WO2009123287A1 - Process for producing thermoplastic polyester elastomer and polycarbonate oligomer composition as starting material for the thermoplastic polyester elastomer - Google Patents

Process for producing thermoplastic polyester elastomer and polycarbonate oligomer composition as starting material for the thermoplastic polyester elastomer Download PDF

Info

Publication number
WO2009123287A1
WO2009123287A1 PCT/JP2009/056896 JP2009056896W WO2009123287A1 WO 2009123287 A1 WO2009123287 A1 WO 2009123287A1 JP 2009056896 W JP2009056896 W JP 2009056896W WO 2009123287 A1 WO2009123287 A1 WO 2009123287A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate oligomer
polyester elastomer
thermoplastic polyester
terminal
molecular weight
Prior art date
Application number
PCT/JP2009/056896
Other languages
French (fr)
Japanese (ja)
Inventor
哲祥 矢野
朝光 吉原
Original Assignee
日本ポリウレタン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリウレタン工業株式会社 filed Critical 日本ポリウレタン工業株式会社
Publication of WO2009123287A1 publication Critical patent/WO2009123287A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a method for producing a thermoplastic polyester elastomer and a raw material polycarbonate oligomer composition suitable for use in the production. Specifically, it is used for thermoplastic polyester elastomers with excellent heat resistance, light resistance, heat aging resistance, water resistance (also called water aging resistance), low temperature characteristics, etc., especially for various molding materials including fibers, films, and sheets.
  • the present invention relates to a process for producing a thermoplastic polyester elastomer that can be used and a raw material polycarbonate oligomer composition. More specifically, it is suitable for molding materials such as elastic yarns and boots, gears, tubes, packings, etc., for example, applications requiring heat aging resistance, water resistance, low temperature characteristics, heat resistance, etc. for automobiles, home appliance parts, etc.
  • the present invention relates to a method for producing a thermoplastic polyester elastomer useful for joint boots, wire covering materials, and the like, and a raw material polycarbonate oligomer composition thereof.
  • thermoplastic polyester elastomers As thermoplastic polyester elastomers, crystalline polyesters such as polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) are used as hard segments, and polyoxyalkylene glycols such as polytetramethylene glycol (PTMG) and A polyester having a soft segment such as polycaprolactone (PCL) and polybutylene adipate (PBA) is known and put into practical use (for example, Patent Documents 1 and 2).
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • PMG polytetramethylene glycol
  • PCL polycaprolactone
  • PBA polybutylene adipate
  • polyester polyether type elastomers that use polyoxyalkylene glycols in the soft segment are superior in water resistance and low temperature properties but are inferior in heat aging resistance.
  • polyester polyester type elastomers that use polyester in the soft segment Is known to be inferior in water resistance and low-temperature properties, although it is excellent in heat aging resistance.
  • polyester polycarbonate type elastomers using polycarbonate as a soft segment have been proposed (see, for example, Patent Documents 3 to 8).
  • Japanese Patent Laid-Open No. 2001-206939 Japanese Patent Laid-Open No. 2001-240663
  • the polyester polycarbonate type elastomer disclosed in these patent documents has a block property that is obtained because the polycarbonate diol elastomer used as a raw material has a low molecular weight.
  • Inferior property (hereinafter, sometimes simply referred to as blockability retention) leads to a problem that the melting point of the polyester polycarbonate type elastomer is lowered.
  • Patent Documents 4, 7 and 8 disclose that the melting point can be increased by introducing a naphthalate skeleton as a polyester component.
  • polyester having an inexpensive terephthalate skeleton is disclosed. It is desired to increase the melting point of the components.
  • Patent Documents 7 and 8 a production method in which a polyester component that forms a hard segment and a polycarbonate diol component that forms a soft segment are reacted in a molten state to form a block polymer, and then the molecular weight is increased with a chain extender Is disclosed.
  • the production method is an effective method for increasing the molecular weight of the block polymer.
  • the block property and block property retention are largely influenced by the reaction in the process of forming the block polymer. It is difficult to improve the block property and the block property retention by the method of increasing the molecular weight with a chain extender after forming the block polymer.
  • polyester polycarbonate type elastomers disclosed in these patent documents are difficult to find in the market for polycarbonates having a molecular weight of 5000 or more, which are used as raw materials. Since the temperature is high and the viscosity is high, the workability at the time of preparation as a raw material is extremely bad, and it is not practically used.
  • the carbonate bond of the polycarbonate diol is also involved in the transesterification reaction in parallel, and the transesterification rate of each carbonate group is increased. Because they are identical, transesterification occurs randomly.
  • the present invention has excellent heat resistance, heat aging resistance, water resistance (also referred to as water aging resistance), light resistance, low temperature characteristics, etc., and at the time of molding.
  • An object of the present invention is to provide an economical method for producing a thermoplastic polyester elastomer having excellent blockability, extrudability and difficulty in drawing down during extrusion molding and blow molding, and a polycarbonate oligomer composition as a raw material thereof. To do.
  • the method for producing a thermoplastic polyester elastomer according to the present invention comprises a hard segment comprising a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and an aliphatic polycarbonate as claimed in claim 1.
  • a method for producing a thermoplastic polyester elastomer comprising a soft segment comprising a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 10% or more, and the polycarbonate oligomer and A transesterification reaction with a polyester hard segment is performed.
  • the method for producing a thermoplastic polyester elastomer according to claim 2 is the polycarbonate according to claim 1, wherein the polycarbonate oligomer has a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more. It is characterized by using an oligomer.
  • the method for producing a thermoplastic polyester elastomer according to claim 3 is characterized in that, in the production method according to claim 1, the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
  • the method for producing a thermoplastic polyester elastomer according to claim 4 is characterized in that in the production method according to claim 2, the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
  • the method for producing a thermoplastic polyester elastomer according to claim 5 is the method according to any one of claims 1 to 4, wherein the number average molecular weight of the polyester constituting the hard segment is 10,000 to 40,000.
  • the raw material polycarbonate oligomer composition of the present invention comprises a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and mainly an aliphatic polycarbonate.
  • the raw material polycarbonate oligomer composition according to claim 7 is the composition according to claim 6, wherein the polycarbonate oligomer is a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more. It is characterized by including.
  • the raw material polycarbonate oligomer composition according to claim 8 is characterized in that, in the composition according to claim 6 or 7, the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
  • the present invention makes it possible to stably produce a thermoplastic polyester elastomer having a polycarbonate segment as a soft segment in a short time and at a low cost.
  • the thermoplastic polyester elastomer obtained by the present invention and the composition thereof are used after maintaining the characteristics of the polyester polycarbonate type elastomer having good heat resistance and excellent heat aging resistance, water resistance, low temperature characteristics and the like.
  • the difference in the reaction rate between the terminal carbonate group and the intramolecular carbonate group of the polycarbonate oligomer makes it possible to introduce a high-molecular-weight polycarbonate soft segment in a short time and greatly improves the block properties of the thermoplastic polyester elastomer. .
  • High melting point provides a high melting point, improves heat resistance, and improves mechanical properties such as hardness, tensile strength, and elastic modulus.
  • the improvement of the block property holding property suppresses the fluctuation of the block property during the molding process, so that the uniformity of the quality of the molded product can be enhanced.
  • recyclability is enhanced by the characteristics, which can lead to environmental load and cost reduction.
  • the thermoplastic polyester elastomer obtained in the present invention has the above-described excellent properties and advantages, and can be used for various molding materials including fibers, films and sheets.
  • thermoplastic polyester elastomer of the present invention does not require a complicated process, and is advantageous in that a high-quality thermoplastic polyester elastomer having the above characteristics can be produced economically and stably under easy conditions.
  • the polycarbonate oligomer composition as a raw material for a polyester elastomer of the present invention is characterized by low viscosity and low melting temperature in addition to the selective reactivity of the end groups.
  • conventional high molecular weight polycarbonate diols were impossible due to their high viscosity and high melting point.
  • After production they were once filled into product tanks, containers, drum cans / petroleum cans, etc., and then heated during polyester elastomer synthesis. And can be melted and used separately and has good workability. Therefore, it is possible to produce the polyester elastomer by transporting the polycarbonate oligomer composition of the raw material for the polyester elastomer to another place. It was also possible to sell it as a segment-forming polycarbonate oligomer. This can contribute to industrial development.
  • the manufacturing method of the thermoplastic polyester elastomer of this invention and its raw material polycarbonate oligomer composition are demonstrated in detail.
  • the aromatic dicarboxylic acid constituting the hard segment polyester is not particularly limited, and the main aromatic dicarboxylic acid is terephthalic acid or naphthalene. A dicarboxylic acid is desirable.
  • the aliphatic or alicyclic diol constituting the hard segment polyester is widely used as a general aliphatic or alicyclic diol, and is not particularly limited.
  • An alkylene glycol having a number of 2 to 8 is desirable. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, and the like. Most preferred are 1,4-butanediol and 1,4-cyclohexanedimethanol.
  • the component constituting the hard segment polyester those comprising a butylene terephthalate unit or a butylene naphthalate unit are preferable from the viewpoint of physical properties, moldability and cost performance.
  • naphthalate units 2,6 are preferred.
  • the aromatic polyester suitable as polyester which comprises the hard segment in the thermoplastic polyester elastomer of this invention can be easily obtained according to the manufacturing method of a normal polyester.
  • Such polyester preferably has a number average molecular weight of 10,000 to 40,000.
  • the polyester elastomer cannot be constituted with a sufficient hard segment chain length, the resulting polyester elastomer has a low melting point and sufficient tensile strength and Unable to obtain flexural modulus.
  • the polyester elastomer When a polyester with a number average molecular weight exceeding 40,000 is used as the polyester constituting the hard segment, the polyester elastomer is poorly compatible with the polycarbonate oligomer that is a soft segment component during the production of the polyester elastomer, and the resulting polyester elastomer has sufficient tensile strength. I can't get it.
  • the aliphatic polycarbonate oligomer which forms the soft segment in the thermoplastic polyester elastomer of the present invention is obtained by reacting an aliphatic polyol with a carbonate monomer selected from the group consisting of dialkyl carbonate, diaryl carbonate and alkylene carbonate.
  • a polycarbonate oligomer is formed while removing by-product alcohols from the reaction mixture containing the aliphatic polyol and the carbonate monomer.
  • the carbonate monomer used in the present invention is selected from the group consisting of dialkyl carbonate, diaryl carbonate, and alkylene carbonate.
  • dialkyl carbonate examples include those having an alkyl group having 1 to 12 carbon atoms, such as dimethyl carbonate, diethyl carbonate, and dibutyl carbonate.
  • diaryl carbonate examples include those having an aryl group having 6 to 20 carbon atoms, such as diphenyl carbonate and dinaphthyl carbonate.
  • the alkylene carbonate has a 5- to 7-membered ring, and specific examples include ethylene carbonate and propylene carbonate. These carbonate monomers are used alone or in combination of two or more.
  • the aliphatic polyol used in the present invention is preferably an aliphatic diol mainly having 2 to 12 carbon atoms.
  • these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, etc.
  • thermoplastic polyester elastomer a thermoplastic polyester elastomer
  • aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of flexibility and low temperature characteristics of the obtained thermoplastic polyester elastomer.
  • These components may be used alone or in combination of two or more as necessary, based on the case described below.
  • the above-mentioned aliphatic polycarbonate oligomer is not necessarily composed only of a polycarbonate component, and may be obtained by copolymerizing a small amount of other glycol, dicarboxylic acid, ester compound, ether compound and the like.
  • the copolymer component can be used to such an extent that the effect of the aliphatic polycarbonate segment is not substantially lost.
  • thermoplastic polyester elastomer produced in the present invention does not lose the effect of the invention, as a soft segment, for example, polyalkylene glycol such as polyethylene glycol and polyoxytetramethylene glycol, polyester such as polycaprolactone and polybutylene adipate Copolymerization components such as may be introduced.
  • polyalkylene glycol such as polyethylene glycol and polyoxytetramethylene glycol
  • polyester such as polycaprolactone and polybutylene adipate Copolymerization components such as may be introduced.
  • the thermoplastic polyester elastomer produced in the present invention has a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol as described above and a soft segment composed mainly of an aliphatic polycarbonate segment.
  • a thermoplastic polyester elastomer is a thermoplastic polyester elastomer.
  • bonded means that the hard segment and the soft segment are not bonded by a chain extender such as an isocyanate compound, but the units constituting the hard segment and the soft segment are directly bonded by an ester bond or a carbonate bond. The state is preferable.
  • the polyester constituting the hard segment the polycarbonate oligomer constituting the soft segment, and if necessary, various copolymerization components while melting and repeating the transesterification / condensation and depolymerization reactions for a certain period of time ( Hereinafter, it may be referred to as a blocking reaction).
  • the above-mentioned blocking reaction is preferably carried out at a temperature within the range of the melting point of the polyester constituting the hard segment to the melting point + 30 ° C.
  • the concentration of the active catalyst in the system is arbitrarily set according to the temperature at which the reaction is carried out.
  • the catalyst may be a normal catalyst, for example, titanium compounds such as titanium tetrabutoxide and potassium oxalate titanate, or one or more tin compounds such as dibutyltin oxide and monohydroxybutyltin oxide.
  • the catalyst may be pre-existing in the polyester or polycarbonate, in which case it need not be added anew. Furthermore, the catalyst in the polyester or polycarbonate may be partially or substantially completely deactivated in advance by any method.
  • titanium tetrabutoxide when titanium tetrabutoxide is used as a catalyst, for example, phosphorous compounds such as phosphorous acid, phosphoric acid, triphenyl phosphate, tristriethylene glycol phosphate, orthophosphoric acid, triphenyl phosphite, trimethyl phosphate, trimethyl phosphite, etc.
  • deactivation is performed by adding, it is not necessarily restricted to this.
  • reaction can be carried out by arbitrarily determining the combination of reaction temperature, catalyst concentration and reaction time. That is, the appropriate values of the reaction conditions vary depending on various factors such as the type and amount ratio of the hard segment and the soft segment to be used, the shape of the apparatus to be used, and the stirring condition.
  • thermoplastic polyester elastomer of the present invention may contain a tri- or higher functional polycarboxylic acid or polyol only in a small amount.
  • a tri- or higher functional polycarboxylic acid or polyol only in a small amount.
  • trimellitic anhydride, benzophenone tetracarboxylic acid, trimethylolpropane, glycerin and the like can be used.
  • the hard segment is composed of polybutylene terephthalate units, and the thermoplastic polyester elastomer obtained has a melting point of 200 to 225 ° C. 205 to 225 ° C is more preferable.
  • the hard segment is preferably composed of polybutylene naphthalate units, and the thermoplastic polyester elastomer obtained preferably has a melting point of 215 to 240 ° C. 220 to 240 ° C. is more preferable.
  • the hard segment is a polybutylene terephthalate unit or a polybutylene naphthalate unit
  • a commercially available polyester such as polybutylene terephthalate or polybutylene naphthalate can be used, which is advantageous in terms of economy.
  • thermoplastic polyester elastomer of the present invention has 50% elongation retention at break after the heat aging test and after the water aging test of the thermoplastic polyester elastomer composition evaluated by the method described in the measurement method section. It is preferable that it is above and 80% or more.
  • the molecular weight and the terminal group ratio of the polycarbonate oligomer as a raw material. That is, a polyester constituting a hard segment in the above-described thermoplastic polyester elastomer of the present invention and an aliphatic polycarbonate oligomer having a molecular weight of 1000 to 5000 having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more. It is preferable to produce by reacting in a molten state.
  • the ratio of the alkyl carbonate group or aryl carbonate group in the terminal group of the polycarbonate oligomer needs to be 10% or more, and preferably 15% or more.
  • the proportion of alkyl carbonate group or aryl carbonate group in the terminal group is less than 10%, the effect of improving transesterification efficiency due to the difference in reaction rate with the terminal OH group of the polycarbonate oligomer is difficult to be obtained, and sufficient blocking property is maintained. As a result, a polyester elastomer having good physical properties cannot be obtained.
  • the content is less than 10%, the reaction system becomes too uniform, making it difficult for the polycarbonate oligomer part and the polyester hard segment part to form a sea-island structure, resulting in low elasticity.
  • the proportion of the alkyl carbonate group or aryl carbonate group in the terminal group exceeds 85%, the transesterification is difficult to proceed, and the physical properties deteriorate. Therefore, it is preferably 85% or less.
  • the number average molecular weight of the polycarbonate oligomer is less than 1000, the sea-island structure of the polycarbonate oligomer portion and the polyester hard segment portion is unclear, resulting in low elasticity, and the polycarbonate chain introduced as a soft segment. A polyester elastomer having a sufficient physical property with insufficient length cannot be obtained.
  • the molecular weight of the polycarbonate oligomer is more preferably 2000 or more in terms of number average molecular weight for the same reason as above.
  • the upper limit of the molecular weight of the polycarbonate oligomer is preferably a number average molecular weight of 5000 or less in view of the viscosity during handling and the production efficiency of the oligomer.
  • the higher the molecular weight of the aliphatic polycarbonate oligomer the more advantageous in terms of obtaining a polyester elastomer having a higher block property.
  • the higher the molecular weight the higher the melting point of the polycarbonate oligomer, and the higher the molecular weight, the higher the viscosity at the time of melting.
  • handling such as taking out, filling and charging becomes difficult.
  • the strength tends to decrease. Even if a polyester elastomer having a number average molecular weight of 10,000 to higher is used, the physical properties of the resulting polyester elastomer are hardly significant.
  • the content of the free alkyl carbonate monomer or aryl carbonate monomer is preferably 5% or less, more preferably 1% or less, based on the polycarbonate oligomer.
  • the content of free alkyl carbonate monomer or aryl carbonate monomer exceeds 10%, it becomes difficult to control the chain length of the carbonate chain introduced as a soft segment, and at the same time, the monomer is scattered outside the reactor during the production process of the polyester elastomer. However, it may not be effective.
  • the method for synthesizing the polycarbonate oligomer is not limited.
  • the above aliphatic diol and the above carbonate that is, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dimethyl carbonate, diphenyl carbonate, etc. It can obtain by making it react.
  • an aliphatic polycarbonate diol As another method for producing an aliphatic polycarbonate oligomer, it is possible to react an aliphatic polycarbonate diol with dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dimethyl carbonate, diphenyl carbonate, etc. It is.
  • a commercially available polycarbonate diol composed of 1,6-hexanediol (molecular weight 2000) and diethyl carbonate are charged under normal pressure to pressure and heated to remove ethanol generated by the reaction, while reacting in a molten state. It can be obtained by making it progress.
  • the method for removing ethanol is not limited. Most ethanol is removed at reaction temperatures above 150 ° C. Further examples include a method of reducing the pressure with a vacuum pump or an ejector, a method of circulating an inert gas, and the like.
  • the charge molar ratio of polycarbonate diol to diethyl carbonate in the above reaction is preferably in the range of 1/100 to 50/100. More preferably, it is in the range of / 100 to 20/100. Outside this range, it is difficult to ensure the desired molecular weight.
  • the temperature in the reaction vessel when the above raw materials are charged is preferably 100 to 130 ° C. After charging the raw materials, the temperature is raised to 180-220 ° C and the reaction is allowed to proceed for 30-120 minutes. It is preferable to gradually reduce the pressure in the reaction can from normal pressure to 530 Pa or less to remove ethanol desorbed by the reaction.
  • thermoplastic polyester elastomer of the present invention can easily produce an aliphatic polycarbonate oligomer having an arbitrary desired end group ratio, and the production is an apparatus for producing the thermoplastic polyester elastomer of the present invention. Can also be performed on the implant prior to the production of the thermoplastic polyester elastomer.
  • a composition can be obtained by blending various additives depending on the purpose.
  • Additives include known hindered phenol-based, sulfur-based, phosphorus-based, amine-based antioxidants, hindered amine-based, triazole-based, benzophenone-based, benzoate-based, nickel-based, salicyl-based light stabilizers, antistatic agents, etc.
  • Agents such as peroxides, epoxy compounds, isocyanate compounds, compounds having reactive groups such as carbodiimide compounds, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, control agents Acid agents, antibacterial agents, fluorescent brighteners, fillers, flame retardants, flame retardant aids, organic and inorganic pigments, and the like can be added.
  • molecular modifiers such as peroxides, epoxy compounds, isocyanate compounds, compounds having reactive groups such as carbodiimide compounds, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, control agents
  • Acid agents antibacterial agents, fluorescent brighteners, fillers, flame retardants, flame retardant aids, organic and inorganic pigments, and the like can be added.
  • thermoplastic polyester elastomer composition of the present invention is formed from a melt by ordinary molding techniques such as injection molding, flat film extrusion, extrusion blow molding, and coextrusion.
  • the present invention it is preferable to produce by reacting a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol and the aliphatic polycarbonate oligomer in a molten state.
  • the reaction may be carried out in a plurality of stages. If the requirements are satisfied, the production conditions and the like are not limited, but for example, the following method is preferable.
  • Example 1 [Production of aliphatic polycarbonate oligomer] Production method of aliphatic polycarbonate oligomer (polycarbonate oligomer 1): A reactor equipped with a stirrer, thermometer, and rectifying column was charged with 824 parts by weight of 1,6-hexanediol, 800 parts by weight of diethyl carbonate and 0.3 parts by weight of lead acetate, and the temperature was raised to 130 ° C. The temperature was raised to 190 ° C. for 24 hours. During this time, by-product ethanol was removed while maintaining the temperature of the rectification column at 80 to 90 ° C. Thereafter, while maintaining the temperature at 190 ° C., the pressure in the reactor was gradually reduced to 1300 Pa in 4 hours.
  • the contents were cooled to obtain polycarbonate oligomer 1.
  • the obtained polycarbonate oligomer 1 has a terminal ethyl group of 10.9 mg-KOH / g, a terminal OH group of 24.9 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 30%), and the number average molecular weight is 3100.
  • the kinematic viscosity at 75 ° C. was 8400 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 1) having a number average molecular weight of 3100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 1 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 1 were measured, and the results are shown in Table 1. The polymer 1 obtained in this example had good properties and high quality.
  • Example 2 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 2): 100 parts by mass of 1,6-hexanediol and 4.0 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 4 hours, the contents were cooled to obtain polycarbonate oligomer 2.
  • the obtained polycarbonate oligomer 2 has a terminal ethyl group of 10 mg-KOH / g, a terminal OH group of 39 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 20%), and the number average molecular weight is 2300.
  • the kinematic viscosity at 75 ° C. was 2700 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 2) having a number average molecular weight of 2300 prepared by the above method were stirred at 230 to 245 ° C. under 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 2 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 2 were measured, and the results are shown in Table 1. The polymer 2 obtained in this example had good properties and high quality.
  • PBT polybutylene terephthalate
  • (polycarbonate oligomer 2) having a number average molecular weight of 2300 prepared by the above method were stirred at 230 to 245 ° C. under 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 2 (thermoplastic polyester elastomer).
  • Example 3 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 3): 100 parts by mass of a copolymer (non-crystalline) of 1,6-hexanediol and 3-methyl-1,5-pentanediol and 8.0 parts by mass of diethyl carbonate were charged and reacted at a temperature of 205 ° C. and 1300 Pa. . After 2 hours, the contents were cooled to obtain polycarbonate oligomer 3.
  • the obtained polycarbonate oligomer 3 has a terminal ethyl group of 38 mg-KOH / g, a terminal OH group of 15 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 72%), and the number average molecular weight is 2100.
  • the kinematic viscosity at 75 ° C. was 2900 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 3) having a number average molecular weight of 2100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 3 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 3 were measured, and the results are shown in Table 1. The polymer 3 obtained in this example had good properties and high quality.
  • PBT polybutylene terephthalate
  • (polycarbonate oligomer 3) having a number average molecular weight of 2100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 3 (thermoplastic polyester elasto
  • Example 4 [Production of aliphatic polycarbonate oligomer] 100 parts by mass of a copolymer (non-crystalline) of 1,6-hexanediol and 1,5-pentanediol and 8.0 parts by mass of diethyl carbonate were respectively charged and reacted at a temperature of 205 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 4.
  • the obtained polycarbonate oligomer 4 has a terminal ethyl group of 35 mg-KOH / g, a terminal OH group of 16 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 69%), and the number average molecular weight is 2200.
  • the kinematic viscosity at 75 ° C. was 3500 mm 2 / s.
  • PBT polybutylene terephthalate
  • Example 5 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 5): (1,6-hexanediol type) 100 parts by mass and 4 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 205 ° C. and 130 Pa for 2 hours. The contents were 5 mg-KOH / g terminal ethyl, 22 mg-KOH / g terminal OH group, and the number average molecular weight was 4050. Furthermore, 2 parts by mass of diethyl carbonate was charged and reacted at a temperature of 205 ° C. and 1300 Pa.
  • the obtained polycarbonate oligomer 6 has a terminal ethyl group of 5 mg-KOH / g, a terminal OH group of 22 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 19%), and the number average molecular weight is 4200.
  • the kinematic viscosity at 75 ° C. was 18000 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 5) having a number average molecular weight of 4200 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 5 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 5 were measured, and the results are shown in Table 1. The polymer 5 obtained in this example had good properties and high quality.
  • PBT polybutylene terephthalate
  • (polycarbonate oligomer 5) having a number average molecular weight of 4200 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 5 (thermoplastic polyester elasto
  • Example 6 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 6): 100 parts by mass of 1,6-hexanediol and 2.6 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 6.
  • the obtained polycarbonate oligomer 6 has a terminal ethyl group of 7 mg-KOH / g, a terminal OH group of 29 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 19%), and the number average molecular weight is 3100.
  • the kinematic viscosity at 75 ° C. was 7500 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by mass of (polycarbonate oligomer 6) having a number average molecular weight of 3100 prepared by the above method were stirred at 230 to 245 ° C. under 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 6 (thermoplastic polyester elastomer). The physical properties of the obtained polymer were measured, and the results are shown in Table 1. The polymer 1 obtained in this example had good properties and high quality.
  • PBT polybutylene terephthalate
  • (polycarbonate oligomer 6) having a number average molecular weight of 3100 prepared by the above method were stirred at 230 to 245 ° C. under 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 6 (thermoplastic polyester elastomer
  • Example 7 [Production of thermoplastic polyester elastomer] (Polycarbonate oligomer 6) 43 having 100 parts by mass of polybutylene naphthalate (PBN) having a number average molecular weight of 30000 and a number average molecular weight of 3100 prepared by the above method (the ratio of terminal ethyl carbonate groups to terminal groups is 19%) The mixture was stirred at 245 to 260 ° C. and 130 Pa for 1 hour to confirm that the resin became transparent, and the contents were taken out and cooled to obtain polymer 7 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 7 were measured, and the results are shown in Table 1.
  • the polymer 7 obtained in this example has the same block properties and block properties as the thermoplastic polyester elastomer obtained in example 6. It had retention and had a higher melting point and higher quality than the thermoplastic polyester elastomer obtained in Example 6.
  • Example 8 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 8): 100 parts by mass of 1,6-hexanediol and 5 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 8.
  • the obtained polycarbonate oligomer 8 has a terminal ethyl group of 7 mg-KOH / g, a terminal OH group of 12 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 37%), and the number average molecular weight is 5900,
  • the kinematic viscosity at 75 ° C. was 52000 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by mass of (polycarbonate oligomer 8) having a number average molecular weight of 5900 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 8 (thermoplastic polyester elastomer). The physical properties of the obtained polymer were measured, and the results are shown in Table 1. The polymer 8 obtained in this example had good properties and high quality.
  • PBT polybutylene terephthalate
  • (polycarbonate oligomer 8) having a number average molecular weight of 5900 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 8 (thermoplastic polyester elastomer
  • the melting temperature of the polycarbonate diol having a number average molecular weight of more than 5000 and the number average molecular weight of 5900 is high and the viscosity is high, so the melting and charging work into the reactor is very difficult. It was.
  • Example 9 [Production of aliphatic polycarbonate oligomer]
  • Production method of aliphatic polycarbonate oligomer (polycarbonate oligomer 9) 100 parts by mass of 1,6-hexanediol and 6 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 9.
  • the obtained polycarbonate oligomer 9 has a terminal ethyl group of 4 mg-KOH / g, a terminal OH group of 32 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 11%), and the number average molecular weight is 3100.
  • the kinematic viscosity at 75 ° C. was 7000 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 9) having a number average molecular weight of 3100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 9 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 9 were measured, and the results are shown in Table 1. The polymer 9 obtained in this example had good properties and high quality. However, since the terminal group ratio of the polycarbonate oligomer 9 was 11%, the physical properties were slightly inferior compared with the case where the polycarbonate oligomer having a terminal group ratio of 15% or more was used.
  • Example 10 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 10): 100 parts by mass of 1,6-hexanediol and 25 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 4 hours, the contents were cooled to obtain polycarbonate oligomer 10.
  • the obtained polycarbonate oligomer 10 has a terminal ethyl group of 40 mg-KOH / g, a terminal OH group of 160 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 20%), and the number average molecular weight is 600.
  • the kinematic viscosity at 75 ° C. was 10 mm 2 / s or less.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 10) having a number average molecular weight of 600 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 10 (thermoplastic polyester elastomer). Each physical property of the obtained polymer 10 was measured, and the result is shown in Table 1. The polymer 10 obtained in this example had good properties and high quality. However, since the number average molecular weight of the polymer 10 was as small as less than 1000, the sea-island structure was unclear, the elasticity was small, and there was almost no elongation.
  • PBT polybutylene terephthalate
  • (polycarbonate oligomer 10) having a number average molecular weight of 600 prepared by the above method were stirred at
  • Example 11 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 11): 100 parts by mass of 1,6-hexanediol and 12 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 4 hours, the contents were cooled to obtain polycarbonate oligomer 11.
  • the obtained polycarbonate oligomer 11 has a terminal ethyl group of 48 mg-KOH / g, a terminal OH group of 5 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 91%), and the number average molecular weight is 2100.
  • the kinematic viscosity at 75 ° C. was 2900 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 11) having a number average molecular weight of 2100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 11 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 11 were measured, and the results are shown in Table 1. The polymer 1 obtained in this example had good properties and high quality. However, since the terminal group ratio of the polycarbonate oligomer 11 was 92%, the physical properties were slightly inferior to those of the polycarbonate oligomer having a terminal group ratio of 85% or less.
  • thermoplastic polyester elastomer 230 parts by mass of 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by mass of 1,6-hexanediol having a number average molecular weight of 2000 (the ratio of terminal ethyl carbonate groups to terminal groups is 0%)
  • PBT polybutylene terephthalate
  • 1,6-hexanediol having a number average molecular weight of 2000 (the ratio of terminal ethyl carbonate groups to terminal groups is 0%)
  • the mixture was stirred at 245 ° C. and 130 Pa for 10 minutes to confirm that the resin became transparent.
  • the contents were taken out and cooled to obtain polymer 21 (thermoplastic polyester elastomer).
  • the physical properties of the obtained polymer were measured, and the results are shown in Table 2.
  • the polymer 21 obtained in this comparative example was poor in heat aging resistance and low quality. Moreover, since the number average
  • thermoplastic polyester elastomer 230 parts by weight of 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by weight of 1,6-hexanediol having a number average molecular weight of 30000 (the ratio of terminal ethyl carbonate groups in the terminal groups is 0%)
  • PBT polybutylene terephthalate
  • 1,6-hexanediol having a number average molecular weight of 30000 (the ratio of terminal ethyl carbonate groups in the terminal groups is 0%)
  • the mixture was stirred at ⁇ 245 ° C. and 130 Pa for 10 minutes to confirm that the resin became transparent, and the contents were taken out and cooled to obtain polymer 22 (thermoplastic polyester elastomer).
  • the physical properties of the obtained polymer were measured, and the results are shown in Table 1.
  • the polymer 22 obtained in this comparative example was poor in heat aging resistance and low quality. Moreover
  • thermoplastic polyester elastomer 230 parts by mass of 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 1,6 hexanediol having a number average molecular weight of 5000 (the ratio of terminal ethyl carbonate groups to terminal groups is 0%)
  • PBT polybutylene terephthalate
  • the mixture was stirred at ⁇ 245 ° C. and 130 Pa for 10 minutes to confirm that the resin became transparent, and the contents were taken out and cooled to obtain polymer 23 (thermoplastic polyester elastomer).
  • Each physical property of the obtained polymer 23 was measured, and the result is shown in Table 2.
  • the polymer 23 obtained in this comparative example was inferior in heat aging resistance and low in quality.
  • the melting temperature of the polycarbonate diol having a number average molecular weight of over 5000 and the number average molecular weight of 5099 is high and the viscosity is high. It was.
  • the obtained polycarbonate oligomer had a terminal ethyl group of 3 mg-KOH / g, a terminal OH group of 53 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group was 5%), and the number average molecular weight was 2004.
  • the kinematic viscosity at 20 ° C. was 2050 mm 2 / s.
  • thermoplastic polyester elastomer When 100 parts by mass of polybutylene terephthalate (PBT) having a fractional average molecular weight of 30000 and 45 parts by mass of polycarbonate diol 24 (number average molecular weight is 2004) are stirred at 230 to 245 ° C.
  • PBT polybutylene terephthalate
  • Comparative Example 7 [Production of aliphatic polycarbonate oligomer] Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 27): 100 parts by mass of 1,6-hexanediol having a number average molecular weight of 2000 and 4.7 parts by mass of diethyl carbonate were charged and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 27.
  • the obtained polycarbonate oligomer 27 has a terminal ethyl group 0 mg-KOH / g, a terminal OH group 11 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 0%), and the number average molecular weight is 10,000.
  • the kinematic viscosity at 75 ° C. was 95000 mm 2 / s.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by weight of polycarbonate diol 27 (number average molecular weight is 10,000) were stirred at 230 to 245 ° C.
  • the polymer 27 obtained in this comparative example was inferior in heat aging resistance and low in quality.
  • the melting temperature of the polycarbonate diol having a number average molecular weight exceeding 5000 and the number average molecular weight 10000 is high and the viscosity is high, and therefore the melting and charging work into the reactor is extremely difficult. It was.
  • thermoplastic polyester elastomer of this invention As mentioned above, although the manufacturing method of the thermoplastic polyester elastomer of this invention and its raw material polycarbonate oligomer composition were demonstrated based on the several Example, this invention is not limited to the structure described in the said Example, The configuration can be changed as appropriate without departing from the spirit of the invention, for example, by appropriately combining the configurations described in the embodiments.
  • thermoplastic polyester elastomer obtained by the production method of the present invention and the composition thereof have good heat resistance, and have maintained the characteristics of the polyester polycarbonate type elastomer that are excellent in heat aging resistance, water resistance, low temperature characteristics, etc.
  • the block property and the block property retention are improved. Due to the high block property, a decrease in heat resistance due to a decrease in melting point is suppressed, and mechanical properties such as hardness, tensile strength and elastic modulus are improved.
  • the improvement of the block property holding property suppresses the fluctuation of the block property during the molding process, so that the uniformity of the quality of the molded product can be enhanced.
  • thermoplastic polyester elastomer obtained by the production method of the present invention has the above-described excellent characteristics and advantages, it can be used for various molding materials including fibers, films and sheets.

Abstract

Disclosed is a production process that can cost effectively produce a thermoplastic polyester elastomer which can simultaneously realize excellent heat resistance, thermal aging resistance, water resistance, light stability, low-temperature properties and other properties, has excellent block property retention in molding, has excellent extrudability, and is less likely to cause drawdown during blow molding, i.e., has excellent moldability. Also disclosed is a polycarbonate oligomer composition as a starting material for the thermoplastic polyester elastomer. The production process is a process for producing a thermoplastic polyester elastomer comprising a hard segment and a soft segment bonded to each other, the hard segment being formed of a polyester comprising an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, the soft segment being composed mainly of an aliphatic polycarbonate. In the production process, a polycarbonate oligomer having a terminal alkyl carbonate group or terminal aryl carbonate group in which the proportion of the terminal group is not less than 10% is provided as a starting material, and the polycarbonate oligomer and the polyester hard segment are subjected to a transesterification reaction to obtain the thermoplastic polyester elastomer.

Description

熱可塑性ポリエステルエラストマーの製造方法及びその原料ポリカーボネートオリゴマー組成物Method for producing thermoplastic polyester elastomer and raw material polycarbonate oligomer composition
 本発明は熱可塑性ポリエステルエラストマーの製造方法及びその製造に用いるのに好適な原料ポリカーボネートオリゴマー組成物に関する。詳しくは、耐熱性、耐光性、耐熱老化性、耐水性(耐水老化性ともいう)、低温特性等に優れた熱可塑性ポリエステルエラストマー、特に、繊維、フイルム、シートをはじめとする各種成形材料に用いることのできる熱可塑性ポリエステルエラストマーの製造方法とその原料ポリカーボネートオリゴマー組成物に関する。さらに詳しくは、弾性糸及びブーツ、ギヤ、チューブ、パッキンなどの成形材料に適し、例えば、自動車、家電部品などの耐熱老化性、耐水性、低温特性及び耐熱性等が要求される用途、例えば、ジョイントブーツや、電線被覆材などに有用な熱可塑性ポリエステルエラストマーの製造方法とその原料ポリカーボネートオリゴマー組成物に関する。 The present invention relates to a method for producing a thermoplastic polyester elastomer and a raw material polycarbonate oligomer composition suitable for use in the production. Specifically, it is used for thermoplastic polyester elastomers with excellent heat resistance, light resistance, heat aging resistance, water resistance (also called water aging resistance), low temperature characteristics, etc., especially for various molding materials including fibers, films, and sheets. The present invention relates to a process for producing a thermoplastic polyester elastomer that can be used and a raw material polycarbonate oligomer composition. More specifically, it is suitable for molding materials such as elastic yarns and boots, gears, tubes, packings, etc., for example, applications requiring heat aging resistance, water resistance, low temperature characteristics, heat resistance, etc. for automobiles, home appliance parts, etc. The present invention relates to a method for producing a thermoplastic polyester elastomer useful for joint boots, wire covering materials, and the like, and a raw material polycarbonate oligomer composition thereof.
 熱可塑性ポリエステルエラストマーとしては、以前よりポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)をはじめとする結晶性ポリエステルをハードセグメントとし、ポリテトラメチレングリコール(PTMG)などのポリオキシアルキレングリコール類及び/又はポリカプロラクトン(PCL)、ポリブチレンアジペート(PBA)などのポリエステルをソフトセグメントとするものなどが知られ、実用化されている(例えば、特許文献1、2)。 As thermoplastic polyester elastomers, crystalline polyesters such as polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) are used as hard segments, and polyoxyalkylene glycols such as polytetramethylene glycol (PTMG) and A polyester having a soft segment such as polycaprolactone (PCL) and polybutylene adipate (PBA) is known and put into practical use (for example, Patent Documents 1 and 2).
特開平10-17657号公報Japanese Patent Laid-Open No. 10-17657 特開2003-192778号公報Japanese Patent Laid-Open No. 2003-192778
 しかしながら、ソフトセグメントにポリオキシアルキレングリコール類を用いたポリエステルポリエーテル型エラストマーは、耐水性及び低温特性には優れるものの耐熱老化性に劣ることが、また、ソフトセグメントにポリエステルを用いたポリエステルポリエステル型エラストマーは、耐熱老化性に優れるものの、耐水性及び低温特性に劣ることが知られている。 However, polyester polyether type elastomers that use polyoxyalkylene glycols in the soft segment are superior in water resistance and low temperature properties but are inferior in heat aging resistance. Also, polyester polyester type elastomers that use polyester in the soft segment Is known to be inferior in water resistance and low-temperature properties, although it is excellent in heat aging resistance.
 上記欠点を解決することを目的として、ソフトセグメントにポリカーボネートを用いたポリエステルポリカーボネート型エラストマーが提案されている(例えば、特許文献3~8参照)。
特公平7-39480号公報 特開平5-295049号公報 特開平6-306202号公報 特開平10-182782号公報 特開2001-206939号公報 特開2001-240663号公報
In order to solve the above drawbacks, polyester polycarbonate type elastomers using polycarbonate as a soft segment have been proposed (see, for example, Patent Documents 3 to 8).
Japanese Patent Publication No.7-39480 Japanese Patent Laid-Open No. 5-295049 JP-A-6-306202 Japanese Patent Laid-Open No. 10-182782 Japanese Patent Laid-Open No. 2001-206939 Japanese Patent Laid-Open No. 2001-240663
 上記の課題は解決されるが、これらの特許文献において開示されているポリエステルポリカーボネート型エラストマーは、原料に用いられるポリカーボネートジオールの分子量が小さい等の理由で、得られるポリエステルポリカーボネート型エラストマーはブロック性の保持性(以下、単にブロック性保持性と称することもある)が劣るためポリエステルポリカーボネート型エラストマーの融点が低くなるという課題に繋がるので、例えば、上記したジョイントブーツや電線被覆材の場合に、自動車のエンジン周り等の高温環境下で使用される用途においては耐熱性の不足が問題となることがある。上記特許文献4、7及び8においては、ポリエステル成分としてナフタレート骨格を導入することにより高融点化できることが開示されているが、ナフタレート骨格の導入は高価になるので、安価なテレフタレート骨格を有したポリエステル成分での高融点化が望まれている。 Although the above-mentioned problems are solved, the polyester polycarbonate type elastomer disclosed in these patent documents has a block property that is obtained because the polycarbonate diol elastomer used as a raw material has a low molecular weight. Inferior property (hereinafter, sometimes simply referred to as blockability retention) leads to a problem that the melting point of the polyester polycarbonate type elastomer is lowered. For example, in the case of the joint boot or the wire covering material described above, an automobile engine In applications used in a high temperature environment such as around, lack of heat resistance may be a problem. Patent Documents 4, 7 and 8 disclose that the melting point can be increased by introducing a naphthalate skeleton as a polyester component. However, since introduction of the naphthalate skeleton is expensive, polyester having an inexpensive terephthalate skeleton is disclosed. It is desired to increase the melting point of the components.
 一方、上記特許文献7および8において、ハードセグメントを形成するポリエステル成分とソフトセグメントを形成するポリカーボネートジオール成分とを溶融状態で反応させてブロックポリマーを形成した後に鎖延長剤で高分子量化する製造方法が開示されている。該製造方法はブロックポリマーの分子量を増大させる方法としては有効な方法であるが、上記のブロック性やブロック性保持性は、主としてブロックポリマーを形成する過程の反応の支配を大きく受けるために、該ブロックポリマーを形成した後に鎖延長剤で高分子量化する方法ではブロック性やブロック性保持性を向上させることは困難である。 On the other hand, in Patent Documents 7 and 8, a production method in which a polyester component that forms a hard segment and a polycarbonate diol component that forms a soft segment are reacted in a molten state to form a block polymer, and then the molecular weight is increased with a chain extender Is disclosed. The production method is an effective method for increasing the molecular weight of the block polymer. However, the block property and block property retention are largely influenced by the reaction in the process of forming the block polymer. It is difficult to improve the block property and the block property retention by the method of increasing the molecular weight with a chain extender after forming the block polymer.
 これを解決するために、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルと分子量5000~80000の脂肪族ポリカーボネートジオールとを溶融状態で反応させて製造することが提案されている。
国際公開第2007/072748号パンフレット 特開2001-240663号公報 国際公開第95/27749号パンフレット
In order to solve this problem, it has been proposed that a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol is reacted with an aliphatic polycarbonate diol having a molecular weight of 5000 to 80000 in a molten state. Yes.
International Publication No. 2007/072748 Pamphlet Japanese Patent Laid-Open No. 2001-240663 International Publication No. 95/27749 Pamphlet
 上記問題は解決されるが、これらの特許文献において開示されているポリエステルポリカーボネート型エラストマーは、原料に用いられる分子量5000以上のポリカーボネートは市場では求め難く、また、調達できても高分子量のポリカーボネートは融解温度が高く、粘度も高いため原料としての仕込み時の作業性が極端に悪く、実用に供さない。
 また、高分子量のポリカーボネートジオールとハードセグメントを構成するポリエステルとエステル交換反応を行なう場合も、ポリカーボネートジオールの炭酸エステル結合も並行してエステル交換反応に関与し、各炭酸エステル基のエステル交換反応速度が同一であるためランダムにエステル交換反応が起こり、この結果、形成されるソフトセグメントの分子量の規則性、及びハードセグメントとの順列に起因するブロック性のコントロールが困難であり、高性能の熱可塑性エステルエラストマーを常に安定して得がたく実際に商品化するのに困難を伴う。
Although the above problems can be solved, polyester polycarbonate type elastomers disclosed in these patent documents are difficult to find in the market for polycarbonates having a molecular weight of 5000 or more, which are used as raw materials. Since the temperature is high and the viscosity is high, the workability at the time of preparation as a raw material is extremely bad, and it is not practically used.
In addition, when transesterification is performed with a high molecular weight polycarbonate diol and a polyester constituting a hard segment, the carbonate bond of the polycarbonate diol is also involved in the transesterification reaction in parallel, and the transesterification rate of each carbonate group is increased. Because they are identical, transesterification occurs randomly. As a result, it is difficult to control the regularity of the molecular weight of the formed soft segment and the block property due to permutation with the hard segment, and a high-performance thermoplastic ester. Elastomers are always difficult to obtain stably, and it is difficult to commercialize them.
 本発明は、上記従来の熱可塑性ポリエステルエラストマーの有する問題点に鑑み、優れた耐熱性、耐熱老化性、耐水性(耐水老化性ともいう)、耐光性及び低温特性等を兼備し、かつ成形時にブロック性保持性に優れ、押出成形性やブロー成形時にドローダウンしにくいなど成形性に優れた熱可塑性ポリエステルエラストマーの経済的な製造方法及びその原料であるポリカーボネートオリゴマー組成物を提供することを目的とする。 In view of the problems of the conventional thermoplastic polyester elastomer, the present invention has excellent heat resistance, heat aging resistance, water resistance (also referred to as water aging resistance), light resistance, low temperature characteristics, etc., and at the time of molding. An object of the present invention is to provide an economical method for producing a thermoplastic polyester elastomer having excellent blockability, extrudability and difficulty in drawing down during extrusion molding and blow molding, and a polycarbonate oligomer composition as a raw material thereof. To do.
 すなわち、本発明の熱可塑性ポリエステルエラストマーの製造方法は、請求項1記載の通り、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルからなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマーの製造方法であって、末端基の比率が10%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを用いて、当該ポリカーボネートオリゴマーとポリエステルハードセグメントとのエステル交換反応を行なうことを特徴とする。
 また、請求項2記載の熱可塑性ポリエステルエラストマーの製造方法は、請求項1記載の製造方法において、前記ポリカーボネートオリゴマーとして末端基の比率が15%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを用いることを特徴とする。
 また、請求項3記載の熱可塑性ポリエステルエラストマーの製造方法は、請求項1記載の製造方法において、前記ポリカーボネートオリゴマーの数平均分子量が1000~5000であることを特徴とする。
 また、請求項4記載の熱可塑性ポリエステルエラストマーの製造方法は、請求項2記載の製造方法において、前記ポリカーボネートオリゴマーの数平均分子量が1000~5000であることを特徴とする。
 また、請求項5記載の熱可塑性ポリエステルエラストマーの製造方法は、請求項1乃至4の何れかに記載の製造方法において、前記ハードセグメントを構成するポリエステルの数平均分子量が10000~40000であることを特徴とする。
 また、本発明の原料ポリカーボネートオリゴマー組成物は、請求項6記載の通り、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルからなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマーの製造に用いる原料ポリカーボネートオリゴマー組成物であって、末端基の比率が10%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを含むことを特徴とする。
 また、請求項7記載の原料ポリカーボネートオリゴマー組成物は、請求項6記載の組成物において、前記ポリカーボネートオリゴマーとして末端基の比率が15%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを含むことを特徴とする。
 また、請求項8記載の原料ポリカーボネートオリゴマー組成物は、請求項6又は7記載の組成物において、前記ポリカーボネートオリゴマーの数平均分子量が1000~5000であることを特徴とする。
That is, the method for producing a thermoplastic polyester elastomer according to the present invention comprises a hard segment comprising a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and an aliphatic polycarbonate as claimed in claim 1. A method for producing a thermoplastic polyester elastomer comprising a soft segment comprising a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 10% or more, and the polycarbonate oligomer and A transesterification reaction with a polyester hard segment is performed.
The method for producing a thermoplastic polyester elastomer according to claim 2 is the polycarbonate according to claim 1, wherein the polycarbonate oligomer has a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more. It is characterized by using an oligomer.
The method for producing a thermoplastic polyester elastomer according to claim 3 is characterized in that, in the production method according to claim 1, the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
The method for producing a thermoplastic polyester elastomer according to claim 4 is characterized in that in the production method according to claim 2, the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
The method for producing a thermoplastic polyester elastomer according to claim 5 is the method according to any one of claims 1 to 4, wherein the number average molecular weight of the polyester constituting the hard segment is 10,000 to 40,000. Features.
The raw material polycarbonate oligomer composition of the present invention comprises a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and mainly an aliphatic polycarbonate. A raw material polycarbonate oligomer composition used for producing a thermoplastic polyester elastomer having a soft segment bonded, comprising a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 10% or more. Features.
The raw material polycarbonate oligomer composition according to claim 7 is the composition according to claim 6, wherein the polycarbonate oligomer is a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more. It is characterized by including.
The raw material polycarbonate oligomer composition according to claim 8 is characterized in that, in the composition according to claim 6 or 7, the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
 本発明は、ポリカーボネートセグメントをソフトセグメントとする熱可塑性ポリエステルエラストマーを安定してかつ短時間に低コストで製造することを可能にする。
 本発明によって得られる熱可塑性ポリエステルエラストマー及びその組成物は耐熱性が良好であり、かつ耐熱老化性、耐水性及び低温特性等に優れているというポリエステルポリカーボネート型エラストマーの特徴を維持した上で、用いるポリカーボネートオリゴマーの末端炭酸エステル基と分子内炭酸エステル基の反応速度の差により、短時間に高分子量のポリカーボネートソフトセグメントを導入することを可能にし、熱可塑性ポリエステルエラストマーのブロック性が大幅に改善される。ブロック性が高いことにより高融点が得られ、耐熱性が向上し、硬度、引張強度、弾性率などの機械的性質が向上する。また、ブロック性保持性の改善により、成型加工時におけるブロック性の変動が抑制されるので成型製品の品質の均一性を高めることができる。また、該特性により、リサイクル性が高められるので環境負荷やコスト低減に繋げることができる。本発明で得られる熱可塑性ポリエステルエラストマーは、上記した優れた特性及び利点を有するので、繊維、フイルム、シートをはじめとする各種成形材料に用いることができる。また、弾性糸及びブーツ、ギヤ、チューブ、パッキンなどの成形材料にも適しており、例えば、耐熱老化性、耐水性、低温特性が要求される自動車、家電部品などの用途、具体的には、ジョイントブーツや、電線被覆材などの用途に有用である。特に、自動車のエンジン周りに使用されるジョイントブーツや、電線被覆材などの高度な耐熱性が要求される部品用の材料として好適に用いることができる。
 また、本発明の熱可塑性ポリエステルエラストマーの方法は、複雑な工程を必要とせず、安易な条件で上記特性を有した高品質な熱可塑性ポリエステルエラストマーを経済的に、かつ安定して製造できるという利点を有する。
 さらに、本発明のポリエステルエラストマー用原料のポリカーボネートオリゴマー組成物は、末端基が選択的反応性を有する他に、低粘度でかつ溶融温度が低いという特徴を有する。このため、従来の高分子量ポリカーボネートジオールが、高粘度・高融点のため不可能であった、製造後一旦製品タンクやコンテナー及びドラムカン・石油カン等に充填し、後にポリエステルエラストマー合成の際に加温及び融解して、分割使用することを可能にし、かつ良好な作業性を有する。このため、当該ポリエステルエラストマー用原料のポリカーボネートオリゴマー組成物を他の場所に運搬し、ポリエステルエラストマーを生産することも可能であり、また、ポリエステルエラストマーの製造業者等に、その原料用に、高分子ソフトセグメント形成用ポリカーボネートオリゴマーとして販売することも可能とした。これにより産業の発展に寄与することができる。
The present invention makes it possible to stably produce a thermoplastic polyester elastomer having a polycarbonate segment as a soft segment in a short time and at a low cost.
The thermoplastic polyester elastomer obtained by the present invention and the composition thereof are used after maintaining the characteristics of the polyester polycarbonate type elastomer having good heat resistance and excellent heat aging resistance, water resistance, low temperature characteristics and the like. The difference in the reaction rate between the terminal carbonate group and the intramolecular carbonate group of the polycarbonate oligomer makes it possible to introduce a high-molecular-weight polycarbonate soft segment in a short time and greatly improves the block properties of the thermoplastic polyester elastomer. . High melting point provides a high melting point, improves heat resistance, and improves mechanical properties such as hardness, tensile strength, and elastic modulus. In addition, the improvement of the block property holding property suppresses the fluctuation of the block property during the molding process, so that the uniformity of the quality of the molded product can be enhanced. In addition, recyclability is enhanced by the characteristics, which can lead to environmental load and cost reduction. The thermoplastic polyester elastomer obtained in the present invention has the above-described excellent properties and advantages, and can be used for various molding materials including fibers, films and sheets. It is also suitable for molding materials such as elastic yarns and boots, gears, tubes, packings, etc., for example, applications such as automobiles and home appliance parts that require heat aging resistance, water resistance, low temperature characteristics, specifically, It is useful for applications such as joint boots and wire coating materials. In particular, it can be suitably used as a material for parts that require high heat resistance, such as joint boots used around automobile engines and wire coating materials.
Further, the method of the thermoplastic polyester elastomer of the present invention does not require a complicated process, and is advantageous in that a high-quality thermoplastic polyester elastomer having the above characteristics can be produced economically and stably under easy conditions. Have
Furthermore, the polycarbonate oligomer composition as a raw material for a polyester elastomer of the present invention is characterized by low viscosity and low melting temperature in addition to the selective reactivity of the end groups. For this reason, conventional high molecular weight polycarbonate diols were impossible due to their high viscosity and high melting point. After production, they were once filled into product tanks, containers, drum cans / petroleum cans, etc., and then heated during polyester elastomer synthesis. And can be melted and used separately and has good workability. Therefore, it is possible to produce the polyester elastomer by transporting the polycarbonate oligomer composition of the raw material for the polyester elastomer to another place. It was also possible to sell it as a segment-forming polycarbonate oligomer. This can contribute to industrial development.
 以下、本発明の熱可塑性ポリエステルエラストマーの製造方法及びその原料ポリカーボネートオリゴマー組成物について詳細に説明する。
 本発明の熱可塑性ポリエステルエラストマーの製造において、ハードセグメントのポリエステルを構成する芳香族ジカルボン酸は通常の芳香族ジカルボン酸が広く用いられ、特に限定されないが、主たる芳香族ジカルボン酸としてはテレフタル酸又はナフタレンジカルボン酸であることが望ましい。
Hereafter, the manufacturing method of the thermoplastic polyester elastomer of this invention and its raw material polycarbonate oligomer composition are demonstrated in detail.
In the production of the thermoplastic polyester elastomer of the present invention, the aromatic dicarboxylic acid constituting the hard segment polyester is not particularly limited, and the main aromatic dicarboxylic acid is terephthalic acid or naphthalene. A dicarboxylic acid is desirable.
 また、本発明の熱可塑性ポリエステルエラストマーの製造において、ハードセグメントのポリエステルを構成する脂肪族又は脂環族ジオールは、一般の脂肪族又は脂環族ジオールが広く用いられ、特に限定されないが、主として炭素数2~8のアルキレングリコール類であることが望ましい。具体的にはエチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。1,4-ブタンジオール及び1,4-シクロヘキサンジメタノールが最も好ましい。 Further, in the production of the thermoplastic polyester elastomer of the present invention, the aliphatic or alicyclic diol constituting the hard segment polyester is widely used as a general aliphatic or alicyclic diol, and is not particularly limited. An alkylene glycol having a number of 2 to 8 is desirable. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, and the like. Most preferred are 1,4-butanediol and 1,4-cyclohexanedimethanol.
 上記のハードセグメントのポリエステルを構成する成分としては、ブチレンテレフタレート単位あるいはブチレンナフタレート単位よりなるものが物性、成形性、コストパフォーマンスの点より好ましい。なお、ナフタレート単位の場合は、2,6体が好ましい。 As the component constituting the hard segment polyester, those comprising a butylene terephthalate unit or a butylene naphthalate unit are preferable from the viewpoint of physical properties, moldability and cost performance. In the case of naphthalate units, 2,6 are preferred.
 また、本発明の熱可塑性ポリエステルエラストマーにおけるハードセグメントを構成するポリエステルとして好適な芳香族ポリエステルは、通常のポリエステルの製造法に従って容易に得ることができる。また、かかるポリエステルは、数平均分子量10000~40000を有しているものが望ましい。
 ハードセグメント構成するポリエステルとして数平均分子量10000未満のポリエステルを使用した場合はポリエステルエラストマーが十分なハードセグメント鎖長をもってを構成されることができないため、得られるポリエステルエラストマーは融点が低く十分な引っ張り強度および曲げ弾性率を得られない。
 ハードセグメント構成するポリエステルとして数平均分子量が40000を超えるのポリエステルを使用した場合はポリエステルエラストマーの製造時にソフトセグメント成分であるポリカーボネートオリゴマーとの相溶性が悪く、得らえるポリエステルエラストマーは十分な引っ張り強度を得られない。
Moreover, the aromatic polyester suitable as polyester which comprises the hard segment in the thermoplastic polyester elastomer of this invention can be easily obtained according to the manufacturing method of a normal polyester. Such polyester preferably has a number average molecular weight of 10,000 to 40,000.
When a polyester having a number average molecular weight of less than 10,000 is used as the polyester constituting the hard segment, since the polyester elastomer cannot be constituted with a sufficient hard segment chain length, the resulting polyester elastomer has a low melting point and sufficient tensile strength and Unable to obtain flexural modulus.
When a polyester with a number average molecular weight exceeding 40,000 is used as the polyester constituting the hard segment, the polyester elastomer is poorly compatible with the polycarbonate oligomer that is a soft segment component during the production of the polyester elastomer, and the resulting polyester elastomer has sufficient tensile strength. I can't get it.
 また、本発明の熱可塑性ポリエステルエラストマーにおけるソフトセグメントを形成する脂肪族ポリカーボネートオリゴマーは、脂肪族ポリオールと、ジアルキルカーボネート、ジアリールカーボネート及びアルキレンカーボネートからなる群より選ばれるカーボネートモノマーとを反応させて得られる。該脂肪族ポリオールと該カーボネートモノマーとを含む反応混合物から副生物のアルコール類を除去しながら、ポリカーボネートオリゴマーを生成させる。
 本発明において用いられるカーボネートモノマーは、ジアルキルカーボネート、ジアリールカーボネート及びアルキレンカーボネートからなる群より選ばれる。ジアルキルカーボネートとしてはアルキル基の炭素数が1~12のもの、具体的にはジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等が挙げられる。ジアリールカーボネートとしてはアリール基の炭素数が6~20のもの、具体的には、ジフェニルカーボネート、ジナフチルカーボネート等が挙げられる。アルキレンカーボネートとしては5~7員環からなり、具体的には、エチレンカーボネート、プロピレンカーボネート等が挙げられる。これらのカーボネートモノマーは単独であるいは2種以上の組合せで用いられる。
Moreover, the aliphatic polycarbonate oligomer which forms the soft segment in the thermoplastic polyester elastomer of the present invention is obtained by reacting an aliphatic polyol with a carbonate monomer selected from the group consisting of dialkyl carbonate, diaryl carbonate and alkylene carbonate. A polycarbonate oligomer is formed while removing by-product alcohols from the reaction mixture containing the aliphatic polyol and the carbonate monomer.
The carbonate monomer used in the present invention is selected from the group consisting of dialkyl carbonate, diaryl carbonate, and alkylene carbonate. Examples of the dialkyl carbonate include those having an alkyl group having 1 to 12 carbon atoms, such as dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Examples of the diaryl carbonate include those having an aryl group having 6 to 20 carbon atoms, such as diphenyl carbonate and dinaphthyl carbonate. The alkylene carbonate has a 5- to 7-membered ring, and specific examples include ethylene carbonate and propylene carbonate. These carbonate monomers are used alone or in combination of two or more.
 本発明に用いられる脂肪族ポリオールとしては、主として炭素数2~12の脂肪族ジオールであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチルー1,3-プロパンジオール、3-メチルー1,5-ペンタンジオール、2,4-ジエチルー1,5-ペンタンジオール、1,9-ノナンジオール、2-メチルー1,8-オクタンジオールなどが挙げられる。特に、得られる熱可塑性ポリエステルエラストマーの柔軟性や低温特性の点より炭素数5~12の脂肪族ジオールが好ましい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。 The aliphatic polyol used in the present invention is preferably an aliphatic diol mainly having 2 to 12 carbon atoms. Examples of these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, etc. Can be mentioned. In particular, aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of flexibility and low temperature characteristics of the obtained thermoplastic polyester elastomer. These components may be used alone or in combination of two or more as necessary, based on the case described below.
 上記の脂肪族ポリカーボネートオリゴマーは必ずしもポリカーボネート成分のみから構成されるわけではなく、他のグリコール、ジカルボン酸、エステル化合物やエーテル化合物などを少量共重合したものでもよい。
 上記共重合成分は、実質的に脂肪族ポリカーボネートセグメントの効果を消失させない程度用いることができる。
The above-mentioned aliphatic polycarbonate oligomer is not necessarily composed only of a polycarbonate component, and may be obtained by copolymerizing a small amount of other glycol, dicarboxylic acid, ester compound, ether compound and the like.
The copolymer component can be used to such an extent that the effect of the aliphatic polycarbonate segment is not substantially lost.
 本発明で製造する熱可塑性ポリエステルエラストマーは、発明の効果を消失しない程度に限り、ソフトセグメントとして、例えば、ポリエチレングリコール、ポリオキシテトラメチレングリコールなどのポリアルキレングリコール、ポリカプロラクトン、ポリブチレンアジペートなどのポリエステルなどの共重合成分が導入されていてもよい。 As long as the thermoplastic polyester elastomer produced in the present invention does not lose the effect of the invention, as a soft segment, for example, polyalkylene glycol such as polyethylene glycol and polyoxytetramethylene glycol, polyester such as polycaprolactone and polybutylene adipate Copolymerization components such as may be introduced.
 本発明で製造する熱可塑性ポリエステルエラストマーは、ハードセグメントを構成するポリエステルとソフトセグメントを構成する脂肪族ポリカーボネートオリゴマー及び共重合体成分との質量部比は、一般に、ハードセグメント:ソフトセグメント=30:70~95:5であり、好ましくは40:60~90:10、より好ましくは45:55~87:13、最も好ましくは50:50~85:15の範囲である。 In the thermoplastic polyester elastomer produced in the present invention, the mass part ratio of the polyester constituting the hard segment and the aliphatic polycarbonate oligomer and copolymer component constituting the soft segment is generally hard segment: soft segment = 30: 70. 95: 5, preferably 40:60 to 90:10, more preferably 45:55 to 87:13, and most preferably 50:50 to 85:15.
 本発明で製造する熱可塑性ポリエステルエラストマーは、上記のような芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルからなるハードセグメント及び主として脂肪族ポリカーボネートセグメントからなるソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマーである。ここで、結合されてなるとは、ハードセグメントとソフトセグメントがイソシアネート化合物などの鎖延長剤で結合されるのではなく、ハードセグメントやソフトセグメントを構成する単位が直接エステル結合やカーボネート結合で結合されている状態が好ましい。
 例えば、ハードセグメントを構成するポリエステル、ソフトセグメントを構成するポリカーボネートオリゴマー及び必要であれば各種共重合成分を溶融下、一定時間のエステル交換反応・縮重合及び解重合反応を繰返しながら得ることが好ましい(以下ブロック化反応と称することもある)。
The thermoplastic polyester elastomer produced in the present invention has a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol as described above and a soft segment composed mainly of an aliphatic polycarbonate segment. Is a thermoplastic polyester elastomer. Here, the term “bonded” means that the hard segment and the soft segment are not bonded by a chain extender such as an isocyanate compound, but the units constituting the hard segment and the soft segment are directly bonded by an ester bond or a carbonate bond. The state is preferable.
For example, it is preferable to obtain the polyester constituting the hard segment, the polycarbonate oligomer constituting the soft segment, and if necessary, various copolymerization components while melting and repeating the transesterification / condensation and depolymerization reactions for a certain period of time ( Hereinafter, it may be referred to as a blocking reaction).
 上記、ブロック化反応は、好ましくはハードセグメントを構成するポリエステルの融点ないし融点+30℃の範囲内の温度において行われる。この反応において、系中の活性触媒濃度は、反応の行われる温度に応じて任意に設定される。 The above-mentioned blocking reaction is preferably carried out at a temperature within the range of the melting point of the polyester constituting the hard segment to the melting point + 30 ° C. In this reaction, the concentration of the active catalyst in the system is arbitrarily set according to the temperature at which the reaction is carried out.
 触媒は通常の触媒、例えば、チタニウムテトラブトキシド、シュウ酸チタン酸カリウムなどのチタン化合物、ジブチルスズオキシド、モノヒドロキシブチルスズオキシドなどのスズ化合物を1種又は2種以上用いてもよい。触媒はポリエステルもしくはポリカーボネート中にあらかじめ存在してもよく、その場合は新たに添加する必要はない。さらに、ポリエステルもしくはポリカーボネート中の触媒はあらかじめ任意の方法によって部分的又は実質的に完全に失活させておいてもよい。例えば、触媒としてチタニウムテトラブトキシドを用いている場合、例えば、亜燐酸、燐酸、燐酸トリフェニル、燐酸トリストリエチレングリコール、オルト燐酸、亜燐酸トリフェニル、燐酸トリメチル、亜燐酸トリメチルなどの燐化合物などを添加することによって失活が行われるが、これに限られるわけではない。 The catalyst may be a normal catalyst, for example, titanium compounds such as titanium tetrabutoxide and potassium oxalate titanate, or one or more tin compounds such as dibutyltin oxide and monohydroxybutyltin oxide. The catalyst may be pre-existing in the polyester or polycarbonate, in which case it need not be added anew. Furthermore, the catalyst in the polyester or polycarbonate may be partially or substantially completely deactivated in advance by any method. For example, when titanium tetrabutoxide is used as a catalyst, for example, phosphorous compounds such as phosphorous acid, phosphoric acid, triphenyl phosphate, tristriethylene glycol phosphate, orthophosphoric acid, triphenyl phosphite, trimethyl phosphate, trimethyl phosphite, etc. Although deactivation is performed by adding, it is not necessarily restricted to this.
 上記反応は、反応温度、触媒濃度、反応時間の組み合わせを任意に決定して行なうことができる。すなわち、反応条件は、用いるハードセグメント及びソフトセグメントの種類及び量比、用いる装置の形状、撹拌状況などの種々の要因によってその適正値が変化する。 The above reaction can be carried out by arbitrarily determining the combination of reaction temperature, catalyst concentration and reaction time. That is, the appropriate values of the reaction conditions vary depending on various factors such as the type and amount ratio of the hard segment and the soft segment to be used, the shape of the apparatus to be used, and the stirring condition.
 本発明の熱可塑性ポリエステルエラストマーは、少量に限り三官能以上のポリカルボン酸、ポリオールを含んでもよい。例えば無水トリメリット酸、ベンゾフェノンテトラカルボン酸、トリメチロールプロパン、グリセリンなどを使用できる。 The thermoplastic polyester elastomer of the present invention may contain a tri- or higher functional polycarboxylic acid or polyol only in a small amount. For example, trimellitic anhydride, benzophenone tetracarboxylic acid, trimethylolpropane, glycerin and the like can be used.
 本発明においては、ハードセグメントがポリブチレンテレフタレート単位よりなり、かつ得られる熱可塑性ポリエステルエラストマーの融点が200~225℃であることが好ましい。205~225℃がより好ましい。
 また、本発明においては、ハードセグメントがポリブチレンナフタレート単位よりなり、かつ得られる熱可塑性ポリエステルエラストマーの融点が215~240℃であることが好ましい。220~240℃がより好ましい。
In the present invention, it is preferred that the hard segment is composed of polybutylene terephthalate units, and the thermoplastic polyester elastomer obtained has a melting point of 200 to 225 ° C. 205 to 225 ° C is more preferable.
In the present invention, the hard segment is preferably composed of polybutylene naphthalate units, and the thermoplastic polyester elastomer obtained preferably has a melting point of 215 to 240 ° C. 220 to 240 ° C. is more preferable.
 ハードセグメントがポリブチレンテレフタレート単位やポリブチレンナフタレート単位である場合は、市販されているポリエステルであるポリブチレンテレフタレートやポリブチレンナフタレートを用いることができるので経済性の点で有利である。 When the hard segment is a polybutylene terephthalate unit or a polybutylene naphthalate unit, a commercially available polyester such as polybutylene terephthalate or polybutylene naphthalate can be used, which is advantageous in terms of economy.
 また、本発明の熱可塑性ポリエステルエラストマーは、測定方法の項で記述する方法で評価される熱可塑性ポリエステルエラストマー組成物の耐熱老化テスト後及び耐水老化テスト後の切断時伸び保持率が、それぞれ50%以上及び80%以上であることが好ましい。 Further, the thermoplastic polyester elastomer of the present invention has 50% elongation retention at break after the heat aging test and after the water aging test of the thermoplastic polyester elastomer composition evaluated by the method described in the measurement method section. It is preferable that it is above and 80% or more.
 本発明においては、原料であるポリカーボネートオリゴマーの分子量及び末端基比率を最適化するのが好ましい。すなわち、前述の本発明の熱可塑性ポリエステルエラストマーにおけるハードセグメントを構成するポリエステルと、末端基の比率15%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有する分子量1000~5000の脂肪族ポリカーボネートオリゴマーとを溶融状態で反応させて製造してなることが好ましい。 In the present invention, it is preferable to optimize the molecular weight and the terminal group ratio of the polycarbonate oligomer as a raw material. That is, a polyester constituting a hard segment in the above-described thermoplastic polyester elastomer of the present invention and an aliphatic polycarbonate oligomer having a molecular weight of 1000 to 5000 having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more. It is preferable to produce by reacting in a molten state.
 該ポリカーボネートオリゴマーの末端基に占めるアルキルカーボネート基もしくはアリールカーボネート基の比率は10%以上である必要があり、15%以上が好ましい。
 末端基に占めるアルキルカーボネート基もしくはアリールカーボネート基の比率が10%未満の場合は、該ポリカーボネートオリゴマーの末端OH基との反応速度差によるエステル交換効率向上の効果が出難く、十分なブロック性を保持して良好な物性を有するポリエステルエラストマーが得られない。さらに説明すれば、10%未満の場合は、反応系の均一化が進みすぎて、ポリカーボネートオリゴマー部分とポリエステルハードセグメント部分が海―島構造を取りにくくなり、弾性発現性が低いため、特に破断時伸びが小さくなり、また、ポリエステルハードセグメント部分の分子量が小さくなるため、ハードセグメントとしての必要な凝集力が低下して、エラストマーの耐久性が低下する。尚、末端基に占めるアルキルカーボネート基もしくはアリールカーボネート基の比率が85%を越える場合は、エステル交換が進行しにくくなるため、物性が低下するので、85%以下とするのが好ましい。
The ratio of the alkyl carbonate group or aryl carbonate group in the terminal group of the polycarbonate oligomer needs to be 10% or more, and preferably 15% or more.
When the proportion of alkyl carbonate group or aryl carbonate group in the terminal group is less than 10%, the effect of improving transesterification efficiency due to the difference in reaction rate with the terminal OH group of the polycarbonate oligomer is difficult to be obtained, and sufficient blocking property is maintained. As a result, a polyester elastomer having good physical properties cannot be obtained. To explain further, when the content is less than 10%, the reaction system becomes too uniform, making it difficult for the polycarbonate oligomer part and the polyester hard segment part to form a sea-island structure, resulting in low elasticity. Since the elongation is reduced and the molecular weight of the polyester hard segment portion is reduced, the cohesive force required as the hard segment is lowered, and the durability of the elastomer is lowered. When the proportion of the alkyl carbonate group or aryl carbonate group in the terminal group exceeds 85%, the transesterification is difficult to proceed, and the physical properties deteriorate. Therefore, it is preferably 85% or less.
 脂肪族ポリカーボネートオリゴマーの分子量が大きい程、ブロック性保持性やブロック性が高くなる。該ポリカーボネートオリゴマーの分子量は数平均分子量が1000未満の場合は、ポリカーボネートオリゴマー部分とポリエステルハードセグメント部分の海―島構造が不明確となって弾性が小さくなり、また、ソフトセグメントとして導入されるポリカーボネート鎖長が十分でなく十分なブロック性を保持して良好な物性を有するポリエステルエラストマーが得られない。該ポリカーボネートオリゴマーの分子量は上記と同理由で、数平均分子量で2000以上がさらに好ましい。該ポリカーボネートオリゴマーの分子量の上限は、取り扱い時の粘度の関係及びオリゴマーの生産効率から数平均分子量5000以下が好ましい。脂肪族ポリカーボネートオリゴマーの分子量が大きい程、ブロック性が高いポリエステルエラストマーを得る点で有利であるが、分子量が大きい程ポリカーボネートオリゴマーの融点が高く、かつ分子量が大きくなるに従って急激に融解時の粘度が高くなり、数平均分子量が5000を越えると、取り出し、充填、仕込み等の取り扱いが困難となる。また、強度も小さくなる傾向にある。尚、数平均分子量が10000からさらに高いポリエステルエラストマーを使用しても、得られるポリエステルエラストマーの物性に有意さが出難い。 The larger the molecular weight of the aliphatic polycarbonate oligomer, the higher the block property retention and block property. When the number average molecular weight of the polycarbonate oligomer is less than 1000, the sea-island structure of the polycarbonate oligomer portion and the polyester hard segment portion is unclear, resulting in low elasticity, and the polycarbonate chain introduced as a soft segment. A polyester elastomer having a sufficient physical property with insufficient length cannot be obtained. The molecular weight of the polycarbonate oligomer is more preferably 2000 or more in terms of number average molecular weight for the same reason as above. The upper limit of the molecular weight of the polycarbonate oligomer is preferably a number average molecular weight of 5000 or less in view of the viscosity during handling and the production efficiency of the oligomer. The higher the molecular weight of the aliphatic polycarbonate oligomer, the more advantageous in terms of obtaining a polyester elastomer having a higher block property. However, the higher the molecular weight, the higher the melting point of the polycarbonate oligomer, and the higher the molecular weight, the higher the viscosity at the time of melting. Thus, when the number average molecular weight exceeds 5,000, handling such as taking out, filling and charging becomes difficult. Also, the strength tends to decrease. Even if a polyester elastomer having a number average molecular weight of 10,000 to higher is used, the physical properties of the resulting polyester elastomer are hardly significant.
 該ポリカーボネートオリゴマーの末端基に占めるアルキルカーボネート基もしくはアリールカーボネート基の末端基の比率に関わらず遊離のアルキルカーボネートモノマーもしくはアリールカーボネートモノマーを含有することは可能である。遊離のアルキルカーボネートモノマーもしくはアリールカーボネートモノマーの含有量は該ポリカーボネートオリゴマーに対して5%以下が好ましく、さらに好ましいのは1%以下である。
 遊離のアルキルカーボネートモノマーもしくはアリールカーボネートモノマーの含有量が10%以上になるとソフトセグメントとして導入されるカーボネート鎖の鎖長の制御が困難になると同時に、ポリエステルエラストマーの製造過程においてモノマーが反応機外に飛散し実効をなさない場合がある。
It is possible to contain a free alkyl carbonate monomer or aryl carbonate monomer regardless of the ratio of the end group of the alkyl carbonate group or aryl carbonate group to the end group of the polycarbonate oligomer. The content of the free alkyl carbonate monomer or aryl carbonate monomer is preferably 5% or less, more preferably 1% or less, based on the polycarbonate oligomer.
When the content of free alkyl carbonate monomer or aryl carbonate monomer exceeds 10%, it becomes difficult to control the chain length of the carbonate chain introduced as a soft segment, and at the same time, the monomer is scattered outside the reactor during the production process of the polyester elastomer. However, it may not be effective.
 上記のポリカーボネートオリゴマーを合成する方法は限定されない。
 例えば、上記の高分子量脂肪族ポリカーボネートオリゴマーを製造する方法としては、前記した脂肪族ジオールと上記カーボネート、すなわち、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジメチルカーボネート、ジフェニルカーボネートなどとを反応させることで得ることができる。
The method for synthesizing the polycarbonate oligomer is not limited.
For example, as a method for producing the above high molecular weight aliphatic polycarbonate oligomer, the above aliphatic diol and the above carbonate, that is, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dimethyl carbonate, diphenyl carbonate, etc. It can obtain by making it react.
 また、脂肪族ポリカーボネートオリゴマーを製造する他の方法としては、脂肪族ポリカーボネートジオールとジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジメチルカーボネート、ジフェニルカーボネートなどとを反応させることによっても可能である。 As another method for producing an aliphatic polycarbonate oligomer, it is possible to react an aliphatic polycarbonate diol with dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dimethyl carbonate, diphenyl carbonate, etc. It is.
 例えば、市販されている1,6-ヘキサンジオールからなるポリカーボネートジオール(分子量2000)とジエチルカーボネートとを常圧下~加圧下において仕込み、加熱し、反応により生じるエタノールを除去しながら、溶融状態で反応を進行させることで得ることができる。エタノールを除去する方法は限定されない。150℃以上の反応温度で大方のエタノールは除去される。さらに、真空ポンプやエジェクターなどで減圧にする方法や不活性ガスを流通させる方法なども挙げられる。
 上記反応におけるポリカーボネートジオールとジエチルカーボネートとの仕込モル比[ジエチルカーボネート/1,6-ヘキサンジオールからなるポリカーボネートジオール(分子量2000)]は1/100~50/100の範囲内にすることが好ましく、2/100~20/100の範囲内にすることがより好ましい。この範囲外であると、所望の分子量を確保することが困難である。上記原料の仕込み時の反応缶内温度は100~130℃が好ましい。原料を仕込んだ後に180~220℃に昇温させて30~120分かけて反応を進める。反応缶内の圧力を常圧から、徐々に減圧を行い、530Pa以下として、反応で脱離したエタノールを除去するのが好ましい。
For example, a commercially available polycarbonate diol composed of 1,6-hexanediol (molecular weight 2000) and diethyl carbonate are charged under normal pressure to pressure and heated to remove ethanol generated by the reaction, while reacting in a molten state. It can be obtained by making it progress. The method for removing ethanol is not limited. Most ethanol is removed at reaction temperatures above 150 ° C. Further examples include a method of reducing the pressure with a vacuum pump or an ejector, a method of circulating an inert gas, and the like.
The charge molar ratio of polycarbonate diol to diethyl carbonate in the above reaction [polycarbonate diol composed of diethyl carbonate / 1,6-hexanediol (molecular weight 2000)] is preferably in the range of 1/100 to 50/100. More preferably, it is in the range of / 100 to 20/100. Outside this range, it is difficult to ensure the desired molecular weight. The temperature in the reaction vessel when the above raw materials are charged is preferably 100 to 130 ° C. After charging the raw materials, the temperature is raised to 180-220 ° C and the reaction is allowed to proceed for 30-120 minutes. It is preferable to gradually reduce the pressure in the reaction can from normal pressure to 530 Pa or less to remove ethanol desorbed by the reaction.
 上記の市販されているポリカーボネートジオールを用いる方法は、嘱望される任意の末端基比率を有する脂肪族ポリカーボネートオリゴマーを容易に製造することができ、かつ該製造は本発明の熱可塑性ポリエステルエラストマーの製造装置を用いて熱可塑性ポリエステルエラストマーの製造に先立ってインプラントで行うこともできる。 The above-described method using a commercially available polycarbonate diol can easily produce an aliphatic polycarbonate oligomer having an arbitrary desired end group ratio, and the production is an apparatus for producing the thermoplastic polyester elastomer of the present invention. Can also be performed on the implant prior to the production of the thermoplastic polyester elastomer.
 本発明の熱可塑性ポリエステルエラストマーの製造方法では、目的に応じて種々の添加剤を配合して組成物を得ることができる。添加剤としては、公知のヒンダードフェノール系、硫黄系、燐系、アミン系の酸化防止剤、ヒンダードアミン系、トリアゾール系、ベンゾフェノン系、ベンゾェート系、ニッケル系、サリチル系などの光安定剤、帯電防止剤、滑剤、過酸化物などの分子調整剤、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物などの反応基を有する化合物、金属不活性剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、有機及び無機系の顔料などを添加することができる。 In the method for producing a thermoplastic polyester elastomer of the present invention, a composition can be obtained by blending various additives depending on the purpose. Additives include known hindered phenol-based, sulfur-based, phosphorus-based, amine-based antioxidants, hindered amine-based, triazole-based, benzophenone-based, benzoate-based, nickel-based, salicyl-based light stabilizers, antistatic agents, etc. Agents, lubricants, molecular modifiers such as peroxides, epoxy compounds, isocyanate compounds, compounds having reactive groups such as carbodiimide compounds, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, control agents Acid agents, antibacterial agents, fluorescent brighteners, fillers, flame retardants, flame retardant aids, organic and inorganic pigments, and the like can be added.
 本発明の熱可塑性ポリエステルエラストマー組成物は、溶融物から通常の成形技術、例えば、射出成形、フラットフイルム押出、押出ブロー成形、共押出により成形される。 The thermoplastic polyester elastomer composition of the present invention is formed from a melt by ordinary molding techniques such as injection molding, flat film extrusion, extrusion blow molding, and coextrusion.
 本発明においては、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルと上記脂肪族ポリカーボネートオリゴマーを溶融状態で反応させて製造することが好ましい。また、前記反応は複数段階に分けて行っても構わない。該要件を満たせば、製造条件等は限定されないが、例えば、以下の方法で実施するのが好ましい。 In the present invention, it is preferable to produce by reacting a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol and the aliphatic polycarbonate oligomer in a molten state. The reaction may be carried out in a plurality of stages. If the requirements are satisfied, the production conditions and the like are not limited, but for example, the following method is preferable.
 以下に実施例及び比較例を用いて、本発明を具体的に説明するがそれらに限定されるものではない。なお、本明細書において各測定は、以下の方法に従って行った。
 (1)融点:DSCを用いて室温から20℃/分で昇温し測定した。
 (2)切断時引張強度:JIS K6251に準拠して測定した。
 (3)曲げ弾性率:ASTM D790に基づいて測定した。
 (4)耐熱老化性:ギヤー式熱風乾燥機を用いて150℃、125日間処理を行い、切断時伸び保持率をASTM D638に基づいて測定した。
 (5)耐水性:100℃、2週間処理後の切断時伸び保持率をASTM D638に基づいて測定した。
 (6)脂肪族ポリカーボネートオリゴマーの末端OH基及び末端エチル基
 水酸基価(mg-KOH/g)はアセチル価法で分析した。また、分子末端のエチル基およびアリル基(単位:mg-KOH/g)は、1H-NMRで分析したエチル基およびアリル基の量(単位:mmol/g)をKOH質量換算したものである。(特開2007-154070号公報参照)
 (7)脂肪族ポリカーボネートオリゴマーの数平均分子量
 GPC測定装置(東ソー製 HLC8820)を用いて下記条件で測定した。
 カラム  :TSKgel G4000HXL,1本
         同    G3000HXL,1本
         同    G2000HXL,2本
 溶離液  :THF
 流 量  :1ml/分
 測定温度 :40℃
 検出器  :RI
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but is not limited thereto. In this specification, each measurement was performed according to the following method.
(1) Melting point: Measured by increasing the temperature from room temperature to 20 ° C./min using DSC.
(2) Tensile strength at break: measured in accordance with JIS K6251.
(3) Flexural modulus: measured based on ASTM D790.
(4) Heat aging resistance: Treated at 150 ° C. for 125 days using a gear type hot air dryer, and measured elongation retention at break based on ASTM D638.
(5) Water resistance: The elongation retention at break after treatment at 100 ° C. for 2 weeks was measured based on ASTM D638.
(6) Terminal OH group and terminal ethyl group of aliphatic polycarbonate oligomer The hydroxyl value (mg-KOH / g) was analyzed by the acetyl value method. The molecular end ethyl group and allyl group (unit: mg-KOH / g) are the amounts of ethyl group and allyl group (unit: mmol / g) analyzed by 1 H-NMR converted to KOH mass. . (See JP 2007-154070)
(7) Number average molecular weight of aliphatic polycarbonate oligomer It measured on the following conditions using the GPC measuring apparatus (HLC8820 by Tosoh Corp.).
Column: TSKgel G4000HXL, 1 unit G3000HXL, 1 unit G2000HXL, 2 Eluent: THF
Flow rate: 1 ml / min Measurement temperature: 40 ° C
Detector: RI
 実施例1
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー1)の製造方法:
 攪拌機・温度計・精留塔を備えた反応機に1,6-ヘキサンジオール824質量部、ジエチルカーボネート800質量部及び酢酸鉛0.3質量部を仕込み130℃に昇温しその後攪拌をしながら徐々に昇温し24時間で190℃とした。この間、精留塔の温度を80~90℃に保ちながら副生するエタノールを除去した。その後温度を190℃に保ちながら反応機内を徐々に減圧し4時間で1300Paとした。内容物を冷却しポリカーボネートオリゴマー1を得た。
 得られたポリカーボネートオリゴマー1は末端エチル基10.9mg-KOH/g,末端OH基24.9mg-KOH/g(末端基に占める末端エチルカボネート基の比率は30%)であり数平均分子量は3100であり、75℃の動粘度は8400mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量3100を有する(ポリカーボネートオリゴマー1) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー1(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー1の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー1はいずれの特性も良好であり高品質であった。
Example 1
[Production of aliphatic polycarbonate oligomer]
Production method of aliphatic polycarbonate oligomer (polycarbonate oligomer 1):
A reactor equipped with a stirrer, thermometer, and rectifying column was charged with 824 parts by weight of 1,6-hexanediol, 800 parts by weight of diethyl carbonate and 0.3 parts by weight of lead acetate, and the temperature was raised to 130 ° C. The temperature was raised to 190 ° C. for 24 hours. During this time, by-product ethanol was removed while maintaining the temperature of the rectification column at 80 to 90 ° C. Thereafter, while maintaining the temperature at 190 ° C., the pressure in the reactor was gradually reduced to 1300 Pa in 4 hours. The contents were cooled to obtain polycarbonate oligomer 1.
The obtained polycarbonate oligomer 1 has a terminal ethyl group of 10.9 mg-KOH / g, a terminal OH group of 24.9 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 30%), and the number average molecular weight is 3100. The kinematic viscosity at 75 ° C. was 8400 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 1) having a number average molecular weight of 3100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 1 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer 1 were measured, and the results are shown in Table 1. The polymer 1 obtained in this example had good properties and high quality.
 実施例2
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー2)の製造方法:
 1,6-ヘキサンジオール100質量部とジエチルカーボネート4.0質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。4時間後、内容物を冷却しポリカーボネートオリゴマー2を得た。
 得られたポリカーボネートオリゴマー2は末端エチル基10mg-KOH/g,末端OH基39mg-KOH/g(末端基に占める末端エチルカボネート基の比率は20%)であり数平均分子量は2300であり、75℃の動粘度は2700mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量2300を有する(ポリカーボネートオリゴマー2) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー2(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー2の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー2はいずれの特性も良好であり高品質であった。
Example 2
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 2):
100 parts by mass of 1,6-hexanediol and 4.0 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 4 hours, the contents were cooled to obtain polycarbonate oligomer 2.
The obtained polycarbonate oligomer 2 has a terminal ethyl group of 10 mg-KOH / g, a terminal OH group of 39 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 20%), and the number average molecular weight is 2300. The kinematic viscosity at 75 ° C. was 2700 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 2) having a number average molecular weight of 2300 prepared by the above method were stirred at 230 to 245 ° C. under 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 2 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer 2 were measured, and the results are shown in Table 1. The polymer 2 obtained in this example had good properties and high quality.
 実施例3
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー3)の製造方法:
 1,6-ヘキサンジオールと3-メチル-1,5-ペンタンジオールとの共重合体(非結晶性)100質量部とジエチルカーボネート8.0質量部とをそれぞれ仕込み、温度205℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー3を得た。
 得られたポリカーボネートオリゴマー3は末端エチル基38mg-KOH/g,末端OH基15mg-KOH/g(末端基に占める末端エチルカボネート基の比率は72%)であり数平均分子量は2100であり、75℃の動粘度は2900mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量2100を有する(ポリカーボネートオリゴマー3) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー3(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー3の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー3はいずれの特性も良好であり高品質であった。
Example 3
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 3):
100 parts by mass of a copolymer (non-crystalline) of 1,6-hexanediol and 3-methyl-1,5-pentanediol and 8.0 parts by mass of diethyl carbonate were charged and reacted at a temperature of 205 ° C. and 1300 Pa. . After 2 hours, the contents were cooled to obtain polycarbonate oligomer 3.
The obtained polycarbonate oligomer 3 has a terminal ethyl group of 38 mg-KOH / g, a terminal OH group of 15 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 72%), and the number average molecular weight is 2100. The kinematic viscosity at 75 ° C. was 2900 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 3) having a number average molecular weight of 2100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 3 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer 3 were measured, and the results are shown in Table 1. The polymer 3 obtained in this example had good properties and high quality.
 実施例4
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 1,6-ヘキサンジオールと1,5-ペンタンジオールとの共重合体(非結晶性)100質量部とジエチルカーボネート8.0質量部とをそれぞれ仕込み、温度205℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー4を得た。
 得られたポリカーボネートオリゴマー4は末端エチル基35mg-KOH/g,末端OH基16mg-KOH/g(末端基に占める末端エチルカボネート基の比率は69%)であり数平均分子量は2200であり、75℃の動粘度は3500mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 上記反応機に内在するポリカーボネートオリゴマー100質量部に、数平均分子量30000を有するポリブチレンテレフタレート(PBT)230質量部を追加し(PBT/ポリカーボネートオリゴマーの質量比=100/43)、230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー4(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー4の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー4はいずれの特性も良好であり高品質であった。
Example 4
[Production of aliphatic polycarbonate oligomer]
100 parts by mass of a copolymer (non-crystalline) of 1,6-hexanediol and 1,5-pentanediol and 8.0 parts by mass of diethyl carbonate were respectively charged and reacted at a temperature of 205 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 4.
The obtained polycarbonate oligomer 4 has a terminal ethyl group of 35 mg-KOH / g, a terminal OH group of 16 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 69%), and the number average molecular weight is 2200. The kinematic viscosity at 75 ° C. was 3500 mm 2 / s.
[Production of thermoplastic polyester elastomer]
230 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 was added to 100 parts by mass of the polycarbonate oligomer inherent in the reactor (mass ratio of PBT / polycarbonate oligomer = 100/43), 230 to 245 ° C., The mixture was stirred for 1 hour under 130 Pa, and it was confirmed that the resin became transparent. The contents were taken out and cooled to obtain polymer 4 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer 4 were measured, and the results are shown in Table 1. The polymer 4 obtained in this example had good properties and high quality.
 実施例5
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー5)の製造方法:
 1,6-ヘキサンジオールタイプ)100質量部とジエチルカーボネート4質量部とをそれぞれ仕込み、温度205℃、130Paで2時間反応させた。内容物は末端エチル5mg-KOH/g,基末端OH基22mg-KOH/gであり数平均分子量は4050であった。さらにジエチルカーボネート2質量部を仕込み温度205℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー5を得た。
 得られたポリカーボネートオリゴマー6は末端エチル基5mg-KOH/g,末端OH基22mg-KOH/g(末端基に占める末端エチルカボネート基の比率は19%)であり数平均分子量は4200であり、75℃の動粘度は18000mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量4200を有する(ポリカーボネートオリゴマー5) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー5(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー5の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー5はいずれの特性も良好であり高品質であった。
Example 5
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 5):
(1,6-hexanediol type) 100 parts by mass and 4 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 205 ° C. and 130 Pa for 2 hours. The contents were 5 mg-KOH / g terminal ethyl, 22 mg-KOH / g terminal OH group, and the number average molecular weight was 4050. Furthermore, 2 parts by mass of diethyl carbonate was charged and reacted at a temperature of 205 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 5.
The obtained polycarbonate oligomer 6 has a terminal ethyl group of 5 mg-KOH / g, a terminal OH group of 22 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 19%), and the number average molecular weight is 4200. The kinematic viscosity at 75 ° C. was 18000 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 5) having a number average molecular weight of 4200 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 5 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer 5 were measured, and the results are shown in Table 1. The polymer 5 obtained in this example had good properties and high quality.
 実施例6
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー6)の製造方法:
 1,6-ヘキサンジオール100質量部とジエチルカーボネート2.6質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー6を得た。
 得られたポリカーボネートオリゴマー6は末端エチル基7mg-KOH/g,末端OH基29mg-KOH/g(末端基に占める末端エチルカボネート基の比率は19%)であり数平均分子量は3100であり、75℃の動粘度は7500mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量3100を有する(ポリカーボネートオリゴマー6) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー6(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマーの各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー1はいずれの特性も良好であり高品質であった。
Example 6
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 6):
100 parts by mass of 1,6-hexanediol and 2.6 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 6.
The obtained polycarbonate oligomer 6 has a terminal ethyl group of 7 mg-KOH / g, a terminal OH group of 29 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 19%), and the number average molecular weight is 3100. The kinematic viscosity at 75 ° C. was 7500 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by mass of (polycarbonate oligomer 6) having a number average molecular weight of 3100 prepared by the above method were stirred at 230 to 245 ° C. under 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 6 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer were measured, and the results are shown in Table 1. The polymer 1 obtained in this example had good properties and high quality.
 実施例7
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンナフタレート(PBN)100質量部と上記方法で調製した数平均分子量3100(末端基に占める末端エチルカボネート基の比率は19%)を有する(ポリカーボネートオリゴマー6)43質量部とを245~260℃、130Pa下で1時間撹拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー7(熱可塑性ポリエステルエラストマー)を得た。得られたポリマー7の各物性を測定し、その結果を表1に示すが、本実施例で得られたポリマー7は実施例6で得られた熱可塑性ポリエステルエラストマーと同等のブロック性及びブロック性保持性を有しており、かつ実施例6で得られた熱可塑性ポリエステルエラストマーよりも融点が高く、さらに高品質であった。
Example 7
[Production of thermoplastic polyester elastomer]
(Polycarbonate oligomer 6) 43 having 100 parts by mass of polybutylene naphthalate (PBN) having a number average molecular weight of 30000 and a number average molecular weight of 3100 prepared by the above method (the ratio of terminal ethyl carbonate groups to terminal groups is 19%) The mixture was stirred at 245 to 260 ° C. and 130 Pa for 1 hour to confirm that the resin became transparent, and the contents were taken out and cooled to obtain polymer 7 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 7 were measured, and the results are shown in Table 1. The polymer 7 obtained in this example has the same block properties and block properties as the thermoplastic polyester elastomer obtained in example 6. It had retention and had a higher melting point and higher quality than the thermoplastic polyester elastomer obtained in Example 6.
 実施例8
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー8)の製造方法:
 1,6-ヘキサンジオール100質量部とジエチルカーボネート5質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー8を得た。
 得られたポリカーボネートオリゴマー8は末端エチル基7mg-KOH/g,末端OH基12mg-KOH/g(末端基に占める末端エチルカボネート基の比率は37%)であり数平均分子量は5900であり、75℃の動粘度は52000mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量5900を有する(ポリカーボネートオリゴマー8) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー8(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマーの各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー8はいずれの特性も良好であり高品質であった。但し、本実施例の合成作業において、数平均分子量5000を越え、数平均分子量5900を有するポリカーボネートジオールの融解温度が高くかつ高粘度であるため融解および反応機への仕込み作業に大変な困難を伴った。
Example 8
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 8):
100 parts by mass of 1,6-hexanediol and 5 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 8.
The obtained polycarbonate oligomer 8 has a terminal ethyl group of 7 mg-KOH / g, a terminal OH group of 12 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 37%), and the number average molecular weight is 5900, The kinematic viscosity at 75 ° C. was 52000 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by mass of (polycarbonate oligomer 8) having a number average molecular weight of 5900 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 8 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer were measured, and the results are shown in Table 1. The polymer 8 obtained in this example had good properties and high quality. However, in the synthesis work of this example, the melting temperature of the polycarbonate diol having a number average molecular weight of more than 5000 and the number average molecular weight of 5900 is high and the viscosity is high, so the melting and charging work into the reactor is very difficult. It was.
 実施例9
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー9)の製造方法:
 1,6-ヘキサンジオール100質量部とジエチルカーボネート6質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー9を得た。
 得られたポリカーボネートオリゴマー9は末端エチル基4mg-KOH/g,末端OH基32mg-KOH/g(末端基に占める末端エチルカボネート基の比率は11%)であり数平均分子量は3100であり、75℃の動粘度は7000mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量3100を有する(ポリカーボネートオリゴマー9) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー9(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー9の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー9はいずれの特性も良好であり高品質であった。但し、ポリカーボネートオリゴマー9の末端基の比率が11%であるため、末端基の比率が15%以上のポリカーボネートオリゴマーを用いる場合に比べ、若干物性が劣るものであった。
Example 9
[Production of aliphatic polycarbonate oligomer]
Production method of aliphatic polycarbonate oligomer (polycarbonate oligomer 9):
100 parts by mass of 1,6-hexanediol and 6 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 9.
The obtained polycarbonate oligomer 9 has a terminal ethyl group of 4 mg-KOH / g, a terminal OH group of 32 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 11%), and the number average molecular weight is 3100. The kinematic viscosity at 75 ° C. was 7000 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 9) having a number average molecular weight of 3100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 9 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer 9 were measured, and the results are shown in Table 1. The polymer 9 obtained in this example had good properties and high quality. However, since the terminal group ratio of the polycarbonate oligomer 9 was 11%, the physical properties were slightly inferior compared with the case where the polycarbonate oligomer having a terminal group ratio of 15% or more was used.
 実施例10
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー10)の製造方法:
 1,6-ヘキサンジオール100質量部とジエチルカーボネート25質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。4時間後、内容物を冷却しポリカーボネートオリゴマー10を得た。
 得られたポリカーボネートオリゴマー10は末端エチル基40mg-KOH/g,末端OH基160mg-KOH/g(末端基に占める末端エチルカボネート基の比率は20%)であり数平均分子量は600であり、75℃の動粘度は10mm2/s以下であった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量600を有する(ポリカーボネートオリゴマー10) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー10(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー10の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー10はいずれの特性も良好であり高品質であった。但し、ポリマー10の数平均分子量が1000未満と小さいため、海-島構造が不明瞭で弾性が小さく伸びがほとんどないものであった。
Example 10
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 10):
100 parts by mass of 1,6-hexanediol and 25 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 4 hours, the contents were cooled to obtain polycarbonate oligomer 10.
The obtained polycarbonate oligomer 10 has a terminal ethyl group of 40 mg-KOH / g, a terminal OH group of 160 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 20%), and the number average molecular weight is 600. The kinematic viscosity at 75 ° C. was 10 mm 2 / s or less.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 10) having a number average molecular weight of 600 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 10 (thermoplastic polyester elastomer).
Each physical property of the obtained polymer 10 was measured, and the result is shown in Table 1. The polymer 10 obtained in this example had good properties and high quality. However, since the number average molecular weight of the polymer 10 was as small as less than 1000, the sea-island structure was unclear, the elasticity was small, and there was almost no elongation.
 実施例11
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー11)の製造方法:
 1,6-ヘキサンジオール100質量部とジエチルカーボネート12質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。4時間後、内容物を冷却しポリカーボネートオリゴマー11を得た。
 得られたポリカーボネートオリゴマー11は末端エチル基48mg-KOH/g,末端OH基5mg-KOH/g(末端基に占める末端エチルカボネート基の比率は91%)であり数平均分子量は2100であり、75℃の動粘度は2900mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と上記方法で調製した数平均分子量2100を有する(ポリカーボネートオリゴマー11) 45質量部とを230~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー11(熱可塑性ポリエステルエラストマー)を得た。
 得られたポリマー11の各物性を測定し、その結果を表1に示す。本実施例で得られたポリマー1はいずれの特性も良好であり高品質であった。但し、ポリカーボネートオリゴマー11の末端基の比率が92%であるため、末端基の比率が85%以下のポリカーボネートオリゴマーに比べ、若干物性が劣るものであった。
Example 11
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 11):
100 parts by mass of 1,6-hexanediol and 12 parts by mass of diethyl carbonate were charged, respectively, and reacted at a temperature of 190 ° C. and 1300 Pa. After 4 hours, the contents were cooled to obtain polycarbonate oligomer 11.
The obtained polycarbonate oligomer 11 has a terminal ethyl group of 48 mg-KOH / g, a terminal OH group of 5 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 91%), and the number average molecular weight is 2100. The kinematic viscosity at 75 ° C. was 2900 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 45 parts by weight of (polycarbonate oligomer 11) having a number average molecular weight of 2100 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1 hour, After confirming that the resin became transparent, the contents were taken out and cooled to obtain polymer 11 (thermoplastic polyester elastomer).
The physical properties of the obtained polymer 11 were measured, and the results are shown in Table 1. The polymer 1 obtained in this example had good properties and high quality. However, since the terminal group ratio of the polycarbonate oligomer 11 was 92%, the physical properties were slightly inferior to those of the polycarbonate oligomer having a terminal group ratio of 85% or less.
 比較例1
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と数平均分子量2000を有する1,6-ヘキサンジオール(末端基に占める末端エチルカボネート基の比率0%)43質量部とを230~245℃、130Pa下で10分撹拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー21(熱可塑性ポリエステルエラストマー)を得た。得られたポリマーの各物性を測定し、その結果を表2に示す。本比較例で得られたポリマー21は、耐熱老化性が劣っており低品質であった。また、数平均分子量が低いために、曲げ弾性率を測定できなかった。
Comparative Example 1
[Production of thermoplastic polyester elastomer]
230 parts by mass of 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by mass of 1,6-hexanediol having a number average molecular weight of 2000 (the ratio of terminal ethyl carbonate groups to terminal groups is 0%) The mixture was stirred at 245 ° C. and 130 Pa for 10 minutes to confirm that the resin became transparent. The contents were taken out and cooled to obtain polymer 21 (thermoplastic polyester elastomer). The physical properties of the obtained polymer were measured, and the results are shown in Table 2. The polymer 21 obtained in this comparative example was poor in heat aging resistance and low quality. Moreover, since the number average molecular weight was low, the bending elastic modulus could not be measured.
 比較例2
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と数平均分子量30000を有する1,6-ヘキサンジオール(末端基に占める末端エチルカボネート基の比率は0%)43質量部とを230~245℃、130Pa下で10分撹拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー22(熱可塑性ポリエステルエラストマー)を得た。得られたポリマーの各物性を測定し、その結果を表1に示す。本比較例で得られたポリマー22は、耐熱老化性が劣っており低品質であった。また、分子量が低いために、曲げ弾性率を測定できなかった。
Comparative Example 2
[Production of thermoplastic polyester elastomer]
230 parts by weight of 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by weight of 1,6-hexanediol having a number average molecular weight of 30000 (the ratio of terminal ethyl carbonate groups in the terminal groups is 0%) The mixture was stirred at ˜245 ° C. and 130 Pa for 10 minutes to confirm that the resin became transparent, and the contents were taken out and cooled to obtain polymer 22 (thermoplastic polyester elastomer). The physical properties of the obtained polymer were measured, and the results are shown in Table 1. The polymer 22 obtained in this comparative example was poor in heat aging resistance and low quality. Moreover, since the molecular weight was low, the flexural modulus could not be measured.
 比較例3
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と数平均分子量5000を有する1,6-ヘキサンジオール(末端基に占める末端エチルカボネート基の比率は0%)43質量部とを230~245℃、130Pa下で10分撹拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー23(熱可塑性ポリエステルエラストマー)を得た。得られたポリマー23の各物性を測定し、その結果を表2に示す。本比較例で得られたポリマー23は、耐熱老化性が劣っており低品質であった。また、本比較例の合成作業において、数平均分子量5000を越え、数平均分子量5099を有するポリカーボネートジオールの融解温度が高くかつ高粘度であるため融解および反応機への仕込み作業に大変な困難を伴った。
Comparative Example 3
[Production of thermoplastic polyester elastomer]
230 parts by mass of 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 1,6 hexanediol having a number average molecular weight of 5000 (the ratio of terminal ethyl carbonate groups to terminal groups is 0%) The mixture was stirred at ˜245 ° C. and 130 Pa for 10 minutes to confirm that the resin became transparent, and the contents were taken out and cooled to obtain polymer 23 (thermoplastic polyester elastomer). Each physical property of the obtained polymer 23 was measured, and the result is shown in Table 2. The polymer 23 obtained in this comparative example was inferior in heat aging resistance and low in quality. In addition, in the synthesis work of this comparative example, the melting temperature of the polycarbonate diol having a number average molecular weight of over 5000 and the number average molecular weight of 5099 is high and the viscosity is high. It was.
 比較例4
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー24)の製造方法:
 1,6-ヘキサンジオール100質量部とジエチルカーボネート0.6質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー24を得た。
 得られたポリカーボネートオリゴマーは末端エチル基3mg-KOH/g,末端OH基53mg-KOH/g(末端基に占める末端エチルカボネート基の比率は5%)であり数平均分子量は2004であり、75℃の動粘度は2050mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 分数平均子量30000を有するポリブチレンテレフタレート(PBT)100質量部とポリカーボネートジオール24(数平均分子量は2004)45質量部とを230~245℃、130Pa下で10分撹拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー24(熱可塑性ポリエステルエラストマー)を得た。得られたポリマー24の各物性を測定し、その結果を表1に示す。本比較例で得られたポリマー24は、耐熱老化性が劣っており低品質であった。また、分子量が低いために、曲げ弾性率を測定できなかった。
Comparative Example 4
[Production of aliphatic polycarbonate oligomer]
Production method of aliphatic polycarbonate oligomer (polycarbonate oligomer 24):
100 parts by mass of 1,6-hexanediol and 0.6 part by mass of diethyl carbonate were charged, respectively, and reacted at 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 24.
The obtained polycarbonate oligomer had a terminal ethyl group of 3 mg-KOH / g, a terminal OH group of 53 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group was 5%), and the number average molecular weight was 2004. The kinematic viscosity at 20 ° C. was 2050 mm 2 / s.
[Production of thermoplastic polyester elastomer]
When 100 parts by mass of polybutylene terephthalate (PBT) having a fractional average molecular weight of 30000 and 45 parts by mass of polycarbonate diol 24 (number average molecular weight is 2004) are stirred at 230 to 245 ° C. and 130 Pa for 10 minutes, the resin becomes transparent. It was confirmed that the contents were taken out and cooled to obtain polymer 24 (thermoplastic polyester elastomer). The physical properties of the obtained polymer 24 were measured, and the results are shown in Table 1. The polymer 24 obtained in this comparative example was poor in heat aging resistance and low quality. Moreover, since the molecular weight was low, the flexural modulus could not be measured.
 比較例5
 1,4-ブタンジオールにテトラヒドロフランを開環付加させて得られた数平均分子量2000のポリエーテルジオールに関し、各物性を測定しその結果を表2に示すが、耐熱老化性が劣ることが明らかである。
Comparative Example 5
Regarding the polyether diol having a number average molecular weight of 2000 obtained by ring-opening addition of tetrahydrofuran to 1,4-butanediol, the physical properties were measured and the results are shown in Table 2. It is clear that the heat aging resistance is inferior. is there.
 比較例6
 エチレングリコールにε-カプロラクトンを開環付加させて得られた数平均分子量2000のポリエステルジオールに関し、各種物性を測定しその結果を表2に示すが、耐水老化性が劣ることが明らかである。また、再溶融した際に、わずかに異臭が感じられた。
Comparative Example 6
Various properties of the polyester diol having a number average molecular weight of 2000 obtained by ring-opening addition of ε-caprolactone to ethylene glycol were measured and the results are shown in Table 2. It is clear that the water aging resistance is poor. Further, a slight odor was felt when remelted.
 比較例7
 〔脂肪族ポリカーボネートオリゴマーの製造〕
 脂肪族ポリカーボネートオリゴマー(ポリカーボネートオリゴマー27)の製造方法:
 数平均分子量2000を有する1,6-ヘキサンジオール100質量部とジエチルカーボネート4.7質量部とをそれぞれ仕込み、温度190℃、1300Paで反応させた。2時間後、内容物を冷却しポリカーボネートオリゴマー27を得た。
 得られたポリカーボネートオリゴマー27は末端エチル基0mg-KOH/g,末端OH基11mg-KOH/g(末端基に占める末端エチルカボネート基の比率は0%)であり数平均分子量は10000であり、75℃の動粘度は95000mm2/sであった。
 〔熱可塑性ポリエステルエラストマーの製造〕
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部とポリカーボネートジオール27(数平均分子量は10000)43質量部とを230~245℃、130Pa下で10分撹拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー27(熱可塑性ポリエステルエラストマー)を得た。得られたポリマー27の各物性を測定し、その結果を表1に示す。本比較例で得られたポリマー27は、耐熱老化性が劣っており低品質であった。また、本比較例の合成作業において、数平均分子量5000を越え、数平均分子量10000を有するポリカーボネートジオールの融解温度が高くかつ高粘度であるため融解および反応機への仕込み作業に大変な困難を伴った。
Comparative Example 7
[Production of aliphatic polycarbonate oligomer]
Method for producing aliphatic polycarbonate oligomer (polycarbonate oligomer 27):
100 parts by mass of 1,6-hexanediol having a number average molecular weight of 2000 and 4.7 parts by mass of diethyl carbonate were charged and reacted at a temperature of 190 ° C. and 1300 Pa. After 2 hours, the contents were cooled to obtain polycarbonate oligomer 27.
The obtained polycarbonate oligomer 27 has a terminal ethyl group 0 mg-KOH / g, a terminal OH group 11 mg-KOH / g (the ratio of the terminal ethyl carbonate group to the terminal group is 0%), and the number average molecular weight is 10,000. The kinematic viscosity at 75 ° C. was 95000 mm 2 / s.
[Production of thermoplastic polyester elastomer]
100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by weight of polycarbonate diol 27 (number average molecular weight is 10,000) were stirred at 230 to 245 ° C. and 130 Pa for 10 minutes, and the resin became transparent. After confirming this, the contents were taken out and cooled to obtain polymer 27 (thermoplastic polyester elastomer). Each physical property of the obtained polymer 27 was measured, and the result is shown in Table 1. The polymer 27 obtained in this comparative example was inferior in heat aging resistance and low in quality. In addition, in the synthesis work of this comparative example, the melting temperature of the polycarbonate diol having a number average molecular weight exceeding 5000 and the number average molecular weight 10000 is high and the viscosity is high, and therefore the melting and charging work into the reactor is extremely difficult. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の熱可塑性ポリエステルエラストマーの製造方法及びその原料ポリカーボネートオリゴマー組成物について、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 As mentioned above, although the manufacturing method of the thermoplastic polyester elastomer of this invention and its raw material polycarbonate oligomer composition were demonstrated based on the several Example, this invention is not limited to the structure described in the said Example, The configuration can be changed as appropriate without departing from the spirit of the invention, for example, by appropriately combining the configurations described in the embodiments.
 本発明の製造方法によって得られる本熱可塑性ポリエステルエラストマー及びその組成物は耐熱性が良好であり、かつ耐熱老化性、耐水性及び低温特性等に優れているというポリエステルポリカーボネート型エラストマーの特徴を維持した上で、ブロック性及びブロック性保持性が改善されている。ブロック性が高いことにより、融点低下による耐熱性の低下が抑制され、硬度、引張強度、弾性率などの機械的性質が向上する。また、ブロック性保持性の改善により、成型加工時におけるブロック性の変動が抑制されるので成型製品の品質の均一性を高めることができる。また、反応性基を1個以上有する化合物0.01~20質量部を含有させることで、耐熱老化性、耐水性、残留歪の向上効果やブロー成形、押出成形に適したメルトフローレートを得る事ができる。また、該特性により、リサイクル性が高められるので環境負荷やコスト低減に繋げることができる。従って、このように、本発明の製造方法によって得られる熱可塑性ポリエステルエラストマーは、上記した優れた特性及び利点を有するので、繊維、フイルム、シートをはじめとする各種成形材料に用いることができる。また、弾性糸及びブーツ、ギヤ、チューブ、パッキンなどの成形材料にも適しており、例えば、耐熱老化性、耐水性、低温特性が要求される自動車、家電部品などの用途、具体的には、ジョイントブーツや、電線被覆材などの用途に有用である。特に、自動車のエンジン周りに使用されるジョイントブーツや、電線被覆材などの高度な耐熱性が要求される部品用の材料として好適に用いることができるので、産業界に寄与すること大である。 The thermoplastic polyester elastomer obtained by the production method of the present invention and the composition thereof have good heat resistance, and have maintained the characteristics of the polyester polycarbonate type elastomer that are excellent in heat aging resistance, water resistance, low temperature characteristics, etc. Above, the block property and the block property retention are improved. Due to the high block property, a decrease in heat resistance due to a decrease in melting point is suppressed, and mechanical properties such as hardness, tensile strength and elastic modulus are improved. In addition, the improvement of the block property holding property suppresses the fluctuation of the block property during the molding process, so that the uniformity of the quality of the molded product can be enhanced. In addition, by containing 0.01 to 20 parts by mass of a compound having at least one reactive group, an effect of improving heat aging resistance, water resistance and residual strain and a melt flow rate suitable for blow molding and extrusion molding are obtained. I can do things. In addition, recyclability is enhanced by the characteristics, which can lead to environmental load and cost reduction. Therefore, since the thermoplastic polyester elastomer obtained by the production method of the present invention has the above-described excellent characteristics and advantages, it can be used for various molding materials including fibers, films and sheets. It is also suitable for molding materials such as elastic yarns and boots, gears, tubes, packings, etc., for example, applications such as automobiles and home appliance parts that require heat aging resistance, water resistance, low temperature characteristics, specifically, It is useful for applications such as joint boots and wire coating materials. In particular, it can be suitably used as a material for parts that require high heat resistance such as joint boots used around automobile engines and wire coating materials, which greatly contributes to the industry.

Claims (8)

  1.  芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルからなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマーの製造方法であって、末端基の比率が10%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを用いて、当該ポリカーボネートオリゴマーとポリエステルハードセグメントとのエステル交換反応を行なうことを特徴とする熱可塑性ポリエステルエラストマーの製造方法。 A method for producing a thermoplastic polyester elastomer comprising a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and a soft segment composed mainly of an aliphatic polycarbonate. Production of a thermoplastic polyester elastomer, wherein a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a group ratio of 10% or more is used, and a transesterification reaction between the polycarbonate oligomer and the polyester hard segment is performed. Method.
  2.  前記ポリカーボネートオリゴマーとして末端基の比率が15%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを用いることを特徴とする請求項1記載の製造方法。 The production method according to claim 1, wherein a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more is used as the polycarbonate oligomer.
  3.  前記ポリカーボネートオリゴマーの数平均分子量が1000~5000であることを特徴とする請求項1記載の製造方法。 The method according to claim 1, wherein the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
  4.  前記ポリカーボネートオリゴマーの数平均分子量が1000~5000であることを特徴とする請求項2記載の製造方法。 The production method according to claim 2, wherein the number average molecular weight of the polycarbonate oligomer is 1000 to 5000.
  5.  前記ハードセグメントを構成するポリエステルの数平均分子量が10000~40000であることを特徴とする請求項1乃至4の何れかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the number average molecular weight of the polyester constituting the hard segment is 10,000 to 40,000.
  6.  芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルからなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマーの製造に用いる原料ポリカーボネートオリゴマー組成物であって、末端基の比率が10%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを含むことを特徴とする原料ポリカーボネートオリゴマー組成物。 Raw material polycarbonate oligomer composition used in the production of a thermoplastic segment elastomer comprising a hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and a soft segment composed mainly of an aliphatic polycarbonate A raw material polycarbonate oligomer composition comprising a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 10% or more.
  7.  前記ポリカーボネートオリゴマーとして末端基の比率が15%以上の末端アルキルカーボネート基もしくは末端アリールカーボネート基を有するポリカーボネートオリゴマーを含むことを特徴とする請求項6記載の原料ポリカーボネートオリゴマー組成物。 7. The raw material polycarbonate oligomer composition according to claim 6, comprising a polycarbonate oligomer having a terminal alkyl carbonate group or a terminal aryl carbonate group having a terminal group ratio of 15% or more as the polycarbonate oligomer.
  8.  前記ポリカーボネートオリゴマーの数平均分子量が1000~5000であることを特徴とする請求項6又は7記載の原料ポリカーボネートオリゴマー組成物。 The raw material polycarbonate oligomer composition according to claim 6 or 7, wherein the polycarbonate oligomer has a number average molecular weight of 1,000 to 5,000.
PCT/JP2009/056896 2008-04-03 2009-04-02 Process for producing thermoplastic polyester elastomer and polycarbonate oligomer composition as starting material for the thermoplastic polyester elastomer WO2009123287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008097450A JP2009249465A (en) 2008-04-03 2008-04-03 Method for producing thermoplastic polyester elastomer and polycarbonate oligomer composition as starting material for it
JP2008-097450 2008-04-03

Publications (1)

Publication Number Publication Date
WO2009123287A1 true WO2009123287A1 (en) 2009-10-08

Family

ID=41135654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056896 WO2009123287A1 (en) 2008-04-03 2009-04-02 Process for producing thermoplastic polyester elastomer and polycarbonate oligomer composition as starting material for the thermoplastic polyester elastomer

Country Status (2)

Country Link
JP (1) JP2009249465A (en)
WO (1) WO2009123287A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725622A (en) * 2013-12-23 2015-06-24 常州华科聚合物股份有限公司 Elastic resin, method for preparing elastic resin and elastic hand feeling paint
CN104797627A (en) * 2012-11-09 2015-07-22 乐天化学株式会社 Aliphatic polycarbonate copolymer having high molecular weight, and preparation method therefor
WO2016136922A1 (en) * 2015-02-25 2016-09-01 出光興産株式会社 Polycarbonate resin, and coating fluid, electrophotographic photoreceptor, and electrophotographic device all including said polycarbonate resin, process for producing polycarbonate resin, polycarbonate/polyester copolymer resin, and process for producing polycarbonate/polyester copolymer resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484960B1 (en) 2009-10-29 2010-06-16 京セラ株式会社 Large cell base station and communication control method
CN103265689B (en) * 2013-06-17 2016-05-11 中国科学院化学研究所 Copolymer of fatty poly-ester carbonate and aromatic polyester and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191665A (en) * 2006-01-23 2007-08-02 Toyobo Co Ltd Manufacturing method of thermoplastic polyester elastomer and thermoplastic polyester elastomer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191665A (en) * 2006-01-23 2007-08-02 Toyobo Co Ltd Manufacturing method of thermoplastic polyester elastomer and thermoplastic polyester elastomer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797627A (en) * 2012-11-09 2015-07-22 乐天化学株式会社 Aliphatic polycarbonate copolymer having high molecular weight, and preparation method therefor
EP2902429A4 (en) * 2012-11-09 2016-05-25 Lotte Chemical Corp Aliphatic polycarbonate copolymer having high molecular weight, and preparation method therefor
CN104725622A (en) * 2013-12-23 2015-06-24 常州华科聚合物股份有限公司 Elastic resin, method for preparing elastic resin and elastic hand feeling paint
WO2016136922A1 (en) * 2015-02-25 2016-09-01 出光興産株式会社 Polycarbonate resin, and coating fluid, electrophotographic photoreceptor, and electrophotographic device all including said polycarbonate resin, process for producing polycarbonate resin, polycarbonate/polyester copolymer resin, and process for producing polycarbonate/polyester copolymer resin
JPWO2016136922A1 (en) * 2015-02-25 2017-11-30 出光興産株式会社 Polycarbonate resin, coating liquid using the same, electrophotographic photosensitive member, and electrophotographic apparatus, method for producing polycarbonate resin, polycarbonate-polyester copolymer resin, and method for producing polycarbonate-polyester copolymer resin

Also Published As

Publication number Publication date
JP2009249465A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4244067B2 (en) Thermoplastic polyester elastomer, thermoplastic polyester elastomer composition, and method for producing thermoplastic polyester elastomer
JP6787326B2 (en) Polyester resin, method for producing the polyester resin, and polyester resin composition
JP2012107155A (en) Polyester elastomer composition and molded article comprising the same
JP7063263B2 (en) Polyester elastomer resin composition
TW201326299A (en) Blend of polylactic acid resin and copolyester resin and articles using the same
WO2009123287A1 (en) Process for producing thermoplastic polyester elastomer and polycarbonate oligomer composition as starting material for the thermoplastic polyester elastomer
JP5481916B2 (en) Flame retardant polyester elastomer composition
KR101952396B1 (en) Polylactic acid resin composition
JP4935347B2 (en) Heat resistant corrugated tube
JP2002302594A (en) Polyester block copolymer composition
KR100593394B1 (en) Thermoplastic elastomer resin
CN106478930B (en) Preparation method of thermoplastic polyester elastomer base material
JP6036013B2 (en) Thermoplastic polyester elastomer and molded article comprising the same
KR101551633B1 (en) Polyether Ester Elastomer and Manufacturing Method therof
JP5194577B2 (en) Thermoplastic polyester elastomer
TW201326300A (en) Blend of polylactic acid resin and copolyester resin and articles using the same
TWI742035B (en) Flexible polylactic acid resin composition comprising a water scavenger
US11267933B2 (en) Method of preparing poly(ether ester) copolymer
KR101433898B1 (en) Polyether Ester Elastomer with Excellent Thermal Stability and Method of Preparing Same
KR100795169B1 (en) Thermoplastic elastomer resin
KR20200127464A (en) Thermoplastic polyester resin composition and polyester resin prepared from the composition
JP2006265459A (en) Aromatic amide block copolymer resin composition
JP2004099656A (en) Polyester molding
JP4694661B2 (en) Polyester type block copolymer
JP2020158675A (en) Method for preparing polybutylene terephthalate copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727137

Country of ref document: EP

Kind code of ref document: A1