WO2009123045A1 - ランプ及び加熱装置 - Google Patents

ランプ及び加熱装置 Download PDF

Info

Publication number
WO2009123045A1
WO2009123045A1 PCT/JP2009/056261 JP2009056261W WO2009123045A1 WO 2009123045 A1 WO2009123045 A1 WO 2009123045A1 JP 2009056261 W JP2009056261 W JP 2009056261W WO 2009123045 A1 WO2009123045 A1 WO 2009123045A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
sealing
tube portion
filament
portions
Prior art date
Application number
PCT/JP2009/056261
Other languages
English (en)
French (fr)
Inventor
則行 前田
健吾 岩原
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to US12/933,733 priority Critical patent/US20110008028A1/en
Priority to CN2009801118510A priority patent/CN101983537A/zh
Priority to EP09727991A priority patent/EP2259659A4/en
Publication of WO2009123045A1 publication Critical patent/WO2009123045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0052Heating devices using lamps for industrial applications for fluid treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/58Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0047Heating devices using lamps for industrial applications for semiconductor manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/14Lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present invention relates to a lamp and a heating device, and more particularly to prevention of overheating of a sealing portion of the lamp.
  • a lamp having a sealing portion in which a metal foil connected to the end of the filament is sealed such as a halogen lamp, is overheated when the lamp is used, and its life is reduced.
  • some in-line heaters for heating fluids such as pure water and chemicals for semiconductor manufacturing are equipped with a halogen lamp having a quartz glass tube containing a tungsten filament.
  • the halogen lamp does not directly contact the fluid to be heated.
  • the sealing part which is the terminal part of a quartz glass tube tends to be overheated with the heat_generation
  • the sealing portion is overheated, the sealing portion is deformed due to the expansion of the metal foil, and the outside air flows into the quartz glass tube.
  • the tungsten filament in the quartz glass tube is oxidized and deteriorated. There is.
  • Patent Document 1 describes a heating device including a cooling pipe that guides cooling air to an end of a halogen lamp. JP 2003-97849 A
  • This invention was made in view of the said subject, Comprising: It aims at providing the lamp
  • a lamp according to an embodiment of the present invention for solving the above problems includes a tube portion in which a filament having a coil portion is accommodated, and a sealing portion in which a metal foil connected to an end of the filament is sealed. And an overheat prevention part that covers a part of the outer surface of the pipe part.
  • ramp which can prevent the overheating of a sealing part effectively can be provided, although a structure is simple.
  • the overheating prevention part may be provided so as to cover a part of the outer side of the tube part that is closer to the terminal side than the coil part of the filament. In this case, the transfer of heat from the tube portion to the sealing portion can be effectively reduced, and overheating of the sealing portion can be more effectively prevented.
  • the overheat prevention part may be formed in a shape protruding outward in the radial direction of the tube part so as to block light from the coil part that generates heat to the sealing part. In this case, the temperature rise of the sealing portion due to radiation from the coil portion of the filament can be effectively suppressed, and overheating of the sealing portion can be more effectively prevented.
  • the overheat prevention part may be made of ceramic. In this case, the fire resistance of the overheat prevention part can be ensured and the overheating of the sealing part can be effectively prevented.
  • a heating apparatus for solving the above-described problems is characterized by including any one of the lamps as a heating source.
  • ADVANTAGE OF THE INVENTION According to this invention, the heating apparatus which can prevent effectively the overheating of the sealing part of a lamp
  • the heating device includes a double tube portion having an inner tube portion in which the lamp is accommodated and an outer tube portion through which a fluid to be heated flows. While contacting with an inner cylinder part, it is good also as accommodated in the said inner cylinder part so that the said sealing part may protrude outside the said double pipe part. In this way, overheating of the sealing part of the lamp can be prevented more effectively.
  • FIG. 6 is a cross-sectional view of the lamp according to the present embodiment cut along the line VI-VI shown in FIG. 2. It is a side view of the lamp assembly which concerns on this embodiment. It is a side view of the heating device concerning this embodiment.
  • main lamp a lamp according to the present embodiment
  • the lamp is realized as a halogen lamp
  • FIG. 1 is a perspective view of the lamp 1.
  • FIG. 2 is a plan view of the lamp 1.
  • FIG. 3 is a side view of the lamp 1.
  • 4 is a cross-sectional view of a portion of the lamp 1 surrounded by a broken line IV shown in FIG.
  • FIG. 5 is a sectional view of a portion of the lamp 1 surrounded by a broken line V shown in FIG. 6 is a cross-sectional view of the lamp 1 taken along the line VI-VI shown in FIG.
  • the lamp 1 has two lamp bodies 10.
  • the material constituting the lamp body 10 is not particularly limited as long as it transmits light emitted from the lamp 1.
  • the lamp body 10 is a quartz glass tube.
  • the lamp body 10 has a hollow tube portion 11.
  • the tube portion 11 is filled with an inert gas and a small amount of halogen gas.
  • a filament 13 is accommodated.
  • the material constituting the filament 13 is not particularly limited as long as it generates heat and emits light when energized in the tube portion 11, but in the present embodiment, the filament 13 is a tungsten filament.
  • the filament 13 has a coil part 14 and two non-coil parts 15a and 15b.
  • the coil portion 14 is a coil-shaped central portion of the filament 13.
  • the non-coil part 15 a on one side is one end part extending linearly in the filament 13, and the non-coil part 15 b on the other side is the other end part extending linearly in the filament 13.
  • the filament 13 is supported by a plurality of support portions 13 a made of a ring-shaped metal wire so as to be arranged near the radial center of the tube portion 11.
  • the lamp body 10 has two sealing portions 12a and 12b.
  • the sealing part 12 a on one side constitutes one end part of the lamp body 10, and the sealing part 12 b on the other side constitutes the other end part of the lamp body 10.
  • sealing portion 12 a on one side seals one end of the tube portion 11, and the sealing portion 12 b on the other side seals the other end of the tube portion 11.
  • These sealing portions 12a and 12b are formed by softening one end and the other end of the quartz glass tube by heating, and further crimping and sealing in the manufacturing process of the lamp body 10.
  • metal foils 16a and 16b are sealed in the sealing portions 12a and 12b. That is, the metal foil 16a connected to the one end of the filament 13 (that is, the end of the non-coil part 15a on one side) is sealed in the sealing portion 12a on one side of the lamp body 10, and the lamp body 10 is sealed with a metal foil 16b connected to the other end of the filament 13 (that is, the end of the other non-coil portion 15b).
  • the metal foils 16a and 16b are molybdenum foils.
  • the two lamp main bodies 10 are arranged in parallel, and the ends of the two lamp main bodies 10 are supported by the insulator portions 20a and 20b.
  • the insulator portions 20a and 20b are made of ceramic and are formed in a disk shape.
  • the two sealing portions 12a on one side are sealed in the lever portion 20a on one side.
  • the two metal foils 16a sealed in the sealing part 12a on one side are connected by a conductive metal wire (not shown) in the insulator part 20a.
  • the external lead rod 17 which is a conductive metal wire is connected to each metal foil 16b sealed in the sealing portion 12b. Yes.
  • the external lead rod 17 is a molybdenum wire.
  • Two lead wires 18 formed by covering the outer lead rod 17 with an outer skin made of an insulating material extend from the insulator portion 20b.
  • Such a lamp 1 includes overheat preventing portions 30a and 30b covering the outer surface 11a of the tube portion 11, as shown in FIGS.
  • the overheat preventing portions 30a and 30b are made of ceramic and formed in a disk shape, like the insulator portions 20a and 20b.
  • a through hole 31 having a diameter substantially equal to the outer diameter of the tube portion 11 is formed in the overheat preventing portion 30 b, and the tube portion 11 is inserted into the through hole 31 b.
  • the overheat preventing portions 30 a and 30 b cover the entire circumferential direction of the outer surface 11 a of the tube portion 11.
  • the overheat preventing portions 30 a and 30 b are provided so as to cover a portion of the outer surface 11 a of the tube portion 11 that is on the terminal side from the coil portion 14 of the filament 13. That is, the one-side overheating preventing portion 30a is provided between the coil portion 14 of the filament 13 and the one-side sealing portion 12a. Similarly, the overheating preventing part 30b on the other side is provided between the coil part 14 of the filament 13 and the sealing part 12b on the other side.
  • Such a lamp 1 emits light when one of the two lead wires 18 is connected to the anode of the power source and the other is connected to the cathode of the power source, and a current is passed through the filament 13. That is, in the tube part 11, the energized filament 13 generates heat and emits light. The lamp body 10 is heated by the heat and light emission of the filament 13.
  • the present lamp 1 since the present lamp 1 includes the above-described overheat preventing portions 30a and 30b, overheating of the sealing portions 12a and 12b in the lamp body 10 can be effectively prevented.
  • the heat capacity of the lamp body 10 is compared with the case where the overheat preventing portions 30a and 30b are not provided. Can be increased. Specifically, the heat transferred from the filament 13 to the tube portion 11 is consumed not only for the temperature rise of the tube portion 11 but also for the temperature rise of the overheat prevention portions 30a and 30b.
  • the temperature rise of the sealing portions 12a and 12b after the current starts to flow through the filament 13 can be moderated as compared to the case where the overheat prevention portions 30a and 30b are not provided, The temperature reached by the sealing portions 12a and 12b can be kept low to prevent overheating.
  • the overheat prevention parts 30a and 30b are provided in the pipe part 11, the heat conduction from the pipe part 11 to the sealing parts 12a and 12b is effectively blocked by the overheat prevention parts 30a and 30b. be able to.
  • the tube portion 11 that accommodates the filament 13 is preferentially heated compared to the sealing portions 12 a and 12 b due to heat generation and light emission of the filament 13. Then, the heat received by the pipe part 11 is then transferred from the pipe part 11 to the sealing parts 12a and 12b.
  • the overheat preventing portions 30a and 30b are in contact with the entire circumferential direction of the outer surface 11a of the tube portion 11, heat conduction from the tube portion 11 to the sealing portions 12a and 12b is ensured. Can be blocked. As a result, overheating of the sealing portions 12a and 12b can be effectively prevented.
  • the overheat preventing portions 30a and 30b are provided so as to cover a portion of the outer surface 11a of the tube portion 11 that is more distal than the coil portion 14 of the filament 13, and thus the sealing portion 12a. , 12b can be effectively prevented from overheating.
  • the coil portion 14 has a larger amount of heat generation and light emission than the non-coil portions 15 a and 15 b. For this reason, the part in which the coil part 14 is accommodated among the pipe parts 11 is heated more rapidly by the said coil part 14 compared with another part.
  • the overheat prevention parts 30a and 30b in the part of the pipe part 11 closer to the sealing parts 12a and 12b than the part in which the coil part 14 is accommodated, the overheating of the sealing parts 12a and 12b is prevented. This can be particularly effectively prevented.
  • the overheat preventing portions 30 a and 30 b are provided in a portion of the tube portion 11 in which the non-coil portions 15 a and 15 b are accommodated. Yes.
  • the overheat preventing portions 30a and 30b are formed in a shape protruding outward in the radial direction of the tube portion 11 so as to block light from the coil portion 14 that generates heat to the sealing portions 12a and 12b. That is, the overheat preventing portions 30a and 30b are formed in a disk shape and are erected over the entire circumferential direction of the outer surface of the tube portion 11 like eaves.
  • the overheat prevention parts 30a and 30b are the products made from the ceramics excellent in heat resistance, the above-mentioned effect can be exhibited reliably.
  • this apparatus the heating apparatus according to the present embodiment (hereinafter referred to as “this apparatus”) will be described.
  • this apparatus an example will be described in which the present apparatus is realized as an in-line heater using the lamp 1 described above as a heating source.
  • FIG. 7 is a side view of the lamp assembly 2 including the lamp 1.
  • FIG. 8 is a side view of the apparatus including the lamp assembly 2 shown in FIG.
  • the lamp assembly 2 includes the main lamp 1 and a double tube portion 40.
  • the double tube part 40 has an inner cylinder part 41 in which the lamp 1 is accommodated and an outer cylinder part 42 through which a fluid to be heated flows.
  • the material constituting the double tube portion 40 is not particularly limited as long as at least the inner tube portion 41 is made of a material that transmits light emitted from the lamp 1, but in the present embodiment, the double tube portion 40 is entirely made of quartz glass, and the inner cylinder part 41 and the outer cylinder part 42 are integrally formed.
  • the lamp 1 is accommodated in the inner cylinder portion 41 so that the overheat prevention portions 30 a and 30 b are in contact with the inner cylinder portion 41. That is, as shown in FIG. 7, the outer diameters of the overheat prevention parts 30 a and 30 b of the lamp 1 are slightly smaller than the inner diameter of the inner cylinder part 41. And this lamp
  • the heat transmitted from the tube portion 11 of the lamp 1 to the overheat prevention portions 30a and 30b due to the heat generation and light emission of the filament 13 is promptly transmitted to the double tube portion 40 via the inner surface 41a of the inner cylinder portion 41. Can be communicated to.
  • the lamp main body 10 of the lamp 1 is arranged in the vicinity of the center of the inner cylinder portion 41 in the radial direction by being supported by the overheat prevention portions 30 a and 30 b in the inner cylinder portion 41.
  • the lamp 1 is accommodated in the inner cylinder portion 41 such that the sealing portions 12a and 12b protrude outside the double tube portion 40. That is, as shown in FIG. 7, the sealing portion 12 a and the insulator portion 20 a on one side of the main lamp 1 are exposed to the outside from one end of the inner cylinder portion 41, and the sealing portion 12 b on the other side of the main lamp 1. And the insulator part 20b is also exposed outside from the other end of the inner cylinder part 41.
  • the sealing portions 12a and 12b of the lamp 1 can be cooled by the air outside the double tube portion 40. Therefore, overheating of the sealing portions 12a and 12b of the lamp 1 can be effectively prevented.
  • the present apparatus 3 includes such a lamp assembly 2 and a casing 50 that accommodates the lamp assembly 2.
  • the apparatus 3 is shown in which the side surface of the housing unit 50 is cut.
  • an electric current is passed through the filament 13 of the lamp 1 to generate heat and light, and a fluid to be heated is caused to flow in the outer tube portion 42 of the double tube portion 40.
  • the fluid flowing from the inflow portion 42a, which is one end of the outer tube portion 42, to the outflow portion 42b, which is the other end of the outer tube portion 42, is warmed by the heat from the lamp 1 through the outer wall 41b of the inner tube portion 41. It is done.
  • the chemical solution used for manufacturing a semiconductor or a liquid crystal is heated by the apparatus 3, it is necessary to heat the chemical solution at about room temperature to about 150 ° C. in a relatively short time.
  • a relatively large current is passed through the filament 13 of the lamp 1 immediately after the start of heating, causing the filament 13 to rapidly generate heat. Therefore, the temperature of the main lamp 1 accommodated in the inner cylinder part 41 rises rapidly immediately after the start of heating.
  • the lamp 1 since the lamp 1 includes the overheat prevention parts 30a and 30b, the rise of the temperature of the sealing parts 12a and 12b immediately after the start of heating can be moderately suppressed, and the sealing is performed.
  • the maximum temperature reached by the stop portions 12a and 12b can be suppressed within a preferable range such as less than 300 ° C.
  • a preferable range such as less than 300 ° C.
  • the sealing portions 12a and 12b are provided. Can be more effectively prevented.
  • the main lamp 1 is a halogen lamp having overheat prevention portions 30a and 30b as shown in FIGS. 1 to 6, and is one of the sealing portions 12b on the side of the insulator portion 20b from which the lead wires 18 extend.
  • a halogen lamp in which one end of a thermocouple (not shown) was sealed so as to be connected to the metal foil 16b was independently manufactured.
  • concentrated sulfuric acid was circulated between the apparatus 3 and the storage tank using a pump, and the lamp 1 was energized and lit to start heating. After the start of heating, the temperature of the sealing portion 12b of the lamp 1 and the temperature of concentrated sulfuric acid in the storage tank were monitored.
  • the amount of concentrated sulfuric acid to be heated was 52.6 L, and the circulating flow rate of concentrated sulfuric acid was 40 L / min.
  • the output of the lamp 1 (that is, the voltage applied to the filament 13) was feedback controlled based on the measured temperature of concentrated sulfuric acid.
  • the cooling air is not sprayed on the sealing portions 12a and 12b and the insulator portions 20a and 20b.
  • the cooling is performed at a flow rate of 25 L / min. Air was blown.
  • an in-line heater (hereinafter referred to as “comparator”) including a halogen lamp that does not have the overheat prevention units 30a and 30b as a heating source was manufactured. Also in this comparison device, a thermocouple was sealed in the sealing portion. However, the sealing portions and insulators at both ends of the halogen lamp did not protrude from the double tube portion, and the entire halogen lamp was accommodated in the inner cylinder portion.
  • concentrated sulfuric acid was heated until the temperature reached 160 ° C. from room temperature, and the temperature of the sealing portion was monitored.
  • the amount of concentrated sulfuric acid to be heated in the comparative example was 54 L, and the circulating flow rate of concentrated sulfuric acid was 40 L / min. Further, in the comparative example, the cooling air was not sprayed as in the second embodiment described above.
  • FIG. 9 shows changes over time in the temperature of the sealing portion 12b and the temperature of concentrated sulfuric acid measured in the first embodiment.
  • the horizontal axis indicates the time (seconds) elapsed from the start of heating (that is, the start of energization of the filament 13 of the lamp 1), and the vertical axis indicates the temperature (° C.) measured at each time.
  • a broken line shows the temperature of the sealing part 12b, and a continuous line shows the temperature of concentrated sulfuric acid.
  • the maximum temperature reached by the sealing portion 12b before the temperature of concentrated sulfuric acid reached 160 ° C. from room temperature was 264 ° C. That is, the temperature of the sealing part 12b could be suppressed sufficiently lower than the upper limit of 300 ° C., and overheating of the sealing part 12b could be prevented.
  • FIG. 10 shows changes over time in the temperature of the sealing portion 12b and the temperature of concentrated sulfuric acid, measured in the second embodiment.
  • the horizontal axis indicates the time (seconds) elapsed from the start of heating, and the vertical axis indicates the temperature (° C.) measured at each time.
  • a broken line shows the temperature of the sealing part 12b, and a continuous line shows the temperature of concentrated sulfuric acid.
  • the maximum temperature reached by the sealing portion 12b before the temperature of concentrated sulfuric acid reached 160 ° C. from room temperature was 210 ° C. That is, by blowing cooling air to the sealing portions 12a and 12b, the temperature of the sealing portion 12b could be further reduced as compared with the first embodiment.
  • FIG. 11 shows a change with time of the temperature of the sealing portion measured in the comparative example.
  • the horizontal axis indicates the time (seconds) elapsed from the start of heating, and the vertical axis indicates the temperature (° C.) measured at each time.
  • the maximum temperature reached by the sealing portion 12b before the temperature of concentrated sulfuric acid reached 160 ° C. from room temperature was 388 ° C. That is, in the comparative example not using this lamp 1, the temperature of the sealing part exceeded the upper limit of 300 ° C., and overheating of the sealing part could not be prevented.
  • the time that can be continuously used was measured from when the lighting was started until when the lighting was stopped due to the lifetime.
  • the halogen lamp in the comparison device stopped lighting in 1890 hours, whereas the lamp 1 in the device 3 could be continuously lit for 8015 hours. That is, by providing the halogen lamp with the overheat preventing portions 30a and 30b, the life of the halogen lamp can be greatly extended.
  • the present invention is not limited to the above example.
  • the overheat prevention parts 30 a and 30 b are not limited to those provided on the terminal side of the coil part 14 of the filament 13. That is, the overheat prevention parts 30a and 30b may be provided so that part or all of them covers the outer surface of the pipe part 11 in which the coil part 14 is accommodated.
  • the shape and size of the overheat prevention parts 30a and 30b are not limited to the above-described example. That is, the shape of the overheat preventing portions 30a and 30b viewed from the longitudinal direction of the lamp body 10 is not limited to a circle as described above, and is, for example, an ellipse, a polygon, a chamfered polygon, a gear, or a star. It can be made into arbitrary shapes, such as an uneven shape.
  • the overheat preventing portions 30a and 30b are not limited to those having a shape protruding outward in the radial direction of the tube portion 11 so as to block light from the coil portion 14 to the sealing portions 12a and 12b.
  • the overheat preventing portions 30a and 30b are not limited to the shape protruding like an eaves that blocks the radiation from the coil portion 14, but may be a thin strip shape covering the outer surface 11a of the tube portion 11, for example. it can.
  • the overheat preventing portions 30a and 30b are not limited to those made of ceramic, and can be made of metal, for example.
  • metal for example, aluminum can be used as the metal constituting the overheat preventing portions 30a and 30b.
  • a ceramic which comprises the overheat prevention parts 30a and 30b what contains at least 1 among aluminum oxide (alumina), a silicon nitride, a silicon carbide, and a zirconia can be used preferably, for example.
  • a heat-resistant sealing material may be injected between 30b and the tube portion 11. This sealing material can also be used as a cushioning material that counteracts the difference in coefficient of thermal expansion between the overheat prevention parts 30a, 30b and the pipe part 11.
  • the overheat preventing portions 30a and 30b are made of a non-fiber material or a non-porous material. That is, the overheat prevention parts 30a and 30b can be made of, for example, non-porous ceramic.
  • the lamp 1 is not limited to one having two lamp bodies 10. That is, for example, the present lamp 1 may have one lamp body 10.
  • the lead wire 18 extends from the lever portion 20a at one end and the lever portion 20b at the other end of the lamp body 10.
  • the present apparatus 3 is not limited to the one that is arranged so that the sealing portions 12 a and 12 b of the lamp 1 protrude outside the double tube portion 40. That is, in the present apparatus 3, the main lamp 1 has the inner tube portion 41 of the double tube portion 40 without the sealing portions 12 a and 12 b protruding outside the double tube portion 40. It may be housed inside.
  • the fluid to be heated is not particularly limited.
  • sulfuric acid, concentrated sulfuric acid, hydrochloric acid, phosphoric acid, ammonia water, and pure water used for manufacturing semiconductors and liquid crystals are preferably heated. It can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

 構造が簡単でありながら封止部の過熱を効果的に防止できるランプ及び加熱装置を提供する。  コイル部(14)を有するフィラメント(13)が収容された管部(11)と、前記フィラメント(13)の末端に接続された金属箔(16)が封止された封止部(12)と、前記管部(11)の外表面(11a)の一部を覆う過熱防止部(30)と、を備えたランプ(1)とする。  

Description

ランプ及び加熱装置
 本発明は、ランプ及び加熱装置に関し、特に、ランプの封止部の過熱防止に関する。
 ハロゲンランプ等、フィラメントの末端に接続された金属箔が封止された封止部を有するランプは、その使用時に、当該封止部が過熱されて寿命が低減する。
 例えば、半導体製造用の純水や薬液等の流体を加熱するためのインラインヒータとして、タングステンフィラメントが収容された石英ガラス管を有するハロゲンランプを備えたものがある。このインラインヒータにおいては、ハロゲンランプは加熱の対象となる流体と直接接触しない。このため、タングステンフィラメントの発熱に伴い、石英ガラス管の末端部分である封止部が過熱されやすい。封止部が過熱されると、金属箔の膨張により当該封止部が変形して、石英ガラス管内に外気が流入し、その結果、当該石英ガラス管内のタングステンフィラメントが酸化され劣化してしまうことがある。
 そこで、従来、例えば、特許文献1においては、冷却用の空気をハロゲンランプの端部に導く冷却配管を備えた加熱装置が記載されている。
特開2003-97849号公報
 しかしながら、上記特許文献1に記載された加熱装置においては、冷却配管を設けることにより、例えば、当該加熱装置の構造が複雑化するとともに、当該加熱装置が大型化して、その設置に大きなスペースを確保する必要があるといった問題があった。
 本発明は、上記課題に鑑みて為されたものであって、構造が簡単でありながら封止部の過熱を効果的に防止できるランプ及び加熱装置を提供することをその目的の一つとする。
 上記課題を解決するための本発明の一実施形態に係るランプは、コイル部を有するフィラメントが収容された管部と、前記フィラメントの末端に接続された金属箔が封止された封止部と、前記管部の外表面の一部を覆う過熱防止部と、を備えたことを特徴とする。本発明によれば、構造が簡単でありながら封止部の過熱を効果的に防止できるランプを提供することができる。
 また、前記過熱防止部は、前記管部の前記外表面のうち、前記フィラメントの前記コイル部より前記末端側の部分を覆うように設けられていることとしてもよい。この場合、管部から封止部への熱の伝達を効果的に低減して、当該封止部の過熱をより効果的に防止することができる。また、前記過熱防止部は、発熱する前記コイル部から前記封止部への光を遮るよう前記管部の径方向外側に張り出した形状で形成されていることとしてもよい。この場合、フィラメントのコイル部からの輻射による封止部の温度上昇を効果的に抑制して、当該封止部の過熱をより効果的に防止することができる。また、前記過熱防止部は、セラミック製であることとしてもよい。この場合、過熱防止部の耐火性を確保できるとともに、封止部の過熱を効果的に防止することができる。
 上記課題を解決するための本発明の一実施形態に係る加熱装置は、上記いずれかのランプを加熱源として備えたことを特徴とする。本発明によれば、構造が簡単でありながらランプの封止部の過熱を効果的に防止できる加熱装置を提供することができる。
 また、前記加熱装置は、前記ランプが収容される内筒部と、加熱の対象となる流体が流れる外筒部と、を有する二重管部を備え、前記ランプは、前記過熱防止部が前記内筒部と接触するとともに、前記封止部が前記二重管部の外に突出するよう、前記内筒部に収容されることとしてもよい。こうすれば、ランプの封止部の過熱をより効果的に防止できる。
本実施形態に係るランプの斜視図である。 本実施形態に係るランプの平面図である。 本実施形態に係るランプの側面図である。 本実施形態に係るランプのうち、図2に示す破線IVで囲まれた部分の断面図である。 本実施形態に係るランプのうち、図3に示す破線Vで囲まれた部分の断面図である。 本実施形態に係るランプを図2に示すVI-VI線で切断した場合の断面図である。 本実施形態に係るランプ組立体の側面図である。 本実施形態に係る加熱装置の側面図である。 本実施形態に係る加熱装置を用いて濃硫酸を加熱した場合に測定された、封止部の温度及び濃硫酸の温度の経時変化の一例を示す説明図である。 本実施形態に係る加熱装置を用いて濃硫酸を加熱した場合に測定された、封止部の温度及び濃硫酸の温度の経時変化の他の例を示す説明図である。 過熱防止部を有しないハロゲンランプを備えた加熱装置を用いて濃硫酸を加熱した場合に測定された、封止部の温度の経時変化の一例を示す説明図である。
 以下に、本発明の一実施形態について図面を参照しつつ説明する。まず、本実施形態に係るランプ(以下、「本ランプ」という。)について説明する。本実施形態においては、本ランプがハロゲンランプとして実現される例について説明する。
 図1は、本ランプ1の斜視図である。図2は、本ランプ1の平面図である。図3は、本ランプ1の側面図である。図4は、本ランプ1のうち、図2に示す破線IVで囲まれた部分の断面図である。図5は、本ランプ1のうち、図3に示す破線Vで囲まれた部分の断面図である。図6は、本ランプ1を図2に示すVI-VI線で切断した場合の断面図である。
 図1から図3に示すように、本ランプ1は、2つのランプ本体10を有している。このランプ本体10を構成する材料は、本ランプ1が発する光を透過させるものであれば特に限られないが、本実施形態において、当該ランプ本体10は、石英ガラス管である。ランプ本体10は、中空の管部11を有している。管部11には、不活性ガスと、微量のハロゲンガスと、が封入されている。
 この管部11には、フィラメント13が収容されている。このフィラメント13を構成する材料は、管部11内において通電により発熱及び発光するものであれば特に限られないが、本実施形態において、当該フィラメント13は、タングステンフィラメントである。フィラメント13は、コイル部14と、2つの非コイル部15a,15bを有している。コイル部14は、フィラメント13のうち、コイル状の中央部分である。一方側の非コイル部15aは、フィラメント13のうち、直線状に延びる一方端部分であり、他方側の非コイル部15bは、当該フィラメント13のうち、直線状に延びる他方端部分である。このフィラメント13は、リング状の金属線から構成される複数の支持部13aによって、管部11の径方向中心付近に配置されるよう支持されている。
 また、ランプ本体10は、2つの封止部12a,12bを有している。一方側の封止部12aは、ランプ本体10の一方端部分を構成し、他方側の封止部12bは、当該ランプ本体10の他方端部分を構成している。
 すなわち、一方側の封止部12aは、管部11の一方端を封止し、他方側の封止部12bは、当該管部11の他方端を封止している。これらの封止部12a,12bは、ランプ本体10の製造過程において、石英ガラス管の一方端及び他方端を加熱により軟化させ、さらに圧着して封止することにより形成されている。
 また、封止部12a,12bには、図4及び図5に示すように、金属箔16a,16bが封入されている。すなわち、ランプ本体10の一方側の封止部12aには、フィラメント13の一方側の末端(すなわち、一方側の非コイル部15aの末端)に接続された金属箔16aが封入され、当該ランプ本体10の他方側の封止部12bには、当該フィラメント13の他方側の末端(すなわち、他方側の非コイル部15bの末端)に接続された金属箔16bが封入されている。本実施形態において、金属箔16a,16bは、モリブデン箔である。
 本ランプ1において、このような2つのランプ本体10は、平行に配置され、当該2つのランプ本体10の端部は碍子部20a,20bにより支持されている。本実施形態において、碍子部20a,20bは、セラミック製であり、円板状に形成されている。
 一方側の碍子部20aには、一方側の2つの封止部12aが封入されている。そして、これら一方側の封止部12aに封入された2つの金属箔16aは、碍子部20a内において、導電性の金属線(不図示)により接続されている。
 また、他方側の碍子部20bには、他方側の2つの封止部12bが、封入されている。この他方側の碍子部20b内においては、図4及び図5に示すように、封止部12bに封入された各金属箔16bに、導電性の金属線である外部リード棒17が接続されている。本実施形態において、この外部リード棒17は、モリブデン線である。そして、この碍子部20bからは、外部リード棒17を絶縁性材料からなる外皮により被覆して形成されるリード線18が2つ延び出している。
 このような本ランプ1は、図1から図6に示すように、管部11の外表面11aを覆う過熱防止部30a,30bを備えている。本実施形態において、過熱防止部30a,30bは、碍子部20a,20bと同様に、セラミック製であり、円板状に形成されている。
 図4から図6に示すように、過熱防止部30bには、管部11の外径と略等しい径の貫通穴31が形成され、当該貫通穴31bに当該管部11が挿通されている。そして、過熱防止部30a,30bは、管部11の外表面11aの周方向全域を覆っている。
 また、過熱防止部30a,30bは、管部11の外表面11aのうち、フィラメント13のコイル部14より末端側の部分を覆うように設けられている。すなわち、一方側の過熱防止部30aは、フィラメント13のコイル部14と、一方側の封止部12aと、の間に設けられている。同様に、他方側の過熱防止部30bは、フィラメント13のコイル部14と、他方側の封止部12bと、の間に設けられている。
 このような本ランプ1は、2つのリード線18のうち一方を電源の陽極に接続し、他方を当該電源の陰極に接続して、フィラメント13に電流を流すことにより、発光する。すなわち、管部11内において、通電されたフィラメント13は発熱して、光を発する。ランプ本体10は、このフィラメント13の発熱及び発光によって加熱される。
 ここで、本ランプ1は、上述の過熱防止部30a,30bを備えているため、ランプ本体10のうち、特に封止部12a,12bの過熱を効果的に防止することができる。
 すなわち、本ランプ1においては、過熱防止部30a,30bが管部11と一体的に設けられているため、当該過熱防止部30a,30bが設けられていない場合に比べて、ランプ本体10の熱容量を増加させることができている。具体的には、フィラメント13から管部11に伝達された熱は、当該管部11の温度上昇のみならず、過熱防止部30a,30bの温度上昇にも費やされる。
 このため、フィラメント13に電流を流し始めた後の、封止部12a,12bの温度上昇を、過熱防止部30a,30bが設けられていない場合に比べて、緩やかにすることができるとともに、当該封止部12a,12bが到達する温度を低く維持し、過熱を防止することができる。
 また、過熱防止部30a,30bは、管部11に設けられているため、当該過熱防止部30a,30bによって、当該管部11から封止部12a,12bへの熱伝導を効果的に遮断することができる。
 すなわち、ランプ本体10のうち、フィラメント13を収容している管部11は、当該フィラメント13の発熱及び発光によって、封止部12a,12bに比べて優先的に加熱される。そして、管部11に受け止められた熱は、次に、当該管部11から封止部12a,12bへと伝達されることとなる。
 ここで、本ランプ1においては、管部11の一部と、封止部12a,12bと、の間に過熱防止部30a,30bが設けられているため、当該管部11の一部から当該封止部12a,12bへの熱伝導は、当該過熱防止部30a,30bによって妨げられる。
 特に、本実施形態において、過熱防止部30a,30bは、管部11の外表面11aの周方向全域と接触しているため、当該管部11から封止部12a,12bへの熱伝導を確実に遮断することができる。この結果、封止部12a,12bの過熱を効果的に防止することができる。
 さらに、本実施形態において、過熱防止部30a,30bは、管部11の外表面11aのうち、フィラメント13のコイル部14より末端側の部分を覆うように設けられているため、封止部12a,12bの過熱を効果的に防止できている。
 すなわち、フィラメント13のうち、コイル部14は、非コイル部15a,15bに比べて発熱量及び発光量が大きい。このため、管部11のうち、コイル部14が収容されている部分は、他の部分に比べて、当該コイル部14によって急激に加熱される。
 したがって、管部11のうち、コイル部14が収容されている部分よりも封止部12a,12bに近い部分に過熱防止部30a,30bを設けることにより、当該封止部12a,12bの過熱を特に効果的に防止することができる。
 具体的に、本実施形態においては、図1から図5に示すように、過熱防止部30a,30bは、管部11のうち、非コイル部15a,15bが収容されている部分に設けられている。
 したがって、管部11のうち、コイル部14が収容されている部分から封止部12a,12bへの熱伝導を確実に防止することができる。この結果、封止部12a,12bの過熱を効果的に防止することができる。
 また、本実施形態において、過熱防止部30a,30bは、発熱するコイル部14から封止部12a,12bへの光を遮るよう管部11の径方向外側に張り出した形状で形成されている。すなわち、過熱防止部30a,30bは、円板状に形成されて、ひさしのように管部11の外表面の周方向全域に立設されている。
 このため、発熱及び発光に伴うコイル部14から封止部12a,12bへの輻射は、過熱防止部30a,30bによって、遮断される。したがって、フィラメント13のコイル部14からの輻射による封止部12a,12bの温度上昇を効果的に抑制し、当該封止部12a,12bの過熱を効果的に防止することができる。また、本実施形態において、過熱防止部30a,30bは、耐熱性に優れたセラミック製であるため、上述の効果を確実に発揮することができる。
 次に、本実施形態に係る加熱装置(以下、「本装置」という。)について説明する。本実施形態においては、本装置が上述の本ランプ1を加熱源として用いたインラインヒータとして実現される例について説明する。
 図7は、本ランプ1を含むランプ組立体2の側面図である。図8は、図7に示すランプ組立体2を含む本装置の側面図である。
 図7に示すように、ランプ組立体2は、本ランプ1と、二重管部40と、を備えている。二重管部40は、本ランプ1が収容される内筒部41と、加熱の対象となる流体が流れる外筒部42と、を有している。この二重管部40を構成する材料は、少なくとも内筒部41が本ランプ1の発する光を透過する材料で構成されていれば特に限られないが、本実施形態において、当該二重管部40は、その全体が石英ガラス製であり、内筒部41と外筒部42とは一体的に形成されている。
 また、本実施形態において、本ランプ1は、過熱防止部30a,30bが内筒部41と接触するよう当該内筒部41に収容される。すなわち、図7に示すように、本ランプ1の過熱防止部30a,30bの外径は、内筒部41の内径よりも僅かに小さくなっている。そして、内筒部41内に載置された本ランプ1は、過熱防止部30a,30bを介して内筒部41の内面41aと接触している。
 このため、フィラメント13の発熱及び発光に伴って本ランプ1の管部11から過熱防止部30a,30bに伝達された熱を、内筒部41の内面41aを介して二重管部40に速やかに伝達することができる。
 すなわち、過熱防止部30a,30bを介して管部11から二重管部40への放熱を効率よく行うことができる。したがって、本ランプ1の封止部12a,12bの過熱を効果的に防止することができる。また、本ランプ1のランプ本体10は、内筒部41内において過熱防止部30a,30bにより支持されることにより、当該内筒部41の径方向中心付近に配置される。
 さらに、本実施形態において、本ランプ1は、封止部12a,12bが二重管部40の外に突出するよう、内筒部41に収容される。すなわち、図7に示すように、本ランプ1の一方側の封止部12a及び碍子部20aは内筒部41の一方端から外に露出し、当該本ランプ1の他方側の封止部12b及び碍子部20bもまた、当該内筒部41の他方端から外に露出している。
 このため、本ランプ1の封止部12a,12bを、二重管部40外の空気によって冷却することができる。したがって、本ランプ1の封止部12a,12bの過熱を効果的に防止することができる。
 本装置3は、図8に示すように、このようなランプ組立体2と、当該ランプ組立体2を収容する筐体部50と、を備えている。なお、図8においては、筐体部50の側面を切断した本装置3を示している。
 本装置3においては、本ランプ1のフィラメント13に電流を流して発熱及び発光させるとともに、加熱の対象とする流体を、二重管部40の外筒部42内に流す。外筒部42の一方端である流入部42aから当該外筒部42の他方端である流出部42bに流れる流体は、内筒部41の外壁41bを介して、本ランプ1からの熱により温められる。
 ここで、例えば、本装置3によって、半導体や液晶の製造に用いられる薬液を加熱する場合には、室温程度の当該薬液を、比較的短時間で150℃程度まで加熱する必要がある。この場合、本ランプ1のフィラメント13には、加熱開始直後には比較的大きな電流を流して、当該フィラメント13を急激に発熱させる。したがって、内筒部41に収容された本ランプ1の温度は、加熱開始直後に急激に上昇する。
 ここで、本ランプ1は、上述のとおり、過熱防止部30a,30bを備えているため、この加熱開始直後における封止部12a,12bの温度の立ち上がりを緩やかに抑えることができるとともに、当該封止部12a,12bが到達する最高温度を300℃未満等、好ましい範囲内に抑えることができる。このように、本装置3においては、シンプル且つコンパクトな構造により、本ランプ1の封止部12a,12bの過熱を効果的に防止することができる。
 また、本装置3において、二重管部40から突出した封止部12a,12b及び碍子部20a,20bの少なくとも一方に冷却用の気体を吹き付ける構造を設けることにより、当該封止部12a,12bの過熱をより効果的に防止することができる。
 次に、本ランプ1及び本装置3の具体的な実施例について説明する。
[実施例]
 まず、本ランプ1として、図1から図6に示すような過熱防止部30a,30bを備えたハロゲンランプであって、リード線18が延び出ている碍子部20b側の封止部12bの1つに、熱電対(不図示)の一方端が金属箔16bと接続するよう封入されたハロゲンランプを独自に製造した。
 そして、本装置3として、この熱電対が接続された本ランプ1を二重管部40の内筒部41に収容した図8に示すようなインラインヒータを製造した。この本装置3には、二重管部40から突出した封止部12a,12b及び碍子部20a,20bに冷却用の空気を吹き付けるための冷却配管を筐体部50内に設けた。
 そして、本装置3を用いて、濃硫酸を、その温度が室温から160℃に到達するまで加熱した。すなわち、本装置3の流入部42a及び流出部42bを、耐薬品性のチューブを介して、濃硫酸を入れた貯留槽と接続した。また、この貯留槽には、濃硫酸の温度を測定するための温度センサーを設けた。
 そして、ポンプを用いて本装置3と貯留槽との間で濃硫酸を循環させるとともに、本ランプ1に通電して点灯させ、加熱を開始した。加熱開始後、本ランプ1の封止部12bの温度及び当該貯留槽内の濃硫酸の温度をそれぞれモニタリングした。
 加熱の対象となった濃硫酸の量は52.6Lであり、濃硫酸の循環流量は40L/分であった。本ランプ1の出力(すなわち、フィラメント13に対する印加電圧)は、測定された濃硫酸の温度に基づいてフィードバック制御された。
 第一の実施例においては、本装置3において、封止部12a,12b及び碍子部20a,20bに対する冷却空気の吹き付けは行わず、第二の実施例においては、25L/分の流量で当該冷却空気の吹き付けを行った。
 また、比較として、過熱防止部30a,30bを有しないハロゲンランプを加熱源として備えたインラインヒータ(以下、「比較装置」という。)を製造した。この比較装置においても、封止部には熱電対が封入された。ただし、ハロゲンランプの両端の封止部及び碍子は二重管部から突出せず、当該ハロゲンランプは、その全体が内筒部内に収容された。
 そして、この比較装置を用いて、上述の本装置3の場合と同様に、濃硫酸を、その温度が室温から160℃に到達するまで加熱し、封止部の温度をモニタリングした。比較例において加熱の対象となった濃硫酸の量は54Lであり、濃硫酸の循環流量は40L/分であった。また、比較例においては、上述の第二の実施例のような冷却空気の吹き付けは行わなかった。
 なお、第一の実施例、第二の実施例、及び比較例において用いられたハロゲンランプは、使用時における封止部の温度を300℃未満に維持することが推奨されるものであった。
 図9には、第一の実施例において測定された、封止部12bの温度及び濃硫酸酸の温度の経時的な変化を示す。図9において、横軸は、加熱開始(すなわち、本ランプ1のフィラメント13への通電開始)から経過した時間(秒)を示し、縦軸は、各時間で測定された温度(℃)を示す。図9において、破線は封止部12bの温度を示し、実線は濃硫酸の温度を示す。
 図9に示すように、濃硫酸の温度が室温から160℃に到達するまでの間に、封止部12bが到達した最高温度は、264℃であった。すなわち、封止部12bの温度を、上限の300℃より十分に低く抑えることができ、当該封止部12bの過熱を防止することができた。
 図10には、第二の実施例において測定された、封止部12bの温度及び濃硫酸の温度の経時的な変化を示す。図10において、横軸は、加熱開始から経過した時間(秒)を示し、縦軸は、各時間で測定された温度(℃)を示す。図10において、破線は封止部12bの温度を示し、実線は濃硫酸の温度を示す。
 図10に示すように、濃硫酸の温度が室温から160℃に到達するまでの間に、封止部12bが到達した最高温度は、210℃であった。すなわち、封止部12a,12bに冷却空気を吹き付けることにより、封止部12bの温度を、第一の実施例に比べてさらに低く抑えることができた。
 図11には、比較例において測定された、封止部の温度の経時的な変化を示す。図11において、横軸は、加熱開始から経過した時間(秒)を示し、縦軸は、各時間で測定された温度(℃)を示す。
 図11に示すように、濃硫酸の温度が室温から160℃に到達するまでの間に、封止部12bが到達した最高温度は、388℃であった。すなわち、本ランプ1を用いない比較例においては、封止部の温度が上限の300℃を超えてしまい、当該封止部の過熱を防止することができなかった。
 また、第一の実施例に用いた本装置3及び比較装置について、点灯を開始してから、寿命により点灯しなくなるまで、連続的に使用できる時間を測定した。その結果、比較装置におけるハロゲンランプは、1890時間で点灯しなくなったのに対し、本装置3における本ランプ1は、8015時間もの間、連続的に点灯させることができた。すなわち、ハロゲンランプに過熱防止部30a,30bを設けることにより、当該ハロゲンランプの寿命を大幅に延長することができた。
 なお、本発明は、上述の例に限られない。例えば、過熱防止部30a,30bは、フィラメント13のコイル部14より末端側に設けられるものに限られない。すなわち、過熱防止部30a,30bは、その一部又は全部が、管部11のうち、コイル部14が収容されている部分の外表面を覆うように設けられてもよい。
 また、過熱防止部30a,30bの形状及び大きさは、上述の例に限られない。すなわち、ランプ本体10の長手方向から見た過熱防止部30a,30bの形状は上述のように円形に限られず、例えば、楕円形、多角形、面取りがされた多角形、ギヤや星型のような凹凸のある形状等、任意の形状とすることができる。
 また、過熱防止部30a,30bは、コイル部14から封止部12a,12bへの光を遮るよう管部11の径方向外側に張り出した形状のものに限られない。すなわち、過熱防止部30a,30bは、コイル部14からの輻射を遮るひさしのように張り出した形状のものに限られず、例えば、管部11の外表面11aを覆う薄い帯状のものとすることもできる。
 また、過熱防止部30a,30bは、セラミック製のものに限られず、例えば、金属製とすることができる。過熱防止部30a,30bを構成する金属としては、例えば、アルミニウムを用いることができる。なお、過熱防止部30a,30bを構成するセラミックとしては、例えば、酸化アルミニウム(アルミナ)、窒化ケイ素、炭化ケイ素、ジルコニアのうち少なくとも一つを含有するものを好ましく用いることができる。
 また、過熱防止部30a,30bと管部11を確実に密着させるために、当該管部11の一部が挿通された当該過熱防止部30a,30bの貫通穴31において、当該過熱防止部30a,30bと当該管部11との間に耐熱性のシーリング材を注入してもよい。このシーリング材は、過熱防止部30a,30bと管部11との熱膨張率の差を打ち消す緩衝材としても用いることができる。
 また、過熱防止部30a,30bは、非繊維材料、非多孔性材料から構成されることが好ましい。すなわち、過熱防止部30a,30bは、例えば、非多孔性のセラミックから構成することができる。
 また、本ランプ1は、ランプ本体10を2つ有するものに限られない。すなわち、例えば、本ランプ1は、ランプ本体10を1つ有するものとすることもできる。この場合、ランプ本体10の一方端の碍子部20a及び他方端の碍子部20bのそれぞれからリード線18が延び出すこととなる。
 また、本装置3は、本ランプ1の封止部12a,12bが二重管部40の外に突出するよう配置されるものに限られない。すなわち、本装置3において、本ランプ1は、封止部12a,12bが二重管部40の外に突出することなく、当該本ランプ1の全体が当該二重管部40の内筒部41内に収容されてもよい。
 また、本装置3において、加熱の対象となる流体は特に限られないが、例えば、半導体や液晶の製造に用いられる硫酸、濃硫酸、塩酸、リン酸、アンモニア水、純水を好ましく加熱の対象とすることができる。

Claims (6)

  1.  コイル部を有するフィラメントが収容された管部と、
     前記フィラメントの末端に接続された金属箔が封入された封止部と、
     前記管部の外表面を覆う過熱防止部と、
     を備えた
     ことを特徴とするランプ。
  2.  前記過熱防止部は、前記管部の前記外表面のうち、前記フィラメントの前記コイル部より前記末端側の部分を覆うように設けられている
     ことを特徴とする請求の範囲第1項に記載されたランプ。
  3.  前記過熱防止部は、発熱する前記コイル部から前記封止部への光を遮るよう前記管部の径方向外側に張り出した形状で形成されている
     ことを特徴とする請求の範囲第1項又は第2項に記載されたランプ。
  4.  前記過熱防止部は、セラミック製である
     ことを特徴とする請求の範囲第1項乃至第3項のいずれかに記載されたランプ。
  5.  請求の範囲第1項乃至第4項のいずれかに記載されたランプを加熱源として備えた
     ことを特徴とする加熱装置。
  6.  前記ランプが収容される内筒部と、
     加熱の対象となる流体が流れる外筒部と、
     を有する二重管部を備え、
     前記ランプは、前記過熱防止部が前記内筒部と接触するとともに、前記封止部が前記二重管部の外に突出するよう、前記内筒部に収容される
     ことを特徴とする請求の範囲第5項に記載された加熱装置。
     
PCT/JP2009/056261 2008-03-31 2009-03-27 ランプ及び加熱装置 WO2009123045A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/933,733 US20110008028A1 (en) 2008-03-31 2009-03-27 Lamp and heating device
CN2009801118510A CN101983537A (zh) 2008-03-31 2009-03-27 灯及加热装置
EP09727991A EP2259659A4 (en) 2008-03-31 2009-03-27 LAMP AND HEATING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008090785A JP5132392B2 (ja) 2008-03-31 2008-03-31 ランプ及び加熱装置
JP2008-090785 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123045A1 true WO2009123045A1 (ja) 2009-10-08

Family

ID=41135423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056261 WO2009123045A1 (ja) 2008-03-31 2009-03-27 ランプ及び加熱装置

Country Status (6)

Country Link
US (1) US20110008028A1 (ja)
EP (1) EP2259659A4 (ja)
JP (1) JP5132392B2 (ja)
KR (1) KR20100113637A (ja)
CN (1) CN101983537A (ja)
WO (1) WO2009123045A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193827A1 (ja) * 2018-04-04 2019-10-10 株式会社Kelk 流体加熱装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256173B1 (ko) * 2012-11-29 2013-04-19 (주)범용테크놀러지 건조용 복열형 코일 히터
KR101256176B1 (ko) * 2012-11-29 2013-04-19 (주)범용테크놀러지 건조용 단열형 코일 히터
JP2014199764A (ja) * 2013-03-29 2014-10-23 東芝ライテック株式会社 ヒータランプおよび加熱モジュール
KR101837891B1 (ko) * 2017-02-22 2018-03-13 이우주 액체 순환형 이중관 램프
US10446386B1 (en) * 2017-07-16 2019-10-15 Carlos Botero High-pressure heat bulb
CN111315052B (zh) * 2020-02-25 2022-01-25 藤泽电工(上海)有限公司 一种电加热管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294360U (ja) * 1985-11-29 1987-06-16
JPS63157186U (ja) * 1987-04-02 1988-10-14
JPH0674557A (ja) * 1992-08-07 1994-03-15 Miura Kenkyusho:Kk 純水加温装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB952938A (en) * 1961-08-16 1964-03-18 Gen Electric Co Ltd Improvements in or relating to incandescent electric lamps
US3788560A (en) * 1972-10-16 1974-01-29 Gte Sylvania Inc Lighting fixture
GB8308103D0 (en) * 1983-03-24 1983-05-05 Emi Plc Thorn Quartz infra-red lamps
EP0131372B1 (en) * 1983-06-15 1989-05-31 THORN EMI Patents Limited Heating apparatus
JPH0628151B2 (ja) * 1988-02-10 1994-04-13 東芝ライテック株式会社 ハロゲン電球
JPH0359981A (ja) * 1989-07-27 1991-03-14 Ushio Inc ヒータランプ
JP2583159B2 (ja) * 1991-02-08 1997-02-19 株式会社小松製作所 流体加熱器
US5471063A (en) * 1994-01-13 1995-11-28 Trojan Technologies, Inc. Fluid disinfection system
US5748837A (en) * 1997-03-24 1998-05-05 Process Technology Inc High temperature lamp heater assembly with cooling of lamp base portions
US6404983B1 (en) * 1998-07-01 2002-06-11 Future Energy Corp. Apparatus and method for heat generation
US6459854B1 (en) * 2000-01-24 2002-10-01 Nestec S.A. Process and module for heating liquid
JP2002289152A (ja) * 2001-03-26 2002-10-04 Harison Toshiba Lighting Corp 管形電球および管形電球点灯装置
CN2589094Y (zh) * 2002-12-30 2003-12-03 马荣春 短波红外线加热管
US7391041B2 (en) * 2005-10-21 2008-06-24 General Electric Company Germicidal UV reactor and UV lamp
US7747147B2 (en) * 2005-11-02 2010-06-29 Panasonic Corporation Heating unit and heating apparatus
JP4935417B2 (ja) * 2007-02-26 2012-05-23 ウシオ電機株式会社 光照射式加熱処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294360U (ja) * 1985-11-29 1987-06-16
JPS63157186U (ja) * 1987-04-02 1988-10-14
JPH0674557A (ja) * 1992-08-07 1994-03-15 Miura Kenkyusho:Kk 純水加温装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2259659A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193827A1 (ja) * 2018-04-04 2019-10-10 株式会社Kelk 流体加熱装置
JP2019186308A (ja) * 2018-04-04 2019-10-24 株式会社Kelk 流体加熱装置
TWI696795B (zh) * 2018-04-04 2020-06-21 日商科理克股份有限公司 流體加熱裝置
US20210112628A1 (en) * 2018-04-04 2021-04-15 Kelk Ltd. Fluid heating device
JP7082514B2 (ja) 2018-04-04 2022-06-08 株式会社Kelk 流体加熱装置
US11985736B2 (en) 2018-04-04 2024-05-14 Kelk Ltd. Fluid heating device

Also Published As

Publication number Publication date
EP2259659A1 (en) 2010-12-08
KR20100113637A (ko) 2010-10-21
JP5132392B2 (ja) 2013-01-30
EP2259659A4 (en) 2011-08-24
JP2009243760A (ja) 2009-10-22
US20110008028A1 (en) 2011-01-13
CN101983537A (zh) 2011-03-02

Similar Documents

Publication Publication Date Title
JP5132392B2 (ja) ランプ及び加熱装置
US7612491B2 (en) Lamp for rapid thermal processing chamber
US9536728B2 (en) Lamp for rapid thermal processing chamber
JP2008202844A (ja) 流体加熱装置
TWI640032B (zh) 具有過卷的管狀光源
JP2012256617A (ja) ランプ及び加熱装置
JP2006086020A (ja) ベース付ランプ
JP2004327442A (ja) 赤外線放射器
JP5151773B2 (ja) フィラメントランプ
US6522068B2 (en) Fluorescent lamp, and method of manufacturing same
US20220151029A1 (en) Heater
KR100767851B1 (ko) 발열체의 구조
JP2021015748A (ja) ヒータ
JP2001124477A (ja) 溶融金属炉用チューブヒータ
KR200297917Y1 (ko) 활성탄섬유 다공성 발열체를 이용한 전기히터
WO2002003418A1 (en) Lamp for a rapid thermal processing chamber
WO2022002381A1 (en) Apparatus for processing a substrate, lamp heater, and method for operating an apparatus
JP2004342417A (ja) 白熱ランプ
JP2012174585A (ja) メタルハライドランプ
JP2010135322A (ja) コネクタ
JP2012009214A (ja) メタルハライドランプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111851.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107020563

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12933733

Country of ref document: US

Ref document number: 2009727991

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE