WO2009122882A1 - Method of manufacturing support for planographic printing plate - Google Patents

Method of manufacturing support for planographic printing plate Download PDF

Info

Publication number
WO2009122882A1
WO2009122882A1 PCT/JP2009/054916 JP2009054916W WO2009122882A1 WO 2009122882 A1 WO2009122882 A1 WO 2009122882A1 JP 2009054916 W JP2009054916 W JP 2009054916W WO 2009122882 A1 WO2009122882 A1 WO 2009122882A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
electrolytic
printing plate
metal web
lithographic printing
Prior art date
Application number
PCT/JP2009/054916
Other languages
French (fr)
Japanese (ja)
Inventor
久 堀田
徹 山崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN2009801118370A priority Critical patent/CN101983261B/en
Priority to JP2010505535A priority patent/JPWO2009122882A1/en
Publication of WO2009122882A1 publication Critical patent/WO2009122882A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/034Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals

Definitions

  • the present invention sequentially immerses a metal web in an electrolytic solution of a plurality of electrolytic cells, supplies current between the metal web and a plurality of electrodes opposed to the metal web in the electrolytic cell,
  • the present invention relates to a method for producing a lithographic printing plate support which is continuously subjected to electrochemical surface roughening.
  • Aluminum plates are used as printing plate supports, especially lithographic printing plate supports. From the diversification of users, aluminum plates are also close to pure aluminum, and have been diversified from those with increased strength by adding manganese. Yes.
  • the surface of the support In order to use such an aluminum plate as a lithographic printing plate support, it is necessary that the surface of the support has appropriate adhesion and water retention with, for example, a photosensitive material which is an image recording layer. is there.
  • the surface of the aluminum plate must be roughened so as to have a uniform and fine grain. This roughening treatment has a significant effect on printing performance such as the stain performance of the plate material when printing is actually performed. Therefore, the quality is an important factor in the production of the plate material.
  • electrochemical graining methods there are mechanical graining methods, electrochemical graining methods, and the like as roughening methods for the aluminum support for printing plates, and surface roughening is performed in a timely combination.
  • mechanical graining method include ball grain, wire grain, brush grain, and liquid honing.
  • an electrochemical graining method an AC electrolytic etching method is generally used, and as a current, a special alternating current such as a normal sine wave AC current or a rectangular wave is used. Further, as a pretreatment for this electrochemical graining, an etching process may be performed with caustic soda.
  • the electrolytic solution replenished from here is the aluminum plate and the electrode. Since it flows to the opposite side through a defined narrow space (for example, 10 mm) and exits to the electrolyte outlet, the electrolyte gradually becomes fatigued due to electrolysis in the flow path, and the electrolyte at the beginning and end of the electrode.
  • a defined narrow space for example, 10 mm
  • the electrolyte gradually becomes fatigued due to electrolysis in the flow path, and the electrolyte at the beginning and end of the electrode.
  • due to fatigue a difference in the components appeared and sufficient electrolysis efficiency could not be obtained, and the temperature difference between the liquid inlet and outlet became large and the desired graininess could not be obtained.
  • Patent Document 1 there is an electrolytic processing apparatus in which two or more liquid supply nozzles are provided between electrodes.
  • a plurality of liquid supply nozzles are provided from the electrode side to the both ends in the width direction of the aluminum plate, and the liquid supplied from the plurality of supply nozzles is curtained at both ends in the width direction of the aluminum plate.
  • JP-A-2-015198 (Claim 1, FIG. 1)
  • JP-A-5-195300 (Claim 1, paragraph 7)
  • Japanese Patent Laid-Open No. 9-248977 (pages 5-7, FIG. 1)
  • JP-A-9-39431 JP 2006-44263 A JP-A-10-869 JP 2002-283762
  • a plurality of liquid supply nozzles are provided with respect to the plate width from the electrode side at both ends in the width direction of the aluminum plate, and supplied from the plurality of liquid supply nozzles.
  • the liquid forms curtain films at both ends in the width direction of the aluminum plate to prevent the electrolyte at the center from flowing to both ends, the improvement in the uniformity of grain and unevenness in image quality is sufficient. Therefore, further improvement has been desired.
  • Patent Document 3 has been proposed to improve the image quality unevenness and to obtain a stable texture of honeycomb-shaped pits. Strength and adhesion are reduced.
  • the average speed of the electrolytic solution is 500 to 4000 mm / s, and the flow velocity distribution in the width direction is within ⁇ 50% of the average flow velocity. Unevenness improvement was not sufficient, and further improvement was desired.
  • electrochemical roughening is carried out by applying an AC voltage in an acidic electrolyte containing sulfate ions and chloride ions, and the chloride ions are in the form of aluminum chloride.
  • the stain performance is not satisfactory, and improvement has been desired. Further, streak-like processing unevenness and chatter marks are not sufficiently lost, and improvement in image quality unevenness has been desired.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a lithographic printing plate support capable of improving image quality unevenness and stably obtaining uniform grain.
  • a metal web made of aluminum or an aluminum alloy is conveyed while being sequentially immersed in an electrolytic solution of a plurality of electrolytic cells, and a plurality of electrodes disposed opposite to the metal web in the electrolytic cell and the metal web
  • a method for producing a support for a lithographic printing plate in which an electric current is supplied during the electrochemical surface roughening treatment of the metal web The flow rate of the electrolytic solution in the electrolytic cell is an average flow rate of 500 to 4000 mm / second in each electrolytic cell, and the flow rate distribution of the electrolytic solution in the width direction perpendicular to the conveying direction of the metal web in the electrolytic cell is Within ⁇ 50% of the average flow rate,
  • the conveyance path section of the metal web facing the gap region between adjacent electrodes among the plurality of electrodes is defined as the inter-bath electrode processing pause section, the single inter-bath electrode treatment pause section is passed.
  • the flow rate of the electrolytic solution is set to an average flow rate of 500 to 4000 mm / second in the electrolytic cell, and the flow rate distribution in the width direction of the electrolytic solution in the electrolytic cell is ⁇ of the average flow rate.
  • the time required to pass through the treatment interval between the electrodes in the tank is 0.05 to
  • a method for producing a lithographic printing plate support according to (1) A method for producing a support for a lithographic printing plate, wherein the electrolytic solution contains chlorine ions, sulfate ions, and aluminum ions.
  • the electrolyte contained in the electrolytic cell contains chlorine ions, sulfate ions, and aluminum ions, thereby making the aluminum grain more uniform.
  • the image quality unevenness can be improved.
  • a method for producing a lithographic printing plate support according to (1) or (2) A method for producing a support for a lithographic printing plate, wherein the electrolytic solution is caused to flow in a direction opposite to a conveying direction of the metal web.
  • the electrolyte solution on the surface of the metal web can be stirred by causing the electrolyte solution to flow in the direction of conveyance of the metal web. Can be reliably updated.
  • a method for producing a lithographic printing plate support according to any one of (1) to (3) A method for producing a support for a lithographic printing plate, characterized in that at least three sections of the inter-bath electrode inter-process treatment are provided in one electrolytic bath.
  • this method for producing a lithographic printing plate support it is possible to further improve the uniformity of the aluminum grain by providing at least three inter-battery electrode processing pause sections in the electrolytic cell.
  • a method for producing a lithographic printing plate support according to any one of (1) to (4), The metal web is taken out of the electrolytic solution in the electrolytic cell, and the outside of the metal web conveyance path section is suspended until the metal web is immersed in the electrolytic solution in another electrolytic cell arranged on the downstream side of the metal web conveyance path.
  • the sum of both conveying path sections from both ends of the plurality of electrodes in the electrolytic cell in the direction of arrangement to the electrolyte gas-liquid interface of the electrolytic cell When the sum of the processing interval between the electrode ends outside the tank and the continuous processing interval is defined as the inter-vessel processing pause interval, the time required to pass through the inter-vessel processing pause interval is 1 to 5 seconds.
  • the aluminum web is made uniform by conveying the metal web at a speed of 1 to 5 seconds passing through one inter-bath treatment pause section. Can be further improved.
  • a method for producing a lithographic printing plate support according to (5) A method for producing a lithographic printing plate support, comprising at least three inter-tank processing pause sections.
  • this method for producing a lithographic printing plate support it is possible to further improve the uniformity of the aluminum grain by providing at least three inter-tank processing pause sections.
  • an electrolyte solution is injected and supplied from a plurality of electrolyte solution supply ports arranged in correspondence with the electrode between the metal web and the electrode, whereby the flow of the electrolyte solution Can be made forcibly and the flow of the electrolyte can be made even more reliably.
  • a metal web made of aluminum or an aluminum alloy is sequentially immersed in an electrolytic solution of a plurality of electrolytic cells, and is disposed opposite to the metal web in the electrolytic cell.
  • an electric current is supplied between a plurality of electrodes and a metal web, and the metal web is continuously subjected to electrochemical surface roughening, the unevenness of image quality is improved, and the uniformity is stable. It is possible to provide a planographic printing plate that can obtain a fine grain and is excellent in dirt performance and printing durability.
  • FIG. 1 It is a conceptual diagram of the lithographic printing plate support manufacturing apparatus applied to the lithographic printing plate support manufacturing method according to one embodiment of the present invention. It is a principal part enlarged view of the lithographic printing plate support manufacturing apparatus of FIG. It is an external appearance perspective view of the electrolyte solution supply part applied to the lithographic printing plate support manufacturing apparatus of FIG. It is a figure which shows an example of the control method of the electrolyte solution in the manufacturing method of the support body for lithographic printing plates of this invention. It is a graph which shows an example of the alternating waveform current waveform figure used for the electrochemical roughening process in the manufacturing method of the support body for lithographic printing plates of this invention.
  • FIG. 1 is a conceptual diagram of a lithographic printing plate support manufacturing apparatus applied to a lithographic printing plate support manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a planographic printing plate support manufacturing apparatus of FIG.
  • FIG. 3 is an external perspective view of an electrolyte solution supply unit applied to the planographic printing plate support manufacturing apparatus of FIG.
  • description of the component requirements described below may be made
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • each electrolytic cell 11 is provided with an electrolytic solution discharge port for discharging the electrolytic solution. The electrolytic solution is discharged from the discharge port and the electrolytic solution is supplied from the electrolytic solution supply units 15 and 15A. By supplying, the electrolytic solution in the electrolytic cell 11 is circulated.
  • a predetermined amount of electrolytic solution EL is stored in the electrolytic bath 11, and a plurality of electrodes 13 are disposed in the electrolytic solution EL in the electrolytic solution EL, and an electrolytic solution supply unit 15 is disposed below each electrode 13. ing.
  • the electrolytic solution EL accommodated in the electrolytic cell 11 contains chlorine ions, sulfate ions, and aluminum ions. Containing chlorine ions, sulfate ions, and aluminum ions makes it relatively difficult for charge concentration to occur, improves the uniformity of the aluminum grain, and improves printing durability and adhesion, resulting in uneven image quality. Is obtained.
  • the electrolytic cell 11 is arranged outside the electrolytic cell 11 from the upstream side to the downstream side in the transport direction A of the metal web MW made of aluminum or aluminum alloy and is not immersed in the electrolytic solution EL.
  • the roller group which has the internal rollers 19 and 21 arrange
  • the conveyance path section of the metal web MW where the metal web MW faces the electrode 13 in the electrolytic cell 11 is defined as a processing section, and a plurality of electrodes are conveyed when being conveyed between the pair of internal rollers 19 and 21 in the electrolytic cell 11. 13, a region between a pair of adjacent electrodes 13 and 13 (a region that does not face the electrode 13), that is, a conveyance path section of the metal web MW that faces a gap region between adjacent electrodes among the plurality of electrodes 13. It is set as a process pause interval between inner electrodes.
  • the section in which the treatment is suspended in the electrolytic cell 11 includes not only the section facing the gap area between the electrodes but also the electrode 13 that is closest to the gas-liquid interface between the inner roller 19 and the outer roller 17.
  • the interval between the conveying path area facing and the area between the gas-liquid interface between the inner roller 21 and the outer roller 23 and the conveying path area facing the last electrode 13 is the same as the process pause period.
  • it is referred to as the in-vessel electrode end outer processing pause section in distinction from the in-vessel electrode processing pause section.
  • the conveyance path section from the end in the arrangement direction of the plurality of electrodes 13 in the electrolytic cell 11 to the electrolyte gas-liquid interface of the electrolytic cell 11 is defined as an in-battery electrode end outer processing pause period.
  • the region transported between the pair of external rollers 23 and 17 outside the electrolytic cell 11, that is, the metal web MW is taken out from the electrolytic solution in the electrolytic cell 11, and disposed on the downstream side of the transport path of the metal web MW.
  • Let the conveyance path area of the metal web MW until it is immersed in the electrolyte solution of the other electrolytic tank 11 be a tank outside process stop area. That is, the section between the gas-liquid interface between the inner roller 21 and the outer roller 23 and the gas-liquid interface between the adjacent outer roller 17 and the inner roller 19 is defined as the outside processing section. Further, the sum of the outside processing section and the in-tank electrode outer side processing suspension section that follows this is defined as the inter-tank processing suspension section.
  • the metal web MW is immersed in the first electrolytic cell on the transport path and faces the first electrode, and is out of the position facing the last electrode of the last electrolytic tank on the transport path. After that, it shall not be included in this inter-bath processing suspension section.
  • Ts_in_a is the time required for the both-end treatment pause section on the electrolytic cell outlet side which is the electrode electrode outer side treatment pause section, and it is required for the both-end treatment pause section on the electrolytic cell inlet side which is also the inner electrode edge outer treatment pause section.
  • each electrode 13 is connected to an AC power supply BL, and the power supply roller 23 connected to the AC power supply BL is in contact with the metal web MW. Applies a predetermined alternating current to the metal web MW through the electrolytic solution EL.
  • the electrolytic solution supply unit 15 in the electrolytic cell 11 is paired with both ends in the width direction perpendicular to the conveying direction of the metal web MW in the electrolytic cell 11.
  • a guide portion 25 is provided, and a cylindrical injection portion 27 is provided between the guide portions 25.
  • a slit-shaped electrolyte supply port 29 is formed in the width direction of the injection unit 27.
  • the pair of guide portions 25 are connected to an electrolyte solution tank (not shown) and constantly supply the electrolyte solution to the injection portion 27.
  • the electrolyte EL supplied to the injection unit 27 is injected over the entire width of the electrolytic cell 11 through the electrolyte supply port 29 in a direction opposite to the conveyance direction A of the metal web MW, that is, in a direction opposite to the conveyance direction A. .
  • the electrolyte solution supply unit 15 transfers the electrolyte solution EL in the transport direction A of the metal web MW from the plurality of electrolyte solution supply ports 29 arranged in correspondence with the electrode 13 between the metal web MW and the electrode 13.
  • the electrolyte EL in the vicinity of the electrode 13 is forced to flow by spraying in the opposite direction.
  • the surface of the metal web MW always comes into contact with the fresh electrolyte EL.
  • the electrolytic solution EL since the electrolytic solution EL is discharged from a discharge port (not shown), the electrolytic solution EL circulates in the electrolytic cell 11 together with the electrolytic solution EL supplied from the electrolytic solution supply unit 15.
  • the injection unit 27 is rotated by a rotation mechanism (not shown) built in the guide unit 25.
  • the electrolytic solution supply port 29 changes the injection direction of the electrolytic solution EL while spraying the electrolytic solution EL toward the metal web MW, so that the electrolytic solution EL is sufficiently stirred in the electrolytic bath 11 and locally. So that no itch is generated.
  • the electrolytic solution supply unit 15A capable of changing the injection direction of the electrolytic solution supply port 29 is the same for all other electrolytic solution supply units 15 in addition to the one on the most upstream side in the conveyance direction of the metal web MW. It is good also as a structure of.
  • the metal web MW is sequentially immersed in the electrolytic solution EL of the electrolytic cell 11, and the electrode 13 and the metal web disposed to face the metal web MW in the electrolytic cell 11.
  • the metal web MW is continuously subjected to an electrochemical surface roughening treatment by energizing with the MW.
  • the flow rate of the electrolytic solution EL is set such that the average flow rate in the electrolytic cell 11 is 500 to 4000 mm / second, and the flow rate distribution of the electrolytic solution EL with respect to the width direction perpendicular to the conveying direction of the metal web MW in the electrolytic cell 11. Within ⁇ 50% of the average flow rate.
  • the relationship between the passage time Tin of the inter-bath electrode processing pause section and the passage time Tab of the inter-bath treatment pause section for the processing section in which the metal web MW faces the electrode 13 in the electrolytic bath 11 is once.
  • the metal web MW is transported at a speed such that the time Tin passing through the inter-battery treatment pause interval is 0.05 to 1 second, and the time Tab passing through one bath treatment pause interval is 1 to 5 seconds.
  • the method for producing a lithographic printing plate support under the above-mentioned conditions, it is possible to improve the unevenness of the image quality of the aluminum surface of the metal web MW and make the grain uniform, and to improve the stain performance and the printing durability. be able to.
  • the planographic printing plate support manufacturing apparatus 100 provides 16 inter-battery electrode processing pause sections (Tin) in the electrolytic bath 11 and an inter-bath processing pause zone (Tab) including the outside of the electrolytic bath 11. There are 3 sections. In this way, by providing a prescribed number of inter-battery electrode processing pause intervals (Tin) and inter-vessel treatment pause intervals (Tab), it is possible to improve the uniformity of the aluminum grain. It is desirable to provide at least three sections for the inter-bath electrode processing suspension section and the inter-tank processing suspension section. The larger the number of sections, the higher the effect of uniformizing the properties of the plate surface of the metal web MW. In addition, it has been confirmed by experiments that the properties of the printing plate are deteriorated when the inter-battery electrode processing pause section and the inter-tank processing pause section are two sections or less.
  • the size of the electrolytic cell 11 is increased when the number of in-battery inter-electrode processing pauses is increased, for example, it is practical to set the number of in-battery inter-electrode treatment pauses to 3 to 50, for example. Is preferred.
  • the number of inter-tank processing pause sections is increased, a large installation space is required for the entire apparatus. For example, it is practically preferable to set 10 sections to the maximum and the inter-tank processing pause section to 3 to 10 sections.
  • the number of sections is the case where the dimension of the metal web MW is, for example, about 0.1 to 0.5 mm in thickness and about 500 to 2000 mm in width. The number varies.
  • the lithographic printing plate support manufacturing apparatus 100 includes a lithographic printing plate support while injecting the electrolytic solution EL from the electrolytic solution supply port 29 of the electrolytic solution supply unit 15 in a direction opposite to the conveying direction of the metal web MW.
  • a known aluminum plate can be used in the method for producing a lithographic printing plate support of the present invention.
  • the aluminum plate used in the present invention is a metal whose main component is dimensionally stable aluminum, and is made of aluminum or an aluminum alloy.
  • an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements can also be used.
  • various substrates made of the above-described aluminum or aluminum alloy are collectively referred to as an aluminum plate.
  • the foreign elements that may be contained in the aluminum alloy include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of the foreign elements in the alloy is 10% by mass or less. It is.
  • the composition of the aluminum plate used in the present invention is not specified.
  • a conventionally known material described in the fourth edition of the Aluminum Handbook (1990, published by the Light Metal Association) for example, JIS Al-Mn based aluminum plates such as A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, and internationally registered alloy 3103A can be used as appropriate.
  • JIS Al-Mn based aluminum plates such as A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, and internationally registered alloy 3103A
  • an Al—Mg alloy or an Al—Mn—Mg alloy (JIS A3005) in which 0.1% by mass or more of magnesium is added to these aluminum alloys can also be used.
  • an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used.
  • an Al—Mg—Si based alloy can also be used.
  • dissolved the used aluminum beverage can also be used.
  • the Cu content is preferably 0.00% by mass or more, more preferably 0.01% by mass or more, and more preferably 0.02% by mass or more, and 0.15% by mass. % Or less, preferably 0.11% by mass or less, more preferably 0.03% by mass or less.
  • Si 0.07 to 0.09 mass%, Fe: 0.20 to 0.29 mass%, Cu: 0.03 mass% or less, Mn: 0.01 mass% or less, Mg: 0 0.01% by mass or less, Cr: 0.01% by mass or less, Zn: 0.01% by mass or less, Ti: 0.02% by mass or less, and Al: 99.5% by mass or more.
  • JIS 1050 material the techniques proposed by the applicant of the present application are disclosed in Japanese Patent Application Laid-Open Nos. 59-153861, 61-51395, 62-146694, 60-215725, and 60-215725.
  • techniques described in Japanese Patent Publication No. 1-35910 and Japanese Patent Publication No. 55-28874 are also known.
  • JIS 1070 material the techniques proposed by the applicant of the present application are disclosed in JP-A-7-81264, JP-A-7-305133, JP-A-8-49034, JP-A-8-73974, JP-A-8-108659 and It is described in JP-A-8-92679.
  • JP-A-60-230951, JP-A-1-306288, and JP-A-2-293189 JP-B-54-42284, JP-B-4-19290, JP-B-4-19291, JP-B-4-19292, JP-A-61-35995, JP-A-64-51992, JP-A-4-1952 No. 226394, US Pat. No. 5,009,722, US Pat. No. 5,028,276 and the like.
  • the Al—Mg—Si alloy is described in British Patent No. 1,421,710.
  • a molten aluminum alloy adjusted to a predetermined alloy component content is subjected to a cleaning process and cast according to a conventional method.
  • a cleaning process in order to remove unnecessary gas such as hydrogen in the molten metal, flux treatment, degassing process using argon gas, chlorine gas, etc., so-called rigid media filter such as ceramic tube filter, ceramic foam filter, A filtering process using a filter that uses alumina flakes, alumina balls or the like as a filter medium, a glass cloth filter, or a combination of a degassing process and a filtering process is performed.
  • These cleaning treatments are preferably carried out in order to prevent defects caused by foreign substances such as non-metallic inclusions and oxides in the molten metal and defects caused by gas dissolved in the molten metal.
  • filtering of the molten metal JP-A-6-57432, JP-A-3-162530, JP-A-5-140659, JP-A-4-231425, JP-A-4-276031, JP-A-5-311261, and JP-A-5-311261 are disclosed. It is described in each publication of JP-A-6-136466. Further, the degassing of the molten metal is described in JP-A-5-1659, JP-A-5-49148, and the like. The applicant of the present application has also proposed a technique relating to degassing of molten metal in Japanese Patent Application Laid-Open No. 7-40017.
  • the casting method there are a method using a solid mold typified by a DC casting method and a method using a driving mold typified by a continuous casting method.
  • a method using a solid mold typified by a DC casting method
  • a method using a driving mold typified by a continuous casting method.
  • solidification occurs at a cooling rate of 0.5 to 30 ° C./second.
  • the temperature is less than 1 ° C., many coarse intermetallic compounds may be formed.
  • an ingot having a thickness of 300 to 800 mm can be produced.
  • the ingot is chamfered as necessary according to a conventional method, and usually 1 to 30 mm, preferably 1 to 10 mm, of the surface layer is cut. Before and after that, soaking treatment is performed as necessary.
  • heat treatment is performed at 450 to 620 ° C. for 1 to 48 hours so that the intermetallic compound does not become coarse. If the heat treatment is shorter than 1 hour, the effect of soaking may be insufficient. In addition, when soaking is not performed, there is an advantage that the cost can be reduced.
  • hot rolling and cold rolling are performed to obtain a rolled aluminum plate.
  • a suitable starting temperature for hot rolling is 350 to 500 ° C.
  • An intermediate annealing treatment may be performed before or after hot rolling or in the middle thereof.
  • the conditions for the intermediate annealing treatment are heating at 280 to 600 ° C. for 2 to 20 hours, preferably 350 to 500 ° C. for 2 to 10 hours using a batch annealing furnace, or 400 to 600 ° C. using a continuous annealing furnace. Heating is performed for 6 minutes or less, preferably 450 to 550 ° C. for 2 minutes or less.
  • the crystal structure can be made finer by heating at a heating rate of 10 to 200 ° C./second using a continuous annealing furnace.
  • the flatness of the aluminum plate finished to a predetermined thickness, for example, 0.1 to 0.5 mm by the above steps may be further improved by a correction device such as a roller leveler or a tension leveler.
  • the flatness may be improved after the aluminum plate is cut into a sheet shape, but in order to improve the productivity, it is preferably performed in a continuous coil state. Further, a slitter line may be used for processing into a predetermined plate width.
  • the continuous casting method a twin roll method (hunter method), a method using a cooling roll typified by the 3C method, a double belt method (Hazley method), a cooling belt or a cooling block typified by Al-Swiss Caster II type
  • the method using is industrially performed.
  • the continuous casting method solidifies at a cooling rate of 100 to 1000 ° C./second. Since the continuous casting method generally has a higher cooling rate than the DC casting method, it has a feature that the solid solubility of the alloy component in the aluminum matrix can be increased.
  • JP-A-3-79798 JP-A-5-201166, JP-A-5-156414, JP-A-6-262203, and JP-A-6-122949.
  • JP-A-6-210406 JP-A-6-26308, and the like.
  • a cast plate having a thickness of 1 to 10 mm can be directly continuously cast, and the hot rolling step is omitted.
  • a method using a cooling roll such as the Hunter method
  • a cast plate having a thickness of 10 to 50 mm can be cast.
  • a hot rolling roll is arranged immediately after casting and continuously rolled.
  • a continuous cast and rolled plate having a thickness of 1 to 10 mm can be obtained.
  • the aluminum plate used in the present invention is preferably subjected to H18 tempering as defined in JIS.
  • the strength of the aluminum plate is preferably such that the 0.2% proof stress is 120 MPa or more in order to obtain the stiffness required for a lithographic printing plate support. Further, in order to obtain a certain level of waist strength even when performing the burning treatment, the 0.2% proof stress after heat treatment at 270 ° C. for 3 to 10 minutes is preferably 80 MPa or more, and 100 MPa or more. It is more preferable that In particular, when the waist strength is required for an aluminum plate, an aluminum material added with Mg or Mn can be used, but if the waist is strengthened, the ease of fitting to the plate cylinder of a printing press becomes inferior. Depending on the application, the material and the amount of trace components added are appropriately selected.
  • the aluminum plate preferably has a tensile strength of 160 ⁇ 15 N / mm 2 , a 0.2% proof stress of 140 ⁇ 15 MPa, and an elongation defined by JIS Z2241 and Z2201 of 1 to 10%.
  • the crystal structure of the aluminum plate may cause poor surface quality when the surface of the aluminum plate is subjected to chemical or electrochemical surface roughening. It is preferably not too coarse.
  • the crystal structure on the surface of the aluminum plate preferably has a width of 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and the length of the crystal structure is 5000 ⁇ m or less. Is preferably 1000 ⁇ m or less, and more preferably 500 ⁇ m or less.
  • the alloy component distribution of the aluminum plate when chemical surface roughening treatment or electrochemical surface roughening treatment is performed, poor surface quality occurs due to non-uniform distribution of the alloy component on the surface of the aluminum plate. Therefore, it is preferable that the surface is not very uneven. With respect to these, techniques proposed by the applicant of the present application are described in Japanese Patent Laid-Open Nos. 6-48058, 5-301478, and 7-132689.
  • the size and density of the intermetallic compound may affect the chemical roughening treatment or the electrochemical roughening treatment.
  • techniques proposed by the applicant of the present application are described in Japanese Patent Laid-Open Nos. 7-138687 and 4-254545.
  • an aluminum plate as shown above can be used by forming irregularities by press rolling, transfer or the like in the final rolling step or the like.
  • the uneven surface is transferred to the surface of the aluminum plate by pressing the uneven surface to the aluminum plate.
  • a method of forming an uneven pattern is preferred. Specifically, the method described in JP-A-6-262203 can be suitably used.
  • the amount of dampening water on the printing press can be easily adjusted while reducing energy consumed in the subsequent alkali etching treatment and surface roughening treatment.
  • the etching amount can be reduced to about 3 g / m 2 or less.
  • the surface area of the obtained lithographic printing plate support is increased, so that the printing durability is more excellent.
  • the transfer is particularly preferably performed in the final cold rolling step of a normal aluminum plate.
  • Rolling for transfer is preferably performed in 1 to 3 passes, and the rolling reduction of each is preferably 3 to 8%.
  • transfer is provided on both surfaces of an aluminum plate.
  • Examples of a method for obtaining a rolling roll having irregularities on the surface used for irregularity transfer include a blast method, an electrolytic method, a laser method, an electric discharge machining method, and a method combining these.
  • a method in which the blast method and the electrolytic method are combined is preferable.
  • the air blast method is preferable.
  • the air pressure in the air blast method is preferably 1 to 10 kgf / cm 2 (9.81 ⁇ 10 4 to 9.81 ⁇ 10 5 Pa), preferably 2 to 5 kgf / cm 2 (1.96 ⁇ 10 5 to More preferably 4.90 ⁇ 10 5 Pa).
  • the grid used in the air blast method is not particularly limited as long as it is alumina particles having a predetermined particle size.
  • alumina particles having hard and sharp corners are used for the grid, it is easy to form deep and uniform irregularities on the surface of the transfer roll.
  • the average particle diameter of the alumina particles is 50 to 150 ⁇ m, preferably 60 to 130 ⁇ m, and more preferably 70 to 90 ⁇ m. If it is within the above range, a surface roughness having a sufficient size as a transfer roll can be obtained, so that the surface roughness of an aluminum plate provided with irregularities using this transfer roll is sufficiently increased. Also, the number of pits can be increased sufficiently.
  • the injection is preferably performed 2 to 5 times, and more preferably 2 times.
  • the uneven surface of the unevenness formed by the first injection can be scraped off by the second injection, so the surface of the aluminum plate provided with the unevenness using the obtained rolling roll, Locally deep recesses are less likely to be formed.
  • the spray angle in the air blast method is preferably 60 to 120 °, more preferably 80 to 100 ° with respect to the spray surface (roll surface).
  • Polishing is preferably performed until the average surface roughness (R a ) is reduced by 10 to 40% from the value after air blasting after the air blasting method and before the plating treatment described later.
  • R a average surface roughness
  • the height of the convex portions on the surface of the transfer roll can be made uniform. As a result, locally deep portions are not formed on the surface of the aluminum plate provided with irregularities using the transfer roll. As a result, the developability (sensitivity) of the lithographic printing plate is particularly excellent.
  • the average surface roughness (R a ) of the transfer roll surface is preferably 0.4 to 1.0 ⁇ m, more preferably 0.6 to 0.9 ⁇ m.
  • the number of peaks on the surface of the transfer roll is preferably 1000 to 40000 / mm 2 , and more preferably 2000 to 10000 / mm 2 . If the number of peaks is too small, the water retention of the lithographic printing plate support and the adhesion to the image recording layer will be poor. If the water retention is inferior, the halftone dot portion tends to become dirty when a planographic printing plate is used.
  • the material of the transfer roll is not particularly limited, and for example, a known material for a rolling roll can be used. In the present invention, it is preferable to use a steel roll. Among these, a roll made by forging is preferable.
  • preferred roll material compositions are: C: 0.07 to 6 mass%, Si: 0.2 to 1 mass%, Mn: 0.15 to 1 mass%, P: 0.03 mass% or less, S: 0.03% by mass or less, Cr: 2.5 to 12% by mass, Mo: 0.05 to 1.1% by mass, Cu: 0.5% by mass or less, V: 0.5% by mass or less, balance: iron And inevitable impurities.
  • tool steel high-speed steel (SKH), high carbon chromium bearing steel (SUJ), and forged steel containing carbon, chromium, molybdenum and vanadium as alloy elements, which are generally used as rolling rolls, are mentioned. It is done.
  • high chromium alloy cast iron containing about 10 to 20% by mass of chromium can also be used.
  • the hardness after quenching and tempering is preferably 80 to 100 in terms of Hs.
  • the tempering is preferably performed at a low temperature.
  • the diameter of the roll is preferably 200 to 1000 mm.
  • the roll surface length is preferably 1000 to 4000 mm.
  • the transfer roll formed with irregularities by an air blast method or the like is subjected to hardening treatment such as quenching and hard chrome plating after washing. This improves wear resistance and prolongs life.
  • hardening treatment hard chrome plating is particularly preferable.
  • Hard chromium plating can be performed by electroplating using a conventionally known CrO 3 —SO 4 bath, CrO 3 —SO 4 —fluoride bath or the like as an industrial chromium plating method.
  • the thickness of the hard chrome plating film is preferably 3 to 15 ⁇ m, and more preferably 5 to 10 ⁇ m.
  • the thickness of the hard chrome plating film can be adjusted by adjusting the plating treatment time. Before the hard chrome plating, it is preferable to perform electrolytic treatment with a quantity of electricity of 5,000 to 50,000 C / dm 2 by using a roll as an anode and a direct current in a plating solution used for hard chrome plating. . Thereby, the unevenness
  • the aluminum plate used in the present invention is a continuous belt-like sheet material or plate material. That is, it may be an aluminum web, or a sheet-like sheet cut to a size corresponding to a planographic printing plate precursor shipped as a product. Since scratches on the surface of the aluminum plate may become defects when processed into a lithographic printing plate support, it is possible to generate scratches at the stage prior to the surface treatment process for making a lithographic printing plate support It is necessary to suppress as much as possible. For that purpose, it is preferable that the package has a stable form and is hardly damaged during transportation.
  • the packing form of aluminum is, for example, laying a hardboard and felt on an iron pallet, applying cardboard donut plates to both ends of the product, wrapping the whole with a polytube, and inserting a wooden donut into the inner diameter of the coil Then, a felt is applied to the outer periphery of the coil, the band is squeezed with a band, and the display is performed on the outer periphery.
  • a polyethylene film can be used as the packaging material, and needle felt and hard board can be used as the cushioning material.
  • the present invention is not limited to this method as long as it is stable and can be transported without being damaged.
  • the thickness of the aluminum plate used in the present invention is about 0.1 to 0.6 mm, preferably 0.15 to 0.4 mm, and more preferably 0.2 to 0.3 mm. This thickness can be appropriately changed according to the size of the printing press, the size of the printing plate, the user's desires, and the like.
  • ⁇ Surface treatment> In the method for producing a lithographic printing plate support of the present invention, the aluminum plate described above is subjected to an electrochemical surface roughening treatment using alternating current in an electrolytic solution to obtain a lithographic printing plate support. In the method for producing a lithographic printing plate support of the present invention, various steps other than those described above may be included.
  • an etching process in an alkaline aqueous solution (first etching process), a desmut process in an acidic aqueous solution, an electrochemical roughening process, an etching process in an alkaline aqueous solution (second etching process).
  • a preferred example is a method in which a desmut treatment in an acidic aqueous solution and an anodizing treatment are performed in this order. Further, before the anodizing treatment in the above treatment, an electrochemical surface roughening treatment, an etching treatment in an alkaline aqueous solution, and a desmut treatment in an acidic aqueous solution may be performed. Further, after the anodizing treatment, a sealing treatment, a hydrophilization treatment, or a sealing treatment and a subsequent hydrophilization treatment are also preferable.
  • a mechanical surface roughening process can be performed before the first etching process. Thereby, the amount of electricity used for the electrochemical surface roughening treatment can be reduced.
  • the mechanical surface roughening treatment include, for example, a wire brush grain method in which the aluminum surface is scratched with a metal wire, a ball grain method in which the aluminum surface is grained with a polishing ball and an abrasive, JP-A-6-135175, and Japanese Patent Publication No. 50.
  • the brush grain method of graining the surface with a nylon brush and an abrasive described in Japanese Patent No. 40047 can be used.
  • the transfer method transfer roll method which press-contacts an uneven surface to an aluminum plate can also be used.
  • transfer is performed several times.
  • the method described in Japanese Patent Laid-Open No. 55871 and Japanese Patent Laid-Open No. 6-24168 characterized in that the surface is elastic is also applicable.
  • the transfer roll method is preferable because it can easily cope with the speedup of the manufacturing process of the support for a lithographic printing plate.
  • the transfer roll method preferably performs the transfer in the cold rolling for adjusting to the final plate thickness or the finish cold rolling for finishing the surface shape after the final plate thickness adjustment.
  • the alkali etching treatment is a treatment for dissolving the surface layer by bringing the above-described aluminum plate into contact with an alkali solution.
  • the first etching treatment is performed for the purpose of forming uniform concave portions by electrochemical surface roughening treatment and removing rolling oil, dirt, natural oxide film, etc. on the surface of the aluminum plate (rolled aluminum). Is called.
  • the etching amount of the surface to be subjected to the electrochemical roughening treatment later is preferably 0.5 g / m 2 or more, more preferably 1 g / m 2 or more. but preferably not more 10 g / m 2 or less, more preferably 5 g / m 2 or less.
  • the etching amount is 0.5 g / m 2 or more, uniform pits can be generated in the electrochemical surface roughening treatment.
  • the etching amount is 10 g / m 2 or less, the amount of the alkaline aqueous solution used is reduced, which is economically advantageous.
  • the etching amount of the back surface of the surface subjected to the electrochemical roughening treatment is preferably 5% or more of the etching amount of the surface subjected to the electrochemical roughening treatment, preferably 10% or more. Is more preferably 50% by mass or less, and more preferably 30% by mass or less. It is excellent in the balance with the removal effect of the rolling oil of the back surface of an aluminum plate, and economical efficiency as it is the said range. The same applies to a second etching process and a third etching process described later.
  • Examples of the alkali used in the alkaline solution include caustic alkali and alkali metal salts.
  • caustic alkali include caustic soda and caustic potash.
  • alkali metal salt include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate, and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumina.
  • Alkali metal aluminates such as potassium acid; alkali metal aldones such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, primary sodium phosphate, primary potassium phosphate, etc.
  • An alkali metal hydrogen phosphate is mentioned.
  • a caustic alkali solution and a solution containing both a caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost.
  • an aqueous solution of caustic soda is preferable.
  • the concentration of the alkaline solution is preferably 1% by mass or more, more preferably 20% by mass or more, and preferably 35% by mass or less, and 30% by mass or less. It is more preferable that The alkaline solution preferably contains aluminum ions.
  • the aluminum ion concentration is preferably 0.5% by mass or more, more preferably 4% by mass or more, and preferably 10% by mass or less, more preferably 8% by mass or less.
  • Such an alkaline solution can be prepared using, for example, water, a 48 mass% sodium hydroxide aqueous solution, and sodium aluminate.
  • the temperature of the alkaline solution is preferably 25 ° C. or higher, more preferably 40 ° C. or higher, preferably 95 ° C. or lower, and 80 ° C. or lower. More preferred.
  • the treatment time is preferably 1 second or longer, more preferably 2 seconds or longer, more preferably 30 seconds or shorter, and more preferably 15 seconds or shorter. .
  • the composition management of the etching solution is preferably performed as follows. That is, a matrix of conductivity, specific gravity, and temperature, or a matrix of conductivity, ultrasonic propagation velocity, and temperature corresponding to the matrix of caustic soda concentration and aluminum ion concentration is prepared in advance, and the conductivity and specific gravity are prepared.
  • the liquid composition is measured according to the temperature and temperature, or the electrical conductivity, the ultrasonic wave propagation speed, and the temperature, and caustic soda and water are added so that the control target value of the liquid composition is reached.
  • the amount of the etching solution increased by adding caustic soda and water is overflowed from the circulation tank, thereby keeping the amount of the solution constant.
  • caustic soda to be added 40 to 60% by mass for industrial use can be used.
  • conductivity meter and the specific gravity meter it is preferable to use those that are temperature-compensated.
  • hydrometer it is preferable to use a differential pressure type.
  • Examples of the method of bringing the aluminum plate into contact with the alkaline solution include, for example, a method in which the aluminum plate is passed through a tank containing the alkaline solution, a method in which the aluminum plate is immersed in a tank containing the alkaline solution, The method of spraying on the surface of a board is mentioned.
  • a method of spraying an alkaline solution onto the surface of an aluminum plate is preferable.
  • a method of spraying an etching solution in an amount of 10 to 100 L / min per spray tube from a spray tube having holes of ⁇ 2 to 5 mm at a pitch of 10 to 50 mm is preferable. It is preferable to provide a plurality of spray tubes.
  • the alkali etching treatment After the alkali etching treatment is completed, it is preferable to drain the liquid with a nip roller, and further perform the water washing treatment for 1 to 10 seconds and then drain the liquid with a nip roller.
  • the water washing treatment is preferably carried out using an apparatus for washing with a free-falling curtain-like liquid film, and further using a spray tube.
  • a spray tube having a plurality of spray tips spreading in the fan shape in the width direction of the aluminum plate can be used as the spray tube used for the water washing treatment.
  • the interval between spray tips is preferably 20 to 100 mm, and the amount of liquid per spray tip is preferably 0.5 to 20 L / min. It is preferable to use a plurality of spray tubes.
  • First desmut treatment After the first etching process, it is preferable to perform pickling (first desmut process) in order to remove dirt (smut) remaining on the surface.
  • the desmut treatment is performed by bringing an aluminum plate into contact with an acidic solution.
  • Examples of the acid used include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid. Of these, nitric acid and sulfuric acid are preferable. Specifically, for example, a waste solution of an aqueous sulfuric acid solution used in an anodic oxidation process described later can be suitably used.
  • composition management of the desmut treatment liquid a method of managing by conductivity and temperature, a method of managing by conductivity, specific gravity and temperature, and a conductivity and superconductivity corresponding to a matrix of acidic solution concentration and aluminum ion concentration. Either of the methods managed by the propagation speed of sound waves and temperature can be selected and used.
  • an acidic solution containing 0.5 to 30% by mass of acid and 0.5 to 10% by mass of aluminum ions it is preferable to use an acidic solution containing 0.5 to 30% by mass of acid and 0.5 to 10% by mass of aluminum ions.
  • the temperature of the acidic solution is preferably 25 ° C. or higher, and preferably 95 ° C. or lower.
  • the treatment time is preferably 1 second or more, more preferably 2 seconds or more, and preferably 30 seconds or less, more preferably 10 seconds or less. .
  • Examples of the method of bringing the aluminum plate into contact with the acidic solution include, for example, a method of passing the aluminum plate through a bath containing the acidic solution, a method of immersing the aluminum plate in a bath containing the acidic solution, and an acidic solution containing aluminum.
  • the method of spraying on the surface of a board is mentioned.
  • a method in which an acidic solution is sprayed on the surface of an aluminum plate is preferable.
  • the desmutting process After the desmutting process is completed, it is preferable to drain the liquid with a nip roller, and further perform the water washing process for 1 to 10 seconds and then drain the liquid with a nip roller.
  • the water washing treatment is the same as the water washing treatment after the alkali etching treatment.
  • the amount of liquid per spray tip is preferably 1 to 20 L / min.
  • the electrochemical surface roughening treatment it is desirable to perform an electrochemical surface roughening treatment using alternating current in a mixed aqueous solution containing chlorine ions and sulfate ions.
  • the surface shape has a plateau portion (flat portion), a uniform concave portion having an average diameter of preferably 2 to 20 ⁇ m, and preferably an average surface roughness of 0.3 to 0.8 ⁇ m. Is obtained.
  • the plateau portion is small on the surface after the electrochemical surface roughening treatment, the printing durability when the planographic printing plate is obtained is excellent, and the pits are uniform. Therefore, the stain resistance when the planographic printing plate is obtained is excellent.
  • an aqueous solution containing hydrochloric acid and not containing sulfuric acid is used as the electrolytic solution, the pits become shallow or overlap and become non-uniform. In addition, the plateau part increases.
  • the hydrochloric acid concentration in the mixed aqueous solution used as the electrolytic solution is preferably 3 to 30 g / L, more preferably 4 to 20 g / L, and still more preferably 10 to 18 g / L. Within the above range, the uniformity of the pits becomes high.
  • the sulfuric acid concentration in the mixed aqueous solution is preferably 0.01 to 10 g / L, more preferably 0.1 to 5 g / L, and still more preferably 1 to 4 g / L.
  • Sulfuric acid forms an oxide film by an anodic reaction. Thereby, it is considered that a uniform uneven surface can be obtained. Further, in the present invention, since sulfuric acid is added to the mixed aqueous solution, the average roughness Ra is sufficient even when electrochemical roughening is performed using a plurality of electrolytic cells as described later. It can be.
  • the mixed aqueous solution can be used by adding a hydrochloric acid compound or a nitric acid compound having a nitrate ion such as aluminum nitrate, sodium nitrate or ammonium nitrate, or a hydrochloric acid ion such as aluminum chloride, sodium chloride or ammonium chloride.
  • a compound that forms a complex with copper can be added at a rate of 1 to 200 g / L.
  • a metal contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium, or silicon may be dissolved. Hypochlorous acid or hydrogen peroxide may be added at 1 to 100 g / L.
  • the aluminum ion concentration in the mixed aqueous solution is preferably 3 to 30 g / L, more preferably 3 to 20 g / L, and still more preferably 8 to 18 g / L. Within the above range, the uniformity of the pits becomes high. Moreover, the replenishment amount of the mixed aqueous solution does not increase too much.
  • the concentration control of each component of the electrolytic solution is preferably performed using a combination of a multi-component concentration measurement method such as a concentration measurement method, feedforward control and feedback control.
  • a multi-component concentration measurement method such as a concentration measurement method, feedforward control and feedback control.
  • the multi-component concentration measurement method is, for example, a method of measuring the concentration using the propagation speed of ultrasonic waves in the liquid and the electric conductivity (conductivity) of the liquid, neutralization titration method, capillary electrophoresis analysis method, isotacophoresis (Isochophoresis, capillary tube isotachophoresis) Analytical method and ion chromatograph method are mentioned.
  • the ion chromatograph method is classified into an absorbance detection ion chromatograph, a non-suppressor type electric conductivity detection ion chromatograph, a suppressor type ion chromatograph, and the like depending on the type of detector.
  • a suppressor type ion chromatograph is preferable from the viewpoint of ensuring measurement stability.
  • the concentration of each component of the electrolytic solution it is preferable to control the concentration of each component of the electrolytic solution by the method described below.
  • the hydrogen ion concentration decreases in proportion to the amount of energization, and the aluminum ion concentration increases. Therefore, by performing feedforward control based on the energization amount, the hydrogen ion concentration and the aluminum ion concentration can be kept constant. That is, in order to increase the hydrogen ion concentration, the amount of electricity supplied, that is, the amount of acid proportional to the current value generated by the AC power supply is replenished to the electrolyte, and in order to reduce the aluminum ion concentration, the amount of electricity is proportional to the amount of electricity supplied.
  • the amount of water is replenished to the electrolyte and the concentration of the acid is reduced by adding water, the amount of acid proportional to the amount of added water is replenished to the electrolyte, so that the hydrogen ion concentration and aluminum
  • the ion concentration can be kept constant.
  • the water supplied to the electrolyte is also referred to as makeup water.
  • a concentration measurement system for measuring the concentration of the electrolyte is provided, and the concentration of each component of the electrolyte is controlled by using feedback control for controlling the supply of acid and makeup water based on the measured concentration of the electrolyte. It is preferable. By using feedback control in combination, the concentration of the electrolyte can be controlled with good control even when the electrolyte is taken out or brought in by an aluminum plate, the electrolyte is evaporated, or the like.
  • the concentration measurement method includes the multi-component concentration measurement method described above, and the correspondence between the electric conductivity of the electrolyte solution corresponding to the liquid composition of each component and the ultrasonic wave propagation velocity is taken, and the electric conductivity and the ultrasonic wave propagation velocity are determined. A method of measuring the concentration based on the value is particularly preferable.
  • Supplied water and acid are preferably supplied to the circulation tank.
  • the circulation tank stores an electrolytic solution, supplies the stored electrolytic solution to the electrolytic bath, and stores the electrolytic solution discharged from the electrolytic bath.
  • the electrolyte exceeding the capacity of the circulation tank is discharged due to overflow.
  • the discharged electrolytic solution is detoxified and then discharged into a river or the like as a waste solution.
  • concentration control of three components such as sulfuric acid, hydrochloric acid, and aluminum ions is performed, but it is difficult to measure the concentration of the three components in real time. Therefore, it is preferable to control the concentration by previously adding sulfuric acid having the same concentration as the sulfuric acid concentration in the electrolytic solution to the replenishing water, and replenishing the replenishing water to which sulfuric acid has been added and hydrochloric acid. In this method, it is preferable to control the sulfuric acid concentration in the makeup water.
  • a method for controlling the sulfuric acid concentration of the make-up water there is a method of measuring the sulfuric acid concentration of the make-up water and adding sulfuric acid or water based on the measured result.
  • Methods for measuring the sulfuric acid concentration of make-up water include measurement based on the conductivity, pH, specific gravity, or ultrasonic wave propagation speed of make-up water, neutralization titration method, capillary electrophoresis analysis, isotacophoresis analysis Method, ion chromatograph method and the like, and a method of measuring using the conductivity of makeup water is preferable.
  • FIG. 4 is a diagram showing an example of a system (hereinafter, also referred to as “concentration control system”) 200 for controlling the concentration of the electrolyte in the present invention.
  • concentration control system 200 controls the concentration of the component contained in the electrolytic solution 220 in the electrolytic cell 203.
  • the concentration control system 200 includes a circulation tank 210, a first concentration measurement system 211 that measures the concentration of hydrochloric acid and aluminum ions contained in the electrolytic solution 220 in the circulation tank 210, a hydrochloric acid storage unit 212 that stores hydrochloric acid 221, Based on the data supplied from the AC power supply 201 and the first concentration measurement system 211, the hydrochloric acid 221 and / or the makeup water 222 to the circulation tank 210 based on the makeup water storage section 213 that stores the makeup water 222 containing water and sulfuric acid. And a second concentration measurement system 215 that measures the concentration of sulfuric acid contained in the makeup water 222.
  • P indicates a pump.
  • the solid line indicates the movement of the liquid, and the broken line indicates the signal flow.
  • the first concentration measurement system 211 measures the concentration of hydrochloric acid and aluminum ions in the electrolytic solution 220 in the circulation tank 210, and the controller 214 measures the concentration measured by the first concentration measurement system 211.
  • the concentration is controlled.
  • the electrolytic solution 220 stored in the circulation tank 210 is supplied to the electrolytic tank 203, and the electrolytic solution 220 in the electrolytic tank 203 is discharged to the circulation tank 210.
  • the sulfuric acid concentration in the makeup water 222 stored in the makeup water storage section 213 is measured by the second concentration measurement system 215, and water and / or sulfuric acid is replenished according to the measurement result. It controls by supplying to the water storage part 213.
  • the sulfuric acid concentration in the makeup water is the same as the sulfuric acid concentration in the electrolytic solution. That is, for example, when the sulfuric acid concentration of the electrolytic solution is 3 g / L, the sulfuric acid concentration of makeup water is also 3 g / L. By making the sulfuric acid concentration of the makeup water equal to the sulfuric acid concentration of the electrolytic solution, the sulfuric acid concentration of the electrolytic solution can be kept constant without measuring the sulfuric acid concentration of the electrolytic solution.
  • an aluminum plate is amount of electricity when the anode sum is preferably from 150 ⁇ 800C / dm 2, more preferably from 200 ⁇ 700C / dm 2, 200 More preferably, it is ⁇ 500 C / dm 2 .
  • the surface roughness becomes sufficient, and the printing durability and the ease of adjusting the amount of water during printing become more excellent.
  • 800 C / dm 2 or less the stain resistance is more excellent.
  • an aluminum plate having a concavo-convex pattern formed thereon by transfer it is particularly preferably 200 to 400 C / dm 2 .
  • the current density in the electrochemical surface roughening treatment is preferably 30 to 300 A / dm 2 at the peak of the current value, more preferably 50 to 200 A / dm 2 , and 75 to 125 A / dm 2 . More preferably. When it is 30 A / dm 2 or more, the productivity is further improved. When it is 300 A / dm 2 or less, the voltage is not high and the power source capacity does not become too large, so that the power source cost can be reduced.
  • the current density is preferably set so as to increase gradually from the beginning to the end of the electrolytic treatment. This makes it easy to generate uniform pits. Specifically, the power supply and electrodes are divided and set so that the value of (final current density of electrolysis / initial current density of electrolysis) gradually increases to 1.1 to 2.0. It is preferable to do this.
  • the electrochemical surface roughening treatment can follow, for example, the electrochemical grain method (electrolytic grain method) described in Japanese Patent Publication No. 48-28123 and British Patent No. 896,563.
  • the compound capable of forming a complex with Cu include ammonia; hydrogen atom of ammonia such as methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, cyclohexylamine, triethanolamine, triisopropanolamine, EDTA (ethylenediaminetetraacetic acid), etc. And amines obtained by substituting with a hydrocarbon group (aliphatic, aromatic, etc.); metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate and the like.
  • ammonium salts such as ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, and ammonium carbonate are also included.
  • the temperature of the mixed aqueous solution is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, still more preferably 30 ° C. or higher, and preferably 60 ° C. or lower, preferably 50 ° C. or lower. More preferably, it is 40 ° C. or lower.
  • the temperature is 20 ° C. or higher, the refrigerator operating cost for cooling does not increase, and the amount of groundwater used for cooling can be suppressed. It is easy to ensure the corrosion resistance of equipment as it is 60 ° C. or lower.
  • the AC power supply wave used for the electrochemical surface roughening treatment is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave, or the like is used.
  • a trapezoidal wave or a sine wave is preferable, and a sine wave is more preferable.
  • a trapezoidal wave means what was shown in FIG.
  • the time until the current reaches a peak from zero is preferably 0.5 to 3.5 msec, and more preferably 0.8 to 2.5 msec. If it is 0.5 msec or more, the production cost of the power supply is lowered. If it is 3.5 msec or less, the uniformity of the pits becomes more excellent.
  • the current rise time can be arbitrarily selected.
  • the duty of alternating current (time during which the aluminum plate in one cycle is an anode / time of one cycle) is preferably 0.33 to 0.66, more preferably 0.45 to 0.55. preferable.
  • the AC frequency is preferably 10 to 200 Hz, more preferably 20 to 150 Hz, and still more preferably 30 to 120 Hz. When the frequency is 10 Hz or more, large faceted (pitched square shape) pits are not easily formed, and the stain resistance is more excellent. If it is 200 Hz or less, it is difficult to be affected by the inductance component of the circuit through which the electrolytic current flows, and it becomes easy to manufacture a large-capacity power supply.
  • an inverter control power supply for example, a commercial AC power supply, an inverter control power supply, or the like can be used.
  • an inverter control power source using an IGBT (Insulated Gate Bipolar Transistor) element varies the voltage with respect to the width and thickness of the aluminum plate, the concentration of each component in the electrolytic solution, etc. When the current density of the plate) is controlled to be constant, this is preferable in terms of excellent followability.
  • IGBT Insulated Gate Bipolar Transistor
  • One or more AC power supplies can be connected to the electrolytic cell.
  • the current ratio between the AC anode and cathode applied to the aluminum plate facing the main electrode is controlled to achieve uniform graining and to dissolve the carbon of the main electrode.
  • 311 is an aluminum plate
  • 312 is a radial drum roller
  • 313a and 313b are main poles
  • 314 is an electrolytic treatment solution
  • 315 is an electrolyte supply port
  • 316 is a slit.
  • 317 is an electrolyte passage
  • 318 is an auxiliary anode
  • 319a and 319b are thyristors
  • 320 is an AC power source
  • 340 is a main electrolytic cell
  • 350 is an auxiliary anode cell.
  • An anodic reaction that acts on the aluminum plate facing the main electrode by diverting a part of the current value as a direct current to an auxiliary anode provided in a tank separate from the two main electrodes via a rectifier or switching element It is possible to control the ratio between the current value for the current and the current value for the cathode reaction.
  • the current ratio (ratio of the total amount of electricity when the aluminum plate is the anode and the total amount of electricity when the aluminum plate is the cathode) is preferably 0.9 to 3, and preferably 0.95 to 2. More preferred.
  • an electrolytic cell used for a known surface treatment such as a vertical type can be used as the electrolytic cell, but the radial type as described in JP-A-5-195300 can be used.
  • the electrolytic cell is preferable from the viewpoint of preventing the back of the pit generated by the electrochemical surface roughening treatment.
  • an insulating plate is provided on the non-processed surface of the aluminum plate to prevent the back of the pit generated by the electrochemical surface roughening treatment, and current flows to the non-processed surface. It is preferable to take a method of preventing the above.
  • the electrolyte passing through the electrolytic cell may be parallel or counter to the traveling direction of the aluminum web, but a counter is more desirable.
  • the moving speed of the aluminum plate in order to improve the production amount.
  • As a method for increasing the treatment length there is a method using a large electrolytic cell.
  • the present invention makes it possible to make the average roughness Ra of the aluminum plate surface a sufficient value even when the electrochemical surface roughening treatment is performed using a plurality of electrolytic cells. Can be improved.
  • the number of electrolytic cells is preferably 3 to 10. If the number is 3 to 7, the average roughness Ra can be a sufficient value, and the productivity can be improved.
  • the flow rate of the electrolytic solution in the electrolytic cell is an average flow rate of 500 to 4000 mm / second in the same manner as described above, and the width orthogonal to the conveying direction of the metal web in the electrolytic cell.
  • the flow rate distribution of the electrolyte with respect to the direction is within ⁇ 50% of the average flow rate.
  • the metal web is conveyed at a speed of 0.05 to 1 second to pass through one inter-tank inter-electrode processing pause interval.
  • a plurality of electrolyte solution supply ports are arranged between the metal web 311 and the electrodes 313a and 313b corresponding to the electrodes 313a and 313b. The electrolytic solution is sprayed and supplied from each electrolytic solution supply port.
  • the electrochemical surface roughening treatment is completed, it is preferable to drain the liquid with a nip roller, further perform the water washing treatment for 1 to 10 seconds, and then drain the liquid with a nip roller.
  • the washing treatment is preferably carried out using a spray tube.
  • a spray tube having a plurality of spray tips in the width direction of the aluminum plate in which fan water spreads in a fan shape can be used.
  • the interval between spray tips is preferably 20 to 100 mm, and the amount of liquid per spray tip is preferably 1 to 20 L / min. It is preferable to use a plurality of spray tubes.
  • Measurement of the average opening diameter of the recesses generated by the electrochemical surface roughening treatment is performed, for example, by photographing the surface of the support from directly above at a magnification of 2000 times or 50000 times using an electron microscope, and the obtained electron micrograph In FIG. 4, at least 50 pits each having a ring shape around each pit are extracted, and the diameter is read to obtain the opening diameter, and the average opening diameter is calculated.
  • equivalent circle diameter measurement it is possible to perform equivalent circle diameter measurement using commercially available image analysis software.
  • the electron micrograph is captured by a scanner, digitized, and binarized by software, and then an equivalent circular diameter is obtained.
  • the result of visual measurement and the result of digital processing showed almost the same value.
  • the second etching process is performed for the purpose of dissolving the smut generated by the electrochemical roughening process and dissolving the edge portion of the pit formed by the electrochemical roughening process.
  • the edge portion of the large pit formed by the electrochemical surface roughening treatment is melted and the surface becomes smooth, and the ink is less likely to be caught on the edge portion, so that a lithographic printing plate precursor having excellent stain resistance is obtained. be able to.
  • the second etching treatment is basically the same as the first etching treatment, the etching amount is preferably at 0.01 g / m 2 or more, more preferably 0.05 g / m 2 or more, further preferably at 0.1 g / m 2 or more, but preferably not more 10 g / m 2 or less, more preferably at 5 g / m 2 or less, more preferably at 3 g / m 2 or less .
  • the aluminum plate treated as described above may be further anodized.
  • the anodizing treatment can be performed by a method conventionally used in this field. In this case, for example, in a solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less, an aluminum plate can be energized to form an anodic oxide film.
  • sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid and the like can be used alone or in combination of two or more.
  • the second and third components may be added.
  • the second and third components herein include metal ions such as Na, K, Mg, Li, Ca, Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn; Cation such as ammonium ion; anion such as nitrate ion, carbonate ion, chloride ion, phosphate ion, fluoride ion, sulfite ion, titanate ion, silicate ion, borate ion, etc., 0 to 10,000 ppm It may be contained at a concentration of about.
  • the conditions of the anodizing treatment cannot be determined unconditionally because they vary depending on the electrolyte used, but generally the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., and the current density is 0.5. It is appropriate that ⁇ 60 A / dm 2 , voltage 1 ⁇ 100 V, electrolysis time 15 seconds ⁇ 50 minutes, and the anodic oxide film amount is adjusted to a desired amount.
  • the methods described in JP-A-207299, JP-A-5-24377, JP-A-5-32083, JP-A-5-125597, JP-A-5-195291 and the like can also be used.
  • a sulfuric acid solution as the electrolytic solution.
  • the sulfuric acid concentration in the electrolytic solution is preferably 10 to 300 g / L (1 to 30% by mass), more preferably 50 to 200 g / L (5 to 20% by mass), and the aluminum ion concentration Is preferably 1 to 25 g / L (0.1 to 2.5% by mass), more preferably 2 to 10 g / L (0.2 to 1% by mass).
  • Such an electrolytic solution can be prepared, for example, by adding aluminum sulfate or the like to dilute sulfuric acid having a sulfuric acid concentration of 50 to 200 g / L.
  • composition management of the electrolytic solution is conducted using the same method as in the case of hydrochloric acid electrolysis described above, and the conductivity, specific gravity and temperature, or conductivity and ultrasonic wave propagation corresponding to the matrix of sulfuric acid concentration and aluminum ion concentration. It is preferable to control by speed and temperature.
  • the liquid temperature of the electrolytic solution is preferably 25 to 55 ° C, more preferably 30 to 50 ° C.
  • direct current may be applied between the aluminum plate and the counter electrode, or alternating current may be applied.
  • the current density is preferably 1 to 60 A / dm 2 , more preferably 5 to 40 A / dm 2 .
  • the current density it is preferable to increase the current density to 30 to 50 A / dm 2 or more as the anodic oxidation process proceeds by passing a current at a low current density of 5 to 10 A / m 2 .
  • the current distribution of the DC power supply is set so that the current of the downstream DC power supply is equal to or greater than the current of the upstream DC power supply.
  • the anodizing process is performed by a liquid power feeding method in which power is supplied to the aluminum plate through an electrolytic solution.
  • a porous film having a large number of pores called micropores can be obtained.
  • the average pore diameter is about 5 to 50 nm, and the average pore density is 300. It is about 800 / ⁇ m 2 .
  • the amount of the anodized film is preferably 1 to 5 g / m 2 . When it is 1 g / m 2 or more, the plate is hardly damaged. If it is 5 g / m 2 or less, a large amount of electric power is not required for production, which is economically advantageous.
  • the amount of the anodized film is more preferably 1.5 to 4 g / m 2 . Moreover, it is preferable to carry out so that the difference in the amount of the anodized film between the center portion of the aluminum plate and the vicinity of the edge portion is 1 g / m 2 or less.
  • the amount of the anodized film on the back surface of the surface subjected to the electrochemical surface roughening treatment is preferably 0.1 to 1 g / m 2 .
  • it is 0.1 g / m 2 or more, the back surface is less likely to be damaged, and the image recording layer that comes into contact with the back surface is less likely to be damaged when stacked as a lithographic printing plate precursor.
  • it is 1 g / m 2 or less, it is economically advantageous.
  • FIG. 7 is a schematic view showing an example of an apparatus for anodizing the surface of an aluminum plate.
  • a feeding tank 412 is provided on the upstream side in the traveling direction of the aluminum plate 416, and an anodizing tank 414 is provided on the downstream side. It is installed.
  • the aluminum plate 416 is conveyed by the pass rollers 422 and 428 as indicated by arrows in FIG.
  • an anode 420 connected to the positive electrode of the DC power supply 434 is installed, and the aluminum plate 416 serves as a cathode. Therefore, a cathode reaction occurs in the aluminum plate 416.
  • a cathode 430 connected to the negative electrode of the DC power source 434 is installed, and the aluminum plate 416 serves as an anode. Therefore, an anodic reaction occurs on the aluminum plate 416, and an anodic oxide film is formed on the surface of the aluminum plate 416.
  • the distance between the aluminum plate 416 and the cathode 430 is preferably 50 to 200 mm.
  • Aluminum is used as the cathode 430.
  • the cathode 430 is preferably an electrode divided into a plurality of pieces in the traveling direction of the aluminum plate 416 in order to make it easy for hydrogen gas generated by the anode reaction to escape from the system. .
  • an intermediate tank 413 in which an electrolytic solution does not accumulate between the power supply tank 412 and the anodizing treatment tank 414.
  • the intermediate tank 413 By providing the intermediate tank 413, current can be prevented from bypassing from the anode 420 to the cathode 430 without passing through the aluminum plate 416. It is preferable to reduce the bypass current as much as possible by installing a nip roller 424 in the intermediate tank 413 to drain the liquid. The electrolyte discharged by draining is discharged out of the anodizing apparatus 410 from the drain port 442.
  • the electrolyte solution 418 stored in the power supply tank 412 has a higher temperature and / or higher concentration than the electrolyte solution 426 stored in the anodizing tank 414 in order to reduce voltage loss.
  • the composition, temperature, and the like of the electrolytic solutions 418 and 426 are determined from the formation efficiency of the anodized film, the micropore shape of the anodized film, the hardness of the anodized film, the voltage, the cost of the electrolytic solution, and the like.
  • the electrolytic solution is ejected from the liquid supply nozzles 436 and 438 and supplied to the power supply tank 412 and the anodizing treatment tank 414.
  • the liquid supply nozzles 436 and 438 are provided with slits, and the liquid flow to be ejected in the width direction. It has a constant structure.
  • a shielding plate 440 is provided on the opposite side of the aluminum plate 416 from the cathode 430, and current flows to the opposite side of the surface of the aluminum plate 416 where the anodized film is to be formed. Deter.
  • the distance between the aluminum plate 416 and the shielding shielding plate 440 is preferably 5 to 30 mm. It is preferable to use a plurality of DC power supplies 434 and connect the positive electrode sides in common. Thereby, the current distribution in the anodizing bath 414 can be controlled.
  • ⁇ Sealing treatment> you may perform the sealing process which seals the micropore which exists in an anodic oxide film as needed.
  • the sealing treatment By performing the sealing treatment, the developability (sensitivity) of the lithographic printing plate precursor can be improved.
  • the anodized film is a porous film having pores called pores in a direction substantially perpendicular to the film surface.
  • the sealing rate is preferably 50% or more, more preferably 70% or more, and still more preferably 90% or more.
  • the “sealing rate” is defined by the following formula.
  • Sealing rate (surface area before sealing ⁇ surface area after sealing) / surface area before sealing ⁇ 100%
  • the surface area can be measured using, for example, a simple BET surface area measuring apparatus (for example, QUANTASORB (manufactured by Kantha Sorb), manufactured by Yuasa Ionics).
  • a simple BET surface area measuring apparatus for example, QUANTASORB (manufactured by Kantha Sorb), manufactured by Yuasa Ionics).
  • the sealing treatment is not particularly limited, and a conventionally known method can be used.
  • a conventionally known method can be used.
  • Zirconate treatment treatment with an aqueous solution containing a phosphate and an inorganic fluorine compound described in JP-A-9-244227, treatment with an aqueous solution containing a sugar described in JP-A-9-134002 , Treatment with an aqueous solution containing titanium and fluorine described in JP-A-2000-81704 and JP-A-2000-89466, alkali metal silica described in US Pat. No. 3,181,461, etc. Examples include acid salt treatment.
  • An example of a suitable sealing treatment is an alkali metal silicate treatment.
  • the alkali metal silicate treatment uses an alkali metal silicate aqueous solution having a pH of 10 to 13 at 25 ° C. without causing gelation of the liquid and dissolution of the anodized film, and the alkali metal silicate concentration and treatment temperature.
  • the processing conditions such as the processing time can be selected as appropriate.
  • Suitable alkali metal silicates include, for example, sodium silicate, potassium silicate, and lithium silicate.
  • sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. can be mix
  • alkaline-earth metal salt and / or a group 4 (Group IVA) metal salt with alkali metal silicate aqueous solution as needed.
  • alkaline earth metal salts include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate and barium nitrate; sulfates, hydrochlorides, phosphates, acetates, oxalates and boric acids of alkaline earth metals Examples thereof include water-soluble salts such as salts.
  • Group 4 (Group IVA) metal salts examples include titanium tetrachloride, titanium trichloride, potassium fluoride titanium, titanium oxalate potassium, titanium sulfate, titanium tetraiodide, zirconium chloride oxide, zirconium dioxide, zirconium tetrachloride. And so on. Alkaline earth metal salts and Group 4 (Group IVA) metal salts can be used alone or in combination of two or more.
  • the concentration of the aqueous alkali metal silicate solution is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5.0% by mass.
  • a suitable sealing treatment is a fluorinated zirconate treatment.
  • the fluorinated zirconate treatment is performed using a fluorinated zirconate salt such as sodium fluorinated zirconate or potassium fluorinated zirconate.
  • a fluorinated zirconate salt such as sodium fluorinated zirconate or potassium fluorinated zirconate.
  • sodium fluorinated zirconate it is preferable to use sodium fluorinated zirconate.
  • the concentration of the fluorinated zirconate solution used for the fluorinated zirconate treatment is preferably 0.01 to 2% by mass, more preferably 0.1 to 0.3% by mass.
  • the fluorinated zirconate solution preferably contains sodium dihydrogen phosphate.
  • the concentration of sodium dihydrogen phosphate is preferably 0.01 to 3% by mass, and more preferably 0.1 to 0.3% by mass.
  • the fluorinated zirconate solution may contain aluminum ions. In that case, the aluminum ion concentration of the fluorinated zirconate solution is preferably 1 to 500 mg / L.
  • the temperature for the sealing treatment is preferably 20 to 90 ° C., more preferably 50 to 80 ° C.
  • the sealing treatment time is preferably 1 to 20 seconds, and more preferably 5 to 15 seconds.
  • Japanese Patent Application Laid-Open No. 11-231509 A surface treatment such as a treatment of immersing or coating in a solution containing an organic compound having an amino group and a group selected from the group consisting of a phosphine group, a phosphone group, and a phosphoric acid group or a salt thereof described in the publication be able to.
  • a hydrophilization treatment may be performed after the anodizing treatment or the sealing treatment.
  • the hydrophilization treatment include treatment with potassium fluorozirconate described in US Pat. No. 2,946,638 and phosphomolybdate described in US Pat. No. 3,201,247.
  • treatment alkyl titanate treatment described in British Patent 1,108,559, polyacrylic acid treatment described in German Patent 1,091,433, German Patent 1,134, No. 093 and British Patent No. 1,230,447, polyvinyl phosphonic acid treatment, Japanese Patent Publication No. 44-6409, phosphonic acid treatment, US Pat. No. 3,307,951 Phytic acid treatment described in the specification of JP, No.
  • phosphates described in JP-A-62-019494, water-soluble epoxy compounds described in JP-A-62-033692, and JP-A-62-097892 Phosphate-modified starch diamine compounds described in JP-A-63-056498, amino acid inorganic or organic acids described in JP-A-63-130391, JP-A-63-145092 Organic phosphonic acids containing a carboxy group or a hydroxy group, compounds having an amino group and a phosphonic acid group described in JP-A-63-165183, and JP-A-2-316290
  • Specific carboxylic acid derivatives, phosphate esters described in JP-A-3-215095, JP-A-3-261592 Compounds having one amino group and one oxygen acid group of phosphorus described in the publication, phosphate esters described in JP-A-3-215095, and JP-A-5-246171 Aliphatic or aromatic phosphonic acids such as phenylphosphonic acid, compounds containing S
  • hydrophilization treatment is performed by a method of immersing in an aqueous solution of an alkali metal silicate such as sodium silicate or potassium silicate, or a method of forming a hydrophilic component by applying a hydrophilic vinyl polymer or a hydrophilic compound. It is preferred to do so.
  • Hydrophilization treatment with an aqueous solution of an alkali metal silicate such as sodium silicate and potassium silicate is described in US Pat. No. 2,714,066 and US Pat. No. 3,181,461. It can be performed according to methods and procedures.
  • the alkali metal silicate include sodium silicate, potassium silicate, and lithium silicate.
  • the aqueous solution of alkali metal silicate may contain an appropriate amount of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like.
  • the aqueous solution of alkali metal silicate may contain an alkaline earth metal salt or a Group 4 (Group IVA) metal salt.
  • alkaline earth metal salt examples include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate, and barium nitrate; sulfates; hydrochlorides; phosphates; acetates; oxalates;
  • Group 4 (Group IVA) metal salts include titanium tetrachloride, titanium trichloride, potassium fluoride titanium, potassium oxalate, titanium sulfate, titanium tetraiodide, zirconium chloride, zirconium dioxide, zirconium tetrachloride. Is mentioned. These alkaline earth metal salts and Group 4 (Group IVA) metal salts are used alone or in combination of two or more.
  • the amount of Si adsorbed by the alkali metal silicate treatment can be measured with a fluorescent X-ray analyzer, and the amount of adsorption is preferably about 1.0 to 15.0 mg / m 2 .
  • the adsorption amount of Si is more preferably 1.0 to 10.0 mg / m 2 .
  • the stain resistance of the halftone dot non-image portion is improved.
  • the area ratio of the halftone dot is high (70 to 90%), and in the area corresponding to that of the planographic printing plate, the image portion (image recording layer) The area is large, and the area of the non-image part (exposed part of the support) is relatively small.
  • the inks placed on the adjacent image portions come into contact with each other (that is, entangled), the ink adheres to the non-image portions therebetween, and the non-image portions of the printed material are crushed ( In other words, the phenomenon of contamination) is likely to occur.
  • the hydrophilicity of the non-image area is improved by carrying out a hydrophilic treatment so that the amount of Si adhering to the surface of the lithographic printing plate support is within the above range, so that the obtained lithographic printing plate support is obtained.
  • an aqueous solution having a sodium silicate concentration of 1 to 5% by mass is used to perform a hydrophilic treatment.
  • sodium silicate it is particularly preferable to use No. 1 sodium silicate.
  • the hydrophilization treatment by forming a hydrophilic component can also be performed according to the conditions and procedures described in JP-A Nos. 59-101651 and 60-149491.
  • the hydrophilic vinyl polymer used in this method include polyvinyl sulfonic acid, a sulfo group-containing vinyl polymerizable compound such as p-styrene sulfonic acid having a sulfo group, and ordinary vinyl polymerization such as (meth) acrylic acid alkyl ester. And a copolymer with a functional compound.
  • the hydrophilic compound used in this method include compounds having at least one selected from the group consisting of —NH 2 group, —COOH group and sulfo group.
  • ⁇ Dry> After obtaining the lithographic printing plate support as described above, it is preferable to dry the surface of the lithographic printing plate support before providing the image recording layer. Drying is preferably performed after the final treatment of the surface treatment, after washing with water and draining with a nip roller.
  • the drying temperature is preferably 70 ° C or higher, more preferably 80 ° C or higher, preferably 110 ° C or lower, more preferably 100 ° C or lower.
  • the drying time is preferably 1 second or longer, more preferably 2 seconds or longer, more preferably 20 seconds or shorter, and even more preferably 15 seconds or shorter.
  • the lithographic printing plate support obtained by the present invention can be provided with an image recording layer to form the lithographic printing plate precursor of the present invention.
  • a photosensitive composition is used for the image recording layer.
  • the photosensitive composition suitably used in the present invention include a thermal positive photosensitive composition containing an alkali-soluble polymer compound and a photothermal conversion substance (hereinafter, this composition and an image recording layer using the same). ),
  • a thermal negative photosensitive composition containing a curable compound and a photothermal conversion substance hereinafter also referred to as “thermal negative type”
  • a photopolymerizable photosensitive composition hereinafter referred to as “thermal positive type”.
  • photopolymer type a negative photosensitive composition containing a diazo resin or a photocrosslinking resin
  • conventional negative type a negative photosensitive composition containing a diazo resin or a photocrosslinking resin
  • positive photosensitive composition containing a quinonediazide compound a positive photosensitive composition containing a quinonediazide compound.
  • Photopolymer type a negative photosensitive composition containing a diazo resin or a photocrosslinking resin
  • non-treatment type photosensitive composition that does not require a special development step
  • the thermal positive type photosensitive composition contains an alkali-soluble polymer compound and a photothermal conversion substance.
  • the photothermal conversion substance converts the energy of light such as infrared lasers into heat, which effectively eliminates the interaction that reduces the alkali solubility of alkali-soluble polymer compounds. To do.
  • alkali-soluble polymer compound examples include a resin containing an acidic group in the molecule and a mixture of two or more thereof.
  • a resin containing an acidic group in the molecule and a mixture of two or more thereof.
  • a phenolic hydroxy group, sulfonamide group in -SO 2 NH-R (wherein, R represents a hydrocarbon group.)
  • Active imino group -SO 2 NHCOR, -SO 2 NHSO 2 R, -CONHSO
  • a resin having an acidic group such as 2 R is preferable in terms of solubility in an alkali developer.
  • a resin having a phenolic hydroxy group is preferable from the viewpoint of excellent image-forming properties when exposed to light such as an infrared laser, such as phenol-formaldehyde resin, m-cresol-formaldehyde resin, p-cresol-formaldehyde resin, Novolac resins such as m- / p-mixed cresol-formaldehyde resin, phenol / cresol (any of m-, p- and m- / p-mixed) mixed-formaldehyde resin (phenol-cresol-formaldehyde co-condensation resin) are preferable.
  • Preferred examples also include polymer compounds containing units, and polymer compounds described in JP-A No. 2002-311570 (particularly [0107]).
  • a pigment or a dye having a light absorption region in the infrared region having a wavelength of 700 to 1200 nm is preferably mentioned from the viewpoint of recording sensitivity.
  • the dye include azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squarylium dyes, pyrylium salts, metal thiolate complexes (for example, , Nickel thiolate complex).
  • cyanine dyes are preferable, and cyanine dyes represented by general formula (I) described in JP-A No. 2001-305722 are particularly preferable.
  • the thermal positive type photosensitive composition may contain a dissolution inhibitor.
  • the dissolution inhibitor include dissolution inhibitors described in JP-A-2001-305722, [0053] to [0055].
  • a sensitivity modifier a printing agent for obtaining a visible image immediately after heating by exposure, a compound such as a dye as an image colorant, a coating property
  • a surfactant for improving the processing stability.
  • compounds as described in JP-A-2001-305722, [0056] to [0060] are preferable.
  • the photosensitive composition described in detail in JP-A No. 2001-305722 is preferably used.
  • the thermal positive type image recording layer is not limited to a single layer but may have a two-layer structure.
  • a lower layer hereinafter referred to as “A layer” having excellent printing durability and solvent resistance is provided on the side close to the support, and a positive layer is provided thereon.
  • a type provided with a layer having excellent image formability hereinafter referred to as “B layer”. This type has high sensitivity and can realize a wide development latitude.
  • the B layer generally contains a photothermal conversion substance. Preferred examples of the photothermal conversion substance include the dyes described above.
  • the resin used for the A layer a polymer having a monomer having a sulfonamide group, an active imino group, a phenolic hydroxy group or the like as a copolymerization component is preferably used because it has excellent printing durability and solvent resistance.
  • the resin used for the B layer an alkaline aqueous solution-soluble resin having a phenolic hydroxy group is preferably exemplified.
  • the composition used for the A layer and the B layer can contain various additives as necessary. Specifically, various additives as described in JP-A-2002-3233769, [0062] to [0085] are preferably used.
  • the additives described in [0053] to [0060] of the above-mentioned JP-A No. 2001-305722 are also preferably used.
  • each component which comprises A layer and B layer, and its content it is preferable to make it describe in Unexamined-Japanese-Patent No. 11-218914.
  • the image recording layer having the two-layer structure described above is formed on a lithographic printing plate support having a surface Si adsorption amount of 1.0 to 10.0 mg / m 2 by hydrophilization, the resulting lithographic printing plate is obtained as follows. , Ink inking property is improved, and stain resistance of a halftone dot non-image portion is improved.
  • An intermediate layer is preferably provided between the thermal positive type image recording layer and the support.
  • Preferred examples of the component contained in the intermediate layer include various organic compounds described in JP-A-2001-305722, [0068].
  • the thermal negative photosensitive composition contains a curable compound and a photothermal conversion substance.
  • the thermal negative type image recording layer is a negative photosensitive layer in which a portion irradiated with light such as an infrared laser is cured to form an image portion.
  • a polymerization type image recording layer (polymerization layer) is preferably exemplified.
  • Heavy / BR> ⁇ W contains a photothermal conversion substance, a radical generator, a radical polymerizable compound that is a curable compound, and a binder polymer.
  • infrared light absorbed by the light-to-heat conversion substance is converted into heat, the radical generator is decomposed by this heat to generate radicals, and the radical polymerizable compound is polymerized in a chain by the generated radicals and cured. .
  • the photothermal conversion substance used for the thermal positive type mentioned above is mentioned, for example.
  • particularly preferred cyanine dyes include those described in JP-A-2001-133969, [0017] to [0019].
  • Preferred examples of the radical generator include onium salts.
  • onium salts described in JP-A-2001-133969, [0030] to [0033] are preferable.
  • the radically polymerizable compound include compounds having at least one terminal ethylenically unsaturated bond, preferably two or more.
  • the binder polymer a linear organic polymer is preferably exemplified.
  • Preferable examples include linear organic polymers that are soluble or swellable in water or weak alkaline water.
  • a (meth) acrylic resin having an unsaturated group such as an allyl group or an acryloyl group or a benzyl group and a carboxy group in the side chain is preferable in that it has an excellent balance of film strength, sensitivity, and developability.
  • the radical polymerizable compound and the binder polymer those described in detail in [0036] to [0060] of JP-A No. 2001-133969 can be used.
  • the thermal negative photosensitive composition contains an additive described in JP-A-2001-133969, [0061] to [0068] (for example, a surfactant for improving coatability). Is preferred.
  • an acid cross-linked image recording layer (acid cross-linked layer) is also preferably exemplified.
  • the acid crosslinking layer comprises a photothermal conversion substance, a thermal acid generator, a compound (crosslinking agent) that crosslinks with an acid that is a curable compound, and an alkali-soluble polymer compound that can react with the crosslinking agent in the presence of an acid. contains.
  • infrared light absorbed by the photothermal conversion substance is converted into heat, the heat acid generator is decomposed by this heat to generate an acid, and the generated acid reacts with the cross-linking agent and the alkali-soluble polymer compound. And harden.
  • Examples of the photothermal conversion substance include the same substances as those used for the polymerization layer.
  • Examples of the thermal acid generator include thermal decomposition compounds such as photoinitiators for photopolymerization, photochromic agents for dyes, and acid generators used in microresists.
  • Examples of the crosslinking agent include an aromatic compound substituted with a hydroxymethyl group or an alkoxymethyl group; a compound having an N-hydroxymethyl group, an N-alkoxymethyl group or an N-acyloxymethyl group; and an epoxy compound.
  • Examples of the alkali-soluble polymer compound include a novolak resin and a polymer having a hydroxyaryl group in the side chain.
  • the photopolymerization type photosensitive composition contains an addition polymerizable compound, a photopolymerization initiator, and a polymer binder.
  • an ethylenically unsaturated bond-containing compound capable of addition polymerization is preferably exemplified.
  • the ethylenically unsaturated bond-containing compound is a compound having a terminal ethylenically unsaturated bond. Specifically, for example, it has a chemical form such as a monomer, a prepolymer, and a mixture thereof.
  • monomers examples include esters of unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, maleic acid) and aliphatic polyhydric alcohol compounds, amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds. Is mentioned.
  • esters of unsaturated carboxylic acids eg, acrylic acid, methacrylic acid, itaconic acid, maleic acid
  • aliphatic polyhydric alcohol compounds examples include amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds.
  • photopolymerization initiator various photopolymerization initiators or a combination system (photoinitiation system) of two or more kinds of photopolymerization initiators can be appropriately selected depending on the wavelength of the light source to be used.
  • initiation systems described in JP-A-2001-22079, [0021] to [0023] are preferable.
  • the polymer binder not only functions as a film-forming agent for the photopolymerization type photosensitive composition, but is soluble or swellable in alkaline water because it is necessary to dissolve the image recording layer in an alkaline developer.
  • An organic high molecular polymer is used.
  • those described in JP-A-2001-22079, [0036] to [0063] are preferably exemplified.
  • additives described in JP-A-2001-22079, [0079] to [0088] for example, a surfactant for improving coatability
  • Colorants for example, Colorants, plasticizers, thermal polymerization inhibitors
  • an oxygen-blocking protective layer on the photopolymer type image recording layer in order to prevent the action of inhibiting the polymerization of oxygen.
  • the polymer contained in the oxygen barrier protective layer include polyvinyl alcohol and copolymers thereof.
  • the conventional negative photosensitive composition contains a diazo resin or a photocrosslinking resin.
  • a photosensitive composition containing a diazo resin and an alkali-soluble or swellable polymer compound (binder).
  • the diazo resin include condensates of aromatic diazonium salts and compounds containing active carbonyl groups such as formaldehyde; condensates of p-diazophenylamines and formaldehyde with hexafluorophosphate or tetrafluoroborate.
  • An organic solvent-soluble diazo resin inorganic salt which is a reaction product of In particular, a high molecular weight diazo compound containing 20 mol% or more of a hexamer described in JP-A-59-78340 is preferable.
  • the binder include a copolymer containing acrylic acid, methacrylic acid, crotonic acid, or maleic acid as an essential component.
  • a multi-component copolymer of monomers such as 2-hydroxyethyl (meth) acrylate, (meth) acrylonitrile, (meth) acrylic acid as described in JP-A-50-118802
  • monomers such as 2-hydroxyethyl (meth) acrylate, (meth) acrylonitrile, (meth) acrylic acid as described in JP-A-50-118802
  • multi-component copolymers composed of alkyl acrylate, (meth) acrylonitrile and unsaturated carboxylic acid as described in JP-A-56-4144 examples thereof include multi-component copolymers composed of alkyl acrylate, (meth) acrylonitrile and unsaturated carboxylic acid as described in JP-A-56-4144.
  • the conventional negative type photosensitive composition has, as additives, the bake-out agent, dye, and flexibility and abrasion resistance described in JP-A-7-281425, [0014] to [0015]. It is preferable to contain a plasticizer for imparting, a compound such as a development accelerator, and a surfactant for improving coating properties.
  • an intermediate layer containing a polymer compound having a component having an acid group and a component having an onium group as described in JP-A-2000-105462 is provided. Is preferred.
  • the conventional positive type photosensitive composition contains a quinonediazide compound.
  • a photosensitive composition containing an o-quinonediazide compound and an alkali-soluble polymer compound.
  • o-quinonediazide compounds include esters of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride and phenol-formaldehyde resin or cresol-formaldehyde resin, described in US Pat. No. 3,635,709. And esters of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride and pyrogallol-acetone resin.
  • alkali-soluble polymer compound examples include phenol-formaldehyde resin, cresol-formaldehyde resin, phenol-cresol-formaldehyde co-condensation resin, polyhydroxystyrene, N- (4-hydroxyphenyl) methacrylamide copolymer, Carboxy group-containing polymers described in JP-A-7-36184, acrylic resins containing phenolic hydroxy groups as described in JP-A-51-34711, and JP-A-2-866 Examples thereof include acrylic resins having a sulfonamide group and urethane resins.
  • Conventional positive type photosensitive compositions include compounds such as sensitivity modifiers, printing agents, dyes and the like described in JP-A-7-92660, [0024] to [0027] as additives. It is preferable to contain a surfactant for improving the coating property as described in [0031] of Kaihei 7-92660.
  • Non-treatment type photosensitive composition examples include a thermoplastic fine particle polymer type, a microcapsule type, and a sulfonic acid-generating polymer-containing type. These are all heat-sensitive types containing a photothermal conversion substance.
  • the photothermal conversion substance is preferably the same dye as that used in the above-described thermal positive type.
  • thermoplastic fine particle polymer type photosensitive composition is obtained by dispersing a hydrophobic and heat-meltable fine particle polymer in a hydrophilic polymer matrix.
  • the hydrophobic fine particle polymer is melted by heat generated by exposure and is fused to form a hydrophobic region, that is, an image portion.
  • the fine particle polymer those in which fine particles melt and coalesce with heat are preferable, and those having a hydrophilic surface and capable of being dispersed in a hydrophilic component such as dampening water are more preferable.
  • thermoplastic fine particle polymers include thermoplastic fine particle polymers. Of these, polystyrene and polymethyl methacrylate are preferred.
  • the fine particle polymer having a hydrophilic surface include those in which the polymer itself is hydrophilic; those in which a hydrophilic compound such as polyvinyl alcohol and polyethylene glycol is adsorbed on the surface of the fine particle polymer to make the surface hydrophilic.
  • the fine particle polymer preferably has a reactive functional group.
  • microcapsule-type photosensitive composition examples include those described in JP-A No. 2000-118160 and compounds having a heat-reactive functional group as described in JP-A No. 2001-277740.
  • a microcapsule type is preferable.
  • Examples of the sulfonic acid-generating polymer used in the sulfonic acid-generating polymer-containing photosensitive composition include sulfonic acid ester groups, disulfone groups, or sec- or tert-sulfonamides described in JP-A-10-282672. Examples thereof include polymers having a group in the side chain.
  • hydrophilic resin By including a hydrophilic resin in an unprocessed photosensitive composition, not only on-press developability is improved, but also the film strength of the photosensitive layer itself is improved.
  • hydrophilic resin include those having a hydrophilic group such as hydroxy group, carboxy group, hydroxyethyl group, hydroxypropyl group, amino group, aminoethyl group, aminopropyl group, carboxymethyl group, and hydrophilic sol-gel conversion system A binder resin is preferred.
  • the unprocessed image recording layer can be developed on a printing press without requiring a special development process.
  • a method for producing an unprocessed type image recording layer and a plate-making printing method methods described in detail in JP-A No. 2002-178655 can be used.
  • the backside of the lithographic printing plate precursor of the present invention obtained by providing various image recording layers on the lithographic printing plate support obtained by the present invention, if necessary, is an image in the case of overlapping.
  • a coating layer made of an organic polymer compound can be provided.
  • the lithographic printing plate precursor using the lithographic printing plate support obtained by the present invention is made into a lithographic printing plate by various treatment methods according to the image recording layer.
  • the active light source used for image exposure include a mercury lamp, a metal halide lamp, a xenon lamp, and a chemical lamp.
  • the laser beam include a helium-neon laser (He—Ne laser), an argon laser, a krypton laser, a helium-cadmium laser, a KrF excimer laser, a semiconductor laser, a YAG laser, and a YAG-SHG laser.
  • the image recording layer is any of thermal positive type, thermal negative type, conventional negative type, conventional positive type, and photopolymer type
  • a developer to obtain a lithographic printing plate. It is preferable to obtain.
  • the developer is preferably an alkaline developer, and more preferably an alkaline aqueous solution that does not substantially contain an organic solvent.
  • a developer substantially free of alkali metal silicate is also preferred.
  • a method for developing using a developer substantially not containing an alkali metal silicate a method described in detail in JP-A-11-109637 can be used.
  • a developer containing an alkali metal silicate can also be used.
  • Etching treatment in alkaline aqueous solution was performed by spraying an aqueous solution of caustic soda concentration of 370 g / L, aluminum ion concentration of 1 g / L, and a temperature of 60 ° C. onto the aluminum plate from a spray tube.
  • the etching amount of the surface subjected to the electrochemical roughening treatment after the aluminum plate was 3 g / m 2 .
  • the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
  • (B) Desmutting treatment in an acidic aqueous solution An aluminum plate was sprayed with an aqueous solution having a sulfuric acid concentration of 170 g / L, an aluminum ion concentration of 5 g / L, and a temperature of 50 ° C. from a spray tube to perform desmutting treatment for 5 seconds.
  • a sulfuric acid aqueous solution the waste liquid of the (i) anodizing process mentioned later was used. Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
  • Electrochemical roughening treatment using alternating current in an acidic aqueous solution As an electrolytic solution, an aqueous solution (temperature 35 ° C.) having a hydrochloric acid concentration, an aluminum ion concentration and a sulfuric acid concentration shown in Table 2 is used. The current was controlled by inverter control using a gate bipolar transistor) element, and an electrochemical roughening process was performed using a power source capable of generating an alternating current of arbitrary waveform. The AC current waveform, current rise time (in cases other than a sine wave), duty ratio, and frequency were as shown in Table 2, respectively. A power source was installed for each electrolytic cell so that the current density gradually increased.
  • the value of (final current density of electrolysis / initial current density of electrolysis) was 1.8.
  • the current density during the anode reaction of the aluminum plate at the alternating current peak was 45 A / dm 2 at the beginning of electrolysis.
  • the amount of electricity was the total amount of electricity when the aluminum plate was an anode, as shown in Table 2.
  • the current ratio ratio of the total amount of electricity when the aluminum plate was the anode and the total amount of electricity when the aluminum plate was the cathode
  • the concentration control of the electrolytic solution was performed by adding make-up water preliminarily added with an amount of hydrochloric acid proportional to the amount of energization and sulfuric acid of a desired concentration according to a data table obtained in advance.
  • a data table is created by measuring the relationship between the electric conductivity of the liquid and the ultrasonic wave propagation speed corresponding to each composition, and added from the measurement results of the electric conductivity of the liquid and the ultrasonic wave propagation speed.
  • the amount of hydrochloric acid and the amount of makeup water were feedback controlled. Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
  • the etching amount of the aluminum plate subjected to the electrochemical surface roughening treatment was 0.2 g / m 2 .
  • the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
  • an electrolytic solution (temperature 50 ° C.) in which aluminum sulfate was dissolved in a 170 g / L sulfuric acid aqueous solution to make an aluminum ion concentration 5 g / L was used.
  • the anodizing treatment was performed so that the average current density during the anodic reaction of the aluminum plate was 15 A / dm 2 , and the final oxide film amount was 2.7 g / m 2 .
  • the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
  • (G) Hydrophilization treatment 1 The aluminum plate was immersed in a 1.0 mass% aqueous solution of sodium silicate (temperature 20 ° C.) for 10 seconds. The amount of Si on the surface of the aluminum plate measured with a fluorescent X-ray analyzer was 3.5 mg / m 2 . Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller. Furthermore, 90 degreeC wind was sprayed for 10 seconds, it was made to dry, and the support body for lithographic printing plates was obtained.
  • lithographic printing plate precursor was obtained by providing a thermal positive type image recording layer on the lithographic printing plate support obtained above as follows. Before providing the image recording layer, an intermediate layer was provided as described later.
  • Examples 1 to 24, Comparative Examples 1 to 9 An undercoat liquid A having the following composition was applied onto a lithographic printing plate support and dried at 80 ° C. for 15 seconds to form a component coating film (intermediate layer). The coating amount of the coating film after drying was 15 mg / m 2 .
  • an image recording layer coating solution B1 having the following composition was coated on the components with a wire bar so as to be 0.85 g / m 2 after drying, and dried at 140 ° C. for 50 seconds.
  • the image recording layer coating liquid B2 having the following composition was applied with a wire bar so as to be 0.25 g / m 2 after drying, and dried at 140 ° C. for 1 minute to form a multilayer thermal positive type image recording layer.
  • a lithographic printing plate precursor was obtained.
  • ⁇ Composition of coating liquid B2 for image recording layer> ⁇ Phenol / m, p-cresol novolak (phenol / m-cresol novolak / p-cresol novolak 5/3/2, weight average molecular weight 4000) 0.274 g -0.029 g of cyanine dye B represented by the above formula -Structural polymer C / methyl ethyl ketone 30% solution represented by the following formula (Structural polymer B / methyl ethyl ketone 30% solution) 0.14 g -Quaternary ammonium salt D shown by the following formula 0.004 g ⁇ Sulphonium salt E represented by the following formula: 0.065 g ⁇ Fluorosurfactant (Megafac F-780, manufactured by Dainippon Ink & Chemicals, Inc.) 0.004g ⁇ Fluorosurfactant (Megafac F-782, manufactured by Dainippon Ink & Chemical
  • planographic printing plate precursor evaluation of image quality, printing durability and stain resistance of the planographic printing plate were evaluated by the following methods.
  • the resulting lithographic printing plate was printed with a Lithrone printing machine manufactured by Komori Corporation using DIC-GEOS (N) black ink manufactured by Dainippon Ink and Chemicals.
  • DIC-GEOS N black ink manufactured by Dainippon Ink and Chemicals.
  • a multi-cleaner manufactured by Fuji Film Co., Ltd. was attached to the surface of the image recording layer for 1 minute every 5,000 sheets and then wiped with water.
  • the printing durability was evaluated based on the number of printed sheets when it was visually recognized that the density of the solid image started to decrease.
  • the results are shown in Tables 3 and 4.
  • the meanings of symbols in Tables 3 and 4 are as follows. ⁇ : 30,000 or more ⁇ ⁇ : 20,000 or more and less than 30,000 ⁇ : 10,000 or more and less than 20,000 ⁇ ⁇ : less than 10,000
  • the lithographic printing plate using the lithographic printing plate support obtained by the method for producing a lithographic printing plate support of the present invention is either Excellent printing durability and stain resistance. Further, the image surface unevenness with respect to the streaks and chatter marks on the coated surface was also excellent. In contrast, in Comparative Examples 1 to 9, the obtained lithographic printing plates using the lithographic printing plate support were inferior in printing durability and stain resistance.

Abstract

Provided is a method of manufacturing a support for a planographic printing plate, by which the variation in image quality can be reduced and an even tone of sand can be achieved stably. A metal web (MW) formed of aluminum or an aluminum alloy is transferred, being dipped in an electrolyte (EL) of a plurality of electrolyte baths (11) sequentially, and current is supplied between the metal web (MW) and a plurality of electrodes (13) opposite to the metal web (MW) in the electrolyte baths (11) to perform an electrochemical surface roughening treatment on the metal web (MW). During this treatment, the flow rate of the electrolyte (EL) in the electrolyte baths (11) are so set that an average flow rate in the electrolyte baths may be 500 to 4000 mm/sec. and a flow rate distribution of the electrolyte (EL) in the width direction perpendicular to the direction in which the metal web (MW) is transferred in the electrolyte baths (11) may be within +/- 50% of the average flow rate. Letting a region of the transfer path of the metal web which is opposite to a gap between each two adjacent electrodes be a treatment suspension zone between electrodes in the bath, the metal web (MW) is transferred at such a speed that the time (Tin) for the metal web (MW) to pass through one treatment suspension zone between electrodes in the bath may be 0.05 to 1 sec.

Description

平版印刷版用支持体の製造方法Method for producing support for lithographic printing plate
 本発明は、金属ウェブを複数の電解槽の電解液中へ順次に浸漬させ、金属ウェブに電解槽内で対向配置された複数の電極と金属ウェブとの間に電流を供給し、金属ウェブを連続的に電気化学的粗面化処理する平版印刷版用支持体の製造方法に関する。 The present invention sequentially immerses a metal web in an electrolytic solution of a plurality of electrolytic cells, supplies current between the metal web and a plurality of electrodes opposed to the metal web in the electrolytic cell, The present invention relates to a method for producing a lithographic printing plate support which is continuously subjected to electrochemical surface roughening.
 印刷版用支持体、特に平版印刷版用支持体としては、アルミニウム板が用いられ、ユーザーの多様化からアルミニウム板も純アルミニウムに近いものから、マンガンを添加し強度を上げたものまで多様化している。そしてその様なアルミニウム板を平版印刷版用支持体として使用するためには、支持体表面が画像記録層である例えば感光材との適度な接着性と保水性を有していることが必要である。このためには、アルミニウム板の表面を均一かつ緻密な砂目を有するように粗面化しなければならない。この粗面化処理は、実際に印刷を行ったとき、版材の汚れ性能などの印刷性能に著しい影響を及ぼすので、その良否は版材製造上重要な要素となっている。 Aluminum plates are used as printing plate supports, especially lithographic printing plate supports. From the diversification of users, aluminum plates are also close to pure aluminum, and have been diversified from those with increased strength by adding manganese. Yes. In order to use such an aluminum plate as a lithographic printing plate support, it is necessary that the surface of the support has appropriate adhesion and water retention with, for example, a photosensitive material which is an image recording layer. is there. For this purpose, the surface of the aluminum plate must be roughened so as to have a uniform and fine grain. This roughening treatment has a significant effect on printing performance such as the stain performance of the plate material when printing is actually performed. Therefore, the quality is an important factor in the production of the plate material.
 印刷版用アルミニウム支持体の粗面化方法としては、機械的な砂目立て法、電気化学的な砂目立て法などがあり、又それらを適時組合わせた形で粗面化を行っている。機械的な砂目立て法としては、例えばボールグレイン,ワイヤーグレイン,ブラッシグレイン,液体ホーニング法などがある。また電気化学的砂目立て方法としては、交流電解エッチング法が一般的に使用されており、電流としては普通の正弦波交流電流あるいは矩形波など、特殊交番電流が用いられている。またこの電気化学的砂目立ての前処理として、苛性ソーダなどでエッチング処理をしても良い。 There are mechanical graining methods, electrochemical graining methods, and the like as roughening methods for the aluminum support for printing plates, and surface roughening is performed in a timely combination. Examples of the mechanical graining method include ball grain, wire grain, brush grain, and liquid honing. As an electrochemical graining method, an AC electrolytic etching method is generally used, and as a current, a special alternating current such as a normal sine wave AC current or a rectangular wave is used. Further, as a pretreatment for this electrochemical graining, an etching process may be performed with caustic soda.
 その中で交流電解エッチング方法においては、ラジアル型セルにおいても槽型セルにおいても、電解液を供給する給液ノズルは1ヶ所であったため、ここから補給された電解液はアルミニウム板と電極との間の定められた狭い空間の間(例えば10mm)を通って反対側に流れ、電解液排出口に出て行くので、流路における電解によって次第に電解液が疲労し電極の初めと終りでは電解液が疲労してその成分に差が出て来て充分な電解効率が得られず、また液の入口と出口との温度差が大きくなり所望の砂目が得られなかった。上記の欠点を改善するため、給液ノズルを電極間に2ヶ所以上設けるようにした電解処理装置がある(特許文献1)。 Among them, in the AC electrolytic etching method, since there is one liquid supply nozzle for supplying the electrolytic solution in both the radial type cell and the tank type cell, the electrolytic solution replenished from here is the aluminum plate and the electrode. Since it flows to the opposite side through a defined narrow space (for example, 10 mm) and exits to the electrolyte outlet, the electrolyte gradually becomes fatigued due to electrolysis in the flow path, and the electrolyte at the beginning and end of the electrode. However, due to fatigue, a difference in the components appeared and sufficient electrolysis efficiency could not be obtained, and the temperature difference between the liquid inlet and outlet became large and the desired graininess could not be obtained. In order to improve the above-described drawbacks, there is an electrolytic processing apparatus in which two or more liquid supply nozzles are provided between electrodes (Patent Document 1).
 また、アルミニウム板幅方向両端部に対して電極側より板幅に対して複数個の給液ノズルを設け、この複数個の給液ノズルから供給される液がアルミニウム板の幅方向両端部にカーテン膜を形成し、中央部の電解液が両端部に流れることを防ぐ方法がある(特許文献2)。 In addition, a plurality of liquid supply nozzles are provided from the electrode side to the both ends in the width direction of the aluminum plate, and the liquid supplied from the plurality of supply nozzles is curtained at both ends in the width direction of the aluminum plate. There is a method of forming a film and preventing the electrolyte in the center from flowing to both ends (Patent Document 2).
 また、交流電解エッチング方法において、アルミニウム板の幅方向の電解液の流速分布が平均流速から大きくずれる変動がおこると幅方向での砂目立て性が大きく変化してしまい、印刷性能差が発生したりする。これを解消するために、幅方向流速分布を平均流速±50%以内に規定するために、給液ノズル内にアルミニウム板幅方向に摩擦抵抗を増加させるためのガイドベーンを幅方向に適当に間隔を違えて挿入する方法がある。(特許文献3)。 Also, in the AC electrolytic etching method, when the flow rate distribution of the electrolyte solution in the width direction of the aluminum plate is greatly deviated from the average flow rate, the graininess in the width direction changes greatly, resulting in a difference in printing performance. To do. In order to eliminate this, in order to regulate the flow velocity distribution in the width direction within an average flow velocity of ± 50%, guide vanes for increasing frictional resistance in the width direction of the aluminum plate in the liquid supply nozzle are appropriately spaced in the width direction. There is a way to insert differently. (Patent Document 3).
特開平2-015198号公報(請求項1、図1)JP-A-2-015198 (Claim 1, FIG. 1) 特開平5-195300号公報(請求項1、段落7)JP-A-5-195300 (Claim 1, paragraph 7) 特開平9-248977号公報(第5~7頁、図1)Japanese Patent Laid-Open No. 9-248977 (pages 5-7, FIG. 1) 特開平9-39431号公報JP-A-9-39431 特開2006-44263号公報JP 2006-44263 A 特開平10-869号公報JP-A-10-869 特開2002-283762号公報JP 2002-283762 A 特開平5-4466号公報Japanese Patent Laid-Open No. 5-4466
 しかしながら、上記特許文献1に記載された方法では、電解液が疲労してその成分に差が出て来て充分な電解効率が得られず、また液の入口と出口との温度差が大きくなり所望の砂目が得られなくなるのを防止するために、電解液供給口を対極間に2ヶ所以上設けたものの、電解処理での画質むらの改善は充分とは言えず、より一層の改善が望まれていた。 However, in the method described in the above-mentioned Patent Document 1, the electrolytic solution is fatigued and a difference in its components occurs, so that sufficient electrolytic efficiency cannot be obtained, and the temperature difference between the liquid inlet and the outlet becomes large. In order to prevent the desired graininess from being obtained, two or more electrolyte supply ports are provided between the counter electrodes. However, the improvement in image quality unevenness due to the electrolytic treatment cannot be said to be sufficient. It was desired.
 また、上記特許文献2に記載された方法では、アルミニウム板幅方向両端部に対して電極側より板幅に対して複数個の給液ノズルを設け、この複数個の給液ノズルから供給される液がアルミニウム板の幅方向両端部にカーテン膜を形成し、中央部の電解液が両端部に流れることを防ぐようにしているものの、砂目の均一性と画質むらの改善は充分とはいえず、より一層の改善が望まれていた。 Further, in the method described in Patent Document 2, a plurality of liquid supply nozzles are provided with respect to the plate width from the electrode side at both ends in the width direction of the aluminum plate, and supplied from the plurality of liquid supply nozzles. Although the liquid forms curtain films at both ends in the width direction of the aluminum plate to prevent the electrolyte at the center from flowing to both ends, the improvement in the uniformity of grain and unevenness in image quality is sufficient. Therefore, further improvement has been desired.
 また、上記特許文献3に記載された方法では、画質むらの改善と、安定したハニカム状ピットの砂目を得るために提案されたが、凸部に平坦な部分が残ることがあり、耐刷力および密着力が低下する。 Further, the method described in Patent Document 3 has been proposed to improve the image quality unevenness and to obtain a stable texture of honeycomb-shaped pits. Strength and adhesion are reduced.
 また、上記特許文献4に記載された方法では、平版印刷版用支持体の電解処理において、3槽の電解槽に、電極をそれぞれ設置し、電解処理中に、1~20秒の処理休止時間を設定し、処理休止区間の通過時間を、1~30秒に設定しているが、汚れ性能が不十分であるとともに、すじ状の画質むらも不十分だった。 Further, in the method described in Patent Document 4, in the electrolytic treatment of the lithographic printing plate support, electrodes are respectively installed in three electrolytic baths, and a treatment pause time of 1 to 20 seconds is provided during the electrolytic treatment. Was set to 1 to 30 seconds, but the stain performance was insufficient and the stripe-like image quality unevenness was insufficient.
 また、上記特許文献5に記載された方法では、塩酸を含有する水溶液中での交流電解では、耐刷性および耐汚れ性に富む平版印刷版用支持体を得ることができないことを解消するために、アルミニウム板に、塩酸と硫酸とを含有する混合水溶液中での交流を用いた電気化学的粗面化処理、および、塩酸を含有する水溶液中での交流を用いた電気化学的粗面化処理を、この順に施すようにしているが、砂目の均一性と画質むらの改善は充分とはいえず、より一層の改善が望まれていた。 In addition, in the method described in Patent Document 5, in order to solve the problem that it is impossible to obtain a lithographic printing plate support rich in printing durability and stain resistance by AC electrolysis in an aqueous solution containing hydrochloric acid. In addition, an electrochemical roughening treatment using an alternating current in an aqueous solution containing hydrochloric acid and sulfuric acid on an aluminum plate, and an electrochemical roughening using an alternating current in an aqueous solution containing hydrochloric acid Although the treatments are performed in this order, the improvement of the uniformity of grain and the unevenness of image quality cannot be said to be sufficient, and further improvement has been desired.
 このとき、上記特許文献4に記載された方法の処理休止時間と、上記特許文献5に記載された方法の混合電解液とを組み合わせることで、図8に示す粗面化処理後の表面の凸部に平坦部が発生することを解消しようとしても、上記特許文献3と同様にして、凸部に平坦な部分が残り、耐刷力および密着力の低下を防げなかった。また、画質むらも充分とはいえず、より一層の改善が望まれていた。 At this time, by combining the treatment pause time of the method described in Patent Document 4 and the mixed electrolyte of the method described in Patent Document 5, the surface roughness after the roughening treatment shown in FIG. Even if it was attempted to eliminate the occurrence of a flat portion in the portion, a flat portion remained on the convex portion in the same manner as in Patent Document 3, and it was impossible to prevent a decrease in printing durability and adhesion. Further, the image quality unevenness is not sufficient, and further improvement has been desired.
 また、上記特許文献6に記載された方法では、砂目のピット形状の均一性、粗大ピット生成の抑制、高精細でのドットラインの向上および「ボールペンやられ」を改善するために、アルミニウムまたはその合金板ウェブを酸性電解中で搬送させながら連続的に電解処理する。その際に、全電解工程中で電解処理の進行が速い部分と電解の進行が遅いかもしくは停止する部分とが交互に複数回存在するように電解処理する。そのときに、電解処理の進行が速い部分一工程での電解処理の電気量を平均で100C/dm2以下にして、電解粗面化の分割処理に着目している。しかし、砂目の均一性に密接に関係するのは各電解処理間での休止時間であり、休止時間が0.6秒から5秒以下では均一化できるが、0.5秒以下では均一化の効果が現れない問題があった。また、すじ状の処理むらやチャタマークの消失も不十分であり、画質むらの改善が望まれていた。 Moreover, in the method described in the above-mentioned Patent Document 6, aluminum or its The alloy sheet web is continuously subjected to electrolytic treatment while being conveyed in acidic electrolysis. At that time, the electrolytic treatment is performed so that a portion where the progress of the electrolytic treatment is fast and a portion where the progress of the electrolytic treatment is slow or stops alternately exist multiple times in all the electrolytic processes. At that time, the amount of electricity in the electrolytic treatment in the partial process where the electrolytic treatment proceeds rapidly is reduced to 100 C / dm 2 or less on average, and attention is paid to the division treatment for electrolytic surface roughening. However, closely related to the uniformity of grain is the rest time between each electrolytic treatment, and can be uniformed when the rest time is 0.6 seconds to 5 seconds or less, but uniform when 0.5 seconds or less. There was a problem that the effect of. In addition, streak-like processing unevenness and chatter marks are not sufficiently lost, and improvement in image quality unevenness has been desired.
 また、上記特許文献7に記載された方法では、電解液の平均速度を500~4000mm/sとし、幅方向の流速分布を平均流速の±50%以内としているが、砂目の均一性と画質むらの改善は充分とはいえず、より一層の改善が望まれていた。 In the method described in Patent Document 7, the average speed of the electrolytic solution is 500 to 4000 mm / s, and the flow velocity distribution in the width direction is within ± 50% of the average flow velocity. Unevenness improvement was not sufficient, and further improvement was desired.
 また、上記特許文献8に記載された方法では、電気化学的粗面化を、硫酸塩イオンおよび塩化物イオンを含み、その塩化物イオンが塩化アルミニウムの形である酸性電解液中で交流電圧の印加により行うようにしているが、汚れ性能を満足できるものではなく、改善が望まれていた。また、すじ状の処理むらやチャタマークの消失も不十分であり、画質むらの改善が望まれていた。 Moreover, in the method described in the above-mentioned Patent Document 8, electrochemical roughening is carried out by applying an AC voltage in an acidic electrolyte containing sulfate ions and chloride ions, and the chloride ions are in the form of aluminum chloride. Although the application is performed by application, the stain performance is not satisfactory, and improvement has been desired. Further, streak-like processing unevenness and chatter marks are not sufficiently lost, and improvement in image quality unevenness has been desired.
 つまり、上記の各特許文献に記載された方法をそれぞれ組み合わせたとしても、図8に示すように、アルミニウム500の砂目の不均一が残り、凸部501に平坦な部分503が残ることがあり、依然として、上記の各問題点を解消することができなかった。また、すじ状の処理むらやチャタマークの消失も不十分であり、画質むらの問題を解消することができなかった。 That is, even if the methods described in the above patent documents are combined, as shown in FIG. 8, unevenness of the grain of aluminum 500 may remain, and a flat portion 503 may remain on the convex portion 501. Still, the above problems could not be solved. Further, streak-like processing unevenness and chatter marks are not sufficiently lost, and the problem of uneven image quality cannot be solved.
 本発明は上記状況に鑑みてなされたもので、画質むらの改善と安定して均一な砂目を得ることができる平版印刷版用支持体の製造方法を提供することを目的としている。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a lithographic printing plate support capable of improving image quality unevenness and stably obtaining uniform grain.
 本発明の上記目的は、下記構成により達成される。
(1) アルミニウムまたはアルミニウム合金からなる金属ウェブを複数の電解槽の電解液中へ順次に浸漬させながら搬送し、前記電解槽内で前記金属ウェブに対向配置された複数の電極と前記金属ウェブとの間に電流を供給して、前記金属ウェブを電気化学的粗面化処理する平版印刷版用支持体の製造方法であって、
 前記電解槽内の電解液の流速を、各電解槽内で平均流速を500~4000mm/秒、前記電解槽内の前記金属ウェブの搬送方向と直交する幅方向に対する前記電解液の流速分布を前記平均流速の±50%以内にするとともに、
 前記複数の電極のうち隣接する電極間の隙間領域に対面する前記金属ウェブの搬送路区間を槽内電極間処理休止区間としたときに、1回の前記槽内電極間処理休止区間を通過する時間を0.05~1秒とする速度で前記金属ウェブを搬送することを特徴とする平版印刷版用支持体の製造方法。
The above object of the present invention is achieved by the following configurations.
(1) A metal web made of aluminum or an aluminum alloy is conveyed while being sequentially immersed in an electrolytic solution of a plurality of electrolytic cells, and a plurality of electrodes disposed opposite to the metal web in the electrolytic cell and the metal web A method for producing a support for a lithographic printing plate in which an electric current is supplied during the electrochemical surface roughening treatment of the metal web,
The flow rate of the electrolytic solution in the electrolytic cell is an average flow rate of 500 to 4000 mm / second in each electrolytic cell, and the flow rate distribution of the electrolytic solution in the width direction perpendicular to the conveying direction of the metal web in the electrolytic cell is Within ± 50% of the average flow rate,
When the conveyance path section of the metal web facing the gap region between adjacent electrodes among the plurality of electrodes is defined as the inter-bath electrode processing pause section, the single inter-bath electrode treatment pause section is passed. A method for producing a support for a lithographic printing plate, comprising transporting the metal web at a speed of 0.05 to 1 second.
 この平版印刷版用支持体の製造方法によれば、電解液の流速を、電解槽内でそれぞれ平均流速を500~4000mm/秒、電解液の電解槽内幅方向の流速分布を平均流速の±50%以内にするとともに、複数の電極のうち隣接する電極間の領域を槽内電極間処理休止区間としたときに、1回の槽内電極間処理休止区間を通過する時間を0.05~1秒とする速度で金属ウェブを搬送することで、アルミニウムの砂目を均一にでき、汚れ性能が良好で、耐刷力および密着力を向上させて、画質むらを良好にすることができる。 According to this method for producing a lithographic printing plate support, the flow rate of the electrolytic solution is set to an average flow rate of 500 to 4000 mm / second in the electrolytic cell, and the flow rate distribution in the width direction of the electrolytic solution in the electrolytic cell is ±± of the average flow rate. Within 50%, when the region between adjacent electrodes of the plurality of electrodes is defined as a treatment interval between the electrodes in the tank, the time required to pass through the treatment interval between the electrodes in the tank is 0.05 to By conveying the metal web at a speed of 1 second, the aluminum grain can be made uniform, the stain performance is good, the printing durability and the adhesion are improved, and the image quality unevenness can be improved.
(2) (1)記載の平版印刷版用支持体の製造方法であって、
 前記電解液が塩素イオン、硫酸イオン、アルミニウムイオンを含むことを特徴とする平版印刷版用支持体の製造方法。
(2) A method for producing a lithographic printing plate support according to (1),
A method for producing a support for a lithographic printing plate, wherein the electrolytic solution contains chlorine ions, sulfate ions, and aluminum ions.
 この平版印刷版用支持体の製造方法によれば、電解槽に収容される電解液を、塩素イオン、硫酸イオン、アルミニウムイオンを含むようにすることで、アルミニウムの砂目の均一化を、より一層向上させることができるとともに、耐刷力および密着力を、より一層向上させて画質むらを良好にすることができる。 According to this method for producing a lithographic printing plate support, the electrolyte contained in the electrolytic cell contains chlorine ions, sulfate ions, and aluminum ions, thereby making the aluminum grain more uniform. In addition to further improving the printing durability and adhesion, the image quality unevenness can be improved.
(3) (1)または(2)記載の平版印刷版用支持体の製造方法であって、
 前記電解液を前記金属ウェブの搬送方向に対向する方向に流動させることを特徴とする平版印刷版用支持体の製造方法。
(3) A method for producing a lithographic printing plate support according to (1) or (2),
A method for producing a support for a lithographic printing plate, wherein the electrolytic solution is caused to flow in a direction opposite to a conveying direction of the metal web.
 この平版印刷版用支持体の製造方法によれば、電解液を金属ウェブの搬送方向に対向させて流動させることで、金属ウェブ表面の電解液を攪拌することができ、金属ウェブ表面の液層を確実に更新させることができる。 According to this method for producing a lithographic printing plate support, the electrolyte solution on the surface of the metal web can be stirred by causing the electrolyte solution to flow in the direction of conveyance of the metal web. Can be reliably updated.
(4) (1)~(3)のいずれか1項記載の平版印刷版用支持体の製造方法であって、
 前記槽内電極間処理休止区間を、一つの前記電解槽内で少なくとも3区間設けることを特徴とする平版印刷版用支持体の製造方法。
(4) A method for producing a lithographic printing plate support according to any one of (1) to (3),
A method for producing a support for a lithographic printing plate, characterized in that at least three sections of the inter-bath electrode inter-process treatment are provided in one electrolytic bath.
 この平版印刷版用支持体の製造方法によれば、電解槽内における槽内電極間処理休止区間を少なくとも3区間設けることで、アルミニウムの砂目の均一化を、より一層向上させることができる。 According to this method for producing a lithographic printing plate support, it is possible to further improve the uniformity of the aluminum grain by providing at least three inter-battery electrode processing pause sections in the electrolytic cell.
(5) (1)~(4)のいずれか1項記載の平版印刷版用支持体の製造方法であって、
 前記金属ウェブが前記電解槽の電解液中から取り出され、前記金属ウェブの搬送路下流側に配置された他の電解槽の電解液に浸かるまでの前記金属ウェブの搬送路区間を槽外処理休止区間、前記電解槽内の前記複数の電極の並び方向両端から前記電解槽の電解液気液界面までの両搬送路区間の和を槽内電極端外側処理休止区間、前記槽外処理区間およびこれに連続する前記槽内電極端外側処理休止区間との和を槽間処理休止区間としたきに、1回の前記槽間処理休止区間を通過する時間を1~5秒とする速度で前記金属ウェブを搬送することを特徴とする平版印刷版用支持体の製造方法。
(5) A method for producing a lithographic printing plate support according to any one of (1) to (4),
The metal web is taken out of the electrolytic solution in the electrolytic cell, and the outside of the metal web conveyance path section is suspended until the metal web is immersed in the electrolytic solution in another electrolytic cell arranged on the downstream side of the metal web conveyance path. The sum of both conveying path sections from both ends of the plurality of electrodes in the electrolytic cell in the direction of arrangement to the electrolyte gas-liquid interface of the electrolytic cell When the sum of the processing interval between the electrode ends outside the tank and the continuous processing interval is defined as the inter-vessel processing pause interval, the time required to pass through the inter-vessel processing pause interval is 1 to 5 seconds. A method for producing a support for a lithographic printing plate, comprising conveying a web.
 この平版印刷版用支持体の製造方法によれば、1回の槽間処理休止区間を通過する時間を1~5秒とする速度で金属ウェブを搬送することで、アルミニウムの砂目の均一化を、より一層向上させることができる。 According to this method for producing a lithographic printing plate support, the aluminum web is made uniform by conveying the metal web at a speed of 1 to 5 seconds passing through one inter-bath treatment pause section. Can be further improved.
(6) (5)記載の平版印刷版用支持体の製造方法であって、
 前記槽間処理休止区間を、少なくとも3区間設けることを特徴とする平版印刷版用支持体の製造方法。
(6) A method for producing a lithographic printing plate support according to (5),
A method for producing a lithographic printing plate support, comprising at least three inter-tank processing pause sections.
 この平版印刷版用支持体の製造方法によれば、槽間処理休止区間を少なくとも3区間設けることで、アルミニウムの砂目の均一化を、より一層向上させることができる。 According to this method for producing a lithographic printing plate support, it is possible to further improve the uniformity of the aluminum grain by providing at least three inter-tank processing pause sections.
(7) (1)~(6)のいずれか1項記載の平版印刷版用支持体の製造方法であって、
 前記金属ウェブと前記電極との間で前記電極に対応して複数配置された電解液供給口から、それぞれ前記電解液を噴射供給することを特徴とする平版印刷版用支持体の製造方法。
(7) A method for producing a lithographic printing plate support according to any one of (1) to (6),
A method for producing a support for a lithographic printing plate, wherein the electrolyte solution is sprayed and supplied from a plurality of electrolyte solution supply ports arranged between the metal web and the electrode in correspondence with the electrode.
 この平版印刷版用支持体の製造方法によれば、金属ウェブと電極との間で電極に対応して複数配置された電解液供給口から電解液をそれぞれ噴射供給させることで、電解液の流れを強制的に作って、電解液の流れを、より一層確実に作ることができる。 According to this method for producing a lithographic printing plate support, an electrolyte solution is injected and supplied from a plurality of electrolyte solution supply ports arranged in correspondence with the electrode between the metal web and the electrode, whereby the flow of the electrolyte solution Can be made forcibly and the flow of the electrolyte can be made even more reliably.
 本発明の平版印刷版用支持体の製造方法によれば、アルミニウムまたはアルミニウム合金からなる金属ウェブを複数の電解槽の電解液中へ順次に浸漬させ、金属ウェブに電解槽内で対向配置された複数の電極と金属ウェブとの間に電流を供給し、金属ウェブを連続的に電気化学的粗面化処理する平版印刷版用支持体の製造方法において、画質むらの改善と、安定して均一な砂目を得ることができ、汚れ性能や耐刷力に優れた平版印刷版を提供することが可能になる。 According to the method for producing a lithographic printing plate support of the present invention, a metal web made of aluminum or an aluminum alloy is sequentially immersed in an electrolytic solution of a plurality of electrolytic cells, and is disposed opposite to the metal web in the electrolytic cell. In the method of manufacturing a lithographic printing plate support, in which an electric current is supplied between a plurality of electrodes and a metal web, and the metal web is continuously subjected to electrochemical surface roughening, the unevenness of image quality is improved, and the uniformity is stable. It is possible to provide a planographic printing plate that can obtain a fine grain and is excellent in dirt performance and printing durability.
本発明の一実施形態に係る平版印刷版用支持体の製造方法に適用される平版印刷版用支持体製造装置の概念図である。It is a conceptual diagram of the lithographic printing plate support manufacturing apparatus applied to the lithographic printing plate support manufacturing method according to one embodiment of the present invention. 図1の平版印刷版用支持体製造装置の要部拡大図である。It is a principal part enlarged view of the lithographic printing plate support manufacturing apparatus of FIG. 図1の平版印刷版用支持体製造装置に適用される電解液供給部の外観斜視図である。It is an external appearance perspective view of the electrolyte solution supply part applied to the lithographic printing plate support manufacturing apparatus of FIG. 本発明の平版印刷版用支持体の製造方法における電解液の制御方法の一例を示す図である。It is a figure which shows an example of the control method of the electrolyte solution in the manufacturing method of the support body for lithographic printing plates of this invention. 本発明の平版印刷版用支持体の製造方法における電気化学的粗面化処理に用いられる交番波形電流波形図の一例を示すグラフである。It is a graph which shows an example of the alternating waveform current waveform figure used for the electrochemical roughening process in the manufacturing method of the support body for lithographic printing plates of this invention. 本発明の平版印刷版用支持体の製造方法における交流を用いた電気化学的粗面化処理におけるラジアル型セルの一例を示す側面図である。It is a side view which shows an example of the radial type cell in the electrochemical roughening process using alternating current in the manufacturing method of the support body for lithographic printing plates of this invention. 本発明の平版印刷版用支持体の製造方法における交流を用いた電気化学的粗面化処理におけるラジアル型セルの他の一例を示す側面図である。It is a side view which shows another example of the radial type cell in the electrochemical roughening process using alternating current in the manufacturing method of the support body for lithographic printing plates of this invention. 従来の平版印刷版用支持体の製造方法を用いて製造された金属ウェブの概略図である。It is the schematic of the metal web manufactured using the manufacturing method of the conventional support body for lithographic printing plates.
符号の説明Explanation of symbols
 11 電解槽
 13 電極
 29 電解液供給口
100 平版印刷版用支持体製造装置
 EL 電解液
 MW 金属ウェブ
DESCRIPTION OF SYMBOLS 11 Electrolysis tank 13 Electrode 29 Electrolyte supply port 100 Support body manufacturing apparatus for lithographic printing plates EL Electrolyte MW Metal web
 以下、本発明に係る平版印刷版用支持体の製造方法の好適な実施の形態について、図面を参照して詳細に説明する。
 図1は本発明の一実施形態に係る平版印刷版用支持体の製造方法に適用される平版印刷版用支持体製造装置の概念図、図2は図1の平版印刷版用支持体製造装置の要部拡大図、図3は図1の平版印刷版用支持体製造装置に適用される電解液供給部の外観斜視図である。
 なお、以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, preferred embodiments of a method for producing a lithographic printing plate support according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram of a lithographic printing plate support manufacturing apparatus applied to a lithographic printing plate support manufacturing method according to an embodiment of the present invention. FIG. 2 is a planographic printing plate support manufacturing apparatus of FIG. FIG. 3 is an external perspective view of an electrolyte solution supply unit applied to the planographic printing plate support manufacturing apparatus of FIG.
In addition, although description of the component requirements described below may be made | formed based on the typical embodiment of this invention, this invention is not limited to such an embodiment. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 図1、図2に示すように、本発明の一実施形態に係る平版印刷版用支持体の製造方法に適用される平版印刷版用支持体製造装置100は、複数(本実施形態では一例として4個)の電解槽11と、各電解槽11のそれぞれに設置された複数(本実施形態では一例として各槽で5個)の電極13と、各電極13の下方で金属ウェブMWの搬送路との間にそれぞれ設置された複数(本実施形態では一例として各槽で6個)の電解液供給部15と、を備える。各電極13はそれぞれ等しい電極面積を有する。なお、図示はしていないが、各電解槽11には電解液を排出させるための電解液排出口を備え、この排出口から電解液を排出するとともに電解液供給部15,15Aから電解液を供給することで、電解槽11内の電解液を循環させている。 As shown in FIGS. 1 and 2, there are a plurality of lithographic printing plate support manufacturing apparatuses 100 applied to the method for manufacturing a lithographic printing plate support according to an embodiment of the present invention. 4) electrolytic cells 11, a plurality of electrodes 13 installed in each of the electrolytic cells 11 (in this embodiment, five in each tank), and a conveyance path for the metal web MW below each electrode 13. And a plurality of (six as an example in the present embodiment, six in each tank) each of the electrolyte supply units 15. Each electrode 13 has an equal electrode area. Although not shown, each electrolytic cell 11 is provided with an electrolytic solution discharge port for discharging the electrolytic solution. The electrolytic solution is discharged from the discharge port and the electrolytic solution is supplied from the electrolytic solution supply units 15 and 15A. By supplying, the electrolytic solution in the electrolytic cell 11 is circulated.
 電解槽11には、所定量の電解液ELがそれぞれ貯蔵されており、電解液EL内の電解液EL中に複数の電極13、および各電極13の下方に電解液供給部15がそれぞれ配置されている。 A predetermined amount of electrolytic solution EL is stored in the electrolytic bath 11, and a plurality of electrodes 13 are disposed in the electrolytic solution EL in the electrolytic solution EL, and an electrolytic solution supply unit 15 is disposed below each electrode 13. ing.
 電解槽11に収容される電解液ELは、塩素イオン、硫酸イオン、アルミニウムイオンを含んでいる。塩素イオン、硫酸イオン、アルミニウムイオンを含むことで、電荷集中が比較的生じくにくくなり、アルミニウムの砂目の均一化を向上させることができるとともに、耐刷力および密着力を向上させて画質むらを低減する効果が得られる。 The electrolytic solution EL accommodated in the electrolytic cell 11 contains chlorine ions, sulfate ions, and aluminum ions. Containing chlorine ions, sulfate ions, and aluminum ions makes it relatively difficult for charge concentration to occur, improves the uniformity of the aluminum grain, and improves printing durability and adhesion, resulting in uneven image quality. Is obtained.
 電解槽11は、アルミニウムまたはアルミニウム合金からなる金属ウェブMWの搬送方向Aの上流側から下流に向けて、電解槽11外に配置され電解液ELに漬けられていない外部ローラ17と、電解槽11内に配置され電解液ELに漬けられた内部ローラ19,21と、電解槽11外に配置され交流電源BLに接続される給電ローラ23と、を有するローラ群を備えている。 The electrolytic cell 11 is arranged outside the electrolytic cell 11 from the upstream side to the downstream side in the transport direction A of the metal web MW made of aluminum or aluminum alloy and is not immersed in the electrolytic solution EL. The roller group which has the internal rollers 19 and 21 arrange | positioned in electrolyte solution EL inside, and the electric power feeding roller 23 arrange | positioned out of the electrolytic vessel 11 and connected to AC power supply BL is provided.
 ここで、電解槽11で金属ウェブMWが電極13に対面する金属ウェブMWの搬送路区間を処理区間とし、電解槽11内で一対の内部ローラ19,21間を搬送される際に複数の電極13のうち隣接する一対の電極13,13間の領域(電極13に対面しない領域)、すなわち、複数の電極13のうち隣接する電極間の隙間領域に対面する金属ウェブMWの搬送路区間を槽内電極間処理休止区間とする。また、この電解槽11内で処理の休止される区間は、電極間の隙間領域に対面する区間の他、内部ローラ19と外部ローラ17との間の気液界面から最近接された電極13が対面する搬送路領域までの間、および、内部ローラ21と外部ローラ23との間の気液界面から最後の電極13が対面する搬送路領域までの間についても処理休止区間と同様の区間となるが、ここでは上記槽内電極間処理休止区間とは区別して、槽内電極端外側処理休止区間とする。つまり、電解槽11内の複数の電極13の並び方向端部から電解槽11の電解液気液界面までの搬送路区間を槽内電極端外側処理休止区間とする。 Here, the conveyance path section of the metal web MW where the metal web MW faces the electrode 13 in the electrolytic cell 11 is defined as a processing section, and a plurality of electrodes are conveyed when being conveyed between the pair of internal rollers 19 and 21 in the electrolytic cell 11. 13, a region between a pair of adjacent electrodes 13 and 13 (a region that does not face the electrode 13), that is, a conveyance path section of the metal web MW that faces a gap region between adjacent electrodes among the plurality of electrodes 13. It is set as a process pause interval between inner electrodes. The section in which the treatment is suspended in the electrolytic cell 11 includes not only the section facing the gap area between the electrodes but also the electrode 13 that is closest to the gas-liquid interface between the inner roller 19 and the outer roller 17. The interval between the conveying path area facing and the area between the gas-liquid interface between the inner roller 21 and the outer roller 23 and the conveying path area facing the last electrode 13 is the same as the process pause period. However, in this case, it is referred to as the in-vessel electrode end outer processing pause section in distinction from the in-vessel electrode processing pause section. In other words, the conveyance path section from the end in the arrangement direction of the plurality of electrodes 13 in the electrolytic cell 11 to the electrolyte gas-liquid interface of the electrolytic cell 11 is defined as an in-battery electrode end outer processing pause period.
 また、電解槽11外で一対の外部ローラ23,17間を搬送される領域、すなわち、金属ウェブMWが電解槽11の電解液中から取り出され、金属ウェブMWの搬送路下流側に配置された他の電解槽11の電解液に浸かるまでの金属ウェブMWの搬送路区間を、槽外処理休止区間とする。つまり、内部ローラ21と外部ローラ23との間の気液界面から、隣接する外部ローラ17と内部ローラ19との間の気液界面までの間を槽外処理区間とする。また、槽外処理区間およびこれに連続する槽内電極端外側処理休止区間との和を槽間処理休止区間とする。なお、槽間処理休止区間には、搬送路上の最初の電解槽に金属ウェブMWが浸漬され最初の電極に対面するまで、および搬送路上の最後の電解槽の最後の電極に対面する位置から外れた後は、この槽間処理休止区間に含まれないものとする。 In addition, the region transported between the pair of external rollers 23 and 17 outside the electrolytic cell 11, that is, the metal web MW is taken out from the electrolytic solution in the electrolytic cell 11, and disposed on the downstream side of the transport path of the metal web MW. Let the conveyance path area of the metal web MW until it is immersed in the electrolyte solution of the other electrolytic tank 11 be a tank outside process stop area. That is, the section between the gas-liquid interface between the inner roller 21 and the outer roller 23 and the gas-liquid interface between the adjacent outer roller 17 and the inner roller 19 is defined as the outside processing section. Further, the sum of the outside processing section and the in-tank electrode outer side processing suspension section that follows this is defined as the inter-tank processing suspension section. In the inter-bath processing pause section, the metal web MW is immersed in the first electrolytic cell on the transport path and faces the first electrode, and is out of the position facing the last electrode of the last electrolytic tank on the transport path. After that, it shall not be included in this inter-bath processing suspension section.
 そして、一対の電極13間で表される一回の槽内電極間処理休止区間の長さを金属ウェブMW(金属ウェブMWの任意の一点)が通過に要する時間をTin、槽外処理休止区間の長さを金属ウェブMW(金属ウェブMWの任意の一点)が通過に要する時間をToutとする。また、槽内電極端外側処理休止区間である電解槽出口側の両端処理休止区間に要する時間をTs_in_aとし、同じく槽内電極端外側処理休止区間である電解槽入り口側の両端処理休止区間に要する時間をTs_in_bとする。
 ここで、槽間処理休止区間に要する時間をTabとすると、TabはTs_in_a+Tout+Ts_in_bで表される。
And, the time required for the metal web MW (any one point of the metal web MW) to pass through the length of a single inter-bath electrode inter-process treatment interval expressed between the pair of electrodes 13 is Tin, and the out-of-bath treatment pause interval The time required for the metal web MW (any one point of the metal web MW) to pass is defined as Tout. Also, Ts_in_a is the time required for the both-end treatment pause section on the electrolytic cell outlet side which is the electrode electrode outer side treatment pause section, and it is required for the both-end treatment pause section on the electrolytic cell inlet side which is also the inner electrode edge outer treatment pause section. Let time be Ts_in_b.
Here, if the time required for the inter-tank processing suspension period is Tab, Tab is represented by Ts_in_a + Tout + Ts_in_b.
 図2に示すように、各電極13はそれぞれ交流電源BLに接続され、また、交流電源BLに接続された給電ローラ23と金属ウェブMWとが接しているため、処理区間においては、各電極13は、電解液ELを通じて金属ウェブMWに対して予め定められた交流電流を印加するようになっている。 As shown in FIG. 2, each electrode 13 is connected to an AC power supply BL, and the power supply roller 23 connected to the AC power supply BL is in contact with the metal web MW. Applies a predetermined alternating current to the metal web MW through the electrolytic solution EL.
 図3に電解液供給部15の構成例を示すように、電解槽11内の電解液供給部15は、電解槽11の金属ウェブMWの搬送方向と直交する幅方向の両端部に、一対のガイド部25を備え、これらガイド部25の間に筒形状の噴射部27を備える。そして、噴射部27の幅方向にスリット形状の電解液供給口29が形成されている。 As shown in the configuration example of the electrolytic solution supply unit 15 in FIG. 3, the electrolytic solution supply unit 15 in the electrolytic cell 11 is paired with both ends in the width direction perpendicular to the conveying direction of the metal web MW in the electrolytic cell 11. A guide portion 25 is provided, and a cylindrical injection portion 27 is provided between the guide portions 25. A slit-shaped electrolyte supply port 29 is formed in the width direction of the injection unit 27.
 一対のガイド部25は、不図示の電解液タンクに連通接続されて、噴射部27に電解液を常時供給する。噴射部27に供給された電解液ELは、金属ウェブMWの搬送方向Aに対向する方向に、つまり搬送方向Aとは逆向きに電解液供給口29を通じて電解槽11の幅全体に噴射される。このように、電解液供給部15は、金属ウェブMWと電極13との間で電極13に対応して複数配置された電解液供給口29から、電解液ELを金属ウェブMWの搬送方向Aに対して対向させて逆向きに噴射させることで、電極13付近の電解液ELを強制的に流動させている。これにより、金属ウェブMWの表面が常に新鮮な電解液ELに接触するようになる。また、電解液ELは、不図示の排出口から排出されるために、電解液供給部15から供給される電解液ELとともに電解槽11内を循環する。 The pair of guide portions 25 are connected to an electrolyte solution tank (not shown) and constantly supply the electrolyte solution to the injection portion 27. The electrolyte EL supplied to the injection unit 27 is injected over the entire width of the electrolytic cell 11 through the electrolyte supply port 29 in a direction opposite to the conveyance direction A of the metal web MW, that is, in a direction opposite to the conveyance direction A. . As described above, the electrolyte solution supply unit 15 transfers the electrolyte solution EL in the transport direction A of the metal web MW from the plurality of electrolyte solution supply ports 29 arranged in correspondence with the electrode 13 between the metal web MW and the electrode 13. On the other hand, the electrolyte EL in the vicinity of the electrode 13 is forced to flow by spraying in the opposite direction. Thereby, the surface of the metal web MW always comes into contact with the fresh electrolyte EL. Further, since the electrolytic solution EL is discharged from a discharge port (not shown), the electrolytic solution EL circulates in the electrolytic cell 11 together with the electrolytic solution EL supplied from the electrolytic solution supply unit 15.
 電解槽11内の金属ウェブMWの搬送方向最上流側に配置されている電解液供給部15Aは、ガイド部25に内蔵された不図示の回動機構によって噴射部27が回動される。これにより、電解液供給口29が電解液ELの噴射方向を変更しながら金属ウェブMWに向かって電解液ELを噴射させることで、電解液ELを電解槽11内で十分に攪拌し、局所的な淀みが生じないようにしている。なお、電解液供給口29の噴射方向を変更可能な電解液供給部15Aは、金属ウェブMWの搬送方向最上流側のものに加えて、他のすべての電解液供給部15に対しても同様の構成としてもよい。 In the electrolytic solution supply unit 15A arranged on the most upstream side in the conveying direction of the metal web MW in the electrolytic cell 11, the injection unit 27 is rotated by a rotation mechanism (not shown) built in the guide unit 25. As a result, the electrolytic solution supply port 29 changes the injection direction of the electrolytic solution EL while spraying the electrolytic solution EL toward the metal web MW, so that the electrolytic solution EL is sufficiently stirred in the electrolytic bath 11 and locally. So that no itch is generated. The electrolytic solution supply unit 15A capable of changing the injection direction of the electrolytic solution supply port 29 is the same for all other electrolytic solution supply units 15 in addition to the one on the most upstream side in the conveyance direction of the metal web MW. It is good also as a structure of.
 上記構成の平版印刷版用支持体製造装置100は、金属ウェブMWを電解槽11の電解液EL中へ順次に浸漬させ、金属ウェブMWに電解槽11内で対向配置された電極13と金属ウェブMWとの間で通電し、金属ウェブMWを連続的に電気化学的粗面化処理する。その際に、電解液ELの流速を、電解槽11内でそれぞれ平均流速を500~4000mm/秒、電解槽11内の金属ウェブMWの搬送方向と直交する幅方向に対する電解液ELの流速分布を平均流速の±50%以内とする。そして、電解槽11内で金属ウェブMWが電極13に対面する領域である処理区間に対する槽内電極間処理休止区間の通過時間Tin、槽間処理休止区間の通過時間Tabとの関係を、1回の槽内電極間処理休止区間を通過する時間Tinを0.05~1秒、かつ、1回の槽間処理休止区間を通過する時間Tabを1~5秒とする速度で金属ウェブMWを搬送する。上記の条件で平版印刷版用支持体の製造方法を行うことにより、金属ウェブMW表面のアルミニウム表面の画質むらの改善と、砂目を均一にできるとともに、汚れ性能および耐刷力を良好にすることができる。 In the lithographic printing plate support manufacturing apparatus 100 having the above-described configuration, the metal web MW is sequentially immersed in the electrolytic solution EL of the electrolytic cell 11, and the electrode 13 and the metal web disposed to face the metal web MW in the electrolytic cell 11. The metal web MW is continuously subjected to an electrochemical surface roughening treatment by energizing with the MW. At that time, the flow rate of the electrolytic solution EL is set such that the average flow rate in the electrolytic cell 11 is 500 to 4000 mm / second, and the flow rate distribution of the electrolytic solution EL with respect to the width direction perpendicular to the conveying direction of the metal web MW in the electrolytic cell 11. Within ± 50% of the average flow rate. Then, the relationship between the passage time Tin of the inter-bath electrode processing pause section and the passage time Tab of the inter-bath treatment pause section for the processing section in which the metal web MW faces the electrode 13 in the electrolytic bath 11 is once. The metal web MW is transported at a speed such that the time Tin passing through the inter-battery treatment pause interval is 0.05 to 1 second, and the time Tab passing through one bath treatment pause interval is 1 to 5 seconds. To do. By carrying out the method for producing a lithographic printing plate support under the above-mentioned conditions, it is possible to improve the unevenness of the image quality of the aluminum surface of the metal web MW and make the grain uniform, and to improve the stain performance and the printing durability. be able to.
 本実施形態の平版印刷版用支持体製造装置100は、電解槽11内における槽内電極間処理休止区間(Tin)を16区間設けるとともに、電解槽11外を含む槽間処理休止区間(Tab)を3区間設けている。
 このように、槽内電極間処理休止区間(Tin)と、槽間処理休止区間(Tab)とを規定の区間数設けることで、アルミニウムの砂目の均一化を向上させることができる。槽内電極間処理休止区間および槽間処理休止区間は、それぞれ少なくとも3区間を設けることが望ましく、区間数は多い程、金属ウェブMWの版面の性状を均一化する効果を高められる。なお、槽内電極間処理休止区間および槽間処理休止区間が2区間以下では、版面の性状が悪化することが実験により確められている。
The planographic printing plate support manufacturing apparatus 100 according to the present embodiment provides 16 inter-battery electrode processing pause sections (Tin) in the electrolytic bath 11 and an inter-bath processing pause zone (Tab) including the outside of the electrolytic bath 11. There are 3 sections.
In this way, by providing a prescribed number of inter-battery electrode processing pause intervals (Tin) and inter-vessel treatment pause intervals (Tab), it is possible to improve the uniformity of the aluminum grain. It is desirable to provide at least three sections for the inter-bath electrode processing suspension section and the inter-tank processing suspension section. The larger the number of sections, the higher the effect of uniformizing the properties of the plate surface of the metal web MW. In addition, it has been confirmed by experiments that the properties of the printing plate are deteriorated when the inter-battery electrode processing pause section and the inter-tank processing pause section are two sections or less.
 なお、槽内電極間処理休止区間数を増やすと電解槽11のサイズが大型化するため、例えば50区間を最大に、槽内電極間処理休止区間数を3~50区間とすることが実際上は好ましい。また、槽間処理休止区間数を増やすと装置全体の設置スペースを広く要するため、例えば10区間を最大に、槽間処理休止区間数を3~10区間とすることが実際上は好ましい。ただし、上記区間数は、金属ウェブMWの寸法が例えば厚さ0.1~0.5mm、幅500mm~2000mm程度の場合であって、各電極13の寸法等を変更することでも上記の最大区間数は変動する。 In addition, since the size of the electrolytic cell 11 is increased when the number of in-battery inter-electrode processing pauses is increased, for example, it is practical to set the number of in-battery inter-electrode treatment pauses to 3 to 50, for example. Is preferred. Further, if the number of inter-tank processing pause sections is increased, a large installation space is required for the entire apparatus. For example, it is practically preferable to set 10 sections to the maximum and the inter-tank processing pause section to 3 to 10 sections. However, the number of sections is the case where the dimension of the metal web MW is, for example, about 0.1 to 0.5 mm in thickness and about 500 to 2000 mm in width. The number varies.
 そして、平版印刷版用支持体製造装置100は、電解液供給部15の電解液供給口29から、金属ウェブMWの搬送方向に対向する方向に電解液ELを噴射させながら平版印刷版用支持体の製造を行う。 Then, the lithographic printing plate support manufacturing apparatus 100 includes a lithographic printing plate support while injecting the electrolytic solution EL from the electrolytic solution supply port 29 of the electrolytic solution supply unit 15 in a direction opposite to the conveying direction of the metal web MW. Manufacture.
 次に、平版印刷版用支持体の製造方法を詳細に説明する。
[平版印刷版用支持体の製造方法]
<アルミニウム板(圧延アルミ)>
 本発明の平版印刷版用支持体の製造方法には公知のアルミニウム板を用いることができる。本発明に用いられるアルミニウム板は、寸度的に安定なアルミニウムを主成分とする金属であり、アルミニウムまたはアルミニウム合金からなる。純アルミニウム板のほか、アルミニウムを主成分とし微量の異元素を含む合金板を用いることもできる。
Next, a method for producing a lithographic printing plate support will be described in detail.
[Method for producing support for lithographic printing plate]
<Aluminum plate (rolled aluminum)>
A known aluminum plate can be used in the method for producing a lithographic printing plate support of the present invention. The aluminum plate used in the present invention is a metal whose main component is dimensionally stable aluminum, and is made of aluminum or an aluminum alloy. In addition to a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements can also be used.
 本明細書においては、上述したアルミニウムまたはアルミニウム合金からなる各種の基板をアルミニウム板と総称して用いる。前記アルミニウム合金に含まれてもよい異元素には、ケイ素、鉄、銅、マンガン、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等があり、合金中の異元素の含有量は10質量%以下である。 In this specification, various substrates made of the above-described aluminum or aluminum alloy are collectively referred to as an aluminum plate. The foreign elements that may be contained in the aluminum alloy include silicon, iron, copper, manganese, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of the foreign elements in the alloy is 10% by mass or less. It is.
 このように本発明に用いられるアルミニウム板は、その組成が特定されるものではなく、例えば、アルミニウムハンドブック第4版(1990年、軽金属協会発行)に記載されている従来公知の素材、例えば、JIS A1050、JIS A1100、JIS A1070、Mnを含むJIS A3004、国際登録合金 3103A等のAl-Mn系アルミニウム板を適宜利用することができる。また、引張強度を増す目的で、これらのアルミニウム合金に0.1質量%以上のマグネシウムを添加したAl-Mg系合金、Al-Mn-Mg系合金(JIS A3005)を用いることもできる。更に、ZrやSiを含むAl-Zr系合金やAl-Si系合金を用いることもできる。更に、Al-Mg-Si系合金を用いることもできる。
 また、使用済みアルミニウム飲料缶を溶解させたUBC(Used Beverage Can)地金を圧延して得られるアルミニウム板を用いることもできる。
 このアルミニウム板において、Cu含有量は、0.00質量%以上であるのが好ましく、さらには0.01質量%以上、0.02質量%以上であるのがより好ましく、また、0.15質量%以下であるのが好ましく、さらには0.11質量%以下であるのが好ましく、0.03質量%以下であるのがより好ましい。特に好ましいのは、Si:0.07~0.09質量%、Fe:0.20~0.29質量%、Cu:0.03質量%以下、Mn:0.01質量%以下、Mg:0.01質量%以下、Cr:0.01質量%以下、Zn:0.01質量%以下、Ti:0.02質量%以下、Al:99.5質量%以上であるアルミニウム板である。
Thus, the composition of the aluminum plate used in the present invention is not specified. For example, a conventionally known material described in the fourth edition of the Aluminum Handbook (1990, published by the Light Metal Association), for example, JIS Al-Mn based aluminum plates such as A1050, JIS A1100, JIS A1070, JIS A3004 containing Mn, and internationally registered alloy 3103A can be used as appropriate. For the purpose of increasing the tensile strength, an Al—Mg alloy or an Al—Mn—Mg alloy (JIS A3005) in which 0.1% by mass or more of magnesium is added to these aluminum alloys can also be used. Furthermore, an Al—Zr alloy or an Al—Si alloy containing Zr or Si can also be used. Furthermore, an Al—Mg—Si based alloy can also be used.
Moreover, the aluminum plate obtained by rolling the UBC (Used Beverage Can) ingot which melt | dissolved the used aluminum beverage can can also be used.
In this aluminum plate, the Cu content is preferably 0.00% by mass or more, more preferably 0.01% by mass or more, and more preferably 0.02% by mass or more, and 0.15% by mass. % Or less, preferably 0.11% by mass or less, more preferably 0.03% by mass or less. Particularly preferred are Si: 0.07 to 0.09 mass%, Fe: 0.20 to 0.29 mass%, Cu: 0.03 mass% or less, Mn: 0.01 mass% or less, Mg: 0 0.01% by mass or less, Cr: 0.01% by mass or less, Zn: 0.01% by mass or less, Ti: 0.02% by mass or less, and Al: 99.5% by mass or more.
 JIS1050材に関しては、本願出願人によって提案された技術が、特開昭59-153861号、特開昭61-51395号、特開昭62-146694号、特開昭60-215725号、特開昭60-215726号、特開昭60-215727号、特開昭60-216728号、特開昭61-272367号、特開昭58-11759号、特開昭58-42493号、特開昭58-221254号、特開昭62-148295号、特開平4-254545号、特開平4-165041号、特公平3-68939号、特開平3-234594号、特公平1-47545号および特開昭62-140894号の各公報に記載されている。また、特公平1-35910号公報、特公昭55-28874号公報等に記載された技術も知られている。 Regarding the JIS 1050 material, the techniques proposed by the applicant of the present application are disclosed in Japanese Patent Application Laid-Open Nos. 59-153861, 61-51395, 62-146694, 60-215725, and 60-215725. JP-A-60-215726, JP-A-60-215727, JP-A-60-216728, JP-A-61-272367, JP-A-58-11759, JP-A-58-42493, JP-A-58- 221254, JP-A-62-148295, JP-A-4-254545, JP-A-4-165541, JP-B-3-68939, JP-A-3-234594, JP-B-1-47545, and JP-A-62. It is described in each publication of -140894. In addition, techniques described in Japanese Patent Publication No. 1-35910 and Japanese Patent Publication No. 55-28874 are also known.
 JIS1070材に関しては、本願出願人によって提案された技術が、特開平7-81264号、特開平7-305133号、特開平8-49034号、特開平8-73974号、特開平8-108659号および特開平8-92679号の各公報に記載されている。 Regarding the JIS 1070 material, the techniques proposed by the applicant of the present application are disclosed in JP-A-7-81264, JP-A-7-305133, JP-A-8-49034, JP-A-8-73974, JP-A-8-108659 and It is described in JP-A-8-92679.
 Al-Mg系合金に関しては、本願出願人によって提案された技術が、特公昭62-5080号、特公昭63-60823号、特公平3-61753号、特開昭60-203496号、特開昭60-203497号、特公平3-11635号、特開昭61-274993号、特開昭62-23794号、特開昭63-47347号、特開昭63-47348号、特開昭63-47349号、特開昭64-1293号、特開昭63-135294号、特開昭63-87288号、特公平4-73392号、特公平7-100844号、特開昭62-149856号、特公平4-73394号、特開昭62-181191号、特公平5-76530号、特開昭63-30294号および特公平6-37116号の各公報に記載されている。また、特開平2-215599号公報、特開昭61-201747号公報等にも記載されている。 Regarding the Al-Mg alloy, the techniques proposed by the applicant of the present application are disclosed in Japanese Patent Publication Nos. 62-5080, 63-60823, 3-61753, JP-A-60-20396, JP-A-60-203497, JP-B-3-11635, JP-A-61-274993, JP-A-62-23794, JP-A-63-47347, JP-A-63-47348, JP-A-63-47349 JP-A 64-1293, JP-A 63-135294, JP-A 63-87288, JP-B 4-73392, JP-B 7-1000084, JP-A 62-149856, JP-B JP-A-4-73394, JP-A-62-181191, JP-B-5-76530, JP-A-63-30294, and JP-B-6-37116. Also described in JP-A-2-215599, JP-A-61-201747, and the like.
 Al-Mn系合金に関しては、本願出願人によって提案された技術が、特開昭60-230951号、特開平1-306288号および特開平2-293189号の各公報に記載されている。また、特公昭54-42284号、特公平4-19290号、特公平4-19291号、特公平4-19292号、特開昭61-35995号、特開昭64-51992号、特開平4-226394号の各公報、米国特許第5,009,722号明細書、同第5,028,276号明細書等にも記載されている。 Regarding the Al—Mn alloy, the techniques proposed by the applicant of the present application are described in JP-A-60-230951, JP-A-1-306288, and JP-A-2-293189. JP-B-54-42284, JP-B-4-19290, JP-B-4-19291, JP-B-4-19292, JP-A-61-35995, JP-A-64-51992, JP-A-4-1952 No. 226394, US Pat. No. 5,009,722, US Pat. No. 5,028,276 and the like.
 Al-Mn-Mg系合金に関しては、本願出願人によって提案された技術が、特開昭62-86143号公報および特開平3-222796号公報に記載されている。また、特公昭63-60824号、特開昭60-63346号、特開昭60-63347号、特開平1-293350号の各公報、欧州特許第223,737号、米国特許第4,818,300号、英国特許第1,222,777号の各明細書等にも記載されている。 Regarding the Al—Mn—Mg alloy, the techniques proposed by the applicant of the present application are described in Japanese Patent Application Laid-Open Nos. Sho 62-86143 and Hei 3-2222796. JP-B 63-60824, JP-A 60-63346, JP-A 60-63347, JP-A-1-293350, European Patent No. 223,737, US Patent No. 4,818, No. 300, British Patent No. 1,222,777, etc.
 Al-Zr系合金に関しては、本願出願人によって提案された技術が、特公昭63-15978号公報および特開昭61-51395号公報に記載されている。また、特開昭63-143234号、特開昭63-143235号の各公報等にも記載されている。 Regarding the Al—Zr alloy, the technique proposed by the applicant of the present application is described in Japanese Patent Publication No. 63-15978 and Japanese Patent Application Laid-Open No. 61-51395. Also described in JP-A-63-143234 and JP-A-63-143235.
 Al-Mg-Si系合金に関しては、英国特許第1,421,710号明細書等に記載されている。 The Al—Mg—Si alloy is described in British Patent No. 1,421,710.
 アルミニウム合金を板材とするには、例えば、下記の方法を採用することができる。まず、所定の合金成分含有量に調整したアルミニウム合金溶湯に、常法に従い、清浄化処理を行い、鋳造する。清浄化処理には、溶湯中の水素等の不要ガスを除去するために、フラックス処理、アルゴンガス、塩素ガス等を用いる脱ガス処理、セラミックチューブフィルタ、セラミックフォームフィルタ等のいわゆるリジッドメディアフィルタや、アルミナフレーク、アルミナボール等をろ材とするフィルタや、グラスクロスフィルタ等を用いるフィルタリング処理、あるいは、脱ガス処理とフィルタリング処理を組み合わせた処理が行われる。 In order to use an aluminum alloy as a plate material, for example, the following method can be employed. First, a molten aluminum alloy adjusted to a predetermined alloy component content is subjected to a cleaning process and cast according to a conventional method. In the cleaning process, in order to remove unnecessary gas such as hydrogen in the molten metal, flux treatment, degassing process using argon gas, chlorine gas, etc., so-called rigid media filter such as ceramic tube filter, ceramic foam filter, A filtering process using a filter that uses alumina flakes, alumina balls or the like as a filter medium, a glass cloth filter, or a combination of a degassing process and a filtering process is performed.
 これらの清浄化処理は、溶湯中の非金属介在物、酸化物等の異物による欠陥や、溶湯に溶け込んだガスによる欠陥を防ぐために実施されることが好ましい。溶湯のフィルタリングに関しては、特開平6-57432号、特開平3-162530号、特開平5-140659号、特開平4-231425号、特開平4-276031号、特開平5-311261号、特開平6-136466号の各公報等に記載されている。また、溶湯の脱ガスに関しては、特開平5-51659号公報、実開平5-49148号公報等に記載されている。本願出願人も、特開平7-40017号公報において、溶湯の脱ガスに関する技術を提案している。 These cleaning treatments are preferably carried out in order to prevent defects caused by foreign substances such as non-metallic inclusions and oxides in the molten metal and defects caused by gas dissolved in the molten metal. Regarding filtering of the molten metal, JP-A-6-57432, JP-A-3-162530, JP-A-5-140659, JP-A-4-231425, JP-A-4-276031, JP-A-5-311261, and JP-A-5-311261 are disclosed. It is described in each publication of JP-A-6-136466. Further, the degassing of the molten metal is described in JP-A-5-51659, JP-A-5-49148, and the like. The applicant of the present application has also proposed a technique relating to degassing of molten metal in Japanese Patent Application Laid-Open No. 7-40017.
 ついで、上述したように清浄化処理を施された溶湯を用いて鋳造を行う。鋳造方法に関しては、DC鋳造法に代表される固体鋳型を用いる方法と、連続鋳造法に代表される駆動鋳型を用いる方法がある。
 DC鋳造においては、冷却速度が0.5~30℃/秒の範囲で凝固する。1℃未満であると粗大な金属間化合物が多数形成されることがある。DC鋳造を行った場合、板厚300~800mmの鋳塊を製造することができる。その鋳塊を、常法に従い、必要に応じて面削を行い、通常、表層の1~30mm、好ましくは1~10mmを切削する。その前後において、必要に応じて、均熱化処理を行う。均熱化処理を行う場合、金属間化合物が粗大化しないように、450~620℃で1~48時間の熱処理を行う。熱処理が1時間より短い場合には、均熱化処理の効果が不十分となることがある。なお、均熱処理を行わない場合には、コストを低減させることができるという利点がある。
Next, casting is performed using the molten metal that has been subjected to the cleaning treatment as described above. As for the casting method, there are a method using a solid mold typified by a DC casting method and a method using a driving mold typified by a continuous casting method.
In DC casting, solidification occurs at a cooling rate of 0.5 to 30 ° C./second. When the temperature is less than 1 ° C., many coarse intermetallic compounds may be formed. When DC casting is performed, an ingot having a thickness of 300 to 800 mm can be produced. The ingot is chamfered as necessary according to a conventional method, and usually 1 to 30 mm, preferably 1 to 10 mm, of the surface layer is cut. Before and after that, soaking treatment is performed as necessary. When soaking treatment is performed, heat treatment is performed at 450 to 620 ° C. for 1 to 48 hours so that the intermetallic compound does not become coarse. If the heat treatment is shorter than 1 hour, the effect of soaking may be insufficient. In addition, when soaking is not performed, there is an advantage that the cost can be reduced.
 その後、熱間圧延、冷間圧延を行ってアルミニウム板の圧延板とする。熱間圧延の開始温度は350~500℃が適当である。熱間圧延の前もしくは後、またはその途中において、中間焼鈍処理を行ってもよい。中間焼鈍処理の条件は、バッチ式焼鈍炉を用いて280~600℃で2~20時間、好ましくは350~500℃で2~10時間加熱するか、連続焼鈍炉を用いて400~600℃で6分以下、好ましくは450~550℃で2分以下加熱するかである。連続焼鈍炉を用いて10~200℃/秒の昇温速度で加熱して、結晶組織を細かくすることもできる。 Then, hot rolling and cold rolling are performed to obtain a rolled aluminum plate. A suitable starting temperature for hot rolling is 350 to 500 ° C. An intermediate annealing treatment may be performed before or after hot rolling or in the middle thereof. The conditions for the intermediate annealing treatment are heating at 280 to 600 ° C. for 2 to 20 hours, preferably 350 to 500 ° C. for 2 to 10 hours using a batch annealing furnace, or 400 to 600 ° C. using a continuous annealing furnace. Heating is performed for 6 minutes or less, preferably 450 to 550 ° C. for 2 minutes or less. The crystal structure can be made finer by heating at a heating rate of 10 to 200 ° C./second using a continuous annealing furnace.
 以上の工程によって、所定の厚さ、例えば、0.1~0.5mmに仕上げられたアルミニウム板は、更にローラレベラ、テンションレベラ等の矯正装置によって平面性を改善してもよい。平面性の改善は、アルミニウム板をシート状にカットした後に行ってもよいが、生産性を向上させるためには、連続したコイルの状態で行うことが好ましい。また、所定の板幅に加工するため、スリッタラインを通してもよい。また、アルミニウム板同士の摩擦による傷の発生を防止するために、アルミニウム板の表面に薄い油膜を設けてもよい。油膜には、必要に応じて、揮発性のものや、不揮発性のものが適宜用いられる。 The flatness of the aluminum plate finished to a predetermined thickness, for example, 0.1 to 0.5 mm by the above steps may be further improved by a correction device such as a roller leveler or a tension leveler. The flatness may be improved after the aluminum plate is cut into a sheet shape, but in order to improve the productivity, it is preferably performed in a continuous coil state. Further, a slitter line may be used for processing into a predetermined plate width. Moreover, in order to prevent generation | occurrence | production of the damage | wound by friction between aluminum plates, you may provide a thin oil film on the surface of an aluminum plate. As the oil film, a volatile or non-volatile film is appropriately used as necessary.
 一方、連続鋳造法としては、双ロール法(ハンター法)、3C法に代表される冷却ロールを用いる方法、双ベルト法(ハズレー法)、アルスイスキャスターII型に代表される冷却ベルトや冷却ブロックを用いる方法が、工業的に行われている。連続鋳造法を用いる場合には、冷却速度が100~1000℃/秒の範囲で凝固する。連続鋳造法は、一般的には、DC鋳造法に比べて冷却速度が速いため、アルミマトリックスに対する合金成分固溶度を高くすることができるという特徴を有する。連続鋳造法に関しては、本願出願人によって提案された技術が、特開平3-79798号、特開平5-201166号、特開平5-156414号、特開平6-262203号、特開平6-122949号、特開平6-210406号、特開平6-26308号の各公報等に記載されている。 On the other hand, as the continuous casting method, a twin roll method (hunter method), a method using a cooling roll typified by the 3C method, a double belt method (Hazley method), a cooling belt or a cooling block typified by Al-Swiss Caster II type The method using is industrially performed. When the continuous casting method is used, it solidifies at a cooling rate of 100 to 1000 ° C./second. Since the continuous casting method generally has a higher cooling rate than the DC casting method, it has a feature that the solid solubility of the alloy component in the aluminum matrix can be increased. Regarding the continuous casting method, the techniques proposed by the applicant of the present application are disclosed in JP-A-3-79798, JP-A-5-201166, JP-A-5-156414, JP-A-6-262203, and JP-A-6-122949. JP-A-6-210406, JP-A-6-26308, and the like.
 連続鋳造を行った場合において、例えば、ハンター法等の冷却ロールを用いる方法を用いると、板厚1~10mmの鋳造板を直接、連続鋳造することができ、熱間圧延の工程を省略することができるというメリットが得られる。また、ハズレー法等の冷却ベルトを用いる方法を用いると、板厚10~50mmの鋳造板を鋳造することができ、一般的に、鋳造直後に熱間圧延ロールを配置し連続的に圧延することで、板厚1~10mmの連続鋳造圧延板が得られる。 When continuous casting is performed, for example, if a method using a cooling roll such as the Hunter method is used, a cast plate having a thickness of 1 to 10 mm can be directly continuously cast, and the hot rolling step is omitted. The advantage of being able to In addition, when a method using a cooling belt such as the Husley method is used, a cast plate having a thickness of 10 to 50 mm can be cast. Generally, a hot rolling roll is arranged immediately after casting and continuously rolled. Thus, a continuous cast and rolled plate having a thickness of 1 to 10 mm can be obtained.
 これらの連続鋳造圧延板は、DC鋳造について説明したのと同様に、冷間圧延、中間焼鈍、平面性の改善、スリット等の工程を経て、所定の厚さ、例えば、0.1~0.5mmの板厚に仕上げられる。連続鋳造法を用いた場合の中間焼鈍条件および冷間圧延条件については、本願出願人によって提案された技術が、特開平6-220593号、特開平6-210308号、特開平7-54111号、特開平8-92709号の各公報等に記載されている。 These continuous cast and rolled sheets are subjected to processes such as cold rolling, intermediate annealing, improvement of flatness, slits, and the like in the same manner as described for DC casting, and a predetermined thickness, for example, 0.1 to 0.00. Finished to a thickness of 5 mm. As for the intermediate annealing conditions and the cold rolling conditions when using the continuous casting method, the techniques proposed by the applicant of the present application are disclosed in JP-A-6-220593, JP-A-6-210308, JP-A-7-54111, It is described in JP-A-8-92709.
 本発明に用いられるアルミニウム板は、JISに規定されるH18の調質が行われているのが好ましい。 The aluminum plate used in the present invention is preferably subjected to H18 tempering as defined in JIS.
 このようにして製造されるアルミニウム板には、以下に述べる種々の特性が望まれる。
 アルミニウム板の強度は、平版印刷版用支持体として必要な腰の強さを得るため、0.2%耐力が120MPa以上であるのが好ましい。また、バーニング処理を行った場合にもある程度の腰の強さを得るためには、270℃で3~10分間加熱処理した後の0.2%耐力が80MPa以上であるのが好ましく、100MPa以上であるのがより好ましい。特に、アルミニウム板に腰の強さを求める場合は、MgやMnを添加したアルミニウム材料を採用することができるが、腰を強くすると印刷機の版胴へのフィットしやすさが劣ってくるため、用途に応じて、材質および微量成分の添加量が適宜選択される。これらに関して、本願出願人によって提案された技術が、特開平7-126820号公報、特開昭62-140894号公報等に記載されている。
 また、アルミニウム板は、引張強度が160±15N/mm2、0.2%耐力が140±15MPa、JIS Z2241およびZ2201に規定される伸びが1~10%であるのがより好ましい。
Various characteristics described below are desired for the aluminum plate thus manufactured.
The strength of the aluminum plate is preferably such that the 0.2% proof stress is 120 MPa or more in order to obtain the stiffness required for a lithographic printing plate support. Further, in order to obtain a certain level of waist strength even when performing the burning treatment, the 0.2% proof stress after heat treatment at 270 ° C. for 3 to 10 minutes is preferably 80 MPa or more, and 100 MPa or more. It is more preferable that In particular, when the waist strength is required for an aluminum plate, an aluminum material added with Mg or Mn can be used, but if the waist is strengthened, the ease of fitting to the plate cylinder of a printing press becomes inferior. Depending on the application, the material and the amount of trace components added are appropriately selected. With regard to these, techniques proposed by the applicant of the present application are described in Japanese Patent Application Laid-Open Nos. 7-126820 and 62-140894.
The aluminum plate preferably has a tensile strength of 160 ± 15 N / mm 2 , a 0.2% proof stress of 140 ± 15 MPa, and an elongation defined by JIS Z2241 and Z2201 of 1 to 10%.
 アルミニウム板の結晶組織は、化学的粗面化処理や電気化学的粗面化処理を行った場合、アルミニウム板の表面の結晶組織が面質不良の発生の原因となることがあるので、表面においてあまり粗大でないことが好ましい。アルミニウム板の表面の結晶組織は、幅が200μm以下であるのが好ましく、100μm以下であるのがより好ましく、50μm以下であるのが更に好ましく、また、結晶組織の長さが5000μm以下であるのが好ましく、1000μm以下であるのがより好ましく、500μm以下であるのが更に好ましい。これらに関して、本願出願人によって提案された技術が、特開平6-218495号、特開平7-39906号、特開平7-124609号の各公報等に記載されている。 The crystal structure of the aluminum plate may cause poor surface quality when the surface of the aluminum plate is subjected to chemical or electrochemical surface roughening. It is preferably not too coarse. The crystal structure on the surface of the aluminum plate preferably has a width of 200 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less, and the length of the crystal structure is 5000 μm or less. Is preferably 1000 μm or less, and more preferably 500 μm or less. With regard to these, techniques proposed by the applicant of the present application are described in Japanese Patent Laid-Open Nos. 6-218495, 7-39906, and 7-124609.
 アルミニウム板の合金成分分布は、化学的粗面化処理や電気化学的粗面化処理を行った場合、アルミニウム板の表面の合金成分の不均一な分布に起因して面質不良が発生することがあるので、表面においてあまり不均一でないことが好ましい。これらに関して、本願出願人によって提案された技術が、特開平6-48058号、特開平5-301478号、特開平7-132689号の各公報等に記載されている。 The alloy component distribution of the aluminum plate, when chemical surface roughening treatment or electrochemical surface roughening treatment is performed, poor surface quality occurs due to non-uniform distribution of the alloy component on the surface of the aluminum plate. Therefore, it is preferable that the surface is not very uneven. With respect to these, techniques proposed by the applicant of the present application are described in Japanese Patent Laid-Open Nos. 6-48058, 5-301478, and 7-132689.
 アルミニウム板の金属間化合物は、その金属間化合物のサイズや密度が、化学的粗面化処理や電気化学的粗面化処理に影響を与える場合がある。これらに関して、本願出願人によって提案された技術が、特開平7-138687号、特開平4-254545号の各公報等に記載されている。 In the intermetallic compound of the aluminum plate, the size and density of the intermetallic compound may affect the chemical roughening treatment or the electrochemical roughening treatment. With respect to these, techniques proposed by the applicant of the present application are described in Japanese Patent Laid-Open Nos. 7-138687 and 4-254545.
 本発明においては、上記に示されるようなアルミニウム板をその最終圧延工程等において、プレス圧延、転写等により凹凸を形成させて用いることもできる。 In the present invention, an aluminum plate as shown above can be used by forming irregularities by press rolling, transfer or the like in the final rolling step or the like.
 中でも、最終板厚に調整する冷間圧延、または、最終板厚調整後の表面形状を仕上げる仕上げ冷間圧延とともに、凹凸面をアルミニウム板に圧接させて凹凸形状を転写し、アルミニウム板の表面に凹凸パターンを形成させる方法が好ましい。具体的には、特開平6-262203号公報に記載されている方法を好適に用いることができる。
 表面に凹凸パターンを有するアルミニウム板を用いることにより、ブラシと研磨剤とで形成する凹凸パターンより、平均ピッチと深さが均一な凹凸パターンを得ることができるので耐汚れ性が向上する。また後のアルカリエッチング処理および粗面化処理で消費されるエネルギーを少なくしつつ、印刷機上における湿し水の量の調整を容易にすることができる。例えば、後述する第1エッチング処理において、エッチング量を3g/m2程度以下と少なくすることができる。また、凹凸パターンを有するアルミニウム板を用いると得られる平版印刷版用支持体の表面積が増大するため、耐刷性により優れる。
Above all, along with cold rolling to adjust the final plate thickness, or finish cold rolling to finish the surface shape after final plate thickness adjustment, the uneven surface is transferred to the surface of the aluminum plate by pressing the uneven surface to the aluminum plate. A method of forming an uneven pattern is preferred. Specifically, the method described in JP-A-6-262203 can be suitably used.
By using an aluminum plate having a concavo-convex pattern on the surface, it is possible to obtain a concavo-convex pattern having a uniform average pitch and depth than the concavo-convex pattern formed by the brush and the abrasive, thereby improving the stain resistance. In addition, the amount of dampening water on the printing press can be easily adjusted while reducing energy consumed in the subsequent alkali etching treatment and surface roughening treatment. For example, in the first etching process described later, the etching amount can be reduced to about 3 g / m 2 or less. In addition, when an aluminum plate having a concavo-convex pattern is used, the surface area of the obtained lithographic printing plate support is increased, so that the printing durability is more excellent.
 転写は、通常のアルミニウム板の最終冷間圧延工程で行うのが特に好ましい。転写のための圧延は1~3パスで行うのが好ましく、それぞれの圧下率は3~8%であるのが好ましい。
 また、転写により付与される凹凸は、アルミニウム板の両面に付与されるのがより好ましい。これにより、表面と裏面のアルミニウム板の伸び率を同程度に調整することができるので平面性のよいアルミニウム板を得ることができる。
The transfer is particularly preferably performed in the final cold rolling step of a normal aluminum plate. Rolling for transfer is preferably performed in 1 to 3 passes, and the rolling reduction of each is preferably 3 to 8%.
Moreover, it is more preferable that the unevenness | corrugation provided by transcription | transfer is provided on both surfaces of an aluminum plate. Thereby, since the elongation rate of the aluminum plate of the surface and a back surface can be adjusted to the same grade, an aluminum plate with sufficient flatness can be obtained.
 凹凸の転写に用いられる、表面に凹凸を有する圧延ロールを得る方法としては、例えば、ブラスト法、電解法、レーザ法、放電加工法、これらを組み合わせた方法が挙げられる。中でも、ブラスト法と電解法とを組み合わせた方法が好ましい。ブラスト法の中でも、エアーブラスト法が好ましい。
 エアーブラスト法におけるエアー圧は、1~10kgf/cm2(9.81×104~9.81×105Pa)であるのが好ましく、2~5kgf/cm2(1.96×105~4.90×105Pa)であるのがより好ましい。
 エアーブラスト法に用いられるグリッドは、所定の粒径のアルミナ粒子であれば特に限定されない。グリッドに、硬く、粒子一つ一つの角が鋭角なアルミナ粒子を用いると、転写ロールの表面に、深く均一な凹凸を形成させやすい。
 アルミナ粒子の平均粒径は、50~150μmであり、60~130μmであるのが好ましく、70~90μmであるのがより好ましい。上記範囲であると、転写ロールとして十分な大きさの表面粗さが得られるため、この転写ロールを用いて凹凸を付与したアルミニウム板の表面粗さが十分に大きくなる。また、ピット数も十分に多くすることができる。
Examples of a method for obtaining a rolling roll having irregularities on the surface used for irregularity transfer include a blast method, an electrolytic method, a laser method, an electric discharge machining method, and a method combining these. Among these, a method in which the blast method and the electrolytic method are combined is preferable. Among the blast methods, the air blast method is preferable.
The air pressure in the air blast method is preferably 1 to 10 kgf / cm 2 (9.81 × 10 4 to 9.81 × 10 5 Pa), preferably 2 to 5 kgf / cm 2 (1.96 × 10 5 to More preferably 4.90 × 10 5 Pa).
The grid used in the air blast method is not particularly limited as long as it is alumina particles having a predetermined particle size. If alumina particles having hard and sharp corners are used for the grid, it is easy to form deep and uniform irregularities on the surface of the transfer roll.
The average particle diameter of the alumina particles is 50 to 150 μm, preferably 60 to 130 μm, and more preferably 70 to 90 μm. If it is within the above range, a surface roughness having a sufficient size as a transfer roll can be obtained, so that the surface roughness of an aluminum plate provided with irregularities using this transfer roll is sufficiently increased. Also, the number of pits can be increased sufficiently.
 エアーブラスト法においては、噴射を2~5回行うのが好ましく、中でも2回行うのがより好ましい。噴射を2回行うと、1回目の噴射で形成された凹凸の不揃いな凸部を2回目の噴射で削り取ることができるため、得られる圧延ロールを用いて凹凸を付与したアルミニウム板の表面に、局所的に深い凹部が形成されにくくなる。その結果、平版印刷版の現像性(感度)が優れたものとなる。
 エアーブラスト法における噴射角は、噴射面(ロール表面)に対して60~120°であるのが好ましく、80~100°であるのがより好ましい。
In the air blast method, the injection is preferably performed 2 to 5 times, and more preferably 2 times. When the injection is performed twice, the uneven surface of the unevenness formed by the first injection can be scraped off by the second injection, so the surface of the aluminum plate provided with the unevenness using the obtained rolling roll, Locally deep recesses are less likely to be formed. As a result, the developability (sensitivity) of the lithographic printing plate is excellent.
The spray angle in the air blast method is preferably 60 to 120 °, more preferably 80 to 100 ° with respect to the spray surface (roll surface).
 エアーブラスト法を行った後、後述するめっき処理を行う前に、平均表面粗さ(Ra)がエアーブラスト後の値から10~40%低下するまで、研磨するのが好ましい。研磨は、サンドペーパー、砥石またはバフを用いるのが好ましい。研磨することにより、転写ロールの表面の凸部の高さを揃えることができ、その結果、この転写ロールを用いて凹凸を付与したアルミニウム板の表面に、局所的に深い部分が形成されなくなる。その結果、平版印刷版の現像性(感度)が特に優れたものとなる。 Polishing is preferably performed until the average surface roughness (R a ) is reduced by 10 to 40% from the value after air blasting after the air blasting method and before the plating treatment described later. For polishing, it is preferable to use sandpaper, a grindstone, or a buff. By polishing, the height of the convex portions on the surface of the transfer roll can be made uniform. As a result, locally deep portions are not formed on the surface of the aluminum plate provided with irregularities using the transfer roll. As a result, the developability (sensitivity) of the lithographic printing plate is particularly excellent.
 転写ロールの表面の平均表面粗さ(Ra)は0.4~1.0μmであるのが好ましく、0.6~0.9μmであるのがより好ましい。転写ロールの表面の山数は、1000~40000個/mm2であるのが好ましく、2000~10000個/mm2であるのがより好ましい。山数が少なすぎると、平版印刷版用支持体の保水性および画像記録層との密着性が劣ったものになる。保水性が劣ると、平版印刷版としたときに、網点部が汚れやすくなる。 The average surface roughness (R a ) of the transfer roll surface is preferably 0.4 to 1.0 μm, more preferably 0.6 to 0.9 μm. The number of peaks on the surface of the transfer roll is preferably 1000 to 40000 / mm 2 , and more preferably 2000 to 10000 / mm 2 . If the number of peaks is too small, the water retention of the lithographic printing plate support and the adhesion to the image recording layer will be poor. If the water retention is inferior, the halftone dot portion tends to become dirty when a planographic printing plate is used.
 転写ロールの材質は、特に限定されず、例えば、公知の圧延ロール用材質を用いることができる。
 本発明においては、鋼製のロールを用いるのが好ましい。中でも、鍛造により作られたロールであるのが好ましい。好ましいロール材質の組成の一例は、C:0.07~6質量%、Si:0.2~1質量%、Mn:0.15~1質量%、P:0.03質量%以下、S:0.03質量%以下、Cr:2.5~12質量%、Mo:0.05~1.1質量%、Cu:0.5質量%以下、V:0.5質量%以下、残部:鉄および不可避不純物である。
 また、一般的に圧延用ロールとして用いられる、工具鋼(SKD)、ハイス鋼(SKH)、高炭素クロム軸受鋼(SUJ)、炭素とクロムとモリブデンとバナジウムとを合金元素として含む鍛造鋼が挙げられる。長いロール寿命を得るために、クロムを10~20質量%程度含有する高クロム合金鋳鉄を用いることもできる。
 中でも、鍛造法により製造されたロールを用いるのが好ましい。この場合、焼入れ、焼戻し後の硬度が、Hsで80~100であるのが好ましい。焼戻しは、低温焼戻しを行うのが好ましい。
 ロールの直径は200~1000mmであるのが好ましい。また、ロールの面長は1000~4000mmであるのが好ましい。
The material of the transfer roll is not particularly limited, and for example, a known material for a rolling roll can be used.
In the present invention, it is preferable to use a steel roll. Among these, a roll made by forging is preferable. Examples of preferred roll material compositions are: C: 0.07 to 6 mass%, Si: 0.2 to 1 mass%, Mn: 0.15 to 1 mass%, P: 0.03 mass% or less, S: 0.03% by mass or less, Cr: 2.5 to 12% by mass, Mo: 0.05 to 1.1% by mass, Cu: 0.5% by mass or less, V: 0.5% by mass or less, balance: iron And inevitable impurities.
Further, tool steel (SKD), high-speed steel (SKH), high carbon chromium bearing steel (SUJ), and forged steel containing carbon, chromium, molybdenum and vanadium as alloy elements, which are generally used as rolling rolls, are mentioned. It is done. In order to obtain a long roll life, high chromium alloy cast iron containing about 10 to 20% by mass of chromium can also be used.
Among these, it is preferable to use a roll manufactured by a forging method. In this case, the hardness after quenching and tempering is preferably 80 to 100 in terms of Hs. The tempering is preferably performed at a low temperature.
The diameter of the roll is preferably 200 to 1000 mm. The roll surface length is preferably 1000 to 4000 mm.
 エアーブラスト法等により凹凸を形成された転写ロールは、洗浄の後、焼入れ、ハードクロムめっき等の硬質化処理を施されるのが好ましい。これにより耐摩耗性が向上し、寿命が長くなる。
 硬質化処理としては、ハードクロムめっきが特に好ましい。ハードクロムめっきは、工業用クロムめっき法として従来周知のCrO3-SO4浴、CrO3-SO4-フッ化物浴等を用いた電気めっきによる方法を用いることができる。
 ハードクロムめっき皮膜の厚さは3~15μmであるのが好ましく、5~10μmであるのがより好ましい。上記範囲であると、ロール表面素地とめっき皮膜との境界から、めっき皮膜部分がはがれるめっきはく離が生じにくく、また、耐摩耗性の向上効果も十分となる。ハードクロムめっき皮膜の厚さは、めっき処理時間を調整することによって調節することができる。
 ハードクロムめっきの前には、ハードクロムめっきに用いるめっき液中で、ロールを陽極とし、直流電流を用いて、5,000~50,000C/dm2の電気量で電解処理を行うのが好ましい。これにより、ロールの表面の凹凸を均一化することができる。
It is preferable that the transfer roll formed with irregularities by an air blast method or the like is subjected to hardening treatment such as quenching and hard chrome plating after washing. This improves wear resistance and prolongs life.
As the hardening treatment, hard chrome plating is particularly preferable. Hard chromium plating can be performed by electroplating using a conventionally known CrO 3 —SO 4 bath, CrO 3 —SO 4 —fluoride bath or the like as an industrial chromium plating method.
The thickness of the hard chrome plating film is preferably 3 to 15 μm, and more preferably 5 to 10 μm. If it is in the above range, the plating peeling is difficult to peel off from the boundary between the roll surface substrate and the plating film, and the effect of improving the wear resistance is sufficient. The thickness of the hard chrome plating film can be adjusted by adjusting the plating treatment time.
Before the hard chrome plating, it is preferable to perform electrolytic treatment with a quantity of electricity of 5,000 to 50,000 C / dm 2 by using a roll as an anode and a direct current in a plating solution used for hard chrome plating. . Thereby, the unevenness | corrugation of the surface of a roll can be equalize | homogenized.
 本発明に用いられるアルミニウム板は、連続した帯状のシート材または板材である。即ち、アルミニウムウェブであってもよく、製品として出荷される平版印刷版原版に対応する大きさ等に裁断された枚葉状シートであってもよい。
 アルミニウム板の表面のキズは平版印刷版用支持体に加工した場合に欠陥となる可能性があるため、平版印刷版用支持体とする表面処理工程の前の段階でのキズの発生は可能な限り抑制する必要がある。そのためには安定した形態で運搬時に傷付きにくい荷姿であることが好ましい。
 アルミニウムウェブの場合、アルミニウムの荷姿としては、例えば、鉄製パレットにハードボードとフェルトとを敷き、製品両端に段ボールドーナツ板を当て、ポリチュ-ブで全体を包み、コイル内径部に木製ドーナツを挿入し、コイル外周部にフェルトを当て、帯鉄で絞め、その外周部に表示を行う。また、包装材としては、ポリエチレンフィルム、緩衝材としては、ニードルフェルト、ハードボードを用いることができる。この他にもいろいろな形態があるが、安定して、キズも付かず運送等が可能であればこの方法に限るものではない。
The aluminum plate used in the present invention is a continuous belt-like sheet material or plate material. That is, it may be an aluminum web, or a sheet-like sheet cut to a size corresponding to a planographic printing plate precursor shipped as a product.
Since scratches on the surface of the aluminum plate may become defects when processed into a lithographic printing plate support, it is possible to generate scratches at the stage prior to the surface treatment process for making a lithographic printing plate support It is necessary to suppress as much as possible. For that purpose, it is preferable that the package has a stable form and is hardly damaged during transportation.
In the case of an aluminum web, for example, the packing form of aluminum is, for example, laying a hardboard and felt on an iron pallet, applying cardboard donut plates to both ends of the product, wrapping the whole with a polytube, and inserting a wooden donut into the inner diameter of the coil Then, a felt is applied to the outer periphery of the coil, the band is squeezed with a band, and the display is performed on the outer periphery. Moreover, a polyethylene film can be used as the packaging material, and needle felt and hard board can be used as the cushioning material. There are various other forms, but the present invention is not limited to this method as long as it is stable and can be transported without being damaged.
 本発明に用いられるアルミニウム板の厚みは、0.1~0.6mm程度であり、0.15~0.4mmであるのが好ましく、0.2~0.3mmであるのがより好ましい。この厚さは、印刷機の大きさ、印刷版の大きさ、ユーザーの希望等により適宜変更することができる。 The thickness of the aluminum plate used in the present invention is about 0.1 to 0.6 mm, preferably 0.15 to 0.4 mm, and more preferably 0.2 to 0.3 mm. This thickness can be appropriately changed according to the size of the printing press, the size of the printing plate, the user's desires, and the like.
<表面処理>
 本発明の平版印刷版用支持体の製造方法は、上述したアルミニウム板に、電解液中で交流を用いて電気化学的粗面化処理を施して平版印刷版用支持体を得る。
 本発明の平版印刷版用支持体の製造方法においては、上記以外の各種の工程を含んでいてもよい。
<Surface treatment>
In the method for producing a lithographic printing plate support of the present invention, the aluminum plate described above is subjected to an electrochemical surface roughening treatment using alternating current in an electrolytic solution to obtain a lithographic printing plate support.
In the method for producing a lithographic printing plate support of the present invention, various steps other than those described above may be included.
 具体的には、例えば、アルカリ水溶液中でのエッチング処理(第1エッチング処理)、酸性水溶液中でのデスマット処理、電気化学的粗面化処理、アルカリ水溶液中でのエッチング処理(第2エッチング処理)、酸性水液中でのデスマット処理、陽極酸化処理をこの順に施す方法が好適に挙げられる。
 また、前記処理で陽極酸化処理を施す前にさらに電気化学的粗面化処理、アルカリ水溶液中でのエッチング処理、酸性水溶液中でのデスマット処理を行ってよい。また、上記陽極酸化処理の後に、更に、封孔処理、親水化処理、または、封孔処理およびその後の親水化処理を施す方法も好ましい。
Specifically, for example, an etching process in an alkaline aqueous solution (first etching process), a desmut process in an acidic aqueous solution, an electrochemical roughening process, an etching process in an alkaline aqueous solution (second etching process). A preferred example is a method in which a desmut treatment in an acidic aqueous solution and an anodizing treatment are performed in this order.
Further, before the anodizing treatment in the above treatment, an electrochemical surface roughening treatment, an etching treatment in an alkaline aqueous solution, and a desmut treatment in an acidic aqueous solution may be performed. Further, after the anodizing treatment, a sealing treatment, a hydrophilization treatment, or a sealing treatment and a subsequent hydrophilization treatment are also preferable.
 また、第1エッチング処理の前に、機械的粗面化処理を行うこともできる。これにより、電気化学的粗面化処理に用いられる電気量を低減させることができる。
 機械的粗面化処理としては、例えば、アルミニウム表面を金属ワイヤーでひっかくワイヤーブラシグレイン法、研磨球と研磨剤でアルミニウム表面を砂目立てするボールグレイン法、特開平6-135175号公報および特公昭50-40047号公報に記載されているナイロンブラシと研磨剤で表面を砂目立てするブラシグレイン法を用いることができる。
 また、凹凸面をアルミニウム板に圧接する転写方法(転写ロール法)を用いることもできる。即ち、特開昭55-74898号、特開昭60-36195号、特開昭60-203496号の各公報に記載されている方法のほか、転写を数回行うことを特徴とする特開平6-55871号公報、表面が弾性であることを特徴とした特開平6-24168号公報に記載されている方法も適用可能である。
 中でも、転写ロール法が、平版印刷版用支持体の製造工程の高速化に対応しやすいので、好ましい。転写ロール法は、上述したように、最終板厚に調整する冷間圧延、または、最終板厚調整後の表面形状を仕上げる仕上げ冷間圧延において、転写を行うのが好ましい。
Further, a mechanical surface roughening process can be performed before the first etching process. Thereby, the amount of electricity used for the electrochemical surface roughening treatment can be reduced.
Examples of the mechanical surface roughening treatment include, for example, a wire brush grain method in which the aluminum surface is scratched with a metal wire, a ball grain method in which the aluminum surface is grained with a polishing ball and an abrasive, JP-A-6-135175, and Japanese Patent Publication No. 50. The brush grain method of graining the surface with a nylon brush and an abrasive described in Japanese Patent No. 40047 can be used.
Moreover, the transfer method (transfer roll method) which press-contacts an uneven surface to an aluminum plate can also be used. That is, in addition to the methods described in JP-A-55-74898, JP-A-60-36195, and JP-A-60-20396, transfer is performed several times. The method described in Japanese Patent Laid-Open No. 55871 and Japanese Patent Laid-Open No. 6-24168 characterized in that the surface is elastic is also applicable.
Among these, the transfer roll method is preferable because it can easily cope with the speedup of the manufacturing process of the support for a lithographic printing plate. As described above, the transfer roll method preferably performs the transfer in the cold rolling for adjusting to the final plate thickness or the finish cold rolling for finishing the surface shape after the final plate thickness adjustment.
 以下、表面処理の各工程について、詳細に説明する。 Hereinafter, each step of the surface treatment will be described in detail.
<第1エッチング処理>
 アルカリエッチング処理は、上述したアルミニウム板をアルカリ溶液に接触させることにより、表層を溶解する処理である。
<First etching process>
The alkali etching treatment is a treatment for dissolving the surface layer by bringing the above-described aluminum plate into contact with an alkali solution.
 電気化学的粗面化処理の前には、第1エッチング処理を行うことが好ましい。第1エッチング処理は、電気化学的粗面化処理で均一な凹部を形成させること、および、アルミニウム板(圧延アルミ)の表面の圧延油、汚れ、自然酸化皮膜等を除去することを目的として行われる。
 第1エッチング処理においては、後に電気化学的粗面化処理を施される面のエッチング量は、0.5g/m2以上であるのが好ましく、1g/m2以上であるのがより好ましく、また、10g/m2以下であるのが好ましく、5g/m2以下であるのがより好ましい。エッチング量が0.5g/m2以上であると、電気化学的粗面化処理において均一なピットを生成させることができる。エッチング量が10g/m2以下であると、アルカリ水溶液の使用量が少なくなり、経済的に有利となる。
Prior to the electrochemical surface roughening treatment, it is preferable to perform the first etching treatment. The first etching treatment is performed for the purpose of forming uniform concave portions by electrochemical surface roughening treatment and removing rolling oil, dirt, natural oxide film, etc. on the surface of the aluminum plate (rolled aluminum). Is called.
In the first etching treatment, the etching amount of the surface to be subjected to the electrochemical roughening treatment later is preferably 0.5 g / m 2 or more, more preferably 1 g / m 2 or more. but preferably not more 10 g / m 2 or less, more preferably 5 g / m 2 or less. When the etching amount is 0.5 g / m 2 or more, uniform pits can be generated in the electrochemical surface roughening treatment. When the etching amount is 10 g / m 2 or less, the amount of the alkaline aqueous solution used is reduced, which is economically advantageous.
 電気化学的粗面化処理を施される面の裏面のエッチング量は、電気化学的粗面化処理を施される面のエッチング量の5%以上であるのが好ましく、10%以上であるのがより好ましく、また、50質量%以下であるのが好ましく、30質量%以下であるのがより好ましい。上記範囲であると、アルミニウム板の裏面の圧延油の除去効果と、経済性とのバランスに優れる。
 後述する第2エッチング処理および第3エッチング処理においても、同様である。
The etching amount of the back surface of the surface subjected to the electrochemical roughening treatment is preferably 5% or more of the etching amount of the surface subjected to the electrochemical roughening treatment, preferably 10% or more. Is more preferably 50% by mass or less, and more preferably 30% by mass or less. It is excellent in the balance with the removal effect of the rolling oil of the back surface of an aluminum plate, and economical efficiency as it is the said range.
The same applies to a second etching process and a third etching process described later.
 アルカリ溶液に用いられるアルカリとしては、例えば、カセイアルカリ、アルカリ金属塩が挙げられる。具体的には、カセイアルカリとしては、例えば、カセイソーダ、カセイカリが挙げられる。また、アルカリ金属塩としては、例えば、メタケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第一リン酸ソーダ、第一リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、カセイアルカリの溶液、および、カセイアルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、カセイソーダの水溶液が好ましい。 Examples of the alkali used in the alkaline solution include caustic alkali and alkali metal salts. Specifically, examples of caustic alkali include caustic soda and caustic potash. Examples of the alkali metal salt include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate, and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumina. Alkali metal aluminates such as potassium acid; alkali metal aldones such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, primary sodium phosphate, primary potassium phosphate, etc. An alkali metal hydrogen phosphate is mentioned. Among these, a caustic alkali solution and a solution containing both a caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost. In particular, an aqueous solution of caustic soda is preferable.
 第1エッチング処理においては、アルカリ溶液の濃度は、1質量%以上であるのが好ましく、20質量%以上であるのがより好ましく、また、35質量%以下であるのが好ましく、30質量%以下であるのがより好ましい。
 また、アルカリ溶液は、アルミニウムイオンを含有しているのが好ましい。アルミニウムイオン濃度は、0.5質量%以上であるのが好ましく、4質量%以上であるのがより好ましく、また、10質量%以下であるのが好ましく、8質量%以下であるのがより好ましい。このようなアルカリ溶液は、例えば、水と48質量%カセイソーダ水溶液とアルミン酸ソーダとを用いて調製することができる。
In the first etching treatment, the concentration of the alkaline solution is preferably 1% by mass or more, more preferably 20% by mass or more, and preferably 35% by mass or less, and 30% by mass or less. It is more preferable that
The alkaline solution preferably contains aluminum ions. The aluminum ion concentration is preferably 0.5% by mass or more, more preferably 4% by mass or more, and preferably 10% by mass or less, more preferably 8% by mass or less. . Such an alkaline solution can be prepared using, for example, water, a 48 mass% sodium hydroxide aqueous solution, and sodium aluminate.
 第1エッチング処理においては、アルカリ溶液の温度は、25℃以上であるのが好ましく、40℃以上であるのがより好ましく、また、95℃以下であるのが好ましく、80℃以下であるのがより好ましい。
 第1エッチング処理においては、処理時間は、1秒以上であるのが好ましく、2秒以上であるのがより好ましく、また、30秒以下であるのが好ましく、15秒以下であるのがより好ましい。
In the first etching treatment, the temperature of the alkaline solution is preferably 25 ° C. or higher, more preferably 40 ° C. or higher, preferably 95 ° C. or lower, and 80 ° C. or lower. More preferred.
In the first etching treatment, the treatment time is preferably 1 second or longer, more preferably 2 seconds or longer, more preferably 30 seconds or shorter, and more preferably 15 seconds or shorter. .
 アルミニウム板を連続的にエッチング処理していくと、アルカリ溶液中のアルミニウムイオン濃度が上昇していき、アルミニウム板のエッチング量が変動する。そこで、エッチング液の組成管理を、以下のようにして行うのが好ましい。
 即ち、カセイソーダ濃度とアルミニウムイオン濃度とのマトリクスに対応する、電導度と比重と温度とのマトリクス、または、電導度と超音波伝搬速度と温度とのマトリクスをあらかじめ作成しておき、電導度と比重と温度、または、電導度と超音波伝搬速度と温度によって液組成を測定し、液組成の制御目標値になるようにカセイソーダと水とを添加する。そして、カセイソーダと水とを添加することによって増加したエッチング液を、循環タンクからオーバーフローさせることにより、その液量を一定に保つ。添加するカセイソーダとしては、工業用の40~60質量%のものを用いることができる。
 電導度計および比重計としては、それぞれ温度補償されているものを用いるのが好ましい。比重計としては、差圧式のものを用いるのが好ましい。
When the aluminum plate is continuously etched, the aluminum ion concentration in the alkaline solution increases and the etching amount of the aluminum plate varies. Therefore, the composition management of the etching solution is preferably performed as follows.
That is, a matrix of conductivity, specific gravity, and temperature, or a matrix of conductivity, ultrasonic propagation velocity, and temperature corresponding to the matrix of caustic soda concentration and aluminum ion concentration is prepared in advance, and the conductivity and specific gravity are prepared. The liquid composition is measured according to the temperature and temperature, or the electrical conductivity, the ultrasonic wave propagation speed, and the temperature, and caustic soda and water are added so that the control target value of the liquid composition is reached. Then, the amount of the etching solution increased by adding caustic soda and water is overflowed from the circulation tank, thereby keeping the amount of the solution constant. As the caustic soda to be added, 40 to 60% by mass for industrial use can be used.
As the conductivity meter and the specific gravity meter, it is preferable to use those that are temperature-compensated. As the hydrometer, it is preferable to use a differential pressure type.
 アルミニウム板をアルカリ溶液に接触させる方法としては、例えば、アルミニウム板をアルカリ溶液を入れた槽の中を通過させる方法、アルミニウム板をアルカリ溶液を入れた槽の中に浸せきさせる方法、アルカリ溶液をアルミニウム板の表面に噴きかける方法が挙げられる。 Examples of the method of bringing the aluminum plate into contact with the alkaline solution include, for example, a method in which the aluminum plate is passed through a tank containing the alkaline solution, a method in which the aluminum plate is immersed in a tank containing the alkaline solution, The method of spraying on the surface of a board is mentioned.
 中でも、アルカリ溶液をアルミニウム板の表面に噴きかける方法が好ましい。具体的には、φ2~5mmの孔を10~50mmピッチで有するスプレー管から、スプレー管1本あたり、10~100L/minの量でエッチング液を吹き付ける方法が好ましい。スプレー管は複数本設けるのが好ましい。 Of these, a method of spraying an alkaline solution onto the surface of an aluminum plate is preferable. Specifically, a method of spraying an etching solution in an amount of 10 to 100 L / min per spray tube from a spray tube having holes of φ2 to 5 mm at a pitch of 10 to 50 mm is preferable. It is preferable to provide a plurality of spray tubes.
 アルカリエッチング処理が終了した後は、ニップローラで液切りし、更に、1~10秒間水洗処理を行った後、ニップローラで液切りするのが好ましい。
 水洗処理は、自由落下カーテン状の液膜により水洗処理する装置を用いて水洗し、更に、スプレー管を用いて水洗するのが好ましい。
After the alkali etching treatment is completed, it is preferable to drain the liquid with a nip roller, and further perform the water washing treatment for 1 to 10 seconds and then drain the liquid with a nip roller.
The water washing treatment is preferably carried out using an apparatus for washing with a free-falling curtain-like liquid film, and further using a spray tube.
 また、水洗処理に用いられるスプレー管としては、例えば、扇状に噴射水が広がるスプレーチップをアルミニウム板の幅方向に複数個有するスプレー管を用いることができる。スプレーチップの間隔は20~100mmであるのが好ましく、また、スプレーチップ1本あたりの液量は0.5~20L/minであるのが好ましい。スプレー管は複数本用いるのが好ましい。 Further, as the spray tube used for the water washing treatment, for example, a spray tube having a plurality of spray tips spreading in the fan shape in the width direction of the aluminum plate can be used. The interval between spray tips is preferably 20 to 100 mm, and the amount of liquid per spray tip is preferably 0.5 to 20 L / min. It is preferable to use a plurality of spray tubes.
<第1デスマット処理>
 第1エッチング処理を行った後、表面に残留する汚れ(スマット)を除去するために酸洗い(第1デスマット処理)を行うのが好ましい。デスマット処理は、アルミニウム板を酸性溶液に接触させることにより行う。
<First desmut treatment>
After the first etching process, it is preferable to perform pickling (first desmut process) in order to remove dirt (smut) remaining on the surface. The desmut treatment is performed by bringing an aluminum plate into contact with an acidic solution.
 用いられる酸としては、例えば、硝酸、硫酸、塩酸、リン酸、クロム酸、フッ化水素酸、ホウフッ化水素酸が挙げられる。中でも、硝酸、硫酸が好ましい。具体的には、例えば、後述する陽極酸化処理工程で用いた硫酸水溶液の廃液を好適に用いることができる。 Examples of the acid used include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid. Of these, nitric acid and sulfuric acid are preferable. Specifically, for example, a waste solution of an aqueous sulfuric acid solution used in an anodic oxidation process described later can be suitably used.
 デスマット処理液の組成管理においては、酸性溶液濃度とアルミニウムイオン濃度とのマトリクスに対応する、電導度と温度で管理する方法、電導度と比重と温度とで管理する方法、および、電導度と超音波の伝搬速度と温度とで管理する方法のいずれかを選択して用いることができる。 In the composition management of the desmut treatment liquid, a method of managing by conductivity and temperature, a method of managing by conductivity, specific gravity and temperature, and a conductivity and superconductivity corresponding to a matrix of acidic solution concentration and aluminum ion concentration. Either of the methods managed by the propagation speed of sound waves and temperature can be selected and used.
 第1デスマット処理においては、0.5~30質量%の酸および0.5~10質量%のアルミニウムイオンを含有する酸性溶液を用いるのが好ましい。 In the first desmutting treatment, it is preferable to use an acidic solution containing 0.5 to 30% by mass of acid and 0.5 to 10% by mass of aluminum ions.
 酸性溶液の温度は、25℃以上であるのが好ましく、また、95℃以下であるのが好ましい。 The temperature of the acidic solution is preferably 25 ° C. or higher, and preferably 95 ° C. or lower.
 第1デスマット処理においては、処理時間は、1秒以上であるのが好ましく、2秒以上であるのがより好ましく、また、30秒以下であるのが好ましく、10秒以下であるのがより好ましい。 In the first desmutting treatment, the treatment time is preferably 1 second or more, more preferably 2 seconds or more, and preferably 30 seconds or less, more preferably 10 seconds or less. .
 アルミニウム板を酸性溶液に接触させる方法としては、例えば、アルミニウム板を酸性溶液を入れた槽の中を通過させる方法、アルミニウム板を酸性溶液を入れた槽の中に浸せきさせる方法、酸性溶液をアルミニウム板の表面に噴きかける方法が挙げられる。
 中でも、酸性溶液をアルミニウム板の表面に噴きかける方法が好ましい。具体的には、φ2~5mmの孔を10~50mmピッチで有するスプレー管から、スプレー管1本あたり、10~100L/minの量でデスマッティング液を吹き付ける方法が好ましい。スプレー管は複数本設けるのが好ましい。
Examples of the method of bringing the aluminum plate into contact with the acidic solution include, for example, a method of passing the aluminum plate through a bath containing the acidic solution, a method of immersing the aluminum plate in a bath containing the acidic solution, and an acidic solution containing aluminum. The method of spraying on the surface of a board is mentioned.
Among these, a method in which an acidic solution is sprayed on the surface of an aluminum plate is preferable. Specifically, it is preferable to spray a desmating solution at a rate of 10 to 100 L / min per spray tube from a spray tube having φ2 to 5 mm holes at a pitch of 10 to 50 mm. It is preferable to provide a plurality of spray tubes.
 デスマット処理が終了した後は、ニップローラで液切りし、更に、1~10秒間水洗処理を行った後、ニップローラで液切りするのが好ましい。
 水洗処理は、アルカリエッチング処理の後の水洗処理と同様である。ただし、スプレーチップ1本あたりの液量は1~20L/minであるのが好ましい。
After the desmutting process is completed, it is preferable to drain the liquid with a nip roller, and further perform the water washing process for 1 to 10 seconds and then drain the liquid with a nip roller.
The water washing treatment is the same as the water washing treatment after the alkali etching treatment. However, the amount of liquid per spray tip is preferably 1 to 20 L / min.
<電気化学的粗面化処理>
 電気化学的粗面化処理は、塩素イオンと硫酸イオンを含有する混合水溶液中での交流を用いた電気化学的粗面化処理を行うことが望ましい。この電気化学的粗面化処理により、プラトー部(平坦部)の少ない、好ましくは平均直径2~20μmの均一な凹部を有し、好ましくは平均表面粗さ0.3~0.8μmの表面形状が得られる。このように、本発明においては、電気化学的粗面化処理後の表面において、プラトー部が少ないので、平版印刷版としたときの耐刷性が優れたものとなり、また、ピットが均一であるので、平版印刷版としたときの耐汚れ性が優れたものとなる。
 これに対し、電解液として塩酸を含有し、かつ、硫酸を含有しない水溶液を用いる場合は、ピットが浅くなったり、重なったりして、不均一になる。また、プラトー部も多くなる。
<Electrochemical roughening treatment>
As the electrochemical surface roughening treatment, it is desirable to perform an electrochemical surface roughening treatment using alternating current in a mixed aqueous solution containing chlorine ions and sulfate ions. By this electrochemical surface roughening treatment, the surface shape has a plateau portion (flat portion), a uniform concave portion having an average diameter of preferably 2 to 20 μm, and preferably an average surface roughness of 0.3 to 0.8 μm. Is obtained. As described above, in the present invention, since the plateau portion is small on the surface after the electrochemical surface roughening treatment, the printing durability when the planographic printing plate is obtained is excellent, and the pits are uniform. Therefore, the stain resistance when the planographic printing plate is obtained is excellent.
On the other hand, when an aqueous solution containing hydrochloric acid and not containing sulfuric acid is used as the electrolytic solution, the pits become shallow or overlap and become non-uniform. In addition, the plateau part increases.
 電解液として用いられる混合水溶液における塩酸濃度は、3~30g/Lであるのが好ましく、4~20g/Lであるのがより好ましく、10~18g/Lであるのが更に好ましい。上記範囲であると、ピットの均一性が高くなる。 The hydrochloric acid concentration in the mixed aqueous solution used as the electrolytic solution is preferably 3 to 30 g / L, more preferably 4 to 20 g / L, and still more preferably 10 to 18 g / L. Within the above range, the uniformity of the pits becomes high.
 混合水溶液における硫酸濃度は、0.01~10g/Lであるのが好ましく、0.1~5g/Lであるのがより好ましく、1~4g/Lであるのが更に好ましい。硫酸は、アノード反応で酸化皮膜を形成する。これにより、均一な凹凸表面が得られると考えられる。
 また、本発明では、混合水溶液に硫酸が添加されているために、後述するように複数の電解槽を用いて電気化学的粗面化を行う場合にも、平均粗さRaを十分な値とすることができる。
The sulfuric acid concentration in the mixed aqueous solution is preferably 0.01 to 10 g / L, more preferably 0.1 to 5 g / L, and still more preferably 1 to 4 g / L. Sulfuric acid forms an oxide film by an anodic reaction. Thereby, it is considered that a uniform uneven surface can be obtained.
Further, in the present invention, since sulfuric acid is added to the mixed aqueous solution, the average roughness Ra is sufficient even when electrochemical roughening is performed using a plurality of electrolytic cells as described later. It can be.
 混合水溶液には、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオン、塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物または硝酸化合物を添加して使用することができる。また、銅と錯体を形成する化合物を1~200g/Lの割合で添加することもできる。混合水溶液中には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、ケイ素等のアルミニウム合金中に含まれる金属が溶解していてもよい。次亜塩素酸や過酸化水素を1~100g/L添加してもよい。 The mixed aqueous solution can be used by adding a hydrochloric acid compound or a nitric acid compound having a nitrate ion such as aluminum nitrate, sodium nitrate or ammonium nitrate, or a hydrochloric acid ion such as aluminum chloride, sodium chloride or ammonium chloride. Also, a compound that forms a complex with copper can be added at a rate of 1 to 200 g / L. In the mixed aqueous solution, a metal contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium, or silicon may be dissolved. Hypochlorous acid or hydrogen peroxide may be added at 1 to 100 g / L.
 混合水溶液におけるアルミニウムイオン濃度は、3~30g/Lであるのが好ましく、3~20g/Lであるのがより好ましく、8~18g/Lであるのが更に好ましい。上記範囲であると、ピットの均一性が高くなる。また、混合水溶液の補充量が多くなりすぎることがない。 The aluminum ion concentration in the mixed aqueous solution is preferably 3 to 30 g / L, more preferably 3 to 20 g / L, and still more preferably 8 to 18 g / L. Within the above range, the uniformity of the pits becomes high. Moreover, the replenishment amount of the mixed aqueous solution does not increase too much.
 電解液の各成分の濃度制御は、濃度測定方法等の多成分濃度測定法と、フィードフォワード制御およびフィードバック制御とを併用して行うのが好ましい。これにより、電解液の正確な濃度管理が可能となる。
 多成分濃度測定法は、例えば、液中の超音波の伝搬速度と液の電導度(導電率)とを用いて濃度を測定する方法、中和滴定法、キャピラリー電気泳動分析法、イソタコフォレシス(isotachophoresis、細管式等速電気泳動法)分析法、イオンクロマトグラフ法が挙げられる。
 イオンクロマトグラフ法は、検出器の種類により、吸光度検出イオンクロマトグラフ、ノンサプレッサ型電気電導度検出イオンクロマトグラフ、サプレッサ型イオンクロマトグラフ等に分類される。中でも、サプレッサ型イオンクロマトグラフが、測定の安定性の確保のうえで好ましい。
The concentration control of each component of the electrolytic solution is preferably performed using a combination of a multi-component concentration measurement method such as a concentration measurement method, feedforward control and feedback control. Thereby, accurate concentration management of the electrolytic solution becomes possible.
The multi-component concentration measurement method is, for example, a method of measuring the concentration using the propagation speed of ultrasonic waves in the liquid and the electric conductivity (conductivity) of the liquid, neutralization titration method, capillary electrophoresis analysis method, isotacophoresis (Isochophoresis, capillary tube isotachophoresis) Analytical method and ion chromatograph method are mentioned.
The ion chromatograph method is classified into an absorbance detection ion chromatograph, a non-suppressor type electric conductivity detection ion chromatograph, a suppressor type ion chromatograph, and the like depending on the type of detector. Among these, a suppressor type ion chromatograph is preferable from the viewpoint of ensuring measurement stability.
 具体的には、以下に説明する方法によって、電解液の各成分の濃度制御をすることが好ましい。
 電気化学的粗面化を行うと、電解液では、通電量に比例して水素イオン濃度が低下し、アルミニウムイオン濃度が上昇する。したがって、通電量に基づいたフィードフォワード制御を行うことにより、水素イオン濃度とアルミニウムイオン濃度とを一定に保つことができる。
 すなわち、水素イオン濃度を上昇させるために、通電量、すなわち、交流電源が発生する電流値に比例した量の酸を電解液に補給し、アルミニウムイオン濃度を低下させるために、通電量に比例した量の水を電解液に補給し、さらに、水の添加によって酸の濃度が低下するので、添加された水の量に比例した量の酸を電解液に補給することによって、水素イオン濃度とアルミニウムイオン濃度とを一定に保つことができる。なお、以下の説明では、電解液に補給する水を補給水ともいう。
Specifically, it is preferable to control the concentration of each component of the electrolytic solution by the method described below.
When electrochemical surface roughening is performed, in the electrolytic solution, the hydrogen ion concentration decreases in proportion to the amount of energization, and the aluminum ion concentration increases. Therefore, by performing feedforward control based on the energization amount, the hydrogen ion concentration and the aluminum ion concentration can be kept constant.
That is, in order to increase the hydrogen ion concentration, the amount of electricity supplied, that is, the amount of acid proportional to the current value generated by the AC power supply is replenished to the electrolyte, and in order to reduce the aluminum ion concentration, the amount of electricity is proportional to the amount of electricity supplied. Since the amount of water is replenished to the electrolyte and the concentration of the acid is reduced by adding water, the amount of acid proportional to the amount of added water is replenished to the electrolyte, so that the hydrogen ion concentration and aluminum The ion concentration can be kept constant. In the following description, the water supplied to the electrolyte is also referred to as makeup water.
 さらに、電解液の濃度を測定する濃度測定系を設け、測定された電解液の濃度に基づいて酸や補給水の補給を制御するフィードバック制御を併用して、電解液の各成分を濃度制御することが好ましい。フィードバック制御を併用することにより、アルミニウム板による電解液の持ち出しや持ち込み、電解液の蒸発等がある場合にも、電解液の濃度を制御よく制御することができる。
 濃度測定方法としては、上述した多成分濃度測定法が挙げられるが、各成分の液組成に対応した電解液の電導度と超音波伝搬速度との対応をとっておき、電導度と超音波伝搬速度との値に基づいて濃度測定を行う方法が特に好ましい。
Furthermore, a concentration measurement system for measuring the concentration of the electrolyte is provided, and the concentration of each component of the electrolyte is controlled by using feedback control for controlling the supply of acid and makeup water based on the measured concentration of the electrolyte. It is preferable. By using feedback control in combination, the concentration of the electrolyte can be controlled with good control even when the electrolyte is taken out or brought in by an aluminum plate, the electrolyte is evaporated, or the like.
The concentration measurement method includes the multi-component concentration measurement method described above, and the correspondence between the electric conductivity of the electrolyte solution corresponding to the liquid composition of each component and the ultrasonic wave propagation velocity is taken, and the electric conductivity and the ultrasonic wave propagation velocity are determined. A method of measuring the concentration based on the value is particularly preferable.
 補給水および酸は、循環タンクに供給することが好ましい。循環タンクは、電解液を貯留しており、貯留されている電解液を電解槽に供給し、電解槽から排出された電解液を貯留する。循環タンクの容量を超えた電解液は、オーバーフローにより排出される。なお、排出された電解液は、無害化した後に廃液として河川などに放流される。 Supplied water and acid are preferably supplied to the circulation tank. The circulation tank stores an electrolytic solution, supplies the stored electrolytic solution to the electrolytic bath, and stores the electrolytic solution discharged from the electrolytic bath. The electrolyte exceeding the capacity of the circulation tank is discharged due to overflow. The discharged electrolytic solution is detoxified and then discharged into a river or the like as a waste solution.
 本発明では、硫酸、塩酸、アルミニウムイオンという3成分の濃度制御を行うが、3成分の濃度をリアルタイムに測定することは困難である。したがって、補給水に予め電解液中の硫酸濃度と同じ濃度の硫酸を添加しておき、硫酸が添加された補給水と塩酸とを補給することによって、濃度制御することが好ましい。
 この方法では、補給水中の硫酸濃度も制御することが好ましい。補給水の硫酸濃度を制御する方法としては、補給水の硫酸濃度を測定して、測定した結果に基づいて硫酸または水を添加する方法が挙げられる。補給水の硫酸濃度を測定する方法としては、補給水の電導度、pH、比重、または超音波の伝搬速度に基づいて測定する方法、中和滴定法、キャピラリー電気泳動分析法、イソタコフォレシス分析法、イオンクロマトグラフ法などが挙げられるが、補給水の電導度を用いて測定する方法が好ましい。
In the present invention, concentration control of three components such as sulfuric acid, hydrochloric acid, and aluminum ions is performed, but it is difficult to measure the concentration of the three components in real time. Therefore, it is preferable to control the concentration by previously adding sulfuric acid having the same concentration as the sulfuric acid concentration in the electrolytic solution to the replenishing water, and replenishing the replenishing water to which sulfuric acid has been added and hydrochloric acid.
In this method, it is preferable to control the sulfuric acid concentration in the makeup water. As a method for controlling the sulfuric acid concentration of the make-up water, there is a method of measuring the sulfuric acid concentration of the make-up water and adding sulfuric acid or water based on the measured result. Methods for measuring the sulfuric acid concentration of make-up water include measurement based on the conductivity, pH, specific gravity, or ultrasonic wave propagation speed of make-up water, neutralization titration method, capillary electrophoresis analysis, isotacophoresis analysis Method, ion chromatograph method and the like, and a method of measuring using the conductivity of makeup water is preferable.
 図4は、本発明において電解液の濃度を制御するシステム(以下、「濃度制御システム」ともいう。)200の一例を示す図である。
 図4では、交流電源201から出力された電流を電極202に供給することで、電解槽203に貯留されている電解液220の中を通過するアルミニウム板204に電気化学的粗面化処理が施されており、濃度制御システム200が、電解槽203内の電解液220に含まれる成分の濃度を制御している。
FIG. 4 is a diagram showing an example of a system (hereinafter, also referred to as “concentration control system”) 200 for controlling the concentration of the electrolyte in the present invention.
In FIG. 4, by supplying the current output from the AC power source 201 to the electrode 202, an electrochemical roughening process is performed on the aluminum plate 204 that passes through the electrolytic solution 220 stored in the electrolytic bath 203. Therefore, the concentration control system 200 controls the concentration of the component contained in the electrolytic solution 220 in the electrolytic cell 203.
 濃度制御システム200は、循環タンク210と、循環タンク210内の電解液220に含まれる塩酸およびアルミニウムイオンの濃度を測定する第1濃度測定系211と、塩酸221を貯留する塩酸貯留部212と、水と硫酸を含有する補給水222を貯留する補給水貯留部213と、交流電源201および第1濃度測定系211から供給されたデータに基づいて循環タンク210への塩酸221および/または補給水222の供給を制御するコントローラ214と、補給水222に含まれる硫酸の濃度を測定する第2濃度測定系215とを備える。なお、図4中Pはポンプを示している。また、図4中実線は液体の移動を示しており、破線は信号の流れを示している。
 濃度制御システム200では、第1濃度測定系211が、循環タンク210内の電解液220中の塩酸およびアルミニウムイオンの濃度を測定しており、コントローラ214が、第1濃度測定系211が測定した濃度と交流電源201が発生している電流とに基づいて、塩酸貯留部212から循環タンク210への塩酸の補給と補給水貯留部213から循環タンク210への補給水の補給とを制御することによって、濃度制御されている。循環タンク210に貯留されている電解液220は電解槽203に供給され、また、電解槽203中の電解液220は循環タンク210に排出される。
 なお、濃度制御システム200では、補給水貯留部213に貯留されている補給水222中の硫酸濃度を、第2の濃度測定系215によって測定し、測定結果に応じて水および/または硫酸を補給水貯留部213に供給することによって制御している。
The concentration control system 200 includes a circulation tank 210, a first concentration measurement system 211 that measures the concentration of hydrochloric acid and aluminum ions contained in the electrolytic solution 220 in the circulation tank 210, a hydrochloric acid storage unit 212 that stores hydrochloric acid 221, Based on the data supplied from the AC power supply 201 and the first concentration measurement system 211, the hydrochloric acid 221 and / or the makeup water 222 to the circulation tank 210 based on the makeup water storage section 213 that stores the makeup water 222 containing water and sulfuric acid. And a second concentration measurement system 215 that measures the concentration of sulfuric acid contained in the makeup water 222. In FIG. 4, P indicates a pump. In FIG. 4, the solid line indicates the movement of the liquid, and the broken line indicates the signal flow.
In the concentration control system 200, the first concentration measurement system 211 measures the concentration of hydrochloric acid and aluminum ions in the electrolytic solution 220 in the circulation tank 210, and the controller 214 measures the concentration measured by the first concentration measurement system 211. And supply of hydrochloric acid from the hydrochloric acid reservoir 212 to the circulation tank 210 and supply of makeup water from the makeup water reservoir 213 to the circulation tank 210 based on the current generated by the AC power supply 201. The concentration is controlled. The electrolytic solution 220 stored in the circulation tank 210 is supplied to the electrolytic tank 203, and the electrolytic solution 220 in the electrolytic tank 203 is discharged to the circulation tank 210.
In the concentration control system 200, the sulfuric acid concentration in the makeup water 222 stored in the makeup water storage section 213 is measured by the second concentration measurement system 215, and water and / or sulfuric acid is replenished according to the measurement result. It controls by supplying to the water storage part 213.
 電解液に補給する塩酸としては、10~35質量%のものを用いることが好ましい。
 また、補給水中の硫酸濃度は、電解液の硫酸濃度と同一とする。すなわち、例えば電解液の硫酸濃度が3g/Lの場合には、補給水の硫酸濃度も3g/Lである。補給水の硫酸濃度を電解液の硫酸濃度と同じにすることによって、電解液の硫酸濃度を測定することなく、電解液の硫酸濃度を一定に保つことができる。
As hydrochloric acid to be replenished to the electrolyte, it is preferable to use 10 to 35% by mass.
The sulfuric acid concentration in the makeup water is the same as the sulfuric acid concentration in the electrolytic solution. That is, for example, when the sulfuric acid concentration of the electrolytic solution is 3 g / L, the sulfuric acid concentration of makeup water is also 3 g / L. By making the sulfuric acid concentration of the makeup water equal to the sulfuric acid concentration of the electrolytic solution, the sulfuric acid concentration of the electrolytic solution can be kept constant without measuring the sulfuric acid concentration of the electrolytic solution.
 電気化学的粗面化処理における電気量は、アルミニウム板が陽極時の電気量の総和で、150~800C/dm2であるのが好ましく、200~700C/dm2であるのがより好ましく、200~500C/dm2であるのが更に好ましい。150C/dm2以上であると、表面粗さが十分となり、耐刷性および印刷時の水量の調整のしやすさがより優れたものとなる。800C/dm2以下であると、耐汚れ性がより優れたものとなる。
 また、転写により凹凸パターンを形成したアルミニウム板を用いる場合は、200~400C/dm2であるのが特に好ましい。
Quantity of electricity in electrochemical graining treatment, an aluminum plate is amount of electricity when the anode sum is preferably from 150 ~ 800C / dm 2, more preferably from 200 ~ 700C / dm 2, 200 More preferably, it is ˜500 C / dm 2 . When it is 150 C / dm 2 or more, the surface roughness becomes sufficient, and the printing durability and the ease of adjusting the amount of water during printing become more excellent. When it is 800 C / dm 2 or less, the stain resistance is more excellent.
In addition, when an aluminum plate having a concavo-convex pattern formed thereon by transfer is used, it is particularly preferably 200 to 400 C / dm 2 .
 電気化学的粗面化処理における電流密度は、電流値のピークで、30~300A/dm2であるのが好ましく、50~200A/dm2であるのがより好ましく、75~125A/dm2であるのが更に好ましい。30A/dm2以上であると、生産性がより優れたものとなる。300A/dm2以下であると、電圧が高くなく、電源容量が大きくなりすぎないので、電源コストを低くすることができる。
 電流密度は、電解処理の最初から最後まで漸増するように設定するのが好ましい。これにより、均一なピットが生成しやすくなる。具体的には、(電解の最後の電流密度/電解の最初の電流密度)の値が1.1~2.0になるように段階的に漸増するように、電源および電極を分割して設定するのが好ましい。
The current density in the electrochemical surface roughening treatment is preferably 30 to 300 A / dm 2 at the peak of the current value, more preferably 50 to 200 A / dm 2 , and 75 to 125 A / dm 2 . More preferably. When it is 30 A / dm 2 or more, the productivity is further improved. When it is 300 A / dm 2 or less, the voltage is not high and the power source capacity does not become too large, so that the power source cost can be reduced.
The current density is preferably set so as to increase gradually from the beginning to the end of the electrolytic treatment. This makes it easy to generate uniform pits. Specifically, the power supply and electrodes are divided and set so that the value of (final current density of electrolysis / initial current density of electrolysis) gradually increases to 1.1 to 2.0. It is preferable to do this.
 電気化学的粗面化処理は、例えば、特公昭48-28123号公報および英国特許第896,563号明細書に記載されている電気化学的グレイン法(電解グレイン法)に従うことができる。 The electrochemical surface roughening treatment can follow, for example, the electrochemical grain method (electrolytic grain method) described in Japanese Patent Publication No. 48-28123 and British Patent No. 896,563.
 電解槽および電源については、種々提案されているが、米国特許第4,203,637号明細書、特開昭56-123400号、特開昭57-59770号、特開昭53-12738号、特開昭53-32821号、特開昭53-32822号、特開昭53-32823号、特開昭55-122896号、特開昭55-132884号、特開昭62-127500号、特開平1-52100号、特開平1-52098号、特開昭60-67700号、特開平1-230800号、特開平3-257199号の各公報等に記載されているものを用いることができる。
 また、特開昭52-58602号、特開昭52-152302号、特開昭53-12738号、特開昭53-12739号、特開昭53-32821号、特開昭53-32822号、特開昭53-32833号、特開昭53-32824号、特開昭53-32825号、特開昭54-85802号、特開昭55-122896号、特開昭55-132884号、特公昭48-28123号、特公昭51-7081号、特開昭52-133838号、特開昭52-133840号、特開昭52-133844号、特開昭52-133845号、特開昭53-149135号、特開昭54-146234号の各公報等に記載されているもの等も用いることができる。
Various electrolyzers and power sources have been proposed. US Pat. No. 4,203,637, JP-A-56-123400, JP-A-57-59770, JP-A-53-12738, JP 53-32821, JP 53-32222, JP 53-32823, JP 55-122896, JP 55-13284, JP 62-127500, JP Those described in JP-A-1-52100, JP-A-1-52098, JP-A-60-67700, JP-A-1-230800, JP-A-3-257199, and the like can be used.
Further, JP-A-52-58602, JP-A-52-152302, JP-A-53-12738, JP-A-53-12739, JP-A-53-32821, JP-A-53-32222, JP 53-32833, JP 53-32824, JP 53-32825, JP 54-85802, JP 55-122896, JP 55-13284, JP 48-28123, JP-B-51-7081, JP-A-52-13338, JP-A-52-133840, JP-A-52-133844, JP-A-52-133845, JP-A-53-149135 And those described in JP-A No. 54-146234 and the like can also be used.
 更に、Cuと錯体を形成しうる化合物を添加して使用することによりCuを多く含有するアルミニウム板に対しても均一な砂目立てが可能になる。Cuと錯体を形成しうる化合物としては、例えば、アンモニア;メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、シクロヘキシルアミン、トリエタノールアミン、トリイソプロパノールアミン、EDTA(エチレンジアミン四酢酸)等のアンモニアの水素原子を炭化水素基(脂肪族、芳香族等)等で置換して得られるアミン類;炭酸ナトリウム、炭酸カリウム、炭酸水素カリウム等の金属炭酸塩類が挙げられる。また、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム、炭酸アンモニウム等のアンモニウム塩も挙げられる。 Furthermore, by adding and using a compound capable of forming a complex with Cu, uniform graining is possible even for an aluminum plate containing a large amount of Cu. Examples of the compound capable of forming a complex with Cu include ammonia; hydrogen atom of ammonia such as methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, cyclohexylamine, triethanolamine, triisopropanolamine, EDTA (ethylenediaminetetraacetic acid), etc. And amines obtained by substituting with a hydrocarbon group (aliphatic, aromatic, etc.); metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate and the like. In addition, ammonium salts such as ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, and ammonium carbonate are also included.
 混合水溶液の温度は、20℃以上であるのが好ましく、25℃以上であるのがより好ましく、30℃以上であるのが更に好ましく、また、60℃以下であるのが好ましく、50℃以下であるのがより好ましく、40℃以下であるのが更に好ましい。20℃以上であると、冷却のための冷凍機運転コストが高くならず、また、冷却のための地下水の使用量を抑制することができる。60℃以下であると、設備の耐食性を確保することが容易である。 The temperature of the mixed aqueous solution is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, still more preferably 30 ° C. or higher, and preferably 60 ° C. or lower, preferably 50 ° C. or lower. More preferably, it is 40 ° C. or lower. When the temperature is 20 ° C. or higher, the refrigerator operating cost for cooling does not increase, and the amount of groundwater used for cooling can be suppressed. It is easy to ensure the corrosion resistance of equipment as it is 60 ° C. or lower.
 電気化学的粗面化処理に用いられる交流電源波は、特に限定されず、正弦波、矩形波、台形波、三角波等が用いられるが、台形波または正弦波が好ましく、正弦波がより好ましい。台形波とは、図5に示したものをいう。台形波において電流がゼロからピークに達するまでの時間(電流立ち上がり時間、TP)は0.5~3.5msecであるの
が好ましく、0.8~2.5msecであるのがより好ましい。0.5msec以上であると、電源の製作コストが低くなる。3.5msec以下であると、ピットの均一性がより優れたものとなる。三角波においては、電流立ち上がり時間は、任意に選定することができる。
The AC power supply wave used for the electrochemical surface roughening treatment is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave, or the like is used. A trapezoidal wave or a sine wave is preferable, and a sine wave is more preferable. A trapezoidal wave means what was shown in FIG. In the trapezoidal wave, the time until the current reaches a peak from zero (current rise time, TP) is preferably 0.5 to 3.5 msec, and more preferably 0.8 to 2.5 msec. If it is 0.5 msec or more, the production cost of the power supply is lowered. If it is 3.5 msec or less, the uniformity of the pits becomes more excellent. In the triangular wave, the current rise time can be arbitrarily selected.
 また、正弦波を用いる場合には、商用交流等の実質的に正弦波として用いられているものを、特に限定されずに用いることができる。 Moreover, when using a sine wave, what is used substantially as a sine wave, such as commercial alternating current, can be used without particular limitation.
 交流のduty(1周期中のアルミニウム板が陽極となっている時間/1周期の時間)は、0.33~0.66であるのが好ましく、0.45~0.55であるのがより好ましい。
 また、交流の周波数は、10~200Hzであるのが好ましく、20~150Hzであるのがより好ましく、30~120Hzであるのが更に好ましい。10Hz以上であると、ファセット状(角張った四角い形状)の大きなピットができにくく、耐汚れ性がより優れたものとなる。200Hz以下であると、電解電流を流す回路のインダクタンス成分の影響を受けにくく、大容量の電源の製作が容易となる。
The duty of alternating current (time during which the aluminum plate in one cycle is an anode / time of one cycle) is preferably 0.33 to 0.66, more preferably 0.45 to 0.55. preferable.
The AC frequency is preferably 10 to 200 Hz, more preferably 20 to 150 Hz, and still more preferably 30 to 120 Hz. When the frequency is 10 Hz or more, large faceted (pitched square shape) pits are not easily formed, and the stain resistance is more excellent. If it is 200 Hz or less, it is difficult to be affected by the inductance component of the circuit through which the electrolytic current flows, and it becomes easy to manufacture a large-capacity power supply.
 また、電源装置としては、例えば、商用交流を用いたもの、インバータ制御電源等を用いることができる。中でも、IGBT(Insulated Gate Bipolar Transistor)素子を用いたインバータ制御電源が、アルミニウム板の幅および厚さ、電解液中の各成分の濃度の変動等に対して電圧を変動させて、電流値(アルミニウム板の電流密度)を一定に制御する際に、追従性に優れる点で好ましい。 As the power supply device, for example, a commercial AC power supply, an inverter control power supply, or the like can be used. In particular, an inverter control power source using an IGBT (Insulated Gate Bipolar Transistor) element varies the voltage with respect to the width and thickness of the aluminum plate, the concentration of each component in the electrolytic solution, etc. When the current density of the plate) is controlled to be constant, this is preferable in terms of excellent followability.
 電解槽には1個以上の交流電源を接続することができる。主極に対向するアルミニウム板に加わる交流の陽極と陰極との電流比をコントロールし、均一な砂目立てを行うことと、主極のカーボンを溶解することとを目的として、図6に示したように、補助陽極を設置し、交流電流の一部を分流させることが好ましい。図6において、311はアルミニウム板であり、312はラジアルドラムローラであり、313aおよび313bは主極であり、314は電解処理液であり、315は電解液供給口であり、316はスリットであり、317は電解液通路であり、318は補助陽極であり、319aおよび319bはサイリスタであり、320は交流電源であり、340は主電解槽であり、350は補助陽極槽である。整流素子またはスイッチング素子を介して電流値の一部を二つの主電極とは別の槽に設けた補助陽極に直流電流として分流させることにより、主極に対向するアルミニウム板上で作用するアノード反応にあずかる電流値と、カソード反応にあずかる電流値との比を制御することができる。電流比(アルミニウム板が陽極時の電気量の総和とアルミニウム板が陰極時の電気量の総和との比)は、0.9~3であるのが好ましく、0.95~2であるのがより好ましい。 One or more AC power supplies can be connected to the electrolytic cell. As shown in FIG. 6, the current ratio between the AC anode and cathode applied to the aluminum plate facing the main electrode is controlled to achieve uniform graining and to dissolve the carbon of the main electrode. In addition, it is preferable to install an auxiliary anode and divert part of the alternating current. In FIG. 6, 311 is an aluminum plate, 312 is a radial drum roller, 313a and 313b are main poles, 314 is an electrolytic treatment solution, 315 is an electrolyte supply port, and 316 is a slit. 317 is an electrolyte passage, 318 is an auxiliary anode, 319a and 319b are thyristors, 320 is an AC power source, 340 is a main electrolytic cell, and 350 is an auxiliary anode cell. An anodic reaction that acts on the aluminum plate facing the main electrode by diverting a part of the current value as a direct current to an auxiliary anode provided in a tank separate from the two main electrodes via a rectifier or switching element It is possible to control the ratio between the current value for the current and the current value for the cathode reaction. The current ratio (ratio of the total amount of electricity when the aluminum plate is the anode and the total amount of electricity when the aluminum plate is the cathode) is preferably 0.9 to 3, and preferably 0.95 to 2. More preferred.
 なお、電解槽は、前述のフラット型の他、縦型等の公知の表面処理に用いる電解槽が使用可能であるが、特開平5-195300号公報に記載されているような上記のラジアル型電解槽が、電気化学的粗面化処理で生成するピットの裏廻りを防止できる観点から好ましい。
 フラット型の電解槽を用いるときは、電気化学的粗面化処理で生成するピットの裏廻りを防止する目的で、アルミニウム板の非処理面に絶縁板を設けて電流が非処理面に流れるのを防止する方法をとることが好ましい。
 電解槽内を通過する電解液は、アルミニウムウェブの進行方向に対してパラレルであってもカウンターであってもよいが、カウンターがより望ましい。
In addition to the flat type described above, an electrolytic cell used for a known surface treatment such as a vertical type can be used as the electrolytic cell, but the radial type as described in JP-A-5-195300 can be used. The electrolytic cell is preferable from the viewpoint of preventing the back of the pit generated by the electrochemical surface roughening treatment.
When a flat electrolytic cell is used, an insulating plate is provided on the non-processed surface of the aluminum plate to prevent the back of the pit generated by the electrochemical surface roughening treatment, and current flows to the non-processed surface. It is preferable to take a method of preventing the above.
The electrolyte passing through the electrolytic cell may be parallel or counter to the traveling direction of the aluminum web, but a counter is more desirable.
 ところで、アルミニウム板を電気化学的粗面化するに際し、生産量の向上のために、アルミニウム板の移動速度を速めることが好ましい。アルミニウム板の移動速度を速めるためには、電気化学的粗面化処理が行われる長さ、すなわち処理長を長くする必要がある。
 処理長を長くする方法としては、大型化された電解槽を用いる方法が挙げられるが、大型化された電解槽は製造が困難であるので、複数の電解槽を用いることが好ましい態様の一つである。
By the way, when the aluminum plate is electrochemically roughened, it is preferable to increase the moving speed of the aluminum plate in order to improve the production amount. In order to increase the moving speed of the aluminum plate, it is necessary to increase the length of the electrochemical roughening treatment, that is, the treatment length.
As a method for increasing the treatment length, there is a method using a large electrolytic cell. However, since it is difficult to manufacture a large electrolytic cell, it is preferable to use a plurality of electrolytic cells. It is.
 用いる電解槽の数を増やすと、アルミニウム板表面の平均粗さRaを十分な値にすることが困難になるが、電解液に硫酸が含まれていると十分な値にすることができる。したがって、本発明は、電解槽を複数用いて電気化学的粗面化処理を行った場合にも、アルミニウム板表面の平均粗さRaを十分な値とすることが可能となるので、生産量を向上させることができる。
 電解槽の数は、3~10個であることが好ましい。3~7個であれば、平均粗さRaを十分な値とすることができ、かつ生産性を向上させることができる。
If the number of electrolytic cells to be used is increased, it becomes difficult to make the average roughness Ra of the aluminum plate surface a sufficient value, but if the electrolytic solution contains sulfuric acid, it can be made a sufficient value. Therefore, the present invention makes it possible to make the average roughness Ra of the aluminum plate surface a sufficient value even when the electrochemical surface roughening treatment is performed using a plurality of electrolytic cells. Can be improved.
The number of electrolytic cells is preferably 3 to 10. If the number is 3 to 7, the average roughness Ra can be a sufficient value, and the productivity can be improved.
 ここで、上記のラジアル型電解槽を用いる場合も、前述同様に電解槽内の電解液の流速を平均流速で500~4000mm/秒、また、電解槽内の金属ウェブの搬送方向と直交する幅方向に対する電解液の流速分布を上記平均流速の±50%以内にする。そして、1回の槽内電極間処理休止区間を通過する時間を0.05~1秒とする速度で金属ウェブを搬送する。そして、電解液供給口は、この場合も金属ウェブ311と電極313a、313bとの間で、電極313a,313bに対応して複数配置する。これら各電解液供給口から、それぞれ電解液を噴射供給する。 Here, also in the case of using the above radial type electrolytic cell, the flow rate of the electrolytic solution in the electrolytic cell is an average flow rate of 500 to 4000 mm / second in the same manner as described above, and the width orthogonal to the conveying direction of the metal web in the electrolytic cell. The flow rate distribution of the electrolyte with respect to the direction is within ± 50% of the average flow rate. Then, the metal web is conveyed at a speed of 0.05 to 1 second to pass through one inter-tank inter-electrode processing pause interval. In this case as well, a plurality of electrolyte solution supply ports are arranged between the metal web 311 and the electrodes 313a and 313b corresponding to the electrodes 313a and 313b. The electrolytic solution is sprayed and supplied from each electrolytic solution supply port.
 なお、電気化学的粗面化処理が終了した後は、ニップローラで液切りし、更に、1~10秒間水洗処理を行った後、ニップローラで液切りするのが好ましい。
 水洗処理は、スプレー管を用いて水洗するのが好ましい。水洗処理に用いられるスプレー管としては、例えば、扇状に噴射水が広がるスプレーチップをアルミニウム板の幅方向に複数個有するスプレー管を用いることができる。スプレーチップの間隔は20~100mmであるのが好ましく、また、スプレーチップ1本あたりの液量は1~20L/minであるのが好ましい。スプレー管は複数本用いるのが好ましい。
In addition, after the electrochemical surface roughening treatment is completed, it is preferable to drain the liquid with a nip roller, further perform the water washing treatment for 1 to 10 seconds, and then drain the liquid with a nip roller.
The washing treatment is preferably carried out using a spray tube. As the spray tube used for the water washing treatment, for example, a spray tube having a plurality of spray tips in the width direction of the aluminum plate in which fan water spreads in a fan shape can be used. The interval between spray tips is preferably 20 to 100 mm, and the amount of liquid per spray tip is preferably 1 to 20 L / min. It is preferable to use a plurality of spray tubes.
 電気化学的粗面化処理で生成する凹部の平均開口径の測定は、例えば、電子顕微鏡を用いて支持体の表面を真上から倍率2000倍または50000倍で撮影し、得られた電子顕微鏡写真において、それぞれで生成した、ピットの周囲が環状に連なっているピットをそれぞれ少なくとも50個抽出し、その直径を読み取って開口径とし、平均開口径を算出することにより行う。
 また、測定のバラツキを抑制するために、市販の画像解析ソフトによる等価円直径測定を行うこともできる。この場合、上記電子顕微鏡写真をスキャナーで取り込んでデジタル化し、ソフトウェアにより二値化した後、等価円直径を求める。
 本発明者が測定したところ、目視測定の結果とデジタル処理の結果とは、ほぼ同じ値を示した。
Measurement of the average opening diameter of the recesses generated by the electrochemical surface roughening treatment is performed, for example, by photographing the surface of the support from directly above at a magnification of 2000 times or 50000 times using an electron microscope, and the obtained electron micrograph In FIG. 4, at least 50 pits each having a ring shape around each pit are extracted, and the diameter is read to obtain the opening diameter, and the average opening diameter is calculated.
In addition, in order to suppress variation in measurement, it is possible to perform equivalent circle diameter measurement using commercially available image analysis software. In this case, the electron micrograph is captured by a scanner, digitized, and binarized by software, and then an equivalent circular diameter is obtained.
As a result of measurement by the present inventor, the result of visual measurement and the result of digital processing showed almost the same value.
 <第2エッチング処理>
 第2エッチング処理は、電気化学的粗面化処理で生成したスマットを溶解させること、および、電気化学的粗面化処理により形成されたピットのエッジ部分を溶解させることを目的として行われる。これにより、電気化学的粗面化処理によって形成された大きなピットのエッジ部分が溶解して表面が滑らかになり、インキがエッジ部分にひっかかりにくくなるため、耐汚れ性に優れる平版印刷版原版を得ることができる。
 第2エッチング処理は、基本的に第1エッチング処理と同様であるが、エッチング量は、0.01g/m2以上であるのが好ましく、0.05g/m2以上であるのがより好ましく、0.1g/m2以上であるのが更に好ましく、また、10g/m2以下であるのが好ましく、5g/m2以下であるのがより好ましく、3g/m2以下であるのが更に好ましい。
<Second etching process>
The second etching process is performed for the purpose of dissolving the smut generated by the electrochemical roughening process and dissolving the edge portion of the pit formed by the electrochemical roughening process. As a result, the edge portion of the large pit formed by the electrochemical surface roughening treatment is melted and the surface becomes smooth, and the ink is less likely to be caught on the edge portion, so that a lithographic printing plate precursor having excellent stain resistance is obtained. be able to.
The second etching treatment is basically the same as the first etching treatment, the etching amount is preferably at 0.01 g / m 2 or more, more preferably 0.05 g / m 2 or more, further preferably at 0.1 g / m 2 or more, but preferably not more 10 g / m 2 or less, more preferably at 5 g / m 2 or less, more preferably at 3 g / m 2 or less .
<第2デスマット処理>
 第2エッチング処理を行った後、表面に残留する汚れ(スマット)を除去するために酸洗い(第2デスマット処理)を行うのが好ましい。第2デスマット処理は、第1デスマット処理と同様の方法で行うことができる。
<Second desmut treatment>
After the second etching process, it is preferable to perform pickling (second desmut process) in order to remove dirt (smut) remaining on the surface. The second desmut process can be performed in the same manner as the first desmut process.
<陽極酸化処理>
 以上のように処理されたアルミニウム板には、更に、陽極酸化処理を施してもよい。陽極酸化処理はこの分野で従来行われている方法で行うことができる。この場合、例えば、硫酸濃度50~300g/Lで、アルミニウム濃度5質量%以下の溶液中で、アルミニウム板を陽極として通電して陽極酸化皮膜を形成させることができる。陽極酸化処理に用いられる溶液としては、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等を単独でまたは2種以上を組み合わせて用いることができる。
<Anodizing treatment>
The aluminum plate treated as described above may be further anodized. The anodizing treatment can be performed by a method conventionally used in this field. In this case, for example, in a solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less, an aluminum plate can be energized to form an anodic oxide film. As a solution used for the anodizing treatment, sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid and the like can be used alone or in combination of two or more.
 この際、少なくともアルミニウム板、電極、水道水、地下水等に通常含まれる成分が電解液中に含まれていても構わない。更には、第二、第三の成分が添加されていても構わない。ここでいう第二、第三の成分としては、例えば、Na、K、Mg、Li、Ca、Ti、Al、V、Cr、Mn、Fe、Co、Ni、Cu、Zn等の金属のイオン;アンモニウムイオン等の陽イオン;硝酸イオン、炭酸イオン、塩化物イオン、リン酸イオン、フッ化物イオン、亜硫酸イオン、チタン酸イオン、ケイ酸イオン、ホウ酸イオン等の陰イオンが挙げられ、0~10000ppm程度の濃度で含まれていてもよい。 At this time, at least a component normally contained in an aluminum plate, an electrode, tap water, groundwater, or the like may be contained in the electrolytic solution. Furthermore, the second and third components may be added. Examples of the second and third components herein include metal ions such as Na, K, Mg, Li, Ca, Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn; Cation such as ammonium ion; anion such as nitrate ion, carbonate ion, chloride ion, phosphate ion, fluoride ion, sulfite ion, titanate ion, silicate ion, borate ion, etc., 0 to 10,000 ppm It may be contained at a concentration of about.
 陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間15秒~50分であるのが適当であり、所望の陽極酸化皮膜量となるように調整される。 The conditions of the anodizing treatment cannot be determined unconditionally because they vary depending on the electrolyte used, but generally the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., and the current density is 0.5. It is appropriate that ˜60 A / dm 2 , voltage 1˜100 V, electrolysis time 15 seconds˜50 minutes, and the anodic oxide film amount is adjusted to a desired amount.
 また、特開昭54-81133号、特開昭57-47894号、特開昭57-51289号、特開昭57-51290号、特開昭57-54300号、特開昭57-136596号、特開昭58-107498号、特開昭60-200256号、特開昭62-136596号、特開昭63-176494号、特開平4-176897号、特開平4-280997号、特開平6-207299号、特開平5-24377号、特開平5-32083号、特開平5-125597号、特開平5-195291号の各公報等に記載されている方法を使用することもできる。 Further, JP-A-54-81133, JP-A-57-47894, JP-A-57-51289, JP-A-57-51290, JP-A-57-54300, JP-A-57-136596, JP-A-58-107498, JP-A-60-200366, JP-A-62-136596, JP-A-63-176494, JP-A-4-17697, JP-A-4-280997, JP-A-6- The methods described in JP-A-207299, JP-A-5-24377, JP-A-5-32083, JP-A-5-125597, JP-A-5-195291 and the like can also be used.
 中でも、特開昭54-12853号公報および特開昭48-45303号公報に記載されているように、電解液として硫酸溶液を用いるのが好ましい。電解液中の硫酸濃度は、10~300g/L(1~30質量%)であるのが好ましく、50~200g/L(5~20質量%)であるのがより好ましく、また、アルミニウムイオン濃度は、1~25g/L(0.1~2.5質量%)であるのが好ましく、2~10g/L(0.2~1質量%)であるのがより好ましい。このような電解液は、例えば、硫酸濃度が50~200g/Lである希硫酸に硫酸アルミニウム等を添加することにより調製することができる。 Among these, as described in JP-A-54-12853 and JP-A-48-45303, it is preferable to use a sulfuric acid solution as the electrolytic solution. The sulfuric acid concentration in the electrolytic solution is preferably 10 to 300 g / L (1 to 30% by mass), more preferably 50 to 200 g / L (5 to 20% by mass), and the aluminum ion concentration Is preferably 1 to 25 g / L (0.1 to 2.5% by mass), more preferably 2 to 10 g / L (0.2 to 1% by mass). Such an electrolytic solution can be prepared, for example, by adding aluminum sulfate or the like to dilute sulfuric acid having a sulfuric acid concentration of 50 to 200 g / L.
 電解液の組成管理は、上述した塩酸電解等の場合と同様の方法を用いて、硫酸濃度とアルミニウムイオン濃度とのマトリクスに対応する、電導度と比重と温度、または、電導度と超音波伝搬速度と温度により管理するのが好ましい。 The composition management of the electrolytic solution is conducted using the same method as in the case of hydrochloric acid electrolysis described above, and the conductivity, specific gravity and temperature, or conductivity and ultrasonic wave propagation corresponding to the matrix of sulfuric acid concentration and aluminum ion concentration. It is preferable to control by speed and temperature.
 電解液の液温は、25~55℃であるのが好ましく、30~50℃であるのがより好ましい。 The liquid temperature of the electrolytic solution is preferably 25 to 55 ° C, more preferably 30 to 50 ° C.
 硫酸を含有する電解液中で陽極酸化処理を行う場合には、アルミニウム板と対極との間に直流を印加してもよく、交流を印加してもよい。
 アルミニウム板に直流を印加する場合においては、電流密度は、1~60A/dm2であるのが好ましく、5~40A/dm2であるのがより好ましい。
 連続的に陽極酸化処理を行う場合には、アルミニウム板の一部に電流が集中していわゆる「焼け」(皮膜が周囲より厚くなる部分)が生じないように、陽極酸化処理の開始当初は、5~10A/m2の低電流密度で電流を流し、陽極酸化処理が進行するにつれ、30~50A/dm2またはそれ以上に電流密度を増加させるのが好ましい。
 具体的には、直流電源の電流配分を、下流側の直流電源の電流が上流側の直流電源の電流以上にするのが好ましい。このような電流配分とすることにより、いわゆる焼けが生じにくくなり、その結果、高速での陽極酸化処理が可能となる。
When anodizing is performed in an electrolytic solution containing sulfuric acid, direct current may be applied between the aluminum plate and the counter electrode, or alternating current may be applied.
When a direct current is applied to the aluminum plate, the current density is preferably 1 to 60 A / dm 2 , more preferably 5 to 40 A / dm 2 .
In the case of continuous anodizing treatment, at the beginning of the anodizing treatment, so that current is concentrated on a part of the aluminum plate and so-called “burning” (part where the film becomes thicker than the surroundings) does not occur. It is preferable to increase the current density to 30 to 50 A / dm 2 or more as the anodic oxidation process proceeds by passing a current at a low current density of 5 to 10 A / m 2 .
Specifically, it is preferable that the current distribution of the DC power supply is set so that the current of the downstream DC power supply is equal to or greater than the current of the upstream DC power supply. By using such current distribution, so-called burning is less likely to occur, and as a result, high-speed anodization can be performed.
 連続的に陽極酸化処理を行う場合には、アルミニウム板に、電解液を介して給電する液給電方式により行うのが好ましい。
 このような条件で陽極酸化処理を行うことによりポア(マイクロポア)と呼ばれる孔を多数有する多孔質皮膜が得られるが、通常、その平均ポア径は5~50nm程度であり、平均ポア密度は300~800個/μm2程度である。
When the anodizing treatment is continuously performed, it is preferable that the anodizing process is performed by a liquid power feeding method in which power is supplied to the aluminum plate through an electrolytic solution.
By performing anodizing treatment under such conditions, a porous film having a large number of pores called micropores can be obtained. Usually, the average pore diameter is about 5 to 50 nm, and the average pore density is 300. It is about 800 / μm 2 .
 陽極酸化皮膜の量は1~5g/m2であるのが好ましい。1g/m2以上であると版に傷が入りにくくなる。5g/m2以下であると製造に多大な電力が不要となり、経済的に有利となる。陽極酸化皮膜の量は、1.5~4g/m2であるのがより好ましい。また、アルミニウム板の中央部と縁部近傍との間の陽極酸化皮膜量の差が1g/m2以下になるように行うのが好ましい。
 また、電気化学的粗面化処理を施された面の裏面の陽極酸化皮膜の量は、0.1~1g/m2であるのが好ましい。0.1g/m2以上であると、裏面に傷がつきにくくなり、平版印刷版原版として、重ねたときに、裏面に接触する画像記録層が傷付きにくくなる。1g/m2以下であると、経済的に有利となる。
The amount of the anodized film is preferably 1 to 5 g / m 2 . When it is 1 g / m 2 or more, the plate is hardly damaged. If it is 5 g / m 2 or less, a large amount of electric power is not required for production, which is economically advantageous. The amount of the anodized film is more preferably 1.5 to 4 g / m 2 . Moreover, it is preferable to carry out so that the difference in the amount of the anodized film between the center portion of the aluminum plate and the vicinity of the edge portion is 1 g / m 2 or less.
The amount of the anodized film on the back surface of the surface subjected to the electrochemical surface roughening treatment is preferably 0.1 to 1 g / m 2 . When it is 0.1 g / m 2 or more, the back surface is less likely to be damaged, and the image recording layer that comes into contact with the back surface is less likely to be damaged when stacked as a lithographic printing plate precursor. When it is 1 g / m 2 or less, it is economically advantageous.
 陽極酸化処理に用いられる電解装置としては、特開昭48-26638号、特開昭47-18739号、特公昭58-24517号、特開2001-11698号の各公報等に記載されているものを用いることができる。
 中でも、図7に示す装置が好適に用いられる。図7は、アルミニウム板の表面を陽極酸化処理する装置の一例を示す概略図である。
Examples of the electrolysis apparatus used for the anodizing treatment are those described in JP-A-48-26638, JP-A-47-18739, JP-B-58-24517, JP-A-2001-11698, and the like. Can be used.
Among these, the apparatus shown in FIG. 7 is preferably used. FIG. 7 is a schematic view showing an example of an apparatus for anodizing the surface of an aluminum plate.
 図7に示される陽極酸化処理装置410では、アルミニウム板416に電解液を経由して通電するために、アルミニウム板416の進行方向の上流側に給電槽412、下流側に陽極酸化処理槽414を設置してある。アルミニウム板416は、パスローラ422および428により、図7中矢印で示すように搬送される。アルミニウム板416が最初に導入される給電槽412においては、直流電源434の正極に接続された陽極420が設置されており、アルミニウム板416は陰極となる。したがって、アルミニウム板416においてはカソード反応が起こる。 In the anodizing apparatus 410 shown in FIG. 7, in order to energize the aluminum plate 416 via the electrolytic solution, a feeding tank 412 is provided on the upstream side in the traveling direction of the aluminum plate 416, and an anodizing tank 414 is provided on the downstream side. It is installed. The aluminum plate 416 is conveyed by the pass rollers 422 and 428 as indicated by arrows in FIG. In the feed tank 412 into which the aluminum plate 416 is first introduced, an anode 420 connected to the positive electrode of the DC power supply 434 is installed, and the aluminum plate 416 serves as a cathode. Therefore, a cathode reaction occurs in the aluminum plate 416.
 アルミニウム板416が引き続き導入される陽極酸化処理槽414においては、直流電源434の負極に接続された陰極430が設置されており、アルミニウム板416は陽極となる。したがって、アルミニウム板416においてはアノード反応が起こり、アルミニウム板416の表面に陽極酸化皮膜が形成される。
 アルミニウム板416と陰極430の間隔は50~200mmであるのが好ましい。陰極430としてはアルミニウムが用いられる。陰極430としては、アノード反応により発生する水素ガスが系から抜けやすくなるようにするために、広い面積を有する電極でなく、アルミニウム板416の進行方向に複数個に分割した電極であるのが好ましい。
In the anodizing tank 414 into which the aluminum plate 416 is continuously introduced, a cathode 430 connected to the negative electrode of the DC power source 434 is installed, and the aluminum plate 416 serves as an anode. Therefore, an anodic reaction occurs on the aluminum plate 416, and an anodic oxide film is formed on the surface of the aluminum plate 416.
The distance between the aluminum plate 416 and the cathode 430 is preferably 50 to 200 mm. Aluminum is used as the cathode 430. The cathode 430 is preferably an electrode divided into a plurality of pieces in the traveling direction of the aluminum plate 416 in order to make it easy for hydrogen gas generated by the anode reaction to escape from the system. .
 給電槽412と陽極酸化処理槽414との間には、図7に示されるように、中間槽413と呼ばれる電解液が溜まらない槽を設けるのが好ましい。中間槽413を設けることにより、電流がアルミニウム板416を経由せず陽極420から陰極430にバイパスすることを抑止することができる。中間槽413にはニップローラ424を設置して液切りを行うことにより、バイパス電流を極力少なくするようにするのが好ましい。液切りにより出た電解液は、排液口442から陽極酸化処理装置410の外に排出される。 As shown in FIG. 7, it is preferable to provide a tank called an intermediate tank 413 in which an electrolytic solution does not accumulate between the power supply tank 412 and the anodizing treatment tank 414. By providing the intermediate tank 413, current can be prevented from bypassing from the anode 420 to the cathode 430 without passing through the aluminum plate 416. It is preferable to reduce the bypass current as much as possible by installing a nip roller 424 in the intermediate tank 413 to drain the liquid. The electrolyte discharged by draining is discharged out of the anodizing apparatus 410 from the drain port 442.
 給電槽412に貯留される電解液418は、電圧ロスを少なくするために、陽極酸化処理槽414に貯留される電解液426よりも高温および/または高濃度とする。また、電解液418および426は、陽極酸化皮膜の形成効率、陽極酸化皮膜のマイクロポアの形状、陽極酸化皮膜の硬さ、電圧、電解液のコスト等から、組成、温度等が決定される。 The electrolyte solution 418 stored in the power supply tank 412 has a higher temperature and / or higher concentration than the electrolyte solution 426 stored in the anodizing tank 414 in order to reduce voltage loss. In addition, the composition, temperature, and the like of the electrolytic solutions 418 and 426 are determined from the formation efficiency of the anodized film, the micropore shape of the anodized film, the hardness of the anodized film, the voltage, the cost of the electrolytic solution, and the like.
 給電槽412および陽極酸化処理槽414には、給液ノズル436および438から電解液を噴出させて給液する。電解液の分布を一定にし、陽極酸化処理槽414でのアルミニウム板416の局所的な電流集中を防ぐ目的で、給液ノズル436および438にはスリットが設けられ、噴出する液流を幅方向で一定にする構造となっている。 The electrolytic solution is ejected from the liquid supply nozzles 436 and 438 and supplied to the power supply tank 412 and the anodizing treatment tank 414. For the purpose of keeping the distribution of the electrolyte constant and preventing local current concentration of the aluminum plate 416 in the anodizing tank 414, the liquid supply nozzles 436 and 438 are provided with slits, and the liquid flow to be ejected in the width direction. It has a constant structure.
 陽極酸化処理槽414においては、陰極430からみてアルミニウム板416を挟んだ反対側にはしゃへい板440が設けられ、電流がアルミニウム板416の陽極酸化皮膜を形成させたい面の反対側に流れるのを抑止する。アルミニウム板416と遮蔽しゃへい板440の間隔は5~30mmであるのが好ましい。直流電源434は複数個用いて、正極側を共通に接続して用いるのが好ましい。これによって、陽極酸化処理槽414中の電流分布を制御することができる。 In the anodizing tank 414, a shielding plate 440 is provided on the opposite side of the aluminum plate 416 from the cathode 430, and current flows to the opposite side of the surface of the aluminum plate 416 where the anodized film is to be formed. Deter. The distance between the aluminum plate 416 and the shielding shielding plate 440 is preferably 5 to 30 mm. It is preferable to use a plurality of DC power supplies 434 and connect the positive electrode sides in common. Thereby, the current distribution in the anodizing bath 414 can be controlled.
<封孔処理>
 本発明においては、必要に応じて陽極酸化皮膜に存在するマイクロポアを封じる封孔処理を行ってもよい。封孔処理を行うことにより、平版印刷版原版の現像性(感度)を向上させることができる。
 陽極酸化皮膜が、皮膜面にほぼ垂直な方向にポアと称する細孔を有する多孔質皮膜であることはよく知られている。本発明においては、陽極酸化処理に高封孔率の封孔処理を施すのが好ましい。封孔率は50%以上であるのが好ましく、70%以上であるのがより好ましく、90%以上であるのが更に好ましい。ここで、「封孔率」は、下記式により定義される。
<Sealing treatment>
In this invention, you may perform the sealing process which seals the micropore which exists in an anodic oxide film as needed. By performing the sealing treatment, the developability (sensitivity) of the lithographic printing plate precursor can be improved.
It is well known that the anodized film is a porous film having pores called pores in a direction substantially perpendicular to the film surface. In the present invention, it is preferable to subject the anodizing treatment to a sealing treatment with a high sealing ratio. The sealing rate is preferably 50% or more, more preferably 70% or more, and still more preferably 90% or more. Here, the “sealing rate” is defined by the following formula.
 封孔率=(封孔前の表面積-封孔後の表面積)/封孔前の表面積×100% Sealing rate = (surface area before sealing−surface area after sealing) / surface area before sealing × 100%
 表面積は、例えば、簡易BET方式の表面積測定装置(例えば、QUANTASORB(カンタソーブ)、湯浅アイオニクス社製)を用いて測定することができる。 The surface area can be measured using, for example, a simple BET surface area measuring apparatus (for example, QUANTASORB (manufactured by Kantha Sorb), manufactured by Yuasa Ionics).
 封孔処理は、特に限定されず、従来公知の方法を用いることができる。例えば、熱水処理、沸騰水処理、水蒸気処理、重クロム酸塩処理、亜硝酸塩処理、酢酸アンモニウム塩処理、電着封孔処理、特公昭36-22063号公報等に記載されているようなフッ化ジルコン酸処理、特開平9-244227号公報に記載されているリン酸塩および無機フッ素化合物を含む水溶液での処理、特開平9-134002号公報に記載されている糖を含む水溶液での処理、特開2000-81704号公報および特開2000-89466号公報に記載されているチタンとフッ素を含む水溶液での処理、米国特許3,181,461号明細書等に記載されているアルカリ金属ケイ酸塩処理が挙げられる。 The sealing treatment is not particularly limited, and a conventionally known method can be used. For example, hydrothermal treatment, boiling water treatment, steam treatment, dichromate treatment, nitrite treatment, ammonium acetate salt treatment, electrodeposition sealing treatment, and the like described in JP-B 36-22063. Zirconate treatment, treatment with an aqueous solution containing a phosphate and an inorganic fluorine compound described in JP-A-9-244227, treatment with an aqueous solution containing a sugar described in JP-A-9-134002 , Treatment with an aqueous solution containing titanium and fluorine described in JP-A-2000-81704 and JP-A-2000-89466, alkali metal silica described in US Pat. No. 3,181,461, etc. Examples include acid salt treatment.
 好適な封孔処理の一例として、アルカリ金属ケイ酸塩処理が挙げられる。アルカリ金属ケイ酸塩処理は、液のゲル化および陽極酸化皮膜の溶解を起こすことのない25℃においてpH10~13であるアルカリ金属ケイ酸塩水溶液を用いて、アルカリ金属ケイ酸塩濃度、処理温度、処理時間等の処理条件を適宜選択して行うことができる。好適なアルカリ金属ケイ酸塩としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウムが挙げられる。また、アルカリ金属ケイ酸塩水溶液のpHを高く調整するために、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を配合することができる。 An example of a suitable sealing treatment is an alkali metal silicate treatment. The alkali metal silicate treatment uses an alkali metal silicate aqueous solution having a pH of 10 to 13 at 25 ° C. without causing gelation of the liquid and dissolution of the anodized film, and the alkali metal silicate concentration and treatment temperature. The processing conditions such as the processing time can be selected as appropriate. Suitable alkali metal silicates include, for example, sodium silicate, potassium silicate, and lithium silicate. Moreover, sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. can be mix | blended in order to adjust pH of alkali metal silicate aqueous solution high.
 更に、必要に応じて、アルカリ金属ケイ酸塩水溶液にアルカリ土類金属塩および/または4族(第IVA族)金属塩を配合してもよい。このアルカリ土類金属塩としては、例えば、硝酸カルシウム、硝酸ストロンチウム、硝酸マグネシウム、硝酸バリウム等の硝酸塩;アルカリ土類金属の硫酸塩、塩酸塩、リン酸塩、酢酸塩、シュウ酸塩、ホウ酸塩等の水溶性の塩が挙げられる。4族(第IVA族)金属塩としては、例えば、四塩化チタン、三塩化チタン、フッ化チタンカリウム、シュウ酸チタンカリウム、硫酸チタン、四ヨウ化チタン、塩化酸化ジルコニウム、二酸化ジルコニウム、四塩化ジルコニウムなどを挙げることができる。アルカリ土類金属塩および4族(第IVA族)金属塩は、単独でまたは2種以上組み合わせて用いることができる。
 アルカリ金属ケイ酸塩水溶液の濃度は、0.01~10質量%であるのが好ましく、0.05~5.0質量%であるのがより好ましい。
Furthermore, you may mix | blend an alkaline-earth metal salt and / or a group 4 (Group IVA) metal salt with alkali metal silicate aqueous solution as needed. Examples of the alkaline earth metal salts include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate and barium nitrate; sulfates, hydrochlorides, phosphates, acetates, oxalates and boric acids of alkaline earth metals Examples thereof include water-soluble salts such as salts. Examples of Group 4 (Group IVA) metal salts include titanium tetrachloride, titanium trichloride, potassium fluoride titanium, titanium oxalate potassium, titanium sulfate, titanium tetraiodide, zirconium chloride oxide, zirconium dioxide, zirconium tetrachloride. And so on. Alkaline earth metal salts and Group 4 (Group IVA) metal salts can be used alone or in combination of two or more.
The concentration of the aqueous alkali metal silicate solution is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5.0% by mass.
 好適な封孔処理の別の一例として、フッ化ジルコン酸処理が挙げられる。フッ化ジルコン酸処理は、フッ化ジルコン酸ナトリウム、フッ化ジルコン酸カリウム等のフッ化ジルコン酸塩を用いて行われる。中でも、フッ化ジルコン酸ナトリウムを用いるのが好ましい。これにより、平版印刷版原版の現像性(感度)が優れたものとなる。フッ化ジルコン酸処理に用いられるフッ化ジルコン酸溶液の濃度は、0.01~2質量%であるのが好ましく、0.1~0.3質量%であるのがより好ましい。
 フッ化ジルコン酸塩溶液は、リン酸二水素ナトリウムを含有するのが好ましい。リン酸二水素ナトリウムの濃度は、0.01~3質量%であるのが好ましく、0.1~0.3質量%であるのがより好ましい。
 フッ化ジルコン酸塩溶液は、アルミニウムイオンを含有していてもよい。その場合、フッ化ジルコン酸塩溶液のアルミニウムイオン濃度は、1~500mg/Lであるのが好ましい。
Another example of a suitable sealing treatment is a fluorinated zirconate treatment. The fluorinated zirconate treatment is performed using a fluorinated zirconate salt such as sodium fluorinated zirconate or potassium fluorinated zirconate. Among these, it is preferable to use sodium fluorinated zirconate. Thereby, the developability (sensitivity) of the lithographic printing plate precursor becomes excellent. The concentration of the fluorinated zirconate solution used for the fluorinated zirconate treatment is preferably 0.01 to 2% by mass, more preferably 0.1 to 0.3% by mass.
The fluorinated zirconate solution preferably contains sodium dihydrogen phosphate. The concentration of sodium dihydrogen phosphate is preferably 0.01 to 3% by mass, and more preferably 0.1 to 0.3% by mass.
The fluorinated zirconate solution may contain aluminum ions. In that case, the aluminum ion concentration of the fluorinated zirconate solution is preferably 1 to 500 mg / L.
 封孔処理の温度は、20~90℃であるのが好ましく、50~80℃であるのがより好ましい。
 封孔処理の時間(溶液中への浸せき時間)は、1~20秒であるのが好ましく、5~15秒であるのがより好ましい。
The temperature for the sealing treatment is preferably 20 to 90 ° C., more preferably 50 to 80 ° C.
The sealing treatment time (immersion time in the solution) is preferably 1 to 20 seconds, and more preferably 5 to 15 seconds.
 また、必要に応じて、封孔処理を行った後、上述したアルカリ金属ケイ酸塩処理、ポリビニルホスホン酸、ポリアクリル酸、スルホ基等を側鎖に有するポリマーまたはコポリマー、特開平11-231509号公報に記載されているアミノ基とホスフィン基、ホスホン基およびリン酸基からなる群から選ばれる基とを有する有機化合物またはその塩等を含む溶液に浸し、または塗布する処理等の表面処理を行うことができる。 Further, after performing sealing treatment as necessary, a polymer or copolymer having the above-mentioned alkali metal silicate treatment, polyvinylphosphonic acid, polyacrylic acid, sulfo group or the like in the side chain, Japanese Patent Application Laid-Open No. 11-231509 A surface treatment such as a treatment of immersing or coating in a solution containing an organic compound having an amino group and a group selected from the group consisting of a phosphine group, a phosphone group, and a phosphoric acid group or a salt thereof described in the publication be able to.
 封孔処理の後には、後述する親水化処理を行うのが好ましい。 It is preferable to perform a hydrophilization treatment described later after the sealing treatment.
<親水化処理>
 陽極酸化処理後または封孔処理後、親水化処理を行ってもよい。親水化処理としては、例えば、米国特許第2,946,638号明細書に記載されているフッ化ジルコニウム酸カリウム処理、米国特許第3,201,247号明細書に記載されているホスホモリブデート処理、英国特許第1,108,559号に記載されているアルキルチタネート処理、独国特許第1,091,433号明細書に記載されているポリアクリル酸処理、独国特許第1,134,093号明細書および英国特許第1,230,447号明細書に記載されているポリビニルホスホン酸処理、特公昭44-6409号公報に記載されているホスホン酸処理、米国特許第3,307,951号明細書に記載されているフィチン酸処理、特開昭58-16893号公報および特開昭58-18291号公報に記載されている親油性有機高分子化合物と2価の金属との塩による処理、米国特許第3,860,426号明細書に記載されているように、水溶性金属塩(例えば、酢酸亜鉛)を含む親水性セルロース(例えば、カルボキシメチルセルロース)の成分を設ける処理、特開昭59-101651号公報に記載されているスルホ基を有する水溶性重合体を下塗りする処理が挙げられる。
<Hydrophilic treatment>
A hydrophilization treatment may be performed after the anodizing treatment or the sealing treatment. Examples of the hydrophilization treatment include treatment with potassium fluorozirconate described in US Pat. No. 2,946,638 and phosphomolybdate described in US Pat. No. 3,201,247. Treatment, alkyl titanate treatment described in British Patent 1,108,559, polyacrylic acid treatment described in German Patent 1,091,433, German Patent 1,134, No. 093 and British Patent No. 1,230,447, polyvinyl phosphonic acid treatment, Japanese Patent Publication No. 44-6409, phosphonic acid treatment, US Pat. No. 3,307,951 Phytic acid treatment described in the specification of JP, No. 58-16893 and JP-A No. 58-18291 Treatment with a salt of a molecular compound and a divalent metal, as described in US Pat. No. 3,860,426, hydrophilic cellulose (eg, zinc acetate) containing a water-soluble metal salt (eg, zinc acetate) And a treatment for providing a water-soluble polymer having a sulfo group described in JP-A-59-101651.
 また、特開昭62-019494号公報に記載されているリン酸塩、特開昭62-033692号公報に記載されている水溶性エポキシ化合物、特開昭62-097892号公報に記載されているリン酸変性デンプン、特開昭63-056498号公報に記載されているジアミン化合物、特開昭63-130391号公報に記載されているアミノ酸の無機または有機酸、特開昭63-145092号公報に記載されているカルボキシ基またはヒドロキシ基を含む有機ホスホン酸、特開昭63-165183号公報に記載されているアミノ基とホスホン酸基を有する化合物、特開平2-316290号公報に記載されている特定のカルボン酸誘導体、特開平3-215095号公報に記載されているリン酸エステル、特開平3-261592号公報に記載されている1個のアミノ基とリンの酸素酸基1個を持つ化合物、特開平3-215095号公報に記載されているリン酸エステル、特開平5-246171号公報に記載されているフェニルホスホン酸等の脂肪族または芳香族ホスホン酸、特開平1-307745号公報に記載されているチオサリチル酸のようなS原子を含む化合物、特開平4-282637号公報に記載されているリンの酸素酸のグループを持つ化合物等を用いた下塗りによる処理も挙げられる。
 更に、特開昭60-64352号公報に記載されている酸性染料による着色を行うこともできる。
Further, phosphates described in JP-A-62-019494, water-soluble epoxy compounds described in JP-A-62-033692, and JP-A-62-097892 Phosphate-modified starch, diamine compounds described in JP-A-63-056498, amino acid inorganic or organic acids described in JP-A-63-130391, JP-A-63-145092 Organic phosphonic acids containing a carboxy group or a hydroxy group, compounds having an amino group and a phosphonic acid group described in JP-A-63-165183, and JP-A-2-316290 Specific carboxylic acid derivatives, phosphate esters described in JP-A-3-215095, JP-A-3-261592 Compounds having one amino group and one oxygen acid group of phosphorus described in the publication, phosphate esters described in JP-A-3-215095, and JP-A-5-246171 Aliphatic or aromatic phosphonic acids such as phenylphosphonic acid, compounds containing S atoms such as thiosalicylic acid described in JP-A-1-307745, and phosphorus described in JP-A-4-282737 Examples of the treatment include undercoating using a compound having a group of oxygen acids.
Further, coloring with an acid dye described in JP-A-60-64352 can also be performed.
 また、ケイ酸ソーダ、ケイ酸カリ等のアルカリ金属ケイ酸塩の水溶液に浸せきさせる方法、親水性ビニルポリマーまたは親水性化合物を塗布して親水性の成分を形成させる方法等により、親水化処理を行うのが好ましい。 In addition, hydrophilization treatment is performed by a method of immersing in an aqueous solution of an alkali metal silicate such as sodium silicate or potassium silicate, or a method of forming a hydrophilic component by applying a hydrophilic vinyl polymer or a hydrophilic compound. It is preferred to do so.
 ケイ酸ソーダ、ケイ酸カリ等のアルカリ金属ケイ酸塩の水溶液による親水化処理は、米国特許第2,714,066号明細書および米国特許第3,181,461号明細書に記載されている方法および手順に従って行うことができる。
 アルカリ金属ケイ酸塩としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウムが挙げられる。アルカリ金属ケイ酸塩の水溶液は、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を適当量含有してもよい。
 また、アルカリ金属ケイ酸塩の水溶液は、アルカリ土類金属塩または4族(第IVA族)金属塩を含有してもよい。アルカリ土類金属塩としては、例えば、硝酸カルシウム、硝酸ストロンチウム、硝酸マグネシウム、硝酸バリウム等の硝酸塩;硫酸塩;塩酸塩;リン酸塩;酢酸塩;シュウ酸塩;ホウ酸塩が挙げられる。4族(第IVA族)金属塩としては、例えば、四塩化チタン、三塩化チタン、フッ化チタンカリウム、シュウ酸チタンカリウム、硫酸チタン、四ヨウ化チタン、塩化酸化ジルコニウム、二酸化ジルコニウム、四塩化ジルコニウムが挙げられる。これらのアルカリ土類金属塩および4族(第IVA族)金属塩は、単独でまたは2種以上組み合わせて用いられる。
Hydrophilization treatment with an aqueous solution of an alkali metal silicate such as sodium silicate and potassium silicate is described in US Pat. No. 2,714,066 and US Pat. No. 3,181,461. It can be performed according to methods and procedures.
Examples of the alkali metal silicate include sodium silicate, potassium silicate, and lithium silicate. The aqueous solution of alkali metal silicate may contain an appropriate amount of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like.
The aqueous solution of alkali metal silicate may contain an alkaline earth metal salt or a Group 4 (Group IVA) metal salt. Examples of the alkaline earth metal salt include nitrates such as calcium nitrate, strontium nitrate, magnesium nitrate, and barium nitrate; sulfates; hydrochlorides; phosphates; acetates; oxalates; Examples of Group 4 (Group IVA) metal salts include titanium tetrachloride, titanium trichloride, potassium fluoride titanium, potassium oxalate, titanium sulfate, titanium tetraiodide, zirconium chloride, zirconium dioxide, zirconium tetrachloride. Is mentioned. These alkaline earth metal salts and Group 4 (Group IVA) metal salts are used alone or in combination of two or more.
 アルカリ金属ケイ酸塩処理によって吸着するSi量は蛍光X線分析装置により測定することができ、その吸着量は約1.0~15.0mg/m2であるのが好ましい。
 このアルカリ金属ケイ酸塩処理により、平版印刷版用支持体の表面のアルカリ現像液に対する耐溶解性向上の効果が得られ、アルミニウム成分の現像液中への溶出が抑制されて、現像液の疲労に起因する現像カスの発生を低減することができる。
The amount of Si adsorbed by the alkali metal silicate treatment can be measured with a fluorescent X-ray analyzer, and the amount of adsorption is preferably about 1.0 to 15.0 mg / m 2 .
By this alkali metal silicate treatment, the effect of improving the dissolution resistance to the alkaline developer on the surface of the lithographic printing plate support is obtained, the dissolution of the aluminum component into the developer is suppressed, and the developer fatigue It is possible to reduce the occurrence of development residue due to the above.
 また、Siの吸着量は、1.0~10.0mg/m2であるのがより好ましい。吸着するSi量が上記範囲である場合には、網点非画像部の耐汚れ性が良好になる。
 具体的に説明すると、印刷物のシャドー部(網点部)においては、網点の面積率が高く(70~90%)、平版印刷版のそれに相当する領域では、画像部(画像記録層)の面積が大きく、非画像部(支持体の露出部分)の面積が相対的に小さくなっている。このような場合、印刷時に、隣接する画像部に載せられたインキ同士が接触して(即ち、絡んで)、その間の非画像部にインキが付着し、印刷物の非画像部がつぶれてしまう(即ち、汚れてしまう)という現象が、発生しやすい。
 しかし、親水化処理を行い、平版印刷版用支持体の表面に付着するSi量を上記範囲とすることにより、非画像部の親水性が向上するために、得られた平版印刷版用支持体を用いて平版印刷版を作製し、印刷を行った場合に、網点非画像部の耐汚れ性を良好にすることができる。
 Si量を上記範囲とするためには、例えば、ケイ酸ソーダの濃度が1~5質量%である水溶液を用いて、親水化処理を行う。ケイ酸ソーダとしては、1号ケイ酸ソーダを用いることが特に好ましい。
Further, the adsorption amount of Si is more preferably 1.0 to 10.0 mg / m 2 . When the amount of adsorbed Si is in the above range, the stain resistance of the halftone dot non-image portion is improved.
Specifically, in the shadow portion (halftone dot portion) of the printed matter, the area ratio of the halftone dot is high (70 to 90%), and in the area corresponding to that of the planographic printing plate, the image portion (image recording layer) The area is large, and the area of the non-image part (exposed part of the support) is relatively small. In such a case, at the time of printing, the inks placed on the adjacent image portions come into contact with each other (that is, entangled), the ink adheres to the non-image portions therebetween, and the non-image portions of the printed material are crushed ( In other words, the phenomenon of contamination) is likely to occur.
However, the hydrophilicity of the non-image area is improved by carrying out a hydrophilic treatment so that the amount of Si adhering to the surface of the lithographic printing plate support is within the above range, so that the obtained lithographic printing plate support is obtained. When a lithographic printing plate is prepared using and is printed, the stain resistance of the halftone dot non-image area can be improved.
In order to make the amount of Si within the above range, for example, an aqueous solution having a sodium silicate concentration of 1 to 5% by mass is used to perform a hydrophilic treatment. As sodium silicate, it is particularly preferable to use No. 1 sodium silicate.
 また、親水性の成分の形成による親水化処理は、特開昭59-101651号公報および特開昭60-149491号公報に記載されている条件および手順に従って行うこともできる。
 この方法に用いられる親水性ビニルポリマーとしては、例えば、ポリビニルスルホン酸、スルホ基を有するp-スチレンスルホン酸等のスルホ基含有ビニル重合性化合物と(メタ)アクリル酸アルキルエステル等の通常のビニル重合性化合物との共重合体が挙げられる。また、この方法に用いられる親水性化合物としては、例えば、-NH2基、-COOH基およびスルホ基からなる群から選ばれる少なくとも一つを有する化合物が挙げられる。
The hydrophilization treatment by forming a hydrophilic component can also be performed according to the conditions and procedures described in JP-A Nos. 59-101651 and 60-149491.
Examples of the hydrophilic vinyl polymer used in this method include polyvinyl sulfonic acid, a sulfo group-containing vinyl polymerizable compound such as p-styrene sulfonic acid having a sulfo group, and ordinary vinyl polymerization such as (meth) acrylic acid alkyl ester. And a copolymer with a functional compound. Examples of the hydrophilic compound used in this method include compounds having at least one selected from the group consisting of —NH 2 group, —COOH group and sulfo group.
<乾燥>
 上述したようにして平版印刷版用支持体を得た後、画像記録層を設ける前に、平版印刷版用支持体の表面を乾燥させるのが好ましい。乾燥は、表面処理の最後の処理の後、水洗処理およびニップローラで液切りしてから行うのが好ましい。
 乾燥温度は、70℃以上であるのが好ましく、80℃以上であるのがより好ましく、また、110℃以下であるのが好ましく、100℃以下であるのがより好ましい。
 乾燥時間は、1秒以上であるのが好ましく、2秒以上であるのがより好ましく、また20秒以下であるのが好ましく、15秒以下であるのがより好ましい。
<Dry>
After obtaining the lithographic printing plate support as described above, it is preferable to dry the surface of the lithographic printing plate support before providing the image recording layer. Drying is preferably performed after the final treatment of the surface treatment, after washing with water and draining with a nip roller.
The drying temperature is preferably 70 ° C or higher, more preferably 80 ° C or higher, preferably 110 ° C or lower, more preferably 100 ° C or lower.
The drying time is preferably 1 second or longer, more preferably 2 seconds or longer, more preferably 20 seconds or shorter, and even more preferably 15 seconds or shorter.
[平版印刷版原版]
 本発明により得られる平版印刷版用支持体には、画像記録層を設けて本発明の平版印刷版原版とすることができる。画像記録層には、感光性組成物が用いられる。
 本発明に好適に用いられる感光性組成物としては、例えば、アルカリ可溶性高分子化合物と光熱変換物質とを含有するサーマルポジ型感光性組成物(以下、この組成物およびこれを用いた画像記録層について、「サーマルポジタイプ」という。)、硬化性化合物と光熱変換物質とを含有するサーマルネガ型感光性組成物(以下、同様に「サーマルネガタイプ」という。)、光重合型感光性組成物(以下、同様に「フォトポリマータイプ」という。)、ジアゾ樹脂または光架橋樹脂を含有するネガ型感光性組成物(以下、同様に「コンベンショナルネガタイプ」という。)、キノンジアジド化合物を含有するポジ型感光性組成物(以下、同様に「コンベンショナルポジタイプ」という。)、特別な現像工程を必要としない感光性組成物(以下、同様に「無処理タイプ」という。)が挙げられ、特に、サーマルポジタイプ、サーマルネガタイプ、無処理タイプが好ましい。以下、これらの好適な感光性組成物について説明する。
[Lithographic printing plate precursor]
The lithographic printing plate support obtained by the present invention can be provided with an image recording layer to form the lithographic printing plate precursor of the present invention. A photosensitive composition is used for the image recording layer.
Examples of the photosensitive composition suitably used in the present invention include a thermal positive photosensitive composition containing an alkali-soluble polymer compound and a photothermal conversion substance (hereinafter, this composition and an image recording layer using the same). ), A thermal negative photosensitive composition containing a curable compound and a photothermal conversion substance (hereinafter also referred to as “thermal negative type”), a photopolymerizable photosensitive composition (hereinafter referred to as “thermal positive type”). , Also referred to as “photopolymer type”), a negative photosensitive composition containing a diazo resin or a photocrosslinking resin (hereinafter also referred to as “conventional negative type”), and a positive photosensitive composition containing a quinonediazide compound. Product (hereinafter also referred to as "conventional positive type"), photosensitive composition that does not require a special development step (hereinafter referred to as Referred to as "non-treatment type".) It can be mentioned as, in particular, thermal positive type, thermal negative type, non-treatment type is preferred. Hereinafter, these suitable photosensitive compositions will be described.
<サーマルポジタイプ>
<感光層>
 サーマルポジタイプの感光性組成物は、アルカリ可溶性高分子化合物と光熱変換物質とを含有する。サーマルポジタイプの画像記録層においては、光熱変換物質が赤外線レーザ等の光のエネルギーを熱に変換し、その熱がアルカリ可溶性高分子化合物のアルカリ溶解性を低下させている相互作用を効率よく解除する。
<Thermal positive type>
<Photosensitive layer>
The thermal positive type photosensitive composition contains an alkali-soluble polymer compound and a photothermal conversion substance. In the thermal positive type image recording layer, the photothermal conversion substance converts the energy of light such as infrared lasers into heat, which effectively eliminates the interaction that reduces the alkali solubility of alkali-soluble polymer compounds. To do.
 アルカリ可溶性高分子化合物としては、例えば、分子中に酸性基を含有する樹脂およびその2種以上の混合物が挙げられる。特に、フェノール性ヒドロキシ基、スルホンアミド基(-SO2NH-R(式中、Rは炭化水素基を表す。))、活性イミノ基(-SO2NHCOR、-SO2NHSO2R、-CONHSO2R(各式中、Rは上記と同様の意味である。))等の酸性基を有する樹脂がアルカリ現像液に対する溶解性の点で好ましい。
 とりわけ、赤外線レーザ等の光による露光での画像形成性に優れる点で、フェノール性ヒドロキシ基を有する樹脂が好ましく、例えば、フェノール-ホルムアルデヒド樹脂、m-クレゾール-ホルムアルデヒド樹脂、p-クレゾール-ホルムアルデヒド樹脂、m-/p-混合クレゾール-ホルムアルデヒド樹脂、フェノール/クレゾール(m-、p-およびm-/p-混合のいずれでもよい)混合-ホルムアルデヒド樹脂(フェノール-クレゾール-ホルムアルデヒド共縮合樹脂)等のノボラック樹脂が好適に挙げられる。
 更に、特開2001-305722号公報(特に[0023]~[0042])に記載されている高分子化合物、特開2001-215693号公報に記載されている一般式(1)で表される繰り返し単位を含む高分子化合物、特開2002-311570号公報(特に[0107])に記載されている高分子化合物も好適に挙げられる。
Examples of the alkali-soluble polymer compound include a resin containing an acidic group in the molecule and a mixture of two or more thereof. In particular, a phenolic hydroxy group, sulfonamide group (in -SO 2 NH-R (wherein, R represents a hydrocarbon group.)), Active imino group (-SO 2 NHCOR, -SO 2 NHSO 2 R, -CONHSO A resin having an acidic group such as 2 R (wherein R has the same meaning as described above) is preferable in terms of solubility in an alkali developer.
In particular, a resin having a phenolic hydroxy group is preferable from the viewpoint of excellent image-forming properties when exposed to light such as an infrared laser, such as phenol-formaldehyde resin, m-cresol-formaldehyde resin, p-cresol-formaldehyde resin, Novolac resins such as m- / p-mixed cresol-formaldehyde resin, phenol / cresol (any of m-, p- and m- / p-mixed) mixed-formaldehyde resin (phenol-cresol-formaldehyde co-condensation resin) Are preferable.
Further, the polymer compound described in JP-A No. 2001-305722 (particularly [0023] to [0042]), and the repetition represented by the general formula (1) described in JP-A No. 2001-215893 Preferred examples also include polymer compounds containing units, and polymer compounds described in JP-A No. 2002-311570 (particularly [0107]).
 光熱変換物質としては、記録感度の点で、波長700~1200nmの赤外域に光吸収域がある顔料または染料が好適に挙げられる。染料としては、例えば、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、ナフトキノン染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、シアニン染料、スクワリリウム色素、ピリリウム塩、金属チオレート錯体(例えば、ニッケルチオレート錯体)が挙げられる。中でも、シアニン染料が好ましく、とりわけ特開2001-305722号公報に記載されている一般式(I)で表されるシアニン染料が好ましい。 As the photothermal conversion substance, a pigment or a dye having a light absorption region in the infrared region having a wavelength of 700 to 1200 nm is preferably mentioned from the viewpoint of recording sensitivity. Examples of the dye include azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squarylium dyes, pyrylium salts, metal thiolate complexes (for example, , Nickel thiolate complex). Of these, cyanine dyes are preferable, and cyanine dyes represented by general formula (I) described in JP-A No. 2001-305722 are particularly preferable.
 サーマルポジタイプの感光性組成物中には、溶解阻止剤を含有させることができる。溶解阻止剤としては、例えば、特開2001-305722号公報の[0053]~[0055]に記載されているような溶解阻止剤が好適に挙げられる。
 また、サーマルポジタイプの感光性組成物中には、添加剤として、感度調節剤、露光による加熱後直ちに可視像を得るための焼出し剤、画像着色剤としての染料等の化合物、塗布性および処理安定性を向上させるための界面活性剤を含有させるのが好ましい。これらについては、特開2001-305722号公報の[0056]~[0060]に記載されているような化合物が好ましい。
 上記以外の点でも、特開2001-305722号公報に詳細に記載されている感光性組成物が好ましく用いられる。
The thermal positive type photosensitive composition may contain a dissolution inhibitor. Preferable examples of the dissolution inhibitor include dissolution inhibitors described in JP-A-2001-305722, [0053] to [0055].
In addition, in the thermal positive type photosensitive composition, as a additive, a sensitivity modifier, a printing agent for obtaining a visible image immediately after heating by exposure, a compound such as a dye as an image colorant, a coating property In addition, it is preferable to include a surfactant for improving the processing stability. For these, compounds as described in JP-A-2001-305722, [0056] to [0060] are preferable.
In addition to the above points, the photosensitive composition described in detail in JP-A No. 2001-305722 is preferably used.
 また、サーマルポジタイプの画像記録層は、単層に限らず、2層構造であってもよい。
 2層構造の画像記録層(重層系の画像記録層)としては、支持体に近い側に耐刷性および耐溶剤性に優れる下層(以下「A層」という。)を設け、その上にポジ画像形成性に優れる層(以下「B層」という。)を設けたタイプが好適に挙げられる。このタイプは感度が高く、広い現像ラチチュードを実現することができる。B層は、一般に、光熱変換物質を含有する。光熱変換物質としては、上述した染料が好適に挙げられる。
 A層に用いられる樹脂としては、スルホンアミド基、活性イミノ基、フェノール性ヒドロキシ基等を有するモノマーを共重合成分として有するポリマーが耐刷性および耐溶剤性に優れている点で好適に挙げられる。B層に用いられる樹脂としては、フェノール性ヒドロキシ基を有するアルカリ水溶液可溶性樹脂が好適に挙げられる。
 A層およびB層に用いられる組成物には、上記樹脂のほかに、必要に応じて、種々の添加剤を含有させることができる。具体的には、特開2002-3233769号公報の[0062]~[0085]に記載されているような種々の添加剤が好適に用いられる。また、上述した特開2001-305722号公報の[0053]~[0060]に記載されている添加剤も好適に用いられる。
 A層およびB層を構成する各成分およびその含有量については、特開平11-218914号公報に記載されているようにするのが好ましい。
 以上説明した2層構造の画像記録層を、親水化処理によって表面のSi吸着量を1.0~10.0mg/m2とした平版印刷版支持体上に形成すると、得られる平版印刷版は、インキの着肉性が良好になり、網点非画像部の耐汚れ性が良好になる。
Further, the thermal positive type image recording layer is not limited to a single layer but may have a two-layer structure.
As an image recording layer having a two-layer structure (multilayer image recording layer), a lower layer (hereinafter referred to as “A layer”) having excellent printing durability and solvent resistance is provided on the side close to the support, and a positive layer is provided thereon. A type provided with a layer having excellent image formability (hereinafter referred to as “B layer”) is preferable. This type has high sensitivity and can realize a wide development latitude. The B layer generally contains a photothermal conversion substance. Preferred examples of the photothermal conversion substance include the dyes described above.
As the resin used for the A layer, a polymer having a monomer having a sulfonamide group, an active imino group, a phenolic hydroxy group or the like as a copolymerization component is preferably used because it has excellent printing durability and solvent resistance. . As the resin used for the B layer, an alkaline aqueous solution-soluble resin having a phenolic hydroxy group is preferably exemplified.
In addition to the resin, the composition used for the A layer and the B layer can contain various additives as necessary. Specifically, various additives as described in JP-A-2002-3233769, [0062] to [0085] are preferably used. Further, the additives described in [0053] to [0060] of the above-mentioned JP-A No. 2001-305722 are also preferably used.
About each component which comprises A layer and B layer, and its content, it is preferable to make it describe in Unexamined-Japanese-Patent No. 11-218914.
When the image recording layer having the two-layer structure described above is formed on a lithographic printing plate support having a surface Si adsorption amount of 1.0 to 10.0 mg / m 2 by hydrophilization, the resulting lithographic printing plate is obtained as follows. , Ink inking property is improved, and stain resistance of a halftone dot non-image portion is improved.
<中間層>
 サーマルポジタイプの画像記録層と支持体との間には、中間層を設けるのが好ましい。中間層に含有される成分としては、特開2001-305722号公報の[0068]に記載されている種々の有機化合物が好適に挙げられる。
<Intermediate layer>
An intermediate layer is preferably provided between the thermal positive type image recording layer and the support. Preferred examples of the component contained in the intermediate layer include various organic compounds described in JP-A-2001-305722, [0068].
<その他>
 サーマルポジタイプの画像記録層の製造方法および製版方法については、特開2001-305722号公報に詳細に記載されている方法を用いることができる。
<Others>
As a method for producing a thermal positive type image recording layer and a plate making method, methods described in detail in JP-A No. 2001-305722 can be used.
<サーマルネガタイプ>
 サーマルネガタイプの感光性組成物は、硬化性化合物と光熱変換物質とを含有する。サーマルネガタイプの画像記録層は、赤外線レーザ等の光で照射された部分が硬化して画像部を形成するネガ型の感光層である。
<重合層>
 サーマルネガタイプの画像記録層の一つとして、重合型の画像記録層(重合層)が好適に挙げられる。重・BR>≡Wは、光熱変換物質と、ラジカル発生剤と、硬化性化合物であるラジカル重合性化合物と、バインダーポリマーとを含有する。重合層においては、光熱変換物質が吸収した赤外線を熱に変換し、この熱によりラジカル発生剤が分解してラジカルが発生し、発生したラジカルによりラジカル重合性化合物が連鎖的に重合し、硬化する。
<Thermal negative type>
The thermal negative photosensitive composition contains a curable compound and a photothermal conversion substance. The thermal negative type image recording layer is a negative photosensitive layer in which a portion irradiated with light such as an infrared laser is cured to form an image portion.
<Polymerized layer>
As one of the thermal negative type image recording layers, a polymerization type image recording layer (polymerization layer) is preferably exemplified. Heavy / BR> ≡W contains a photothermal conversion substance, a radical generator, a radical polymerizable compound that is a curable compound, and a binder polymer. In the polymerization layer, infrared light absorbed by the light-to-heat conversion substance is converted into heat, the radical generator is decomposed by this heat to generate radicals, and the radical polymerizable compound is polymerized in a chain by the generated radicals and cured. .
 光熱変換物質としては、例えば、上述したサーマルポジタイプに用いられる光熱変換物質が挙げられる。特に好ましいシアニン色素の具体例としては、特開2001-133969号公報の[0017]~[0019]に記載されているものが挙げられる。
 ラジカル発生剤としては、オニウム塩が好適に挙げられる。特に、特開2001-133969号公報の[0030]~[0033]に記載されているオニウム塩が好ましい。
 ラジカル重合性化合物としては、末端エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物が挙げられる。
 バインダーポリマーとしては、線状有機ポリマーが好適に挙げられる。水または弱アルカリ水に対して可溶性または膨潤性である線状有機ポリマーが好適に挙げられる。中でも、アリル基、アクリロイル基等の不飽和基またはベンジル基と、カルボキシ基とを側鎖に有する(メタ)アクリル樹脂が、膜強度、感度および現像性のバランスに優れている点で好適である。
 ラジカル重合性化合物およびバインダーポリマーについては、特開2001-133969号公報の[0036]~[0060]に詳細に記載されているものを用いることができる。
As a photothermal conversion substance, the photothermal conversion substance used for the thermal positive type mentioned above is mentioned, for example. Specific examples of particularly preferred cyanine dyes include those described in JP-A-2001-133969, [0017] to [0019].
Preferred examples of the radical generator include onium salts. In particular, onium salts described in JP-A-2001-133969, [0030] to [0033] are preferable.
Examples of the radically polymerizable compound include compounds having at least one terminal ethylenically unsaturated bond, preferably two or more.
As the binder polymer, a linear organic polymer is preferably exemplified. Preferable examples include linear organic polymers that are soluble or swellable in water or weak alkaline water. Among them, a (meth) acrylic resin having an unsaturated group such as an allyl group or an acryloyl group or a benzyl group and a carboxy group in the side chain is preferable in that it has an excellent balance of film strength, sensitivity, and developability. .
As the radical polymerizable compound and the binder polymer, those described in detail in [0036] to [0060] of JP-A No. 2001-133969 can be used.
 サーマルネガタイプの感光性組成物中には、特開2001-133969号公報の[0061]~[0068]に記載されている添加剤(例えば、塗布性を向上させるための界面活性剤)を含有させるのが好ましい。 The thermal negative photosensitive composition contains an additive described in JP-A-2001-133969, [0061] to [0068] (for example, a surfactant for improving coatability). Is preferred.
 重合層の製造方法および製版方法については、特開2001-133969号公報に詳細に記載されている方法を用いることができる。 As the method for producing the polymerization layer and the plate making method, methods described in detail in JP-A No. 2001-133969 can be used.
<酸架橋層>
 また、サーマルネガタイプの画像記録層の一つとして、酸架橋型の画像記録層(酸架橋層)も好適に挙げられる。酸架橋層は、光熱変換物質と、熱酸発生剤と、硬化性化合物である酸により架橋する化合物(架橋剤)と、酸の存在下で架橋剤と反応しうるアルカリ可溶性高分子化合物とを含有する。酸架橋層においては、光熱変換物質が吸収した赤外線を熱に変換し、この熱により熱酸発生剤が分解して酸が発生し、発生した酸により架橋剤とアルカリ可溶性高分子化合物とが反応し、硬化する。
<Acid cross-linked layer>
Further, as one of the thermal negative type image recording layers, an acid cross-linked image recording layer (acid cross-linked layer) is also preferably exemplified. The acid crosslinking layer comprises a photothermal conversion substance, a thermal acid generator, a compound (crosslinking agent) that crosslinks with an acid that is a curable compound, and an alkali-soluble polymer compound that can react with the crosslinking agent in the presence of an acid. contains. In the acid cross-linking layer, infrared light absorbed by the photothermal conversion substance is converted into heat, the heat acid generator is decomposed by this heat to generate an acid, and the generated acid reacts with the cross-linking agent and the alkali-soluble polymer compound. And harden.
 光熱変換物質としては、重合層に用いられるのと同様のものが挙げられる。
 熱酸発生剤としては、例えば、光重合の光開始剤、色素類の光変色剤、マイクロレジスト等に使用されている酸発生剤等の熱分解化合物が挙げられる。
 架橋剤としては、例えば、ヒドロキシメチル基またはアルコキシメチル基で置換された芳香族化合物;N-ヒドロキシメチル基、N-アルコキシメチル基またはN-アシルオキシメチル基を有する化合物;エポキシ化合物が挙げられる。
 アルカリ可溶性高分子化合物としては、例えば、ノボラック樹脂、側鎖にヒドロキシアリール基を有するポリマーが挙げられる。
Examples of the photothermal conversion substance include the same substances as those used for the polymerization layer.
Examples of the thermal acid generator include thermal decomposition compounds such as photoinitiators for photopolymerization, photochromic agents for dyes, and acid generators used in microresists.
Examples of the crosslinking agent include an aromatic compound substituted with a hydroxymethyl group or an alkoxymethyl group; a compound having an N-hydroxymethyl group, an N-alkoxymethyl group or an N-acyloxymethyl group; and an epoxy compound.
Examples of the alkali-soluble polymer compound include a novolak resin and a polymer having a hydroxyaryl group in the side chain.
<フォトポリマータイプ>
 光重合型感光性組成物は、付加重合性化合物と、光重合開始剤と、高分子結合剤とを含有する。
 付加重合性化合物としては、付加重合可能なエチレン性不飽和結合含有化合物が好適に挙げられる。エチレン性不飽和結合含有化合物は、末端エチレン性不飽和結合を有する化合物である。具体的には、例えば、モノマー、プレポリマー、これらの混合物等の化学的形態を有する。モノマーの例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸)と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族多価アミン化合物とのアミドが挙げられる。
 また、付加重合性化合物としては、ウレタン系付加重合性化合物も好適に挙げられる。
<Photopolymer type>
The photopolymerization type photosensitive composition contains an addition polymerizable compound, a photopolymerization initiator, and a polymer binder.
As the addition polymerizable compound, an ethylenically unsaturated bond-containing compound capable of addition polymerization is preferably exemplified. The ethylenically unsaturated bond-containing compound is a compound having a terminal ethylenically unsaturated bond. Specifically, for example, it has a chemical form such as a monomer, a prepolymer, and a mixture thereof. Examples of monomers include esters of unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, maleic acid) and aliphatic polyhydric alcohol compounds, amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds. Is mentioned.
Moreover, as an addition polymerizable compound, a urethane type addition polymerizable compound is also preferably exemplified.
 光重合開始剤としては、種々の光重合開始剤または2種以上の光重合開始剤の併用系(光開始系)を、使用する光源の波長により適宜選択して用いることができる。例えば、特開2001-22079号公報の[0021]~[0023]に記載されている開始系が好適に挙げられる。
 高分子結合剤は、光重合型感光性組成物の皮膜形成剤として機能するだけでなく、画像記録層をアルカリ現像液に溶解させる必要があるため、アルカリ水に対して可溶性または膨潤性である有機高分子重合体が用いられる。そのような有機高分子重合体としては、特開2001-22079号公報の[0036]~[0063]に記載されているものが好適に挙げられる。
As the photopolymerization initiator, various photopolymerization initiators or a combination system (photoinitiation system) of two or more kinds of photopolymerization initiators can be appropriately selected depending on the wavelength of the light source to be used. For example, the initiation systems described in JP-A-2001-22079, [0021] to [0023] are preferable.
The polymer binder not only functions as a film-forming agent for the photopolymerization type photosensitive composition, but is soluble or swellable in alkaline water because it is necessary to dissolve the image recording layer in an alkaline developer. An organic high molecular polymer is used. As such an organic polymer, those described in JP-A-2001-22079, [0036] to [0063] are preferably exemplified.
 フォトポリマータイプの光重合型感光性組成物中には、特開2001-22079号公報の[0079]~[0088]に記載されている添加剤(例えば、塗布性を向上させるための界面活性剤、着色剤、可塑剤、熱重合禁止剤)を含有させるのが好ましい。 In the photopolymer type photopolymerization type photosensitive composition, additives described in JP-A-2001-22079, [0079] to [0088] (for example, a surfactant for improving coatability) , Colorants, plasticizers, thermal polymerization inhibitors).
 また、フォトポリマータイプの画像記録層の上に、酸素の重合禁止作用を防止するために酸素遮断性保護層を設けることが好ましい。酸素遮断性保護層に含有される重合体としては、例えば、ポリビニルアルコール、その共重合体が挙げられる。
 更に、特開2001-228608号公報の[0124]~[0165]に記載されているような中間層または接着層を設けるのも好ましい。
Further, it is preferable to provide an oxygen-blocking protective layer on the photopolymer type image recording layer in order to prevent the action of inhibiting the polymerization of oxygen. Examples of the polymer contained in the oxygen barrier protective layer include polyvinyl alcohol and copolymers thereof.
Furthermore, it is also preferable to provide an intermediate layer or an adhesive layer as described in [0124] to [0165] of JP-A-2001-228608.
<コンベンショナルネガタイプ>
 コンベンショナルネガタイプの感光性組成物は、ジアゾ樹脂または光架橋樹脂を含有する。中でも、ジアゾ樹脂とアルカリ可溶性または膨潤性の高分子化合物(結合剤)とを含有する感光性組成物が好適に挙げられる。
 ジアゾ樹脂としては、例えば、芳香族ジアゾニウム塩とホルムアルデヒド等の活性カルボニル基含有化合物との縮合物;p-ジアゾフェニルアミン類とホルムアルデヒドとの縮合物とヘキサフルオロリン酸塩またはテトラフルオロホウ酸塩との反応生成物である有機溶媒可溶性ジアゾ樹脂無機塩が挙げられる。特に、特開昭59-78340号公報に記載されている6量体以上を20モル%以上含んでいる高分子量ジアゾ化合物が好ましい。
 結合剤としては、例えば、アクリル酸、メタクリル酸、クロトン酸またはマレイン酸を必須成分として含む共重合体が挙げられる。具体的には、特開昭50-118802号公報に記載されているような2-ヒドロキシエチル(メタ)アクリレート、(メタ)アクリロニトリル、(メタ)アクリル酸等のモノマーの多元共重合体、特開昭56-4144号公報に記載されているようなアルキルアクリレート、(メタ)アクリロニトリルおよび不飽和カルボン酸からなる多元共重合体が挙げられる。
<Conventional negative type>
The conventional negative photosensitive composition contains a diazo resin or a photocrosslinking resin. Among them, preferred is a photosensitive composition containing a diazo resin and an alkali-soluble or swellable polymer compound (binder).
Examples of the diazo resin include condensates of aromatic diazonium salts and compounds containing active carbonyl groups such as formaldehyde; condensates of p-diazophenylamines and formaldehyde with hexafluorophosphate or tetrafluoroborate. An organic solvent-soluble diazo resin inorganic salt which is a reaction product of In particular, a high molecular weight diazo compound containing 20 mol% or more of a hexamer described in JP-A-59-78340 is preferable.
Examples of the binder include a copolymer containing acrylic acid, methacrylic acid, crotonic acid, or maleic acid as an essential component. Specifically, a multi-component copolymer of monomers such as 2-hydroxyethyl (meth) acrylate, (meth) acrylonitrile, (meth) acrylic acid as described in JP-A-50-118802, Examples thereof include multi-component copolymers composed of alkyl acrylate, (meth) acrylonitrile and unsaturated carboxylic acid as described in JP-A-56-4144.
 コンベンショナルネガタイプの感光性組成物には、添加剤として、特開平7-281425号公報の[0014]~[0015]に記載されている焼出し剤、染料、塗膜の柔軟性および耐摩耗性を付与するための可塑剤、現像促進剤等の化合物、塗布性を向上させるための界面活性剤を含有させるのが好ましい。 The conventional negative type photosensitive composition has, as additives, the bake-out agent, dye, and flexibility and abrasion resistance described in JP-A-7-281425, [0014] to [0015]. It is preferable to contain a plasticizer for imparting, a compound such as a development accelerator, and a surfactant for improving coating properties.
 コンベンショナルネガタイプの感光層の下には、特開2000-105462号公報に記載されている、酸基を有する構成成分とオニウム基を有する構成成分とを有する高分子化合物を含有する中間層を設けるのが好ましい。 Under the conventional negative type photosensitive layer, an intermediate layer containing a polymer compound having a component having an acid group and a component having an onium group as described in JP-A-2000-105462 is provided. Is preferred.
<コンベンショナルポジタイプ>
 コンベンショナルポジタイプの感光性組成物は、キノンジアジド化合物を含有する。中でも、o-キノンジアジド化合物とアルカリ可溶性高分子化合物とを含有する感光性組成物が好適に挙げられる。
 o-キノンジアジド化合物としては、例えば、1,2-ナフトキノン-2-ジアジド-5-スルホニルクロライドとフェノール-ホルムアルデヒド樹脂またはクレゾール-ホルムアルデヒド樹脂とのエステル、米国特許第3,635,709号明細書に記載されている1,2-ナフトキノン-2-ジアジド-5-スルホニルクロライドとピロガロール-アセトン樹脂とのエステルが挙げられる。
 アルカリ可溶性高分子化合物としては、例えば、フェノール-ホルムアルデヒド樹脂、クレゾール-ホルムアルデヒド樹脂、フェノール-クレゾール-ホルムアルデヒド共縮合樹脂、ポリヒドロキシスチレン、N-(4-ヒドロキシフェニル)メタクリルアミドの共重合体、特開平7-36184号公報に記載されているカルボキシ基含有ポリマー、特開昭51-34711号公報に記載されているようなフェノール性ヒドロキシ基を含有するアクリル系樹脂、特開平2-866号公報に記載されているスルホンアミド基を有するアクリル系樹脂、ウレタン系の樹脂が挙げられる。
<Conventional positive type>
The conventional positive type photosensitive composition contains a quinonediazide compound. Among them, preferred is a photosensitive composition containing an o-quinonediazide compound and an alkali-soluble polymer compound.
Examples of o-quinonediazide compounds include esters of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride and phenol-formaldehyde resin or cresol-formaldehyde resin, described in US Pat. No. 3,635,709. And esters of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride and pyrogallol-acetone resin.
Examples of the alkali-soluble polymer compound include phenol-formaldehyde resin, cresol-formaldehyde resin, phenol-cresol-formaldehyde co-condensation resin, polyhydroxystyrene, N- (4-hydroxyphenyl) methacrylamide copolymer, Carboxy group-containing polymers described in JP-A-7-36184, acrylic resins containing phenolic hydroxy groups as described in JP-A-51-34711, and JP-A-2-866 Examples thereof include acrylic resins having a sulfonamide group and urethane resins.
 コンベンショナルポジタイプの感光性組成物には、添加剤として、特開平7-92660号公報の[0024]~[0027]に記載されている感度調節剤、焼出剤、染料等の化合物や、特開平7-92660号公報の[0031]に記載されているような塗布性を向上させるための界面活性剤を含有させるのが好ましい。 Conventional positive type photosensitive compositions include compounds such as sensitivity modifiers, printing agents, dyes and the like described in JP-A-7-92660, [0024] to [0027] as additives. It is preferable to contain a surfactant for improving the coating property as described in [0031] of Kaihei 7-92660.
 コンベンショナルポジタイプの感光層の下には、上述したコンベンショナルネガタイプに好適に用いられる中間層と同様の中間層を設けるのが好ましい。 Under the conventional positive type photosensitive layer, it is preferable to provide an intermediate layer similar to the intermediate layer suitably used for the above-described conventional negative type.
<無処理タイプ>
 無処理タイプの感光性組成物には、熱可塑性微粒子ポリマー型、マイクロカプセル型、スルホン酸発生ポリマー含有型等が挙げられる。これらはいずれも光熱変換物質を含有する感熱型である。光熱変換物質は、上述したサーマルポジタイプに用いられるのと同様の染料が好ましい。
<Non-treatment type>
Examples of the non-processing type photosensitive composition include a thermoplastic fine particle polymer type, a microcapsule type, and a sulfonic acid-generating polymer-containing type. These are all heat-sensitive types containing a photothermal conversion substance. The photothermal conversion substance is preferably the same dye as that used in the above-described thermal positive type.
 熱可塑性微粒子ポリマー型の感光性組成物は、疎水性かつ熱溶融性の微粒子ポリマーが親水性高分子マトリックス中に分散されたものである。熱可塑性微粒子ポリマー型の画像記録層においては、露光により発生する熱により疎水性の微粒子ポリマーが溶融し、互いに融着して疎水性領域、即ち、画像部を形成する。
 微粒子ポリマーとしては、微粒子同士が熱により溶融合体するものが好ましく、表面が親水性で、湿し水等の親水性成分に分散しうるものがより好ましい。具体的には、Reseach Disclosure No.33303(1992年1月)、特開平9-123387号、同9-131850号、同9-171249号および同9-171250号の各公報、欧州特許出願公開第931,647号明細書等に記載されている熱可塑性微粒子ポリマーが好適に挙げられる。中でも、ポリスチレンおよびポリメタクリル酸メチルが好ましい。親水性表面を有する微粒子ポリマーとしては、例えば、ポリマー自体が親水性であるもの;ポリビニルアルコール、ポリエチレングリコール等の親水性化合物を微粒子ポリマー表面に吸着させて表面を親水性化したものが挙げられる。
 微粒子ポリマーは、反応性官能基を有するのが好ましい。
The thermoplastic fine particle polymer type photosensitive composition is obtained by dispersing a hydrophobic and heat-meltable fine particle polymer in a hydrophilic polymer matrix. In the image recording layer of the thermoplastic fine particle polymer type, the hydrophobic fine particle polymer is melted by heat generated by exposure and is fused to form a hydrophobic region, that is, an image portion.
As the fine particle polymer, those in which fine particles melt and coalesce with heat are preferable, and those having a hydrophilic surface and capable of being dispersed in a hydrophilic component such as dampening water are more preferable. Specifically, Research Disclosure No. 33303 (January 1992), JP-A-9-123387, JP-A-9-131850, JP-A-9-171249, and JP-A-9-171250, and European Patent Application Publication No. 931,647. Preferred examples thereof include thermoplastic fine particle polymers. Of these, polystyrene and polymethyl methacrylate are preferred. Examples of the fine particle polymer having a hydrophilic surface include those in which the polymer itself is hydrophilic; those in which a hydrophilic compound such as polyvinyl alcohol and polyethylene glycol is adsorbed on the surface of the fine particle polymer to make the surface hydrophilic.
The fine particle polymer preferably has a reactive functional group.
 マイクロカプセル型の感光性組成物としては、特開2000-118160号公報に記載されているもの、特開2001-277740号公報に記載されているような熱反応性官能基を有する化合物を内包するマイクロカプセル型が好適に挙げられる。 Examples of the microcapsule-type photosensitive composition include those described in JP-A No. 2000-118160 and compounds having a heat-reactive functional group as described in JP-A No. 2001-277740. A microcapsule type is preferable.
 スルホン酸発生ポリマー含有型の感光性組成物に用いられるスルホン酸発生ポリマーとしては、例えば、特開平10-282672号公報に記載されているスルホン酸エステル基、ジスルホン基またはsec-もしくはtert-スルホンアミド基を側鎖に有するポリマーが挙げられる。 Examples of the sulfonic acid-generating polymer used in the sulfonic acid-generating polymer-containing photosensitive composition include sulfonic acid ester groups, disulfone groups, or sec- or tert-sulfonamides described in JP-A-10-282672. Examples thereof include polymers having a group in the side chain.
 無処理タイプの感光性組成物に、親水性樹脂を含有させることにより、機上現像性が良好となるばかりか、感光層自体の皮膜強度も向上する。親水性樹脂としては、例えば、ヒドロキシ基、カルボキシ基、ヒドロキシエチル基、ヒドロキシプロピル基、アミノ基、アミノエチル基、アミノプロピル基、カルボキシメチル基等の親水基を有するもの、親水性のゾルゲル変換系結着樹脂が好ましい。 By including a hydrophilic resin in an unprocessed photosensitive composition, not only on-press developability is improved, but also the film strength of the photosensitive layer itself is improved. Examples of the hydrophilic resin include those having a hydrophilic group such as hydroxy group, carboxy group, hydroxyethyl group, hydroxypropyl group, amino group, aminoethyl group, aminopropyl group, carboxymethyl group, and hydrophilic sol-gel conversion system A binder resin is preferred.
 無処理タイプの画像記録層は、特別な現像工程を必要とせず、印刷機上で現像することができる。無処理タイプの画像記録層の製造方法および製版印刷方法については、特開2002-178655号公報に詳細に記載されている方法を用いることができる。 The unprocessed image recording layer can be developed on a printing press without requiring a special development process. As a method for producing an unprocessed type image recording layer and a plate-making printing method, methods described in detail in JP-A No. 2002-178655 can be used.
<バックコート>
 このようにして、本発明により得られる平版印刷版用支持体上に各種の画像記録層を設けて得られる本発明の平版印刷版原版の裏面には、必要に応じて、重ねた場合における画像記録層の傷付きを防止するために、有機高分子化合物からなる被覆層を設けることができる。
<Back coat>
In this way, the backside of the lithographic printing plate precursor of the present invention obtained by providing various image recording layers on the lithographic printing plate support obtained by the present invention, if necessary, is an image in the case of overlapping. In order to prevent the recording layer from being damaged, a coating layer made of an organic polymer compound can be provided.
[製版方法(平版印刷版の製造方法)]
 本発明により得られる平版印刷版用支持体を用いた平版印刷版原版は、画像記録層に応じた種々の処理方法により、平版印刷版とされる。
 像露光に用いられる活性光線の光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプが挙げられる。レーザビームとしては、例えば、ヘリウム-ネオンレーザ(He-Neレーザ)、アルゴンレーザ、クリプトンレーザ、ヘリウム-カドミウムレーザ、KrFエキシマーレーザ、半導体レーザ、YAGレーザ、YAG-SHGレーザが挙げられる。
[Plate making method (lithographic printing plate production method)]
The lithographic printing plate precursor using the lithographic printing plate support obtained by the present invention is made into a lithographic printing plate by various treatment methods according to the image recording layer.
Examples of the active light source used for image exposure include a mercury lamp, a metal halide lamp, a xenon lamp, and a chemical lamp. Examples of the laser beam include a helium-neon laser (He—Ne laser), an argon laser, a krypton laser, a helium-cadmium laser, a KrF excimer laser, a semiconductor laser, a YAG laser, and a YAG-SHG laser.
 上記露光の後、画像記録層がサーマルポジタイプ、サーマルネガタイプ、コンベンショナルネガタイプ、コンベンショナルポジタイプおよびフォトポリマータイプのいずれかである場合は、露光した後、現像液を用いて現像して平版印刷版を得るのが好ましい。
 現像液は、アルカリ現像液であるのが好ましく、有機溶剤を実質的に含有しないアルカリ性の水溶液であるのがより好ましい。
 また、アルカリ金属ケイ酸塩を実質的に含有しない現像液も好ましい。アルカリ金属ケイ酸塩を実質的に含有しない現像液を用いて現像する方法としては、特開平11-109637号公報に詳細に記載されている方法を用いることができる。
 また、アルカリ金属ケイ酸塩を含有する現像液を用いることもできる。
After the above exposure, if the image recording layer is any of thermal positive type, thermal negative type, conventional negative type, conventional positive type, and photopolymer type, after exposure, it is developed using a developer to obtain a lithographic printing plate. It is preferable to obtain.
The developer is preferably an alkaline developer, and more preferably an alkaline aqueous solution that does not substantially contain an organic solvent.
A developer substantially free of alkali metal silicate is also preferred. As a method for developing using a developer substantially not containing an alkali metal silicate, a method described in detail in JP-A-11-109637 can be used.
A developer containing an alkali metal silicate can also be used.
1.アルミニウム板の製造
 表1に示される各成分(質量%)を含有し、残部はAlと不可避不純物とからなるアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC鋳造法で作製した。表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延を行って、厚さ0.3mm、幅1060mmに仕上げ、アルミニウム板1を得た。
1. Production of aluminum plate Each component (mass%) shown in Table 1 is contained, and the balance is prepared by using an aluminum alloy composed of Al and inevitable impurities. An ingot having a width of 500 mm and a width of 1200 mm was produced by a DC casting method. After the surface was shaved with a chamfering machine with an average thickness of 10 mm, the temperature was kept constant at 550 ° C. for about 5 hours, and when the temperature dropped to 400 ° C., rolling with a thickness of 2.7 mm using a hot rolling mill A board was used. Furthermore, after performing heat processing using a continuous annealing machine at 500 degreeC, it cold-rolled and finished to 0.3 mm in thickness and 1060 mm in width, and the aluminum plate 1 was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.平版印刷版用支持体の作製
(実施例1~24および比較例1~9)
 上記で得られたアルミニウム板を以下に示す表面処理に供し、表2に示される各平版印刷版用支持体を得た。
2. Preparation of lithographic printing plate support (Examples 1 to 24 and Comparative Examples 1 to 9)
The aluminum plate obtained above was subjected to the following surface treatment to obtain each lithographic printing plate support shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<表面処理>
 表面処理は、以下の(a)~(g)の各種処理を連続的に行った。
<Surface treatment>
As the surface treatment, the following various treatments (a) to (g) were continuously performed.
(a)アルカリ水溶液中でのエッチング処理(第1エッチング処理)
 アルミニウム板に、カセイソーダ濃度370g/L、アルミニウムイオン濃度1g/L、温度60℃の水溶液をスプレー管から吹き付けて、エッチング処理を行った。アルミニウム板の後に電気化学的粗面化処理を施す面のエッチング量は、3g/m2であった。
 その後、ニップローラで液切りし、更に、扇状に噴射水が広がるスプレーチップを有するスプレー管を用いて5秒間水洗処理し、更に、ニップローラで液切りした。
(A) Etching treatment in alkaline aqueous solution (first etching treatment)
Etching was performed by spraying an aqueous solution of caustic soda concentration of 370 g / L, aluminum ion concentration of 1 g / L, and a temperature of 60 ° C. onto the aluminum plate from a spray tube. The etching amount of the surface subjected to the electrochemical roughening treatment after the aluminum plate was 3 g / m 2 .
Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
(b)酸性水溶液中でのデスマット処理
 アルミニウム板に、硫酸濃度170g/L、アルミニウムイオン濃度5g/L、温度50℃の水溶液をスプレー管から吹き付けて、5秒間デスマット処理を行った。硫酸水溶液としては、後述する(i)陽極酸化処理工程の廃液を用いた。その後、ニップローラで液切りし、更に、扇状に噴射水が広がるスプレーチップを有するスプレー管を用いて5秒間水洗処理し、更に、ニップローラで液切りした。
(B) Desmutting treatment in an acidic aqueous solution An aluminum plate was sprayed with an aqueous solution having a sulfuric acid concentration of 170 g / L, an aluminum ion concentration of 5 g / L, and a temperature of 50 ° C. from a spray tube to perform desmutting treatment for 5 seconds. As a sulfuric acid aqueous solution, the waste liquid of the (i) anodizing process mentioned later was used. Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
(c)酸性水溶液中での交流を用いた電気化学的粗面化処理
 電解液として、表2に示される塩酸濃度、アルミニウムイオン濃度および硫酸濃度の水溶液(温度35℃)を用い、IGBT(Insulated Gate Bipolar Transistor)素子を用いたインバータ制御により電流を制御し、任意波形の交流電流を発生させうる電源を用いて電気化学的な粗面化処理を行った。交流電流の波形、電流立ち上がり時間(正弦波以外の場合)、duty比および周波数は、それぞれ表2に示されるとおりであった。
 電解槽毎に電源を設置し、電流密度が段階的に漸増するようにした。(電解の最後の電流密度/電解の最初の電流密度)の値は、1.8であった。交流のピーク時におけるアルミニウム板のアノード反応時の電流密度は、電解の最初において、45A/dm2であった。
 電気量は、アルミニウム板のアノード時の電気量の総和で、表2に示されるとおりであった。また、電流比(アルミニウム板が陽極時の電気量の総和とアルミニウム板が陰極時の電気量の総和との比)は、表2に示されるとおりであった。
 電解液の濃度制御は、予め求めたデータテーブルに従って、通電量に比例した量の塩酸および所望の濃度の硫酸を予め添加した補給水を添加することによって行った。また、各組成に応じた液の電導度と超音波の伝搬速度との関係を測定してデータテーブルを作成しておき、液の電導度と超音波の伝搬速度との測定結果から、添加する塩酸の量と補給水の量とをフィードバック制御した。
 その後、ニップローラで液切りし、更に、扇状に噴射水が広がるスプレーチップを有するスプレー管を用いて5秒間水洗処理し、更に、ニップローラで液切りした。
(C) Electrochemical roughening treatment using alternating current in an acidic aqueous solution As an electrolytic solution, an aqueous solution (temperature 35 ° C.) having a hydrochloric acid concentration, an aluminum ion concentration and a sulfuric acid concentration shown in Table 2 is used. The current was controlled by inverter control using a gate bipolar transistor) element, and an electrochemical roughening process was performed using a power source capable of generating an alternating current of arbitrary waveform. The AC current waveform, current rise time (in cases other than a sine wave), duty ratio, and frequency were as shown in Table 2, respectively.
A power source was installed for each electrolytic cell so that the current density gradually increased. The value of (final current density of electrolysis / initial current density of electrolysis) was 1.8. The current density during the anode reaction of the aluminum plate at the alternating current peak was 45 A / dm 2 at the beginning of electrolysis.
The amount of electricity was the total amount of electricity when the aluminum plate was an anode, as shown in Table 2. Moreover, the current ratio (ratio of the total amount of electricity when the aluminum plate was the anode and the total amount of electricity when the aluminum plate was the cathode) was as shown in Table 2.
The concentration control of the electrolytic solution was performed by adding make-up water preliminarily added with an amount of hydrochloric acid proportional to the amount of energization and sulfuric acid of a desired concentration according to a data table obtained in advance. In addition, a data table is created by measuring the relationship between the electric conductivity of the liquid and the ultrasonic wave propagation speed corresponding to each composition, and added from the measurement results of the electric conductivity of the liquid and the ultrasonic wave propagation speed. The amount of hydrochloric acid and the amount of makeup water were feedback controlled.
Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
(d)アルカリ水溶液中でのエッチング処理(第2エッチング処理)
 アルミニウム板に、カセイソーダ濃度370g/L、アルミニウムイオン濃度1g/L、温度35℃の水溶液をスプレー管から吹き付けて、エッチング処理を行った。アルミニウム板の電気化学的粗面化処理を施した面のエッチング量は、0.2g/m2であった。
 その後、ニップローラで液切りし、更に、扇状に噴射水が広がるスプレーチップを有するスプレー管を用いて5秒間水洗処理し、更に、ニップローラで液切りした。
(D) Etching process in alkaline aqueous solution (second etching process)
Etching was performed by spraying an aqueous solution of caustic soda concentration of 370 g / L, aluminum ion concentration of 1 g / L, and a temperature of 35 ° C. onto the aluminum plate from a spray tube. The etching amount of the aluminum plate subjected to the electrochemical surface roughening treatment was 0.2 g / m 2 .
Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
(e)酸性水溶液中でのデスマット処理
 アルミニウム板に、硫酸濃度170g/L、アルミニウムイオン濃度5g/L、温度50℃の水溶液をスプレー管から吹き付けて、5秒間デスマット処理を行った。硫酸水溶液としては、後述する(i)陽極酸化処理工程の廃液を用いた。
 その後、ニップローラで液切りし、更に、扇状に噴射水が広がるスプレーチップを有するスプレー管を用いて5秒間水洗処理し、更に、ニップローラで液切りした。
(E) Desmutting treatment in an acidic aqueous solution An aluminum plate was sprayed with an aqueous solution having a sulfuric acid concentration of 170 g / L, an aluminum ion concentration of 5 g / L, and a temperature of 50 ° C. from a spray tube to perform desmutting treatment for 5 seconds. As a sulfuric acid aqueous solution, the waste liquid of the (i) anodizing process mentioned later was used.
Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
(f)陽極酸化処理
 電解液としては、170g/L硫酸水溶液に硫酸アルミニウムを溶解させてアルミニウムイオン濃度を5g/Lとした電解液(温度50℃)を用いた。陽極酸化処理は、アルミニウム板がアノード反応する間の平均電流密度が15A/dm2となるように行い、最終的な酸化皮膜量は2.7g/m2であった。
 その後、ニップローラで液切りし、更に、扇状に噴射水が広がるスプレーチップを有するスプレー管を用いて5秒間水洗処理し、更に、ニップローラで液切りした。
(F) Anodizing treatment As an electrolytic solution, an electrolytic solution (temperature 50 ° C.) in which aluminum sulfate was dissolved in a 170 g / L sulfuric acid aqueous solution to make an aluminum ion concentration 5 g / L was used. The anodizing treatment was performed so that the average current density during the anodic reaction of the aluminum plate was 15 A / dm 2 , and the final oxide film amount was 2.7 g / m 2 .
Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller.
(g)親水化処理1
 アルミニウム板をケイ酸ソーダ1.0質量%水溶液(温度20℃)に10秒間浸せきさせた。蛍光X線分析装置で測定したアルミニウム板表面のSi量は、3.5mg/m2であった。
 その後、ニップローラで液切りし、更に、扇状に噴射水が広がるスプレーチップを有するスプレー管を用いて5秒間水洗処理し、更に、ニップローラで液切りした。更に、90℃の風を10秒間吹き付けて乾燥させて、平版印刷版用支持体を得た。
(G) Hydrophilization treatment 1
The aluminum plate was immersed in a 1.0 mass% aqueous solution of sodium silicate (temperature 20 ° C.) for 10 seconds. The amount of Si on the surface of the aluminum plate measured with a fluorescent X-ray analyzer was 3.5 mg / m 2 .
Then, the liquid was drained with a nip roller, and further washed with water for 5 seconds using a spray tube having a spray tip in which spray water spread in a fan shape, and further drained with a nip roller. Furthermore, 90 degreeC wind was sprayed for 10 seconds, it was made to dry, and the support body for lithographic printing plates was obtained.
3.平版印刷版用支持体の表面の観察
 実施例1~24で得られた平版印刷版用支持体の表面形状を走査型電子顕微鏡(JSM-5500、日本電子社製。以下同じ。)を用いて倍率50000倍で観察したところ、その表面に直径0.1~0.2μmの微細な凹凸が均一かつ緻密に生成していた。また、走査型電子顕微鏡を用いて倍率2000倍で観察したところ、これらの平版印刷版用支持体の表面には直径1~20μmの凹凸が生成していた。直径0.1~0.2μmの微細な凹凸は直径1~20μmの凹凸に重畳して生成していた。
 これに対して、比較例1~9で得られた平版印刷版用支持体の表面形状を同様にして観察したところ、その表面に直径0.1~0.2μmの微細な凹凸および直径1~20μmの凹凸が生成していたが、直径1~20μmの凹凸は、実施例の場合に比べて深さおよびピット径の分布が不均一であった。また、表面には、プラトー部が多く存在した。
3. Observation of the surface of the lithographic printing plate support The surface shape of the lithographic printing plate support obtained in Examples 1 to 24 was measured using a scanning electron microscope (JSM-5500, manufactured by JEOL Ltd., the same shall apply hereinafter). When observed at a magnification of 50000 times, fine irregularities with a diameter of 0.1 to 0.2 μm were uniformly and densely formed on the surface. Further, when observed with a scanning electron microscope at a magnification of 2000, irregularities having a diameter of 1 to 20 μm were formed on the surface of these lithographic printing plate supports. Fine irregularities having a diameter of 0.1 to 0.2 μm were generated by being superimposed on the irregularities having a diameter of 1 to 20 μm.
On the other hand, when the surface shape of the lithographic printing plate support obtained in Comparative Examples 1 to 9 was observed in the same manner, fine irregularities with a diameter of 0.1 to 0.2 μm and a diameter of 1 to Although unevenness of 20 μm was generated, unevenness of 1 to 20 μm in diameter had a nonuniform distribution of depth and pit diameter as compared with the example. Moreover, many plateau parts existed on the surface.
4.平版印刷版原版の作製
 上記で得られた平版印刷版用支持体に、以下のようにしてサーマルポジタイプの画像記録層を設けて平版印刷版原版を得た。なお、画像記録層を設ける前には、後述するように中間層を設けた。
4). Preparation of lithographic printing plate precursor A lithographic printing plate precursor was obtained by providing a thermal positive type image recording layer on the lithographic printing plate support obtained above as follows. Before providing the image recording layer, an intermediate layer was provided as described later.
(実施例1~24、比較例1~9)
 平版印刷版用支持体上に、下記組成の下塗液Aを塗布し、80℃で15秒間乾燥し、成分の塗膜(中間層)を形成させた。乾燥後の塗膜の被覆量は15mg/m2であった。
(Examples 1 to 24, Comparative Examples 1 to 9)
An undercoat liquid A having the following composition was applied onto a lithographic printing plate support and dried at 80 ° C. for 15 seconds to form a component coating film (intermediate layer). The coating amount of the coating film after drying was 15 mg / m 2 .
<下塗液A組成>
・下記高分子化合物 0.3g
・メタノール 100g
・水 1g
<Undercoat liquid A composition>
・ The following polymer compound 0.3g
・ Methanol 100g
・ Water 1g
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 次いで、成分の上に、下記組成の画像記録層用塗布液B1を、乾燥後に0.85g/m2となるようにワイヤーバーで塗布し、140℃で50秒間乾燥させた。
 その後、下記組成の画像記録層用塗布液B2を、乾燥後に0.25g/m2となるようにワイヤーバーで塗布し、140℃で1分間乾燥させ、重層型のサーマルポジタイプの画像記録層を形成し、平版印刷版原版を得た。
Next, an image recording layer coating solution B1 having the following composition was coated on the components with a wire bar so as to be 0.85 g / m 2 after drying, and dried at 140 ° C. for 50 seconds.
After that, the image recording layer coating liquid B2 having the following composition was applied with a wire bar so as to be 0.25 g / m 2 after drying, and dried at 140 ° C. for 1 minute to form a multilayer thermal positive type image recording layer. And a lithographic printing plate precursor was obtained.
<画像記録層用塗布液B1組成>
・N-(4-アミノスルホニルフェニル)メタクリルアミド/アクリロニトリル/メタクリル酸メチル共重合体(モル比36/34/30、重量平均分子量50,000) 1.920g
・m,p-クレゾールノボラック(m-クレゾールノボラック/p-クレゾールノボラック比6/4、重量平均分子量4000) 0.213g
・下記式で表されるシアニン染料B 0.032g
・p-トルエンスルホン酸 0.008g
・テトラヒドロ無水フタル酸 0.19g
・ビス-p-ヒドロキシフェニルスルホン 0.126g
・2-メトキシ-4-(N-フェニルアミノ)ベンゼンジアゾニウム・ヘキサフルオロホスフェート 0.032g
・ビクトリアピュアブルーBOHの対アニオンを1-ナフタレンスルホン酸アニオンにした染料 0.078g
・フッ素系界面活性剤(メガファックF-780、大日本インキ化学工業株式会社製) 0.020g
・γ-ブチロラクトン 13.18g
・メチルエチルケトン 25.41g
・1-メトキシ-2-プロパノール 12.97g
<Composition of coating liquid B1 for image recording layer>
N- (4-aminosulfonylphenyl) methacrylamide / acrylonitrile / methyl methacrylate copolymer (molar ratio 36/34/30, weight average molecular weight 50,000) 1.920 g
-M, p-cresol novolak (m-cresol novolak / p-cresol novolak ratio 6/4, weight average molecular weight 4000) 0.213 g
-0.032 g of cyanine dye B represented by the following formula
・ P-Toluenesulfonic acid 0.008g
・ Tetrahydrophthalic anhydride 0.19g
・ Bis-p-hydroxyphenylsulfone 0.126g
・ 2-methoxy-4- (N-phenylamino) benzenediazonium ・ hexafluorophosphate 0.032g
・ 0.078 g of dye having 1-naphthalenesulfonic acid anion as the counter anion of Victoria Pure Blue BOH
-Fluorosurfactant (Megafac F-780, manufactured by Dainippon Ink & Chemicals, Inc.) 0.020g
・ Γ-Butyrolactone 13.18g
・ Methyl ethyl ketone 25.41g
・ 1-methoxy-2-propanol 12.97g
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
<画像記録層用塗布液B2組成>
・フェノール/m,p-クレゾールノボラック(フェノール/m-クレゾールノボラック/p-クレゾールノボラック=5/3/2、重量平均分子量4000) 0.274g
・上記式で示されるシアニン染料B 0.029g
・下記式で示される構造ポリマーC/メチルエチルケトン30%溶液(構造ポリマーB/メチルエチルケトン30%溶液) 0.14g
・下記式で示される4級アンモニウム塩D 0.004g
・下記式で示されるスルホニウム塩E 0.065g
・フッ素系界面活性剤(メガファックF-780、大日本インキ化学工業株式会社製) 0.004g
・フッ素系界面活性剤(メガファックF-782、大日本インキ化学工業株式会社製) 0.020g
・メチルエチルケトン 10.39g
・1-メトキシー2-プロパノール 20.98g
<Composition of coating liquid B2 for image recording layer>
・ Phenol / m, p-cresol novolak (phenol / m-cresol novolak / p-cresol novolak = 5/3/2, weight average molecular weight 4000) 0.274 g
-0.029 g of cyanine dye B represented by the above formula
-Structural polymer C / methyl ethyl ketone 30% solution represented by the following formula (Structural polymer B / methyl ethyl ketone 30% solution) 0.14 g
-Quaternary ammonium salt D shown by the following formula 0.004 g
・ Sulphonium salt E represented by the following formula: 0.065 g
・ Fluorosurfactant (Megafac F-780, manufactured by Dainippon Ink & Chemicals, Inc.) 0.004g
・ Fluorosurfactant (Megafac F-782, manufactured by Dainippon Ink & Chemicals, Inc.) 0.020g
・ Methyl ethyl ketone 10.39g
・ 1-methoxy-2-propanol 20.98g
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
5.平版印刷版原版の評価
 平版印刷版の画質の評価、耐刷性、耐汚れ性を下記の方法で評価した。
5). Evaluation of planographic printing plate precursor The evaluation of image quality, printing durability and stain resistance of the planographic printing plate were evaluated by the following methods.
(1)画質の評価
 上記のようにして得られた平版印刷版の塗布表面のすじ、チャタマークに関しての画質むらを目視での評価を行った。
 (a)すじ
 ○ :すじが全く発生しない
 ○△:○よりはすじが発生しているが、△よりはすじが発生していない
 △ :○△よりはすじが発生しているが、×よりはすじの発生が少ない
 × :著しくすじが発生している
 (b)チャタマーク
 ○ :チャタマークが全く発生しない
 ○△:○よりはチャタマークが発生しているが、△よりは少ない。
 △ :○△よりはチャタマークが発生しているが、×よりは少ない
 × :著しくチャタマークが発生している
(2)耐刷性
 得られた平版印刷版原版を、Creo社製TrendSetterを用いてドラム回転速度150rpm、ビーム強度10Wで画像状に描き込みを行った。
 その後、下記組成のアルカリ現像液を仕込んだ富士フイルム(株)製PSプロセッサー940Hを用い、液温を30℃に保ち、現像時間20秒で現像し、平版印刷版を得た。なお、いずれの平版印刷版原版も感度は良好であった。
(1) Evaluation of image quality Visual evaluation was performed on the unevenness of image quality regarding streaks and chatter marks on the coated surface of the planographic printing plate obtained as described above.
(A) Streaks ○: No streaks occur ○ △: Streaks occur from ○ but no streaks occur from △: Streaks occur from ○ △, but from × Little streaks X: Remarkably streaks (b) Chatter marks ○: No chatter marks occur ○ △: Chatter marks are generated compared to ○, but less than Δ
△: Chatter marks are generated more than △, but less than × ×: Remarkably chatter marks are generated (2) Printing durability The obtained lithographic printing plate precursor was used with a TrendSetter manufactured by Creo Then, an image was drawn at a drum rotation speed of 150 rpm and a beam intensity of 10 W.
Thereafter, using a PS processor 940H manufactured by FUJIFILM Corporation with an alkaline developer having the following composition, the solution was maintained at 30 ° C. and developed for 20 seconds to obtain a lithographic printing plate. All the lithographic printing plate precursors had good sensitivity.
<アルカリ現像液組成>
・D-ソルビット 2.5質量%
・水酸化ナトリウム 0.85質量%
・ポリエチレングリコールラウリルエーテル(重量平均分子量10)0.5 質量%
・水 96.15質量%
<Alkali developer composition>
・ D-sorbite 2.5% by mass
-Sodium hydroxide 0.85 mass%
・ Polyethylene glycol lauryl ether (weight average molecular weight 10) 0.5 mass%
・ Water 96.15% by mass
 得られた平版印刷版を、小森コーポレーション社製のリスロン印刷機で、大日本インキ化学工業社製のDIC-GEOS(N)墨のインキを用いて印刷した。なお、印刷時に5000枚毎に富士フイルム(株)製マルチクリーナーを画像記録層の表面に1分間付着させてから水で拭き取るという作業を行った。ベタ画像の濃度が薄くなり始めたと目視で認められた時点での印刷枚数により、耐刷性を評価した。
 結果を表3、表4に示す。表3、表4中の記号の意味は以下の通りである。
 ○ :30,000枚以上
 ○△:20,000枚以上30,000枚未満
 △ :10,000枚以上20,000枚未満
 × :10,000枚未満
The resulting lithographic printing plate was printed with a Lithrone printing machine manufactured by Komori Corporation using DIC-GEOS (N) black ink manufactured by Dainippon Ink and Chemicals. At the time of printing, a multi-cleaner manufactured by Fuji Film Co., Ltd. was attached to the surface of the image recording layer for 1 minute every 5,000 sheets and then wiped with water. The printing durability was evaluated based on the number of printed sheets when it was visually recognized that the density of the solid image started to decrease.
The results are shown in Tables 3 and 4. The meanings of symbols in Tables 3 and 4 are as follows.
○: 30,000 or more ○ △: 20,000 or more and less than 30,000 △: 10,000 or more and less than 20,000 × ×: less than 10,000
(3)耐汚れ性
 耐刷性の評価の場合と同様にして得られた平版印刷版を用い、三菱ダイヤ型F2印刷機(三菱重工業社製)で、DIC-GEOS(s)紅のインキを用いて印刷し、1万枚印刷した後におけるブランケットの汚れを目視で評価した。
 結果を表3、表4に示す。表3、表4中の記号の意味は以下の通りである。
 ○:ブランケットがほとんど汚れていない
 ○△:ブランケットがわずかに汚れているが、印刷物は汚れていない
 △:ブランケットが汚れており印刷物がわずかに汚れている
 ×:ブランケットが汚れており印刷物が明らかに汚れている
(3) Stain resistance Using a lithographic printing plate obtained in the same manner as in the evaluation of printing durability, a DIC-GEOS (s) red ink was applied using a Mitsubishi diamond F2 printer (manufactured by Mitsubishi Heavy Industries). The blanket was visually evaluated after the printing was performed and 10,000 sheets were printed.
The results are shown in Tables 3 and 4. The meanings of symbols in Tables 3 and 4 are as follows.
○: The blanket is hardly dirty ○ △: The blanket is slightly dirty, but the printed matter is not dirty △: The blanket is dirty and the printed matter is slightly dirty ×: The blanket is dirty and the printed matter is clear It is dirty
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3、表4から明らかなように、本発明の平版印刷版用支持体の製造方法(実施例1~24)により得られた平版印刷版用支持体を用いた平版印刷版は、いずれも耐刷性および耐汚れ性に優れていた。また、塗布表面のすじ、チャタマークに関しての画質むらも優れていた。
 これに対して、比較例1~9は、得られた平版印刷版用支持体を用いた平版印刷版が耐刷性および耐汚れ性に劣っていた。
As is apparent from Tables 3 and 4, the lithographic printing plate using the lithographic printing plate support obtained by the method for producing a lithographic printing plate support of the present invention (Examples 1 to 24) is either Excellent printing durability and stain resistance. Further, the image surface unevenness with respect to the streaks and chatter marks on the coated surface was also excellent.
In contrast, in Comparative Examples 1 to 9, the obtained lithographic printing plates using the lithographic printing plate support were inferior in printing durability and stain resistance.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年3月31日出願の日本特許出願番号2008-94245に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2008-94245 filed on Mar. 31, 2008, the contents of which are incorporated herein by reference.

Claims (7)

  1.  アルミニウムまたはアルミニウム合金からなる金属ウェブを複数の電解槽の電解液中へ順次に浸漬させながら搬送し、前記電解槽内で前記金属ウェブに対向配置された複数の電極と前記金属ウェブとの間に電流を供給して、前記金属ウェブを電気化学的粗面化処理する平版印刷版用支持体の製造方法であって、
     前記電解槽内の電解液の流速を、各電解槽内で平均流速を500~4000mm/秒、前記電解槽内の前記金属ウェブの搬送方向と直交する幅方向に対する前記電解液の流速分布を前記平均流速の±50%以内にするとともに、
     前記複数の電極のうち隣接する電極間の隙間領域に対面する前記金属ウェブの搬送路区間を槽内電極間処理休止区間としたときに、1回の前記槽内電極間処理休止区間を通過する時間を0.05~1秒とする速度で前記金属ウェブを搬送することを特徴とする平版印刷版用支持体の製造方法。
    A metal web made of aluminum or an aluminum alloy is conveyed while being sequentially immersed in an electrolytic solution of a plurality of electrolytic cells, and between the plurality of electrodes disposed opposite to the metal web in the electrolytic cell and the metal web A method for producing a support for a lithographic printing plate in which an electric current is supplied and the metal web is subjected to an electrochemical surface roughening treatment,
    The flow rate of the electrolytic solution in the electrolytic cell is an average flow rate of 500 to 4000 mm / second in each electrolytic cell, and the flow rate distribution of the electrolytic solution in the width direction perpendicular to the conveying direction of the metal web in the electrolytic cell is Within ± 50% of the average flow rate,
    When the conveyance path section of the metal web facing the gap region between adjacent electrodes among the plurality of electrodes is defined as the inter-bath electrode processing pause section, the single inter-bath electrode treatment pause section is passed. A method for producing a support for a lithographic printing plate, comprising transporting the metal web at a speed of 0.05 to 1 second.
  2.  前記電解液が塩素イオン、硫酸イオン、アルミニウムイオンを含むことを特徴とする請求項1記載の平版印刷版用支持体の製造方法。 The method for producing a lithographic printing plate support according to claim 1, wherein the electrolytic solution contains chlorine ions, sulfate ions, and aluminum ions.
  3.  前記電解液を前記金属ウェブの搬送方向に対向する方向に流動させることを特徴とする請求項1または請求項2記載の平版印刷版用支持体の製造方法。 3. The method for producing a lithographic printing plate support according to claim 1, wherein the electrolytic solution is caused to flow in a direction opposite to a conveying direction of the metal web.
  4.  前記槽内電極間処理休止区間を、一つの前記電解槽内で少なくとも3区間設けることを特徴とする請求項1~請求項3のいずれか1項記載の平版印刷版用支持体の製造方法。 The method for producing a support for a lithographic printing plate according to any one of claims 1 to 3, wherein at least three sections of the inter-battery electrode processing pause are provided in one electrolytic cell.
  5.  前記金属ウェブが前記電解槽の電解液中から取り出され、前記金属ウェブの搬送路下流側に配置された他の電解槽の電解液に浸かるまでの前記金属ウェブの搬送路区間を槽外処理休止区間、前記電解槽内の前記複数の電極の並び方向両端から前記電解槽の電解液気液界面までの両搬送路区間の和を槽内電極端外側処理休止区間、前記槽外処理区間およびこれに連続する前記槽内電極端外側処理休止区間との和を槽間処理休止区間としたきに、1回の前記槽間処理休止区間を通過する時間を1~5秒とする速度で前記金属ウェブを搬送することを特徴とする請求項1~請求項4のいずれか1項記載の平版印刷版用支持体の製造方法。 The metal web transport path section until the metal web is taken out of the electrolytic solution of the electrolytic tank and immersed in the electrolytic solution of another electrolytic tank disposed on the downstream side of the metal web transport path is stopped outside the tank. The sum of both conveying path sections from both ends of the plurality of electrodes in the electrolytic cell in the direction of arrangement to the electrolyte gas / liquid interface of the electrolytic cell When the sum of the electrode electrode outer side processing pause interval that is continuous to the inter-vessel treatment pause interval is taken as the sum of the time period for passing through the inter-vessel treatment pause interval 1 to 5 seconds, 5. The method for producing a lithographic printing plate support according to claim 1, wherein the web is conveyed.
  6.  前記槽間処理休止区間を、少なくとも3区間設けることを特徴とする請求項5記載の平版印刷版用支持体の製造方法。 6. The method for producing a lithographic printing plate support according to claim 5, wherein the inter-tank processing suspension section is provided with at least three sections.
  7.  前記金属ウェブと前記電極との間で前記電極に対応して複数配置された電解液供給口から、それぞれ前記電解液を噴射供給することを特徴とする請求項1~請求項6のいずれか1項記載の平版印刷版用支持体の製造方法。 The electrolyte solution according to any one of claims 1 to 6, wherein the electrolyte solution is jetted and supplied from a plurality of electrolyte solution supply ports arranged between the metal web and the electrode in correspondence with the electrode. A method for producing a lithographic printing plate support according to Item.
PCT/JP2009/054916 2008-03-31 2009-03-13 Method of manufacturing support for planographic printing plate WO2009122882A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801118370A CN101983261B (en) 2008-03-31 2009-03-13 Method of manufacturing support for planographic printing plate
JP2010505535A JPWO2009122882A1 (en) 2008-03-31 2009-03-13 Method for producing support for lithographic printing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094245 2008-03-31
JP2008-094245 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122882A1 true WO2009122882A1 (en) 2009-10-08

Family

ID=41135268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054916 WO2009122882A1 (en) 2008-03-31 2009-03-13 Method of manufacturing support for planographic printing plate

Country Status (3)

Country Link
JP (1) JPWO2009122882A1 (en)
CN (1) CN101983261B (en)
WO (1) WO2009122882A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107381A (en) * 2011-10-28 2013-06-06 Fujifilm Corp Method and apparatus for manufacturing lithography plate support
US9573404B2 (en) 2011-10-28 2017-02-21 Fujifilm Corporation Manufacturing method and manufacturing apparatus of support for planographic printing plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160852A (en) * 2013-04-04 2013-06-19 安徽首文碳纤维有限公司 Method for detecting concentration of electrolyte on carbon fiber production line
CN107523856B (en) 2016-06-17 2020-11-06 通用电气公司 System and method for processing workpiece and product
US11454619B2 (en) * 2018-04-09 2022-09-27 Ecolab Usa Inc. Methods for colorimetric endpoint detection and multiple analyte titration systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173800A (en) * 1989-12-04 1991-07-29 Fuji Photo Film Co Ltd Production of substrate for printing plate
JPH09169174A (en) * 1995-12-19 1997-06-30 Fuji Photo Film Co Ltd Manufacture of lithographic printing carrier
JP2002283762A (en) * 2001-03-27 2002-10-03 Fuji Photo Film Co Ltd Method for manufacturing supporting body for planographic printing plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4001466A1 (en) * 1990-01-19 1991-07-25 Hoechst Ag Electrochemical roughening of aluminium for printing plate mfr. - using combination of mechanical and electrochemical roughening before and/or after main electrochemical roughening stage
CN1182979C (en) * 2001-03-27 2005-01-05 富士胶片株式会社 Method for producing support body of offset press plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173800A (en) * 1989-12-04 1991-07-29 Fuji Photo Film Co Ltd Production of substrate for printing plate
JPH09169174A (en) * 1995-12-19 1997-06-30 Fuji Photo Film Co Ltd Manufacture of lithographic printing carrier
JP2002283762A (en) * 2001-03-27 2002-10-03 Fuji Photo Film Co Ltd Method for manufacturing supporting body for planographic printing plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107381A (en) * 2011-10-28 2013-06-06 Fujifilm Corp Method and apparatus for manufacturing lithography plate support
US9573404B2 (en) 2011-10-28 2017-02-21 Fujifilm Corporation Manufacturing method and manufacturing apparatus of support for planographic printing plate

Also Published As

Publication number Publication date
CN101983261B (en) 2012-10-10
JPWO2009122882A1 (en) 2011-07-28
CN101983261A (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4410714B2 (en) Method for producing support for lithographic printing plate
JP4516761B2 (en) Aluminum plate embossing roll
JP2008111142A (en) Aluminum alloy sheet for planographic printing plate and support for planographic printing plate
WO2009122882A1 (en) Method of manufacturing support for planographic printing plate
JP4250490B2 (en) Aluminum alloy base plate for planographic printing plate and support for planographic printing plate
JP4445762B2 (en) Method for producing support for lithographic printing plate
JP2008201038A (en) Method for roughening support for lithographic printing plate and method for manufacturing support for lithographic printing plate
JP4643380B2 (en) Method for producing support for lithographic printing plate
JP4520791B2 (en) Lithographic printing plate support and lithographic printing plate precursor
JP4510570B2 (en) Method for producing support for lithographic printing plate
JP2006240116A (en) Support for lithographic printing plate and its manufacturing method
JP2006082387A (en) Manufacturing method of support for lithographic printing form
JP4648057B2 (en) Method for producing support for lithographic printing plate
JP4268542B2 (en) Method for producing support for lithographic printing plate
JP2006076105A (en) Method for manufacturing support for lithographic printing plate
JP2005001356A (en) Manufacturing method of support for lithographic printing plate
JP2006289854A (en) Method for manufacturing lithographic printing plate support, and support
JP4616128B2 (en) Support for lithographic printing plate
JP2006021425A (en) Manufacturing method of support for lithographic printing plate
JP2005047084A (en) Manufacturing method for substrate for planographic printing plate
JP2005047070A (en) Manufacturing method for substrate for planographic printing plate
JP2005035098A (en) Method for manufacturing support for lithographic printing plate
JP2005146299A (en) Roll for embossing aluminum plate
JP2006051725A (en) Manufacturing method of substrate for lithographic printing plate
JP2006264104A (en) Method for manufacturing lithographic printing plate support

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111837.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505535

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728023

Country of ref document: EP

Kind code of ref document: A1