を用いて、好
気及び微好気的条件下で脱窒素菌(スフィンゴモナス属
sp. CDH-7)によるCA分解試験を行った。当該脱窒素菌
用培地の組成は、500/のCAを含むCD培地である。
Example 1 CA Decomposition Test Using a medium for denitrifying bacteria containing carbazole (CA), a hardly removable organic nitrogen compound, as a carbon source and a nitrogen source, under aerobic and microaerobic conditions. Denitrifying bacteria (Sphingomonas spp.)
sp. CDH-7) to conduct a CA decomposition test. The composition of the medium for denitrifying bacteria is a CD medium containing 500 / CA.

【0029】具体的には、脱窒素細菌( スフィンゴモナ
ス属 CDH-7株) の培養は、上記脱窒素菌用培地30mlとと
もに当該懸濁液をバイアル瓶(100ml)にいれ、好気及
び窒素でバブリングした後密閉して、好気的及び微好気
的条件下、30℃にて振とう培養することによって行っ
た。なお、振とう培養は、CAが固形物であるため、基質
と脱窒素細菌との接触を高めるために採用した。
Specifically, for the culture of the denitrifying bacteria (Sphingomonas sp. Strain CDH-7), the suspension is put in a vial (100 ml) together with 30 ml of the above-mentioned medium for denitrifying bacteria, and aerobically and under nitrogen. The cells were sealed after bubbling, and cultured by shaking at 30 ° C. under aerobic and microaerobic conditions. In addition, shaking culture was employed to enhance the contact between the substrate and the denitrifying bacteria because CA is a solid substance.

【0030】CA及び代謝分解産物アントラニル酸(AN)
の定量は、培養液を塩酸酸性にして酢酸エチルにて抽出
後、上清(CAを含む酢酸エチル溶液)を高速液体クロマ
トグラフィー(略号HPLC)で分析することによって行っ
た。なお、分析の内部標準としてジベンゾフランを用い
た。また、NH4+は和光純薬製のアンモニア測定キットを
用いて測定した。また、CDH-7株の生育は660nmにおける
濃度(O.D.)にて測定した。本菌株によるカルバゾール
分解の代表例として、CA分解の好気条件下での経時的変
化を図1に示す。
CA and metabolic degradation product anthranilic acid (AN)
Quantification was performed by acidifying the culture solution with hydrochloric acid, extracting the mixture with ethyl acetate, and analyzing the supernatant (ethyl acetate solution containing CA) by high performance liquid chromatography (abbreviated HPLC). In addition, dibenzofuran was used as an internal standard for the analysis. NH4 + was measured using an ammonia measurement kit manufactured by Wako Pure Chemical. The growth of the CDH-7 strain was measured at a concentration (OD) at 660 nm. As a representative example of the carbazole degradation by this strain, the time course of CA degradation under aerobic conditions is shown in FIG.

【0031】以上の結果より、脱窒素細菌スフィンゴモ
ナス属CDH-7株において、微好気的条件下において、培
養20時間以降にCAは急激に減少し、それに伴いCDH-7株
の生育増殖が認められるとともに、CAの減少に伴ってAN
は一時的に蓄積するもののその後は減少し、培養40時間
以降には微量のNH4 +が存在していた。このことより、本
菌株によりCAが高効率で分解消費されていることが確認
された。また微好気条件下でも、分解活性は落ちるもの
の、カルバゾールの分解が認められた。
From the above results, in the denitrifying bacterium Sphingomonas sp. Strain CDH-7, CA decreased sharply after 20 hours of culture under microaerobic conditions, and the growth and growth of the CDH-7 strain were thereby accompanied. Recognized, and as CA decreased, AN
Temporarily accumulated but decreased thereafter, and trace amounts of NH 4 + were present after 40 hours of culture. This confirmed that CA was degraded and consumed with high efficiency by this strain. Under microaerobic conditions, decomposition of carbazole was observed, although decomposition activity was reduced.

【0032】CDH-7株によるCAの代謝分解産物の確認
は、上記CDH-7株のCAを唯一窒素源として含むCD培地培
養抽出液をHPLC及びガス質量分析計(略号GC-MS)によ
り分析した。この結果、アントラニル酸(AN)の存在が
確認された。このことより、CDH-7株により、CAはANを
経由して最終的にアンモニウムイオンにまで完全分解さ
れることが確認できた。CAの分解反応形式を次に示す。
The metabolic degradation product of CA by CDH-7 strain was confirmed by analyzing the culture medium extract of CD medium containing only the above CA of CDH-7 strain as a nitrogen source by HPLC and gas mass spectrometer (abbreviated GC-MS). did. As a result, the presence of anthranilic acid (AN) was confirmed. From this, it was confirmed that CA was finally completely decomposed to ammonium ions via the AN by the CDH-7 strain. The decomposition reaction format of CA is shown below.

【0033】[0033]

【化2】 Embedded image

【0034】〔実施例2〕 キノリンの分解試験 次にカルバゾール以外の難除去性芳香族化合物の一方の
代表的骨格を示すキノリンの分解過程を示す。実施例1
におけるカルバゾールをキノリンに置き換えた以外は実
施例1と同様である。この結果、CDH-7株により、キノ
リンは培養20時間で40%減少し、培養72時間でカルバゾ
ールと同様に完全分解されていた。なお、キノリンの測
定はジベンゾフランを内部標準としてカルバゾールと同
様にHPLCにより測定した。
[Example 2] Decomposition test of quinoline Next, the decomposition process of quinoline which shows one typical skeleton of the hardly removable aromatic compound other than carbazole will be described. Example 1
Is the same as Example 1 except that carbazole in was replaced with quinoline. As a result, by the CDH-7 strain, quinoline was reduced by 40% in 20 hours of culture and completely degraded in the same manner as carbazole in 72 hours of culture. The quinoline was measured by HPLC using dibenzofuran as an internal standard in the same manner as carbazole.

【0035】〔実施例3〕 休止菌体反応によるCA分解 本発明のプロセス化を目指す場合に、休止菌体を用いた
連続反応が一つのプロセスとして考えられる。この観点
より、まず、CDH-7株を用いた休止菌体反応によるCA分
解を検討した。
Example 3 Decomposition of CA by Resting Bacterial Cell Reaction When the process of the present invention is aimed at, a continuous reaction using resting cells is considered as one process. From this viewpoint, first, CA degradation by a resting bacterial cell reaction using the CDH-7 strain was examined.

【0036】(休止菌体の調製法)500ml容フラスコに5
00mg/lのCAを含むCD培地を100ml、n-ヘキサデカンを0.5
加えて、CDH-7株を白金線エーゼを用いて一白金耳枯植
菌後、30℃にて33-35時間培養した。遠心分離によりCDH
-7株を集菌後、50mMのリン酸カリウム緩衝液(pH7.0)
にて2回洗浄した。同緩衝液で懸濁した懸濁液中に残存
しているCAは、ガラスフィルター(17G2)を通すことに
よりCAを除去した。このことにより、CAを含まないCDH-
7株の休止菌体懸濁液を調製した。
(Preparation method of resting cells)
100 ml of CD medium containing 00 mg / l CA, 0.5 ml of n-hexadecane
In addition, the CDH-7 strain was inoculated with one platinum loop using platinum wire enzyme, and then cultured at 30 ° C. for 33 to 35 hours. CDH by centrifugation
After collecting 7 strains, 50 mM potassium phosphate buffer (pH 7.0)
Was washed twice. CA remaining in the suspension suspended in the same buffer was removed by passing through a glass filter (17G2). As a result, CDH-
Seven suspensions of resting bacterial cells were prepared.

【0037】(休止菌体によるCA分解反応)反応に使用
する休止菌体濃度は、乾燥菌体に換算して2.2mg/mlとし
て、この休止菌体懸濁液10ml、n-ヘキサデカン1を50バ
イアル瓶に添加する。初発CA濃度が100mg/lまたは500mg
/lとなるように、CAを溶かしたエタノール溶液100μl
を添加して、30℃で一定時間休止菌体反応を行う。6N-H
Clを200μl加えて反応を停止させた後、実施例1と同様
にCA、AN、NH4 +を定量した。
(Decomposition of CA by Resting Cells) The concentration of resting cells used in the reaction was 2.2 mg / ml in terms of dry cells, and 10 ml of this suspension of resting cells and 50 ml of n-hexadecane 1 were used. Add to vial. Initial CA concentration of 100mg / l or 500mg
/ l, 100μl of ethanol solution with CA dissolved
And a resting cell reaction is performed at 30 ° C. for a certain period of time. 6N-H
After stopping the reaction by adding 200 μl of Cl, CA, AN, and NH 4 + were quantified in the same manner as in Example 1.

【0038】この結果を図2(A及びB)に示した。図2-
AはCA初発濃度が100mg/l、図2-BはCA初発濃度が500mg/l
の例である。図2-Aに示すように、CA初発濃度100mg/lの
場合には、反応30分でCAは完全に分解されており、反応
液中には中間代謝産物のANの蓄積はなく微量のNH4 +が存
在しているに過ぎなかった。 CA 初発濃度500mg/lの場
合においても、休止菌体反応は効率よく進行し、CAは反
応4時間で完全分解されていた。反応液中に一時的にAN
の蓄積が認められるものの、すぐに減少するとともに、
NH4 +の存在が認められた。以上の結果より、CDH-7株の
休止菌体反応により、高効率でCAが完全分解されている
ことが判明した。
FIG. 2 (A and B) show the results. Figure 2-
A: CA initial concentration is 100 mg / l; Fig. 2-B: CA initial concentration is 500 mg / l
This is an example. As shown in FIG. 2-A, when the initial concentration of CA was 100 mg / l, CA was completely decomposed in 30 minutes after the reaction, and there was no accumulation of the intermediate metabolite AN in the reaction solution, and a trace amount of NH. 4 + has not only are present. Even when the initial concentration of CA was 500 mg / l, the quiescent bacterial cell reaction proceeded efficiently, and CA was completely decomposed in 4 hours of the reaction. Temporarily put AN in the reaction solution
, But soon decrease,
The presence of NH 4 + was observed. From the above results, it was found that CA was completely degraded with high efficiency by the quiescent bacterial reaction of CDH-7 strain.

【0039】〔実施例4〕 休止菌体反応によるCAの連
続分解 微生物を用いた反応において、その微生物を何回再生で
きるかはコスト面において大きなウェイトを占めてい
る。コストダウンを目的として、一度調製した休止菌体
を何回繰り返し再使用できるか、CAの連続分解の検討を
行った。用いた休止菌体懸濁液は実施例3と同様に調製
(菌体濃度2.2mg/ml)し、CAの添加濃度は100mg/lとし
て、CAが完全分解されると直ちに次の100mg/lのCAを逐
次添加して休止菌体反応を行った。結果を図3に示す。
この図から、9回目までの連続反応においてCAは完全に
分解され、CAの連続分解反応はこの条件下において42時
間可能であることが判る。反応48時間の10回目のCAの分
解反応は完全ではないものの、このような条件でCA総量
として950mg/l分解がなされていた。以上に示す如く、
適切な条件検討を行うことによって、CDH-7の休止菌体
を用いた逐次添加したCAの連続完全分解が可能であるこ
とが判明した。
Example 4 Continuous Decomposition of CA by Resting Cell Reaction In a reaction using a microorganism, how many times the microorganism can be regenerated has a large weight in terms of cost. For the purpose of cost reduction, continuous degradation of CA was examined to determine how many times the once prepared resting cells could be reused. The suspended cell suspension used was prepared in the same manner as in Example 3 (cell concentration: 2.2 mg / ml), the concentration of CA added was 100 mg / l, and the next 100 mg / l immediately after CA was completely degraded. Was added successively to perform a resting cell reaction. The results are shown in FIG.
From this figure, it can be seen that CA was completely decomposed in the ninth consecutive reaction, and that continuous decomposition of CA was possible for 42 hours under these conditions. Although the tenth CA decomposition reaction for 48 hours was not complete, 950 mg / l of total CA was decomposed under these conditions. As shown above,
By examining appropriate conditions, it was found that continuous complete degradation of sequentially added CA using resting cells of CDH-7 was possible.

【0040】〔実施例5〕 石油系有機溶媒/水系より
なる二相系でのCA分解 元来、微生物は親水性の生物であり、水系でその活性を
示すものである。一方、本発明の目的対象物は原油等の
中にある難除去性芳香族有機窒素化合物であり、その反
応系を考えると相反することになる。このような相反す
る点を克服すべく鋭意検討を行った結果、スフィンゴモ
ナス属CDH-7株は、石油系有機溶媒の耐性を示す特徴を
有する極めて稀な有機溶媒耐性の芳香族有機窒素化合物
分解微生物であることを初めて見出し、本発明のプロセ
ス化への道を拓いた。
Example 5 CA Decomposition in a Two-Phase System Consisting of a Petroleum Organic Solvent / Water System Originally, microorganisms are hydrophilic organisms and exhibit their activity in aqueous systems. On the other hand, the target object of the present invention is a hard-to-removable aromatic organic nitrogen compound in crude oil or the like, which is contradictory when its reaction system is considered. As a result of intensive studies to overcome such contradicting points, Sphingomonas sp. CDH-7 is a very rare organic solvent-resistant aromatic organic nitrogen compound that has the characteristics of showing resistance to petroleum organic solvents. They discovered for the first time that they were microorganisms, and opened the way to the process of the present invention.

【0041】(各種の石油系有機溶媒/水系の二相系で
のCA分解反応)反応に使用するCDH-7株の菌体濃度は実
施例3の2倍の4.4mg/mlとし、各種の石油系有機溶媒
(イソオクタン、n-ヘキサン、シクロヘキサン、ρ-キ
シレン、トルエン)を水溶液に対し、20%(v/v)、ま
たモデル石油としてケロシン(灯油)を20、50、100%
(v/v)重層し、初発CA濃度を100/として1時間休止菌体
反応を行った。結果を図4に示す。この図に示す如く、
イソオクタン、n-ヘキサン、シクロヘキサンを重層した
場合にはCAは完全分解が確認された。またρ -キシレ
ン、トルエンなどの細胞毒性の高い石油系有機溶媒にお
いても、分解率はやや低下するもののCA分解が確認され
た。さらに、ケロシン(灯油)を20%、50%(v/v)重
層してもCAは完全に分解された。100%(v/v)ではCA分
解率は低下した。以上の結果より、本菌株は石油系有機
溶媒にも高い耐性能を示し、かつ二相系でCAを分解でき
ることが判明した。
(CA Decomposition Reaction in Two-Phase System of Various Petroleum Organic Solvents / Water System) The bacterial cell concentration of the CDH-7 strain used in the reaction was set to 4.4 mg / ml, twice that of Example 3. 20% (v / v) of petroleum organic solvents (isooctane, n-hexane, cyclohexane, ρ-xylene, toluene) in aqueous solution, and 20, 50, 100% kerosene (kerosene) as model oil
(V / v) Overlaid, the initial CA concentration was set to 100 /, and a resting cell reaction was performed for 1 hour. FIG. 4 shows the results. As shown in this figure,
When isooctane, n-hexane and cyclohexane were layered, CA was completely decomposed. Also, in petroleum organic solvents having high cytotoxicity such as ρ-xylene and toluene, the decomposition rate was slightly reduced, but CA decomposition was confirmed. In addition, CA was completely decomposed even if kerosene (kerosene) was layered at 20% or 50% (v / v). At 100% (v / v), the CA decomposition rate decreased. From the above results, it was found that this strain exhibited high resistance to petroleum organic solvents and was able to degrade CA in a two-phase system.

【0042】(石油系有機溶媒/水系よりなる二相系で
の菌体濃度変化によるCA分解)石油系有機溶媒で細胞毒
性の強い有機溶媒の倍表例としてトルエンを20%(v/
v)重層し、菌体濃度を変化させてCAの分解を検討し
た。結果を図5に示す。菌体量を増加させるとCA分解率
は増大し、トルエン存在下でもCA分解が確認された。
(CA Decomposition by Changing Cell Concentration in a Two-Phase System of Petroleum Organic Solvent / Water System) Toluene is 20% (v / v) as an example of a petroleum organic solvent and a highly cytotoxic organic solvent.
v) Layering was performed, and the decomposition of CA was examined by changing the cell concentration. FIG. 5 shows the results. When the bacterial mass was increased, the CA decomposition rate was increased, and CA decomposition was confirmed even in the presence of toluene.

【0043】〔実施例6〕 有機溶媒存在下でのスフィ
ンゴモナス属CDH-7株の菌体寿命 実施例4において示した如く、本微生物は何回も繰り返
し可能な丈夫な菌で、CAの連続分解反応もできることが
示されたが、さらに実際のプロセス化を考えると、有機
溶媒存在下でどのくらいの菌体寿命とともにCA分解活性
を維持しているかも極めて重要な項目である。このよう
な観点より、実施例3と同様にCDH-7株の菌体濃度を2.2
mg/mlに調製し、この菌体懸濁液10に有機溶媒の例とし
てn-ヘキサデカンを10等量加え、30℃で3定時間(1〜
7日間)振とうした後に、100mg/lのCAを添加して1時
間休止菌体反応を行わせて、有機溶媒存在下での菌体寿
命(残存するCA分解活性)を検討した。結果を表3に示
す。表3に示す如く、本菌株CDH-7株は等量のn-ヘキサ
デカンと7日間接触させてもCA分解活性を維持している
ことが確認された。
Example 6 Cell Life of Sphingomonas CDH-7 Strain in the Presence of an Organic Solvent As shown in Example 4, this microorganism is a robust microorganism that can be repeated many times, Degradation reaction was shown to be possible, but considering the actual process, it is also extremely important how long the bacterial cell life and the CA decomposition activity are maintained in the presence of an organic solvent. From this viewpoint, the cell concentration of the CDH-7 strain was increased to 2.2 as in Example 3.
mg / ml, add 10 equivalents of n-hexadecane as an example of an organic solvent to the cell suspension 10, and add 3 equivalents at 30 ° C.
After shaking (7 days), 100 mg / l of CA was added and a resting cell reaction was performed for 1 hour, and the life of the cells in the presence of an organic solvent (remaining CA decomposition activity) was examined. Table 3 shows the results. As shown in Table 3, it was confirmed that the strain CDH-7 maintained the CA-decomposing activity even after being contacted with an equal amount of n-hexadecane for 7 days.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明により、石油や石炭から難除去性
芳香族有機窒素化合物を常温・常圧下で除去することが
でる。したがって、本発明は、石油精製工程の一部とし
て用いることができ、石油、石炭の精製を常温・常圧下
で行うことができる。
According to the present invention, it is possible to remove hard-to-removable aromatic organic nitrogen compounds from petroleum and coal at normal temperature and normal pressure. Therefore, the present invention can be used as a part of a petroleum refining process, and petroleum and coal can be refined at normal temperature and normal pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スフィンゴモナス属CDH-7株によるCA分解の経
時変化を示す図。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the time course of CA degradation by Sphingomonas strain CDH-7.

【図2】スフィンゴモナス属CDH-7株の休止菌体によるC
A分解の経時変化を示す図。
FIG. 2. C by resting cells of Sphingomonas sp. Strain CDH-7
The figure which shows the time-dependent change of A decomposition.

【図3】スフィンゴモナス属CDH-7株休止菌体による連
続分解を示す図。
FIG. 3 is a diagram showing continuous degradation by quiescent cells of Sphingomonas sp. Strain CDH-7.

【図4】スフィンゴモナス属CDH-7株を用いた各種の石
油系有機溶媒/水系の二相系でのCA分解反応を示す図。
FIG. 4 is a diagram showing a CA decomposition reaction in a two-phase system of various petroleum organic solvents / water systems using Sphingomonas sp. Strain CDH-7.

【図5】スフィンゴモナス属CDH-7株を用いた石油系有
機溶媒/水系よりなる二相系での、菌体濃度変化による
CA分解の変化を示す図。
FIG. 5 shows changes in bacterial cell concentration in a two-phase system composed of petroleum organic solvent / water using Sphingomonas sp. Strain CDH-7.
The figure which shows the change of CA decomposition.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇佐美 昭次 埼玉県狭山市水野384番地9号 (72)発明者 桐村 光太郎 東京都目黒区柿の木坂2丁目10番地3号 (72)発明者 辻 健司 東京都練馬区石神井町6丁目16番地2号 コーポレイクサイド201 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Usami 384-9, Mizuno, Sayama-shi, Saitama (72) Kotaro Kirimura 2-10-3, Kakinokizaka, Meguro-ku, Tokyo (72) Inventor Kenji Tsuji Tokyo 6-16-16 Shakujiicho, Nerima-ku, Tokyo Corporate Lakeside 201

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 芳香族類有機窒素化合物を分解する能力
を有する微生物を、芳香族類有機窒素化合物を含有する
物質と接触させ、前記芳香族類有機窒素化合物を分解す
ることを特徴とする脱窒素方法。
1. A method according to claim 1, wherein a microorganism capable of decomposing the aromatic organic nitrogen compound is brought into contact with a substance containing the aromatic organic nitrogen compound to decompose the aromatic organic nitrogen compound. Nitrogen method.
【請求項2】 芳香族類有機窒素化合物を分解する能力
を有する微生物がスフィンゴモナス属に属する微生物で
あることを特徴とする請求項1記載の脱窒素方法。
2. The denitrification method according to claim 1, wherein the microorganism having the ability to degrade an aromatic organic nitrogen compound is a microorganism belonging to the genus Sphingomonas.
【請求項3】 スフィンゴモナス属に属する微生物がス
フィンゴモナス属CDH-7であることを特徴とする、請求
項2記載の脱窒素方法。
3. The method according to claim 2, wherein the microorganism belonging to the genus Sphingomonas is Sphingomonas genus CDH-7.
【請求項4】 芳香族類有機窒素化合物がカルバゾール
化合物類及び/又はキノリン化合物類であることを特徴
とする、請求項1記載の脱窒素方法。
4. The denitrification method according to claim 1, wherein the aromatic organic nitrogen compound is a carbazole compound and / or a quinoline compound.
【請求項5】前記微生物と芳香族類有機窒素化合物を含
有する物質との接触を好気的又は微好気的な条件下で行
うことをを特徴とする、請求項1記載の脱窒素方法。
5. The denitrification method according to claim 1, wherein the microorganism is contacted with a substance containing an aromatic organic nitrogen compound under aerobic or microaerobic conditions. .
【請求項6】 前記微生物が培養菌体又は休止菌体であ
ることを特徴とする請求項1記載の脱窒素方法。
6. The method according to claim 1, wherein the microorganism is a cultured cell or a quiescent cell.
【請求項7】 石油系有機溶媒/水系よりなる二相系で
行うことを特徴とする請求項1記載の脱窒素方法。
7. The method according to claim 1, wherein the method is carried out in a two-phase system consisting of a petroleum organic solvent / water system.
【請求項8】 芳香族類有機窒素化合物を分解する能力
を有する微生物の休止菌体と芳香族類有機窒素化合物を
含有する物質とを連続的に接触させ前記芳香族類有機窒
素化合物を分解することを特徴とする連続的脱窒素方
法。
8. An aromatic organic nitrogen compound is decomposed by continuously contacting resting cells of a microorganism having the ability to decompose the aromatic organic nitrogen compound with a substance containing the aromatic organic nitrogen compound. A continuous denitrification method, characterized in that:
【請求項9】 スフィンゴモナス属に属する微生物がス
フィンゴモナス属細菌CDH-7であることを特徴とする、
請求項8記載の連続的脱窒素方法。
9. The microorganism belonging to the genus Sphingomonas is Sphingomonas bacterium CDH-7,
9. The continuous denitrification method according to claim 8.
【請求項10】 芳香族類有機窒素化合物がカルバゾー
ル化合物類及び/又はキノリン化合物類であることを特
徴とする、請求項9記載の連続的脱窒素方法。
10. The continuous denitrification method according to claim 9, wherein the aromatic organic nitrogen compound is a carbazole compound and / or a quinoline compound.
JP05074497A 1997-03-05 1997-03-05 Biodenitrification of hard-to-remove aromatic organic nitrogen compounds Expired - Lifetime JP3243498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05074497A JP3243498B2 (en) 1997-03-05 1997-03-05 Biodenitrification of hard-to-remove aromatic organic nitrogen compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05074497A JP3243498B2 (en) 1997-03-05 1997-03-05 Biodenitrification of hard-to-remove aromatic organic nitrogen compounds

Publications (2)

Publication Number Publication Date
JPH10244294A true JPH10244294A (en) 1998-09-14
JP3243498B2 JP3243498B2 (en) 2002-01-07

Family

ID=12867360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05074497A Expired - Lifetime JP3243498B2 (en) 1997-03-05 1997-03-05 Biodenitrification of hard-to-remove aromatic organic nitrogen compounds

Country Status (1)

Country Link
JP (1) JP3243498B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125462A1 (en) * 2008-04-07 2009-10-15 アサヒビール株式会社 Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same
CN102391311A (en) * 2011-09-06 2012-03-28 福州大学 Ferrocene ion liquid and synthesis method and application thereof
JP2013545596A (en) * 2010-10-27 2013-12-26 ペキン ユニバーシティ Processing system and method for processing waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125462A1 (en) * 2008-04-07 2009-10-15 アサヒビール株式会社 Microorganism capable of decomposing aromatic compounds and method of decomposing aromatic compounds using the same
JP2013545596A (en) * 2010-10-27 2013-12-26 ペキン ユニバーシティ Processing system and method for processing waste
US9278876B2 (en) 2010-10-27 2016-03-08 Peking University Treatment of waste product
CN102391311A (en) * 2011-09-06 2012-03-28 福州大学 Ferrocene ion liquid and synthesis method and application thereof

Also Published As

Publication number Publication date
JP3243498B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
Mohebali et al. Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A
Coates et al. Isolation of Geobacter species from diverse sedimentary environments
EP0712808B1 (en) Process for decomposing pollutant with microorganism, process for remedying environment with microorganism, and microorganism itself
Kilbane Ii et al. Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum
JPH0771477B2 (en) Mutant microorganisms useful for cleaving organic CS bonds
CN100371438C (en) Rhodococcus erythropolis for biological desulfurization and its use
Chen et al. Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2
JP2008104361A (en) Method for denitrification in presence of salt
Papizadeh et al. Growth-phase dependent biodesulfurization of dibenzothiophene by Enterobacter sp. strain NISOC-03
JP2002522098A (en) Improved microbial catalyst for desulfurization of fossil fuels
JP3243498B2 (en) Biodenitrification of hard-to-remove aromatic organic nitrogen compounds
EP0821982B1 (en) High-Temperature Desulfurization by Microorganisms
JPH07255462A (en) Method for obtaining organic solvent-resistant microorganism and organic solvent-resistant microorganism obtained by the method
JP2655564B2 (en) New microorganism
Guerinik et al. Isolation and characterization of oil-desulphurizing bacteria
JPH07103379B2 (en) Biodesulfurization
Shin et al. Biodegradation of Phenanthrene by Sphingomonsa sp. Strain KH3-2
JP2636175B2 (en) Denitrification method using microorganisms
EP1106700A2 (en) Microbial cleavage of organic c-n bonds
EP1108778A1 (en) Microorganisms useful for cleavage of organic C-N bonds
JP3816625B2 (en) Microbial desulfurization method for sulfur-containing heterocyclic compounds
Zhang et al. Anaerobic biodegradation of pyrene and benzo [a] pyrene by a new sulfate-reducing Desulforamulus aquiferis strain DSA
JP2516894B2 (en) Novel microorganism and method for decomposing crude oil using the same
Kumar et al. Biodegradation of anthracene and dibenzothiophene in model oil by the desulfurizing cells of Micrococcus halobius ED3
JP2003070463A (en) Method for decomposing polynuclear aromatic compound by microorganism and treatment agent for the polynuclear aromatic compound

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term