WO2009124781A2 - Procede et dispositif pour controler la qualite, particulierement la raideur et la phase, d'une articulation hydro elastique - Google Patents

Procede et dispositif pour controler la qualite, particulierement la raideur et la phase, d'une articulation hydro elastique Download PDF

Info

Publication number
WO2009124781A2
WO2009124781A2 PCT/EP2009/002733 EP2009002733W WO2009124781A2 WO 2009124781 A2 WO2009124781 A2 WO 2009124781A2 EP 2009002733 W EP2009002733 W EP 2009002733W WO 2009124781 A2 WO2009124781 A2 WO 2009124781A2
Authority
WO
WIPO (PCT)
Prior art keywords
armature
impact
frequency
joint
impacted
Prior art date
Application number
PCT/EP2009/002733
Other languages
English (en)
Other versions
WO2009124781A3 (fr
Inventor
Serge Verger
Original Assignee
Anvis Sd France S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anvis Sd France S.A.S. filed Critical Anvis Sd France S.A.S.
Priority to PL09729967T priority Critical patent/PL2263068T3/pl
Priority to US12/936,704 priority patent/US8397591B2/en
Priority to CN200980119432.1A priority patent/CN102047091B/zh
Priority to ES09729967T priority patent/ES2704292T3/es
Priority to EP09729967.1A priority patent/EP2263068B1/fr
Publication of WO2009124781A2 publication Critical patent/WO2009124781A2/fr
Publication of WO2009124781A3 publication Critical patent/WO2009124781A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/022Power-transmitting couplings or clutches

Definitions

  • the invention relates to a method and a device for controlling the quality, particularly the stiffness and the phase, of a hydro-elastic joint or not.
  • the most common area of use of these parts is that of the ground connections of automobiles or commercial vehicles, in particular as spacers between cradle and chassis or as engine support, or as torsion damping dampers in the ground connections or the transmissions.
  • these wedges, bearings or joints the generic term "articulation" except in the case of descriptions or particularities specific to one or other of these products.
  • These joints are located at the interface of two parts to be assembled and they are intended to filter and phase out the vibrations transmitted between one and the other of the parts to be assembled.
  • These joints usually consist of two metal frames with a first cylindrical outer frame of any profile, and a second frame also cylindrical in shape located largely within the volume defined by the first.
  • These two frames are interconnected by rubber or elastomer parts with possibly other plastic parts or metal.
  • the shape and arrangement of the parts between the two frames is sometimes such that is located between the two frames at least one or more hermetic hydro elastic chambers communicating with each other through calibrated orifices, this or these chambers being filled with a water or glycol type liquid, or a gas.
  • the set of components located between the two frames forms with them a whole in general indémontable.
  • the articulation has a principal theoretical axis of work which turns out to be in certain types of joints also the axis of symmetry of the two frames.
  • This theoretical axis of work is the axis of axial or radial translation of one armature relative to the other in operation on the vehicle, or the axis of rotation of one armature relative to the other in operation on a vehicle, this assuming that the joint is not subject to eccentric forces or parasitic forces that tend to deform.
  • These joints thus formed are the subject of the method and device according to the present invention.
  • the two frames respectively inner and outer of these joints are respectively fixed to the two parts to be assembled.
  • Vibrations in dynamics that a piece communicates to the other are thus forced to go through the mixed system "rubber, plastic and any hydro elastic chambers" located between the two frames and connecting them.
  • the consequence is a phase shift between input and output signals, this phase shift being variable with the excitation frequency. It is thus clear how important is the quality of the filtration of this system at the different possible excitation frequencies; a joint having a manufacturing defect that can be considered good in phase shift at a given frequency and bad for another excitation frequency. Or the filtration quality of a joint is essential for the comfort of the vehicle over the entire frequency range considered.
  • a servo-hydraulic machine is used to control the quality of the joints in production, applying, at a given frequency, a sinusoidal displacement of constant amplitude to one of the reinforcements and it is measured on the other reinforce the effort, the stiffness and the phase of the output signal.
  • These output signal values depend on the frequency of the input signal and change strongly with the frequency in a non-proportional manner.
  • An accompanying figure A shows the schematic operating principle of the prior art for controlling the quality of a joint.
  • the articulation a comprises a first armature b and a second armature c.
  • the first armature is connected to the second armature by a spring d and, in parallel, a damper e.
  • the first armature b is fixed and the second armature c is excited by a frequency generator with a constant amplitude, an increasing frequency and a predetermined force f.
  • the characteristics of the articulation a are determined by a frequency sweep.
  • a frequency sweep lasts a very long time, for example much more than 30 seconds.
  • the devices for making such a frequency sweep are extremely expensive. To avoid spending too much time controlling these values, it is sufficient to control them for a few precise frequencies of sinusoidal input signal, sometimes for a single frequency. One then makes a dead end on possible drifts quality of the articulation for other frequency. These controls are called "control points" at different frequencies.
  • the object of the invention is to provide a method and an arrangement for controlling the quality, particularly the characteristics of the damping of the hydraulic member, of a hydroelastic joint, in a time of extremely short rate.
  • the first claim relates to the method: this method is the use in production line, without slowing down the rate of production of the joints, a shock instrument, improved with respect to the existing state of the art, impacting over a shorter period Time at 15 milliseconds a first armature, combined with the analysis of the stiffness and phase response over the total frequency range between 0 and 2000 Hz, most commonly between 0 and 1000 Hz, of this same armature and the simultaneous discrimination of good or bad parts with indication of the nature of the possible defect, while the second reinforcement is kept fixed during all this test by an external clamping device, the whole including the installation of the articulation and its evacuation after impact and measure in less than 10 seconds.
  • the frequency analysis of the output signal of one of the armatures when it is applied to an impact, allowing a comparison in whole or in part to an authorized bandwidth to automatically detect the points that come out of the tolerance and how often it occurs.
  • the impact technique also known as the "instrumented hammer” or “impulse test”, has been known for a long time. The theory is based on the use of a very short impact, close to a Dirac pulse, intended to excite a structure, and on the transformation in Fourier analysis of the response of this structure over a whole range of frequencies. It is applied for example to parts to verify their functioning or their integrity, as in US Pat. No.
  • the invention relates to a method for controlling the quality, particularly the stiffness and the phase, of a hinge for connecting two other parts by filtering the transmission of vibrations between these two other parts.
  • Said articulation is called to work in axial, radial or torsion, with or without one or more hydroelastic chambers particularly filled by a hydro fluid, such as a liquid or a hydro gas, and being composed of two concentric cylindrical reinforcements, the reinforcement inner being largely located in the volume defined by the outer frame, these two frames being connected by a set of rubber or elastomer components and optionally plastic and metal parts, said frames themselves being respectively fixed to the other two parts that the joint connects.
  • a hydro fluid such as a liquid or a hydro gas
  • an impact control technique is applied at the rate of the joint production line, ie less than 10 seconds of cycle time, to identify, during a frequency analysis, the oscillation of the articulation zone. impacted the good parts of the bad ones.
  • the phase shift values of the frequency analysis are compared with an allowed phase shift bandwidth.
  • the allowed phase shift bandwidth can be defined by an envelope.
  • the phase shift values resulting from the frequency analysis are compared in at least one given limited frequency range, the given frequency band being in particular in the total frequency range from 0 to 2000 Hz.
  • the phase shift values resulting from the frequency analysis are compared in at least one limited frequency range or at least two limited limited frequency ranges, the given limited frequency range being in particular in the frequency range total of 0 to 2000 Hz, in particular the limited frequency ranges given being spaced apart from one another, in particular by at least 10 Hz.
  • a limited frequency range is defined around a frequency value of a relative maximum and / or a relative minimum of the phase shift, in particular of a phase shift reference curve.
  • a frequency range is from about 100Hz to about 200Hz, particularly from about 120Hz to about 180Hz, from about 200Hz to about 300Hz, particularly from about 220Hz to about 290Hz, and or from about 350 Hz to about 450 Hz, particularly from about 370 Hz to about 430 Hz.
  • the phase shift or module values of several limited frequency ranges are compared with reference values, for example an authorized bandwidth.
  • a frequency range is defined around a passage frequency value of 90 or 180 degrees of the phase shift of a reference curve.
  • the invention relates to a method for controlling the quality, particularly the stiffness and the phase, of a hinge intended to connect two other parts by filtering the transmission of vibrations between these two other parts, said hinge being called to working axially, radially or torsionally, with or without one or more elastic chambers particularly filled with hydro fluid, such as a liquid or a hydro gas, and being composed of two concentric cylindrical reinforcements, the inner armature being large part of the volume defined by the outer armature, these two armatures res being connected by a set of rubber or elastomer components and if necessary plastic and metal parts, said armatures themselves being respectively fixed to the other two parts that the joint connects, applying a technique of impact control at the rate of the joint production line, ie less than 10 seconds of cycle time, to identify during a frequency analysis of the oscillation of the impacted joint area the good parts of the bad ones in a total frequency range, in in particular from 0 to 2000 Hz, characterized in that modulus values of the frequency analysis
  • a limited frequency range is from about 50 Hz to about 250 Hz, particularly from about 100 Hz to about 200 Hz.
  • the module values resulting from the frequency analysis of the controlled articulation form a curve, the curve having a relative maximum and then a relative minimum.
  • the frequency of the relative minimum being compared with a predetermined frequency band, in particular the frequency band being between about 140 and about 150 Hz, preferably the frequency being in the predetermined frequency band for the good parts and / or the second curve having a relative maximum and then a relative minimum, the value of the relative minimum being compared to a predetermined value, in particular the value of the relative minimum being less than or equal to the predetermined value for the good parts.
  • the module values resulting from the frequency analysis of the oscillation of the impacted armature in two limited frequency ranges are compared, the first limited frequency range being defined around the frequency of the frequency first resonance peak of the reference curve and the second limited frequency range is deviated from the first limited frequency range, in particular at least 100Hz.
  • the second limited frequency range is defined around the frequency of the second resonance peak of the reference curve, in particular being the absolute maximum of the reference module curve, preferably between about 350 and about 450 Hz, and / or the second limited frequency range is from about 500 Hz to about 800 Hz, particularly from about 550 Hz to about 700 Hz.
  • the modulus value of the first peak is smaller than the modulus value of the second peak.
  • the modulus or phase shift reference curve in the frequency space is generated by an impact analysis of a good reference hinge or a numerical simulation of a good hinge.
  • the allowable bandwidth surrounding the reference module or phase shift curve is formed of a maximum module or phase shift value curve and a minimum module or phase shift value curve, the value curve. of a minimum or maximum phase or phase shift having in particular a distance therebetween of less than about 15 percent of the maximum value of the reference phase or phase shift curve, in particular less than about 10 percent, of preferably less than about 5 percent.
  • the present invention relates to an arrangement for controlling the stiffness or the phase of a hydro-elastic articulation, the articulation being intended to connect two other parts by filtering the transmission of vibrations between these two other parts, said articulation called to work in axial, radial or torsion, with or without one or more hydroelastic chambers particularly filled with a hydro fluid, such as a liquid or a hydro gas, and being composed of two concentric cylindrical reinforcements, the inner armature being largely located in the volume defined by the outer armature, these two armatures being connected by a set of rubber or elastomer components and optionally plastic and metal parts, said armatures themselves being respectively fixed to the other two parts that the joint connect , the arrangement comprising an impact head for exerting an impact on the one of these armatures, and a support for maintaining the joint tight without irreversible deformation at the other of its armatures which is thus fixed without possible displacement, characterized in that the arrangement further comprises a magnetoelectric actuator for accelerating the impact
  • the arrangement is adapted to exert an impact force on the articulation between 180N and 300N, preferably between 200N and 270N, in particular around 210N.
  • the claimed arrangement associated with the claimed method, allows real-time monitoring that the impact created on the reinforcement is always done without rebound and within a reasonable period of time.
  • the set instruction itself less than the 15 milliseconds indicated above, and that the impact force spectrum and its level are in accordance with the instruction. This is a process and improved impact device compared to the existing state of the art because the device allows self-control that is to say, to control its own impact process in addition product control "articulation".
  • This method is also distinguished from the state of the art existing in the field of impact control in that the position of the point of impact on one of the two reinforcements chosen, the other being fixed, may itself be chosen outside the theoretical axis of work or symmetry, while there exists on this selected frame several displacement sensors located at locations such as simulate the work of a slightly deformed joint in the presence of efforts centered or eccentric or couples; this to take into account the deformations of the articulation in real operation on the vehicle and the fact that the displacement of the armature on which the output signal is measured is not always collinear with the direction of the input impact . Of course the response of the different output sensors is analyzed simultaneously so that the rate of the production line remains unchanged.
  • This method and its associated arrangement are also distinguished from the existing art of impact control in that the output sensors can be used to apply a centered or eccentric force on the armature whose displacement is to be measured. in frequency analysis, so as to reproduce during the control a geometry close to in-service conditions; for example when the axes of the outer and inner reinforcements no longer coincide because of the forces transmitted by the two parts to be assembled. Or for example when the axes of the two frames remain colinear but one of the frames has been rotated about this axis relative to the other frame, or a frame has been translated along its axis relative to the other frame. The forces exerted remain of course weak and there is no question of irreversibly deforming the joint.
  • a first variant for controlling a slightly deformed articulation consists of mounting the output sensor on a calibrated elastic device and compressing the elastic device until the output sensor, resting on the armature being analyzed, indicates the force with which one wants to push on said frame.
  • This output sensor must then be of the active type so that it can convert the load variations into voltage variations.
  • the impact force must itself be greater than the force exerted by the sensor on the frame on which it applies.
  • Another variant if we want to avoid pushing directly with the (s) sensor (s) is to exert this effort on the armature to be impacted by a device independent of the output sensors; by For example, a calibrated spring or any other elastic device whose race-effort characteristic is precisely known.
  • the output sensor (s) are then, during the measurement, fixed by a magnetized device on the armature whose response to an impact is analyzed. It can also be laser sensors that do not require direct contact with the frame
  • the arrangement can also be designed so that the output sensor (s) is automatically brought into contact with the armature whose displacement is to be measured in frequency analysis; this condition will be advantageously fulfilled by the use of a magnetic support fixed to the sensor, which magnetic support is fixed on a defined area of the armature in question and preferably cooperate geometrically with a portion of this frame to always locate the sensor.
  • This arrangement is useful for piezoelectric type sensors.
  • Another solution is to come to support the sensor with a precise force at a given location of the armature whose displacement is to be measured in frequency analysis so that said force causes a reversible deformation of the joint and thus come closer to certain conditions of use in service.
  • the output signal can also be measured by sensors without contact type laser, or a combination of type of output sensors, some being with single magnetic contact, others can exert effort and others without contact .
  • Figure 1 is a schematic sectional view of a device according to the present invention for controlling a hinge-type hinge axially elastic support axle.
  • Figure 2 is a schematic perspective view of the clamping mode of the joint of Figure 1 in its control assembly.
  • Figure 3 is a schematic sectional view of a device according to the present invention for controlling a radial-elastic bearing type articulation radial operation.
  • Figure 4 is a schematic sectional view of a device according to the present invention for controlling a bearing intended to work in torsion.
  • Figure 5 details a particular design mode of the impact system.
  • Figure 6 schematically shows another mode of design of the impact system.
  • Figure 7a shows as a curve the signals provided by a force sensor located in an impact system.
  • Figure 7b shows as a curve the signals provided by a displacement sensor.
  • Figure 8 shows a schematic operating principle of a control of a hydroelastic joint.
  • FIG. 9 shows in the form of a curve the frequency analysis of a signal supplied by a force sensor.
  • FIG. 10a shows, in the form of a module curve, the frequency analysis of the signals supplied by a displacement and force sensor when the armature to which it is applied is excited by an impact.
  • FIG. 10b shows, in the form of a phase shift curve, the frequency analysis of the signals supplied by a force sensor and a displacement sensor when the armature to which they are applied is excited by an impact.
  • FIG. 11 and FIG. 12 schematize the application of the present method to articulations deliberately deformed by translation or rotation of one armature relative to the other.
  • the hydro-elastic articulation 1 consists of a metal outer cylindrical reinforcement 10 having a folded flange 11, of an inner reinforcement 12 coaxial with the outer reinforcement 10, of a plastic interlayer 13 fitted on the inner armature 12, several elastomer parts 14, 15 and 16 adhered, glued or fitted on one and / or the other armatures, and finally two hydroelastic chambers 17.
  • the joint 1 has in this case a theoretical working axis 18 which is at the same time the axis of symmetry of the joint. This articulation is placed during the production cycle between two half-shells 20 and 21 which clamp the joint at its outer frame 10 with sufficient force to prevent slipping on impact, while avoiding any irreversible deformation of the 'joint.
  • the circular collar 11 of the outer armature 10 bears on the half-shells 20 and 21; but some similar joints have no flange and it is important to master the holding force of the two half shells 20 and 21 on the frame they maintain.
  • These half-shells 20 and 21 can take several forms and means of closing and clamping. However, they must have a mass and a stiffness sufficient not to disturb the analysis of the output signals.
  • the impact system is represented by the assembly 3 which comprises a special jack 31, a force sensor 32 located on the output rod of the jack and an impact tip 33.
  • the assembly 3 which comprises a special jack 31, a force sensor 32 located on the output rod of the jack and an impact tip 33.
  • the system 3 propels the tip 33 against the inner frame 12 in the direction 35 itself collinear in this case with the theoretical working axis 18 of the joint.
  • the tip 33 is shown at 34 in this figure and the contact with the inner armature 12 is uniformly on the edge of the inner bore 121 of this frame.
  • the system 3 rises instantaneously to avoid keeping the tip 33 in contact with the joint. It is not beyond the scope of the present invention to have the impact system a little to the right or left of the theoretical working axis 18.
  • the impact created by the impact between the tip 33 and the armature 12 is then made eccentrically relative to the axis 18. It is also beyond the scope of the present invention by clamping the inner armature 12 of the joint and making the impact and displacement measurements. on the outer frame 10 if the shape of the joint is thus better suited to this impact method. It is then the inner armature 12 which must be rigidly fixed, for example by means of an expandable mandrel which would be housed in the bore 121 of the inner armature 12 and then lock this armature during the impact test on the outer frame 10.
  • the system for measuring the consequences of the impact on the armature 12 is represented at 4; it includes an output sensor 40 measuring the acceleration of the inner armature 12. It is attached to a small magnet 41, a cylindrical portion 42 is housed in the bore 121 of the inner frame 12 so that once in position the sensor 40 is always found in the same place. When the measurement is completed a small system not shown here pulls the nozzle 42 of the bore 121 to release the sensor 40 of the joint 1.
  • the output sensor 40 may be a speed sensor for recording the oscillations of the impacted frame.
  • the impact force sensor 32 and the acceleration sensor 40 are both respectively connected to an acquisition unit and a computer 5 via the links 321 and 401.
  • the computer 5 makes it possible to carry out the frequency analysis in using the Fourier transform of the output signal with respect to the input signal. Accelerations, stiffness, peaks are detected amplification or damping and corresponding phase shifts, and this for all frequencies in a range usually from 0 to 2000 Hz, the armature 12 when it is excited by an impact.
  • the limit of 2000 Hz is given here as an indication and depends on the type of articulation and specifications of the client; in some applications it will be limited to 800 Hz, in others to 1000 Hz or 1500 Hz.
  • the whole of this device is fixed on a gantry 6.
  • the implementation of the present device according to the invention is to come manually or automatically place the hinge 1 between the half shells 20 and 21, tighten the latter on the frame outside this articulation, trigger the impact on the inner frame 12 and measure the movements or accelerations of this frame 12 when excited by the impact.
  • the two half-shells move apart so that we can release the joint which, according to whether it is good or bad, will be switched manually or automatically in the appropriate tray.
  • FIG. 2 is a schematic view of the system for holding and tightening a joint according to the present invention.
  • the hinge 1 is placed between the two half-shells 20 and 21 so that the axis 18 of the hinge coincides substantially with the axis 19 of the device.
  • Figure 3 shows the application of the present invention to another type of joint.
  • This type of articulation is intended to work radially and not axially. This time it is the inner armature 12 which is rigidly held by two end pieces 22 and 23 coming to position and trap it at its bore 121.
  • the impact device 3 is here represented collinear with the radial axis Z passing through the middle of the joint.
  • armature 10 when it is solicited by an impact that forces it to move partially conically, that is to say when the axis 18 of the inner armature is no longer at the same time that of the armature outside 10.
  • Three displacement sensors 40a, 40b and 40c are respectively disposed on the periphery of the armature 10. These sensors are preferably arranged on a generatrix of the cylinder forming the armature 10 placed opposite to that on which the armature 10 is made. impact.
  • these three sensors can be arranged on other generators to take into account the transverse displacements of the armature 10, in particular if it is desired to ensure that the joint has a homogeneous radial behavior.
  • the three sensors are either attached to the hinge with a magnet, or are non-contact laser type. It is not beyond the scope of the present invention if instead of three sensors any number is provided, provided that the system of acquisition and processing of the signal 5 is able to simultaneously process all the information transmitted in a time less than 10 seconds, placement of the joint on its measuring assembly 7, impact and evacuation of the joint after measurement included.
  • the information of the load 32 is conveyed to the processing center 5 via the connection 321.
  • the information of the sensors 40a, b and c are conveyed separately by their respective connections 401a, b and c.
  • Figure 4 shows an embodiment of the present invention to torsionally working joints.
  • the view to the left is a section AA view of the right view.
  • the working mode of such joints is to rotate one armature relative to the other, and to dampen and phase out relative movements through the presence of elastomer and hydroelastic chambers between these two frames.
  • these armatures are respectively fixed to two other parts that they can connect while filtering the vibrations transmitted from one to the other.
  • the joint always has an outer armature 10 and an inner armature 12. These two armatures are cylindrical, concentric and axis of revolution 18.
  • the inner armature 12 is held clamped and immobile by the two end pieces 22 and 23 respectively which are 'support the bore 121 of the inner frame 12. It can also clamp the inner armature 12 by any other means, such as an expanding mandrel in the bore 121 for example, and this without departing from the scope of this invention.
  • the outer armature 10 being brought into use to rotate around the inner armature 12 it is usually provided with one or more lugs 10a for transmitting a rotational movement in a direction R. Without departing from the scope of the present invention it may be one or more lugs or a notch or a succession of gear teeth, all these forms being possible and being determined most often according to the manner in which this external frame is fixed to the corresponding piece .
  • Figure 4 there is shown a single pin 10a to simplify. It is on this ergot that we will come to exercise a impact by a tip 33 controlled by the impact system 3.
  • the inner armature 12 being fixed to the measuring assembly it is the outer armature 10 which will move because of the excitation due to the impact .
  • a motion and acceleration sensor 40 will record the output signal which will itself be processed by the computer 5 at the same time as the signal coming from the load cell 32 of the impact system 3. If the frequency analysis of the signal output indicates an abnormality the joint will be declared bad.
  • FIG. 5 is a schematic representation of an impact generator 3.
  • a jack 31 operates a mass 34 at the end of which is a load cell 32 and the impact device itself 33.
  • Two springs 35 and 36 allow to vary the speeds and energy of the impact to adapt it to the family of articulation to control in line of production.
  • the signal leaving the load 32 by the cable 321 is used not only for frequency analysis of the ratio between the input signal and the output signal, but also to verify that the impact was unique, with no rebound, respecting a set of effort spectrum, level and duration of impact. This provision allowing a self-control of the measurement process in case, for example, the tip 33 would become dull, break, or in case the springs 35 and 36 no longer fulfill their role, or in the case where the cylinder 31 would not work properly.
  • FIG. 6 is a schematic representation of another embodiment of an impact generator 100.
  • the impact generator comprises a rod 102 with an impact head 104 to which an impact tip 106 is disposed with which an impulse is exerted on an armature 120 of a hydro-elastic articulation 122.
  • the hydro-elastic articulation can be the articulation shown in FIG. 1.
  • the hydro-elastic articulation comprises a second armature 124 which is maintained by a 126.
  • the impact head 104 further comprises a force sensor 108 attached to the rod, in particular in the form of a piezoelectric sensor.
  • an electromagnetic actuator 110 is arranged to generate a displacement of the rod.
  • the rod, the impact head, the impact tip, and the force sensor together form a moving part of the impact generator.
  • the movable portion can be moved from a first rest position to a second impact position or the impact head impacts the hinge.
  • a spring is adapted to remove the moving part in the rest position after each pulse.
  • the moving part and therefore the impact head is accelerated by the electromagnetic actuator.
  • the force of the impact generator is controlled by a controller 116.
  • the impact generator may exert a force of 250N on the joint.
  • the force range is between 180N and 300N, preferably between 200N and 270N, for example around 210N.
  • the force applicable to the joint to be tested is variable and can be adapted to the joint to be tested.
  • the force sensor 32 may be a piezoelectric sensor. Impact and force of the impact generator can be executed and controlled by the electromagnetic actuator.
  • Figure 7a shows an impact curve exerted on a joint in the space of time.
  • the impact hits the joint shortly before 20 milliseconds with a maximum effort of approximately 210N.
  • the impact lasts between 5 and 8 milliseconds.
  • the articulation is excited by the impact generator and exerts a damped oscillation.
  • This damped oscillation is recorded by the displacement sensor 40.
  • Fig. 7b shows an output signal of the displacement sensor 40 of the hinge which is excited by the impact shown in Fig. 7a in a form of a damped oscillation.
  • Figure 7b shows the impulse response of a joint in the space of time.
  • an object is excited with a Dirac pulse, it is possible to deduce from the impulse response the transfer function of the object.
  • the transfer function depends on the characteristics of the joint, for example a stiffness constant and a damping constant. Now, from the impulse response it is possible to deduce these characteristics. It is therefore important, to simplify the calculations, to know a theoretical model of articulation.
  • FIG 8 shows a schematic operating principle of control of a hydroelastic joint by impact.
  • the hinge 70 comprises a spring 74 and a damper 76 which are connected in parallel between a first frame 77 and a second frame 78 having a mass m.
  • the spring 74 has a stiffness constant k and the damper 76 has a damping constant C.
  • the first armature 77 is fixed and the second armature 78 is impacted by a force 79.
  • the second armature exerts an oscillation after the impact. with decreasing amplitude.
  • the displacement value of the second armature 78 is designated Xm.
  • the stiffness constant and the damping constant depends the frequency ⁇ and the phase shift ⁇ . In a production of a joint it is important to know the characteristics in one or more given frequency ranges to determine the faulty and error-free products.
  • Figure 9 shows the impulse of the impact generator in the frequency space from 0 to 50 Hz. In the frequency space the impulse of the impact generator is almost constant with a slight slope. A perfect Dirac pulse would be in the constant frequency space.
  • Figure 10 summarizes and compares the curves from the frequency analysis when using the impact method according to the present invention.
  • a graphical output of the frequency analysis giving the module and phase over the entire frequency range.
  • the module is defined as the ratio between the acceleration of the armature excited by the impact on the one hand and the effort exerted by the impact on the other hand.
  • the modulus curve as a function of frequency is represented by curve 80 in part 10a of FIG. 10.
  • the results analysis computer keeps in memory and possibly shows on the screen a certain number of zones for which the compliance with a deposit is necessary for the part to be declared good.
  • the hatched curve 81 indicates that between 100 and 200 Hz it must pass through a small resonance and then a minimum which must be ensured that it is less than or equal to an imposed value TFmin for a frequency Fmin between 140 and 150 Hz for example.
  • the curve 81 also gives a maximum value to the module designated by TF Acc / F over the entire range between 100 and 200 Hz.
  • the curve resulting from the frequency analysis may have a small resonance, then a relative maximum, a minimum relative and then an absolute maximum.
  • the value of the relative minimum can be compared to the predetermined value TF Acc / F and the frequency can be compared with the frequency range of 140 to 150 Hz.
  • the modulus value of the small resonance can give information. on the quality or characteristics of the hydraulic limb of the hydro-elastic joint.
  • the curve 81 corresponds to an envelope or an authorized bandwidth. The reason for the nonconformity is displayed by the computer or can be accessed by querying the computer.
  • the modulus is between the values given by the curves 82 and 84.
  • the curves 82 and 84 define an envelope.
  • the modulus curve over a range of between 550 Hz and 650 Hz module is included in an envelope beam defined by the curves 85 and giving well the example of what is called "authorized bandwidth".
  • the authorized bandwidth or envelope in particular the maximum permissible values and the minimum values allow- following, or following, the module curve, in particular of a reference hinge.
  • the maximum permissible values and the maximum permissible values may have a distance between them of less than 15 percent of the maximum value of the modulus curve of a reference hinge. Any articulation which, during the control with the impact method according to the present invention, does not comply with the above instructions is declared non-compliant. Thus not only the resonant frequency and the resonance peak value are compared with a respective predetermined value but also the characteristics of the damping of the hydro-elastic joint.
  • the module values are compared with predetermined reference values in a plurality of predetermined limited frequency ranges or bands in the frequency domain.
  • the predetermined reference values may be, for example, setpoints or an authorized bandwidth or a predetermined envelope.
  • a limited frequency range may be defined around the frequency of the resonance peak of a reference module curve in the frequency domain.
  • Another limited frequency range may be defined around a frequency where the module has a relative maximum in the frequency domain. The relative maximum can be located at a frequency lower than the frequency of the resonance peak.
  • the maximum setpoint around the relative maximum see for example the chopped curve 81 in FIG. 10a) can be at least 5 times smaller than the maximum setpoint around the resonance peak ( see for example the chopped curve 82 in Figure 10a).
  • the modulus curve resulting from the frequency analysis is compared in at least two limited frequency ranges with a respective maximum and / or minimum value or a curve defining maximum and / or minimum values and / or an acceptable predetermined bandwidth in the considered limited frequency range.
  • these limited frequency ranges are spaced apart from each other.
  • these two limited frequency ranges can be deviated from 100 to 200 Hz.
  • a limited frequency range can have a width of 30 to 150 Hz.
  • the curve 90 giving the phase frequency analysis is represented in part 10b of FIG. 10.
  • the value of the phase shift is between a mini terminal and a maximum terminal, as given by FIG. curves 91, 92 and 93 or in a predetermined bandwidth.
  • the curves 91, 92 and 93 define an envelope.
  • the mini terminal and the maximum terminal can have, in a example, a maximum distance between them of less than 15 degrees.
  • a first frequency range is defined between about 130Hz and 180, where the reference phase shift curve has a relative minimum, especially around a 90 degree phase shift.
  • a second limited frequency range is defined between about 220 and 280 Hz, where the reference phase shift curve has a relative maximum around a phase shift value of 180 degrees depending on the relative minimum.
  • a third limited frequency range is defined around 400 degrees, where the phase shift curve has a 90 degree shift.
  • the phase shift curve resulting from the frequency analysis is compared in at least two ranges of frequency limited with a respective maximum and / or minimum value or a curve representing acceptable maximum and / or minimum values in the limited frequency range considered.
  • these two limited frequency ranges are spaced apart from each other.
  • the envelopes, minimum or maximum values imposed are defined not only according to the customer specifications but also the own experience of the joint manufacturer given the possible manufacturing defects.
  • the exploitation of the results also makes it possible to extract statistics by type of defects encountered, or Gaussian curves allowing to refocus manufacturing.
  • the type of defect also allows with experience to know its origin; for example, a lack of material in such a rubber zone, a leakage of the hydro-elastic chamber, etc.
  • the user of a device according to the present invention will first test deliberately bad parts to calibrate the indications delivered by the analysis. frequency of results. Finally a good piece can not be eliminated by mistake because it was tested at such frequency without knowing that with a few more Hz or less the piece respected the specifications of the customer, which happens fairly regularly with the present process not using the present invention.
  • FIG. 11 represents a hydro-elastic wedge type joint, similar to that of FIG. 1, but showing an internal deformation.
  • the inner armature 12 has previously been translated upwards by a value "d” under the effect of a load applied by the force and acceleration sensors 40a and 40b.
  • the distance “d” is measured along the theoretical working axis 18 between the top 12a shown in dashed lines of the armature 12 at rest and the top 12b of the same armature 12 when it is moved by translation. It's in this position deformed under load that is the impact of the same frame 12 by the system 3, while the outer armature 10 remains fixed by the half-shells 20 and 21.
  • the load and acceleration sensors 40a and 40b are located on a plate 41b, itself secured to a calibrated elastic device 41c.
  • the device 41c pushes the plate 41b to a certain thrust force previously selected and recorded by the sensors 40a and 40b.
  • a centering device 41a makes it possible to correctly position the sensors 40a and 40b with respect to the armature 12 by cooperating here with the bore 121.
  • the sensors 40a and 40b then have a dual function. They serve to limit the deformation force of the joint before impact, and they serve to record the acceleration values of the armature 12 when it is impacted.
  • the system for the deformation of the articulation by translation of the armature 12 to be made by the impact system 3 which, in a first step, comes into contact with the upper face. 12a of the frame and pushes it a distance "d" to position 12c.
  • the impact system 3 must be mounted on another jack, not shown here, which vertically controls the assembly 3. In such a case the sensors 40a and 40b return to their simple original function as described in the figures. preceding.
  • Figure 12 illustrates the same principle of prior deformation of the joint, this time applied to a joint intended to work in torsion. It is assumed here a joint similar to that described in Figure 4 but for which one has, prior to impact, rotated the outer frame 10 by an angle ⁇ by the action of a calibrated elastic device 41c which presses on a ergot 10c while the inner armature 12 is held fixed.
  • a motion and acceleration sensor 40 remains magnetically plated on the lug 10a and / or on the lug 10c.
  • the sensor like all other applications, can be of the non-contact type such as a laser sensor working as a radar for detecting movements and accelerations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Vibration Prevention Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Procédé pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation destinée à relier deux autres pièces en filtrant la transmission des vibrations entre ces deux autres pièces, ladite articulation appelée à travailler en axial, radial ou en torsion, possédant ou non une ou plusieurs chambres hydro élastiques et étant composées de deux armatures cylindriques concentriques, l'armature intérieure étant en grande partie située dans le volume défini par l'armature extérieure, ces deux armatures étant reliées par un ensemble de composants en caoutchouc ou élastomère et le cas échéant de plastique et pièces métalliques, lesdites armatures étant elles mêmes fixées respectivement aux deux autres pièces que l'articulation relie, en appliquant une technique du contrôle par impact à la cadence de la ligne de production des articulations, soit moins de 10 secondes de temps de cycle, pour identifier lors d'une analyse fréquentielle de l'oscillation de la zone d'articulation impactée les pièces bonnes des mauvaises, caractérisé en ce que des valeurs de déphasage de l'analyse fréquentielle sont comparées avec une bande passante de déphasage autorisée.

Description

anvis SD France S.A.S.
Procédé et dispositif pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation hydro élastique
L'invention concerne un procédé et un dispositif pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation hydro élastique ou non. Le domaine d'emploi le plus fréquent de ces pièces est celui des liaisons au sol des automobiles ou véhicules utilitaires, en particulier comme intercalaires entre berceau et châssis ou comme support moteur, ou comme amortisseur de vibrations de torsion dans les liaisons au sol ou les transmissions. Dans ce qui suit nous utiliserons pour ces cales, paliers ou articulations le terme générique « articulation » sauf dans le cas des descriptions ou particularités spécifiques à l'un ou l'autre de ces produits.
Ces articulations sont situées à l'interface de deux pièces à assembler et elles sont destinées à filtrer et déphaser les vibrations transmises entre l'une et l'autre des pièces à assembler. Ces articulations sont habituellement constituées de deux armatures métalliques avec une première armature extérieure de forme cylindrique à profil quelconque, et une deuxième armature également de forme cylindrique située en grande partie à l'intérieur du volume défini par la première. Ces deux armatures sont reliées entre elles par des pièces en caoutchouc ou élastomère avec le cas échéant d'autres pièces en plastique ou en métal. La forme et l'agencement des pièces entre les deux armatures est parfois tel que se trouve aménagé entre les deux armatures au minimum une ou plusieurs chambres hydro élastique hermétiques communiquant entre elles par des orifices calibrés, cette ou ces chambres étant remplie(s) d'un liquide type eau ou glycol, ou d'un gaz. L'ensemble des composants situé entre les deux armatures forme avec ces dernières un tout en général indémontable. C'est cet ensemble qui est nommé « articulation ». L'articulation possède un axe théorique principal de travail qui s'avère être dans certains types d'articulations également l'axe de symétrie des deux armatures. Cet axe théorique de travail est l'axe de translation axiale ou radiale d'une armature par rapport à l'autre en fonctionnement sur véhicule, ou l'axe de rotation d'une armature par rapport à l'autre en fonctionnement sur véhicule, ceci en supposant que l'articulation n'est pas soumise à des efforts excentrés ou à des efforts parasites qui tendent à la déformer. Ces articulations ainsi constituées sont l'objet du procédé et du dispositif suivant la présente invention. Les deux armatures respectivement intérieure et extérieure de ces articulations sont fixées respectivement aux deux pièces à assembler. Les vibrations en dynamique qu'une pièce communique à l'autre sont ainsi obligées de passer par le système mixte « caoutchouc, plastique et éventuelles chambres hydro élastiques » situé entre les deux armatures et reliant ces dernières. La conséquence est un déphasage entre signaux d'entrée et de sortie, ce déphasage étant variable avec la fréquence d'excitation. On comprend ainsi toute l'importance que revêt la qualité de la filtration de ce système aux différentes fréquences possibles d'excitation ; une articulation présentant un défaut de fabrication pouvant être jugée bonne en déphasage à une fréquence donnée et mauvaise pour une autre fréquence d'excitation. Or la qualité de filtration d'une articulation est capitale pour le confort du véhicule sur toute la plage de fréquence considérée.
Dans l'état actuel de la technique on utilise pour contrôler la qualité des articulations en production une machine servo-hydraulique appliquant, à une fréquence donnée, un déplacement sinusoïdal d'amplitude constante à l'une des armatures et on mesure sur l'autre armature l'effort, la raideur et la phase du signal de sortie. Ces valeurs en signal de sortie dépendent de la fréquence du signal d'entrée et changent fortement avec la fréquence de façon non proportionnelle. Une figure annexée A montre le principe de fonctionnement schématique de la technique antérieure pour contrôler la qualité d'une articulation. L'articulation a comprend une première armature b et une deuxième armature c. La première armature est connectée à la deuxième armature par un ressort d et, en parallèle, un amortisseur e. La première armature b est fixée et la deuxième armature c est excitée par un générateur de fréquence avec une amplitude constante, une fréquence croissante et une force f prédéterminée. Les caractéristiques de l'articulation a sont déterminées par un balayage de fréquences. Un balayage de fréquence dure très longtemps, par exemple beaucoup plus de 30 secondes. De plus, les appareils pour faire un tel balayage de fréquence sont extrêmement chers. Pour éviter de passer trop de temps à contrôler ces valeurs on se contente de les contrôler pour quelques fréquences précises de signal sinusoïdal d'entrée, parfois pour une seule fréquence. On fait alors une impasse sur de possibles dérives qualité de l'articulation pour d'autres fréquence. On appelle ces contrôles à des fréquences différentes des « points de contrôle ». Même en se limitant à quelques points de contrôle on arrive à des temps de cycle de plus de 10 secondes pour le contrôle d'une articulation, ce qui est trop important pour intégrer de telles machines de test en ligne de production. Il faut donc faire ces contrôles en reprise, dans un autre atelier hors ligne, sans possibilité de réaction immédiate sur la qualité des opérations en amont pour corriger une éventuelle dérive. La notion de contrôle en continu avec influence immédiate sur le processus de production des armatures en amont est économiquement impossible.
D'autre part les constructeurs automobile qui achètent ces articulations demandent simplement le respect de leur cahier des charges sur toute une plage de fréquence ; si ils imposent par exemple une raideur minimale ne dépassant pas telle valeur dans telle plage de fréquence il peut arriver qu'en contrôlant les articulations à une seule fréquence précise avec la méthode actuelle, on déclare à tort la pièce mauvaise parce qu'on n'a pas testé l'articulation à des fréquences voisines. Inversement on peut supposer à tort que l'articulation est bonne à partir d'un seul point de contrôle positif alors que la réponse fréquentielle montre des dérives dans d'autres plages de fréquence. Il faudrait donc multiplier le nombre de points de mesure ce qui n'est pas envisageable industriellement.
Enfin dans l'état actuel de la technique on applique en entrée le déplacement sinusoïdal sur une armature en un point donné de cette dernière et suivant une direction donnée. Or ces articulations ont plusieurs degrés de liberté et sont amenées à travailler parfois de façon légèrement désaxée sur véhicule. Les machines actuelles de test ne permettent pas de tels contrôles dans des positions désaxées de façon industrielle et économique
Dans la demande de brevet US 2003/0172714 Al un appareil et un procédé pour l'évaluation d'un amortisseur sont divulgués. L'appareil utilise un bras auquel un marteau est fixé qui chute par la force de gravitation à partir d'une position de repos prédéterminée sur l'amortisseur de vibrations pour produire un impact. Une analyse de fréquence est utilisée pour déterminer la fréquence de résonance. En outre, à partir d'une valeur maximale d'une analyse spectrale un bon produit peut être distingué d'un mauvais produit. Par le procédé divulgué dans cette demande de brevet les caractéristiques du membre hydraulique d'une articulation hydro élastique ne peuvent pas être contrôlées. De plus, la cadence de contrôles est limitée par le temps de mouvement du bras d'une position d'impact à la position de repos prédéterminée et le temps de chute.
L'Objet de l'invention est de mettre à la disposition un procédé et un arrangement pour contrôler la qualité, particulièrement les caractéristiques de l'amortissement du membre hydraulique, d'une articulation hydro élastique, dans un temps de cadence extrêmement court.
La première revendication concerne le procédé : ce procédé est l'utilisation en ligne de production, sans ralentissement de la cadence de production des articulations, d'un instrument de choc, perfectionné par rapport à l'état de l'art existant, venant impacter sur une durée infé- Heure à 15 millisecondes une première armature, combiné avec l'analyse de la réponse en raideur et phase sur la gamme de fréquence totale entre 0 et 2000 Hz, le plus généralement entre 0 et 1000 Hz, de cette même armature et la discrimination simultanée des pièces bonnes ou mauvaises avec indication de la nature de la malfaçon éventuelle, tandis que la deuxième armature est maintenue fixée pendant tout ce test par un dispositif de serrage extérieur, le tout y compris la mise en place de l'articulation et son évacuation après impact et mesure en moins de 10 secondes. Avantageusement l'analyse fréquentielle du signal de sortie de l'une des armatures, quand on lui applique un impact, permettant une comparaison en tout ou partie à une bande passante autorisée pour détecter automatiquement les points qui sortent de la tolérance et à quelle fréquence cela se produit. La technique des impacts, encore appelée du « marteau instrumenté » ou « impulse test », est connue depuis longtemps. La théorie repose sur l'utilisation d'un impact très bref, proche d'une impulsion de Dirac, destiné à exciter une structure, et sur la transformation en analyse de Fourier de la réponse de cette structure sur toute une plage de fréquence. Elle est appliquée par exemple à des pièces pour vérifier leur fonctionnement ou leur intégrité, comme dans le brevet US 4,342,229 du 3 août 1982, le brevet WO/2006/074506 publié le 20/7/06 ou le brevet JP 2006292481 publié le 26/10/06. Par contre cette technique n'a jamais à notre connaissance été utilisée pour contrôler une production en grande série d'articulations avec ou sans chambres hydro élastiques, en analysant simultanément l'impact et ses conséquences en déplacement, effort et déphasage sur une même armature, tout en triant les pièces bonnes des mauvaises sans ralentir la cadence de la ligne de production. Il s'agit donc de l'application nouvelle à la famille des articulations d'un procédé existant afin de pouvoir intégrer ce contrôle en ligne de production en respectant une cadence inférieure à 10 secondes de temps de cycle et afin de pouvoir écarter les articulations mauvaises sans risquer de se tromper ni d'écarter des pièces bonnes, et de pouvoir connaître l'origine de la non-conformité par l'analyse des résultats.
Dans un mode de réalisation, l'invention concerne un procédé pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation destinée à relier deux autres pièces en filtrant la transmission des vibrations entre ces deux autres pièces. Ladite articulation est appelée à travailler en axial, radial ou en torsion, possédant ou non une ou plusieurs chambres hydro élastiques particulièrement remplies par un fluide hydro, comme un liquide ou un gaz hydro, et étant composées de deux armatures cylindriques concentriques, l'armature intérieure étant en grande partie située dans le volume défini par l'armature extérieure, ces deux armatures étant reliées par un ensemble de composants en caoutchouc ou élastomère et le cas échéant de plastique et pièces métalliques, lesdites armatures étant elles mêmes fixées respectivement aux deux autres pièces que l'articulation relie. On applique dans le procédé une technique du contrôle par impact à la cadence de la ligne de production des articulations, soit moins de 10 secondes de temps de cycle, pour identifier lors d'une analyse fréquentielle de l'oscillation de la zone d'articulation impactée les pièces bonnes des mauvaises. Les valeurs de déphasage de l'analyse fréquentielle sont comparées avec une bande passante de déphasage autorisée. Par exemple, la bande passante de déphasage autorisée peut être définie par une enveloppe.
Typiquement, les valeurs de déphasage issue de l'analyse fréquentielle sont comparées dans au moins une plage de fréquence limitée donnée, la bande de fréquence donnée se situant en particulier dans la plage de fréquence totale de 0 à 2000 Hz. Dans un autre mode de réalisation, les valeurs de déphasage issue de l'analyse fréquentielle sont comparées dans au moins une plage de fréquence limitée ou au moins deux plages de fréquence limitées donnée(s), la plage de fréquence limitée donnée se situant en particulier dans la plage de fréquence totale de 0 à 2000 Hz, en particulier les plages de fréquences limitées données étant écartées l'un à l'autre, en particulier d'au moins 10Hz.
Par exemple, une plage de fréquence limitée est définie autour d'une valeur de fréquence d'un maximum relatif et/ou d'un minimum relatif du déphasage, en particulier d'une courbe de référence de déphasage.
Dans un mode de réalisation, une plage de fréquence s'étend d'environ 100Hz à environ 200 Hz, en particulier entre environ 120Hz et environ 180Hz, d'environ 200Hz à environ 300 Hz, en particulier entre environ 220Hz et environ 290Hz et/ou d'environ 350Hz à environ 450 Hz, en particulier entre environ 370Hz et environ 430Hz. Dans un autre mode de réalisation les valeurs de déphasage ou du module de plusieurs plages de fréquences limitées sont comparées avec des valeurs de référence, par exemple une bande passante autorisée.
Dans un autre exemple, une plage de fréquence est définie autour d'une valeur de fréquence de passage de 90 ou 180 dégrées du déphasage d'une courbe de référence.
Dans un autre mode de réalisation l'invention concerne un procédé pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation destinées à relier deux autres pièces en filtrant la transmission des vibrations entre ces deux autres pièces, ladite articulation appelée à travailler en axial, radial ou en torsion, possédant ou non une ou plusieurs chambres hy- dro élastiques particulièrement remplies par un fluide hydro, comme un liquide ou un gaz hydro, et étant composées de deux armatures cylindriques concentriques, l'armature intérieure étant en grande partie située dans le volume défini par l'armature extérieure, ces deux armatu- res étant reliées par un ensemble de composants en caoutchouc ou élastomère et le cas échéant de plastique et pièces métalliques, lesdites armatures étant elles mêmes fixées respectivement aux deux autres pièces que l'articulation relie, en appliquant une technique du contrôle par impact à la cadence de la ligne de production des articulations, soit moins de 10 secondes de temps de cycle, pour identifier lors d'une analyse fréquentielle de l'oscillation de la zone d'articulation impactée les pièces bonnes des mauvaises dans une plage de fréquence totale, en particulier de 0 à 2000 Hz, caractérisé en ce que des valeurs de module de l'analyse fréquentielle sont comparées avec une bande passante de module autorisée qui enveloppe une courbe de module de référence dans une plage de fréquence limitée, en particulier entre environ 50 et environ 250 Hz, comprise dans la plage de fréquence totale, et en ce que la plage de fréquence limitée est définie autour d'une fréquence d'un premier pic de résonance de la courbe de référence, la fréquence du premier pic de résonance ayant une fréquence inférieure à une valeur de fréquence d'un deuxième pic de résonance de la courbe de référence.
Dans un mode de réalisation, une plage de fréquence limitée s'étend d'environ 50Hz à environ 250 Hz, en particulier entre environ 100Hz et environ 200Hz.
Dans un exemple d'un mode de réalisation, les valeurs de module issues de l'analyse fréquentielle de l'articulation contrôlée, en particulier dans la plage de fréquence limitée, forment une courbe, la courbe présentant un maximum relatif et puis un minimum relatif, la fréquence du minimum relatif étant comparée avec une bande de fréquence prédéterminée, en particulier la bande de fréquence étant comprise entre environ 140 et environ 150 Hz, de préférence la fréquence étant dans la bande de fréquence prédéterminée pour les pièces bonnes et/ou la deuxième courbe présentant un maximum relatif et puis un minimum relatif, la valeur du minimum relatif étant comparée à une valeur prédéterminée, en particulier la valeur du minimum relatif étant inférieur ou égal à la valeur prédéterminée pour les pièces bonnes.
Par exemple, dans un mode de réalisation, on compare les valeurs de module issue de l'analyse fréquentielle de l'oscillation de l'armature impactée dans deux plages de fréquence limitées, la première plage de fréquence limitée étant définie autour de la fréquence du premier pic de résonance de la courbe de référence et la deuxième plage de fréquence limitée est écartées de la première plage de fréquence limitée, en particulier d'au moins 100Hz.
Dans un mode de réalisation la deuxième plage de fréquence limitée est définie autour de la fréquence du deuxième pic résonance de la courbe de référence, en particulier étant le maximum absolu de la courbe de module de référence, de préférence entre environ 350 et environ 450 Hz, et/ou la deuxième plage de fréquence limitée s'étend de environ 500Hz à environ 800 Hz, en particulier entre environ 550Hz et environ 700Hz. Dans un mode de réalisation la valeur de module du premier pic est inférieure à la valeur de module du deuxième pic.
Dans un autre mode de réalisation, la courbe de référence de module ou de déphasage dans l'espace de fréquence est générée par une analyse par impact d'une articulation de référence bonne ou une simulation numérique d'une articulation de référence bonne.
Dans un mode de réalisation, la bande passante autorisée enveloppant la courbe de module ou de déphasage de référence est formée d'une courbe de valeurs de module ou de déphasage maximales et un courbe de valeurs de module ou de déphasage minimales, la courbe de valeurs de module ou de déphasage maximales et minimales ayant en particulier une distance entre eux de moins d'environ 15 pour cent de la valeur maximale de la courbe de module ou de déphasage de référence, en particulier de moins d'environ 10 pour cent, de préférence de moins d'environ 5 pour cent.
De plus, la présente invention concerne un arrangement pour contrôler la raideur ou la phase d'une articulation hydro élastique, l'articulation étant destinée à relier deux autres pièces en filtrant la transmission des vibrations entre ces deux autres pièces, ladite articulation appelée à travailler en axial, radial ou en torsion, possédant ou non une ou plusieurs chambres hydro élastiques particulièrement remplies par un fluide hydro, comme un liquide ou un gaz hydro, et étant composées de deux armatures cylindriques concentriques, l'armature intérieure étant en grande partie située dans le volume défini par l'armature extérieure, ces deux armatures étant reliées par un ensemble de composants en caoutchouc ou élastomère et le cas échéant de plastique et pièces métalliques, lesdites armatures étant elles mêmes fixées respectivement aux deux autres pièces que l'articulation relient, l'arrangement comprenant une tête d'impact pour exercer un impact sur l'une de ces armatures, et un support pour maintenir l'articulation serrée sans déformation irréversible au niveau de l'autre de ses armatures qui se trouve ainsi fixée sans déplacement possible, caractérisé en ce que l'arrangement comprend en outre un actionneur magnétoélectrique pour accélérer la tête d'impact sur l'armature.
Dans un mode de réalisation, l'arrangement est adapté pour exercer un effort de l'impact sur l'articulation entre 180N et 300N, de préférence entre 200N et 270N, en particulier autour de 210N.
L'arrangement revendiqué, associé au procédé revendiqué, permet de contrôler en temps réel que l'impact créé sur l'armature est toujours fait sans rebond et dans un laps de temps sensi- blement égal à la consigne retenue, elle-même inférieure aux 15 millisecondes indiquées plus haut et que le spectre d'effort d'impact et son niveau sont conformes à la consigne retenue. On parle ainsi de procédé et de dispositif d'impact perfectionné par rapport à l'état de l'art existant parce que le dispositif permet de s'auto contrôler c'est-à-dire de contrôler son propre processus d'impact en plus du contrôle du produit « articulation ».
Ce procédé se distingue aussi de l'état de l'art existant en matière de contrôle par impact en ce que la position du point d'impact sur l'une des deux armatures choisie, l'autre étant fixe, peut être lui-même choisi en dehors de l'axe théorique de travail ou de symétrie, tandis qu'il existe sur cette armature choisie plusieurs capteurs déplacement situés à des endroits tels qu'on simule le travail d'une articulation légèrement déformée en présence d'efforts centrés ou excentrés ou de couples ; ceci pour prendre en compte les déformations de l'articulation en fonctionnement réel sur véhicule et le fait que le déplacement de l'armature sur laquelle on mesure le signal de sortie n'est pas toujours colinéaire avec la direction de l'impact d'entrée. Bien entendu la réponse des différents capteurs de sortie est analysée de façon simultanée pour que la cadence de la ligne de production reste inchangée.
Ce procédé et son arrangement associé se distinguent également de l'art existant en matière de contrôle par impact en ce que l'on peut utiliser les capteurs de sortie pour venir appliquer un effort centré ou excentré sur l'armature dont on veut mesurer le déplacement en analyse fré- quentielle, de façon à reproduire lors du contrôle une géométrie proche de conditions en service ; par exemple quand les axes des armatures extérieures et intérieures ne coïncident plus à cause des efforts transmis par les deux pièces à assembler. Ou par exemple quand les axes des deux armatures restent colinéaires mais qu'une des armatures a subi une rotation autour de cet axe par rapport à l'autre armature, ou qu'une armature a subi une translation suivant son axe par rapport à l'autre armature. Les efforts exercés restent bien entendu faibles et il n'est pas question de déformer de façon irréversible l'articulation. Une première variante pour contrôler une articulation légèrement déformée consiste à monter le capteur de sortie sur un dispositif élastique étalonné et à comprimer ce dispositif élastique jusqu'à ce que le capteur de sortie, en appui sur l'armature que l'on analyse, indique la force avec laquelle on veut pousser sur ladite armature. Ce capteur de sortie doit alors être du type actif pour qu'il puisse convertir les variations de charge en variations de tension. La force d'impact doit elle-même être supérieure à la force exercée par le capteur sur l'armature sur laquelle il s'applique. Une autre variante si on veut éviter de pousser directement avec le(s) capteur(s) consiste à exercer cet effort, sur l'armature destinée à être impactée, par un dispositif indépendant des capteurs de sortie ; par exemple un ressort étalonné ou tout autre dispositif élastique dont on connaît précisément la courbe caractéristique course - effort. Le(s) capteur(s) de sortie sont alors, pendant la mesure, fixés par un dispositif aimanté sur l'armature dont on analyse la réponse à un impact. Il peut aussi s'agir de capteurs laser qui ne nécessitent pas un contact direct avec l'armature
Bien entendu la force de l'impact est dans tous les cas choisie de telle manière qu'on ne risque pas d'endommager ou de déformer de façon irréversible l'articulation.
L'arrangement peut être aussi conçu de façon que le ou les capteur(s) de sortie se mettent automatiquement en contact avec l'armature dont on veut mesurer le déplacement en analyse fréquentielle ; cette condition sera avantageusement remplie par l'utilisation d'un support aimanté fixé au capteur, lequel support aimanté venant se fixer sur une zone définie de l'armature en question et de préférence coopérer géométriquement avec une partie de cette armature pour toujours bien localiser le capteur . Cette disposition est utile pour les capteurs types piezo électriques. Une autre solution consiste à venir appuyer le capteur avec une force précise à un endroit déterminé de l'armature dont on veut mesurer le déplacement en analyse fréquentielle de façon à ce que ladite force provoque une déformation réversible de l'articulation et ainsi se rapprocher de certaines conditions d'utilisation en service. Bien entendu on peut aussi mesurer le signal de sortie par des capteurs sans contacts type iaser, ou faire un mixte entre type de capteurs de sortie, les uns étant avec simple contact aimanté, d'autres pouvant exercer un effort et d'autres sans contact.
La description suivante permet d'apporter un certain nombre de précisions ou variantes aux principales caractéristiques expliquées ci-dessus, et de montrer quelques exemples de dispositifs répondant à la présente invention
La figure 1 est une vue schématique en coupe d'un dispositif conforme à la présente invention pour contrôler une articulation type cale support hydro élastique à fonctionnement axial.
La figure 2 est une vue schématique en perspective du mode de serrage de l'articulation de la figure 1 dans son montage de contrôle.
La figure 3 est une vue schématique en coupe d'un dispositif conforme à la présente invention pour contrôler une articulation type palier hydro élastique à fonctionnement radial.
La figure 4 est une vue schématique en coupe d'un dispositif conforme à la présente invention pour contrôler un palier destiné à travailler en torsion. La figure 5 détaille un mode de conception particulier du système d'impact.
La figure 6 montre schématiquement un autre mode de conception du système d'impact.
La figure 7a montre sous forme de courbe les signaux fournis par un capteur d'effort situé dans un système d'impact.
La figure 7b montre sous forme de courbe les signaux fournis par un capteur de déplacement.
La figure 8 montre un principe de fonctionnement schématique d'un contrôle d'une articulation hydro élastique.
La figure 9 montre sous forme de courbe l'analyse fréquentielle d'un signal fourni par un capteur d'effort.
La figure 10a montre sous forme de courbe de module l'analyse fréquentielle des signaux fournis par un capteur de déplacement et d'effort lorsque l'armature sur laquelle il est appliqué est excitée par un impact.
La figure 10b montre sous forme de courbe de déphasage l'analyse fréquentielle des signaux fournis par un capteur d'effort et un capteur de déplacement lorsque l'armature sur laquelle ils sont appliqués est excitée par un impact.
La figure 11 et la figure 12 schématisent l'application du présent procédé à des articulations volontairement déformées par translation ou rotation d'une armature par rapport à l'autre.
Dans la figure 1 l'articulation hydro élastique 1 est constituée d'une armature cylindrique extérieure métallique 10 présentant une collerette rabattue 11, d'une armature intérieure 12 coaxiale à l'origine avec l'armature extérieure 10, d'un intercalaire en plastique 13 emmanché sur l'armature intérieure 12, de plusieurs parties en élastomère 14, 15 et 16 adhérisées, collées ou emmanchées sur l'une et/ou l'autre des armatures, et enfin de deux chambres hydro élastiques 17. L'articulation 1 possède dans le cas présent un axe de travail théorique 18 qui est en même temps l'axe de symétrie de l'articulation. Cette articulation est placée lors du cycle de production entre deux demi coquilles 20 et 21 qui serrent l'articulation au niveau de son armature extérieure 10 avec une force suffisante pour éviter tout glissement lors de l'impact, tout en évitant toute déformation irréversible de l'articulation. Dans le cas présent la collerette circulaire 11 de l'armature extérieure 10 vient s'appuyer sur les demi-coquilles 20 et 21 ; mais certaines articulations similaires n'ont pas de collerette et il est donc important de bien maîtriser la force de maintien des deux demi coquilles 20 et 21 sur l'armature qu'elles maintiennent. Ces demi-coquilles 20 et 21 peuvent prendre plusieurs formes et moyens de fermeture et serrage. Elles doivent cependant avoir une masse et une raideur suffisante pour ne pas perturber l'analyse des signaux de sortie.
Le système d'impact est représenté par l'ensemble 3 qui comprend un vérin spécial 31, un capteur d'effort 32 situé sur la tige de sortie du vérin et un embout d'impact 33. Lorsque l'impact est déclenché le système 3 propulse l'embout 33 contre l'armature intérieure 12 selon la direction 35 elle-même colinéaire dans le cas présent avec l'axe de travail théorique 18 de l'articulation. Lors de l'impact l'embout 33 est représenté en 34 sur cette figure et le contact avec l'armature intérieure 12 se fait uniformément sur le bord de l'alésage intérieur 121 de cette armature. Dès l'impact réalisé le système 3 remonte instantanément pour éviter le maintien en contact de l'embout 33 sur l'articulation. On ne sort pas du cadre de la présente invention en disposant le système d'impact un peu plus à droite ou à gauche de l'axe de travail théorique 18. L'impact créé par le choc entre l'embout 33 et l'armature intérieure 12 est alors fait de façon excentrée par rapport à l'axe 18. On ne sort pas non plus du cadre de la présente invention en bridant l'armature intérieure 12 de l'articulation et en faisant l'impact et les mesures de déplacement sur l'armature extérieure 10 si la forme de l'articulation se prête mieux ainsi à ce procédé d'impact. C'est alors l'armature intérieure 12 qui doit être rigidement fixée, par exemple grâce à un mandrin expansible qui viendrait se loger dans l'alésage 121 de l'armature intérieure 12 et vient ensuite bloquer cette armature pendant le test d'impact sur l'armature extérieure 10.
Dans cette figure 1 le système de mesure des conséquences de l'impact sur l'armature 12 est représenté en 4 ; il comporte un capteur de sortie 40 mesurant l'accélération de l'armature intérieure 12. Il est fixé à un petit aimant 41 dont une partie cylindrique 42 vient se loger dans l'alésage 121 de l'armature intérieure 12 pour qu'une fois en position le capteur 40 se retrouve toujours au même endroit. Lorsque la mesure est terminée un petit système non représenté ici tire l'embout 42 de l'alésage 121 pour libérer le capteur 40 de l'articulation 1.
Dans un mode de réalisation le capteur de sortie 40 peut être un capteur de vitesse pour enregistrer les oscillations de l'armature impactée.
Le capteur d'effort d'impact 32 et le capteur d'accélération 40 sont tous deux respectivement connectés à une centrale d'acquisition et un ordinateur 5 par les liaisons 321 et 401. L'ordinateur 5 permet de faire l'analyse fréquentielle en utilisant la transformée de Fourier du signal de sortie par rapport au signal d'entrée. On détecte ainsi les accélérations, raideurs, pics d'amplification ou d'amortissement et les déphasages correspondants, et ce pour toutes les fréquences d'une plage allant habituellement de 0 à 2000 Hz, de l'armature 12 quand elle est excitée par un impact. La limite de 2000 Hz est ici donnée à titre indicatif et dépend du type d'articulation et du cahier des charges du client ; dans certaines applications on se limitera à 800 Hz, dans d'autres à 1000 Hz ou 1500 Hz.
L'ensemble de ce dispositif est fixé sur un portique 6. La mise en œuvre du présent dispositif suivant l'invention consiste à venir manuellement ou automatiquement placer l'articulation 1 entre les demi coquilles 20 et 21, serrer ces dernières sur l'armature extérieure de cette articulation, déclencher l'impact sur l'armature intérieure 12 et mesurer les déplacements ou accélérations de cette armature 12 lorsqu'elle est excitée par l'impact. Lorsque la mesure est terminée les deux demi-coquilles s'écartent pour qu'on puisse libérer l'articulation qui, selon qu'elle est bonne ou mauvaise, sera aiguillée manuellement ou automatiquement dans le bac approprié.
La figure 2 est une vue schématique du système de maintien et de serrage d'une articulation suivant la présente invention. L'articulation 1 est mise en place entre les deux demi coquilles 20 et 21 de façon que l'axe 18 de l'articulation coïncide sensiblement avec l'axe 19 du dispositif. On peut disposer une des deux demi coquilles, par exemple la 21, déjà en position fixe ou presque refermée pour faciliter la mise en place de l'articulation 1. Ensuite les deux demi- coquilles se referment sur l'articulation 1 et viennent la serrer sur son armature extérieure 10. Les deux axes 18 et 19 sont alors confondus.
La figure 3 représente l'application de la présente invention à un autre type d'articulation. Ce type d'articulation est destiné à travailler radialement et non plus axialement. Cette fois c'est l'armature intérieure 12 qui est rigidement maintenue par deux embouts 22 et 23 venant la positionner et la coincer au niveau de son alésage 121. On a représenté ici en 17 des chambres hydro élastiques mais rappelons qu'on ne sort pas du cadre de la présente invention si l'articulation ne possède pas de telles chambres. Le dispositif d'impact 3 est ici représenté colinéaire avec l'axe Z radial passant par le milieu de l'articulation. Sans sortir du cadre de la présente invention on peut aussi décaler l'axe du système d'impact 3 pour que l'impact se fasse vers l'une quelconque des extrémités de l'armature extérieure 10 et pouvoir ainsi examiner le comportement vibratoire de l'armature 10 quand elle est sollicitée par un impact qui l'oblige à se mouvoir partiellement en conique, c'est-à-dire quand l'axe 18 de l'armature intérieure n'est plus en même temps celui de l'armature extérieure 10. On a disposé trois capteurs de déplacement respectivement 40a, 40b et 40c sur la périphérie de l'armature 10. Ces capteurs sont préférentiellement disposés sur une génératrice du cylindre formant l'armature 10 placée à l'opposé de celle sur laquelle se fait l'impact. On peut toutefois disposer ces trois capteurs sur d'autres génératrices pour prendre en compte les déplacements transversaux de l'armature 10, en particulier si on veut s'assurer que l'articulation a un comportement homogène en radial. Les trois capteurs sont soit fixés sur l'articulation avec un aimant, soit sont sans contact du type laser. On ne sort pas du cadre de la présente invention si au lieu de trois capteurs on en met un nombre quelconque, pourvu que le système d'acquisition et de traitement du signal 5 soit capable de traiter simultanément toutes les informations transmises dans un délai inférieur à 10 secondes, mise en place de l'articulation sur son montage de mesure 7, impact et évacuation de l'articulation après mesure compris. Les informations du peson 32 sont acheminées au centre de traitement 5 par la connexion 321. Les informations des capteurs 40a, b et c sont acheminées de façon séparée par leurs connexions respectives 401 a, b et c.
La figure 4 représente un mode d'application de la présente invention à des articulations travaillant en torsion. La vue à gauche est une vue en coupe AA de la vue de droite. Le mode de travail de telles articulations consiste à faire tourner une armature par rapport à l'autre, et à amortir et déphaser les mouvements relatifs grâce à la présence d'élastomère et de chambres hydro élastiques entre ces deux armatures. Comme précédemment ces armatures sont fixées respectivement à deux autres pièces qu'elles permettent de relier tout en filtrant les vibrations transmises de l'une à l'autre. L'articulation possède toujours une armature extérieure 10 et une armature intérieure 12. Ces deux armatures sont cylindriques, concentriques et d'axe de révolution 18. L'armature intérieure 12 est maintenue bridée et immobile par les deux embouts 22 et 23 respectivement qui s'appuient sur l'alésage 121 de l'armature intérieure 12. On peut aussi brider l'armature intérieure 12 par tout autre moyen, comme un mandrin expansible venant dans l'alésage 121 par exemple, et ceci sans sortir du cadre de la présente invention.
L'armature extérieure 10 étant amenée en service à tourner autour de l'armature intérieure 12 elle est habituellement pourvue d'un ou plusieurs ergots 10a permettant de transmettre un mouvement de rotation suivant une direction R. Sans sortir du cadre de la présente invention il peut s'agir d'un ou plusieurs ergot ou d'un crantage ou d'une succession de dents d'engrenage, toutes ces formes étant possibles et étant déterminées le plus souvent selon la manière dont cette armature extérieure est fixée à la pièce correspondante. Dans la figure 4 on a représenté un seul ergot 10a pour simplifier. C'est sur cet ergot que l'on va venir exercer un impact par un embout 33 commandé par le système d'impact 3. L'armature intérieure 12 étant fixée au montage de mesure c'est l'armature extérieure 10 qui va se mettre en mouvement à cause de l'excitation due à l'impact. Un capteur de mouvement et d'accélération 40 va enregistrer le signal de sortie qui lui-même sera traité par l'ordinateur 5 en même temps que le signal venant du peson 32 du système d'impact 3. Si l'analyse fréquentielle du signal de sortie indique une anomalie l'articulation sera déclarée mauvaise.
La figure 5 est une représentation schématique d'un générateur d'impact 3. Un vérin 31 vient actionner une masse 34 au bout de laquelle se trouve un peson 32 et le dispositif d'impact lui- même 33. Deux ressorts 35 et 36 permettent de faire varier les vitesses et énergie de l'impact pour l'adapter à la famille d'articulation à contrôler en ligne de production. Nous ne détaillerons pas davantage ce dispositif, à ceci près que le signal sortant du peson 32 par le câble 321 est utilisé non seulement pour l'analyse fréquentielle du rapport entre signal d'entrée et signal de sortie mais aussi pour vérifier que l'impact a été unique, sans rebond, en respectant une consigne de spectre d'effort, de niveau et de durée d'impact précise. Cette disposition permettant un auto contrôle du processus de mesure au cas où par exemple l'embout 33 viendrait à s'émousser, se casser, ou au cas où les ressorts 35 et 36 ne rempliraient plus leur rôle, ou au cas où le vérin 31 ne fonctionnerait plus correctement.
La figure 6 est une représentation schématique d'un autre mode de réalisation d'un générateur d'impact 100. Le générateur d'impact comprend une tige 102 avec une tête d'impact 104 à laquelle une pointe d'impact 106 est disposée avec laquelle une impulsion est exercée sur une armature 120 d'une articulation hydro élastique 122. Par exemple l'articulation hydro élastique peut être l'articulation montrée dans la figure 1. L'articulation hydro élastique comprend une deuxième armature 124 qui est maintenue par un support 126. La tête d'impact 104 comprend en outre un capteur d'effort 108 fixé à la tige, en particulier en forme d'un capteur pié- zo-électrique. En outre, un actionneur électromagnétique 1 10 est arrangé pour générer un déplacement de la tige. La tige, la tête d'impact, la pointe d'impact, et le capteur d'effort forment ensemble une partie mobile du générateur d'impact. La partie mobile peut être déplacé d'une première position de repos à une deuxième position d'impact ou la tête d'impact percute l'articulation. Dans un mode d'application un ressort est adapté pour retirer la partie mobile dans la position de repos après chaque impulsion. La partie mobile et donc la tête d'impact est accélérée par l'actionneur électromagnétique. L'effort du générateur d'impact est contrôlé par un contrôleur 116. Par exemple, le générateur d'impact peut exercer un effort de 250N sur l'articulation. Dans un mode de réalisation la plage d'effort est entre 180N et 300N, de préférence entre 200N et 270N, par exemple autour de 210N. L'effort applicable sur l'articulation à tester est variable et peut être adapté à l'articulation à tester. Dans un mode d'exécution, le capteur d'effort 32 peut être un capteur piézo-électrique. L'impact et l'effort du générateur d'impact peuvent être exécutées et contrôlées par l'actionneur électromagnétique.
La Figure 7a montre une courbe d'impact exercé sur une articulation dans l'espace de temps. L'impact percute l'articulation peu avant 20 millisecondes avec un effort maximal d'à peu près 210N. L'impact dure entre 5 et 8 millisecondes. L'articulation est excitée par le générateur d'impact et exerce une oscillation amortie. Cette oscillation amortie est enregistrée par le capteur de déplacement 40. La figure 7b montre un signal de sortie du capteur de déplacement 40 de l'articulation qui est excitée par l'impact montré dans la figure 7a dans une forme d'une oscillation amortie. Or, la figure 7b montre la réponse impulsionnelle d'une articulation dans l'espace de temps.
Si un objet est excité avec une impulsion de Dirac, il est possible de déduire à partir de la réponse impulsionnelle la fonction de transfert du objet. Par exemple, si une articulation est excitée par une impulsion, il est possible de déduire de la réponse impulsionnelle la fonction de transfert de l'articulation. La fonction de transfert dépend des caractéristiques de l'articulation, par exemple d'une constante de raideur et une constante de amortissement. Or, à partir de la réponse impulsionnelle il est possible de déduire ces caractéristiques. Il est donc important, pour simplifier les calculs, de connaître un modèle théorique de l'articulation.
La figure 8 montre un principe de fonctionnement schématique d'un contrôle d'une articulation hydro élastique par impact. L'articulation 70 comprend un ressort 74 et un amortisseur 76 qui sont connectés en parallèle entre une première armature 77 et une deuxième armature 78 ayant une masse m. Le ressort 74 a une constante de raideur k et l'amortisseur 76 a une constante d'amortissement C. La première armature 77 est fixée et la deuxième armature 78 est impactée par un effort 79. La deuxième armature exerce après l'impact une oscillation avec une amplitude décroissante. La valeur de déplacement de la deuxième armature 78 est désignée Xm.
Dans un modèle mathématique l'articulation peut être décrite avec une équation différentielle du second ordre : m x + Cx + kx = F0 cos ωt
A partir de l'équation différentielle il est possible de déduire les équations de déplacement de la masse 78 :
Figure imgf000017_0001
Cω tgφ = k - mω1
On peut calculer à partir des équations de déplacement de la masse m la constante de raideur k du ressort 74 est la constante d'amortissement C du amortisseur 76 :
Figure imgf000017_0002
Or, à partir de la fonction de transfert de l'articulation effort/Xm (déplacement de l'articulation) il est possible de déduire les paramètres k et C. Il est à noter que la constante de raideur et la constante d'amortissement dépend de la fréquence ω et le déphasage φ. Dans une production d'une articulation il est important de connaitre les caractéristiques dans une ou plusieurs plages de fréquence données pour déterminer les produits défectueux et exempts d'erreur.
La figure 9 montre l'impulsion du générateur d'impact dans l'espace de fréquence de 0 à 50 Hz. Dans l'espace de fréquence l'impulsion du générateur d'impact est presque constante avec une légère pente. Une impulsion de Dirac parfaite serait dans l'espace de fréquence constante.
La figure 10 résume et compare les courbes issues de l'analyse fréquentielle quand on utilise la méthode des impacts suivant la présente invention. Contrairement à la méthode actuelle qui utilise un générateur de signal sinusoïdal d'amplitude constante et avec laquelle on ne mesure généralement que 3 points de mesure de raideur et de phase à trois fréquences différentes, on utilise avec la présente invention une sortie graphique de l'analyse fréquentielle donnant le module et la phase sur toute la plage de fréquence. Le module est défini comme le ratio entre l'accélération de l'armature excitée par l'impact d'une part et l'effort exercé par l'impact d'autre part.
La courbe de module en fonction de la fréquence est représentée par la courbe 80 en partie 10a de la figure 10. L'ordinateur d'analyse des résultats garde en mémoire et éventuellement fait apparaître à l'écran un certain nombre de zones pour lesquelles le respect d'une consigne est nécessaire pour que la pièce soit déclarée bonne. Par exemple la courbe hachurée 81 indique qu'entre 100 et 200 Hz on doit passer par une petite résonance puis par un minimum dont on doit s'assurer qu'il est inférieur ou égal à une valeur imposée TFmin pour une fréquence Fmin comprise entre 140 et 150 Hz par exemple. La courbe 81 donne également une valeur maxi au module désigné par TF Acc/F sur toute la plage entre 100 et 200 Hz. Par exemple, la courbe issue de l'analyse fréquentielle peut présenter une petite résonance, alors un maximum relatif, un minimum relatif et ensuite un maximum absolu. La valeur du minimum relatif peut être comparée à la valeur prédéterminée TF Acc/F et la fréquence peut être comparée avec la plage de fréquence de 140 à 150 Hz. Dans un mode de réalisation la valeur de module de la petite résonance peut donner des informations sur la qualité ou les caractéristiques du membre hydraulique de l'articulation hydro élastique. Dans un exemple, la courbe 81 correspond à une enveloppe ou une bande passante autorisée. La raison de la non-conformité est affichée par l'ordinateur ou peut être accessible en interrogeant ce dernier. De même on contrôlera que pour le pic de résonnance au voisinage de 400 Hz, sur une plage de fréquence définie par la courbe 83, le module est compris entre les valeurs données par les courbes 82 et 84. Or, les courbes 82 et 84 définissent une enveloppe. De même, et il s'agit là d'exemples non limitatifs, on peut imposer que la courbe de module sur une plage de module entre 550 Hz et 650 Hz est comprise dans un faisceau enveloppe défini par les courbes 85 et donnant bien l'exemple de ce qu'on appelle « bande passante autorisée ». Dans un exemple, la bande passante autorisée ou enveloppe, en particulier les valeurs maximales autorisées et les valeurs minimales autori- sées, suit ou suivent la courbe de module, en particulier d'une articulation de référence. Les valeurs maximales autorisées et les valeurs maximales autorisées peuvent avoir une distance entre eux de moins de 15 pour cent de la valeur maximale de la courbe de module d'une articulation de référence. Toute articulation qui, lors du contrôle avec le procédé par impact suivant la présente invention, ne respecte pas les consignes ci-dessus est déclarée non-conforme. Donc non seulement la fréquence de résonance et la valeur du pic de résonance sont comparées avec une valeur prédéterminée respective mais aussi les caractéristiques de l'amortissement de l'articulation hydro élastique.
Donc, avec le procédé décrit ci-dessus les valeurs de module sont comparées avec des valeurs de référence prédéterminées dans plusieurs plages ou bandes de fréquence limitées prédéterminées dans le domaine de fréquence. Les valeurs de référence prédéterminées peuvent être, par exemple, des consignes ou une bande passante autorisée ou une enveloppe prédéterminée. Une plage de fréquence limitée peut être définie autour de la fréquence du pic de résonance d'une courbe de module de référence dans le domaine de fréquence. Une autre plage de fréquence limitée peut être définie autour d'une fréquence où le module présente dans le domaine de fréquence un maximum relatif. Le maximum relatif peut être situé à une fréquence inférieure à la fréquence du pic de résonance. Dans un mode d'exécution, la valeur de consigne maximale autour du maximum relatif (cf. par exemple la courbe hachée 81 dans la figure 10a) peut être au moins 5 fois plus petit que la valeur de consigne maximale autour du pic de résonance (cf. par exemple la courbe hachée 82 dans la figure 10a).
Dans un mode de réalisation, pour identifier les pièces bonnes des mauvaises lors de l'analyse fréquentielle de l'oscillation de l'articulation impactée, la courbe de module issue de l'analyse fréquentielle est comparée dans au moins deux plages de fréquence limitées avec une valeur maximale et/ou minimale respective ou une courbe définissant des valeurs maximales et/ou minimales et/ou une bande passante prédéterminée acceptable dans la plage de fréquence limitée considérée. De préférence ces plages de fréquence limitées sont écartées l'une de l'autre. Par exemple, ces deux plages de fréquence limitées peuvent être écartées de 100 à 200 Hz. Une plage de fréquence limitée peut avoir une largeur de 30 à 150 Hz.
La courbe 90 donnant l'analyse fréquentielle de phase est représentée en partie 10b de la figure 10. Là encore on peut imposer que sur des plages de fréquences données la valeur du déphasage soit comprise entre une borne mini et une borne maxi comme le donnent les courbes 91, 92 et 93 ou dans une bande passante prédéterminée. Or, dans un exemple les courbes 91, 92 et 93 définissent une enveloppe. La borne mini et la borne maxi peuvent avoir, dans un exemple, une distance maximale entre eux de moins de 15 degrés. Une première plage de fréquence est définie entre environ 130Hz et 180, où la courbe de déphasage de référence présente un minimum relatif, en particulier autour d'un déphasage de 90 degrés. Une deuxième plage de fréquence limitée est définie entre environ 220 et 280Hz, où la courbe de déphasage de référence présente un maximum relatif autour d'une valeur de déphasage de 180 degrés suivant le minimum relatif. Une troisième plage de fréquence limitée est définie autour de 400 degrés, où la courbe de déphasage présente un passage de 90 degrés. On peut aussi n'imposer qu'un minimum sur telle plage de fréquence et qu'un maximum sur telle autre plage. Dans un mode d'exécution, pour identifier les pièces bonnes des mauvaises lors de l'analyse fréquen- tielle de l'oscillation de l'articulation impactée, la courbe de déphasage issue de l'analyse fréquentielle est comparée dans au moins deux plages de fréquence limitées avec une valeur maximale et/ou minimale respective ou une courbe représentant des valeurs maximales et/ou minimales acceptables dans la plage de fréquence limitée considéré. De préférence ces deux plages de fréquence limitées sont écartées l'une de l'autre.
Le lecteur comprendra que les enveloppes, valeurs minimales ou maximales imposées sont définies non seulement en fonction des cahiers des charges client mais aussi de la propre expérience du fabricant d'articulation compte tenu des défauts de fabrication possibles. L'exploitation des résultats permet aussi de sortir des statistiques par type de défauts rencontrés, ou des courbes de Gauss permettant de recentrer la fabrication. Le type de défaut permet aussi avec l'expérience de connaître son origine ; par exemple un manque matière dans telle zone de caoutchouc, une fuite de la chambre hydro élastique..etc.. L'utilisateur d'un dispositif selon la présente invention testera au préalable des pièces volontairement mauvaises pour étalonner les indications délivrées par l'analyse fréquentielle des résultats. Enfin une pièce bonne ne peut pas être éliminée par erreur parce qu'on l'a testée à telle fréquence sans savoir qu'avec quelques Hz de plus ou de moins la pièce respectait le cahier des charges du client, cas qui arrive assez régulièrement avec le processus actuel n'utilisant pas la présente invention.
La figure 11 représente une articulation type cale hydro élastique, similaire à celle de la figure 1, mais montrant une déformation interne. L'armature interne 12 a préalablement été translatée vers le haut d'une valeur « d » sous l'effet d'une charge appliquée par les capteurs de force et d'accélération 40a et 40b. La distance « d » est mesurée suivant l'axe théorique de travail 18 entre le dessus 12a représenté en trait discontinu de l'armature 12 au repos et le dessus 12b de cette même armature 12 quand elle est déplacée par translation. C'est dans cette position déformée sous charge que se fait l'impact de cette même armature 12 par le système 3, tandis que l'armature extérieure 10 reste maintenue fixe par les demi-coquilles 20 et 21. Les capteurs de charge et d'accélération 40a et 40b sont situés sur un plateau 41b, lui-même solidaire d'un dispositif élastique étalonné 41c. Lorsque l'articulation est mise en place entre les deux demi coquilles 20 et 21 le dispositif 41c pousse le plateau 41b jusqu'à un certain effort de poussée choisi au préalable et enregistré par les capteurs 40a et 40b. Un dispositif de centrage 41a permet de bien positionner les capteurs 40a et 40b par rapport à l'armature 12 en coopérant ici avec l'alésage 121. Les capteurs 40a et 40b ont alors une double fonction. Ils servent à limiter la force de déformation de l'articulation avant impact, et ils servent à enregistrer les valeurs d'accélération de l'armature 12 quand elle est impactée. Sans sortir du cadre de la présente invention on peut aussi concevoir le système pour que la déformation de l'articulation par translation de l'armature 12 soit faite par le système d'impact 3 qui dans un premier temps vient en contact avec la face supérieure 12a de l'armature et la pousse sur une distance « d' » jusqu'en position 12c. Pour cela le système d'impact 3 doit être monté sur un autre vérin, non représenté ici, qui commande verticalement l'ensemble 3. Dans un tel cas les capteurs 40a et 40b retrouvent leur simple fonction d'origine telle que décrite dans les figures précédentes.
La figure 12 illustre le même principe de déformation préalable de l'articulation, appliqué cette fois à une articulation destinée à travailler en torsion. On suppose ici une articulation voisine de celle décrite en figure 4 mais pour laquelle on a, préalablement à l'impact, tourné l'armature extérieure 10 d'un angle α par l'action d'un dispositif élastique étalonné 41c qui appuie sur un ergot 10c tandis que l'armature intérieure 12 est maintenue fixe. Un capteur de mouvement et d'accélération 40 reste plaqué par magnétisme sur l'ergot 10a et/ou sur l'ergot 10c. Sans sortir du cadre de la présente invention on peut aussi placer le capteur 40 à tout autre endroit de l'armature 10 pourvu qu'il soit situé à l'opposé du mouvement de rotation « R » que l'impact va communiquer à l'armature 10. Rappelons également que le capteur peut, comme pour toutes les autres applications, être du type sans contact comme un capteur laser travaillant comme un radar de détection des mouvements et accélérations. Anvis SD France S.A.S.
Liste de référence
1 Dispositif de contrôle
3 Dispositif de coups
5 Coussinet hydroélastique
7 Douille intérieure rigide
9 Douille extérieure rigide
11 Composantes de ressort
13 Chambre de travail
17 Logement intérieur
19 Electroaimant
21 Capteur d'accélération
23 Dispositif d'évaluation
25 Ligne
27 Arrangement de brides
31 Tampon
41 Dispositif d'entraînement pneumatique
43 Masse de coups
45 Piston
49,51 Composantes de ressort
56 Aimant
53 Chambre d'avant
70 Articulation hydro élastique
74 Ressort
76 Amortisseur
77 Armature
78 Armature
79 Impact
80 Courbe de module
81 Enveloppe
82 Courbe
83 Courbe 84 Plage de fréquence
85 Enveloppe
90 Courbe de déphasage
91 Courbe
92 Courbe
93 Courbe
100 Générateur d'impact
102 Tige
104 Tête d'impact
106 Pointe d'impact
108 Capteur d'effort
110 Actionneur électromagnétique
116 Contrôleur
120 Armature
122 Articulation hydro élastique
124 Armature
126 Support
R Axe de rotation k Constante de raideur
C Constante d'amortissement m Masse
Xm Déplacement
Etat de la technique a Articulation b Armature
C Armature d Ressort e Amortisseur f Force

Claims

Anvis SD France S.A.S.Revendications
1. Procédé pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation destinée à relier deux autres pièces en filtrant la transmission des vibrations entre ces deux autres pièces, ladite articulation appelée à travailler en axial, radial ou en torsion, possédant ou non une ou plusieurs chambres hydro élastiques et étant composées de deux armatures cylindriques concentriques, l'armature intérieure étant en grande partie située dans le volume défini par l'armature extérieure, ces deux armatures étant reliées par un ensemble de composants en caoutchouc ou élastomère et le cas échéant de plastique et pièces métalliques, lesdites armatures étant elles mêmes fixées respectivement aux deux autres pièces que l'articulation relie, en appliquant une technique du contrôle par impact à la cadence de la ligne de production des articulations, soit moins de 10 secondes de temps de cycle, pour identifier lors d'une analyse fré- quentielle de l'oscillation de la zone d'articulation impactée les pièces bonnes des mauvaises, caractérisé en ce que des valeurs de déphasage de l'analyse fréquentielle sont comparées avec une bande passante de déphasage autorisée.
2. Procédé suivant revendication 1, caractérisé en ce que les valeurs de déphasage issue de l'analyse fréquentielle sont comparées dans au moins une plage de fréquences limitée ou au moins deux plages de fréquences limitées donnée(s), la plage de fréquence limitée donnée est en particulier définie dans la plage de fréquences totale de 0 à 2000 Hz, en particulier les plages de fréquences limitées données étant écartées l'un à l'autre, en particulier d'au moins 10Hz.
3. Procédé selon l'une quelconque des revendications 2, caractérisé en ce que une plage de fréquences limitée est définie autour d'une valeur de fréquence d'un maximum relatif et/ou d'un minimum relatif du déphasage, en particulier d'une courbe de référence de déphasage.
4. Procédé selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que une plage de fréquences s'étend d'environ 100Hz à environ 200 Hz, en particulier entre environ 120Hz et environ 180Hz, d'environ 200Hz à environ 300 Hz, en particulier entre environ 220Hz et environ 290Hz et/ou d'environ 35OHz à environ 450 Hz, en particulier entre environ 370Hz et environ 430Hz.
5. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce que une plage de fréquences est définie autour d'une valeur de fréquence de passage de 90 ou 180 dégrées du déphasage d'une courbe de référence.
6. Procédé pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation destinées à relier deux autres pièces en filtrant la transmission des vibrations entre ces deux autres pièces, ladite articulation appelée à travailler en axial, radial ou en torsion, possédant ou non une ou plusieurs chambres hydro élastiques et étant composées de deux armatures cylindriques concentriques, l'armature intérieure étant en grande partie située dans le volume défini par l'armature extérieure, ces deux armatures étant reliées par un ensemble de composants en caoutchouc ou élastomère et le cas échéant de plastique et pièces métalliques, lesdites armatures étant elles mêmes fixées respectivement aux deux autres pièces que l'articulation relie, en appliquant une technique du contrôle par impact à la cadence de la ligne de production des articulations, soit moins de 10 secondes de temps de cycle, pour identifier lors d'une analyse fré- quentielle de l'oscillation de la zone d'articulation impactée les pièces bonnes des mauvaises dans une plage de fréquence totale, en particulier de 0 à 2000 Hz, caractérisé en ce que des valeurs de module de l'analyse fréquentielle sont comparées avec une bande passante de module autorisée qui enveloppe une courbe de module de référence dans une plage de fréquence limitée, en particulier entre environ 50 et environ 250 Hz, comprise dans la plage de fréquence totale, et en ce que la plage de fréquence limitée est définie autour d'une fréquence d'un premier pic de résonance de la courbe de référence, la fréquence du premier pic de résonance ayant une fréquence inférieur à une valeur de fréquence d'un deuxième pic de résonance de la courbe de référence.
7. Procédé selon la revendication 6, caractérisé en ce que la plage de fréquence limitée s'étend d'environ 5Hz, particulièrement d'environ 100Hz, à environ 200Hz.
8. Procédé selon l'une quelconques des revendications 6 à 7, caractérisé en ce qu'on compare les valeurs de module issue de l'analyse fréquentielle de l'oscillation de l'armature impactée dans deux plages de fréquences limitées, la première plage de fréquence limitée étant définie autour de la fréquence du premier pic de résonance de la courbe de référence et la deuxième plage de fréquence limitée est écartées de la première bande de fréquence limitée, en particulier d'au moins 100Hz.
9. Procédé selon la revendications 8, caractérisé en ce que la deuxième plage de fréquences limitée est définie autour de la fréquence du deuxième pic résonance de la courbe de référence, étant en particulier le maximum absolu de la courbe de module de référence, de préférence entre environ 350 et environ 450 Hz, et/ou la deuxième plage de fréquences limitée s'étend de environ 500Hz à environ 800 Hz, en particulier entre environ 550Hz et environ 700Hz.
10. Procédé selon l'une quelconques des revendications précédentes, caractérisé en ce que l'analyse fréquentielle de l'oscillation de l'armature impactée est comparée en tout ou partie à une bande passante autorisée dans une plage de fréquences totale de 0 à 2000 Hz pour connaître la raison de la non-conformité éventuelle et la fréquence à laquelle elle est apparue.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la courbe de référence de module ou de déphasage dans l'espace du fréquence est générée par une analyse par impact d'une articulation de référence bonne ou une simulation numérique d'une articulation de référence bonne.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la bande passante autorisée enveloppant la courbe de module ou de déphasage de référence est formée d'une courbe de valeurs de module ou de déphasage maximales et une courbe de valeurs de module ou de déphasage minimales, la courbe des valeurs de module ou de déphasage maximales et minimales ayant en particulier une distance entre eux de moins d'environ 15 pour cent de la valeur maximale de la courbe de module ou de déphasage de référence, en particulier de moins d'environ 10 pour cent, de préférence de moins d'environ 5 pour cent.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'impact est réalisé en moins de 15 millisecondes sur l'armature extérieure.
14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'impact est réalisé en moins de 15 millisecondes sur l'armature intérieure.
15. Procédé suivant revendications 13 ou 14, caractérisé en ce que le temps d'impact et l'absence de rebond d'impact sont contrôlés par un capteur intégré à une tête d'impact, le capteur étant en particulier un capteur piézo-électrique.
16. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'impact est réalisé en un point de l'armature situé sur l'axe de travail théorique de ladite armature ou l'impact est réalisé en un point de l'armature situé en dehors de l'axe de travail théorique de ladite armature.
17. Procédé suivant revendications l'une quelconque des revendications précédentes, caractérisé en ce qu'un capteur de force et de déplacement destiné à enregistrer les oscillations de l'armature impactée est situé en un point situé sur l'axe théorique de travail de l'armature impactée.
18. Procédé suivant revendications l'une quelconque des revendications précédentes, caractérisé en ce qu'on dispose plusieurs capteurs de force et de déplacement destinés à enregistrer les oscillations de l'armature impactée en des endroits autres que sur l'axe théorique de travail de l'articulation.
19. Procédé suivant revendication 18, caractérisé en ce que l'analyse fréquentielle de l'oscillation de l'armature impactée est réalisée de façon simultanée pour tous les capteurs de déplacement en moins de 10 secondes.
20. Procédé suivant revendications 18 ou 19, caractérisé en ce que un ou plusieurs capteurs) de force et de déplacement destiné(s) à enregistrer les oscillations de l'armature impactée est (sont) utilisé(s) pour pousser sur ladite armature de façon à la déplacer en translation par rapport à l'armature fixe ou de façon à la déplacer en rotation d'un angle (α) par rapport à l'armature fixe.
21. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'effort de l'impact sur l'articulation est entre 180N et 300N, de préférence entre 200N et 270N, en particulier autour de 210N.
22. Arrangement pour contrôler la qualité, particulièrement la raideur et la phase, d'une articulation hydro élastique, l'articulation étant destinée à relier deux autres pièces en filtrant la transmission des vibrations entre ces deux autres pièces, ladite articulation appelée à travailler en axial, radial ou en torsion, possédant ou non une ou plusieurs chambres hydro élastiques et étant composées de deux armatures cylindriques concentriques, l'armature intérieure étant en grande partie située dans le volume défini par l'armature extérieure, ces deux armatures étant reliées par un ensemble de composants en caoutchouc ou élastomère et le cas échéant de plastique et pièces métalliques, lesdi- tes armatures étant elles mêmes fixées respectivement aux deux autres pièces que l'articulation relie, l'arrangement comprenant une tête d'impact pour exercer un impact sur l'une de ces armatures, et un support pour maintenir l'articulation serrée sans déformation irréversible au niveau de l'autre de ses armatures qui se trouve ainsi fixée sans déplacement possible, caractérisé en ce que l'arrangement comprend en outre un actionneur magnétoélectrique pour accélérer la tête d'impact sur l'armature.
23. Arrangement selon la revendication 22, caractérisé en ce que, caractérisé en ce que l'arrangement est adapté pour exercer un effort de l'impact sur l'articulation entre 180N et 300N, de préférence entre 200N et 270N, en particulier autour de 210N.
24. Arrangement suivant une quelconque des revendications 22 à 23, caractérisé en ce que l'arrangement comporte un capteur d'effort, en particulier en forme d'un capteur pié- zo-électrique.
25. Arrangement suivant revendication 25, caractérisé en ce que le capteur d'effort intégré à la tête d'impact est utilisé, outre la mesure des efforts, à vérifier que la durée de l'impact reste égal à une consigne elle-même inférieure à 15 millisecondes et/ou à vérifier que l'impact est unique sans rebond.
26. Arrangement suivant l'une quelconque des revendications 22 à 25, caractérisé en ce que l'arrangement comprend au moins un capteur de force et de déplacement desti- né(s) à enregistrer les oscillations de l'armature impactée est(sont) équipé(s) d'un support magnétique de forme appropriée permettant de venir se coller sur l'armature impactée en un endroit précis tout en coopérant, respectivement pour chacun des ensembles capteur-support magnétique, avec la forme de l'armature à cet endroit précis.
27. Arrangement suivant revendication 26, caractérisé en ce que le capteur de déplacement destiné à enregistrer les oscillations de l'armature impactée est du type laser.
28. Arrangement suivant revendication 26, caractérisé en ce que le ou les capteur(s) d'effort et de déplacement destiné(s) à enregistrer les oscillations de l'armature impactée permet(tent) de pousser au préalable sur l'armature destinée à être impactée, pour positionner cette dernière de façon réversible dans une position différente de celle qu'elle a en l'absence d'efforts extérieurs.
29. Arrangement suivant revendications 27 ou 28, caractérisé en ce qu'on déplace préalablement en translation ou rotation l'armature destinée à être impactée par un système indépendant des capteurs de force et de déplacement.
30. Arrangement suivant l'une quelconque des revendications précédentes 27 à 29, caractérisé en ce que l'analyse fréquentielle des signaux venant du ou des capteurs de mouvement et de déplacement destiné(s) à enregistrer les oscillations de l'armature impactée sont comparés en tout ou partie à une bande autorisée dans la plage de fréquence 0 à 2000 Hz permettant le tri entre articulations bonnes ou mauvaises.
31. Arrangement suivant revendication 30, caractérisé en ce que les fréquences pour lesquelles le ou les signaux de sortie venant du ou des capteurs de déplacement sortent de la bande passante autorisée, conjointement avec l'importance de la dérive constatée, sont utilisées pour identifier la nature de la non-conformité.
32. Arrangement selon l'une quelconque des revendications 22 à 31, caractérisé en ce qu'il est conçu pour effectuer le procédé caractérisé par l'une quelconque des revendications 1 à 21.
PCT/EP2009/002733 2008-04-11 2009-04-14 Procede et dispositif pour controler la qualite, particulierement la raideur et la phase, d'une articulation hydro elastique WO2009124781A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL09729967T PL2263068T3 (pl) 2008-04-11 2009-04-14 Sposób i urządzenie do kontroli jakości, w szczególności sztywności oraz fazy, przegubu hydrosprężystego
US12/936,704 US8397591B2 (en) 2008-04-11 2009-04-14 Method and device for controlling the quality, in particular the stiffness and the phase, of a hydro-elastic joint
CN200980119432.1A CN102047091B (zh) 2008-04-11 2009-04-14 用于监控水弹性接头的性能、特别是刚度和相位的方法和装置
ES09729967T ES2704292T3 (es) 2008-04-11 2009-04-14 Método y dispositivo para controlar la calidad, particularmente la rigidez y la fase, de una articulación hidroelástica
EP09729967.1A EP2263068B1 (fr) 2008-04-11 2009-04-14 Procede et dispositif pour controler la qualite, particulierement la raideur et la phase, d'une articulation hydro elastique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852465A FR2930029B1 (fr) 2008-04-11 2008-04-11 Procede et dispositif pour controler le bon fonctionnement d'une cale, d'un palier ou d'une articulation hydro elastique.
FR0852465 2008-04-11

Publications (2)

Publication Number Publication Date
WO2009124781A2 true WO2009124781A2 (fr) 2009-10-15
WO2009124781A3 WO2009124781A3 (fr) 2009-12-10

Family

ID=40091390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/002733 WO2009124781A2 (fr) 2008-04-11 2009-04-14 Procede et dispositif pour controler la qualite, particulierement la raideur et la phase, d'une articulation hydro elastique

Country Status (7)

Country Link
US (1) US8397591B2 (fr)
EP (1) EP2263068B1 (fr)
CN (1) CN102047091B (fr)
ES (1) ES2704292T3 (fr)
FR (1) FR2930029B1 (fr)
PL (1) PL2263068T3 (fr)
WO (1) WO2009124781A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614196A (zh) * 2015-02-11 2015-05-13 重庆大学 压电陶瓷叠堆执行器刚度测量装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088061A1 (de) * 2011-12-09 2013-06-13 Airbus Operations Gmbh Haltevorrichtung für eine Komponente eines Luft- oder Raumfahrzeugs
US9097604B2 (en) * 2012-11-30 2015-08-04 The Boeing Company Electrodynamic modal test impactor system and method
DE102013201324B4 (de) * 2013-01-28 2024-05-16 Aktiebolaget Skf Verfahren zum Bestimmen einer Lagervorspannung
KR101452334B1 (ko) 2013-08-08 2014-10-22 주식회사 티에스알 프로펠러샤프트용 진동흡수댐퍼의 회전공진주파수 측정장치
CN104568358A (zh) * 2014-11-26 2015-04-29 芜湖福马汽车零部件有限公司 汽车底盘铸件冲击试验装置
JP6666751B2 (ja) * 2016-03-03 2020-03-18 センクシア株式会社 油圧ダンパの検査装置および検査方法
CN106441747B (zh) * 2016-09-12 2018-11-06 北京强度环境研究所 金属减振器轴向静刚度测试装置
TWI628433B (zh) * 2016-10-28 2018-07-01 財團法人工業技術研究院 非接觸式動剛度量測系統與方法
DE102020200297B4 (de) * 2020-01-13 2021-11-18 Volkswagen Aktiengesellschaft Verfahren, System, Computerprogrammprodukt und Prüfstandanordnung für eine Qualitätsbewertung eines Fahrzeugbauteils
CN111707469B (zh) * 2020-06-24 2022-06-14 中国航发中传机械有限公司 一种直升机尾减速器操纵轴力加载试验装置
CN113514144B (zh) * 2021-07-28 2022-07-26 郑州轻工业大学 基于电涡流位移传感器的不平衡-碰摩耦合故障检测方法
CN114577468B (zh) * 2022-03-03 2023-08-18 潍柴动力股份有限公司 一种发动机动态断缸下的弹性联轴器失效检测方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030172714A1 (en) * 2002-03-12 2003-09-18 Tokai Rubber Industries, Ltd. Apparatus and method for evaluating damping performance of vibration-damping devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600934A (en) * 1969-12-23 1971-08-24 Atomic Energy Commission Eddy current system for vibration testing of cantilevered nonferrous articles
DE3124506A1 (de) * 1981-06-23 1983-01-05 Robert Bosch Gmbh, 7000 Stuttgart Massendurchflussmesser und auswerteschaltung dazu
JP3493592B2 (ja) * 1996-02-20 2004-02-03 Necトーキン株式会社 ペイジャー用振動アクチュエータ
US6754571B2 (en) * 2001-07-30 2004-06-22 Delphi Technologies, Inc. Control of magnetorheological engine mount
US6933629B2 (en) * 2001-12-14 2005-08-23 Stirling Technology Company Active balance system and vibration balanced machine
DE10233798B4 (de) * 2002-07-25 2004-07-22 ZF Lemförder Metallwaren AG Verfahren zur Herstellung eines Hochleistungs-Kugelgelenks mit geringen Momenten und Hochleistungs-Kugelgelenk mit geringen Momenten
JP4286004B2 (ja) * 2003-01-07 2009-06-24 株式会社クボタ 管の継手構造
DE10340138A1 (de) * 2003-09-01 2005-03-24 Robert Bosch Gmbh Vorrichtung und Verfahren zur Durchführung einer experimentellen Modalanalyse
US7584685B2 (en) * 2004-10-20 2009-09-08 Dayco Products, Llc Active vibrational damper
JP4631515B2 (ja) * 2005-04-07 2011-02-16 横浜ゴム株式会社 Frp構造物の非破壊検査方法
US7660068B1 (en) * 2008-09-18 2010-02-09 Hitachi Global Storage Technologies Netherlands B.V. Method and system for pre-contact detection and active damping of air bearing vibrations in a hard disk drive

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030172714A1 (en) * 2002-03-12 2003-09-18 Tokai Rubber Industries, Ltd. Apparatus and method for evaluating damping performance of vibration-damping devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614196A (zh) * 2015-02-11 2015-05-13 重庆大学 压电陶瓷叠堆执行器刚度测量装置

Also Published As

Publication number Publication date
FR2930029B1 (fr) 2010-06-11
CN102047091B (zh) 2014-01-22
PL2263068T3 (pl) 2019-03-29
FR2930029A1 (fr) 2009-10-16
US20110107851A1 (en) 2011-05-12
EP2263068B1 (fr) 2018-10-03
WO2009124781A3 (fr) 2009-12-10
ES2704292T3 (es) 2019-03-15
US8397591B2 (en) 2013-03-19
EP2263068A2 (fr) 2010-12-22
CN102047091A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
EP2263068B1 (fr) Procede et dispositif pour controler la qualite, particulierement la raideur et la phase, d'une articulation hydro elastique
EP2335044A1 (fr) Dispositif d'indentation continue ou instrumentee a surface de support convexe et son utilisation, notamment pour l'indentation de toles
WO2013124426A1 (fr) Tete de mesure destinee a equiper un penetrometre dynamique et procede de mesure a l'aide d'une telle tete de mesure
EP1853893B1 (fr) Installation et procede de sollicitation mecanique d'echantillon au moyen d'un packer
WO2012156606A1 (fr) Machine d'essai en fatigue biaxiale disposant d'une éprouvette
FR2734904A1 (fr) Procede de controle d'amortisseurs
EP3207366B1 (fr) Procede et dispositif de diagnostic de la qualite d'un cordon de soudure laser
FR2896440A1 (fr) Procede et systeme de diagnostic de l'etat de fonctionnement d'une visseuse asservie a une ligne d'assemblage de vehicule.
FR3015321A1 (fr) Machine de soudage a friction inertielle muni d'un dispositif de controle in situ des soudures
EP1696221A1 (fr) Méthode de caractérisation en fatigue de profilés longilignes substantiellement creux
FR2934368A1 (fr) Platine et procede de mesure d'un effort de coupe
EP1763667B1 (fr) Procede et dispositif de determination de l'effort de rupture a la traction d'un element fixe a un support
EP3191813B1 (fr) Machine d'essai pour contrôle qualité d'une pièce au moins partiellement en élastomère chargé
FR2965055B1 (fr) Procede de caracterisation des proprietes viscoelastiques d'un echantillon, systeme et analyseur correspondants
FR3012606A1 (fr) Procede de diagnostic d'un chargement
EP3243039A1 (fr) Procédé et dispositif pour la mesure du suivi d'une trajectoire sous charge
EP2871444A1 (fr) Système de verification pour machine de mesure
FR2751079A1 (fr) Banc d'essai ou de controle de suspensions pour vehicules a deux roues
FR2730313A1 (fr) Procede et dispositif de test pour la mesure de la resistance a la rupture dynamique
FR2926363A1 (fr) Procede et dispositif pour detecter des defauts dans des pieces pour des vehicules obtenues notamment par emboutissage
FR2751411A1 (fr) Systeme mecanique d'application d'efforts sur des pistes subissant en outre les sollicitations de contact
WO2017149247A1 (fr) Dispositif pour la mise en œuvre d'un test de traction biaxiale d'un materiau
FR3007136A1 (fr) Procede pour realiser un test moteur arrete, de fonctionnement d'un actuateur monte sur un vehicule dont le moteur comporte un capteur de cliquetis
FR2762628A1 (fr) Procede et dispositif pour determiner la capacite d'un sol a soutenir et maintenir un ouvrage dispose dans le sol
FR2979430A1 (fr) Dispositif d'essai d'une roue en dynamique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119432.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729967

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009729967

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12936704

Country of ref document: US