WO2009122765A1 - Side-viewing optical member and image processing system - Google Patents

Side-viewing optical member and image processing system Download PDF

Info

Publication number
WO2009122765A1
WO2009122765A1 PCT/JP2009/051284 JP2009051284W WO2009122765A1 WO 2009122765 A1 WO2009122765 A1 WO 2009122765A1 JP 2009051284 W JP2009051284 W JP 2009051284W WO 2009122765 A1 WO2009122765 A1 WO 2009122765A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
optical member
electronic component
prisms
side edge
Prior art date
Application number
PCT/JP2009/051284
Other languages
French (fr)
Japanese (ja)
Inventor
潤 北村
Original Assignee
マイクロ・スクェア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008092495A external-priority patent/JP2011122820A/en
Application filed by マイクロ・スクェア株式会社 filed Critical マイクロ・スクェア株式会社
Publication of WO2009122765A1 publication Critical patent/WO2009122765A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements

Definitions

  • the present invention relates to a side-viewing optical member for confirming a mounting portion formed between a substrate and an electronic component such as a so-called BGA (Ball Grid Array) package mounted on the substrate.
  • the present invention relates to an image processing system provided.
  • a scope is used to check the BGA package mounting part.
  • This scope includes a side-viewing prism having a reflecting surface facing a portion to be inspected of the BGA package, and an imaging unit including a CCD camera.
  • the imaging unit is disposed on the BGA package substrate via the side-viewing prism in a state where the side-viewing prism is disposed so as to face the inspection target portion of the BGA package mounted on the substrate.
  • the mounting part is imaged.
  • the imaging unit and the side viewing prism are integrally configured, and the user grasps the scope and moves it with respect to the side edge of the BGA package, thereby confirming the mounting part. It is carried out.
  • the side-viewing prism is narrower than the side edge of the BGA package, the side-viewing prism is used to inspect all the mounting parts formed over the entire width of the side edge. It is necessary to inspect each time by sequentially shifting along the side edge of the BGA package, and it is necessary to make settings such as alignment each time the inspection site is changed.
  • the side viewing prism is moved along the side edge in a state of being close to the side edge of the BGA package, if the imaging unit and the side viewing prism are displaced from the path to be moved, depending on the case. There is a risk of damaging or destroying the BGA package.
  • the side viewing prism As small as possible in consideration of movement, but if the size is reduced, the viewing angle becomes small. For this reason, it becomes difficult to image the mounting portion of the BGA package, that is, the entire ball.
  • the present invention provides a side-viewing optical member that can easily check a plurality of mounting portions formed over the entire width of a side edge of an electronic component and a part thereof.
  • An object of the present invention is to provide an image processing system including the optical member.
  • the side-viewing optical member of the first configuration of the present invention has a reflective surface that faces the side edge over the entire width of one side edge of the electronic component mounted on the substrate. It is characterized by that.
  • the optical member for side viewing according to the second configuration of the present invention includes a pair of prisms and a holder that holds the prisms at a predetermined interval, and the prisms are inclined.
  • a bottom surface and a horizontal top surface are formed, and the bottom surface is formed as a reflecting surface that is lowered toward the opposing prism side, and the reflecting surface faces the side edge over the entire width of one side edge of the electronic component.
  • the light that is formed and is incident from the upper surface of one of the pair of prisms is reflected to the other prism at the bottom surface of the prism.
  • the holder includes a fixing portion attached to each of the pair of prisms, and an adjustment portion that adjusts a distance between the fixing portions.
  • the adjustment unit includes a bar fixed to one fixing unit and slidably connected to the other fixing unit, and the other fixing unit is guided by the bar and moved, thereby separating the pair of prisms from each other. Changes.
  • the adjustment unit includes a pair of arms whose base end portions are rotatably attached to the respective fixed portions and whose tip portions are slidably connected to the other fixed portions, and the arms rotate at an intermediate portion in the longitudinal direction. It is connected via a shaft, and a pair of arms may be configured to expand and contract in a pantograph manner so that the interval between the pair of prisms is changed.
  • an image processing system includes a side-viewing optical member, an imaging unit provided on the other prism, and a processing unit that processes an image captured by the imaging unit.
  • the electronic component mounted on the substrate is disposed between the bottom surfaces of the pair of prisms, the light from the light source provided on the upper side of the one prism is reflected by the bottom surface of the one prism, and the electronic component is mounted.
  • the imaging unit takes an image of the mounting part of the electronic component while being back-lit by the light source, and the processing unit processes the image of the mounting part. It is said.
  • the image of the mounting part imaged by the imaging unit is obtained as a black and white image by back illumination with a light source, for example, and the gap between the balls is white and the ball and the foreign object are imaged black.
  • the side-viewing optical member is disposed so as to face the entire width of the side edge of the electronic component to be observed.
  • the imaging unit is moved along the side edge of the electronic component above the side-viewing optical member, so that the imaging unit is provided along the side edge of the electronic component mounted on the substrate. It is possible to accurately scan all the balls that have been played.
  • the conventional scope in order to thoroughly inspect a plurality of balls of the entire width at one side edge of an electronic component, it is necessary to change the position of the scope many times.
  • the side-viewing optical member surrounds all the side edges of the electronic component and the imaging unit moves along the upper surface of the side-viewing optical member, all of the electronic components provided along all the side edges of the electronic component Since an enlarged image of the ball can be obtained, the conventional troublesome work can be eliminated.
  • the side viewing optical member facing the side edge of the electronic component is fixedly arranged.
  • the side-viewing optical member does not accidentally touch the side edge of the electronic component and damage or destroy the electronic component.
  • the imaging unit that moves during scanning does not include the side-viewing optical member, the weight of the entire imaging unit is reduced, and the driving means for moving the imaging unit can be reduced in size and the cost can be reduced. .
  • the side-viewing optical member When the side-viewing optical member is disposed so as to face two side edges of the electronic component, or when it is placed so as to face all side edges of the electronic component, the side-viewing optical The number of positioning of the member with respect to the side edge of the electronic component is reduced. Accordingly, it is possible to confirm the mounting portion of the electronic component to be observed in a shorter time.
  • An angle adjusting reflecting member that is supported so as to be swingable around a swinging axis parallel to the side edge of the corresponding electronic component, and an angle at which the reflecting member swings around the swinging axis. And an adjustment mechanism, the angle adjustment reflection member is swung by the angle adjustment mechanism, and is incident on the angle adjustment reflection member from the side edge of the electronic component through the side viewing optical member.
  • the optical axis can be shaken. Therefore, even if the viewing angle with respect to the mounting portion of the side edge of the electronic component of the imaging unit is narrow, that is, the side-viewing optical member is small, the optical axis is swung by swinging the angle-adjusting reflecting member. It is possible to observe the entire mounting part.
  • the side-viewing optical member is composed of a prism having a total reflection surface facing the side edge of the electronic component, and the exit surface facing the imaging unit of the prism corresponds to the swing of the angle-adjusting reflection member. When the angle adjustment reflecting member is enlarged, the optical axis incident on the angle adjustment reflecting member from the side edge of the electronic component through the side viewing optical member is swung by the swing of the angle adjusting reflecting member.
  • a wedge prism disposed between the side-viewing optical member and the corresponding side edge of the electronic component is provided, and the wedge prism is formed so as to gradually increase in thickness from the optical axis toward one side.
  • the optical path on the electronic component side is shifted from the wedge prism to one side.
  • the optical path on the electronic component side from the reflecting surface is opposite to the one side. It is possible to reliably observe the main part of the mounting part on the electronic component side.
  • the reflective surface of the side-viewing optical member is formed in a convex shape toward the corresponding side edge of the electronic component and the imaging unit, the viewing angle with respect to the mounting portion of the side edge of the electronic component of the imaging unit is narrow. In other words, even if the side-viewing optical member is small, the entire mounting portion can be reliably observed by enlarging the optical path on the electronic component side from the reflecting surface.
  • the mounting portion as the observation portion is imaged by the imaging portion in a back-illuminated state and obtained as a so-called binary black and white image, image processing is easy. As this image processing, it is possible to detect the pitch interval and height of the balls and the foreign matter between the balls.
  • FIG. 2 is a perspective view of a prism device in the electronic component mounting portion confirmation scope of FIG. 1.
  • A is a schematic front view which shows the optical system of the mounting part confirmation scope of the electronic component of FIG. 1
  • (B) is a schematic side view.
  • FIG. 2 is a front view showing in detail a swing mechanism of the electronic component mounting portion confirmation scope of FIG. 1.
  • FIG. 16 It is the schematic which shows the image of the mounting part observed with the usage method shown in FIG. It is a perspective view which shows the lens apparatus for mounting part confirmation of the electronic component which concerns on 6th Embodiment of this invention. It is a perspective view which shows the lens apparatus for mounting part confirmation of the electronic component which concerns on the modification of 6th Embodiment of this invention. It is a figure which shows the image processing system which concerns on 7th Embodiment of this invention. It is a figure which shows the example of an image of the observation part which the imaging part in the image processing system of FIG. 16 imaged. It is a figure which shows the example of an image of the observation part which the imaging part in the image processing system of FIG. 16 imaged. It is a figure for demonstrating operation
  • FIG. 1 shows a configuration of a scope 10 for checking a mounting portion of an electronic component according to the first embodiment of the present invention.
  • the scope 10 includes a stage 12 that supports a substrate 11a on which a BGA package 11 as an electronic component is mounted, and a prism unit (side view) for mounting portion confirmation that is disposed to face a side edge of the BGA package 11 on the substrate 11a.
  • Optical member) 100 and an imaging unit 14 supported so as to be relatively movable with respect to the upper surface of the prism device 100.
  • an imaging signal captured by the imaging unit 14 is displayed on the display unit. 15 to display the image.
  • the stage 12 has a known configuration, and moves the substrate 11a, the BGA package 11 mounted on the substrate 11a, and the prism device 100 mounted on the substrate 11a in two horizontal directions orthogonal to each other, that is, the X direction and the Y direction. It is configured to let you.
  • the illustrated stage 12 includes an X stage 12A movable in the X direction, a Y stage 12B mounted on the X stage 12A and movable in the Y direction, and a first drive mechanism 12C for moving the X stage. And a second drive mechanism 12D for moving the Y stage.
  • the stage is not limited to that of the present embodiment.
  • the prism device 100 is formed so as to face all the side edges of the BGA package 11. That is, the prism device 100 is configured in a frame shape by combining the four prisms 101 so as to surround the BGA package 11 whose outer shape in plan view is a quadrangle.
  • One prism 101 is formed to face one side edge of the BGA package 11.
  • each prism 101 is formed in a trapezoidal shape with a cross section being vertically long, and a mounting portion between the side edge of the BGA package 11 and the substrate 11a, that is, a ball 11b.
  • the reflecting surface 101A and the horizontal upper surface 101B are disposed so as to be inclined at an angle of 40 to 50 degrees, for example, 45 degrees.
  • each prism 101 is formed wide so as to face the entire width of one side edge of the BGA package 11.
  • These prisms 101 are made of a transparent material such as quartz, transparent resin, or glass.
  • the imaging unit 14 includes an imaging element 14a and an optical system 14b.
  • the image sensor 14a is composed of, for example, a CCD, and accumulates light incident on the imaging surface and converts it into an electrical signal, thereby capturing an image formed on the imaging surface and outputting it as an image signal.
  • the optical system 14b includes a lens 14c made of, for example, a zoom lens, and a pair of relay prisms 14d and 14e for bending the optical path.
  • the optical system 14b guides light incident from the BGA package 11 through the prism device 100 to the image sensor 14a.
  • the relay prisms 14d and 14e of the optical system 14b are selected so that the width W2 along the width direction of the prism 101 covers the optical path of the lens 14c, as shown in FIG. 3B. Therefore, these relay prisms 14 d and 14 e are formed narrower than the width W 1 of the prism 101.
  • the optical system 14b is opposed to the upper surface 101B of the prism 101, and has a pair of light sources 14f on both sides of the relay prism 14d in a direction parallel to the side edge of the BGA package 11 (in the direction of arrow A in FIG. 3B). It has.
  • These light sources 14f are composed of, for example, one or more LEDs, and illuminate the vicinity of the ball 11b on the side edge of the BGA package 11 to be observed via the prism 101.
  • Each of the light sources 14f is disposed so as to be inclined inward so that the optical axis thereof intersects with the optical axis of the imaging unit 14 at the side edge of the BGA package 11. Thereby, the side edge area
  • the imaging unit 14 moves the upper surfaces 101B of the four prisms 101 arranged to face the four side edges of the BGA package 11 in the A direction (FIG. 3B) as the stage 12 moves in the XY direction. ))).
  • the imaging element 14a of the imaging unit 14 is mounted on the side edge of the BGA package 11 via the optical system 14b and the prism 101, that is, Each mounting portion can be imaged over the entire width of one side edge of the BGA package 11 by scanning in the longitudinal direction (A direction).
  • the relay prism 14d of the image pickup unit 14 is supported so as to be swingable around a swing shaft 14g (see FIG. 5) extending in the A direction, that is, in the B direction (see FIG. 3 (A)). It functions as a reflective member.
  • the relay prism 14d is swung by a swing mechanism 16 as an angle adjusting mechanism described below.
  • the swing mechanism 16 includes a lever 17 attached to the swing shaft 14 g, a tension spring 18, and a push screw 19.
  • the lever 17 is configured in an L shape from a first arm 17a extending upward from the swing shaft 14g and a second arm 17b extending from the swing shaft 14g to one side in the horizontal direction (rightward in FIG. 5). Has been.
  • the tension spring 18 has one end 18a fixed to the inner wall of the housing 25 and the other end 18b locked to the tip of the second arm 17b so as to pull the tip of the second arm 17b upward.
  • the push screw 19 is screwed into the housing 25 of the imaging unit 14, and by screwing, the tip of the push screw 19 protrudes from the inner wall of the housing 25 to resist the tension of the tension spring 18.
  • One arm 17a is rotated around the swing shaft 14g in the direction of arrow C in FIG.
  • the push screw 19 is loosened, the upper end of the first arm 17 a follows the tip of the push screw 19 by the tension of the tension spring 18.
  • the scope 10 according to the first embodiment of the present invention is configured as described above, and when checking the mounting state of the BGA package 11 mounted on the substrate 11a, the following operation is performed.
  • the substrate 11 a is set on the stage 12.
  • the imaging unit 14 is arranged to face each side edge of the BGA package 11 supported on the stage 12, that is, the upper surface of each prism 101. Scan along 101B.
  • the light source 14f emits light, so that the light from the light source 14f enters the prism 101 from the upper surface 101B, is reflected by the reflecting surface 101A, and is irradiated on the mounting portion on the side edge of the BGA package 11.
  • region which should be imaged with the imaging part 14 among the balls 11b of the mounting part of the side edge of the BGA package 11 is illuminated.
  • the light reflected by the ball 11b on the mounting portion on the side edge of the BGA package 11 by this illumination light is incident on the prism 101 again, reflected by the reflecting surface 101A, traveled upward, and emitted from the upper surface 101B.
  • An image is formed on the imaging surface of the imaging device 14a via the relay prisms 14d and 14e and the lens 14c.
  • the image sensor 14 a captures an image formed on the imaging surface, generates an image signal, and sends the image signal to the display unit 15.
  • the ball 11b of the mounting portion on the side edge of the BGA package 11 is enlarged and displayed on the screen of the display unit 15. Therefore, the user can easily confirm the mounting state.
  • the imaging unit 14 moves in the longitudinal direction along the prism device 100, that is, the upper surface 101 ⁇ / b> B of each prism 101, so that the mounting portions on all side edges of the BGA package 11 can be confirmed.
  • the prism device 100 surrounds all the side edges of the BGA package 11 and the imaging unit 14 moves along the upper surface 101B of the prism device 100, the prism device 100 is provided along all the side edges of the BGA package 11. Since the enlarged images of all the balls can be obtained, the conventional troublesome work can be eliminated. Further, since the prism device 100 is fixedly arranged with respect to the BGA package 11 during scanning, the prism device 100 does not accidentally hit the BGA package 11 to be damaged or broken.
  • the relay prism 14d swings around the swing shaft 14g.
  • the optical axis of the imaging unit 14 is swung from the relay prism 14d on the BGA package 11 side, and the ball 11b on the mounting portion at the side edge of the BGA package 11 is. Is aligned vertically near the upper end or the lower end of the ball 11b. Therefore, an image near the upper end or near the lower end of the ball 11b can be formed on the image pickup surface of the image pickup device 14a in a good state and reliably observed.
  • the prism device 100 has the side surface 101C opposite to the BGA package 11 formed vertically, but is indicated by a chain line in FIG. Thus, it may be formed to be inclined so as to become thicker upward. In this case, when the optical axis is swung by the swing of the relay prism 14d, more light flux around the optical axis emitted from the prism device 100 is guided to the relay prism 14d, so that a brighter and easier-to-view image can be obtained. Become.
  • FIG. 6 shows a main part of a scope 20 for checking a mounting portion of an electronic component according to the second embodiment of the present invention.
  • the scope 20 has the same configuration as that of the scope 10 according to the first embodiment shown in FIG. 1, and instead of the prism device 100 and the relay prisms 14 d and 14 e, the side view mirror 21, the angle adjustment mirror 22, and the fixed mirror 23.
  • the configuration differs only in that In this case, the side viewing mirror 21 is selected such that the inclination angle ⁇ with respect to the side edge of the BGA package 11 is greater than 45 degrees (45 degrees + ⁇ ).
  • the light from the lower side of the ball 11b which is the mounting portion of the substrate 11a of the BGA package 11 is more favorably transmitted through the side view mirror 21, the angle adjustment mirror 22, and the fixed mirror 23.
  • the imaging unit 14 Guided to the imaging unit 14. Therefore, the lower side of the ball 11b is imaged well, and the mounting state can be confirmed more reliably.
  • FIG. 7 shows a main part of a scope 30 for checking a mounting portion of an electronic component according to the third embodiment of the present invention.
  • the scope 30 is provided with a wedge prism 31 on the BGA package 11 side at the lower end of the prism device 100 while omitting the swing mechanism 16. Only the configuration is different.
  • the wedge prism 31 is provided on the lower side from the height of almost half of the ball 11b on the side edge of the BGA package 11, and is formed so as to gradually increase in thickness downward.
  • the inclination angle of the total reflection surface 101A of the prism device 100 is set so that the optical axis reflected by the total reflection surface 101A is on the upper side of the ball 11b, which is the mounting portion of the side edge of the BGA package 11.
  • the upper side of the ball 11b is well guided to the imaging unit 14, and the light transmitted through the lower wedge prism 31 is refracted by the angle ⁇ , so that the ball 11b
  • the lower side is satisfactorily guided to the imaging unit 14 via the wedge prism 31. Therefore, the upper side and the lower side of the ball 11b are well imaged by the imaging unit 14.
  • FIG. 8 shows a main part of a scope 40 for checking a mounting portion of an electronic component according to the fourth embodiment of the present invention.
  • the scope 40 has the swing mechanism 16 omitted, and the total reflection surface 101A of the prism device 100 faces the BGA package 11 side and the upper surface 101B.
  • the configuration differs only in that the reflective surface 43A is formed in a convex shape (as viewed from the inside).
  • the total reflection surface 43A has the same shape in the A direction (direction perpendicular to the paper surface in FIG. 8), and forms a convex cylindrical surface as a whole.
  • the reflected light from the total reflection surface 43A of the prism device 100 is diffused based on the convex shape, so that the ball 11b, which is the mounting portion on the side edge of the BGA package 11, is viewed from above.
  • Light from a wide angle range up to the lower side is reflected by the total reflection surface 43 ⁇ / b> A and is well guided to the imaging unit 14. Therefore, the upper side and the lower side of the ball 11b are well imaged by the imaging unit 14.
  • FIG. 9 is a perspective view showing a mounting portion checking prism device 100A according to a fifth embodiment of the present invention.
  • This prism device 100A is a device for observing a mounting state of a BGA package as an electronic component mounted on a substrate, specifically, ball-shaped solder formed between the substrate and the BGA package.
  • the prism device 100A includes a pair of prisms 110A and 110B and a holder 120 that holds the prisms at a predetermined interval.
  • FIG. 10 is a diagram showing prisms 110A and 110B according to the fifth embodiment, in which (A) is a plan view, (B) is a side view, and (C) is a front view.
  • the prisms 110 ⁇ / b> A and 110 ⁇ / b> B have a rectangular bottom surface 111, a side surface 112 standing up from each side of the bottom surface 111, and a horizontal top surface 113 defined by the upper edge of each side surface 112. And it is composed as a hexahedron.
  • These prisms 110A and 110B are made of a transparent material such as quartz, transparent resin, or glass.
  • the bottom surfaces 111 of the prisms 110A and 110B are formed to be inclined.
  • the bottom surface 11 is formed when one side of the BGA package 11 formed in a rectangular shape, specifically, when the outline of the BGA package 11 is defined by the long side L1 and the short side L2. Is formed in a long rectangular shape along the long side L1.
  • the prisms 110A and 110B of this embodiment do not have a length over the entire width of one side edge of the electronic component, and are set to about 10 mm to 20 mm, for example. In addition, you may provide the length over the full width of the one side edge of an electronic component.
  • the prisms 110A and 110B have a flat plate shape as a whole, and the lower portion forming the tip is formed at an acute angle. Yes.
  • the pair of prisms 110A and 110B configured in this way is supported by the holder 120 so that the lower portion of the acute angle faces downward, the horizontal upper surface faces upward, and the distance between the prisms is constant.
  • the holder 120 includes a pair of fixing parts 121A and 121B attached to the prisms 110A and 110B, and connecting parts 122A and 122B that connect the fixing parts 121A and 121B.
  • the fixing portions 121 ⁇ / b> A and 121 ⁇ / b> B are formed in a rectangular parallelepiped shape along the long side 111 ⁇ / b> A of the prism bottom surface, and have prism insertion holes 123 that penetrate vertically.
  • the prism insertion hole 123 is formed so that the upper portions of the prisms 110A and 110B are inserted.
  • the prisms 110A and 110B are aligned so that the upper surfaces 113 of the prisms 110A and 110B are flush with the upper surfaces 124 of the fixing portions 121A and 121B in a state where they are attached to the prism insertion holes 123 of the fixing portions 121A and 121B. It is desirable to leave.
  • the fixing portions 121A and 121B to which the prisms 110A and 110B are attached are connected to each other by a first connecting portion 122A in which one end portion of one fixing portion 121A and one end portion of the other fixing portion 121B are configured as a bar.
  • the other end portion of one fixing portion 121A and the other end portion of the other fixing portion 121B are connected by a second connecting portion 122B configured similarly as a bar.
  • the holder 120 is configured to have a rectangular shape as a whole.
  • the prisms 110A and 110B are attached to the fixing portions 121A and 121B so that the widest side surfaces are opposed to each other and the bottom surface 111 is lowered toward the opposed prism side.
  • the set of the left prism 110A and the fixing portion 121A that supports it in FIG. 9 is referred to as a first prism unit U1
  • the set of the right prism 110B and the fixing portion 121B that supports it is a second prism. This is referred to as unit U2.
  • the prism device 100A includes the first illumination unit 130 above the upper surface of the prism of the second prism unit U2.
  • the first illumination unit 130 is disposed so as to face the upper surface 113 of the prism 110 ⁇ / b> B, and light from the first illumination unit 130 propagates through the prism 110 ⁇ / b> B toward the bottom surface 111 through the upper surface 113.
  • a pair of second illumination units 131 is provided beside the upper surface of the prism of the first prism unit U1 so as not to cover the upper surface 113 of the prism 110A.
  • the second illumination unit 131 faces the upper surface 113 of the prism 110A, and light from the second illumination unit 131 propagates through the prism 110A toward the bottom surface 111 via the upper surface 113.
  • LED and a light bulb can be used as these 1st illumination part 130 and the 2nd illumination part 131.
  • the prism device 100A according to the fifth embodiment is configured as described above, and when used, as shown in FIG. 12, the BGA package 11 is positioned between the tip portions of the pair of prisms 110A and 110B.
  • the light emitted from the first illumination unit 130 of the second prism unit U2 propagates through the prism 110B of the second prism unit U2, is reflected by the inclined bottom surface 111 of the prism 110B, and becomes BGA. Irradiation is performed toward a ball 11b formed between the package 11 and the substrate 11a.
  • the light passes between the balls 11b or is reflected and travels, enters the acute tip portion of the first prism unit U1 on the opposite side, and enters the inclined bottom surface 111 of the prism 110A of the first prism unit U1.
  • the light is reflected and propagates toward the upper surface 113 through the prism 110A.
  • the light emitted from the upper surface 113 to the outside of the prism enters the imaging unit 14, an observation unit 140 such as a loupe or a microscope.
  • the light from the second prism unit U2 functions as a backlight.
  • the user can mount the side edge of the BGA package 11 as shown in FIG. 13, for example, by the imaging unit 14 or the observation unit 140 such as a magnifying glass or a microscope disposed above the first prism unit U1. Part of the ball 11b can be confirmed.
  • the mounting portion on the side edge of the BGA package 11 can be confirmed.
  • the imaging unit such as a CCD is moved along the side edge of the BGA package 11 above the prism, so that the imaging unit is provided along the side edge of the BGA package 11 with respect to the substrate. All balls can be scanned accurately.
  • the prism device 100A is disposed to face the entire width of one side edge of the BGA package 11, and the observation unit 140 such as a loupe or a microscope moves along the upper surface 113 of the prism device 100A, the BGA package 11 is provided. Since it is possible to obtain enlarged images of all the balls 11b provided along the side edges, the conventional troublesome work can be eliminated.
  • the prisms 110A and 110B are fixedly arranged with respect to the BGA package 11, there is no possibility that the prisms 110A and 110B hit the BGA package 11 accidentally during scanning and are damaged or destroyed.
  • FIG. 14 is a perspective view showing a prism device 100B according to the sixth embodiment of the present invention. Unlike the prism device 100A according to the fifth embodiment, this prism device 100B is second with respect to the first prism unit U1. The position of the prism unit U2 can be changed, that is, the interval D between the prisms 110A and 110B can be adjusted.
  • the prism device 100B includes the adjustment unit 150.
  • the adjustment unit 150 includes connection portions 122A and 122B as the pair of bars and a lock screw 151.
  • One end of each of the rod-shaped connecting portions 122A and 122B is fixed to both ends of the fixing portion 121A of the first prism unit U1, and a portion other than the one end is formed on the fixing portion 121B of the second prism unit U2. Is inserted into the through-hole 125.
  • the fixing portion 121B of the second prism unit U2 is slidable with respect to the connecting portions 122A and 122B, and the movement of the fixing portion 121B along the longitudinal direction of the connecting portions 122A and 122B is restricted.
  • a lock screw 151 is provided at the end of the fixed portion 121B of the second prism unit U2. By tightening the lock screw 151, the tip of the lock screw 151 hits the connecting portion 122A, and the fixing portion 121B is locked at a fixed position.
  • the interval between the prisms 110A and 110B can be adjusted, so that the mounting state of the BGA package 11 having different dimensions can be confirmed with one prism device 100B. .
  • FIG. 15 is a perspective view showing a prism device 100C according to a modification of the sixth embodiment of the present invention.
  • This prism device 100C is different in the configuration of the adjustment unit 150 from the prism device 100B according to the sixth embodiment.
  • the adjustment unit 150A of the present embodiment is configured in a pantograph manner.
  • the adjustment unit 150A is a pair of arms in which the base end portion is rotatably attached to each of the fixing portions 121A and 121B and the distal end portion is slidably connected to the other fixing portions.
  • 153A and 153B are provided.
  • rail members 155A and 155B are attached to the inner surfaces of the fixed portions 121A and 121B.
  • a base end portion of one arm 153A is rotatably attached to an end portion of the rail member 155A, and a distal end portion of the other arm 153B is slidably attached to the rail member 155A.
  • the base end portion of one arm 153B is rotatably attached to the end portion of another rail member 155B, and the tip end portion of the other arm 153A slides on the rail member 155B. It is attached movably.
  • a lock pin 154 is attached to the tip of one arm 153A, and the movement of the arm tip is regulated by tightening the lock pin 154.
  • These arms 153A and 153B are connected to each other via a rotation shaft 156 at an intermediate portion in the longitudinal direction.
  • the distance D between the prisms 110A and 110B can be adjusted by expanding and contracting the pair of arms 153A and 153B in a pantograph type.
  • the mounting state of the BGA package 11 having different dimensions can be confirmed by the prism device 100C.
  • FIG. 16 is a diagram showing an image processing system 200 according to the seventh embodiment of the present invention.
  • This image processing system 200 includes the prism device 100A (or 100B to 100C) as the side-viewing optical member, and one of them.
  • An imaging unit 210 provided on the upper side of the prism 110 ⁇ / b> A, and a processing unit 220 configured as a computer that processes an image captured by the imaging unit 210.
  • the electronic component 11 mounted on the substrate 11a is disposed between the bottom surfaces of the pair of prisms 110A and 110B.
  • the imaging unit 210 captures an image of the mounting portion of the electronic component 11 in a state of being back illuminated by the light source 230, as shown in FIG. That is, the image of the mounting part imaged by the imaging unit 210 is obtained as a black and white image by the back illumination by the light source 230, and the gap between the balls 11b is white, and the balls 11b and foreign matter are imaged black.
  • the processing unit 220 Based on the image thus created, the processing unit 220 performs image processing to measure and detect the ball height H, the ball interval W, and the BGA internal foreign matter X as shown in FIG. Specifically, as shown in FIG. 19A, the processing unit 220 includes a template that shows a black and white silhouette image between good balls, and the acquired image as shown in FIG. It is determined how many parts match the silhouette image. As a result, when the detected number is equal to or less than the set value, it is determined that there is a defect such as a foreign object defect. For the ball height H and the ball interval W, an area that matches the silhouette image is extracted. If the height is based on the center of the area, the average height in the range of ⁇ ⁇ in the horizontal direction is obtained.
  • the processing unit 220 determines that the ball 11b is defective or the like when the height or interval of the balls 11b is equal to or less than a set value.
  • the prism device 100A or 100B to 100C
  • the mounting portion of the BGA package to be observed that is, the solder Since the ball 11b is back illuminated by the light source 230 and can be imaged
  • a substantially binarized image can be obtained.
  • an image with a clear ball shape can be acquired. Therefore, it is possible to easily determine whether the mounting state is good or bad. Specifically, it is possible to accurately measure the ball interval and the ball height.
  • the prism device 100 is disposed so as to face all the side edges of the BGA package 11.
  • the present invention is not limited to this.
  • two side edges or only one edge of the BGA package 11 is provided.
  • the prism device 100 may be composed of two or one prisms 101 so as to have two or one reflecting surfaces 11B so as to face the side edges.
  • the side-viewing mirror 21 as the side-viewing optical member has an inclination angle larger than 45 degrees with respect to the side edge of the BGA package 11.
  • the reflective surface 101A of the prism device 100 may similarly have an inclination angle greater than 45 degrees with respect to the side edge of the BGA package 11.
  • the scope is configured to swing the relay prism 14e, which is a reflection member in the housing 25, but the housing 25 itself on the imaging unit 14a side, more specifically, the housing 25,
  • the scope main body 26 itself formed by combining the lens 14c and the imaging unit 14a may be configured to swing.
  • a shaft for swingably supporting the scope main body 26 is provided on the bracket 12F protruding upward from the upper end of the support column 12E provided attached to the stage 12 shown in FIG.
  • the prism device is moved in the XY direction on the stage 12 so that the imaging unit 14a moves relatively on the prism device.
  • the imaging unit 14a and the scope main body 26 may be supported by a robot arm and moved on the prism device.
  • the ball 11b as the mounting portion of the side edge of the BGA package 11 is observed as an electronic component.
  • the present invention is not limited to this, and mounting of the side edge of another electronic component is performed. Obviously, the part may be observed.
  • the prism device of the present invention may be configured by omitting the first illumination unit 130 and / or the second illumination unit 131.
  • the pair of prisms 110A and 110B are formed in a flat plate shape, the surface facing the other prism and the back surface thereof are formed in parallel, and the surface facing the prism and the bottom surface 111 have sharp edges.
  • the pair of prisms of the present invention may be configured as follows, for example.
  • FIG. 20A is a front view showing a prism 110C according to another embodiment of the present invention
  • FIG. 20B is a side view.
  • the prism 110C includes a bottom surface 111 that is inclined in the same manner as the prisms 110A and 110B described above, but is further inclined downward from the surface P1 facing the other prism toward the back surface P2.
  • the lower surface of the inclined surface 115 and the lower surface of the bottom surface 111 are joined together to form an edge E.
  • the upper surface 113 is formed wider than the bottom surface 111 in the horizontal direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A side-viewing optical member (21, 100, 101) which enables easy verification of plural mounted portions formed across the full width of the side edge of an electronic component comprises a reflective surface (101A) facing one side edge of an electronic component (11) mounted on a substrate (11a) across the full width of the side edge. The side-viewing optical member is provided with a reflective member (14d) for adjusting the angle, which is swingably supported around a swing shaft (14g), and an angle adjusting mechanism (16) for swinging the reflective member (14d) around the swing shaft (14g), and can change an imaging region of the mounted portions by swinging the reflective member (14d).

Description

側視用光学部材及び画像処理システムSide-viewing optical member and image processing system
 本発明は、電子部品、例えば所謂BGA(Ball Grid Array)パッケージを基板に実装した状態で基板との間に形成される実装部分、例えばボールの確認を行なうための側視用光学部材及びそれを備えた画像処理システムに関する。 The present invention relates to a side-viewing optical member for confirming a mounting portion formed between a substrate and an electronic component such as a so-called BGA (Ball Grid Array) package mounted on the substrate. The present invention relates to an image processing system provided.
 従来、BGAパッケージの実装部分を確認する場合、スコープが使用されている。このスコープは、BGAパッケージの検査対象の部位と対向する反射面を備えた側視用プリズムと、CCDカメラから成る撮像部とを備えている。 Conventionally, a scope is used to check the BGA package mounting part. This scope includes a side-viewing prism having a reflecting surface facing a portion to be inspected of the BGA package, and an imaging unit including a CCD camera.
 上記構成のスコープによれば、側視用プリズムが基板に実装されたBGAパッケージの検査対象の部位に対向するように配置された状態で、撮像部が側視用プリズムを介してBGAパッケージの基板に対する実装部分を撮像する。この公知のスコープが特許文献1に開示されている。
特開2001-108918号公報
According to the scope having the above-described configuration, the imaging unit is disposed on the BGA package substrate via the side-viewing prism in a state where the side-viewing prism is disposed so as to face the inspection target portion of the BGA package mounted on the substrate. The mounting part is imaged. This known scope is disclosed in Patent Document 1.
JP 2001-108918 A
 従来から知られているスコープにおいては、撮像部と側視用プリズムとが一体に構成されており、使用者がスコープを握ってBGAパッケージの側縁に対して移動させることで、実装部分の確認を行っている。しかし、BGAパッケージの側縁に対して側視用プリズムは幅狭に構成されているため、側縁の全幅に亘って形成された全ての実装部分の検査を行うには、側視用プリズムをBGAパッケージの側縁に沿って順次ずらしてその都度検査を行う必要があり、検査部位を変える毎に位置合わせなどの設定をしなければならなかった。 In a conventionally known scope, the imaging unit and the side viewing prism are integrally configured, and the user grasps the scope and moves it with respect to the side edge of the BGA package, thereby confirming the mounting part. It is carried out. However, since the side-viewing prism is narrower than the side edge of the BGA package, the side-viewing prism is used to inspect all the mounting parts formed over the entire width of the side edge. It is necessary to inspect each time by sequentially shifting along the side edge of the BGA package, and it is necessary to make settings such as alignment each time the inspection site is changed.
 また、側視用プリズムは、BGAパッケージの側縁に対して近接した状態で側縁に沿って移動させるので、撮像部及び側視用プリズムが移動すべき経路からずれてしまうと、場合によってはBGAパッケージを傷つけたり破壊したりしてしまう虞がある。 Further, since the side viewing prism is moved along the side edge in a state of being close to the side edge of the BGA package, if the imaging unit and the side viewing prism are displaced from the path to be moved, depending on the case. There is a risk of damaging or destroying the BGA package.
 さらに、側視用プリズムは移動を考慮してできるだけ小型に構成することが望ましいが、小型にすると視野角が小さくなってしまう。このため、BGAパッケージの実装部分、即ちボールの全体を撮像することが困難になってしまう。 Furthermore, it is desirable to configure the side viewing prism as small as possible in consideration of movement, but if the size is reduced, the viewing angle becomes small. For this reason, it becomes difficult to image the mounting portion of the BGA package, that is, the entire ball.
 本発明は、以上の点に鑑み、電子部品の側縁の全幅に亘ってまたその一部に形成された複数の実装部分の確認を容易に行うことができるようにした側視用光学部材と、この光学部材を備えた画像処理システムを提供することを目的としている。 In view of the above, the present invention provides a side-viewing optical member that can easily check a plurality of mounting portions formed over the entire width of a side edge of an electronic component and a part thereof. An object of the present invention is to provide an image processing system including the optical member.
 上記一目的を達成するために、本発明の第1の構成の側視用光学部材は、基板に実装された電子部品の一側縁の全幅に亘って当該側縁と対向する反射面を有することを特徴としている。 In order to achieve the above object, the side-viewing optical member of the first configuration of the present invention has a reflective surface that faces the side edge over the entire width of one side edge of the electronic component mounted on the substrate. It is characterized by that.
 上記一目的を達成するため、本発明の第2の構成の側視用光学部材は、一対のプリズムと、プリズム同士を所定の間隔を置いて保持するホルダーと、を備え、プリズムは、傾斜した底面と水平な上面とを有し、底面は対向するプリズム側に向けて下がった反射面として形成され、上記反射面は電子部品の一側縁の全幅に亘って当該側縁と対向するように形成されていて、一対のプリズムのうち一方の上面から入射した光がこのプリズムの底面において他のプリズム側へ反射する。
 本発明の側視用光学部材において、好ましくは、ホルダーは、一対のプリズムのそれぞれに取り付けられた固定部と、固定部同士の間隔を調整する調整部と、から構成されている。
 例えば、調整部は、一方の固定部に固定され他方の固定部に摺動可能に連結されたバーを備え、他方の固定部がバーに案内されて移動することで、一対のプリズム同士の間隔が変わる。また調整部は、基端部が各固定部に回転可能に取り付けられ先端部を他の固定部に摺動可能に連結された一対のアームを備え、アーム同士は、長手方向の中間部で回転軸を介して連結されており、一対のアームがパンタグラフ式に伸縮することで、一対のプリズム同士の間隔が変わるように構成されてもよい。
To achieve the above object, the optical member for side viewing according to the second configuration of the present invention includes a pair of prisms and a holder that holds the prisms at a predetermined interval, and the prisms are inclined. A bottom surface and a horizontal top surface are formed, and the bottom surface is formed as a reflecting surface that is lowered toward the opposing prism side, and the reflecting surface faces the side edge over the entire width of one side edge of the electronic component. The light that is formed and is incident from the upper surface of one of the pair of prisms is reflected to the other prism at the bottom surface of the prism.
In the optical member for side view according to the present invention, preferably, the holder includes a fixing portion attached to each of the pair of prisms, and an adjustment portion that adjusts a distance between the fixing portions.
For example, the adjustment unit includes a bar fixed to one fixing unit and slidably connected to the other fixing unit, and the other fixing unit is guided by the bar and moved, thereby separating the pair of prisms from each other. Changes. The adjustment unit includes a pair of arms whose base end portions are rotatably attached to the respective fixed portions and whose tip portions are slidably connected to the other fixed portions, and the arms rotate at an intermediate portion in the longitudinal direction. It is connected via a shaft, and a pair of arms may be configured to expand and contract in a pantograph manner so that the interval between the pair of prisms is changed.
 上記他の目的を達成するため、本発明の画像処理システムは、側視用光学部材と、他方のプリズムの上側に設けられた撮像部と、撮像部によって撮像された画像を処理する処理部と、を備え、一対のプリズムの底面間に基板に実装された電子部品を配置し、一方のプリズムの上側に設けた光源からの光が当該一方のプリズムの底面で反射し、さらに電子部品の実装部分の隙間を通過して他方のプリズムに入射することで、撮像部が、電子部品の実装部分を光源によってバック照明された状態で撮像し、処理部が実装部分の画像を処理することを特徴としている。 In order to achieve the other object, an image processing system according to the present invention includes a side-viewing optical member, an imaging unit provided on the other prism, and a processing unit that processes an image captured by the imaging unit. The electronic component mounted on the substrate is disposed between the bottom surfaces of the pair of prisms, the light from the light source provided on the upper side of the one prism is reflected by the bottom surface of the one prism, and the electronic component is mounted. By passing through the gap of the part and entering the other prism, the imaging unit takes an image of the mounting part of the electronic component while being back-lit by the light source, and the processing unit processes the image of the mounting part. It is said.
 本発明の画像処理システムにおいて、撮像部によって撮像された実装部分の画像は、例えば、光源によるバック照明によって白黒画像として得られ、ボール間の隙間が白色として、ボールや異物が黒色に撮像される。 In the image processing system of the present invention, the image of the mounting part imaged by the imaging unit is obtained as a black and white image by back illumination with a light source, for example, and the gap between the balls is white and the ball and the foreign object are imaged black. .
 本発明の側視用光学部材の第1の構成によれば、側視用光学部材が観察すべき電子部品の側縁の全幅に亘って対向するように配置されているので、側視用光学部材は一度電子部品に対して位置決めされた後は、当該電子部品に対して位置決めを行なう必要はない。これにより、撮像部が側視用光学部材の上側で電子部品の側縁に沿って平行移動されることで、撮像部が電子部品の側縁の基板に対する実装部分、即ち側縁に沿って設けられた全てのボールを正確に走査することができる。特に、従来のスコープでは、電子部品の一つの側縁においてその全幅の複数のボールをくまなく検査するためには、スコープの位置を何度も変える作業が必要であったが、本発明によれば、例えば側視用光学部材が電子部品の全側縁を囲繞し、撮像部が側視用光学部材の上面に沿って移動すれば、電子部品の全側縁に沿って設けられた全てのボールの拡大画像を得られるので、従来における煩雑な作業を解消できる。
 また、本発明の側視用光学部材の第1の構成及び第2の構成によれば、電子部品の側縁に対向する側視用光学部材は固定配置されているので、上述した走査の際に、誤って側視用光学部材が電子部品の側縁に触れて電子部品を傷つけたり破壊したりすることはない。
 さらに、走査の際に移動する撮像部が、側視用光学部材を含まないので、撮像部全体の重量が軽減され、撮像部を移動させるための駆動手段が小型で済み、コストが低減され得る。
According to the first configuration of the side-viewing optical member of the present invention, the side-viewing optical member is disposed so as to face the entire width of the side edge of the electronic component to be observed. Once the member is positioned with respect to the electronic component, it is not necessary to position the member with respect to the electronic component. As a result, the imaging unit is moved along the side edge of the electronic component above the side-viewing optical member, so that the imaging unit is provided along the side edge of the electronic component mounted on the substrate. It is possible to accurately scan all the balls that have been played. In particular, in the conventional scope, in order to thoroughly inspect a plurality of balls of the entire width at one side edge of an electronic component, it is necessary to change the position of the scope many times. For example, if the side-viewing optical member surrounds all the side edges of the electronic component and the imaging unit moves along the upper surface of the side-viewing optical member, all of the electronic components provided along all the side edges of the electronic component Since an enlarged image of the ball can be obtained, the conventional troublesome work can be eliminated.
Further, according to the first configuration and the second configuration of the side viewing optical member of the present invention, the side viewing optical member facing the side edge of the electronic component is fixedly arranged. In addition, the side-viewing optical member does not accidentally touch the side edge of the electronic component and damage or destroy the electronic component.
Further, since the imaging unit that moves during scanning does not include the side-viewing optical member, the weight of the entire imaging unit is reduced, and the driving means for moving the imaging unit can be reduced in size and the cost can be reduced. .
 側視用光学部材が、電子部品の二つの側縁と対向するように配置されている場合、または電子部品のすべての側縁と対向するように配置されている場合には、側視用光学部材の電子部品の側縁に対する位置決めの回数が低減される。従って、観察すべき電子部品の実装部分の確認をより短時間で行なうことができる。
 側視用光学部材が、対応する電子部品の側縁に平行な揺動軸の周りに揺動可能に支持された角度調整用反射部材と、反射部材を揺動軸の周りに揺動させる角度調整機構と、から構成されている場合には、角度調整機構によって角度調整用反射部材を揺動させることで、電子部品の側縁から側視用光学部材を介して角度調整用反射部材に入射する光軸を振ることができる。
 従って、撮像部の電子部品の側縁の実装部分に対する視野角が狭くても、即ち側視用光学部材が小型であっても、角度調整用反射部材の揺動によって光軸を振ることにより当該実装部分全体を観察することが可能である。
 側視用光学部材が、電子部品の側縁に対向する全反射面を備えたプリズムから構成されており、プリズムの撮像部に対向する出射面が、角度調整用反射部材の揺動に対応して揺動方向に拡大されている場合には、角度調整用反射部材の揺動によって、電子部品の側縁から側視用光学部材を介して角度調整用反射部材に入射する光軸を振ったとしても、電子部品の側縁からの光が側視用光学部材を介して確実に撮像部に入射する。
 側視用光学部材と電子部品の対応する側縁との間に配置されたウェッジプリズムを備えており、ウェッジプリズムが光軸から一側に向かって徐々に肉厚になるように形成されている場合には、撮像部の電子部品の側縁の実装部分に対する視野角が狭くても、即ち側視用光学部材が小型であっても、このウェッジプリズムから電子部品側の光路を一側にずらして、当該実装部分の特に電子部品側及び基板側の要部を確実に観察することが可能である。
 側視用光学部材の反射面が、電子部品の対応する側縁に対して45度より大きい傾斜角度を有している場合には、この反射面から電子部品側の光路を一側と反対側にずらして、当該実装部分の電子部品側の要部を確実に観察することができる。
 側視用光学部材の反射面が、電子部品の対応する側縁及び撮像部に向かって凸状に形成されている場合には、撮像部の電子部品の側縁の実装部分に対する視野角が狭くても、即ち側視用光学部材が小型であっても、この反射面から電子部品側の光路を拡大することで、当該実装部分全体を確実に観察することが可能である。
 さらに、本発明の画像処理システムによれば、観察部である実装部分がバック照明された状態で撮像部によって撮像されて、所謂二値の白黒画像として得られるため、画像処理が容易である。この画像処理として、ボールのピッチ間隔や高さ、またボール間の異物等の検出を行うことができる。
When the side-viewing optical member is disposed so as to face two side edges of the electronic component, or when it is placed so as to face all side edges of the electronic component, the side-viewing optical The number of positioning of the member with respect to the side edge of the electronic component is reduced. Accordingly, it is possible to confirm the mounting portion of the electronic component to be observed in a shorter time.
An angle adjusting reflecting member that is supported so as to be swingable around a swinging axis parallel to the side edge of the corresponding electronic component, and an angle at which the reflecting member swings around the swinging axis. And an adjustment mechanism, the angle adjustment reflection member is swung by the angle adjustment mechanism, and is incident on the angle adjustment reflection member from the side edge of the electronic component through the side viewing optical member. The optical axis can be shaken.
Therefore, even if the viewing angle with respect to the mounting portion of the side edge of the electronic component of the imaging unit is narrow, that is, the side-viewing optical member is small, the optical axis is swung by swinging the angle-adjusting reflecting member. It is possible to observe the entire mounting part.
The side-viewing optical member is composed of a prism having a total reflection surface facing the side edge of the electronic component, and the exit surface facing the imaging unit of the prism corresponds to the swing of the angle-adjusting reflection member. When the angle adjustment reflecting member is enlarged, the optical axis incident on the angle adjustment reflecting member from the side edge of the electronic component through the side viewing optical member is swung by the swing of the angle adjusting reflecting member. Even so, the light from the side edge of the electronic component is reliably incident on the imaging unit through the side-viewing optical member.
A wedge prism disposed between the side-viewing optical member and the corresponding side edge of the electronic component is provided, and the wedge prism is formed so as to gradually increase in thickness from the optical axis toward one side. In this case, even if the viewing angle with respect to the mounting portion on the side edge of the electronic component of the imaging unit is narrow, that is, the optical member for side view is small, the optical path on the electronic component side is shifted from the wedge prism to one side. Thus, it is possible to reliably observe the main parts of the mounting part, particularly on the electronic component side and the board side.
When the reflecting surface of the optical member for side view has an inclination angle larger than 45 degrees with respect to the corresponding side edge of the electronic component, the optical path on the electronic component side from the reflecting surface is opposite to the one side. It is possible to reliably observe the main part of the mounting part on the electronic component side.
When the reflective surface of the side-viewing optical member is formed in a convex shape toward the corresponding side edge of the electronic component and the imaging unit, the viewing angle with respect to the mounting portion of the side edge of the electronic component of the imaging unit is narrow. In other words, even if the side-viewing optical member is small, the entire mounting portion can be reliably observed by enlarging the optical path on the electronic component side from the reflecting surface.
Furthermore, according to the image processing system of the present invention, since the mounting portion as the observation portion is imaged by the imaging portion in a back-illuminated state and obtained as a so-called binary black and white image, image processing is easy. As this image processing, it is possible to detect the pitch interval and height of the balls and the foreign matter between the balls.
本発明の第1実施形態に係る電子部品の実装部分確認用スコープの構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the mounting part confirmation scope of the electronic component which concerns on 1st Embodiment of this invention. 図1の電子部品の実装部分確認用スコープにおけるプリズム装置の斜視図である。FIG. 2 is a perspective view of a prism device in the electronic component mounting portion confirmation scope of FIG. 1. (A)は図1の電子部品の実装部分確認用スコープの光学系を示す概略正面図、(B)は概略側面図である。(A) is a schematic front view which shows the optical system of the mounting part confirmation scope of the electronic component of FIG. 1, (B) is a schematic side view. 図1の電子部品の実装部分確認用スコープの光学系を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the optical system of the scope for electronic component mounting part confirmation of FIG. 図1の電子部品の実装部分確認用スコープの揺動機構を詳細に示す正面図である。FIG. 2 is a front view showing in detail a swing mechanism of the electronic component mounting portion confirmation scope of FIG. 1. 本発明の第2実施形態に係る電子部品の実装部分確認用スコープの要部を示す拡大図である。It is an enlarged view which shows the principal part of the scope for electronic component mounting part confirmation according to the second embodiment of the present invention. 本発明の第3実施形態に係る電子部品の実装部分確認用スコープの要部を示す拡大図である。It is an enlarged view which shows the principal part of the scope for electronic component mounting part confirmation according to the third embodiment of the present invention. 本発明の第4実施形態に係る電子部品の実装部分確認用スコープの要部を示す拡大図である。It is an enlarged view which shows the principal part of the scope for electronic component mounting part confirmation according to the fourth embodiment of the present invention. 本発明の第5実施形態に係る電子部品の実装部分確認用レンズ装置を示す斜視図である。It is a perspective view which shows the lens apparatus for mounting part confirmation of the electronic component which concerns on 5th Embodiment of this invention. (A)は本発明の第5実施形態に係るプリズムを示す平面図、(B)は側面図、(C)は正面図である。(A) is a top view which shows the prism which concerns on 5th Embodiment of this invention, (B) is a side view, (C) is a front view. 第5実施形態に係るレンズ装置に用いるプリズムの形状を説明するための平面図である。It is a top view for demonstrating the shape of the prism used for the lens apparatus which concerns on 5th Embodiment. 第5実施形態においてプリズム装置の使用方法を説明するための図である。It is a figure for demonstrating the usage method of a prism apparatus in 5th Embodiment. 図12に示す使用方法で観察した実装部分の像を示す概略図である。It is the schematic which shows the image of the mounting part observed with the usage method shown in FIG. 本発明の第6実施形態に係る電子部品の実装部分確認用レンズ装置を示す斜視図である。It is a perspective view which shows the lens apparatus for mounting part confirmation of the electronic component which concerns on 6th Embodiment of this invention. 本発明の第6実施形態の変形例に係る電子部品の実装部分確認用レンズ装置を示す斜視図である。It is a perspective view which shows the lens apparatus for mounting part confirmation of the electronic component which concerns on the modification of 6th Embodiment of this invention. 本発明の第7実施形態に係る画像処理システムを示す図である。It is a figure which shows the image processing system which concerns on 7th Embodiment of this invention. 図16の画像処理システムにおける撮像部が撮像した観察部の画像例を示す図である。It is a figure which shows the example of an image of the observation part which the imaging part in the image processing system of FIG. 16 imaged. 図16の画像処理システムにおける撮像部が撮像した観察部の画像例を示す図である。It is a figure which shows the example of an image of the observation part which the imaging part in the image processing system of FIG. 16 imaged. 図16の画像処理システムにおける処理部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the process part in the image processing system of FIG. (A)は本発明の他の実施形態に係るプリズムを示す正面図であり、(B)は側面図である。(A) is a front view which shows the prism which concerns on other embodiment of this invention, (B) is a side view.
符号の説明Explanation of symbols
 10,20,30,40  電子部品の実装部分確認用スコープ
 11  BGAパッケージ
 11a 基板
 11b ボール(実装部分)
 12  ステージ
 12A Xステージ
 12B Yステージ
 12C 第1駆動機構
 12D 第2駆動機構
 12E 支柱
 12F ブラケット
 14  撮像部
 14a 撮像素子
 14b 光学系
 14c レンズ
 14d,14e リレープリズム
 14f 光源
 14g 揺動軸
 15  表示部
 16  揺動機構
 17  レバー
 17a 第一のアーム
 17b 第二のアーム
 18  バネ
 18a 一端
 18b 他端
 19  押動ネジ
 21  側視用ミラー(側視用光学部材)
 22  角度調整ミラー
 23  固定ミラー
 25  筐体
 31  ウェッジプリズム
 43A 反射面
 100  プリズム装置(側視用光学部材)
 101,110A,110B プリズム(側視用光学部材)
 101A 反射面
 101B 上面
 101C 側面
 100A,100B,100C 電子部品の実装部分確認用レンズ装置
 111 プリズムの底面
 112 プリズムの側面
 113 プリズムの上面
 120 ホルダー
 121A,121B 固定部
 122A,122B 連結部
 123 挿入穴
 125 貫通孔
 130 第1照明部
 131 第2照明部
 140 観察部
 150,150A 調整部
 151 ロックネジ
 153A,153B アーム
 154 ロックピン
 155A,155B レール部材
 156 回転軸
 200 画像処理システム
 210 撮像部
 220 処理部
 230 光源
 L1 BGAパッケージの長辺
 L2 BGAパッケージの短辺
 U1 第1プリズムユニット
 U2 第2プリズムユニット
10, 20, 30, 40 Electronic component mounting part confirmation scope 11 BGA package 11a Substrate 11b Ball (mounting part)
12 stage 12A X stage 12B Y stage 12C 1st drive mechanism 12D 2nd drive mechanism 12E Prop 12F Bracket 14 Imaging unit 14a Imaging element 14b Optical system 14c Lens 14d, 14e Relay prism 14f Light source 14g Oscillating shaft 15 Display unit 16 Oscillating Mechanism 17 Lever 17a First arm 17b Second arm 18 Spring 18a One end 18b Other end 19 Pushing screw 21 Side view mirror (side view optical member)
22 Angle adjustment mirror 23 Fixed mirror 25 Housing 31 Wedge prism 43A Reflecting surface 100 Prism device (optical member for side view)
101, 110A, 110B Prism (optical member for side view)
101A Reflective surface 101B Upper surface 101C Side surface 100A, 100B, 100C Electronic device mounting part confirmation lens device 111 Prism bottom surface 112 Prism side surface 113 Prism upper surface 120 Holder 121A, 121B Fixing portion 122A, 122B Connecting portion 123 Insertion hole 125 Through Hole 130 First illumination unit 131 Second illumination unit 140 Observation unit 150, 150A Adjustment unit 151 Lock screw 153A, 153B Arm 154 Lock pin 155A, 155B Rail member 156 Rotating shaft 200 Image processing system 210 Imaging unit 220 Processing unit 230 Light source L1 BGA Long side of package L2 Short side of BGA package U1 First prism unit U2 Second prism unit
 以下、図面に示した実施形態に基づいて本発明を詳細に説明する。
〔第1実施形態〕
 図1は本発明の第1実施形態に係る電子部品の実装部分確認用のスコープ10の構成を示している。スコープ10は、電子部品としてのBGAパッケージ11を実装した基板11aを支持するステージ12と、基板11a上のBGAパッケージ11の側縁に対向して配置された実装部分確認用のプリズム装置(側視用光学部材)100と、プリズム装置100の上面に対して相対的に移動可能に支持された撮像部14と、から構成されており、図示の場合、撮像部14で撮像した撮像信号を表示部15に出力して画像表示するように構成されている。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
[First Embodiment]
FIG. 1 shows a configuration of a scope 10 for checking a mounting portion of an electronic component according to the first embodiment of the present invention. The scope 10 includes a stage 12 that supports a substrate 11a on which a BGA package 11 as an electronic component is mounted, and a prism unit (side view) for mounting portion confirmation that is disposed to face a side edge of the BGA package 11 on the substrate 11a. Optical member) 100 and an imaging unit 14 supported so as to be relatively movable with respect to the upper surface of the prism device 100. In the case shown in the drawing, an imaging signal captured by the imaging unit 14 is displayed on the display unit. 15 to display the image.
 ステージ12は公知の構成であって、基板11a、基板11aに実装されたBGAパッケージ11及び基板11a上に載置されたプリズム装置100を互いに直交する水平二方向、即ちX方向及びY方向へ移動させるように構成されている。図示のステージ12は、X方向へ移動可能なXステージ12Aと、このXステージ12A上に載置され、Y方向へ移動可能なYステージ12Bと、Xステージを移動させるための第1駆動機構12Cと、Yステージを移動させるための第2駆動機構12Dと、を備えている。ただし、ステージは本実施形態のものに限定されるものではない。 The stage 12 has a known configuration, and moves the substrate 11a, the BGA package 11 mounted on the substrate 11a, and the prism device 100 mounted on the substrate 11a in two horizontal directions orthogonal to each other, that is, the X direction and the Y direction. It is configured to let you. The illustrated stage 12 includes an X stage 12A movable in the X direction, a Y stage 12B mounted on the X stage 12A and movable in the Y direction, and a first drive mechanism 12C for moving the X stage. And a second drive mechanism 12D for moving the Y stage. However, the stage is not limited to that of the present embodiment.
 プリズム装置100は、図2に示すように、BGAパッケージ11のすべての側縁にそれぞれ対向するように形成されている。即ち、プリズム装置100は、平面視における外形が四角形を成すBGAパッケージ11を囲繞するように、4つのプリズム101を組み合わせて枠型に構成されている。1つのプリズム101はBGAパッケージ11の1つの側縁に対向するように形成されている。具体的には、図3(A)に示すように、各プリズム101は、断面が縦長の台形に形成されており、BGAパッケージ11の側縁における基板11aとの間の実装部分、即ちボール11bと対向するように斜め40~50度、例えば45度に傾斜して配置された反射面101Aと水平な上面101Bを備えている。さらに、各プリズム101は、図3(B)に示すように、BGAパッケージ11の一側縁の全幅に対向するように幅広に形成されている。これらのプリズム101は、例えば、石英,透明樹脂やガラス等の透明な材料で構成されている。 As shown in FIG. 2, the prism device 100 is formed so as to face all the side edges of the BGA package 11. That is, the prism device 100 is configured in a frame shape by combining the four prisms 101 so as to surround the BGA package 11 whose outer shape in plan view is a quadrangle. One prism 101 is formed to face one side edge of the BGA package 11. Specifically, as shown in FIG. 3A, each prism 101 is formed in a trapezoidal shape with a cross section being vertically long, and a mounting portion between the side edge of the BGA package 11 and the substrate 11a, that is, a ball 11b. The reflecting surface 101A and the horizontal upper surface 101B are disposed so as to be inclined at an angle of 40 to 50 degrees, for example, 45 degrees. Further, as shown in FIG. 3B, each prism 101 is formed wide so as to face the entire width of one side edge of the BGA package 11. These prisms 101 are made of a transparent material such as quartz, transparent resin, or glass.
 撮像部14は、図3に示すように、撮像素子14aと光学系14bとを備えている。撮像素子14aは、例えばCCDから構成されており、撮像面に入射した光を蓄積し電気信号に変換することで、撮像面に結像された画像を取り込んで画像信号として出力する。 As shown in FIG. 3, the imaging unit 14 includes an imaging element 14a and an optical system 14b. The image sensor 14a is composed of, for example, a CCD, and accumulates light incident on the imaging surface and converts it into an electrical signal, thereby capturing an image formed on the imaging surface and outputting it as an image signal.
 光学系14bは図示の場合、例えばズームレンズから成るレンズ14cと、光路を折曲げるための一対のリレープリズム14d,14eと、を備えている。この光学系14bは、BGAパッケージ11からプリズム装置100を介して入射する光を撮像素子14aへ導いている。なお、光学系14bの各リレープリズム14d,14eは、図3(B)に示すように、プリズム101の幅方向に沿った幅W2が、レンズ14cの光路をカバーするように選定されている。従って、これらのリレープリズム14d,14eは、プリズム101の幅W1と比較して狭く形成されている。 In the illustrated case, the optical system 14b includes a lens 14c made of, for example, a zoom lens, and a pair of relay prisms 14d and 14e for bending the optical path. The optical system 14b guides light incident from the BGA package 11 through the prism device 100 to the image sensor 14a. The relay prisms 14d and 14e of the optical system 14b are selected so that the width W2 along the width direction of the prism 101 covers the optical path of the lens 14c, as shown in FIG. 3B. Therefore, these relay prisms 14 d and 14 e are formed narrower than the width W 1 of the prism 101.
 さらに、光学系14bは、プリズム101の上面101Bに対向して、BGAパッケージ11の側縁に平行な方向(図3(B)の矢印A方向)でリレープリズム14dの両側に、一対の光源14fを備えている。これらの光源14fは、例えば一つ以上のLEDから構成されており、プリズム101を介して、観察すべきBGAパッケージ11の側縁のボール11b付近を照明する。各光源14fは、その光軸が撮像部14の光軸とBGAパッケージ11の側縁で交差するように、内側に傾斜して配置されている。これにより、撮像部14の撮像素子14aが撮像しようとするBGAパッケージ11の側縁領域が光源14fによって照明される。 Furthermore, the optical system 14b is opposed to the upper surface 101B of the prism 101, and has a pair of light sources 14f on both sides of the relay prism 14d in a direction parallel to the side edge of the BGA package 11 (in the direction of arrow A in FIG. 3B). It has. These light sources 14f are composed of, for example, one or more LEDs, and illuminate the vicinity of the ball 11b on the side edge of the BGA package 11 to be observed via the prism 101. Each of the light sources 14f is disposed so as to be inclined inward so that the optical axis thereof intersects with the optical axis of the imaging unit 14 at the side edge of the BGA package 11. Thereby, the side edge area | region of the BGA package 11 which the image pick-up element 14a of the image pick-up part 14 is going to image is illuminated by the light source 14f.
 撮像部14は、ステージ12がX-Y方向へ移動することで、BGAパッケージ11の4つの側縁に対向して配置された4つのプリズム101の各上面101Bを、A方向(図3(B)参照)に移動することができる。これにより、例えば図4のリレープリズムを省略した動作原理図に示すように、撮像部14の撮像素子14aが、光学系14b及びプリズム101を介して、BGAパッケージ11の側縁の実装部分、即ち長手方向(A方向)に走査してBGAパッケージ11の一側縁の全幅に亘って各実装部分を撮像できる。 The imaging unit 14 moves the upper surfaces 101B of the four prisms 101 arranged to face the four side edges of the BGA package 11 in the A direction (FIG. 3B) as the stage 12 moves in the XY direction. ))). Thereby, for example, as shown in the operation principle diagram in which the relay prism of FIG. 4 is omitted, the imaging element 14a of the imaging unit 14 is mounted on the side edge of the BGA package 11 via the optical system 14b and the prism 101, that is, Each mounting portion can be imaged over the entire width of one side edge of the BGA package 11 by scanning in the longitudinal direction (A direction).
 ところで、撮像部14のリレープリズム14dは、A方向へ延びる揺動軸14g(図5参照)の周りに、即ちB方向(図3(A)参照)に揺動可能に支持されて、角度調整用の反射部材として機能する。リレープリズム14dは以下の角度調整機構としての揺動機構16によって揺動される。 By the way, the relay prism 14d of the image pickup unit 14 is supported so as to be swingable around a swing shaft 14g (see FIG. 5) extending in the A direction, that is, in the B direction (see FIG. 3 (A)). It functions as a reflective member. The relay prism 14d is swung by a swing mechanism 16 as an angle adjusting mechanism described below.
 この揺動機構16は、図5に示すように、揺動軸14gに取り付けられたレバー17と、引張りバネ18と、押動ネジ19と、から構成されている。
 レバー17は、揺動軸14gから上方へ延びる第一のアーム17aと、揺動軸14gから水平方向一側(図5で右方)へ延びる第二のアーム17bと、からL字型に構成されている。
As shown in FIG. 5, the swing mechanism 16 includes a lever 17 attached to the swing shaft 14 g, a tension spring 18, and a push screw 19.
The lever 17 is configured in an L shape from a first arm 17a extending upward from the swing shaft 14g and a second arm 17b extending from the swing shaft 14g to one side in the horizontal direction (rightward in FIG. 5). Has been.
 引張りバネ18は、第二のアーム17bの先端を上方へ引っ張るように、一端18aが筐体25の内壁に固定されると共に、他端18bが第二のアーム17bの先端に係止されている。
 押動ネジ19は撮像部14の筐体25に螺合しており、ネジ込むことで押動ネジ19の先端部が筐体25の内壁から突出して、引張りバネ18の張力に抗して第一のアーム17aを揺動軸14g周りに図5中の矢印C方向へ回動させる。一方、押動ネジ19が緩められると、引張りバネ18の張力によって第一のアーム17aの上端が押動ネジ19の先端に追従する。
The tension spring 18 has one end 18a fixed to the inner wall of the housing 25 and the other end 18b locked to the tip of the second arm 17b so as to pull the tip of the second arm 17b upward. .
The push screw 19 is screwed into the housing 25 of the imaging unit 14, and by screwing, the tip of the push screw 19 protrudes from the inner wall of the housing 25 to resist the tension of the tension spring 18. One arm 17a is rotated around the swing shaft 14g in the direction of arrow C in FIG. On the other hand, when the push screw 19 is loosened, the upper end of the first arm 17 a follows the tip of the push screw 19 by the tension of the tension spring 18.
 本発明の第1実施形態に係るスコープ10は以上のように構成されており、基板11aに実装されたBGAパッケージ11の実装状態の確認を行なう場合には、以下のように操作する。
 先ず、ステージ12上に基板11aをセットする。ステージ12をX-Y方向へ適宜に移動することによって、撮像部14がステージ12上に支持されたBGAパッケージ11の各側縁に対向して配置されたプリズム装置100、即ち各プリズム101の上面101Bに沿って走査する。その際、光源14fが発光することで、光源14fからの光がプリズム101の上面101Bから内部に入射し、反射面101Aで反射してBGAパッケージ11の側縁の実装部分が照射される。これにより、BGAパッケージ11の側縁の実装部分のボール11bのうち、撮像部14で撮像されるべき領域が照明される。
The scope 10 according to the first embodiment of the present invention is configured as described above, and when checking the mounting state of the BGA package 11 mounted on the substrate 11a, the following operation is performed.
First, the substrate 11 a is set on the stage 12. By appropriately moving the stage 12 in the XY direction, the imaging unit 14 is arranged to face each side edge of the BGA package 11 supported on the stage 12, that is, the upper surface of each prism 101. Scan along 101B. At this time, the light source 14f emits light, so that the light from the light source 14f enters the prism 101 from the upper surface 101B, is reflected by the reflecting surface 101A, and is irradiated on the mounting portion on the side edge of the BGA package 11. Thereby, the area | region which should be imaged with the imaging part 14 among the balls 11b of the mounting part of the side edge of the BGA package 11 is illuminated.
 この照明光によってBGAパッケージ11の側縁の実装部分のボール11bで反射した光が、再びプリズム101内に入射し、その反射面101Aで反射して上方へ進み、その上面101Bから出射した後、リレープリズム14d,14eそしてレンズ14cを介して撮像素子14aの撮像面に結像する。撮像素子14aは、その撮像面に結像した画像を取り込んで画像信号を生成し、表示部15に送出する。これにより、表示部15の画面上にはBGAパッケージ11の側縁の実装部分のボール11bが拡大表示される。よって、使用者は容易に実装状態を確認できる。 The light reflected by the ball 11b on the mounting portion on the side edge of the BGA package 11 by this illumination light is incident on the prism 101 again, reflected by the reflecting surface 101A, traveled upward, and emitted from the upper surface 101B. An image is formed on the imaging surface of the imaging device 14a via the relay prisms 14d and 14e and the lens 14c. The image sensor 14 a captures an image formed on the imaging surface, generates an image signal, and sends the image signal to the display unit 15. As a result, the ball 11b of the mounting portion on the side edge of the BGA package 11 is enlarged and displayed on the screen of the display unit 15. Therefore, the user can easily confirm the mounting state.
 そして、撮像部14が前述したように、プリズム装置100、即ち各プリズム101の上面101Bに沿ってその長手方向へ移動することで、BGAパッケージ11の全側縁の実装部分の確認を行える。
 ここで、従来のスコープでは、BGAパッケージ11の一つの側縁においてその全幅の複数のボールをくまなく検査するためには、スコープの位置を何度も変える作業が必要であったが、本実施形態によれば、プリズム装置100がBGAパッケージ11の全側縁を囲繞し、撮像部14がプリズム装置100の上面101Bに沿って移動すれば、BGAパッケージ11の全側縁に沿って設けられた全てのボールの拡大画像を得られるので、従来における煩雑な作業を解消できる。
 また、走査の際に、プリズム装置100はBGAパッケージ11に対して固定配置されているので、誤ってプリズム装置100がBGAパッケージ11に当たって、傷つけたり破壊したりするようなことはない。
As described above, the imaging unit 14 moves in the longitudinal direction along the prism device 100, that is, the upper surface 101 </ b> B of each prism 101, so that the mounting portions on all side edges of the BGA package 11 can be confirmed.
Here, in the conventional scope, in order to thoroughly inspect a plurality of balls of the full width at one side edge of the BGA package 11, it is necessary to change the position of the scope many times. According to the form, if the prism device 100 surrounds all the side edges of the BGA package 11 and the imaging unit 14 moves along the upper surface 101B of the prism device 100, the prism device 100 is provided along all the side edges of the BGA package 11. Since the enlarged images of all the balls can be obtained, the conventional troublesome work can be eliminated.
Further, since the prism device 100 is fixedly arranged with respect to the BGA package 11 during scanning, the prism device 100 does not accidentally hit the BGA package 11 to be damaged or broken.
 ここで、表示部15の画面に表示されたBGAパッケージ11の側縁の実装部分のボール11bを見て、その上端付近または下端付近を観察したい場合には、使用者が揺動機構16の押動ネジ19を締め込み又は緩めることで、リレープリズム14dが揺動軸14gの周りに揺動する。これにより、図3(A)に示すように、撮像部14の光軸がこのリレープリズム14dからBGAパッケージ11側で揺動されることになり、BGAパッケージ11の側縁の実装部分におけるボール11bに対する光軸が上下に振られて、ボール11bの上端付近又は下端付近に光軸が整合される。従って、ボール11bの上端付近又は下端付近の像が良好な状態で撮像素子14aの撮像面に結像し、確実に観察されることができる。 Here, when the user wants to observe the vicinity of the upper end or the lower end of the ball 11b mounted on the side edge of the BGA package 11 displayed on the screen of the display unit 15, the user presses the swing mechanism 16. By tightening or loosening the moving screw 19, the relay prism 14d swings around the swing shaft 14g. As a result, as shown in FIG. 3A, the optical axis of the imaging unit 14 is swung from the relay prism 14d on the BGA package 11 side, and the ball 11b on the mounting portion at the side edge of the BGA package 11 is. Is aligned vertically near the upper end or the lower end of the ball 11b. Therefore, an image near the upper end or near the lower end of the ball 11b can be formed on the image pickup surface of the image pickup device 14a in a good state and reliably observed.
 なお、上述した電子部品の実装部分確認用のスコープ10において、プリズム装置100は、そのBGAパッケージ11とは反対側の側面101Cが垂直に形成されているが、図3(A)において鎖線で示すように、上方に向かって肉厚となるように傾斜して形成されていてもよい。この場合、リレープリズム14dの揺動によって光軸が振られたとき、プリズム装置100から出射する光軸の周りの光束がより多くリレープリズム14dに導かれるので、より明るく見易い画像が得られることになる。 In the above-described scope 10 for confirming the mounting part of the electronic component, the prism device 100 has the side surface 101C opposite to the BGA package 11 formed vertically, but is indicated by a chain line in FIG. Thus, it may be formed to be inclined so as to become thicker upward. In this case, when the optical axis is swung by the swing of the relay prism 14d, more light flux around the optical axis emitted from the prism device 100 is guided to the relay prism 14d, so that a brighter and easier-to-view image can be obtained. Become.
〔第2実施形態〕
 図6は本発明の第2実施形態に係る電子部品の実装部分確認用のスコープ20の要部を示している。スコープ20は、図1に示した第1実施形態によるスコープ10と同様の構成であり、プリズム装置100及びリレープリズム14d,14eの代わりに、側視用ミラー21及び角度調整ミラー22,固定ミラー23を備えている点でのみ異なる構成である。側視用ミラー21は、この場合、BGAパッケージ11の側縁に対してその傾斜角度θが45度より大きい角度(45度+α)に選定されている。
[Second Embodiment]
FIG. 6 shows a main part of a scope 20 for checking a mounting portion of an electronic component according to the second embodiment of the present invention. The scope 20 has the same configuration as that of the scope 10 according to the first embodiment shown in FIG. 1, and instead of the prism device 100 and the relay prisms 14 d and 14 e, the side view mirror 21, the angle adjustment mirror 22, and the fixed mirror 23. The configuration differs only in that In this case, the side viewing mirror 21 is selected such that the inclination angle θ with respect to the side edge of the BGA package 11 is greater than 45 degrees (45 degrees + α).
 この構成のスコープ20によれば、BGAパッケージ11の基板11aの実装部分であるボール11bの下側からの光が、より良好に側視用ミラー21,角度調整ミラー22及び固定ミラー23を介して撮像部14に導かれる。従って、ボール11bの下側が良好に撮像され、より確実に実装状態の確認が行なわれ得る。 According to the scope 20 having this configuration, the light from the lower side of the ball 11b which is the mounting portion of the substrate 11a of the BGA package 11 is more favorably transmitted through the side view mirror 21, the angle adjustment mirror 22, and the fixed mirror 23. Guided to the imaging unit 14. Therefore, the lower side of the ball 11b is imaged well, and the mounting state can be confirmed more reliably.
〔第3実施形態〕
 図7は本発明の第3実施形態に係る電子部品の実装部分確認用のスコープ30の要部を示している。スコープ30は、図1に示した第1実施形態によるスコープ10と比較して揺動機構16が省略されると共に、プリズム装置100の下端のBGAパッケージ11側にウェッジプリズム31を備えている点でのみ異なる構成である。
[Third Embodiment]
FIG. 7 shows a main part of a scope 30 for checking a mounting portion of an electronic component according to the third embodiment of the present invention. Compared with the scope 10 according to the first embodiment shown in FIG. 1, the scope 30 is provided with a wedge prism 31 on the BGA package 11 side at the lower end of the prism device 100 while omitting the swing mechanism 16. Only the configuration is different.
 このウェッジプリズム31は、BGAパッケージ11の側縁の実装部分のボール11bのほぼ半分の高さから下側に設けられており、下方に向かって徐々に肉厚となるように形成されている。 The wedge prism 31 is provided on the lower side from the height of almost half of the ball 11b on the side edge of the BGA package 11, and is formed so as to gradually increase in thickness downward.
 この構成のスコープ30によれば、プリズム装置100の全反射面101Aの傾斜角度を、この全反射面101Aで反射される光軸がBGAパッケージ11の側縁の実装部分であるボール11bの上側に振れるように選定しておくことで、当該ボール11bの上側が良好に撮像部14に導かれると共に、下側のウェッジプリズム31を透過する光が角度Δθだけ屈折されることで、当該ボール11bの下側がウェッジプリズム31を介して良好に撮像部14に導かれる。従って、ボール11bの上側も下側も撮像部14によって良好に撮像される。 According to the scope 30 having this configuration, the inclination angle of the total reflection surface 101A of the prism device 100 is set so that the optical axis reflected by the total reflection surface 101A is on the upper side of the ball 11b, which is the mounting portion of the side edge of the BGA package 11. By selecting so as to swing, the upper side of the ball 11b is well guided to the imaging unit 14, and the light transmitted through the lower wedge prism 31 is refracted by the angle Δθ, so that the ball 11b The lower side is satisfactorily guided to the imaging unit 14 via the wedge prism 31. Therefore, the upper side and the lower side of the ball 11b are well imaged by the imaging unit 14.
〔第4実施形態〕
 図8は本発明の第4実施形態に係る電子部品の実装部分確認用のスコープ40の要部を示している。スコープ40は、図1に示した第1実施形態によるスコープ10と比較して、揺動機構16が省略されると共に、プリズム装置100の全反射面101Aが、BGAパッケージ11側及び上面101Bに向かって(内部から見て)凸状に形成された反射面43Aとして形成されている点でのみ異なる構成である。
[Fourth Embodiment]
FIG. 8 shows a main part of a scope 40 for checking a mounting portion of an electronic component according to the fourth embodiment of the present invention. Compared with the scope 10 according to the first embodiment shown in FIG. 1, the scope 40 has the swing mechanism 16 omitted, and the total reflection surface 101A of the prism device 100 faces the BGA package 11 side and the upper surface 101B. The configuration differs only in that the reflective surface 43A is formed in a convex shape (as viewed from the inside).
 この場合、全反射面43Aは、A方向(図8で紙面に垂直な方向)には同じ形状を有しており全体として凸状の円筒面を形成している。 In this case, the total reflection surface 43A has the same shape in the A direction (direction perpendicular to the paper surface in FIG. 8), and forms a convex cylindrical surface as a whole.
 この構成のスコープ40によれば、プリズム装置100の全反射面43Aにおける反射光が、その凸状の形状に基づいて拡散するので、BGAパッケージ11の側縁の実装部分であるボール11bの上側から下側までの広い角度範囲からの光が全反射面43Aで反射して撮像部14に良好に導かれる。従って、ボール11bの上側も下側も撮像部14によって良好に撮像される。 According to the scope 40 having this configuration, the reflected light from the total reflection surface 43A of the prism device 100 is diffused based on the convex shape, so that the ball 11b, which is the mounting portion on the side edge of the BGA package 11, is viewed from above. Light from a wide angle range up to the lower side is reflected by the total reflection surface 43 </ b> A and is well guided to the imaging unit 14. Therefore, the upper side and the lower side of the ball 11b are well imaged by the imaging unit 14.
 以下、プリズム装置の他の形態を説明する。
〔第5実施形態〕
 図9は本発明の第5実施形態に係る実装部分確認用プリズム装置100Aを示す斜視図である。このプリズム装置100Aは、基板に実装した電子部品としてのBGAパッケージの実装状態、具体的には基板との間に形成されるボール状の半田を観察するための装置である。このプリズム装置100Aは、一対のプリズム110A,110Bと、プリズム同士を所定の間隔を置いて保持するホルダー120と、を備えている。
Hereinafter, other forms of the prism device will be described.
[Fifth Embodiment]
FIG. 9 is a perspective view showing a mounting portion checking prism device 100A according to a fifth embodiment of the present invention. This prism device 100A is a device for observing a mounting state of a BGA package as an electronic component mounted on a substrate, specifically, ball-shaped solder formed between the substrate and the BGA package. The prism device 100A includes a pair of prisms 110A and 110B and a holder 120 that holds the prisms at a predetermined interval.
 図10は第5の実施形態に係るプリズム110A,110Bを示す図であり、(A)は平面図、(B)は側面図、(C)は正面図である。これらの図に示すように、プリズム110A,110Bは、輪郭が矩形型の底面111と、この底面111の各辺から起立した側面112と、各側面112の上縁によって画される水平な上面113と、から六面体として構成されている。これらのプリズム110A,110Bは、例えば、石英,透明樹脂やガラス等の透明な材料で構成されている。 FIG. 10 is a diagram showing prisms 110A and 110B according to the fifth embodiment, in which (A) is a plan view, (B) is a side view, and (C) is a front view. As shown in these drawings, the prisms 110 </ b> A and 110 </ b> B have a rectangular bottom surface 111, a side surface 112 standing up from each side of the bottom surface 111, and a horizontal top surface 113 defined by the upper edge of each side surface 112. And it is composed as a hexahedron. These prisms 110A and 110B are made of a transparent material such as quartz, transparent resin, or glass.
 ここで、図10(B)に示すようにプリズム110A,110Bの底面111は傾斜して形成されている。さらに、この底面11は、図11に示すように、矩形型に形成されたBGAパッケージ11の一辺、具体的にはBGAパッケージ11の輪郭が長辺L1と短辺L2とから画される場合には長辺L1に沿って長手の長方形状に形成されている。本実施形態のプリズム110A,110Bは、第1実施形態のプリズムと異なり、電子部品の一側縁の全幅に亘った長さを備えておらず、例えば10mm~20mm程度に設定されている。なお、電子部品の一側縁の全幅に亘った長さを備えていてもよい。このように、底面111がBGAパッケージ11の長辺L1に沿って長手の長方形に形成されているため、プリズム110A,110Bは、その全体が平板型で、先端を成す下部が鋭角に形成されている。 Here, as shown in FIG. 10B, the bottom surfaces 111 of the prisms 110A and 110B are formed to be inclined. Further, as shown in FIG. 11, the bottom surface 11 is formed when one side of the BGA package 11 formed in a rectangular shape, specifically, when the outline of the BGA package 11 is defined by the long side L1 and the short side L2. Is formed in a long rectangular shape along the long side L1. Unlike the prism of the first embodiment, the prisms 110A and 110B of this embodiment do not have a length over the entire width of one side edge of the electronic component, and are set to about 10 mm to 20 mm, for example. In addition, you may provide the length over the full width of the one side edge of an electronic component. As described above, since the bottom surface 111 is formed in a long rectangular shape along the long side L1 of the BGA package 11, the prisms 110A and 110B have a flat plate shape as a whole, and the lower portion forming the tip is formed at an acute angle. Yes.
 このように構成された一対のプリズム110A,110Bは、鋭角の下部を下に向け、水平な上面を上にし、さらにプリズム同士の間隔が一定になるように、ホルダー120によって支えられている。 The pair of prisms 110A and 110B configured in this way is supported by the holder 120 so that the lower portion of the acute angle faces downward, the horizontal upper surface faces upward, and the distance between the prisms is constant.
 ホルダー120は、プリズム110A,110Bのそれぞれに取り付けられる一対の固定部121A,121Bとこれらの固定部121A,121B同士を連結する連結部122A,122Bとから構成されている。
 固定部121A,121Bは、図9に示すように、プリズム底面の長辺111Aに沿って長手の直方体状に形成され、上下を貫通するプリズム挿入穴123を有する。このプリズム挿入穴123は、プリズム110A,110Bの上部が嵌挿されるように形成されている。
 プリズム110A,110Bは、固定部121A,121Bのプリズム挿入穴123に取り付けられた状態で、プリズム110A,110Bの上面113が固定部121A,121Bの上面124と面一になるように位置合わせしておくのが望ましい。
The holder 120 includes a pair of fixing parts 121A and 121B attached to the prisms 110A and 110B, and connecting parts 122A and 122B that connect the fixing parts 121A and 121B.
As shown in FIG. 9, the fixing portions 121 </ b> A and 121 </ b> B are formed in a rectangular parallelepiped shape along the long side 111 </ b> A of the prism bottom surface, and have prism insertion holes 123 that penetrate vertically. The prism insertion hole 123 is formed so that the upper portions of the prisms 110A and 110B are inserted.
The prisms 110A and 110B are aligned so that the upper surfaces 113 of the prisms 110A and 110B are flush with the upper surfaces 124 of the fixing portions 121A and 121B in a state where they are attached to the prism insertion holes 123 of the fixing portions 121A and 121B. It is desirable to leave.
 プリズム110A,110Bを取り付けた固定部121A,121B同士は、一方の固定部121Aの一端部と他方の固定部121Bの一端部とがバーとして構成された第1連結部122Aによって連結され、これと同様に、一方の固定部121Aの他端部と他方の固定部121Bの他端部とが同様にバーとして構成された第2連結部122Bによって連結されている。このようにして、ホルダー120は、その全体が矩形型を呈するように構成されている。 The fixing portions 121A and 121B to which the prisms 110A and 110B are attached are connected to each other by a first connecting portion 122A in which one end portion of one fixing portion 121A and one end portion of the other fixing portion 121B are configured as a bar. Similarly, the other end portion of one fixing portion 121A and the other end portion of the other fixing portion 121B are connected by a second connecting portion 122B configured similarly as a bar. In this way, the holder 120 is configured to have a rectangular shape as a whole.
 このように構成されたホルダー120において、プリズム110A,110Bは、最も広い側面同士を対向させ、さらに底面111が対向するプリズム側に向けて下がるように、固定部121A,121Bに取り付けられている。以下の説明において、図9における左側のプリズム110Aとそれを支える固定部121Aとのセットを第1プリズムユニットU1と呼称し、右側のプリズム110Bとそれを支える固定部121Bとのセットを第2プリズムユニットU2と呼称する。 In the holder 120 configured as described above, the prisms 110A and 110B are attached to the fixing portions 121A and 121B so that the widest side surfaces are opposed to each other and the bottom surface 111 is lowered toward the opposed prism side. In the following description, the set of the left prism 110A and the fixing portion 121A that supports it in FIG. 9 is referred to as a first prism unit U1, and the set of the right prism 110B and the fixing portion 121B that supports it is a second prism. This is referred to as unit U2.
 さらに、本実施形態に係るプリズム装置100Aには、第2プリズムユニットU2のプリズム上面の上方に第1照明部130を備えている。第1照明部130はプリズム110Bの上面113と対向するように配置されており、第1照明部130からの光は上面113を介して底面111へ向けてプリズム110B内を伝搬する。 Furthermore, the prism device 100A according to the present embodiment includes the first illumination unit 130 above the upper surface of the prism of the second prism unit U2. The first illumination unit 130 is disposed so as to face the upper surface 113 of the prism 110 </ b> B, and light from the first illumination unit 130 propagates through the prism 110 </ b> B toward the bottom surface 111 through the upper surface 113.
 また、第1プリズムユニットU1のプリズム上面の傍らには、プリズム110Aの上面113を覆わないように、一対の第2照明部131が設けられている。この第2照明部131はプリズム110Aの上面113に向いており、第2照明部131からの光は上面113を介して底面111へ向けてプリズム110A内を伝搬する。
 これら第1照明部130及び第2照明部131として、LEDや電球を用いることができる。
In addition, a pair of second illumination units 131 is provided beside the upper surface of the prism of the first prism unit U1 so as not to cover the upper surface 113 of the prism 110A. The second illumination unit 131 faces the upper surface 113 of the prism 110A, and light from the second illumination unit 131 propagates through the prism 110A toward the bottom surface 111 via the upper surface 113.
As these 1st illumination part 130 and the 2nd illumination part 131, LED and a light bulb can be used.
 第5実施形態に係るプリズム装置100Aは以上のように構成されており、使用する際には、図12に示すように、一対のプリズム110A,110Bの先端部間にBGAパッケージ11を位置させる。この状態で、第2プリズムユニットU2の第1照明部130から発せられた光が、当該第2プリズムユニットU2のプリズム110B内を伝搬し、そのプリズム110Bの傾斜した底面111で反射して、BGAパッケージ11と基板11aとの間に形成されたボール11bへ向けて照射される。 The prism device 100A according to the fifth embodiment is configured as described above, and when used, as shown in FIG. 12, the BGA package 11 is positioned between the tip portions of the pair of prisms 110A and 110B. In this state, the light emitted from the first illumination unit 130 of the second prism unit U2 propagates through the prism 110B of the second prism unit U2, is reflected by the inclined bottom surface 111 of the prism 110B, and becomes BGA. Irradiation is performed toward a ball 11b formed between the package 11 and the substrate 11a.
 この光は、各ボール11b間を通過して或いは反射して進み、対向側である第1プリズムユニットU1の鋭角な先端部に入射し、第1プリズムユニットU1のプリズム110Aの傾斜した底面111で反射して上面113へ向けて、当該プリズム110A内を伝搬する。その上面113からプリズム外へ照射された光は、撮像部14やルーペや顕微鏡等の観察部140内に入る。第2プリズムユニットU2からの光は、バックライトとして機能する。 The light passes between the balls 11b or is reflected and travels, enters the acute tip portion of the first prism unit U1 on the opposite side, and enters the inclined bottom surface 111 of the prism 110A of the first prism unit U1. The light is reflected and propagates toward the upper surface 113 through the prism 110A. The light emitted from the upper surface 113 to the outside of the prism enters the imaging unit 14, an observation unit 140 such as a loupe or a microscope. The light from the second prism unit U2 functions as a backlight.
 このようにして、使用者は、第1プリズムユニットU1の上方に配置した撮像部14或いはルーペや顕微鏡等の観察部140によって、例えば、図13に示すような、BGAパッケージ11の側縁の実装部分の一部のボール11bを確認することができる。 In this way, the user can mount the side edge of the BGA package 11 as shown in FIG. 13, for example, by the imaging unit 14 or the observation unit 140 such as a magnifying glass or a microscope disposed above the first prism unit U1. Part of the ball 11b can be confirmed.
 ルーペや顕微鏡等の観察部140を、プリズム110A、即ちプリズム110Aの上面113に沿ってその長手方向へ移動させることで、BGAパッケージ11の側縁の実装部分の確認を行える。例えばCCD等の撮像部をプリズムの上側でBGAパッケージ11の側縁に沿って平行移動させることで、撮像部がBGAパッケージ11の側縁の基板に対する実装部分、即ち側縁に沿って設けられた全てのボールを正確に走査することができる。 By moving the observation unit 140 such as a loupe or a microscope in the longitudinal direction along the prism 110A, that is, the upper surface 113 of the prism 110A, the mounting portion on the side edge of the BGA package 11 can be confirmed. For example, the imaging unit such as a CCD is moved along the side edge of the BGA package 11 above the prism, so that the imaging unit is provided along the side edge of the BGA package 11 with respect to the substrate. All balls can be scanned accurately.
 ここで、従来のスコープでは、BGAパッケージ11の一つの側縁においてその全幅の複数のボールをくまなく検査するためには、スコープの位置を何度も変える作業が必要であったが、本実施形態によれば、プリズム装置100AがBGAパッケージ11の一側縁の全幅に対向して配置され、ルーペや顕微鏡等の観察部140がプリズム装置100Aの上面113に沿って移動すれば、BGAパッケージ11の側縁に沿って設けられた全てのボール11bの拡大画像を得られるので、従来における煩雑な作業を解消できる。 Here, in the conventional scope, in order to thoroughly inspect a plurality of balls of the full width at one side edge of the BGA package 11, it is necessary to change the position of the scope many times. According to the embodiment, if the prism device 100A is disposed to face the entire width of one side edge of the BGA package 11, and the observation unit 140 such as a loupe or a microscope moves along the upper surface 113 of the prism device 100A, the BGA package 11 is provided. Since it is possible to obtain enlarged images of all the balls 11b provided along the side edges, the conventional troublesome work can be eliminated.
 プリズム110A,110BはBGAパッケージ11に対して固定配置されているので、走査の際に誤ってプリズム110A,110BがBGAパッケージ11に当たって、傷つけたり破壊したりするようなことはない。 Since the prisms 110A and 110B are fixedly arranged with respect to the BGA package 11, there is no possibility that the prisms 110A and 110B hit the BGA package 11 accidentally during scanning and are damaged or destroyed.
〔第6実施形態〕
 図14は本発明の第6実施形態に係るプリズム装置100Bを示す斜視図であり、このプリズム装置100Bは、第5実施形態に係るプリズム装置100Aと異なり、第1プリズムユニットU1に対して第2プリズムユニットU2の位置を変えられる、即ちプリズム110A,110B同士の間隔Dを調整することができるよう構成されている。
[Sixth Embodiment]
FIG. 14 is a perspective view showing a prism device 100B according to the sixth embodiment of the present invention. Unlike the prism device 100A according to the fifth embodiment, this prism device 100B is second with respect to the first prism unit U1. The position of the prism unit U2 can be changed, that is, the interval D between the prisms 110A and 110B can be adjusted.
 このため、第6実施形態に係るプリズム装置100Bは調整部150を備えている。調整部150は、上記一対のバーとしての連結部122A,122Bと、ロックネジ151とを備えている。棒状の各連結部122A,122Bは、第1プリズムユニットU1の固定部121Aの両端部に一端部を固定されており、当該一端部以外の部分を第2プリズムユニットU2の固定部121Bに形成された貫通孔125に差し込まれている。これらの連結部122A,122Bに対して第2プリズムユニットU2の固定部121Bが摺動自在であり、連結部122A,122Bの長手方向に沿って固定部121Bが移動することを規制するように、第2プリズムユニットU2の固定部121Bの端部にはロックネジ151が設けられている。このロックネジ151を締めることで、このロックネジ151の先端が連結部122Aに当たり、固定部121Bが一定の位置にロックされる。 For this reason, the prism device 100B according to the sixth embodiment includes the adjustment unit 150. The adjustment unit 150 includes connection portions 122A and 122B as the pair of bars and a lock screw 151. One end of each of the rod-shaped connecting portions 122A and 122B is fixed to both ends of the fixing portion 121A of the first prism unit U1, and a portion other than the one end is formed on the fixing portion 121B of the second prism unit U2. Is inserted into the through-hole 125. The fixing portion 121B of the second prism unit U2 is slidable with respect to the connecting portions 122A and 122B, and the movement of the fixing portion 121B along the longitudinal direction of the connecting portions 122A and 122B is restricted. A lock screw 151 is provided at the end of the fixed portion 121B of the second prism unit U2. By tightening the lock screw 151, the tip of the lock screw 151 hits the connecting portion 122A, and the fixing portion 121B is locked at a fixed position.
 この調整部150を備えたプリズム装置100Bによれば、プリズム110A,110B同士の間隔を調整することができるので、一つのプリズム装置100Bで異なる寸法のBGAパッケージ11の実装状態を確認することができる。 According to the prism device 100B provided with the adjusting unit 150, the interval between the prisms 110A and 110B can be adjusted, so that the mounting state of the BGA package 11 having different dimensions can be confirmed with one prism device 100B. .
〔第6実施形態の変形例〕
 図15は本発明の第6実施形態の変形例に係るプリズム装置100Cを示す斜視図であり、このプリズム装置100Cは、第6実施形態に係るプリズム装置100Bと比較すると調整部150の構成が異なり、具体的には本実施形態の調整部150Aは、パンタグラフ式に構成されている。
[Modification of Sixth Embodiment]
FIG. 15 is a perspective view showing a prism device 100C according to a modification of the sixth embodiment of the present invention. This prism device 100C is different in the configuration of the adjustment unit 150 from the prism device 100B according to the sixth embodiment. Specifically, the adjustment unit 150A of the present embodiment is configured in a pantograph manner.
 このため、本実施形態のプリズム装置100Cにおいて、調整部150Aは各固定部121A,121Bに基端部を回転可能に取り付けられ先端部を他の固定部に摺動可能に連結された一対のアーム153A,153Bを備えている。具体的には、各固定部121A,121Bの内面にはレール部材155A,155Bが取り付けられている。レール部材155Aの端部には一本のアーム153Aの基端部が回転可能に取り付けられており、当該レール部材155Aに対して他方のアーム153Bの先端部が摺動自在に取り付けられている。これと同様に、もう一つのレール部材155Bの端部には一本のアーム153Bの基端部が回転可能に取り付けられており、当該レール部材155Bに対して他方のアーム153Aの先端部が摺動自在に取り付けられている。なお、図15に示すように、一方のアーム153Aの先端部にロックピン154が取り付けられており、このロックピン154を締めることでアーム先端部の移動が規制される。これらのアーム153A,153B同士は、長手方向の中間部で回転軸156を介して連結している。 For this reason, in the prism device 100C of the present embodiment, the adjustment unit 150A is a pair of arms in which the base end portion is rotatably attached to each of the fixing portions 121A and 121B and the distal end portion is slidably connected to the other fixing portions. 153A and 153B are provided. Specifically, rail members 155A and 155B are attached to the inner surfaces of the fixed portions 121A and 121B. A base end portion of one arm 153A is rotatably attached to an end portion of the rail member 155A, and a distal end portion of the other arm 153B is slidably attached to the rail member 155A. Similarly, the base end portion of one arm 153B is rotatably attached to the end portion of another rail member 155B, and the tip end portion of the other arm 153A slides on the rail member 155B. It is attached movably. As shown in FIG. 15, a lock pin 154 is attached to the tip of one arm 153A, and the movement of the arm tip is regulated by tightening the lock pin 154. These arms 153A and 153B are connected to each other via a rotation shaft 156 at an intermediate portion in the longitudinal direction.
 このパンタグラフ式の調整部150Aを備えたプリズム装置100Cによれば、一対のアーム153A,153Bをパンタグラフ式に伸縮させることで、プリズム110A,110B同士の間隔Dを調整することができるので、一つのプリズム装置100Cで異なる寸法のBGAパッケージ11の実装状態を確認することができる。 According to the prism device 100C including the pantograph type adjustment unit 150A, the distance D between the prisms 110A and 110B can be adjusted by expanding and contracting the pair of arms 153A and 153B in a pantograph type. The mounting state of the BGA package 11 having different dimensions can be confirmed by the prism device 100C.
〔第7実施形態〕
 図16は本発明の第7実施形態に係る画像処理システム200を示す図であり、この画像処理システム200は、前述の側視用光学部材としてのプリズム装置100A(或いは100B~100C)と、一方のプリズム110Aの上側に設けられた撮像部210と、撮像部210によって撮像された画像を処理するコンピュータとして構成される処理部220と、を備えている。
 図に示すように、一対のプリズム110A,110Bの底面間に基板11aに実装された電子部品11を配置する。この状態で、他方のプリズム110Bの上側に配置した光源230を発光させると、その光は、当該プリズム110Bの底面で反射し、さらに電子部品11の実装部分の隙間を通過して他方のプリズム110Aに入射する。これにより、撮像部210は、図17に示すように、電子部品11の実装部分を光源230によってバック照明された状態で撮像する。即ち、撮像部210によって撮像された実装部分の画像は、光源230によるバック照明によって白黒画像として得られ、ボール11b間の隙間が白色として、ボール11bや異物が黒色に撮像される。
[Seventh Embodiment]
FIG. 16 is a diagram showing an image processing system 200 according to the seventh embodiment of the present invention. This image processing system 200 includes the prism device 100A (or 100B to 100C) as the side-viewing optical member, and one of them. An imaging unit 210 provided on the upper side of the prism 110 </ b> A, and a processing unit 220 configured as a computer that processes an image captured by the imaging unit 210.
As shown in the figure, the electronic component 11 mounted on the substrate 11a is disposed between the bottom surfaces of the pair of prisms 110A and 110B. In this state, when the light source 230 disposed on the upper side of the other prism 110B is caused to emit light, the light is reflected by the bottom surface of the prism 110B, and further passes through the gap in the mounting portion of the electronic component 11 to the other prism 110A. Is incident on. As a result, the imaging unit 210 captures an image of the mounting portion of the electronic component 11 in a state of being back illuminated by the light source 230, as shown in FIG. That is, the image of the mounting part imaged by the imaging unit 210 is obtained as a black and white image by the back illumination by the light source 230, and the gap between the balls 11b is white, and the balls 11b and foreign matter are imaged black.
 このようにして作成された画像に基づいて、処理部220が画像処理して、図18に示すように、ボール高さH、ボール間隔W、BGA内部異物Xの計測・検出を行う。具体的には、処理部220は、図19(A)に示すように、良好なボール間の白黒シルエット画像を示すテンプレートを備えており、図19(B)に示すような取得した画像に、当該シルエット画像に合致する部位がいくつあるか判定する。その結果、検出個数が設定値以下の場合、異物欠陥などの欠陥“有り”と判定する。
 また、ボール高さH、ボール間隔Wは、当該シルエット画像に合致した領域を抽出し、当該領域の中心を基準にして、高さであれば横方向に±Δの範囲における高さの平均を求め、間隔であれば上下方向に±Hの範囲における間隔の平均を求める。そして、処理部220はボール11bの高さや間隔が設定値以下の場合、不良などと判定する。
 このように本実施形態に係る画像処理システム200によれば、側視用光学部材としてのプリズム装置100A(或いは100B~100C)を利用することで、観察対象であるBGAパッケージの実装部分、即ち半田のボール11bが光源230によってバック照明されて撮像することができるため、略二値化した画像を得ることができる。これにより、ボール形状がはっきりとした画像を取得することができる。よって、実装状態の良否の判定を容易に行える。具体的には、ボール間隔やボール高さを精度良く計測することが可能である。
Based on the image thus created, the processing unit 220 performs image processing to measure and detect the ball height H, the ball interval W, and the BGA internal foreign matter X as shown in FIG. Specifically, as shown in FIG. 19A, the processing unit 220 includes a template that shows a black and white silhouette image between good balls, and the acquired image as shown in FIG. It is determined how many parts match the silhouette image. As a result, when the detected number is equal to or less than the set value, it is determined that there is a defect such as a foreign object defect.
For the ball height H and the ball interval W, an area that matches the silhouette image is extracted. If the height is based on the center of the area, the average height in the range of ± Δ in the horizontal direction is obtained. If it is an interval, an average of intervals in a range of ± H is obtained in the vertical direction. The processing unit 220 determines that the ball 11b is defective or the like when the height or interval of the balls 11b is equal to or less than a set value.
As described above, according to the image processing system 200 according to the present embodiment, by using the prism device 100A (or 100B to 100C) as the side-viewing optical member, the mounting portion of the BGA package to be observed, that is, the solder Since the ball 11b is back illuminated by the light source 230 and can be imaged, a substantially binarized image can be obtained. Thereby, an image with a clear ball shape can be acquired. Therefore, it is possible to easily determine whether the mounting state is good or bad. Specifically, it is possible to accurately measure the ball interval and the ball height.
 以上詳述したが、本発明はその趣旨を逸脱しない範囲において様々な形態で実施することができる。
 例えば、上述した実施形態においては、BGAパッケージ11の全側縁に対向するようにそれぞれプリズム装置100が配置されているが、これに限らず、例えばBGAパッケージ11の二つの側縁或いはただ一つの側縁に対向するように、プリズム装置100が二つ又は一つの反射面11Bを有するように、二つの又は一つのプリズム101で構成されてもよい。
Although detailed above, the present invention can be implemented in various forms without departing from the spirit of the present invention.
For example, in the above-described embodiment, the prism device 100 is disposed so as to face all the side edges of the BGA package 11. However, the present invention is not limited to this. For example, two side edges or only one edge of the BGA package 11 is provided. The prism device 100 may be composed of two or one prisms 101 so as to have two or one reflecting surfaces 11B so as to face the side edges.
 また、図6に示した実施形態によるスコープ20においては、側視用光学部材としての側視用ミラー21がBGAパッケージ11の側縁に対して45度より大きい傾斜角度を有しているが、これに限らず、他の実施形態においても、プリズム装置100の反射面101Aが同様にBGAパッケージ11の側縁に対して45度より大きい傾斜角度を有していてもよい。
 上記構成例では、筐体25内の反射部材であるリレープリズム14eを揺動させるようにスコープが構成されているが、撮像部14a側の筐体25自体、より具体的には筐体25、レンズ14c、撮像部14aを組み合わせて成るスコープ本体26自体を揺動させるように構成されてもよい。この場合、例えば、図1に示すステージ12に添設されて設けられた支柱12Eの上端からステージ上方側へ突出したブラケット12Fに、スコープ本体26を揺動可能に支持する軸を設ける。
 また、上記説明では、プリズム装置をステージ12でX-Y方向へ動かして、撮像部14aが相対的にプリズム装置上を移動するように構成したが、この種のステージを利用せずに、例えば、撮像部14a及びスコープ本体26をロボットアームで支持してプリズム装置上を移動させるように構成してもよい。
Further, in the scope 20 according to the embodiment shown in FIG. 6, the side-viewing mirror 21 as the side-viewing optical member has an inclination angle larger than 45 degrees with respect to the side edge of the BGA package 11. In addition to this, also in other embodiments, the reflective surface 101A of the prism device 100 may similarly have an inclination angle greater than 45 degrees with respect to the side edge of the BGA package 11.
In the above configuration example, the scope is configured to swing the relay prism 14e, which is a reflection member in the housing 25, but the housing 25 itself on the imaging unit 14a side, more specifically, the housing 25, The scope main body 26 itself formed by combining the lens 14c and the imaging unit 14a may be configured to swing. In this case, for example, a shaft for swingably supporting the scope main body 26 is provided on the bracket 12F protruding upward from the upper end of the support column 12E provided attached to the stage 12 shown in FIG.
In the above description, the prism device is moved in the XY direction on the stage 12 so that the imaging unit 14a moves relatively on the prism device. However, without using this type of stage, for example, The imaging unit 14a and the scope main body 26 may be supported by a robot arm and moved on the prism device.
 さらに、上述した実施形態においては、電子部品としてBGAパッケージ11の側縁の実装部分としてのボール11bを観察するように構成されているが、これに限らず、他の電子部品の側縁の実装部分を観察するようにしてもよいことは明らかである。 Further, in the above-described embodiment, the ball 11b as the mounting portion of the side edge of the BGA package 11 is observed as an electronic component. However, the present invention is not limited to this, and mounting of the side edge of another electronic component is performed. Obviously, the part may be observed.
 また、本発明のプリズム装置は第1照明部130及び/又は第2照明部131を省略して構成されてもよい。 In addition, the prism device of the present invention may be configured by omitting the first illumination unit 130 and / or the second illumination unit 131.
 さらに、上述した実施形態においては、電子部品としてBGAパッケージの側縁の実装部分としてのボールを観察するように構成されているが、これに限らず、他の電子部品の側縁の実装部分を観察するようにしてもよいことは明らかである。
 上記実施形態の説明において一対のプリズム110A,110Bは平板型に形成されて他方のプリズムに対向する面とその背面とが平行に形成され、さらにプリズムに対向する面と底面111とで鋭角なエッジを形成しているが、本発明の一対のプリズムは、例えば次のように構成されてもよい。図20(A)は本発明の他の実施形態に係るプリズム110Cを示す正面図であり、(B)は側面図である。これらの図に示すように、プリズム110Cは、前述のプリズム110A,110Bと同様に傾斜した底面111を備えるが、さらに他方のプリズムに対向する面P1から背面P2側へ向けて下方へ傾いた傾斜面115を備え、この傾斜面115の下端と底面111の下端とが合わさり、エッジEを形成している。このようなプリズム110Cでは、上面113が底面111より水平方向において幅広に形成される。このようにプリズム上部を底面111より幅広に形成することで、プリズム上方からプリズムの底面111で反射される像を視認し易くすることができる。
Furthermore, in the above-described embodiment, it is configured to observe the ball as the mounting portion on the side edge of the BGA package as the electronic component, but not limited to this, the mounting portion on the side edge of another electronic component is used. Obviously it may be observed.
In the description of the above embodiment, the pair of prisms 110A and 110B are formed in a flat plate shape, the surface facing the other prism and the back surface thereof are formed in parallel, and the surface facing the prism and the bottom surface 111 have sharp edges. However, the pair of prisms of the present invention may be configured as follows, for example. FIG. 20A is a front view showing a prism 110C according to another embodiment of the present invention, and FIG. 20B is a side view. As shown in these figures, the prism 110C includes a bottom surface 111 that is inclined in the same manner as the prisms 110A and 110B described above, but is further inclined downward from the surface P1 facing the other prism toward the back surface P2. The lower surface of the inclined surface 115 and the lower surface of the bottom surface 111 are joined together to form an edge E. In such a prism 110 </ b> C, the upper surface 113 is formed wider than the bottom surface 111 in the horizontal direction. By forming the upper portion of the prism wider than the bottom surface 111 in this way, it is possible to make it easy to visually recognize an image reflected from the bottom surface 111 of the prism from above the prism.

Claims (13)

  1.  基板に実装された電子部品の一側縁の全幅に亘って当該側縁と対向する反射面を有する、側視用光学部材。 A side-viewing optical member having a reflective surface facing the side edge over the entire width of one side edge of the electronic component mounted on the substrate.
  2.  前記電子部品の二つの側縁と対向する前記反射面を有する、請求項1に記載の側視用光学部材。 The optical member for side view according to claim 1, comprising the reflecting surface facing two side edges of the electronic component.
  3.  前記電子部品の四方の各側縁と対向する前記反射面を有する、請求項2に記載の側視用光学部材。 The side-viewing optical member according to claim 2, wherein the optical member has the reflecting surface facing each side edge of each side of the electronic component.
  4.  揺動軸の周りに揺動可能に支持された角度調整用の反射部材と、上記反射部材を上記揺動軸の周りに揺動させる角度調整機構と、を備え、当該反射部材を揺動させて前記実装部分の撮像領域を変えることができる、請求項1~3の何れかに記載の側視用光学部材。 A reflection member for angle adjustment supported so as to be able to swing around a swinging shaft, and an angle adjusting mechanism for swinging the reflecting member around the swinging shaft, and swinging the reflecting member. The side-viewing optical member according to any one of claims 1 to 3, wherein an imaging region of the mounting portion can be changed.
  5.  前記電子部品の側縁に対向する全反射面を備えたプリズムを備えている、請求項4に記載の側視用光学部材。 The side-viewing optical member according to claim 4, comprising a prism having a total reflection surface facing a side edge of the electronic component.
  6.  前記電子部品の側縁に対向する全反射面を有するミラーを備えている、請求項4に記載の側視用光学部材。 The side-viewing optical member according to claim 4, further comprising a mirror having a total reflection surface facing a side edge of the electronic component.
  7.  一対のプリズムと、
     上記プリズム同士を所定の間隔を置いて保持するホルダーと、を備え、
     上記プリズムは傾斜した底面と水平な上面とを有し、
     上記底面は対向するプリズム側に向けて下がっていて、
     上記一対のプリズムのうち一方の上面から入射した光がこのプリズムの上記底面において他の上記プリズム側へ反射する、側視用光学部材。
    A pair of prisms;
    A holder for holding the prisms at a predetermined interval,
    The prism has an inclined bottom surface and a horizontal top surface,
    The bottom is down towards the opposite prism side,
    A side-viewing optical member in which light incident from one upper surface of the pair of prisms is reflected to the other prism side at the bottom surface of the prism.
  8.  前記ホルダーは、前記一対のプリズムのそれぞれに取り付けられた固定部と、上記固定部同士の間隔を調整する調整部と、から構成されている、請求項7に記載の側視用光学部材。 The side-viewing optical member according to claim 7, wherein the holder includes a fixing portion attached to each of the pair of prisms, and an adjustment portion that adjusts an interval between the fixing portions.
  9.  前記調整部は、一方の固定部に固定され他方の固定部に摺動可能に連結されたバーを備え、
     上記他方の固定部が上記バーに案内されて移動することで、前記プリズム同士の間隔が変わる、請求項8に記載の側視用光学部材。
    The adjustment portion includes a bar fixed to one fixing portion and slidably connected to the other fixing portion,
    The side-viewing optical member according to claim 8, wherein the distance between the prisms changes as the other fixing portion moves while being guided by the bar.
  10.  前記調整部は、基端部が各固定部に回転可能に取り付けられ先端部が他の固定部に摺動可能に連結された一対のアームを備え、
     上記アーム同士は、長手方向の中間部で回転軸を介して連結されており、
     上記一対のアームがパンタグラフ式に伸縮することで前記一対のプリズム同士の間隔が変わる、請求項8に記載の側視用光学部材。
    The adjustment portion includes a pair of arms having a base end portion rotatably attached to each fixing portion and a distal end portion slidably connected to other fixing portions,
    The arms are connected to each other via a rotating shaft at the middle in the longitudinal direction,
    The side-viewing optical member according to claim 8, wherein a distance between the pair of prisms is changed by expanding and contracting the pair of arms in a pantograph manner.
  11.  一方のプリズムの上側に少なくとも一つの光源を備え、
     上記光源からの光が、当該プリズムの上面から入射し、当該プリズムの底面で反射して他方のプリズムへ向けて出射される、請求項7~10の何れかに記載の側視用光学部材。
    At least one light source is provided above one prism,
    The side-viewing optical member according to any one of claims 7 to 10, wherein light from the light source is incident from the upper surface of the prism, reflected by the bottom surface of the prism, and emitted toward the other prism.
  12.  請求項11に記載の側視用光学部材と、
     前記他方のプリズムの上側に設けられた撮像部と、
     上記撮像部によって撮像された画像を処理する処理部と、を備え、
     前記一対のプリズムの底面間に基板に実装された電子部品を配置し、前記一方のプリズムの上側に設けた光源からの光が当該一方のプリズムの底面で反射し、さらに電子部品の実装部分の隙間を通過して他方のプリズムに入射することで、撮像部が、電子部品の実装部分を前記光源によってバック照明された状態で撮像し、
     上記処理部が上記実装部分の画像を処理する、画像処理システム。
    The optical member for side view according to claim 11,
    An imaging unit provided above the other prism;
    A processing unit that processes an image captured by the imaging unit,
    An electronic component mounted on a substrate is disposed between the bottom surfaces of the pair of prisms, light from a light source provided on the upper side of the one prism is reflected by the bottom surface of the one prism, By passing through the gap and entering the other prism, the imaging unit images the mounting part of the electronic component while being back illuminated by the light source,
    An image processing system in which the processing unit processes an image of the mounting part.
  13.  前記撮像部によって撮像された実装部分の画像が、前記光源によるバック照明によって白黒画像として得られ、ボール間の隙間が白色として、ボールや異物が黒色に撮像される、請求項12に記載の画像処理システム。 The image according to claim 12, wherein an image of the mounting part imaged by the imaging unit is obtained as a black and white image by back illumination by the light source, and the gap between the balls is white and the ball and the foreign object are imaged black. Processing system.
PCT/JP2009/051284 2008-03-31 2009-01-27 Side-viewing optical member and image processing system WO2009122765A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008092495A JP2011122820A (en) 2008-03-31 2008-03-31 Scope for confirming mounting part of electronic component
JP2008-092495 2008-03-31
JP2008-321662 2008-12-17
JP2008321662 2008-12-17

Publications (1)

Publication Number Publication Date
WO2009122765A1 true WO2009122765A1 (en) 2009-10-08

Family

ID=41135165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051284 WO2009122765A1 (en) 2008-03-31 2009-01-27 Side-viewing optical member and image processing system

Country Status (1)

Country Link
WO (1) WO2009122765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3435136A4 (en) * 2016-03-31 2019-11-13 Hirosaki University Multi-surface image acquisition system, observation device, observation method, screening method, and stereoscopic reconstruction method of subject

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273339A (en) * 1993-03-19 1994-09-30 N T T Data Tsushin Kk External appearance inspection system
JPH0798216A (en) * 1993-01-26 1995-04-11 Sony Corp Method and device for inspecting appearance of semiconductor device
JPH07110305A (en) * 1993-10-08 1995-04-25 Tanaka Kikinzoku Kogyo Kk Method for image processing inspection of glossy metal surface
JPH1175955A (en) * 1997-09-09 1999-03-23 Takahashi Kanamono Corp Closet
JPH11230728A (en) * 1998-02-10 1999-08-27 Ntt Fanet Systems Kk Method and apparatus for visual inspection of object to be inspected
JPH11304721A (en) * 1998-04-23 1999-11-05 Sony Corp Visual inspection device
JP2000171224A (en) * 1998-12-09 2000-06-23 Sony Corp Visual inspection device
JP2003254726A (en) * 2002-02-28 2003-09-10 Shibuya Kogyo Co Ltd Device for visual inspection of semi-conductor element
WO2005083398A1 (en) * 2004-02-27 2005-09-09 Technical Co.,Ltd. Multidirectional simultaneous observation optical system, image reader, image reading method and multidirectional simultaneous observation optical system complex
WO2005083399A1 (en) * 2004-02-27 2005-09-09 Technical Co., Ltd Multidirectional simultaneous observation optical system, image reader, image reading method, multidirectional simultaneous observation optical system composite body
JP2008113891A (en) * 2006-11-06 2008-05-22 Sanyo Electric Co Ltd Optical measurement unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798216A (en) * 1993-01-26 1995-04-11 Sony Corp Method and device for inspecting appearance of semiconductor device
JPH06273339A (en) * 1993-03-19 1994-09-30 N T T Data Tsushin Kk External appearance inspection system
JPH07110305A (en) * 1993-10-08 1995-04-25 Tanaka Kikinzoku Kogyo Kk Method for image processing inspection of glossy metal surface
JPH1175955A (en) * 1997-09-09 1999-03-23 Takahashi Kanamono Corp Closet
JPH11230728A (en) * 1998-02-10 1999-08-27 Ntt Fanet Systems Kk Method and apparatus for visual inspection of object to be inspected
JPH11304721A (en) * 1998-04-23 1999-11-05 Sony Corp Visual inspection device
JP2000171224A (en) * 1998-12-09 2000-06-23 Sony Corp Visual inspection device
JP2003254726A (en) * 2002-02-28 2003-09-10 Shibuya Kogyo Co Ltd Device for visual inspection of semi-conductor element
WO2005083398A1 (en) * 2004-02-27 2005-09-09 Technical Co.,Ltd. Multidirectional simultaneous observation optical system, image reader, image reading method and multidirectional simultaneous observation optical system complex
WO2005083399A1 (en) * 2004-02-27 2005-09-09 Technical Co., Ltd Multidirectional simultaneous observation optical system, image reader, image reading method, multidirectional simultaneous observation optical system composite body
JP2008113891A (en) * 2006-11-06 2008-05-22 Sanyo Electric Co Ltd Optical measurement unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3435136A4 (en) * 2016-03-31 2019-11-13 Hirosaki University Multi-surface image acquisition system, observation device, observation method, screening method, and stereoscopic reconstruction method of subject

Similar Documents

Publication Publication Date Title
JP4706356B2 (en) Screw shape measuring device
KR20090004636A (en) Substrate surface inspection apparatus
TW200809185A (en) Apparatus and method for characterizing defects in a transparent substrate
JP5099704B2 (en) Method for measuring height and height measuring device
JP2006308425A (en) Measuring device and measuring method
WO2001077652A1 (en) Surface inspection device
JP3580493B2 (en) Scanning head and appearance inspection method and apparatus using the same
JP7138194B2 (en) Image inspection device
JP2009150835A (en) Optical inspection method and optical inspection device
JP3170598B2 (en) Appearance inspection device
WO2009122765A1 (en) Side-viewing optical member and image processing system
KR100370608B1 (en) Image acquisition apparatus
KR100812408B1 (en) Apparatus for Processing Display Panel
KR20020093507A (en) Apparatus for inspecting parts
JP2585885B2 (en) Image recognition device
JP2011122820A (en) Scope for confirming mounting part of electronic component
JP2008064656A (en) Peripheral edge inspecting apparatus
KR20030063213A (en) Method and apparatus for measuring a line width
WO2020152866A1 (en) Image inspection device
JP2005283199A (en) Sensor unit and printing state inspection device using sensor unit
JP4609089B2 (en) Periodic pattern unevenness inspection apparatus and periodic pattern imaging method
JP2000266680A (en) Substrate inspection apparatus and oblique illumination unit
JPH09292211A (en) Inspecting device for electronic part
JP2966729B2 (en) Light guide element and method of using the same
KR100576392B1 (en) Apparatus for vision inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP