WO2009122566A1 - Reproduction apparatus and method, and computer program - Google Patents

Reproduction apparatus and method, and computer program Download PDF

Info

Publication number
WO2009122566A1
WO2009122566A1 PCT/JP2008/056485 JP2008056485W WO2009122566A1 WO 2009122566 A1 WO2009122566 A1 WO 2009122566A1 JP 2008056485 W JP2008056485 W JP 2008056485W WO 2009122566 A1 WO2009122566 A1 WO 2009122566A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
read
mark
space
run length
Prior art date
Application number
PCT/JP2008/056485
Other languages
French (fr)
Japanese (ja)
Inventor
庄悟 宮鍋
儀央 佐々木
裕行 内野
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/056485 priority Critical patent/WO2009122566A1/en
Publication of WO2009122566A1 publication Critical patent/WO2009122566A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • G11B20/1423Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code
    • G11B20/1426Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code conversion to or from block codes or representations thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1816Testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • G11B7/00375Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs arrangements for detection of physical defects, e.g. of recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1816Testing
    • G11B2020/1823Testing wherein a flag is set when errors are detected or qualified
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs

Definitions

  • the present invention relates to, for example, a reproduction apparatus and method for reproducing a data pattern recorded on a recording medium, and a technical field of a computer program that causes a computer to function as such a reproduction apparatus.
  • a reproducing apparatus various apparatuses for reproducing a data pattern by irradiating a recording medium such as an optical disc such as a CD, a DVD, a Blu-ray Disc, etc. with a laser beam are realized.
  • a recording medium such as an optical disc such as a CD, a DVD, a Blu-ray Disc, etc.
  • a laser beam a laser beam
  • a track on a recording medium is irradiated with laser light
  • a reflected light of the irradiated laser light is detected to detect a data pattern composed of marks and spaces. .
  • the data pattern can be reproduced.
  • a defect area (defect area) on the recording medium is detected and defect management (defect management) not using the detected defect area is performed.
  • defect management defect management
  • jitter is detected, and a defective area is detected based on whether or not the detected jitter has characteristics capable of withstanding recording or reproduction.
  • a defect area is detected based on a change in jitter, asymmetry, error rate, envelope waveform, or the like.
  • a mark that should originally be recorded so that the run length is 2T or 3T may be recorded as a mark with a run length of 2T or less than 3T.
  • the signal component of the mark having a run length of 2T or less than 3T may not intersect with the zero level (or the binarized slice level).
  • a mark with a run length of 2T or less than 3T does not contribute to the calculation of jitter and does not deteriorate the jitter. Therefore, the configurations disclosed in Patent Document 1 and Patent Document 2 described above have a technical problem that it is difficult or impossible to detect such a recording area as a defective area.
  • the fingerprint or the like since it remains the same that the fingerprint or the like is attached, it is needless to say that it is preferably detected as a defective area. Even if the recorded mark or space is recorded with the original run length, the same problem may occur when a fingerprint is attached during reproduction.
  • the present invention has been made in view of, for example, the above-described conventional problems, and an object of the present invention is to provide a playback apparatus and method that can suitably detect a defective area on a recording medium, for example, and a computer program. .
  • the reproducing apparatus of the present invention includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and the read signal.
  • the detection means for detecting the appearance frequency of at least one signal component of a plurality of types of signal components included and having different run lengths, and the reading based on the amount of change in the appearance frequency of the at least one signal component
  • Determination means for determining whether or not the recording area on the recording medium from which the signal has been read is a defective area.
  • the reproducing method of the present invention includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and the read signal.
  • the detection step of detecting an appearance frequency of at least one signal component of a plurality of types of signal components included and having different run lengths, and the reading based on a change amount of the appearance frequency of the at least one signal component A determination step of determining whether or not the recording area on the recording medium from which the signal has been read is a defective area.
  • a computer program includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and the read signal.
  • the detection means for detecting the appearance frequency of at least one signal component of a plurality of types of signal components included and having different run lengths, and the reading based on the amount of change in the appearance frequency of the at least one signal component
  • a computer program for playback control that controls a computer provided in a playback device, comprising: a determination unit that determines whether or not a recording area on the recording medium from which a signal has been read is a defective area; To function as the detection means and the determination means.
  • FIG. 2 is a block diagram conceptually showing the basic structure of a reproducing apparatus in the example.
  • 6 is a flowchart conceptually showing a flow of operations of the reproducing apparatus in the example. It is a table
  • FIG. 10 is a block diagram conceptually showing the structure of a reproducing apparatus in a modified example.
  • the embodiment of the reproducing apparatus of the present invention includes signal components of a plurality of types of marks that are included in a read signal obtained by reading a data pattern from a recording medium and have different run lengths, and are included in the read signal and the run signal.
  • the read signal is read on the basis of detection means for detecting an appearance frequency of at least one signal component of signal components of a plurality of types of spaces having different lengths, and a change amount of the appearance frequency of the at least one signal component.
  • Determining means for determining whether or not the recording area on the recording medium is a defective area.
  • the appearance frequency of at least one signal component of a plurality of types of mark signal components and a plurality of types of space signal components is detected by the operation of the detection means.
  • the recording medium is a DVD
  • marks having run lengths from 3T to 11T and 14T are examples of “plural types of marks”.
  • a mark whose run length is 2T to 9T is an example of “a plurality of types of marks”.
  • spaces with run lengths from 3T to 11T and 14T are examples of “plural types of spaces”.
  • a space with a run length of 2T to 9T is an example of “a plurality of types of spaces”.
  • the change amount of the appearance frequency detected by the detection unit (for example, the change amount of the appearance frequency itself, the change amount with respect to the predetermined reference frequency, the difference from the predetermined reference frequency, Whether or not the recording area on the recording medium is a defective area is determined based on a magnitude relationship with respect to the reference frequency, a ratio with respect to the predetermined reference frequency, a deviation rate with respect to the predetermined reference frequency, and the like. That is, it is determined whether or not the recording area from which the read signal including at least one signal component whose appearance frequency has been detected by the detection unit is read is a defective area.
  • the “reference frequency” may typically indicate, for example, a predetermined fixed value, or each of a plurality of types of marks and a plurality of types of spaces when a normal recording operation is performed. The appearance frequency, etc. may be shown.
  • the above-described detection operation and determination operation for a read signal obtained in a defect region in which the transmittance with respect to laser light has fluctuated from the original transmittance, such as a defect region to which a fingerprint or the like is attached will be described.
  • a defect region in which the transmittance with respect to laser light has fluctuated from the original transmittance, such as a defect region to which a fingerprint or the like is attached.
  • the run length is originally minT (where “minT” indicates the shortest run length predetermined by the standard of the recording medium).
  • the mark to be recorded may be recorded as a mark having a run length of less than minT.
  • the recording of a mark having a run length of less than minT also leads to reading of a space having a run length of less than minT together with a mark having a run length of less than minT during reproduction. Furthermore, at the time of reproduction, the signal component of the mark or space whose run length is less than minT is shifted in the amplitude direction, so that it may not intersect with the zero level (or the binarized slice level). As a result, data patterns originally recorded as predetermined run-length marks and spaces are reproduced as a series of spaces. If such a space is connected to another run-length mark or space, the run-length of another run-length mark or space is also changed.
  • the frequency of appearance of the signal component of each mark or the frequency of appearance of the signal component of each space included in the read signal obtained in the defect area can vary. More specifically, the frequency of appearance of the signal component of each mark or the frequency of appearance of the signal component of each space included in the read signal obtained in the defect area is included in the read signal obtained in a normal area without defects.
  • the frequency of appearance of the signal component of each mark or the frequency of appearance of the signal component of each space may be different. In this case, since the signal component of the mark or space whose run length is less than minT does not intersect with the zero level (or the binarized slice level), the jitter does not deteriorate. In the configuration for detecting the defective area, the defective area cannot be detected.
  • the defect area can be suitably detected by taking into account the change amount of the appearance frequency detected by the detecting means by the operation of the determining means.
  • the reproducing apparatus it is possible to appropriately identify a defective region by referring to the appearance frequency of at least one signal component among a plurality of types of marks and a plurality of types of spaces having different run lengths. Can be detected.
  • the detecting means detects the appearance frequency of the signal component of the mark having the shortest run length, and the determining means determines the appearance frequency of the signal component of the mark having the shortest run length. Based on the amount of change, it is determined whether or not the recording area on the recording medium from which the read signal has been read is a defective area.
  • the mark having the shortest run length (for example, the recording medium is significantly affected) in the defect area in which the transmittance with respect to the laser beam fluctuates from the original transmittance, such as the defect area to which the fingerprint or the like is attached.
  • the run length is a 3T mark.
  • the defect area can be detected based on the appearance frequency of the run length 2T mark). it can. Therefore, the defect area can be detected with higher accuracy or more easily.
  • the detecting means detects the appearance frequency of the signal component of the space having the shortest run length
  • the determining means is the signal component of the space having the shortest run length. Whether the recording area on the recording medium from which the read signal has been read is a defective area is determined based on the change amount of the appearance frequency of.
  • the space having the shortest run length (for example, the recording medium is significantly affected) in the defect area where the transmittance with respect to the laser beam fluctuates from the original transmittance, such as the defect area to which the fingerprint or the like is attached.
  • the run length is a 3T space.
  • the defect area can be detected based on the appearance frequency of the run length is a 2T space). it can. Therefore, the defect area can be detected with higher accuracy or more easily.
  • the determination means includes the appearance frequency. May be determined that the recording area on the recording medium from which the read signal has been read is a defective area when is smaller than a predetermined ratio with respect to a predetermined reference frequency.
  • the originally intended run length is as described above.
  • the mark or space cannot be recorded.
  • a mark or space to be recorded as a mark or space with the shortest run length may be recorded as a mark or space with a shorter run length.
  • the appearance frequency of the mark or space having the shortest run length is reduced. Therefore, when the appearance frequency is smaller than the reference frequency by a predetermined ratio or more, it is possible to preferably detect the defect area by determining that the defect area is a defect area.
  • the detecting means detects an appearance frequency of a signal component having a relatively long run length included in the read signal, and the determining means Whether or not the recording area on the recording medium from which the read signal has been read is a defective area is determined based on the change amount of the appearance frequency of the signal component in the space having a relatively long run length.
  • a space having a relatively long run length (for example, if the recording medium is a DVD), the appearance frequency may vary due to a decrease in the appearance frequency of the mark or space having the shortest run length.
  • the run lengths are 7T to 11T and 14T spaces and the recording medium is a Blu-ray Disc, the defect area can be suitably detected based on the appearance frequency of the signal components of the run lengths 6T to 9T.
  • the detecting means detects an appearance frequency of a signal component of a space having the longest run length included in the read signal, and the determining means includes the run length. Whether or not the recording area on the recording medium from which the read signal is read is a defective area is determined based on the change amount of the appearance frequency of the signal component of the longest space.
  • a space having the longest run length that can vary due to a decrease in the appearance frequency of the mark or space having the shortest run length for example, a run length if the recording medium is a DVD.
  • the defect area can be suitably detected based on the appearance frequency of signal components having a run length of 8T or 9T.
  • the determination unit includes the determination unit When the appearance frequency is greater than a predetermined reference frequency by a predetermined ratio or more, the recording area on the recording medium from which the read signal is read may be determined to be a defective area.
  • the originally intended run is performed as described above. It becomes impossible to record length marks or spaces. As a result, a mark or space to be recorded as a mark or space with the shortest run length may be recorded as a mark or space with a shorter run length. Due to this, at the time of reproduction, a space with a shorter run length may be treated as a data pattern integrally connected to other spaces. As a result, the appearance frequency of a space having a relatively long or long run length increases. Therefore, when the appearance frequency is larger than the reference frequency by a predetermined ratio or more, it is possible to detect the defect region suitably by determining that the defect region is a defect region.
  • the detection means includes a violation run length mark different from a run length included in the read signal and predetermined by a standard, and the violation run length.
  • the frequency of appearance of at least one signal component of the space is detected, and the determination unit is configured to read the reading based on the amount of change in the frequency of appearance of the signal component of at least one of the violation run-length mark and the violation run-length space. It is determined whether or not the recording area on the recording medium from which the signal has been read is a defective area.
  • a mark or space to be recorded as a mark or space with the shortest (or longest) run length is a shorter or longer run length (i.e., a violation run length, for example, a record
  • the run length may be 2T or less, 12T, 13T, or 15T or more, and if the recording medium is a Blu-ray Disc, the run length may be 1T or less or 10T or more). In consideration of this, it is possible to detect the defect area suitably.
  • the determination unit includes the appearance frequency
  • the recording area on the recording medium from which the reading signal is read may be determined to be a defective area when the ratio is larger than a predetermined ratio with respect to a predetermined reference frequency.
  • the originally intended run length is as described above.
  • the mark or space cannot be recorded.
  • the appearance frequency of violation run-length marks or spaces increases. Therefore, when the appearance frequency is larger than the reference frequency by a predetermined ratio or more, it is possible to detect the defect region suitably by determining that the defect region is a defect region.
  • a sync pattern that includes each of the predetermined run-length mark and the predetermined run-length space substantially equally is recorded on the recording medium, and the detection means Detects the appearance frequency of the signal component of the mark of the predetermined run length included in the read signal and the signal component of the space of the predetermined run length included in the read signal, and the determination means
  • the recording area on the recording medium from which the read signal is read is defective based on the amount of change in the appearance frequency of the signal component of the mark of the predetermined run length with respect to the appearance frequency of the signal component of the space of the predetermined run length. It is determined whether it is an area.
  • the sync pattern includes a predetermined run-length mark and a predetermined run-length space approximately evenly when a normal recording operation is performed, while a predetermined run-length mark and a predetermined run-length when recorded in a defective area.
  • Each of the run length spaces may be unequal. Therefore, according to this aspect, the defective area can be suitably detected by reading the sync pattern.
  • the amplitude level of the read signal is limited by a predetermined amplitude limit value to obtain an amplitude limit signal, and high-frequency emphasis is applied to the amplitude limit signal.
  • An amplitude limiting filtering unit that obtains an equalization correction signal by performing filtering processing is further provided, wherein the determination unit includes the frequency of appearance of the at least one signal component included in the equalization correction signal. Whether or not the recording area on the recording medium from which the read signal has been read is a defective area is determined based on the amount of change in the appearance frequency of at least one signal component included in.
  • the amplitude level of the read signal is limited by the operation of the amplitude limit filtering means. Specifically, the signal level of the read signal whose amplitude level is larger than the upper limit or lower limit of the amplitude limit value is limited to the upper limit or lower limit of the amplitude limit value. On the other hand, the amplitude level of the signal component whose amplitude level is below the upper limit and below the lower limit of the amplitude limit value in the read signal is not limited.
  • the high-frequency emphasis filtering process is further performed on the read signal (that is, the amplitude limit signal) on which the amplitude level is thus limited. As a result, an equalization correction signal is acquired.
  • the appearance frequency of each mark or each space included in the equalization correction signal can be brought close to the original appearance frequency. Therefore, the defect region can be suitably detected by comparing the appearance frequency of each mark or each space included in the read signal with the appearance frequency of each mark or each space included in the equalization correction signal. it can.
  • the above-described operation can be performed on a wide variety of recording media or unknown recording media. Therefore, it is possible to detect a defective area in a variety of recording media or unknown recording media.
  • the embodiment according to the reproducing method of the present invention includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and included in the read signal and the run signal.
  • the read signal is read based on a detection step of detecting an appearance frequency of at least one signal component of signal components of a plurality of types of spaces having different lengths, and a change amount of the appearance frequency of the at least one signal component.
  • the same effects as the various effects that can be enjoyed by the embodiment of the reproducing apparatus of the present invention described above can be enjoyed.
  • the embodiment of the playback method of the present invention can also take various aspects.
  • Embodiments according to the computer program of the present invention include signal components of a plurality of types of marks that are included in a read signal obtained by reading a data pattern from a recording medium and have different run lengths, and are included in the read signal and the run signal.
  • the read signal is read on the basis of detection means for detecting an appearance frequency of at least one signal component of signal components of a plurality of types of spaces having different lengths, and a change amount of the appearance frequency of the at least one signal component.
  • a reproducing apparatus comprising: a determination unit that determines whether or not the recording area on the recording medium is a defective area (that is, the embodiment according to the above-described reproducing apparatus of the present invention (including various aspects thereof))
  • a computer program for controlling playback that controls a computer provided in the computer, the computer comprising the detection means and the detection means To function as a constant means.
  • the computer program is read from a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk that stores the computer program, and executed. If the computer program is downloaded to a computer via communication means and then executed, the above-described embodiment of the playback apparatus of the present invention can be realized relatively easily.
  • the embodiment of the computer program of the present invention can also adopt various aspects.
  • Embodiments according to the computer program product of the present invention are included in a read signal obtained by reading a data pattern from a recording medium and are included in the read signal and a plurality of types of mark signal components having different run lengths. Based on the detection means for detecting the appearance frequency of at least one signal component of the signal components of a plurality of types of spaces having different run lengths, and the read signal is read based on the amount of change in the appearance frequency of the at least one signal component.
  • a determination unit that determines whether or not the recording area on the recording medium is a defective area (that is, the above-described embodiment of the reproduction apparatus of the present invention (including various aspects thereof)
  • the program instructions executable by the computer provided in the above are clearly embodied, and the computer includes the detection means and the detection means. To function as a constant means.
  • the computer program product of the present invention if the computer program product is read into a computer from a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk storing the computer program product, or
  • a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk storing the computer program product
  • the computer program product which is a transmission wave
  • the computer program product which is a transmission wave
  • the computer program product which is a transmission wave
  • the computer program product which is a transmission wave
  • the embodiment of the computer program product of the present invention can also adopt various aspects.
  • the detection device and the determination device are provided.
  • the method includes a detection step and a determination step.
  • the computer is caused to function as the embodiment of the playback apparatus of the present invention. Therefore, a defective area on the recording medium can be suitably detected.
  • FIG. 1 is a block diagram conceptually showing the basic structure of the reproducing apparatus in the example.
  • the reproducing apparatus 1 includes a spindle motor 10, a pickup (PU: PickPUp) 11, an HPF (High Pass Filter) 12, an A / D converter 13, An equalizer (Pre Equalizer) 14, a binarization circuit 16, a decoding circuit 17, a T frequency detection circuit 21, and a defect area detection circuit 22 are provided.
  • the pickup 11 photoelectrically converts reflected light when the recording surface of the optical disk 100 rotated by the spindle motor 10 is irradiated with the laser beam LB, and generates a read signal RRF .
  • the HPF 12 removes the low frequency component of the read signal R RF output from the pickup, and outputs the read signal R HC obtained as a result to the A / D converter 13.
  • the A / D converter 13 samples the read signal R HC in accordance with a sampling clock output from a PLL (Phased Lock Loop) (not shown) or the like, and outputs the read sample value series RS obtained as a result to the pre-equalizer 14. To do.
  • PLL Phase Lock Loop
  • Pre-equalizer 14 removes intersymbol interference based on the transmission characteristics of the composed information reading system from the pickup 11 and the optical disc 100, and outputs the resulting read sample value series RS C to the binary circuit 16.
  • Binarizing circuit 16 read binarizes to the sample value series RS C, and outputs a binary signal obtained as a result of the decoding circuit 17 and to each of T frequency detection circuit 21.
  • the decoding circuit 17 performs a decoding process on the binarized signal and outputs a reproduction signal obtained as a result to an external reproduction device such as a display or a speaker. As a result, a data pattern (for example, video data or audio data) recorded on the optical disc 100 is reproduced.
  • the T frequency detection circuit 21 constitutes a specific example of the “detection means” in the present invention, and detects the appearance frequency of marks and spaces included in the binarized signal for each run length.
  • the T frequency detection circuit 21 detects the appearance frequencies of marks with run lengths of 3T to 11T and 14T and spaces with run lengths of 3T to 11T and 14T.
  • the T frequency detection circuit 21 detects the appearance frequency of each of a mark having a run length of 2T to 9T and a space having a run length of 2T to 9T.
  • the defective area detection circuit 22 constitutes one specific example of the “determination means” in the present invention, and the T frequency detection circuit 21 is based on the appearance frequency of each mark and each space detected by the T frequency detection circuit 21. It is determined whether or not the recording area on the optical disc 100 on which the data pattern corresponding to the binarized signal that is the target of the detection operation is a defective area.
  • FIG. 2 is a flowchart conceptually showing a flow of operations of the reproducing apparatus 1 in the example.
  • the data pattern recorded on the optical disc 100 is reproduced (step S101). That is, the signal R RF read by the pickup 11 is generated, the read signal R HC from the read signal R RF by HPF12 is generated, A / D converter 13 by the reading from the read signal R HC sample value series RS is generated, pre The equalizer 14 generates a read sample value series RS C from the read sample value series RS, the binarization circuit 16 generates a binarized signal from the read sample value series RS C , and the decoding circuit 17 decodes the binarized signal. Processing is performed.
  • the appearance frequency (T frequency) of marks and spaces included in the binarized signal is detected for each run length by the operation of the T frequency detection circuit 21 (step S101). S102).
  • T frequency the appearance frequency of marks and spaces included in the binarized signal is detected for each run length by the operation of the T frequency detection circuit 21 (step S101).
  • S102 it is preferable to detect the appearance frequency for each predetermined reproduction period.
  • the appearance frequency of the mark with the shortest run length detected in step S102 (hereinafter, referred to as “shortest mark” as appropriate) is set to be higher than the reference frequency (reference appearance frequency). It is determined whether or not it is smaller than the ratio (step S103). That is, if the optical disc 100 is a DVD, it is determined whether or not the appearance frequency of the mark with the run length of 3T is smaller than the reference frequency of the mark with the run length of 3T by a predetermined ratio or more.
  • the optical disc 100 is a Blu-ray Disc, it is determined whether the appearance frequency of a mark with a run length of 2T is smaller than a reference frequency of a mark with a run length of 2T by a predetermined ratio or more.
  • the reference frequency is preferably an appearance frequency of each mark and each space when a predetermined data pattern or a random data pattern is recorded in a recording area having no defect on the optical disc 100.
  • the reference frequency may be stored in advance in a memory or the like included in the playback apparatus 1, may be recorded on the optical disc 100, or may be appropriately generated by the playback apparatus 1. Therefore, it is preferable that the defective area detection circuit 22 performs the determination operation in step S103 by reading the reference frequency stored in advance or recorded in advance.
  • the appearance frequency of each mark and each space in a defective area that affects recording or reproduction the appearance frequency of each mark and each space in a defective area that does not affect recording or reproduction, or normal It is preferable that an appropriate value is determined in advance experimentally, empirically, or using a simulation while considering the appearance frequency (that is, the reference frequency) of each mark and each space in the recording area.
  • the ratio of the appearance frequency of each mark and each space in the defect area that affects recording or reproduction to the reference frequency is an example of the predetermined ratio.
  • the value of the boundary between the appearance frequency of each mark and each space in the defect area that affects recording or reproduction and the appearance frequency of each mark and each space in the defect area that does not affect recording or reproduction, relative to the reference frequency is another example of the predetermined ratio. More specifically, for example, “50% (or several tens to several tens of percent)” is an example of the predetermined ratio. However, the predetermined ratio is not limited to this.
  • FIG. 3 is a table showing the reference frequency of each mark and each space.
  • the optical disc 100 a DVD in which data patterns are recorded using marks and spaces with run lengths from 3T to 11T and 14T, and marks and spaces with run lengths from 2T to 9T.
  • the Blu-ray Disc that records the data pattern using the will be described.
  • the appearance frequency of each mark and space is shown as a common value.
  • FIG. 3A shows a reference frequency (T appearance) of a run length mark or space in a 2 ECC block that does not take the run length into consideration when a random data pattern is recorded on a DVD which is a specific example of the optical disc 100. Probability).
  • the reference frequency of a mark or space with a run length of 3T is about 32%
  • the reference frequency of a mark or space with a run length of 4T is about 24%
  • the run length is 5T.
  • FIG. 3A shows a reference frequency in consideration of the run length of each run length mark or space in the 2 ECC block when a random data pattern is recorded on a DVD which is a specific example of the optical disc 100. Sample appearance probability) is shown. As shown in FIG. 3A, the reference frequency of a mark or space with a run length of 3T is about 20%, the reference frequency of a mark or space with a run length of 4T is about 20%, and the run length is 5T.
  • the mark or space reference frequency is about 18%, the run length 6T mark or space reference frequency is about 15%, the run length 7T mark or space reference frequency is about 11%,
  • the reference frequency of a mark or space with a run length of 8T is about 7.3%, the reference frequency of a mark or space with a run length of 9T is about 4.5%, and the reference frequency of a mark or space with a run length of 10T
  • the frequency is about 2.9%
  • the standard frequency of a mark or space with a run length of 11T is about 0.56%
  • the standard frequency of over scan is about 0.94%.
  • FIG. 3B shows a reference frequency that does not consider the run length of each run length mark or space in one ECC block when a random data pattern is recorded on a Blu-ray Disc that is a specific example of the optical disc 100. (T appearance probability) is shown. As shown in FIG. 3B, the reference frequency of a mark or space with a run length of 2T is about 38%, the reference frequency of a mark or space with a run length of 3T is about 25%, and the run length is 4T.
  • the mark or space reference frequency is about 16%
  • the run length 5T mark or space reference frequency is about 10%
  • the run length 6T mark or space reference frequency is about 6%
  • the reference frequency of a mark or space with a run length of 7T is about 3%
  • the reference frequency of a mark or space with a run length of 8T is about 1.6%
  • the reference frequency of a mark or space with a run length of 9T is about 0.35%.
  • FIG. 3B the run length of each run length mark or space in one ECC block when a random data pattern is recorded on a Blu-ray Disc, which is a specific example of the optical disc 100, is considered.
  • Reference frequency sample appearance probability
  • the reference frequency of a mark or space with a run length of 2T is about 23%
  • the reference frequency of a mark or space with a run length of 3T is about 22%
  • the run length is 4T.
  • the mark or space reference frequency is about 19%, the run length 5T mark or space reference frequency is about 15%, the run length 6T mark or space reference frequency is about 10%,
  • the reference frequency of a mark or space with a run length of 7T is about 6%, the reference frequency of a mark or space with a run length of 8T is about 3.9%, and the reference frequency of a mark or space with a run length of 9T is About 0.93%.
  • the reference frequency that does not consider the run length is a reference frequency in which the weight in calculating the reference frequency of the mark or space of each run length is the same in each run length. That is, when one mark or space of a certain run length appears, the reference frequency when the number of appearances is counted as one is shown.
  • the reference frequency in consideration of the run length is a reference frequency on which the weight in calculating the reference frequency of the mark or space of each run length depends on the run length. That is, when one mark or space of a certain run length appears, the reference frequency in the case where the number of appearances is counted by the number corresponding to the run length is shown.
  • the T frequency detection circuit 21 has one of two types of appearance frequencies (that is, an appearance frequency not considering run length and an appearance frequency considering run length). Or it is preferable to detect both. Moreover, it is preferable that the defective area detection circuit 22 determines whether or not the appearance frequency not considering the run length is smaller than the reference frequency not considering the run length by a predetermined ratio or more. Similarly, it is preferable that the defective area detection circuit 22 determines whether or not the appearance frequency considering the run length is smaller than the reference frequency considering the run length by a predetermined ratio or more.
  • step S103 when it is determined in step S103 that the appearance frequency of the shortest mark is not lower than the reference frequency by a predetermined rate (step S103: No), the data pattern including the shortest mark is read. It is determined that the recorded area is not a defective area.
  • step S105 it is determined whether or not to end the reproduction operation.
  • step S105 when it is determined not to end the reproduction operation (step S105: No), the process returns to step S101, and the operation after step S102 is repeated while continuing the reproduction operation.
  • step S105: Yes when it is determined that the reproduction operation is to be terminated (step S105: Yes), the reproduction operation is terminated.
  • step S103 when it is determined that the appearance frequency of the shortest mark is smaller than the reference frequency by a predetermined ratio (step S103: Yes), the recording in which the data pattern including the shortest mark is read is recorded. It is determined that the area is a defective area (step S104). Therefore, the recording area is set as a defective area, and other defect processing (for example, processing for saving a data pattern recorded in the defective area to another recording area) is performed as necessary. Thereafter, the process proceeds to step S105.
  • the recording area in which the transmittance of the laser light has changed from the original transmittance such as a recording area to which a fingerprint or the like is attached, will be described as an example of the defective area. Of course, it is needless to say that the defect region may be caused by other factors.
  • the jitter is equal to or greater than a predetermined value. That is, it may be configured to additionally determine whether or not the region is a defect region based on jitter.
  • FIG. 4 is a diagram showing the appearance frequency of the shortest mark in each of the normal region and the defect region together with the jitter.
  • FIG. 5 shows the state of the read signal R RF in each of the normal region and the defect region. It is a graph shown with a value-ized slice level.
  • FIG. 4 an example in which a Blu-ray Disc is used as the optical disc 100 will be described.
  • the appearance frequency of the shortest mark (that is, a mark having a run length of 2T) in the defect area to which a fingerprint or the like is attached is the appearance frequency of the shortest mark in a normal area (that is, an area where there is no defect such as a fingerprint). It is smaller than the frequency.
  • the jitter may deteriorate (see fingerprint state 1) or the jitter may not deteriorate (or be improved) (see fingerprint state 2). The reason for this will be described with reference to FIG.
  • the shortest mark can be suitably recorded in the normal area.
  • the signal waveform corresponding to each mark and each space included in the read signal R RF preferably crosses the binarized slice level. Therefore, the read signal R RF in this state is not determined to be a defective region even if determination based on either jitter or appearance frequency is performed.
  • the transmittance of the laser light is reduced due to the adhesion of the fingerprint. Therefore, when recording a data pattern in such a defective area, it becomes impossible to give the recording surface of the optical disc 100 the energy necessary for recording the mark of the run length that is originally intended. . This is particularly noticeable when a mark with a short run length is recorded. For this reason, for example, a mark that should originally be recorded as a mark having a run length of 2T may be recorded as a mark having a run length of 1T. That is, a relatively short mark is recorded. Therefore, the appearance frequency of the shortest mark in the defect area is reduced.
  • the read signal R RF obtained in the defect area corresponding to the fingerprint state 1 is particularly shifted to the signal component side corresponding to the space (that is, the upper side in FIG. 5). Assume that a signal component of the state is obtained. In this case, the jitter of the signal component corresponding to the shortest mark is deteriorated. As a result, as shown in FIG. 4, the jitter (that is, total jitter) of the read signal R RF as a whole deteriorates.
  • the read signal R RF obtained in the defect region corresponding to the fingerprint state 2 is such that the signal component corresponding to the shortest mark is a space until the signal component corresponding to the shortest mark does not intersect the binarized slice level. It is assumed that a signal component shifted to the signal component side corresponding to is obtained.
  • the jitter of the signal component corresponding to the shortest mark is no longer contributing to the calculation of jitter as the entire read signal R RF. Therefore, as shown in FIG. 4, the jitter of the read signal R RF as a whole is not deteriorated.
  • the defect area corresponding to the fingerprint state 2 cannot be detected.
  • the defect area is detected based on the appearance frequency of each mark and each space, the defect area corresponding to the fingerprint state 2 can be suitably detected.
  • the defective area is detected based on the appearance frequency of the shortest mark that is easily affected by a fingerprint or the like, the defective area can be detected with higher accuracy or more easily.
  • FIGS. 6A and 6B not only the shortest mark but also the frequency of appearance of a shortest run length space or another run length mark or space is defined as a normal region and a defective region. Can be different between.
  • FIG. 6A is a diagram showing the appearance frequency of each mark recorded with a normal recording power and a relatively low recording power
  • FIG. 6B is a diagram showing a normal recording power and a relative recording power. It is a figure which shows the appearance frequency of each space recorded with low recording power. Therefore, the defect area may be detected based on the frequency of appearance of the shortest run length or other run length marks or spaces.
  • the appearance frequency of the space having the shortest run length in the defect area may be smaller than the appearance frequency (that is, the reference frequency) of the space having the shortest run length in the normal area. Therefore, when the appearance frequency of the space having the shortest run length is smaller than the reference frequency by a predetermined ratio, the recording area from which the data pattern including this space is read may be determined as the defective area. .
  • the appearance frequency of a mark or space other than the mark or space having the shortest run length in the defect area is higher than the appearance frequency (that is, the reference frequency) of a mark or space other than the mark or space having the shortest run length in the normal area. Can be bigger.
  • the recording area from which the data pattern including the mark or space is read is a defective area. You may comprise so that it may determine.
  • FIG. 7 is a graph showing the appearance frequency of the space in each of the normal area and the defective area.
  • FIG. 7 an example in which a Blu-ray Disc is used as the optical disc 100 will be described.
  • the appearance frequency of the longest run-length space (that is, the run-length 9T space) in the defect area to which fingerprints or the like are attached is higher than the appearance frequency of the longest run-length space in the normal area. Can be bigger. This occurs for the following reasons. For example, a mark that should originally be recorded as a 2T mark with a run length is recorded as a 1T mark with a run length of 1T. If the spaces are connected, the run length may appear as a 9T space.
  • the recording area from which the data pattern including this space is read is determined to be the defective area. May be.
  • the defect area is detected based on the longest run length whose run length varies depending on the appearance frequency of the mark with the shortest run length that is susceptible to fingerprints, etc. In addition, it is possible to detect a defective area easily.
  • the run length (specifically, 1T or 10T or more) other than the run length (specifically, 2T to 9T) determined by the standard increases. is doing.
  • a run-length space of 10T or more may appear when a run-length 2T mark is recorded as a 1-T mark with a run length that is connected to another space.
  • the defect area may be detected based on the appearance frequency of a run-length space other than the run-length determined by the standard. In this case, when the appearance frequency of a run length space other than the run length defined in the standard is equal to or higher than a predetermined amount, it is determined that the recording area from which the data pattern including this space is read is a defective area. You may comprise.
  • FIG. 8 is a graph showing the appearance frequency of the mark in each of the normal area and the defective area. In FIG. 8, an example in which a Blu-ray Disc is used as the optical disc 100 will be described.
  • the defect area may be detected based on the appearance frequency of a run length mark other than the run length defined in the standard.
  • the appearance frequency of a run-length mark other than the run-length defined in the standard is a predetermined amount or more, it is determined that the recording area from which the data pattern including the mark is read is a defective area. You may comprise.
  • Blu-ray Disc which is a specific example of the optical disc 100, employs a data pattern including a run length 9T mark and a run length 9T space alternately as a sync pattern (synchronization pattern).
  • the defect area may be detected based on the appearance frequency of each of the mark having a run length of 9T and the space having a run length of 9T in the sync pattern. This example will be described with reference to FIG. FIG. 9 is a graph showing the difference in appearance frequency between the mark having a run length of 9T and the space having a run length of 9T in the sync pattern.
  • the appearance frequency of the mark having a run length of 9T and the space having a run length of 9T in the sync pattern are different.
  • the run length is The appearance frequency of the 9T space may increase with respect to the appearance frequency of the 9T mark.
  • the run length 9T may be reduced with respect to the appearance frequency of the mark having a run length of 9T.
  • FIG. 10 is a block diagram conceptually showing the structure of the reproducing apparatus 2 according to the modification.
  • the same referential mark is attached
  • the playback apparatus 2 is similar to the playback apparatus 1 described above, and includes a spindle motor 10, a pickup (PU: Pick Up) 11, an HPF (High Pass Filter) 12, and A A / D converter 13, a pre-equalizer 14, a binarization circuit 16, a decoding circuit 17, a T frequency detection circuit 21, and a defect area detection circuit 22 are provided.
  • the reproduction apparatus 2 includes a limit equalizer 15 between the pre-equalizer 14 and the binarization circuit 16.
  • Limit equalizer 15 constitutes one specific example of the "amplitude limiting filtering device" of the present invention, subjected to a high frequency emphasis processing to the read sample value series RS C without increasing the intersymbol interference, resulting the high-frequency enhanced read sample value sequence RS H obtained, and outputs it to the binary circuit 16.
  • the operation itself of the limit equalizer 15 is the same as the operation of the conventional limit equalizer. For details, see Japanese Patent No. 3459563.
  • the limit equalizer 15 is configured to be able to arbitrarily switch on and off.
  • the limit equalizer 15 is on the to the binarizing circuit 16, while the high-frequency emphasized read sample value series RS H is outputted, when the limit equalizer 15 is turned off, the binarizing circuit to 16, read sample value series RS C, which is the output of the pre-equalizer 14 is outputted.
  • the T frequency detection circuit 21 detects each of the appearance frequency when the limit equalizer 15 is on and the appearance frequency when the limit equalizer 15 is off.
  • the amplitude level of the read signal R RF is limited by a predetermined amplitude limit value. Specifically, the signal level of the read signal R RF whose amplitude level is larger than the upper limit or lower limit of the amplitude limit value is limited to the upper limit or lower limit of the amplitude limit value. On the other hand, the amplitude level of the signal component whose amplitude level is below the upper limit and above the lower limit of the amplitude limit value in the read signal R RF is not limited. By performing the amplitude limiting process in this manner, the amplitude limiting signal R LIM is generated. A high-frequency emphasis filtering process is performed on the amplitude limit signal R LIM .
  • the high-frequency emphasis filtering process is a process of increasing the signal level in the vicinity of the signal component corresponding to the mark or space having the shortest run length in the amplitude limit signal R LIM , for example.
  • high-frequency emphasized read sample value series RS H is generated.
  • the signal component of the mark or space with the shortest run length since the signal component of the mark or space with the shortest run length is emphasized, the signal component corresponding to the mark with the shortest run length does not intersect the binarized slice level (on the right side of FIG. 5). Even if the data pattern is recorded in (see the figure), the data pattern can be reproduced so that this signal component intersects the binarized slice level (see the figure on the left side of FIG. 5). That is, the signal component of the mark or space having the shortest run length in the so-called normal region can be output from the limit equalizer 15.
  • the defective area detection circuit 22 uses the appearance frequency detected in a state where the limit equalizer 15 is turned on as the reference frequency described above. That is, the defect area detection circuit 22 has an appearance frequency detected when the limit equalizer 15 is off larger or smaller than an appearance frequency detected when the limit equalizer 15 is on, or a predetermined value. A defective area is detected by determining whether the ratio is larger or smaller by a predetermined ratio.
  • the reproducing apparatus 2 since it is not necessary to previously store a table or the like indicating the reference frequency described above, the defect region based on the appearance frequency described above can be applied to the optical disc 100 for which the reference frequency is not set or the unknown optical disc 100. A detection operation can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

A reproduction apparatus (1) includes detection means (21) for detecting frequencies of appearance of signal components of a plural types of marks and signal components of a plural types of spaces having different run lengths, which are included in a readout signal read out from a recording medium (100), and. determining means (22) for determining whether the record region on the recording medium from which the readout signal has been read out is a defect region or not.

Description

再生装置及び方法、並びにコンピュータプログラムPlayback apparatus and method, and computer program
 本発明は、例えば記録媒体に記録されたデータパターンの再生を行う再生装置及び方法、並びにコンピュータをこのような再生装置として機能させるコンピュータプログラムの技術分野に関する。 The present invention relates to, for example, a reproduction apparatus and method for reproducing a data pattern recorded on a recording medium, and a technical field of a computer program that causes a computer to function as such a reproduction apparatus.
 このような再生装置として、CDやDVDやBlu-ray Disc等の光ディスク等の記録媒体に対してレーザ光を照射してデータパターンの再生を行う機器が各種実現されている。このような再生装置では、記録媒体上のトラックに対してレーザ光を照射すると共に、該照射されたレーザ光の反射光を検出することでマーク及びスペースから構成されるデータパターンを検出している。これにより、データパターンの再生を行うことができる。 As such a reproducing apparatus, various apparatuses for reproducing a data pattern by irradiating a recording medium such as an optical disc such as a CD, a DVD, a Blu-ray Disc, etc. with a laser beam are realized. In such a reproduction apparatus, a track on a recording medium is irradiated with laser light, and a reflected light of the irradiated laser light is detected to detect a data pattern composed of marks and spaces. . As a result, the data pattern can be reproduced.
 このような再生装置では、より好適な再生動作を実現するために、記録媒体上の欠陥領域(ディフェクト領域)を検出すると共に該検出された欠陥領域を使用しない欠陥管理(ディフェクト管理)が行われる。例えば特許文献1に開示された構成では、ジッタを検出すると共に該検出されたジッタが記録又は再生に耐え得る特性を有しているか否かに基づいて、欠陥領域を検出している。また、特許文献2に開示された構成では、ジッタやアシンメトリやエラーレートやエンベロープ波形の変化等に基づいて、欠陥領域を検出している。 In such a reproducing apparatus, in order to realize a more preferable reproducing operation, a defect area (defect area) on the recording medium is detected and defect management (defect management) not using the detected defect area is performed. . For example, in the configuration disclosed in Patent Document 1, jitter is detected, and a defective area is detected based on whether or not the detected jitter has characteristics capable of withstanding recording or reproduction. In the configuration disclosed in Patent Document 2, a defect area is detected based on a change in jitter, asymmetry, error rate, envelope waveform, or the like.
特開2002-74668号公報JP 2002-74668 A 特開2000-251254号公報JP 2000-251254 A
 しかしながら、ジッタやアシンメトリやエラーレートやエンベロープ波形の変化等のみに基づく検出動作では、記録媒体上に生じ得る欠陥領域の全てを好適に検出することができないということが、本願発明者等の研究によって明らかにされている。特に、指紋等が付着した欠陥領域のようにレーザ光の透過率が本来の透過率から変動してしまっている欠陥領域においては、本来意図したパワーのレーザ光の照射が困難になってしまう。このため、本来意図しているランレングスのマークを記録することができなくなってしまう。特に、これは、ランレングスが相対的に短いマークにおいて顕著である。その結果、例えば本来ランレングスが2Tないしは3Tとなるように記録されるべきマークが、ランレングスが2Tないしは3T未満のマークとして記録されてしまいかねない。この場合、再生時には、ランレングスが2Tないしは3T未満のマークの信号成分が、ゼロレベル(或いは、2値化スライスレベル)と交わらなくなりかねない。その結果、ランレングスが2Tないしは3T未満のマークがジッタの算出に寄与しなくなり、ジッタを悪化させることはなくなる。従って、上述した特許文献1や特許文献2に開示された構成では、このような記録領域を欠陥領域として検出することが困難又は不可能であるという技術的な問題点を有している。しかしながら、指紋等が付着していることに変わりはないため、欠陥領域として検出されることが好ましいことは言うまでもない。また、記録されているマーク又はスペースが本来のランレングスで記録されていたとしても、再生時に指紋が付着してしまった場合には、同様の問題が生じかねない。 However, according to the study by the inventors of the present application, it is not possible to suitably detect all the defective areas that can occur on the recording medium by the detection operation based only on jitter, asymmetry, error rate, envelope waveform change, etc. It has been revealed. In particular, in a defect region where the transmittance of laser light has fluctuated from the original transmittance, such as a defect region to which a fingerprint or the like is attached, it becomes difficult to irradiate the laser beam with the originally intended power. For this reason, it is impossible to record the run-length mark that is originally intended. This is particularly noticeable in marks with relatively short run lengths. As a result, for example, a mark that should originally be recorded so that the run length is 2T or 3T may be recorded as a mark with a run length of 2T or less than 3T. In this case, at the time of reproduction, the signal component of the mark having a run length of 2T or less than 3T may not intersect with the zero level (or the binarized slice level). As a result, a mark with a run length of 2T or less than 3T does not contribute to the calculation of jitter and does not deteriorate the jitter. Therefore, the configurations disclosed in Patent Document 1 and Patent Document 2 described above have a technical problem that it is difficult or impossible to detect such a recording area as a defective area. However, since it remains the same that the fingerprint or the like is attached, it is needless to say that it is preferably detected as a defective area. Even if the recorded mark or space is recorded with the original run length, the same problem may occur when a fingerprint is attached during reproduction.
 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えば記録媒体上の欠陥領域を好適に検出することができる再生装置及び方法、並びにコンピュータプログラムを提供することを課題とする。 The present invention has been made in view of, for example, the above-described conventional problems, and an object of the present invention is to provide a playback apparatus and method that can suitably detect a defective area on a recording medium, for example, and a computer program. .
 上記課題を解決するために、本発明の再生装置は、記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出手段と、前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定手段とを備える。 In order to solve the above problems, the reproducing apparatus of the present invention includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and the read signal. The detection means for detecting the appearance frequency of at least one signal component of a plurality of types of signal components included and having different run lengths, and the reading based on the amount of change in the appearance frequency of the at least one signal component Determination means for determining whether or not the recording area on the recording medium from which the signal has been read is a defective area.
 上記課題を解決するために、本発明の再生方法は、記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出工程と、前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定工程とを備える。 In order to solve the above problems, the reproducing method of the present invention includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and the read signal. The detection step of detecting an appearance frequency of at least one signal component of a plurality of types of signal components included and having different run lengths, and the reading based on a change amount of the appearance frequency of the at least one signal component A determination step of determining whether or not the recording area on the recording medium from which the signal has been read is a defective area.
 上記課題を解決するために、本発明のコンピュータプログラムは、記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出手段と、前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定手段とを備える再生装置に備えられたコンピュータを制御する再生制御用のコンピュータプログラムであって、該コンピュータを、前記検出手段及び前記判定手段として機能させる。 In order to solve the above-described problems, a computer program according to the present invention includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and the read signal. The detection means for detecting the appearance frequency of at least one signal component of a plurality of types of signal components included and having different run lengths, and the reading based on the amount of change in the appearance frequency of the at least one signal component A computer program for playback control that controls a computer provided in a playback device, comprising: a determination unit that determines whether or not a recording area on the recording medium from which a signal has been read is a defective area; To function as the detection means and the determination means.
 本発明の作用及び他の利得は次に説明する実施の形態から明らかにされよう。 The operation and other advantages of the present invention will be clarified from the embodiments described below.
本実施例に係る再生装置の基本構成を概念的に示すブロック図である。FIG. 2 is a block diagram conceptually showing the basic structure of a reproducing apparatus in the example. 本実施例に係る再生装置の動作の流れを概念的に示すフローチャートである。6 is a flowchart conceptually showing a flow of operations of the reproducing apparatus in the example. 各マーク及び各スペースの基準頻度を示す表である。It is a table | surface which shows the reference | standard frequency of each mark and each space. 正常領域及び欠陥領域の夫々における最短マークの出現頻度を、ジッタと共に示す図である。It is a figure which shows the appearance frequency of the shortest mark in each of a normal area | region and a defect area | region with a jitter. 正常領域及び欠陥領域の夫々における読取信号の状態を、2値化スライスレベルと共に示すグラフである。It is a graph which shows the state of the read signal in each of a normal area | region and a defect area | region with a binarization slice level. 正常領域及び欠陥領域の夫々における各マーク及び各スペースの出現頻度を示す図である。It is a figure which shows the appearance frequency of each mark and each space in each of a normal area | region and a defect area | region. 正常領域及び欠陥領域の夫々におけるスペースの出現頻度を示すグラフである。It is a graph which shows the appearance frequency of the space in each of a normal area | region and a defect area | region. 正常領域及び欠陥領域の夫々におけるマークの出現頻度を示すグラフである。It is a graph which shows the appearance frequency of the mark in each of a normal area | region and a defect area | region. 正常領域及び欠陥領域の夫々におけるシンクパターン中のランレングスが9Tのマーク及びランレングスが9Tのスペースの夫々の出現頻度の差を示すグラフである。It is a graph which shows the difference of the appearance frequency of each of the mark whose run length is 9T and the space whose run length is 9T in the sync pattern in each of the normal area and the defect area. 変形例に係る再生装置の構成を概念的に示すブロック図である。FIG. 10 is a block diagram conceptually showing the structure of a reproducing apparatus in a modified example.
符号の説明Explanation of symbols
 1、2 再生装置
 10 スピンドルモータ
 11 ピックアップ
 12 HPF
 13 A/D変換器
 14 プリイコライザ
 15 リミットイコライザ
 16 2値化回路
 17 復号回路
 21 T頻度検出回路
 22 欠陥領域検出回路
1, 2 Playback device 10 Spindle motor 11 Pickup 12 HPF
13 A / D converter 14 Pre-equalizer 15 Limit equalizer 16 Binary circuit 17 Decoding circuit 21 T frequency detection circuit 22 Defective area detection circuit
 以下、発明を実施するための最良の形態として、本発明の再生装置及び方法、並びにコンピュータプログラムに係る実施形態の説明を進める。 Hereinafter, as the best mode for carrying out the invention, description will be given of an embodiment according to a playback apparatus and method and a computer program of the present invention.
 (再生装置の実施形態)
 本発明の再生装置に係る実施形態は、記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出手段と、前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定手段とを備える。
(Embodiment of playback device)
The embodiment of the reproducing apparatus of the present invention includes signal components of a plurality of types of marks that are included in a read signal obtained by reading a data pattern from a recording medium and have different run lengths, and are included in the read signal and the run signal. The read signal is read on the basis of detection means for detecting an appearance frequency of at least one signal component of signal components of a plurality of types of spaces having different lengths, and a change amount of the appearance frequency of the at least one signal component. Determining means for determining whether or not the recording area on the recording medium is a defective area.
 本発明の再生装置に係る実施形態によれば、検出手段の動作により、複数種類のマークの信号成分及び複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度が検出される。例えば記録媒体がDVDである場合には、ランレングスが3Tから11T及び14Tとなるマークが、「複数種類のマーク」の一例としてあげられる。同様に、例えば記録媒体がBlu-ray Discである場合には、ランレングスが2Tから9Tとなるマークが、「複数種類のマーク」の一例としてあげられる。同様に、例えば記録媒体がDVDである場合には、ランレングスが3Tから11T及び14Tとなるスペースが、「複数種類のスペース」の一例としてあげられる。同様に、例えば記録媒体がBlu-ray Discである場合には、ランレングスが2Tから9Tとなるスペースが、「複数種類のスペース」の一例としてあげられる。 According to the embodiment of the reproducing apparatus of the present invention, the appearance frequency of at least one signal component of a plurality of types of mark signal components and a plurality of types of space signal components is detected by the operation of the detection means. For example, when the recording medium is a DVD, marks having run lengths from 3T to 11T and 14T are examples of “plural types of marks”. Similarly, for example, when the recording medium is a Blu-ray Disc, a mark whose run length is 2T to 9T is an example of “a plurality of types of marks”. Similarly, for example, when the recording medium is a DVD, spaces with run lengths from 3T to 11T and 14T are examples of “plural types of spaces”. Similarly, for example, when the recording medium is a Blu-ray Disc, a space with a run length of 2T to 9T is an example of “a plurality of types of spaces”.
 その後、判定手段の動作により、検出手段により検出された出現頻度の変化量(例えば、出現頻度の変化量そのものや、所定の基準頻度に対する変化量や、所定の基準頻度との差分や、所定の基準頻度に対する大小関係や、所定の基準頻度に対する比率や、所定の基準頻度に対する乖離率等)に基づいて、記録媒体上の記録領域が欠陥領域であるか否かが判定される。つまり、検出手段により出現頻度が検出された少なくとも1つの信号成分を含む読取信号が読み取られた記録領域が、欠陥領域であるか否かが判定される。ここで、「基準頻度」は、典型的には、例えば予め定められた固定値を示していてもよいし、正常な記録動作が行われた場合の複数種類のマーク及び複数種類のスペースの夫々の出現頻度等を示していてもよい。 Thereafter, by the operation of the determination unit, the change amount of the appearance frequency detected by the detection unit (for example, the change amount of the appearance frequency itself, the change amount with respect to the predetermined reference frequency, the difference from the predetermined reference frequency, Whether or not the recording area on the recording medium is a defective area is determined based on a magnitude relationship with respect to the reference frequency, a ratio with respect to the predetermined reference frequency, a deviation rate with respect to the predetermined reference frequency, and the like. That is, it is determined whether or not the recording area from which the read signal including at least one signal component whose appearance frequency has been detected by the detection unit is read is a defective area. Here, the “reference frequency” may typically indicate, for example, a predetermined fixed value, or each of a plurality of types of marks and a plurality of types of spaces when a normal recording operation is performed. The appearance frequency, etc. may be shown.
 ここで、指紋等が付着した欠陥領域のように、レーザ光に対する透過率が本来の透過率から変動してしまっている欠陥領域において得られた読取信号に対する上述した検出動作及び判定動作について説明する。このような欠陥領域においては、記録時には、上述したように本来意図しているランレングスのマークを記録することができなくなってしまいかねない。つまり、記録媒体に照射されるレーザ光のエネルギー不足に起因して、例えば本来ランレングスがminT(但し、“minT”は、記録媒体の規格によって予め定められた最短ランレングスを示す)のマークとして記録すべきマークが、ランレングスがminT未満のマークとして記録されてしまいかねない。このランレングスがminT未満のマークが記録されることは、再生時に、このランレングスがminT未満のマークと合わせてランレングスがminT未満のスペースが読み取られることにもつながる。更に、再生時には、ランレングスがminT未満のマーク又はスペースの信号成分が振幅方向にシフトすることで、ゼロレベル(或いは、2値化スライスレベル)と交わらなくなりかねない。その結果、本来所定ランレングスのマーク及びスペースとして記録されているデータパターンが、一連のスペースとして再生されてしまうことにつながる。このようなスペースが、他のランレングスのマークやスペースとつながってしまうと、他のランレングスのマークやスペースのランレングスをも変動させてしまう。従って、欠陥領域において得られる読取信号中に含まれる各マークの信号成分の出現頻度或いは各スペースの信号成分の出現頻度は変動し得る。より具体的には、欠陥領域において得られる読取信号中に含まれる各マークの信号成分の出現頻度或いは各スペースの信号成分の出現頻度は、欠陥のない正常な領域において得られる読取信号中に含まれる各マークの信号成分の出現頻度或いは各スペースの信号成分の出現頻度(例えば、基準頻度)とは異なるものになりかねない。この場合、ランレングスがminT未満のマーク又はスペースの信号成分がゼロレベル(或いは、2値化スライスレベル)と交わらなくなることに起因してジッタが悪化することはないため、ジッタ等のみに基づいて欠陥領域の検出を行う構成では欠陥領域を検出することはできない。しかるに、本実施形態によれば、判定手段の動作により、検出手段により検出される出現頻度の変化量を考慮して、欠陥領域を好適に検出することができる。特に、指紋等が付着した欠陥領域のようにレーザ光の透過率が本来の透過率から変動してしまっている欠陥領域を好適に検出することができる。 Here, the above-described detection operation and determination operation for a read signal obtained in a defect region in which the transmittance with respect to laser light has fluctuated from the original transmittance, such as a defect region to which a fingerprint or the like is attached, will be described. . In such a defective area, at the time of recording, it may become impossible to record the mark of the run length originally intended. In other words, due to the lack of energy of the laser light applied to the recording medium, for example, the run length is originally minT (where “minT” indicates the shortest run length predetermined by the standard of the recording medium). The mark to be recorded may be recorded as a mark having a run length of less than minT. The recording of a mark having a run length of less than minT also leads to reading of a space having a run length of less than minT together with a mark having a run length of less than minT during reproduction. Furthermore, at the time of reproduction, the signal component of the mark or space whose run length is less than minT is shifted in the amplitude direction, so that it may not intersect with the zero level (or the binarized slice level). As a result, data patterns originally recorded as predetermined run-length marks and spaces are reproduced as a series of spaces. If such a space is connected to another run-length mark or space, the run-length of another run-length mark or space is also changed. Accordingly, the frequency of appearance of the signal component of each mark or the frequency of appearance of the signal component of each space included in the read signal obtained in the defect area can vary. More specifically, the frequency of appearance of the signal component of each mark or the frequency of appearance of the signal component of each space included in the read signal obtained in the defect area is included in the read signal obtained in a normal area without defects. The frequency of appearance of the signal component of each mark or the frequency of appearance of the signal component of each space (for example, the reference frequency) may be different. In this case, since the signal component of the mark or space whose run length is less than minT does not intersect with the zero level (or the binarized slice level), the jitter does not deteriorate. In the configuration for detecting the defective area, the defective area cannot be detected. However, according to the present embodiment, the defect area can be suitably detected by taking into account the change amount of the appearance frequency detected by the detecting means by the operation of the determining means. In particular, it is possible to suitably detect a defective area in which the transmittance of the laser light has fluctuated from the original transmittance, such as a defective area to which a fingerprint or the like is attached.
 このように、本実施形態に係る再生装置によれば、ランレングスが異なる複数種類のマーク及び複数種類のスペースのうちの少なくとも1つの信号成分の出現頻度を参照することで、欠陥領域を好適に検出することができる。特に、指紋等が付着した欠陥領域のようにレーザ光の透過率が本来の透過率から変動してしまっている欠陥領域を好適に検出することができる。従って、ジッタのみに基づいて欠陥領域を検出する構成と比較して、欠陥領域の検出精度を向上させることができる。 As described above, according to the reproducing apparatus according to the present embodiment, it is possible to appropriately identify a defective region by referring to the appearance frequency of at least one signal component among a plurality of types of marks and a plurality of types of spaces having different run lengths. Can be detected. In particular, it is possible to suitably detect a defective area in which the transmittance of the laser light has fluctuated from the original transmittance, such as a defective area to which a fingerprint or the like is attached. Therefore, the defect area detection accuracy can be improved as compared with the configuration in which the defect area is detected based only on jitter.
 本発明の再生装置の一の態様では、前記検出手段は、ランレングスが最も短いマークの信号成分の出現頻度を検出し、前記判定手段は、ランレングスが最も短いマークの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する。 In one aspect of the reproducing apparatus of the present invention, the detecting means detects the appearance frequency of the signal component of the mark having the shortest run length, and the determining means determines the appearance frequency of the signal component of the mark having the shortest run length. Based on the amount of change, it is determined whether or not the recording area on the recording medium from which the read signal has been read is a defective area.
 この態様によれば、指紋等が付着した欠陥領域のようにレーザ光に対する透過率が本来の透過率から変動している欠陥領域において顕著な影響を受けるランレングスが最も短いマーク(例えば記録媒体がDVDである場合には、ランレングスが3Tのマークであり、例えば記録媒体がBlu-ray Discである場合には、ランレングスが2Tのマーク)の出現頻度に基づいて欠陥領域を検出することができる。従って、欠陥領域をより高精度に或いはより容易に検出することができる。 According to this aspect, the mark having the shortest run length (for example, the recording medium is significantly affected) in the defect area in which the transmittance with respect to the laser beam fluctuates from the original transmittance, such as the defect area to which the fingerprint or the like is attached. In the case of a DVD, the run length is a 3T mark. For example, when the recording medium is a Blu-ray Disc, the defect area can be detected based on the appearance frequency of the run length 2T mark). it can. Therefore, the defect area can be detected with higher accuracy or more easily.
 本発明の再生装置に係る実施形態の他の態様では、前記検出手段は、ランレングスが最も短いスペースの信号成分の出現頻度を検出し、前記判定手段は、ランレングスが最も短いスペースの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する。 In another aspect of the embodiment of the reproducing apparatus of the present invention, the detecting means detects the appearance frequency of the signal component of the space having the shortest run length, and the determining means is the signal component of the space having the shortest run length. Whether the recording area on the recording medium from which the read signal has been read is a defective area is determined based on the change amount of the appearance frequency of.
 この態様によれば、指紋等が付着した欠陥領域のようにレーザ光に対する透過率が本来の透過率から変動している欠陥領域において顕著な影響を受けるランレングスが最も短いスペース(例えば記録媒体がDVDである場合には、ランレングスが3Tのスペースであり、例えば記録媒体がBlu-ray Discである場合には、ランレングスが2Tのスペース)の出現頻度に基づいて欠陥領域を検出することができる。従って、欠陥領域をより高精度に或いはより容易に検出することができる。 According to this aspect, the space having the shortest run length (for example, the recording medium is significantly affected) in the defect area where the transmittance with respect to the laser beam fluctuates from the original transmittance, such as the defect area to which the fingerprint or the like is attached. In the case of a DVD, the run length is a 3T space. For example, when the recording medium is a Blu-ray Disc, the defect area can be detected based on the appearance frequency of the run length is a 2T space). it can. Therefore, the defect area can be detected with higher accuracy or more easily.
 上述の如くランレングスが最も短いマーク又はスペースの信号成分の出現頻度の変化量に基づいて記録領域が欠陥領域であるか否かを判定する再生装置の態様では、前記判定手段は、前記出現頻度が所定の基準頻度に対して所定割合以上小さい場合に、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であると判定するように構成してもよい。 As described above, in the aspect of the reproducing apparatus that determines whether or not the recording area is a defect area based on the change amount of the appearance frequency of the signal component of the mark or space having the shortest run length, the determination means includes the appearance frequency. May be determined that the recording area on the recording medium from which the read signal has been read is a defective area when is smaller than a predetermined ratio with respect to a predetermined reference frequency.
 上述したように、指紋等が付着した欠陥領域のようにレーザ光に対する透過率が本来の透過率から変動している欠陥領域においては、記録時には、上述したように本来意図しているランレングスのマーク又はスペースを記録することができなくなってしまう。その結果、ランレングスが最も短いマーク又はスペースとして記録すべきマーク又はスペースが、ランレングスが更に短いマーク又はスペースとして記録されてしまいかねない。その結果、ランレングスが最も短いマーク又はスペースの出現頻度は減少する。従って、出現頻度が基準頻度に対して所定割合以上小さい場合に欠陥領域であると判定することで、欠陥領域を好適に検出することができる。 As described above, in the defect area where the transmittance with respect to the laser beam is fluctuated from the original transmittance, such as the defect area to which the fingerprint or the like is attached, at the time of recording, the originally intended run length is as described above. The mark or space cannot be recorded. As a result, a mark or space to be recorded as a mark or space with the shortest run length may be recorded as a mark or space with a shorter run length. As a result, the appearance frequency of the mark or space having the shortest run length is reduced. Therefore, when the appearance frequency is smaller than the reference frequency by a predetermined ratio or more, it is possible to preferably detect the defect area by determining that the defect area is a defect area.
 本発明の再生装置に係る実施形態の他の態様では、前記検出手段は、前記読取信号中に含まれるランレングスが相対的に長いスペースの信号成分の出現頻度を検出し、前記判定手段は、ランレングスが相対的に長いスペースの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する。 In another aspect of the embodiment of the reproducing apparatus of the present invention, the detecting means detects an appearance frequency of a signal component having a relatively long run length included in the read signal, and the determining means Whether or not the recording area on the recording medium from which the read signal has been read is a defective area is determined based on the change amount of the appearance frequency of the signal component in the space having a relatively long run length.
 この態様によれば、ランレングスが最も短いマーク又はスペースの出現頻度が減少することに起因して出現頻度が変動し得る、ランレングスが相対的に長いスペース(例えば、記録媒体がDVDであればランレングス7Tから11T及び14Tのスペースであり記録媒体がBlu-ray Discであればランレングス6Tから9Tのスペース)の信号成分の出現頻度に基づいて、欠陥領域を好適に検出することができる。 According to this aspect, a space having a relatively long run length (for example, if the recording medium is a DVD), the appearance frequency may vary due to a decrease in the appearance frequency of the mark or space having the shortest run length. If the run lengths are 7T to 11T and 14T spaces and the recording medium is a Blu-ray Disc, the defect area can be suitably detected based on the appearance frequency of the signal components of the run lengths 6T to 9T.
 本発明の再生装置に係る実施形態の他の態様では、前記検出手段は、前記読取信号中に含まれるランレングスが最も長いスペースの信号成分の出現頻度を検出し、前記判定手段は、ランレングスが最も長いスペースの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する。 In another aspect of the embodiment of the reproducing apparatus of the present invention, the detecting means detects an appearance frequency of a signal component of a space having the longest run length included in the read signal, and the determining means includes the run length. Whether or not the recording area on the recording medium from which the read signal is read is a defective area is determined based on the change amount of the appearance frequency of the signal component of the longest space.
 この態様によれば、ランレングスが最も短いマーク又はスペースの出現頻度が減少することに起因して出現頻度が変動し得る、ランレングスが最も長いスペース(例えば、記録媒体がDVDであればランレングスが11T又は14Tのスペースであり記録媒体がBlu-ray Discであればランレングスが8T又は9Tのスペース)の信号成分の出現頻度に基づいて、欠陥領域を好適に検出することができる。 According to this aspect, a space having the longest run length that can vary due to a decrease in the appearance frequency of the mark or space having the shortest run length (for example, a run length if the recording medium is a DVD). Is a space of 11T or 14T, and if the recording medium is a Blu-ray Disc, the defect area can be suitably detected based on the appearance frequency of signal components having a run length of 8T or 9T.
 上述の如くランレングスが相対的に若しくは最も長いスペースの信号成分の出現頻度の変化量に基づいて記録領域が欠陥領域であるか否かを判定する再生装置の態様では、前記判定手段は、前記出現頻度が所定の基準頻度に対して所定割合以上大きい場合に、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であると判定するように構成してもよい。 As described above, in the aspect of the reproducing apparatus that determines whether or not the recording area is a defective area based on the change amount of the appearance frequency of the signal component having the relatively long or longest run length, the determination unit includes the determination unit When the appearance frequency is greater than a predetermined reference frequency by a predetermined ratio or more, the recording area on the recording medium from which the read signal is read may be determined to be a defective area.
 上述したように、指紋等が付着した欠陥領域のようにレーザ光に対する透過率が本来の透過率から変動してしまっている欠陥領域においては、記録時には、上述したように本来意図しているランレングスのマーク又はスペースを記録することができなくなってしまう。その結果、ランレングスが最も短いマーク又はスペースとして記録すべきマーク又はスペースが、ランレングスが更に短いマーク又はスペースとして記録されてしまいかねない。これに起因して、再生時には、ランレングスが更に短いスペースが、他のスペースと一体的につながったデータパターンとして扱われてしまいかねない。その結果、ランレングスが相対的に若しくは最も長いスペースの出現頻度は増大する。従って、出現頻度が基準頻度に対して所定割合以上大きい場合に欠陥領域であると判定することで、欠陥領域を好適に検出することができる。 As described above, in a defective area where the transmittance with respect to the laser beam has fluctuated from the original transmittance, such as a defective area to which a fingerprint or the like is attached, during recording, the originally intended run is performed as described above. It becomes impossible to record length marks or spaces. As a result, a mark or space to be recorded as a mark or space with the shortest run length may be recorded as a mark or space with a shorter run length. Due to this, at the time of reproduction, a space with a shorter run length may be treated as a data pattern integrally connected to other spaces. As a result, the appearance frequency of a space having a relatively long or long run length increases. Therefore, when the appearance frequency is larger than the reference frequency by a predetermined ratio or more, it is possible to detect the defect region suitably by determining that the defect region is a defect region.
 本発明の再生装置に係る実施形態の他の態様では、前記検出手段は、前記読取信号中に含まれ且つ規格により予め定められたランレングスとは異なる違反ランレングスのマーク及び前記違反ランレングスのスペースの少なくとも一方の信号成分の出現頻度を検出し、前記判定手段は、前記違反ランレングスのマーク及び前記違反ランレングスのスペースの少なくとも一方の信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する。 In another aspect of the embodiment of the reproducing apparatus of the present invention, the detection means includes a violation run length mark different from a run length included in the read signal and predetermined by a standard, and the violation run length. The frequency of appearance of at least one signal component of the space is detected, and the determination unit is configured to read the reading based on the amount of change in the frequency of appearance of the signal component of at least one of the violation run-length mark and the violation run-length space. It is determined whether or not the recording area on the recording medium from which the signal has been read is a defective area.
 この態様によれば、ランレングスが最も短い(或いは、最も長い)マーク又はスペースとして記録すべきマーク又はスペースが、ランレングスが更に短い又は更に長い(つまり、違反ランレングスであって、例えば、記録媒体がDVDであればランレングスが2T以下、12T、13T又は15T以上であり、記録媒体がBlu-ray Discであればランレングスが1T以下又は10T以上)マーク又はスペースとして記録されてしまいかねないことを考慮して、欠陥領域を好適に検出することができる。 According to this aspect, a mark or space to be recorded as a mark or space with the shortest (or longest) run length is a shorter or longer run length (i.e., a violation run length, for example, a record If the medium is a DVD, the run length may be 2T or less, 12T, 13T, or 15T or more, and if the recording medium is a Blu-ray Disc, the run length may be 1T or less or 10T or more). In consideration of this, it is possible to detect the defect area suitably.
 上述の如く違反ランレングスのマーク及びスペースの少なくとも一方の信号成分の出現頻度の変化量に基づいて欠陥領域であるか否かを判定する再生装置の態様では、前記判定手段は、前記出現頻度が所定の基準頻度に対して所定割合以上大きい場合に、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であると判定するように構成してもよい。 As described above, in the aspect of the reproducing apparatus that determines whether or not the region is a defective region based on the change amount of the appearance frequency of at least one signal component of the violation run-length mark and space, the determination unit includes the appearance frequency The recording area on the recording medium from which the reading signal is read may be determined to be a defective area when the ratio is larger than a predetermined ratio with respect to a predetermined reference frequency.
 上述したように、指紋等が付着した欠陥領域のようにレーザ光に対する透過率が本来の透過率から変動している欠陥領域においては、記録時には、上述したように本来意図しているランレングスのマーク又はスペースを記録することができなくなってしまう。その結果、違反ランレングスのマーク又はスペースの出現頻度は増大する。従って、出現頻度が基準頻度に対して所定割合以上大きい場合に欠陥領域であると判定することで、欠陥領域を好適に検出することができる。 As described above, in the defect area where the transmittance with respect to the laser beam is fluctuated from the original transmittance, such as the defect area to which the fingerprint or the like is attached, at the time of recording, the originally intended run length is as described above. The mark or space cannot be recorded. As a result, the appearance frequency of violation run-length marks or spaces increases. Therefore, when the appearance frequency is larger than the reference frequency by a predetermined ratio or more, it is possible to detect the defect region suitably by determining that the defect region is a defect region.
 本発明の再生装置に係る実施形態の他の態様では、前記記録媒体上には、所定ランレングスのマーク及び前記所定ランレングスのスペースの夫々を略均等に含むシンクパターンが記録され、前記検出手段は、前記読取信号中に含まれ且つ前記所定ランレングスのマークの信号成分及び前記読取信号中に含まれ且つ前記所定ランレングスのスペースの信号成分の夫々の出現頻度を検出し、前記判定手段は、前記所定ランレングスのスペースの信号成分の出現頻度に対する、前記所定ランレングスのマークの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する。 In another aspect of the embodiment of the reproducing apparatus of the present invention, a sync pattern that includes each of the predetermined run-length mark and the predetermined run-length space substantially equally is recorded on the recording medium, and the detection means Detects the appearance frequency of the signal component of the mark of the predetermined run length included in the read signal and the signal component of the space of the predetermined run length included in the read signal, and the determination means The recording area on the recording medium from which the read signal is read is defective based on the amount of change in the appearance frequency of the signal component of the mark of the predetermined run length with respect to the appearance frequency of the signal component of the space of the predetermined run length. It is determined whether it is an area.
 シンクパターンは、正常な記録動作が行われた場合に所定ランレングスのマーク及び所定ランレングスのスペースの夫々を略均等に含む一方で、欠陥領域に記録された場合に所定ランレングスのマーク及び所定ランレングスのスペースの夫々を不均等に含み得る。従って、この態様によれば、シンクパターンを読み取ることで、欠陥領域を好適に検出することができる。 The sync pattern includes a predetermined run-length mark and a predetermined run-length space approximately evenly when a normal recording operation is performed, while a predetermined run-length mark and a predetermined run-length when recorded in a defective area. Each of the run length spaces may be unequal. Therefore, according to this aspect, the defective area can be suitably detected by reading the sync pattern.
 本発明の再生装置に係る実施形態の他の態様では、前記読取信号の振幅レベルを所定の振幅制限値にて制限して振幅制限信号を取得すると共に、前記振幅制限信号に対して高域強調フィルタリング処理を行うことで等化補正信号を取得する振幅制限フィルタリング手段を更に備え、前記判定手段は、前記等化補正信号中に含まれる前記少なくとも1つの信号成分の出現頻度に対する、前記読取信号中に含まれる少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する。 In another aspect of the embodiment of the reproducing apparatus of the present invention, the amplitude level of the read signal is limited by a predetermined amplitude limit value to obtain an amplitude limit signal, and high-frequency emphasis is applied to the amplitude limit signal. An amplitude limiting filtering unit that obtains an equalization correction signal by performing filtering processing is further provided, wherein the determination unit includes the frequency of appearance of the at least one signal component included in the equalization correction signal. Whether or not the recording area on the recording medium from which the read signal has been read is a defective area is determined based on the amount of change in the appearance frequency of at least one signal component included in.
 この態様によれば、振幅制限フィルタリング手段の動作により、読取信号の振幅レベルが制限される。具体的には、読取信号のうち振幅レベルが振幅制限値の上限よりも大きい又は下限より小さい信号成分は、振幅レベルが振幅制限値の上限又は下限に制限される。他方、読取信号のうち振幅レベルが振幅制限値の上限以下且つ下限以上である信号成分は、振幅レベルが制限されることはない。このように振幅レベルの制限が施された読取信号(つまり、振幅制限信号)に対して高域強調フィルタリング処理が更に行われる。その結果、等化補正信号が取得される。 According to this aspect, the amplitude level of the read signal is limited by the operation of the amplitude limit filtering means. Specifically, the signal level of the read signal whose amplitude level is larger than the upper limit or lower limit of the amplitude limit value is limited to the upper limit or lower limit of the amplitude limit value. On the other hand, the amplitude level of the signal component whose amplitude level is below the upper limit and below the lower limit of the amplitude limit value in the read signal is not limited. The high-frequency emphasis filtering process is further performed on the read signal (that is, the amplitude limit signal) on which the amplitude level is thus limited. As a result, an equalization correction signal is acquired.
 これにより、等化補正信号中に含まれるランレングスが相対的に又は最も短いマーク又はスペースの振幅が強調される。その結果、等化補正信号中に含まれる各マーク又は各スペースの出現頻度を、本来の出現頻度に近づけることができる。従って、読取信号中に含まれる各マーク又は各スペースの出現頻度と、等化補正信号中に含まれる各マーク又は各スペースの出現頻度とを比較することで、欠陥領域を好適に検出することができる。 This enhances the amplitude of the mark or space whose run length is relatively or shortest included in the equalization correction signal. As a result, the appearance frequency of each mark or each space included in the equalization correction signal can be brought close to the original appearance frequency. Therefore, the defect region can be suitably detected by comparing the appearance frequency of each mark or each space included in the read signal with the appearance frequency of each mark or each space included in the equalization correction signal. it can.
 特に、予め基準頻度をテーブル等の形式で持つ必要がないため、多種多様な記録媒体或いは未知の記録媒体に対しても、上述した動作を行うことができる。従って、多種多様な記録媒体或いは未知の記録媒体においても、欠陥領域を好適に検出することができる。 In particular, since it is not necessary to previously have the reference frequency in the form of a table or the like, the above-described operation can be performed on a wide variety of recording media or unknown recording media. Therefore, it is possible to detect a defective area in a variety of recording media or unknown recording media.
 (再生方法の実施形態)
 本発明の再生方法に係る実施形態は、記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出工程と、前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定工程とを備える。
(Embodiment of reproduction method)
The embodiment according to the reproducing method of the present invention includes a plurality of types of mark signal components included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and included in the read signal and the run signal. The read signal is read based on a detection step of detecting an appearance frequency of at least one signal component of signal components of a plurality of types of spaces having different lengths, and a change amount of the appearance frequency of the at least one signal component. And a determination step of determining whether or not the recording area on the recording medium is a defective area.
 本発明の再生方法に係る実施形態によれば、上述した本発明の再生装置に係る実施形態が享受することができる各種効果と同様の効果を享受することができる。 According to the embodiment of the reproducing method of the present invention, the same effects as the various effects that can be enjoyed by the embodiment of the reproducing apparatus of the present invention described above can be enjoyed.
 尚、上述した本発明の再生装置に係る実施形態における各種態様に対応して、本発明の再生方法に係る実施形態も各種態様を採ることが可能である。 Incidentally, in response to the various aspects in the embodiment of the playback apparatus of the present invention described above, the embodiment of the playback method of the present invention can also take various aspects.
 (コンピュータプログラムの実施形態)
 本発明のコンピュータプログラムに係る実施形態は、記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出手段と、前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定手段とを備える再生装置(即ち、上述した本発明の再生装置に係る実施形態(但し、その各種態様を含む))に備えられたコンピュータを制御する再生制御用のコンピュータプログラムであって、該コンピュータを、前記検出手段及び前記判定手段として機能させる。
(Embodiment of computer program)
Embodiments according to the computer program of the present invention include signal components of a plurality of types of marks that are included in a read signal obtained by reading a data pattern from a recording medium and have different run lengths, and are included in the read signal and the run signal. The read signal is read on the basis of detection means for detecting an appearance frequency of at least one signal component of signal components of a plurality of types of spaces having different lengths, and a change amount of the appearance frequency of the at least one signal component. Further, a reproducing apparatus comprising: a determination unit that determines whether or not the recording area on the recording medium is a defective area (that is, the embodiment according to the above-described reproducing apparatus of the present invention (including various aspects thereof)) A computer program for controlling playback that controls a computer provided in the computer, the computer comprising the detection means and the detection means To function as a constant means.
 本発明のコンピュータプログラムに係る実施形態によれば、当該コンピュータプログラムを格納するROM、CD-ROM、DVD-ROM、ハードディスク等の記録媒体から、当該コンピュータプログラムをコンピュータに読み込んで実行させれば、或いは、当該コンピュータプログラムを、通信手段を介してコンピュータにダウンロードさせた後に実行させれば、上述した本発明の再生装置に係る実施形態を比較的簡単に実現できる。 According to the embodiment of the computer program of the present invention, the computer program is read from a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk that stores the computer program, and executed. If the computer program is downloaded to a computer via communication means and then executed, the above-described embodiment of the playback apparatus of the present invention can be realized relatively easily.
 尚、上述した本発明の再生装置に係る実施形態における各種態様に対応して、本発明のコンピュータプログラムに係る実施形態も各種態様を採ることが可能である。 Incidentally, in response to the various aspects of the embodiment of the playback apparatus of the present invention described above, the embodiment of the computer program of the present invention can also adopt various aspects.
 本発明のコンピュータプログラム製品に係る実施形態は、記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出手段と、前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定手段とを備える再生装置(即ち、上述した本発明の再生装置に係る実施形態(但し、その各種態様を含む))に備えられたコンピュータにより実行可能なプログラム命令を明白に具現化し、該コンピュータを、前記検出手段及び前記判定手段として機能させる。 Embodiments according to the computer program product of the present invention are included in a read signal obtained by reading a data pattern from a recording medium and are included in the read signal and a plurality of types of mark signal components having different run lengths. Based on the detection means for detecting the appearance frequency of at least one signal component of the signal components of a plurality of types of spaces having different run lengths, and the read signal is read based on the amount of change in the appearance frequency of the at least one signal component. And a determination unit that determines whether or not the recording area on the recording medium is a defective area (that is, the above-described embodiment of the reproduction apparatus of the present invention (including various aspects thereof) The program instructions executable by the computer provided in the above are clearly embodied, and the computer includes the detection means and the detection means. To function as a constant means.
 本発明のコンピュータプログラム製品に係る実施形態によれば、当該コンピュータプログラム製品を格納するROM、CD-ROM、DVD-ROM、ハードディスク等の記録媒体から、当該コンピュータプログラム製品をコンピュータに読み込めば、或いは、例えば伝送波である当該コンピュータプログラム製品を、通信手段を介してコンピュータにダウンロードすれば、上述した本発明の再生装置に係る実施形態を比較的容易に実施可能となる。更に具体的には、当該コンピュータプログラム製品は、上述した本発明の再生装置に係る実施形態として機能させるコンピュータ読取可能なコード(或いはコンピュータ読取可能な命令)から構成されてよい。 According to the embodiment of the computer program product of the present invention, if the computer program product is read into a computer from a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk storing the computer program product, or For example, if the computer program product, which is a transmission wave, is downloaded to a computer via communication means, the above-described embodiment of the playback apparatus of the present invention can be implemented relatively easily. More specifically, the computer program product may be configured by computer-readable code (or computer-readable instructions) that functions as the above-described embodiment of the playback apparatus of the present invention.
 尚、上述した本発明の再生装置に係る実施形態における各種態様に対応して、本発明のコンピュータプログラム製品に係る実施形態も各種態様を採ることが可能である。 Incidentally, in response to the various aspects of the embodiment of the playback apparatus of the present invention described above, the embodiment of the computer program product of the present invention can also adopt various aspects.
 本実施形態のこのような作用及び他の利得は次に説明する実施例から更に明らかにされよう。 The operation and other advantages of the present embodiment will be further clarified from the examples described below.
 以上説明したように、本発明の再生装置に係る実施形態によれば、検出手段と、判定手段とを備える。本発明の再生方法に係る実施形態によれば、検出工程と、判定工程とを備える。本発明のコンピュータプログラムに係る実施形態によれば、コンピュータを本発明の再生装置に係る実施形態として機能させる。従って、記録媒体上の欠陥領域を好適に検出することができる。 As described above, according to the embodiment of the reproducing apparatus of the present invention, the detection device and the determination device are provided. According to the embodiment of the reproduction method of the present invention, the method includes a detection step and a determination step. According to the embodiment of the computer program of the present invention, the computer is caused to function as the embodiment of the playback apparatus of the present invention. Therefore, a defective area on the recording medium can be suitably detected.
 以下、本発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (1) 再生装置の構成
 初めに、図1を参照して、本発明の再生装置に係る実施例について説明を進める。ここに、図1は、本実施例に係る再生装置の基本構成を概念的に示すブロック図である。
(1) Configuration of Playback Device First, with reference to FIG. 1, description will be given of an embodiment according to the playback device of the present invention. FIG. 1 is a block diagram conceptually showing the basic structure of the reproducing apparatus in the example.
 図1に示すように、本実施例に係る再生装置1は、スピンドルモータ10と、ピックアップ(PU:Pick Up)11と、HPF(High Pass Filter)12と、A/D変換器13と、プリイコライザ(Pre Equalizer)14と、2値化回路16と、復号回路17と、T頻度検出回路21と、欠陥領域検出回路22とを備えている。 As shown in FIG. 1, the reproducing apparatus 1 according to the present embodiment includes a spindle motor 10, a pickup (PU: PickPUp) 11, an HPF (High Pass Filter) 12, an A / D converter 13, An equalizer (Pre Equalizer) 14, a binarization circuit 16, a decoding circuit 17, a T frequency detection circuit 21, and a defect area detection circuit 22 are provided.
 ピックアップ11は、スピンドルモータ10によって回転する光ディスク100の記録面にレーザ光LBを照射した際の反射光を光電変換して読取信号RRFを生成する。 The pickup 11 photoelectrically converts reflected light when the recording surface of the optical disk 100 rotated by the spindle motor 10 is irradiated with the laser beam LB, and generates a read signal RRF .
 HPF12は、ピックアップより出力される読取信号RRFの低域成分を除去し、その結果得られる読取信号RHCをA/D変換器13へ出力する。 The HPF 12 removes the low frequency component of the read signal R RF output from the pickup, and outputs the read signal R HC obtained as a result to the A / D converter 13.
 A/D変換器13は、不図示のPLL(Phased Lock Loop)等から出力されるサンプリングクロックに応じて読取信号RHCをサンプリングし、その結果得られる読取サンプル値系列RSをプリイコライザ14へ出力する。 The A / D converter 13 samples the read signal R HC in accordance with a sampling clock output from a PLL (Phased Lock Loop) (not shown) or the like, and outputs the read sample value series RS obtained as a result to the pre-equalizer 14. To do.
 プリイコライザ14は、ピックアップ11及び光ディスク100から構成される情報読取系の伝送特性に基づく符号間干渉を除去し、その結果得られる読取サンプル値系列RSを2値化回路16へ出力する。 Pre-equalizer 14 removes intersymbol interference based on the transmission characteristics of the composed information reading system from the pickup 11 and the optical disc 100, and outputs the resulting read sample value series RS C to the binary circuit 16.
 2値化回路16は、読取サンプル値系列RSに対して2値化処理を行い、その結果得られる2値化信号を復号回路17及びT頻度検出回路21の夫々へ出力する。 Binarizing circuit 16, read binarizes to the sample value series RS C, and outputs a binary signal obtained as a result of the decoding circuit 17 and to each of T frequency detection circuit 21.
 復号回路17は、2値化信号に対して復号処理等を行い、その結果得られる再生信号を、ディスプレイやスピーカ等の外部再生機器へ出力する。その結果、光ディスク100に記録されたデータパターン(例えば、映像データや音声データ等)が再生される。 The decoding circuit 17 performs a decoding process on the binarized signal and outputs a reproduction signal obtained as a result to an external reproduction device such as a display or a speaker. As a result, a data pattern (for example, video data or audio data) recorded on the optical disc 100 is reproduced.
 T頻度検出回路21は、本発明における「検出手段」の一具体例を構成しており、2値化信号中に含まれるマーク及びスペースの出現頻度を、ランレングス毎に検出する。例えば、光ディスク100がDVDである場合には、T頻度検出回路21は、ランレングスが3Tから11T及び14Tのマーク及びランレングスが3Tから11T及び14Tのスペースの夫々の出現頻度を検出する。或いは、例えば、光ディスク100がBlu-ray Discである場合には、T頻度検出回路21は、ランレングスが2Tから9Tのマーク及びランレングスが2Tから9Tのスペースの夫々の出現頻度を検出する。 The T frequency detection circuit 21 constitutes a specific example of the “detection means” in the present invention, and detects the appearance frequency of marks and spaces included in the binarized signal for each run length. For example, when the optical disc 100 is a DVD, the T frequency detection circuit 21 detects the appearance frequencies of marks with run lengths of 3T to 11T and 14T and spaces with run lengths of 3T to 11T and 14T. Alternatively, for example, when the optical disc 100 is a Blu-ray Disc, the T frequency detection circuit 21 detects the appearance frequency of each of a mark having a run length of 2T to 9T and a space having a run length of 2T to 9T.
 欠陥領域検出回路22は、本発明における「判定手段」の一具体例を構成しており、T頻度検出回路21により検出された各マーク及び各スペースの出現頻度に基づいて、T頻度検出回路21による検出動作の対象となった2値化信号に対応するデータパターンが記録されていた光ディスク100上の記録領域が欠陥領域であるか否かを判定する。 The defective area detection circuit 22 constitutes one specific example of the “determination means” in the present invention, and the T frequency detection circuit 21 is based on the appearance frequency of each mark and each space detected by the T frequency detection circuit 21. It is determined whether or not the recording area on the optical disc 100 on which the data pattern corresponding to the binarized signal that is the target of the detection operation is a defective area.
 (2) 再生装置の動作
 続いて、図2を参照して、本実施例に係る再生装置1の動作について説明する。ここに、図2は、本実施例に係る再生装置1の動作の流れを概念的に示すフローチャートである。
(2) Operation of Playback Device Next, with reference to FIG. 2, the operation of the playback device 1 according to the present embodiment will be described. FIG. 2 is a flowchart conceptually showing a flow of operations of the reproducing apparatus 1 in the example.
 図2に示すように、光ディスク100に記録されたデータパターンが再生される(ステップS101)。つまり、ピックアップ11により読取信号RRFが生成され、HPF12により読取信号RRFから読取信号RHCが生成され、A/D変換器13により読取信号RHCから読取サンプル値系列RSが生成され、プリイコライザ14により読取サンプル値系列RSから読取サンプル値系列RSが生成され、2値化回路16により読取サンプル値系列RSから2値化信号が生成され、復号回路17により2値化信号の復号処理が行われる。 As shown in FIG. 2, the data pattern recorded on the optical disc 100 is reproduced (step S101). That is, the signal R RF read by the pickup 11 is generated, the read signal R HC from the read signal R RF by HPF12 is generated, A / D converter 13 by the reading from the read signal R HC sample value series RS is generated, pre The equalizer 14 generates a read sample value series RS C from the read sample value series RS, the binarization circuit 16 generates a binarized signal from the read sample value series RS C , and the decoding circuit 17 decodes the binarized signal. Processing is performed.
 ステップS101の処理に続いて又は並行して、T頻度検出回路21の動作により、2値化信号中に含まれるマーク及びスペースの出現頻度(T頻度)が、ランレングス毎に検出される(ステップS102)。ここでは、例えば所定再生期間毎の出現頻度が検出されることが好ましい。 Following or in parallel with the processing of step S101, the appearance frequency (T frequency) of marks and spaces included in the binarized signal is detected for each run length by the operation of the T frequency detection circuit 21 (step S101). S102). Here, for example, it is preferable to detect the appearance frequency for each predetermined reproduction period.
 続いて、欠陥領域検出回路22の動作により、ステップS102において検出されたランレングスが最も短いマーク(以降、適宜“最短マーク”と称する)の出現頻度が、基準頻度(基準出現頻度)よりも所定割合以上小さいか否かが判定される(ステップS103)。つまり、光ディスク100がDVDであれば、ランレングスが3Tのマークの出現頻度が、ランレングスが3Tのマークの基準頻度よりも所定割合以上小さいか否かが判定される。同様に、光ディスク100がBlu-ray Discであれば、ランレングスが2Tのマークの出現頻度が、ランレングスが2Tのマークの基準頻度よりも所定割合以上小さいか否かが判定される。 Subsequently, by the operation of the defect area detection circuit 22, the appearance frequency of the mark with the shortest run length detected in step S102 (hereinafter, referred to as “shortest mark” as appropriate) is set to be higher than the reference frequency (reference appearance frequency). It is determined whether or not it is smaller than the ratio (step S103). That is, if the optical disc 100 is a DVD, it is determined whether or not the appearance frequency of the mark with the run length of 3T is smaller than the reference frequency of the mark with the run length of 3T by a predetermined ratio or more. Similarly, if the optical disc 100 is a Blu-ray Disc, it is determined whether the appearance frequency of a mark with a run length of 2T is smaller than a reference frequency of a mark with a run length of 2T by a predetermined ratio or more.
 ここで、基準頻度は、所定のデータパターン又はランダムデータパターンを光ディスク100上の欠陥のない記録領域に記録した場合の各マーク及び各スペースの出現頻度であることが好ましい。この基準頻度は、例えば再生装置1が備えるメモリ等に予め格納されていてもよいし、光ディスク100上に記録されていてもよいし、或いは再生装置1によって適宜生成されてもよい。従って、欠陥領域検出回路22は、予め格納されている又は予め記録されている基準頻度を読み取ることで、ステップS103の判定動作を行うことが好ましい。 Here, the reference frequency is preferably an appearance frequency of each mark and each space when a predetermined data pattern or a random data pattern is recorded in a recording area having no defect on the optical disc 100. For example, the reference frequency may be stored in advance in a memory or the like included in the playback apparatus 1, may be recorded on the optical disc 100, or may be appropriately generated by the playback apparatus 1. Therefore, it is preferable that the defective area detection circuit 22 performs the determination operation in step S103 by reading the reference frequency stored in advance or recorded in advance.
 また、所定割合としては、記録又は再生に影響を与える欠陥領域における各マーク及び各スペースの出現頻度や、記録又は再生に影響を与えない欠陥領域における各マーク及び各スペースの出現頻度や、正常な記録領域における各マーク及び各スペースの出現頻度(つまり、基準頻度)等を考慮しながら、実験的に、経験的に又はシミュレーション等を用いて、適切な値が予め定められることが好ましい。例えば、記録又は再生に影響を与える欠陥領域における各マーク及び各スペースの出現頻度の、基準頻度に対する割合が、所定の割合の一例としてあげられる。或いは、記録又は再生に影響を与える欠陥領域における各マーク及び各スペースの出現頻度と記録又は再生に影響を与えない欠陥領域における各マーク及び各スペースの出現頻度との境界の値の、基準頻度に対する割合が、所定の割合の他の一例としてあげられる。より具体的には、例えば、「50%(或いは、数十%から百数十%)」が所定割合の一例としてあげられる。但し、所定割合がこれに限定されることはない。 In addition, as a predetermined ratio, the appearance frequency of each mark and each space in a defective area that affects recording or reproduction, the appearance frequency of each mark and each space in a defective area that does not affect recording or reproduction, or normal It is preferable that an appropriate value is determined in advance experimentally, empirically, or using a simulation while considering the appearance frequency (that is, the reference frequency) of each mark and each space in the recording area. For example, the ratio of the appearance frequency of each mark and each space in the defect area that affects recording or reproduction to the reference frequency is an example of the predetermined ratio. Alternatively, the value of the boundary between the appearance frequency of each mark and each space in the defect area that affects recording or reproduction and the appearance frequency of each mark and each space in the defect area that does not affect recording or reproduction, relative to the reference frequency The ratio is another example of the predetermined ratio. More specifically, for example, “50% (or several tens to several tens of percent)” is an example of the predetermined ratio. However, the predetermined ratio is not limited to this.
 ここで、図3を参照して、各マーク及び各スペースの基準頻度について説明する。ここに、図3は、各マーク及び各スペースの基準頻度を示す表である。尚、図3では、光ディスク100の一具体例として、ランレングスが3Tから11T及び14Tのマーク及びスペースを利用してデータパターンを記録しているDVDと、ランレングスが2Tから9Tのマーク及びスペースを利用してデータパターンを記録しているBlu-ray Discとについて説明する。また、あるランレングスのマークは、同一ランレングスのスペースと組になって光ディスク100上に記録されるため、図3においては、マーク及びスペースの夫々の出現頻度を共通の値として示す。 Here, the reference frequency of each mark and each space will be described with reference to FIG. FIG. 3 is a table showing the reference frequency of each mark and each space. In FIG. 3, as a specific example of the optical disc 100, a DVD in which data patterns are recorded using marks and spaces with run lengths from 3T to 11T and 14T, and marks and spaces with run lengths from 2T to 9T. The Blu-ray Disc that records the data pattern using the will be described. Further, since a mark of a certain run length is recorded on the optical disc 100 in a pair with a space of the same run length, in FIG. 3, the appearance frequency of each mark and space is shown as a common value.
 図3(a)には、光ディスク100の一具体例であるDVDにランダムデータパターンを記録した場合の、2ECCブロック中の各ランレングスのマーク又はスペースの、ランレングスを考慮しない基準頻度(T出現確率)が示されている。図3(a)に示すように、ランレングスが3Tのマーク又はスペースの基準頻度は約32%であり、ランレングスが4Tのマーク又はスペースの基準頻度は約24%であり、ランレングスが5Tのマーク又はスペースの基準頻度は約17%であり、ランレングスが6Tのマーク又はスペースの基準頻度は約11.5%であり、ランレングスが7Tのマーク又はスペースの基準頻度は約7%であり、ランレングスが8Tのマーク又はスペースの基準頻度は約4%であり、ランレングスが9Tのマーク又はスペースの基準頻度は約2%であり、ランレングスが10Tのマーク又はスペースの基準頻度は約1.3%であり、ランレングスが11Tのマーク又はスペースの基準頻度は約0.24%であり、ランレングスが14Tのマーク又はスペースの基準頻度は約0.3%である。 FIG. 3A shows a reference frequency (T appearance) of a run length mark or space in a 2 ECC block that does not take the run length into consideration when a random data pattern is recorded on a DVD which is a specific example of the optical disc 100. Probability). As shown in FIG. 3A, the reference frequency of a mark or space with a run length of 3T is about 32%, the reference frequency of a mark or space with a run length of 4T is about 24%, and the run length is 5T. The standard frequency of a mark or space of about 17%, the standard frequency of a mark or space of 6T run length is about 11.5%, and the standard frequency of a mark or space of 7T run length is about 7% Yes, the reference frequency of a mark or space with a run length of 8T is about 4%, the reference frequency of a mark or space with a run length of 9T is about 2%, and the reference frequency of a mark or space with a run length of 10T is The reference frequency for a mark or space with a run length of 11T is about 0.24%, and the mark or space with a run length of 14T. The standard frequency is about 0.3%.
 また、図3(a)には、光ディスク100の一具体例であるDVDにランダムデータパターンを記録した場合の、2ECCブロック中の各ランレングスのマーク又はスペースの、ランレングスを考慮した基準頻度(サンプル出現確率)が示されている。図3(a)に示すように、ランレングスが3Tのマーク又はスペースの基準頻度は約20%であり、ランレングスが4Tのマーク又はスペースの基準頻度は約20%であり、ランレングスが5Tのマーク又はスペースの基準頻度は約18%であり、ランレングスが6Tのマーク又はスペースの基準頻度は約15%であり、ランレングスが7Tのマーク又はスペースの基準頻度は約11%であり、ランレングスが8Tのマーク又はスペースの基準頻度は約7.3%であり、ランレングスが9Tのマーク又はスペースの基準頻度は約4.5%であり、ランレングスが10Tのマーク又はスペースの基準頻度は約2.9%であり、ランレングスが11Tのマーク又はスペースの基準頻度は約0.56%であり、ランレングスが14Tのマーク又はスペースの基準頻度は約0.94%である。 FIG. 3A shows a reference frequency in consideration of the run length of each run length mark or space in the 2 ECC block when a random data pattern is recorded on a DVD which is a specific example of the optical disc 100. Sample appearance probability) is shown. As shown in FIG. 3A, the reference frequency of a mark or space with a run length of 3T is about 20%, the reference frequency of a mark or space with a run length of 4T is about 20%, and the run length is 5T. The mark or space reference frequency is about 18%, the run length 6T mark or space reference frequency is about 15%, the run length 7T mark or space reference frequency is about 11%, The reference frequency of a mark or space with a run length of 8T is about 7.3%, the reference frequency of a mark or space with a run length of 9T is about 4.5%, and the reference frequency of a mark or space with a run length of 10T The frequency is about 2.9%, the standard frequency of a mark or space with a run length of 11T is about 0.56%, and the mark or space with a run length of 14T. The standard frequency of over scan is about 0.94%.
 図3(b)には、光ディスク100の一具体例であるBlu-ray Discにランダムデータパターンを記録した場合の、1ECCブロック中の各ランレングスのマーク又はスペースの、ランレングスを考慮しない基準頻度(T出現確率)が示されている。図3(b)に示すように、ランレングスが2Tのマーク又はスペースの基準頻度は約38%であり、ランレングスが3Tのマーク又はスペースの基準頻度は約25%であり、ランレングスが4Tのマーク又はスペースの基準頻度は約16%であり、ランレングスが5Tのマーク又はスペースの基準頻度は約10%であり、ランレングスが6Tのマーク又はスペースの基準頻度は約6%であり、ランレングスが7Tのマーク又はスペースの基準頻度は約3%であり、ランレングスが8Tのマーク又はスペースの基準頻度は約1.6%であり、ランレングスが9Tのマーク又はスペースの基準頻度は約0.35%である。 FIG. 3B shows a reference frequency that does not consider the run length of each run length mark or space in one ECC block when a random data pattern is recorded on a Blu-ray Disc that is a specific example of the optical disc 100. (T appearance probability) is shown. As shown in FIG. 3B, the reference frequency of a mark or space with a run length of 2T is about 38%, the reference frequency of a mark or space with a run length of 3T is about 25%, and the run length is 4T. The mark or space reference frequency is about 16%, the run length 5T mark or space reference frequency is about 10%, the run length 6T mark or space reference frequency is about 6%, The reference frequency of a mark or space with a run length of 7T is about 3%, the reference frequency of a mark or space with a run length of 8T is about 1.6%, and the reference frequency of a mark or space with a run length of 9T is About 0.35%.
 また、図3(b)には、光ディスク100の一具体例であるBlu-ray Discにランダムデータパターンを記録した場合の、1ECCブロック中の各ランレングスのマーク又はスペースの、ランレングスを考慮した基準頻度(サンプル出現確率)が示されている。図3(b)に示すように、ランレングスが2Tのマーク又はスペースの基準頻度は約23%であり、ランレングスが3Tのマーク又はスペースの基準頻度は約22%であり、ランレングスが4Tのマーク又はスペースの基準頻度は約19%であり、ランレングスが5Tのマーク又はスペースの基準頻度は約15%であり、ランレングスが6Tのマーク又はスペースの基準頻度は約10%であり、ランレングスが7Tのマーク又はスペースの基準頻度は約6%であり、ランレングスが8Tのマーク又はスペースの基準頻度は約3.9%であり、ランレングスが9Tのマーク又はスペースの基準頻度は約0.93%である。 In FIG. 3B, the run length of each run length mark or space in one ECC block when a random data pattern is recorded on a Blu-ray Disc, which is a specific example of the optical disc 100, is considered. Reference frequency (sample appearance probability) is shown. As shown in FIG. 3B, the reference frequency of a mark or space with a run length of 2T is about 23%, the reference frequency of a mark or space with a run length of 3T is about 22%, and the run length is 4T. The mark or space reference frequency is about 19%, the run length 5T mark or space reference frequency is about 15%, the run length 6T mark or space reference frequency is about 10%, The reference frequency of a mark or space with a run length of 7T is about 6%, the reference frequency of a mark or space with a run length of 8T is about 3.9%, and the reference frequency of a mark or space with a run length of 9T is About 0.93%.
 尚、ランレングスを考慮しない基準頻度とは、各ランレングスのマーク又はスペースの基準頻度を算出する際の重み付けが、各ランレングスにおいて同一である基準頻度である。つまり、あるランレングスのマーク又はスペースが1つ出現すれば、その出現回数が1回とカウントされる場合の基準頻度を示している。他方で、ランレングスを考慮した基準頻度とは、各ランレングスのマーク又はスペースの基準頻度を算出する際の重み付けが、ランレングスに依存する基準頻度である。つまり、あるランレングスのマーク又はスペースが1つ出現すれば、その出現回数がランレングスに応じた回数だけカウントされる場合の基準頻度を示している。このように2種類の基準頻度が存在することを考慮して、T頻度検出回路21は、2種類の出現頻度(つまり、ランレングスを考慮しない出現頻度及びランレングスを考慮した出現頻度)の一方又は双方を検出することが好ましい。また、欠陥領域検出回路22は、ランレングスを考慮しない出現頻度が、ランレングスを考慮しない基準頻度よりも所定割合以上小さいか否かを判定することが好ましい。同様に、欠陥領域検出回路22は、ランレングスを考慮した出現頻度が、ランレングスを考慮した基準頻度よりも所定割合以上小さいか否かを判定することが好ましい。 The reference frequency that does not consider the run length is a reference frequency in which the weight in calculating the reference frequency of the mark or space of each run length is the same in each run length. That is, when one mark or space of a certain run length appears, the reference frequency when the number of appearances is counted as one is shown. On the other hand, the reference frequency in consideration of the run length is a reference frequency on which the weight in calculating the reference frequency of the mark or space of each run length depends on the run length. That is, when one mark or space of a certain run length appears, the reference frequency in the case where the number of appearances is counted by the number corresponding to the run length is shown. In consideration of the existence of two types of reference frequencies in this way, the T frequency detection circuit 21 has one of two types of appearance frequencies (that is, an appearance frequency not considering run length and an appearance frequency considering run length). Or it is preferable to detect both. Moreover, it is preferable that the defective area detection circuit 22 determines whether or not the appearance frequency not considering the run length is smaller than the reference frequency not considering the run length by a predetermined ratio or more. Similarly, it is preferable that the defective area detection circuit 22 determines whether or not the appearance frequency considering the run length is smaller than the reference frequency considering the run length by a predetermined ratio or more.
 再び図2において、ステップS103における判定の結果、最短マークの出現頻度が基準頻度よりも所定割合だけ小さくないと判定された場合には(ステップS103:No)、この最短マークを含むデータパターンが読み取られた記録領域は欠陥領域ではないと判定される。 In FIG. 2 again, when it is determined in step S103 that the appearance frequency of the shortest mark is not lower than the reference frequency by a predetermined rate (step S103: No), the data pattern including the shortest mark is read. It is determined that the recorded area is not a defective area.
 その後、再生動作を終了するか否かが判定される(ステップS105)。ステップS105における判定の結果、再生動作を終了しないと判定された場合には(ステップS105:No)、ステップS101へ戻り、再生動作を継続しつつ、ステップS102以降の動作を繰り返す。他方で、ステップS105における判定の結果、再生動作を終了すると判定された場合には(ステップS105:Yes)、再生動作を終了する。 Thereafter, it is determined whether or not to end the reproduction operation (step S105). As a result of the determination in step S105, when it is determined not to end the reproduction operation (step S105: No), the process returns to step S101, and the operation after step S102 is repeated while continuing the reproduction operation. On the other hand, as a result of the determination in step S105, when it is determined that the reproduction operation is to be terminated (step S105: Yes), the reproduction operation is terminated.
 他方で、ステップS103における判定の結果、最短マークの出現頻度が基準頻度よりも所定割合だけ小さいと判定された場合には(ステップS103:Yes)、この最短マークを含むデータパターンが読み取られた記録領域は欠陥領域であると判定される(ステップS104)。従って、当該記録領域を欠陥領域として設定すると共に、必要に応じてその他の欠陥処理(例えば、欠陥領域に記録されていたデータパターンを、他の記録領域に退避させる処理等)が行われる。その後、ステップS105へと進む。尚、本実施例では、欠陥領域として、指紋等が付着した記録領域のように、レーザ光の透過率が本来の透過率から変動してしまっている記録領域を例にあげて説明するが、もちろんその他の要因で生ずる欠陥領域であってもよいことは言うまでもない。 On the other hand, as a result of the determination in step S103, when it is determined that the appearance frequency of the shortest mark is smaller than the reference frequency by a predetermined ratio (step S103: Yes), the recording in which the data pattern including the shortest mark is read is recorded. It is determined that the area is a defective area (step S104). Therefore, the recording area is set as a defective area, and other defect processing (for example, processing for saving a data pattern recorded in the defective area to another recording area) is performed as necessary. Thereafter, the process proceeds to step S105. In the present embodiment, the recording area in which the transmittance of the laser light has changed from the original transmittance, such as a recording area to which a fingerprint or the like is attached, will be described as an example of the defective area. Of course, it is needless to say that the defect region may be caused by other factors.
 但し、最短マークの出現頻度が基準頻度よりも所定割合だけ小さいと判定された場合には、更にジッタが所定値以上であるか否かを合わせて判定してもよい。つまり、付加的にジッタに基づいて、更に欠陥領域である否かの判定を行うように構成してもよい。 However, when it is determined that the appearance frequency of the shortest mark is smaller than the reference frequency by a predetermined ratio, it may be further determined whether or not the jitter is equal to or greater than a predetermined value. That is, it may be configured to additionally determine whether or not the region is a defect region based on jitter.
 続いて、図4及び図5を参照して、欠陥領域における最短マークの出現頻度について説明する。ここに、図4は、正常領域及び欠陥領域の夫々における最短マークの出現頻度を、ジッタと共に示す図であり、図5は、正常領域及び欠陥領域の夫々における読取信号RRFの状態を、2値化スライスレベルと共に示すグラフである。尚、図4では、光ディスク100としてBlu-ray Discを用いる例について説明する。 Next, the appearance frequency of the shortest mark in the defect area will be described with reference to FIGS. FIG. 4 is a diagram showing the appearance frequency of the shortest mark in each of the normal region and the defect region together with the jitter. FIG. 5 shows the state of the read signal R RF in each of the normal region and the defect region. It is a graph shown with a value-ized slice level. In FIG. 4, an example in which a Blu-ray Disc is used as the optical disc 100 will be described.
 図4に示すように、指紋等が付着した欠陥領域における最短マーク(つまり、ランレングスが2Tのマーク)の出現頻度は、正常領域(つまり、指紋等の欠陥がない領域)における最短マークの出現頻度よりも小さくなっている。ここで、指紋の付着状態によっては、ジッタが悪化する場合(指紋状態1参照)もあるしジッタが悪化しない(或いは、改善される)場合(指紋状態2参照)もあり得る。この理由について、図5を用いて説明する。 As shown in FIG. 4, the appearance frequency of the shortest mark (that is, a mark having a run length of 2T) in the defect area to which a fingerprint or the like is attached is the appearance frequency of the shortest mark in a normal area (that is, an area where there is no defect such as a fingerprint). It is smaller than the frequency. Here, depending on the attachment state of the fingerprint, the jitter may deteriorate (see fingerprint state 1) or the jitter may not deteriorate (or be improved) (see fingerprint state 2). The reason for this will be described with reference to FIG.
 図5の左側に示すように、正常領域においては、最短マークを好適に記録することができる。このため、読取信号RRFに含まれる各マーク及び各スペースに対応する信号波形は、2値化スライスレベルと好適に交わる。従って、この状態の読取信号RRFは、ジッタ及び出現頻度のいずれに基づく判定を行っても、欠陥領域とは判定されない。 As shown on the left side of FIG. 5, the shortest mark can be suitably recorded in the normal area. For this reason, the signal waveform corresponding to each mark and each space included in the read signal R RF preferably crosses the binarized slice level. Therefore, the read signal R RF in this state is not determined to be a defective region even if determination based on either jitter or appearance frequency is performed.
 続いて、図5の中央に示すように、指紋状態1に対応する欠陥領域においては、指紋の付着によってレーザ光の透過率が減少してしまう。従って、このような欠陥領域へのデータパターンの記録時には、本来意図しているランレングスの長さのマークを記録するために必要なエネルギーを、光ディスク100の記録面に与えることができなくなってしまう。これは、特にランレングスが短いマークを記録する際に顕著になる。このため、例えば本来ランレングスが2Tのマークとして記録すべきマークが、ランレングスが1Tのマークとして記録されてしまいかねない。つまり、相対的に短いマークが記録されることになる。従って、欠陥領域における最短マークの出現頻度が小さくなる。加えて、この場合、指紋状態1に対応する欠陥領域において得られる読取信号RRFは、特に最短マークに対応する信号成分がスペースに相当する信号成分側(つまり、図5では上側)にシフトした状態の信号成分が得られるとする。この場合、最短マークに対応する信号成分のジッタが悪化することになる。その結果、図4に示すように、読取信号RRF全体としてのジッタ(つまり、トータルジッタ)が悪化する。 Subsequently, as shown in the center of FIG. 5, in the defect region corresponding to the fingerprint state 1, the transmittance of the laser light is reduced due to the adhesion of the fingerprint. Therefore, when recording a data pattern in such a defective area, it becomes impossible to give the recording surface of the optical disc 100 the energy necessary for recording the mark of the run length that is originally intended. . This is particularly noticeable when a mark with a short run length is recorded. For this reason, for example, a mark that should originally be recorded as a mark having a run length of 2T may be recorded as a mark having a run length of 1T. That is, a relatively short mark is recorded. Therefore, the appearance frequency of the shortest mark in the defect area is reduced. In addition, in this case, the read signal R RF obtained in the defect area corresponding to the fingerprint state 1 is particularly shifted to the signal component side corresponding to the space (that is, the upper side in FIG. 5). Assume that a signal component of the state is obtained. In this case, the jitter of the signal component corresponding to the shortest mark is deteriorated. As a result, as shown in FIG. 4, the jitter (that is, total jitter) of the read signal R RF as a whole deteriorates.
 他方で、図5の右側に示すように、指紋状態2に対応する欠陥領域においても同様に、例えば本来ランレングスが2Tのマークとして記録すべきマークが、ランレングスが1Tのマークとして記録されてしまいかねない。従って、欠陥領域における最短マークの出現頻度が小さくなる。加えて、この場合、指紋状態2に対応する欠陥領域において得られる読取信号RRFは、最短マークに対応する信号成分が2値化スライスレベルと交わらなくなるまで、最短マークに対応する信号成分がスペースに相当する信号成分側にシフトした状態の信号成分が得られるとする。この場合、最短マークに対応する信号成分のジッタは、読取信号RRF全体としてのジッタの算出に寄与されなくなる。従って、図4に示すように、読取信号RRF全体としてのジッタが悪化することはなくなる。 On the other hand, as shown on the right side of FIG. 5, in the defect area corresponding to the fingerprint state 2 as well, for example, a mark that should originally be recorded with a run length of 2T is recorded as a mark with a run length of 1T. It can end up. Therefore, the appearance frequency of the shortest mark in the defect area is reduced. In addition, in this case, the read signal R RF obtained in the defect region corresponding to the fingerprint state 2 is such that the signal component corresponding to the shortest mark is a space until the signal component corresponding to the shortest mark does not intersect the binarized slice level. It is assumed that a signal component shifted to the signal component side corresponding to is obtained. In this case, the jitter of the signal component corresponding to the shortest mark is no longer contributing to the calculation of jitter as the entire read signal R RF. Therefore, as shown in FIG. 4, the jitter of the read signal R RF as a whole is not deteriorated.
 仮にジッタのみを用いて(言い換えれば、各マーク及び各スペースの出現頻度を考慮することなく)欠陥領域を検出する構成では、指紋状態2に対応する欠陥領域を検出することができない。しかるに、本実施例によれば、各マーク及び各スペースの出現頻度に基づいて欠陥領域を検出しているため、指紋状態2に対応する欠陥領域を好適に検出することができる。加えて、指紋等の影響を受けやすい最短マークの出現頻度に基づいて欠陥領域を検出しているため、より高精度にないしは容易に欠陥領域を検出することができる。 In the configuration in which the defect area is detected using only jitter (in other words, without considering the appearance frequency of each mark and each space), the defect area corresponding to the fingerprint state 2 cannot be detected. However, according to the present embodiment, since the defect area is detected based on the appearance frequency of each mark and each space, the defect area corresponding to the fingerprint state 2 can be suitably detected. In addition, since the defective area is detected based on the appearance frequency of the shortest mark that is easily affected by a fingerprint or the like, the defective area can be detected with higher accuracy or more easily.
 尚、上述の説明では、最短マークの出現頻度に基づいて欠陥領域を検出する例について説明している。しかしながら、図6(a)及び図6(b)に示すように、最短マークのみならず、ランレングスが最も短いスペースや他のランレングスのマーク又はスペースの出現頻度も、正常領域と欠陥領域との間で異なるものとなり得る。ここに、図6(a)は、正常な記録パワー及び相対的に低い記録パワーで記録される各マークの出現頻度を示す図であり、図6(b)は、正常な記録パワー及び相対的に低い記録パワーで記録される各スペースの出現頻度を示す図である。従って、ランレングスが最も短いスペースや他のランレングスのマーク又はスペースの出現頻度に基づいて、欠陥領域を検出するように構成しても良い。例えば、欠陥領域におけるランレングスが最も短いスペースの出現頻度は、正常領域におけるランレングスが最も短いスペースの出現頻度(つまり、基準頻度)よりも小さくなり得る。従って、ランレングスが最も短いスペースの出現頻度が基準頻度よりも所定割合だけ小さい場合に、このスペースを含むデータパターンが読み取られた記録領域が欠陥領域であると判定するように構成してもよい。また、欠陥領域におけるランレングスが最も短いマーク又はスペース以外のマーク又はスペースの出現頻度は、正常領域におけるランレングスが最も短いマーク又はスペース以外のマーク又はスペースの出現頻度(つまり、基準頻度)よりも大きくなり得る。従って、ランレングスが最も短いマーク又はスペース以外のマーク又はスペースの出現頻度が基準頻度よりも所定割合だけ大きい場合に、このマーク又はスペースを含むデータパターンが読み取られた記録領域が欠陥領域であると判定するように構成してもよい。 In the above description, an example in which a defective area is detected based on the appearance frequency of the shortest mark is described. However, as shown in FIGS. 6A and 6B, not only the shortest mark but also the frequency of appearance of a shortest run length space or another run length mark or space is defined as a normal region and a defective region. Can be different between. Here, FIG. 6A is a diagram showing the appearance frequency of each mark recorded with a normal recording power and a relatively low recording power, and FIG. 6B is a diagram showing a normal recording power and a relative recording power. It is a figure which shows the appearance frequency of each space recorded with low recording power. Therefore, the defect area may be detected based on the frequency of appearance of the shortest run length or other run length marks or spaces. For example, the appearance frequency of the space having the shortest run length in the defect area may be smaller than the appearance frequency (that is, the reference frequency) of the space having the shortest run length in the normal area. Therefore, when the appearance frequency of the space having the shortest run length is smaller than the reference frequency by a predetermined ratio, the recording area from which the data pattern including this space is read may be determined as the defective area. . In addition, the appearance frequency of a mark or space other than the mark or space having the shortest run length in the defect area is higher than the appearance frequency (that is, the reference frequency) of a mark or space other than the mark or space having the shortest run length in the normal area. Can be bigger. Therefore, when the appearance frequency of a mark or space other than the mark or space having the shortest run length is larger than the reference frequency by a predetermined rate, the recording area from which the data pattern including the mark or space is read is a defective area. You may comprise so that it may determine.
 特に、このような欠陥領域においては、ランレングスが最も短いスペースの出現頻度の減少に起因して、ランレングスが相対的に又は最も長いスペースの出現頻度の変動が最も大きくなる。従って、ランレングスが相対的に又は最も長いスペースの出現頻度に基づいて欠陥領域を検出することが好ましい。ここで、図7を参照して、ランレングスが相対的に又は最も長いスペースの出現頻度について説明する。ここに、図7は、正常領域及び欠陥領域の夫々におけるスペースの出現頻度を示すグラフである。尚、図7では、光ディスク100としてBlu-ray Discを用いる例について説明する。 In particular, in such a defective area, due to the decrease in the appearance frequency of the space having the shortest run length, the fluctuation in the appearance frequency of the space having the relatively long run length or the longest is the largest. Therefore, it is preferable to detect the defect area based on the appearance frequency of the space having a relatively long run length. Here, with reference to FIG. 7, the appearance frequency of a space having a relatively long or long run length will be described. FIG. 7 is a graph showing the appearance frequency of the space in each of the normal area and the defective area. In FIG. 7, an example in which a Blu-ray Disc is used as the optical disc 100 will be described.
 図7に示すように、指紋等が付着した欠陥領域におけるランレングスが最も長いスペース(つまり、ランレングスが9Tのスペース)の出現頻度は、正常領域におけるランレングスが最も長いスペースの出現頻度よりも大きくなり得る。これは、以下の理由によって生ずる。例えば本来ランレングスが2Tのマークとして記録すべきマークが、ランレングスが1Tのマークとして記録されてしまうことに起因して、再生時には、ゼロレベルを横切らなくなったランレングスが1Tのマークと前後のスペースがつながってしまうことで、ランレングスが9Tのスペースとして現れることになりかねない。 As shown in FIG. 7, the appearance frequency of the longest run-length space (that is, the run-length 9T space) in the defect area to which fingerprints or the like are attached is higher than the appearance frequency of the longest run-length space in the normal area. Can be bigger. This occurs for the following reasons. For example, a mark that should originally be recorded as a 2T mark with a run length is recorded as a 1T mark with a run length of 1T. If the spaces are connected, the run length may appear as a 9T space.
 従って、欠陥領域におけるランレングスが最も長いスペースの出現頻度が基準頻度よりも所定割合だけ大きい場合に、このスペースを含むデータパターンが読み取られた記録領域が欠陥領域であると判定するように構成してもよい。このように、指紋等の影響を受けやすいランレングスが最も短いマークの出現頻度に依存して出現頻度が変動するランレングスが最も長いスペースに基づいて欠陥領域を検出しているため、より高精度にないしは容易に欠陥領域を検出することができる。 Therefore, when the appearance frequency of the space having the longest run length in the defective area is larger than the reference frequency by a predetermined ratio, the recording area from which the data pattern including this space is read is determined to be the defective area. May be. In this way, the defect area is detected based on the longest run length whose run length varies depending on the appearance frequency of the mark with the shortest run length that is susceptible to fingerprints, etc. In addition, it is possible to detect a defective area easily.
 尚、図7に示すように、欠陥領域においては、規格で定められたランレングス(具体的には、2Tから9T)以外のランレングス(具体的には、1T又は10T以上)のスペースが増加している。例えば、10T以上のランレングスのスペースは、ランレングスの2Tのマークが、ランレングスが1Tのマークとして記録されてしまうことに起因して、スペースが他のスペースとつながることによって現れ得る。従って、規格で定められたランレングス以外のランレングスのスペースの出現頻度に基づいて、欠陥領域を検出するように構成してもよい。この場合、規格上で定められたランレングス以外のランレングスのスペースの出現頻度が所定量以上である場合に、このスペースを含むデータパターンが読み取られた記録領域が欠陥領域であると判定するように構成してもよい。 In addition, as shown in FIG. 7, in the defect area, the run length (specifically, 1T or 10T or more) other than the run length (specifically, 2T to 9T) determined by the standard increases. is doing. For example, a run-length space of 10T or more may appear when a run-length 2T mark is recorded as a 1-T mark with a run length that is connected to another space. Accordingly, the defect area may be detected based on the appearance frequency of a run-length space other than the run-length determined by the standard. In this case, when the appearance frequency of a run length space other than the run length defined in the standard is equal to or higher than a predetermined amount, it is determined that the recording area from which the data pattern including this space is read is a defective area. You may comprise.
 更に、規格で定められたランレングス以外のランレングスのスペースの出現頻度のみならず、規格で定められたランレングス以外のランレングスのマークの出現頻度についても同様のことが言える。ここで、規格で定められたランレングス以外のランレングスのマークの出現頻度について、図8を参照して説明する。ここに、図8は、正常領域及び欠陥領域の夫々におけるマークの出現頻度を示すグラフである。尚、図8では、光ディスク100としてBlu-ray Discを用いる例について説明する。 Furthermore, the same can be said for the appearance frequency of run-length marks other than the run-length specified in the standard, as well as the appearance frequency of run-length spaces other than the run-length specified in the standard. Here, the appearance frequency of run-length marks other than the run-length defined by the standard will be described with reference to FIG. FIG. 8 is a graph showing the appearance frequency of the mark in each of the normal area and the defective area. In FIG. 8, an example in which a Blu-ray Disc is used as the optical disc 100 will be described.
 図8に示すように、欠陥領域においては、規格で定められたランレングス(具体的には、2Tから9T)以外のランレングス(具体的には、1T)のマークが増加している。従って、規格で定められたランレングス以外のランレングスのマークの出現頻度に基づいて、欠陥領域を検出するように構成してもよい。この場合、規格上で定められたランレングス以外のランレングスのマークの出現頻度が所定量以上である場合に、このマークを含むデータパターンが読み取られた記録領域が欠陥領域であると判定するように構成してもよい。 As shown in FIG. 8, in the defect area, marks of run lengths (specifically, 1T) other than the run lengths (specifically, 2T to 9T) defined in the standard are increased. Therefore, the defect area may be detected based on the appearance frequency of a run length mark other than the run length defined in the standard. In this case, when the appearance frequency of a run-length mark other than the run-length defined in the standard is a predetermined amount or more, it is determined that the recording area from which the data pattern including the mark is read is a defective area. You may comprise.
 また、光ディスク100の一具体例たるBlu-ray Discでは、シンクパターン(同期パターン)として、ランレングスが9Tのマークとランレングスが9Tのスペースとを互いに交互に含むデータパターンを採用している。このシンクパターン中におけるランレングスが9Tのマーク及びランレングスが9Tのスペースの夫々の出現頻度に基づいて、欠陥領域を検出するように構成してもよい。この例について、図9を参照して説明する。ここに、図9は、シンクパターン中のランレングスが9Tのマーク及びランレングスが9Tのスペースの夫々の出現頻度の差を示すグラフである。 Also, Blu-ray Disc, which is a specific example of the optical disc 100, employs a data pattern including a run length 9T mark and a run length 9T space alternately as a sync pattern (synchronization pattern). The defect area may be detected based on the appearance frequency of each of the mark having a run length of 9T and the space having a run length of 9T in the sync pattern. This example will be described with reference to FIG. FIG. 9 is a graph showing the difference in appearance frequency between the mark having a run length of 9T and the space having a run length of 9T in the sync pattern.
 図9に示すように、正常領域においては、シンクパターン中におけるランレングスが9Tのマーク及びランレングスが9Tのスペースの夫々の出現頻度は略同一となる。つまり、頻度差(=ランレングスが9Tのマークの出現頻度-ランレングスが9Tのスペースの出現頻度)は概ね0となる。他方で、欠陥領域においては、シンクパターン中におけるランレングスが9Tのマーク及びランレングスが9Tのスペースの夫々の出現頻度は異なるものとなる。具体的には、例えば、ランレングスが2Tのマークが、ランレングスが1Tのマークとして記録されてしまうことに起因して、ランレングスが1Tのスペースが他のスペースとつながる場合には、ランレングスが9Tのスペースの出現頻度が、ランレングスが9Tのマークの出現頻度に対して増加し得る。また、例えば、ランレングスの2Tのマークが、ランレングスが1Tのマークとして記録されてしまうことに起因して、ランレングスが9Tのスペースが他のスペースとつながる場合には、ランレングスが9Tのスペースの出現頻度が、ランレングスが9Tのマークの出現頻度に対して減少し得る。 As shown in FIG. 9, in the normal region, the appearance frequency of the mark having the run length of 9T and the space having the run length of 9T in the sync pattern are substantially the same. That is, the frequency difference (= appearance frequency of a mark with a run length of 9T−appearance frequency of a space with a run length of 9T) is substantially zero. On the other hand, in the defect area, the appearance frequency of the mark having a run length of 9T and the space having a run length of 9T in the sync pattern are different. Specifically, for example, if a mark with a run length of 2T is recorded as a mark with a run length of 1T, and a space with a run length of 1T is connected to another space, the run length is The appearance frequency of the 9T space may increase with respect to the appearance frequency of the 9T mark. Also, for example, when a run length 2T mark is recorded as a run length 1T mark and a run length 9T space is connected to another space, the run length 9T The appearance frequency of the space may be reduced with respect to the appearance frequency of the mark having a run length of 9T.
 このように、シンクパターン中におけるランレングスが9Tのマークの出現頻度とランレングスが9Tのスペースの出現頻度との間に差異が生じた場合に、当該シンクパターンを含むデータパターンが読み取られた記録領域が欠陥領域であると判定してもよい。つまり、頻度差(=ランレングスが9Tのマークの出現頻度-ランレングスが9Tのスペースの出現頻度)が0でなくなる(より好ましくは、0から大きく乖離する)場合には、当該シンクパターンを含むデータパターンが読み取られた記録領域が欠陥領域であると判定してもよい。これにより、欠陥領域を好適に検出することができる。 As described above, when there is a difference between the appearance frequency of the mark having the run length of 9T and the appearance frequency of the space having the run length of 9T in the sync pattern, the data pattern including the sync pattern is read. It may be determined that the region is a defective region. That is, if the frequency difference (= appearance frequency of a mark with a run length of 9T−appearance frequency of a space with a run length of 9T) is not 0 (more preferably, greatly different from 0), the sync pattern is included. It may be determined that the recording area from which the data pattern has been read is a defective area. Thereby, a defect area | region can be detected suitably.
 (3)変形例
 続いて、図10を参照して、本実施例に係る再生装置1の変形例について説明する。ここに、図10は、変形例に係る再生装置2の構成を概念的に示すブロック図である。尚、上述した再生装置1と同一の構成については、同一の参照符号を付してその詳細な説明については省略する。
(3) Modified Example Next, with reference to FIG. 10, a modified example of the reproducing apparatus 1 according to the present embodiment will be described. FIG. 10 is a block diagram conceptually showing the structure of the reproducing apparatus 2 according to the modification. In addition, about the structure same as the reproducing | regenerating apparatus 1 mentioned above, the same referential mark is attached | subjected and the detailed description is abbreviate | omitted.
 図10に示すように、変形例に係る再生装置2は、上述した再生装置1と同様に、スピンドルモータ10と、ピックアップ(PU:Pick Up)11と、HPF(High Pass Filter)12と、A/D変換器13と、プリイコライザ(Pre Equalizer)14と、2値化回路16と、復号回路17と、T頻度検出回路21と、欠陥領域検出回路22とを備えている。 As shown in FIG. 10, the playback apparatus 2 according to the modified example is similar to the playback apparatus 1 described above, and includes a spindle motor 10, a pickup (PU: Pick Up) 11, an HPF (High Pass Filter) 12, and A A / D converter 13, a pre-equalizer 14, a binarization circuit 16, a decoding circuit 17, a T frequency detection circuit 21, and a defect area detection circuit 22 are provided.
 変形例に係る再生装置2は特に、プリイコライザ14と2値化回路16との間に、リミットイコライザ(Limit Equalizer)15を備えている。リミットイコライザ15は、本発明における「振幅制限フィルタリング手段」の一具体例を構成しており、符号間干渉を増加させることなく読取サンプル値系列RSに対して高域強調処理を施し、その結果得られる高域強調読取サンプル値系列RSを、2値化回路16へ出力する。尚、リミットイコライザ15の動作自体は、従来のリミットイコライザの動作と同一である。その詳細については、特許第3459563号等を参照されたい。 In particular, the reproduction apparatus 2 according to the modification includes a limit equalizer 15 between the pre-equalizer 14 and the binarization circuit 16. Limit equalizer 15 constitutes one specific example of the "amplitude limiting filtering device" of the present invention, subjected to a high frequency emphasis processing to the read sample value series RS C without increasing the intersymbol interference, resulting the high-frequency enhanced read sample value sequence RS H obtained, and outputs it to the binary circuit 16. The operation itself of the limit equalizer 15 is the same as the operation of the conventional limit equalizer. For details, see Japanese Patent No. 3459563.
 特に、リミットイコライザ15は、そのオン・オフを任意に切り替えることが可能に構成されている。リミットイコライザ15がオンとなっているときには、2値化回路16へは、高域強調読取サンプル値系列RSが出力される一方で、リミットイコライザ15がオフとなっているときには、2値化回路16へは、プリイコライザ14の出力である読取サンプル値系列RSが出力される。 In particular, the limit equalizer 15 is configured to be able to arbitrarily switch on and off. When the limit equalizer 15 is on the to the binarizing circuit 16, while the high-frequency emphasized read sample value series RS H is outputted, when the limit equalizer 15 is turned off, the binarizing circuit to 16, read sample value series RS C, which is the output of the pre-equalizer 14 is outputted.
 更に、変形例では、T頻度検出回路21は、リミットイコライザ15がオンとなっている状態での出現頻度と、リミットイコライザ15がオフとなっている状態での出現頻度との夫々を検出する。 Furthermore, in the modification, the T frequency detection circuit 21 detects each of the appearance frequency when the limit equalizer 15 is on and the appearance frequency when the limit equalizer 15 is off.
 ここで、リミットイコライザ15がオンとなっている場合には、以下の処理が行われる。まず、読取信号RRFの振幅レベルが、所定の振幅制限値にて制限される。具体的には、読取信号RRFのうち振幅レベルが振幅制限値の上限よりも大きい又は下限より小さい信号成分は、振幅レベルが振幅制限値の上限又は下限に制限される。他方、読取信号RRFのうち振幅レベルが振幅制限値の上限以下且つ下限以上である信号成分は、振幅レベルが制限されることはない。このように振幅制限処理が行われることで、振幅制限信号RLIMが生成される。振幅制限信号RLIMに対して、高域強調フィルタリング処理が行われる。ここでの高域強調フィルタリング処理は、例えば、振幅制限信号RLIM中におけるランレングスが最も短いマーク又はスペースに対応する信号成分付近の信号レベルを増大させる処理である。その結果、高域強調読取サンプル値系列RSが生成される。 Here, when the limit equalizer 15 is on, the following processing is performed. First, the amplitude level of the read signal R RF is limited by a predetermined amplitude limit value. Specifically, the signal level of the read signal R RF whose amplitude level is larger than the upper limit or lower limit of the amplitude limit value is limited to the upper limit or lower limit of the amplitude limit value. On the other hand, the amplitude level of the signal component whose amplitude level is below the upper limit and above the lower limit of the amplitude limit value in the read signal R RF is not limited. By performing the amplitude limiting process in this manner, the amplitude limiting signal R LIM is generated. A high-frequency emphasis filtering process is performed on the amplitude limit signal R LIM . Here, the high-frequency emphasis filtering process is a process of increasing the signal level in the vicinity of the signal component corresponding to the mark or space having the shortest run length in the amplitude limit signal R LIM , for example. As a result, high-frequency emphasized read sample value series RS H is generated.
 このように、ランレングスが最も短いマーク又はスペースの信号成分が強調されるため、仮にランレングスが最も短いマークに対応する信号成分が2値化スライスレベルと交わらなくない状態(図5の右側の図参照)でデータパターンが記録されていたとしても、この信号成分が2値化スライスレベルと交わる状態(図5の左側の図参照)となるようにデータパターンを再生することができる。つまり、いわゆる通常領域におけるランレングスが最も短いマーク又はスペースの信号成分をリミットイコライザ15から出力することができる。 Thus, since the signal component of the mark or space with the shortest run length is emphasized, the signal component corresponding to the mark with the shortest run length does not intersect the binarized slice level (on the right side of FIG. 5). Even if the data pattern is recorded in (see the figure), the data pattern can be reproduced so that this signal component intersects the binarized slice level (see the figure on the left side of FIG. 5). That is, the signal component of the mark or space having the shortest run length in the so-called normal region can be output from the limit equalizer 15.
 従って、変形例においては、欠陥領域検出回路22は、リミットイコライザ15がオンとなっている状態で検出された出現頻度を、上述した基準頻度として用いる。つまり、欠陥領域検出回路22は、リミットイコライザ15がオフとなっている状態で検出された出現頻度が、リミットイコライザ15がオンとなっている状態で検出された出現頻度よりも大きい若しくは小さい又は所定割合だけ大きい若しくは所定割合だけ小さいか否かを判定することで、欠陥領域を検出する。 Therefore, in the modification, the defective area detection circuit 22 uses the appearance frequency detected in a state where the limit equalizer 15 is turned on as the reference frequency described above. That is, the defect area detection circuit 22 has an appearance frequency detected when the limit equalizer 15 is off larger or smaller than an appearance frequency detected when the limit equalizer 15 is on, or a predetermined value. A defective area is detected by determining whether the ratio is larger or smaller by a predetermined ratio.
 これにより、変形例に係る再生装置2においても、上述した再生装置1が享受することができる各種効果を好適に享受することができる。加えて、上述した基準頻度を示すテーブル等を予め格納しておく必要がないため、基準頻度が設定されていない光ディスク100或いは未知の光ディスク100に対しても、上述した出現頻度に基づく欠陥領域の検出動作を行うことができる。 Thereby, also in the reproducing apparatus 2 according to the modified example, various effects that can be enjoyed by the reproducing apparatus 1 described above can be suitably enjoyed. In addition, since it is not necessary to previously store a table or the like indicating the reference frequency described above, the defect region based on the appearance frequency described above can be applied to the optical disc 100 for which the reference frequency is not set or the unknown optical disc 100. A detection operation can be performed.
 本発明は、上述した実施例に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う再生装置及び方法、並びにコンピュータプログラムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and a reproducing apparatus and method with such changes. In addition, computer programs are also included in the technical scope of the present invention.

Claims (13)

  1.  記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれ且つランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれ且つランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出手段と、
     前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定手段と
     を備えることを特徴とする再生装置。
    A signal component of a plurality of types of marks included in a read signal obtained by reading a data pattern from a recording medium and having different run lengths, and a signal component of a plurality of types of spaces included in the read signal and having different run lengths. Detecting means for detecting an appearance frequency of at least one of the signal components;
    Determination means for determining whether a recording area on the recording medium from which the read signal is read is a defective area based on a change amount of the appearance frequency of the at least one signal component. Playback device.
  2.  前記検出手段は、ランレングスが最も短いマークの信号成分の出現頻度を検出し、
     前記判定手段は、ランレングスが最も短いマークの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定することを特徴とする請求の範囲第1項に記載の再生装置。
    The detecting means detects the frequency of appearance of the signal component of the mark having the shortest run length;
    The determination means determines whether a recording area on the recording medium from which the read signal is read is a defective area based on a change amount of the appearance frequency of the signal component of the mark having the shortest run length. The playback apparatus according to claim 1, wherein:
  3.  前記検出手段は、ランレングスが最も短いスペースの信号成分の出現頻度を検出し、
     前記判定手段は、ランレングスが最も短いスペースの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定することを特徴とする請求の範囲第1項に記載の再生装置。
    The detection means detects the frequency of appearance of the signal component of the space having the shortest run length,
    The determination means determines whether the recording area on the recording medium from which the read signal is read is a defective area, based on a change amount of the appearance frequency of the signal component of the space having the shortest run length. The playback apparatus according to claim 1, wherein:
  4.  前記判定手段は、前記出現頻度が所定の基準頻度に対して所定割合以上小さい場合に、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であると判定することを特徴とする請求の範囲第2項又は第3項に記載の再生装置。 The determination means determines that the recording area on the recording medium from which the read signal has been read is a defective area when the appearance frequency is smaller than a predetermined ratio with respect to a predetermined reference frequency. The playback apparatus according to claim 2 or claim 3.
  5.  前記検出手段は、前記読取信号中に含まれるランレングスが相対的に長いスペースの信号成分の出現頻度を検出し、
     前記判定手段は、ランレングスが相対的に長いスペースの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定することを特徴とする請求の範囲第1項に記載の再生装置。
    The detection means detects the appearance frequency of a signal component in a space having a relatively long run length included in the read signal,
    The determination means determines whether the recording area on the recording medium from which the read signal is read is a defective area based on a change amount of the appearance frequency of a signal component of a space having a relatively long run length. The playback apparatus according to claim 1, wherein
  6.  前記検出手段は、前記読取信号中に含まれるランレングスが最も長いスペースの信号成分の出現頻度を検出し、
     前記判定手段は、ランレングスが最も長いスペースの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定することを特徴とする請求の範囲第1項に記載の再生装置。
    The detection means detects the frequency of appearance of the signal component of the space having the longest run length included in the read signal,
    The determination means determines whether or not the recording area on the recording medium from which the read signal is read is a defective area, based on a change amount of the appearance frequency of the signal component of the space having the longest run length. The playback apparatus according to claim 1, wherein:
  7.  前記判定手段は、前記出現頻度が所定の基準頻度に対して所定割合以上大きい場合に、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であると判定することを特徴とする請求の範囲第5項又は第6項に記載の再生装置。 The determination means determines that the recording area on the recording medium from which the read signal is read is a defective area when the appearance frequency is greater than a predetermined ratio with respect to a predetermined reference frequency. The playback apparatus according to claim 5 or 6.
  8.  前記検出手段は、前記読取信号中に含まれ且つ規格により予め定められたランレングスとは異なる違反ランレングスのマーク及び前記違反ランレングスのスペースの少なくとも一方の信号成分の出現頻度を検出し、
     前記判定手段は、前記違反ランレングスのマーク及び前記違反ランレングスのスペースの少なくとも一方の信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定することを特徴とする請求の範囲第1項に記載の再生装置。
    The detection means detects an appearance frequency of at least one signal component of a violation run-length mark and a violation run-length space different from a run length included in the read signal and predetermined by a standard,
    The determination means determines that a recording area on the recording medium from which the read signal is read is defective based on a change amount of the appearance frequency of at least one signal component of the violation run-length mark and the violation run-length space. 2. The playback apparatus according to claim 1, wherein it is determined whether or not it is an area.
  9.  前記判定手段は、前記出現頻度が所定の基準頻度に対して所定割合以上大きい場合に、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であると判定することを特徴とする請求の範囲第8項に記載の再生装置。 The determination means determines that the recording area on the recording medium from which the read signal is read is a defective area when the appearance frequency is greater than a predetermined ratio with respect to a predetermined reference frequency. The playback device according to claim 8.
  10.  前記記録媒体上には、所定ランレングスのマーク及び前記所定ランレングスのスペースの夫々を略均等に含むシンクパターンが記録され、
     前記検出手段は、前記読取信号中に含まれ且つ前記所定ランレングスのマークの信号成分及び前記読取信号中に含まれ且つ前記所定ランレングスのスペースの信号成分の夫々の出現頻度を検出し、
     前記判定手段は、前記所定ランレングスのスペースの信号成分の出現頻度に対する、前記所定ランレングスのマークの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定することを特徴とする請求の範囲第1項に記載の再生装置。
    On the recording medium, there is recorded a sync pattern that includes each of the predetermined run-length mark and the predetermined run-length space substantially equally,
    The detection means detects the frequency of appearance of the signal component of the mark of the predetermined run length included in the read signal and the signal component of the space of the predetermined run length included in the read signal,
    The determination means is configured on the recording medium from which the read signal is read based on a change amount of the appearance frequency of the signal component of the mark of the predetermined run length with respect to the appearance frequency of the signal component of the space of the predetermined run length. 2. The reproducing apparatus according to claim 1, wherein it is determined whether or not the recording area is a defective area.
  11.  前記読取信号の振幅レベルを所定の振幅制限値にて制限して振幅制限信号を取得すると共に、前記振幅制限信号に対して高域強調フィルタリング処理を行うことで等化補正信号を取得する振幅制限フィルタリング手段を更に備え、
     前記判定手段は、前記等化補正信号中に含まれる前記少なくとも1つの信号成分の出現頻度に対する、前記読取信号中に含まれる少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定することを特徴とする請求の範囲第1項に記載の再生装置。
    An amplitude limit that acquires an amplitude limit signal by limiting the amplitude level of the read signal with a predetermined amplitude limit value, and acquires an equalization correction signal by performing a high-frequency emphasis filtering process on the amplitude limit signal Further comprising filtering means,
    The determination unit is configured to determine the read signal based on a change amount of an appearance frequency of at least one signal component included in the read signal with respect to an appearance frequency of the at least one signal component included in the equalization correction signal. 2. The reproducing apparatus according to claim 1, wherein it is determined whether or not the recording area on the recording medium from which the data has been read is a defective area.
  12.  記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれるランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれるランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出工程と、
     前記少なくとも1つの信号成分の出現頻度の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定工程と
     を備えることを特徴とする再生方法。
    Among the signal components of a plurality of types of marks having different run lengths included in a read signal obtained by reading a data pattern from a recording medium, and the signal components of a plurality of types of spaces having different run lengths included in the read signal A detection step of detecting an appearance frequency of at least one signal component;
    A determination step of determining whether a recording area on the recording medium from which the read signal is read is a defective area, based on a change amount of the appearance frequency of the at least one signal component. How to play.
  13.  記録媒体からデータパターンを読み取ることで得られる読取信号中に含まれるランレングスが異なる複数種類のマークの信号成分及び前記読取信号中に含まれるランレングスが異なる複数種類のスペースの信号成分のうちの少なくとも1つの信号成分の出現頻度を検出する検出手段と、前記少なくとも1つの信号成分の出現頻度と前記少なくとも1つの信号成分に対応する基準頻度との間の変化量に基づいて、前記読取信号が読み取られた前記記録媒体上の記録領域が欠陥領域であるか否かを判定する判定手段とを備える再生装置に備えられたコンピュータを制御する再生制御用のコンピュータプログラムであって、
     該コンピュータを、前記検出手段及び前記判定手段として機能させることを特徴とする再生制御用のコンピュータプログラム。
    Among the signal components of a plurality of types of marks having different run lengths included in a read signal obtained by reading a data pattern from a recording medium, and the signal components of a plurality of types of spaces having different run lengths included in the read signal Based on a detecting means for detecting an appearance frequency of at least one signal component, and an amount of change between the appearance frequency of the at least one signal component and a reference frequency corresponding to the at least one signal component, the read signal is A computer program for playback control that controls a computer provided in a playback device including a determination unit that determines whether or not a read recording area on the recording medium is a defective area,
    A computer program for reproduction control, which causes the computer to function as the detection unit and the determination unit.
PCT/JP2008/056485 2008-04-01 2008-04-01 Reproduction apparatus and method, and computer program WO2009122566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056485 WO2009122566A1 (en) 2008-04-01 2008-04-01 Reproduction apparatus and method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056485 WO2009122566A1 (en) 2008-04-01 2008-04-01 Reproduction apparatus and method, and computer program

Publications (1)

Publication Number Publication Date
WO2009122566A1 true WO2009122566A1 (en) 2009-10-08

Family

ID=41134986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056485 WO2009122566A1 (en) 2008-04-01 2008-04-01 Reproduction apparatus and method, and computer program

Country Status (1)

Country Link
WO (1) WO2009122566A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320419A (en) * 1994-05-25 1995-12-08 Toshiba Corp Device for converting bit stream into byte
JPH0961474A (en) * 1995-08-29 1997-03-07 Sony Corp Method and apparatus for measuring signal
JP2001126264A (en) * 1999-10-28 2001-05-11 Yokogawa Electric Corp Inter-code interference analyzer and recording medium recording inter-code interference analytic program
JP2003249038A (en) * 2002-02-20 2003-09-05 Hitachi Ltd Method and device for defect detection, information recording and reproducing device, and magnetic disk drive
JP2004005850A (en) * 2002-05-31 2004-01-08 Toshiba Corp Method and system for detecting defect of recording medium
JP2004234808A (en) * 2003-02-03 2004-08-19 Matsushita Electric Ind Co Ltd Optical disk device and open loop gain control method
JP2005108314A (en) * 2003-09-30 2005-04-21 Ricoh Co Ltd Signal processing unit and its inspection method
JP2005122884A (en) * 2003-10-14 2005-05-12 Thomson Licensing Sa Defect handling for recording medium
JP2005339738A (en) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd Defect management method and information recording medium
JP2006012231A (en) * 2004-06-23 2006-01-12 Shinano Kenshi Co Ltd Optical disk apparatus, optical disk apparatus verification system, and optical disk apparatus verification program
JP2006012333A (en) * 2004-06-28 2006-01-12 Shinano Kenshi Co Ltd Optical disk drive control program, optical disk control system, host computer, and optical disk drive
JP2006012324A (en) * 2004-06-28 2006-01-12 Shinano Kenshi Co Ltd Optical disk apparatus verifying system and optical disk apparatus verifying program
JP2007323765A (en) * 2006-06-02 2007-12-13 Sony Corp Reproducing apparatus and synchronous signal detecting method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320419A (en) * 1994-05-25 1995-12-08 Toshiba Corp Device for converting bit stream into byte
JPH0961474A (en) * 1995-08-29 1997-03-07 Sony Corp Method and apparatus for measuring signal
JP2001126264A (en) * 1999-10-28 2001-05-11 Yokogawa Electric Corp Inter-code interference analyzer and recording medium recording inter-code interference analytic program
JP2003249038A (en) * 2002-02-20 2003-09-05 Hitachi Ltd Method and device for defect detection, information recording and reproducing device, and magnetic disk drive
JP2004005850A (en) * 2002-05-31 2004-01-08 Toshiba Corp Method and system for detecting defect of recording medium
JP2004234808A (en) * 2003-02-03 2004-08-19 Matsushita Electric Ind Co Ltd Optical disk device and open loop gain control method
JP2005108314A (en) * 2003-09-30 2005-04-21 Ricoh Co Ltd Signal processing unit and its inspection method
JP2005122884A (en) * 2003-10-14 2005-05-12 Thomson Licensing Sa Defect handling for recording medium
JP2005339738A (en) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd Defect management method and information recording medium
JP2006012231A (en) * 2004-06-23 2006-01-12 Shinano Kenshi Co Ltd Optical disk apparatus, optical disk apparatus verification system, and optical disk apparatus verification program
JP2006012333A (en) * 2004-06-28 2006-01-12 Shinano Kenshi Co Ltd Optical disk drive control program, optical disk control system, host computer, and optical disk drive
JP2006012324A (en) * 2004-06-28 2006-01-12 Shinano Kenshi Co Ltd Optical disk apparatus verifying system and optical disk apparatus verifying program
JP2007323765A (en) * 2006-06-02 2007-12-13 Sony Corp Reproducing apparatus and synchronous signal detecting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JISEDAI HIKARI: "Disk Kaitai Shinsho", NIKKEI BUSINESS PUBLICATIONS, INC, vol. 59, 7 October 2003 (2003-10-07), pages 70 - 71 *

Similar Documents

Publication Publication Date Title
JP2007280571A (en) Optical disk device and reproduction signal processing method
JP4830655B2 (en) Playback device and playback method
JP4457041B2 (en) Verify processing method and optical disc apparatus
JP5357757B2 (en) Optical disc, optical disc recording / reproducing method
KR100932506B1 (en) Regeneration control information management and data reproduction control method of high density optical disc
US20100020661A1 (en) Information recording apparatus and method, computer program, and recording medium
WO2001099108A1 (en) Optical disk unit
KR100977364B1 (en) Information reproducing method and information reproducing apparatus
JP4953258B2 (en) Recording apparatus and method, and computer program
JP2007334992A (en) Device and method for reproducing optical disk
WO2009122566A1 (en) Reproduction apparatus and method, and computer program
JP3797303B2 (en) Disc player
JP2009070510A (en) Reproduction device and reproduction method
JP4803564B2 (en) Recording apparatus and method
JP2008533642A (en) Information recording medium and recording / reproducing apparatus thereof
JP5005419B2 (en) Reproduction signal evaluation apparatus, reproduction signal evaluation method, control program, and computer-readable recording medium
JP5029411B2 (en) Playback device, playback method, data detection processing circuit
BRPI0714577A2 (en) optical recording medium, manufacturing method optical recording medium, reproduction signal processing method and evaluation method
JP2002150564A (en) Decoder for disk-like recording medium
KR20070055362A (en) Information reproducing apparatus
JP2001283537A (en) Information recording and reproducing device
US20110164487A1 (en) Information recording/reproducing device and information recording/ reproducing method
US20100020660A1 (en) Information recording apparatus and method, computer program, and recording medium
JP2006120256A (en) Optical disk device and defect processing method of optical disk
JP2010040068A (en) Optical disk apparatus and tracking control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739598

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP