WO2009122064A1 - Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid - Google Patents

Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid Download PDF

Info

Publication number
WO2009122064A1
WO2009122064A1 PCT/FR2009/050410 FR2009050410W WO2009122064A1 WO 2009122064 A1 WO2009122064 A1 WO 2009122064A1 FR 2009050410 W FR2009050410 W FR 2009050410W WO 2009122064 A1 WO2009122064 A1 WO 2009122064A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
series
passage
inert gas
passages
Prior art date
Application number
PCT/FR2009/050410
Other languages
French (fr)
Inventor
Marc Wagner
Philippe Grigoletto
Alain Briglia
Daniel Machon Diez De Baldeon
Maurice Bosquain
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Bosquain, Francine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude, Bosquain, Francine filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to ES09726865T priority Critical patent/ES2373858T3/en
Priority to JP2011501272A priority patent/JP2011515646A/en
Priority to US12/933,571 priority patent/US20110017429A1/en
Priority to AT09726865T priority patent/ATE526539T1/en
Priority to EP09726865A priority patent/EP2265855B1/en
Priority to CN2009801110896A priority patent/CN101981365B/en
Publication of WO2009122064A1 publication Critical patent/WO2009122064A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • F25J3/04272The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/005Arrangements for preventing direct contact between different heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/90Details about safety operation of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications

Definitions

  • the present invention relates to a process for vaporizing a cryogenic liquid, for example liquefied natural gas, by heat exchange with a heat-generating fluid, for example nitrogen gas.
  • a cryogenic liquid for example liquefied natural gas
  • a heat-generating fluid for example nitrogen gas
  • Tubular geometries are not very thermally efficient and often lead to expensive oversizing.
  • a method of heating a first fluid by heat exchange with a second fluid in a plate and fin heat exchanger in which the first fluid is heated in a first series of separate passages. and the second fluid cools in a second series of separate passages characterized in that each passage of the first series is separated from the passage closest to the second series by an auxiliary passage containing fins in which circulates an inert gas.
  • the first fluid consists of liquefied natural gas which vaporizes or heats up in the first series of separate passages;
  • the second fluid consists of nitrogen gas which cools or liquefies in the second series of separate passages;
  • the inert gas is at a pressure at least 0.1, or even at least 0.5 bars greater than that of the first fluid and the second fluid;
  • the inert gas is at a pressure at least 0.1 or even at least 0.5 bar lower than that of the first fluid and the second fluid;
  • the inert gas is nitrogen gas
  • the inert gas sent to at least some auxiliary passages is then sent to the atmosphere or flared;
  • At least one inlet and / or outlet box of one of the first and second fluids is separated from the passages in which the other of the first and second fluids circulates by means of a system of double bars, the bars possibly being separated by a dead zone;
  • the first fluid is heated to a pressure of at least 60 bar abs.
  • a method of starting a plate and fin heat exchanger in which in full speed a first fluid is heated by heat exchange with a second fluid in a plate heat exchanger and fins, the first fluid heating in a first series of separate passages and the second fluid cooling in a second series of separate passages characterized in that each passage of the first series is separated from the passage closest to the second series by a auxiliary passage containing fins and wherein during startup an inert gas at a temperature below room temperature, optionally at cryogenic temperature, is sent to at least one auxiliary passage to accelerate the cold setting.
  • Figures 1 to 3 show a section taken in the direction of the length of the exchanger of each type of passage for an exchanger operating according to the invention.
  • Figure 1 shows an auxiliary passage of inert gas
  • Figure 2 a passage of LNG
  • Figure 3 a passage of nitrogen to be heated.
  • Figures 4 to 6 show another exchanger operating according to the invention.
  • Figure 4 shows a section through the parallel passages of the exchanger in the direction of the width of the exchanger
  • Figure 5 shows a passage of low pressure nitrogen cut in the direction of its length
  • Figure 5 shows a passage of LNG cut in the direction of its length.
  • a passage of the type of FIG. 1 will be placed between each passage of the type of FIG. 2 and each type of FIG. 3.
  • each passage of series of the type of FIG. 2 is separated from each passage of the type series of Figure 3 by a passage of the type of Figure 1 to form a brazed plate and fin exchanger made of aluminum, or other material.
  • the fins are not illustrated to simplify the drawing.
  • Figure 1 is the auxiliary passage of low pressure nitrogen gas inert whose inlet 9 is bottom right and the outlet 11 in the upper left.
  • FIG 2 is illustrated a liquefied natural gas (LNG) warming passage that enters the lower left passage 1 and exits at the top right 3.
  • LNG liquefied natural gas
  • a double bar isolates the top and bottom of the LNG passageway inert nitrogen.
  • Figure 3 shows a high pressure nitrogen gas cooling passage that enters the top of the passage through the inlet 7 and exits at the bottom through the outlet 5.
  • the passage of high pressure nitrogen gas is narrower than the passages of low pressure nitrogen of Figure 1 and liquefied natural gas in Figure 2.
  • an auxiliary passage is interposed between each pair of nitrogen and LNG passages.
  • the thermal exchange between the nitrogen and LNG passages will be through the fins of the auxiliary passage by conduction.
  • the wave chosen for the auxiliary passage will have an optimal height / thickness ratio.
  • the auxiliary passages will be swept with low pressure nitrogen gas (lower pressure than the LNG of Figure 2 and that of the nitrogen of Figure 3) and collected to the atmosphere or possibly a torch .
  • the boxes that cover the stack and can therefore be sources of pollution will therefore be isolated from the other fluid by means of Z dead zones.
  • Dead zones Z will be collected and possibly flushed with low pressure nitrogen.
  • the dead zones above can be isolated from the LNG and nitrogen circuits by means of a double bar system 2 in order to complete the sealing.
  • the play between the double bars 2 can itself be collected to enhance the intrinsic safety. This is explained in more detail for the process of Figures 5 and 6 but also applies to the process of Figures 1 to 3.
  • the passages of FIG. 1 are used during start-ups to cool the exchanger in a progressive and controlled manner by means of a low-pressure nitrogen flow coming from an auxiliary capacity.
  • each passage of nitrogen to be heated is isolated from the LNG passages to be vaporized by a passage containing an inert process gas at high pressure (N 2 HP ), in this case the nitrogen at higher pressure than the nitrogen to be heated (35 bar) and the liquefied natural gas to vaporize (15 bar).
  • N 2 HP inert process gas at high pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In a method for heating a first fluid through heat exchange with a second fluid in an exchanger having plates and blades, wherein the first fluid heats up in a first series of separate channels and the second fluid cools in a second series of separate channels, each channel of the first series is separated from the closest channel in the second series by a bladed auxiliary channel where an inert gas flows.

Description

Procédé de vaporisation d'un liquide cryogénique par échange de chaleur avec un fluide calorigène Process for vaporizing a cryogenic liquid by heat exchange with a circulating fluid
La présente invention est relative à un procédé de vaporisation d'un liquide cryogénique, par exemple du gaz naturel liquéfié, par échange de chaleur avec un fluide calorigène, par exemple de l'azote gazeux.The present invention relates to a process for vaporizing a cryogenic liquid, for example liquefied natural gas, by heat exchange with a heat-generating fluid, for example nitrogen gas.
Pour réchauffer et vaporiser des liquides cryogéniques de type gaz naturel liquéfié (GNL) ou équivalent contre un fluide calorigène, afin de récupérer les frigories du GNL, on a utilisé dans le passé l'une des trois possibilités suivantes :To heat and vaporize liquefied natural gas (LNG) or equivalent cryogenic liquids against a circulating fluid, in order to recover the LNG frigories, one of the following three possibilities has been used in the past:
• une technologie consistant à enrouler sous forme de galettes un système de deux tubes reliés entre eux par un ligament. Les tubes sont soudés ou dudgeonnés sur des collecteurs transversaux aux galettes ;• a technology consisting of wrapping in the form of slabs a system of two tubes interconnected by a ligament. The tubes are welded or dug on collectors transverse to the slabs;
• des échangeurs brasés à plaques et ailettes ;• brazed heat exchangers with plates and fins;
• des échangeurs tubulaires bobinés.• coiled tubular exchangers.
Dans le cas où l'on veut récupérer les frigories pour liquéfier des gaz de l'air, on veut absolument éviter une pollution accidentelle de l'azote ou de l'oxygène par un gaz hydrocarbure en particulier quand le gaz naturel circule dans l'échangeur à une pression supérieure à celle du gaz de l'air.In the case where we want to recover the frigories to liquefy gases from the air, we absolutely want to avoid accidental pollution of nitrogen or oxygen by a hydrocarbon gas in particular when the natural gas circulates in the atmosphere. exchanger at a pressure higher than that of the air gas.
Les géométries tubulaires ne sont pas très efficaces thermiquement et conduisent souvent à un surdimensionnement coûteux.Tubular geometries are not very thermally efficient and often lead to expensive oversizing.
Par ailleurs les terminaux méthaniers ainsi que les installations de séparation d'air existantes n'ont pas toujours les équipements permettant d'éviter des transitoires thermiques brutales lors des arrêts et du redémarrage, ce qui conduit à des chocs thermiques et donc des endommagements des échangeurs.In addition, the LNG terminals as well as the existing air separation plants do not always have the equipment to avoid sudden thermal transients during shutdowns and restart, which leads to thermal shocks and therefore damage to the exchangers. .
Selon un objet de l'invention, il est prévu un procédé de réchauffement d'un premier fluide par échange de chaleur avec un deuxième fluide dans un échangeur à plaques et à ailettes dans lequel le premier fluide se réchauffe dans une première série de passages séparés et le deuxième fluide se refroidit dans une deuxième série de passages séparés caractérisé en ce que chaque passage de la première série est séparé du passage le plus proche de la deuxième série par un passage auxiliaire contenant des ailettes où circule un gaz inerte . Optionnellement :According to an object of the invention, there is provided a method of heating a first fluid by heat exchange with a second fluid in a plate and fin heat exchanger in which the first fluid is heated in a first series of separate passages. and the second fluid cools in a second series of separate passages characterized in that each passage of the first series is separated from the passage closest to the second series by an auxiliary passage containing fins in which circulates an inert gas. Optionally:
- le premier fluide est constitué par du gaz naturel liquéfié qui se vaporise ou se réchauffe dans la première série de passages séparés ;the first fluid consists of liquefied natural gas which vaporizes or heats up in the first series of separate passages;
- le deuxième fluide est constitué par de l'azote gazeux qui se refroidit ou se liquéfie dans la deuxième série de passages séparés ;the second fluid consists of nitrogen gas which cools or liquefies in the second series of separate passages;
- le gaz inerte est à une pression au moins 0,1 , voire au moins 0.5 bars supérieure à celles du premier fluide et du deuxième fluide ;the inert gas is at a pressure at least 0.1, or even at least 0.5 bars greater than that of the first fluid and the second fluid;
- le gaz inerte est à une pression au moins 0,1 voire au moins 0.5 bars inférieure à celles du premier fluide et du deuxième fluide ;the inert gas is at a pressure at least 0.1 or even at least 0.5 bar lower than that of the first fluid and the second fluid;
- le gaz inerte est de l'azote gazeux ;the inert gas is nitrogen gas;
- le gaz inerte envoyé dans au moins certains passages auxiliaires est envoyé ensuite à l'atmosphère ou torché ;the inert gas sent to at least some auxiliary passages is then sent to the atmosphere or flared;
- au moins une boîte d'entrée et/ou de sortie d'un des premier et deuxième fluides est séparée des passages où circule l'autre des premier et deuxième fluides au moyen d'un système de double barres, les barres étant éventuellement séparées par une zone morte ;at least one inlet and / or outlet box of one of the first and second fluids is separated from the passages in which the other of the first and second fluids circulates by means of a system of double bars, the bars possibly being separated by a dead zone;
- le premier fluide se réchauffe à une pression d'au moins 60 bars abs. Selon un autre objet de l'invention, il est prévu un procédé de démarrage d'un échangeur à plaques et à ailettes dans lequel en plein régime un premier fluide se réchauffe par échange de chaleur avec un deuxième fluide dans un échangeur à plaques et à ailettes, le premier fluide se réchauffant dans une première série de passages séparés et le deuxième fluide se refroidissant dans une deuxième série de passages séparés caractérisé en ce que chaque passage de la première série est séparé du passage le plus proche de la deuxième série par un passage auxiliaire contenant des ailettes et dans lequel pendant le démarrage un gaz inerte à une température inférieur à la température ambiante, éventuellement à température cryogénique, est envoyé à au moins un passage auxiliaire pour accélérer la mise en froid.the first fluid is heated to a pressure of at least 60 bar abs. According to another object of the invention, there is provided a method of starting a plate and fin heat exchanger in which in full speed a first fluid is heated by heat exchange with a second fluid in a plate heat exchanger and fins, the first fluid heating in a first series of separate passages and the second fluid cooling in a second series of separate passages characterized in that each passage of the first series is separated from the passage closest to the second series by a auxiliary passage containing fins and wherein during startup an inert gas at a temperature below room temperature, optionally at cryogenic temperature, is sent to at least one auxiliary passage to accelerate the cold setting.
L'invention sera décrite en plus de détail en se référant aux figures.The invention will be described in more detail with reference to the figures.
Les figures 1 à 3 montrent une section prise dans le sens de la longueur de l'échangeur de chaque type de passage pour un échangeur opérant selon l'invention. La Figure 1 représente un passage auxiliaire de gaz inerte, la Figure 2 un passage de GNL et la Figure 3 un passage d'azote à chauffer.Figures 1 to 3 show a section taken in the direction of the length of the exchanger of each type of passage for an exchanger operating according to the invention. Figure 1 shows an auxiliary passage of inert gas, Figure 2 a passage of LNG and Figure 3 a passage of nitrogen to be heated.
Les figures 4 à 6 représentent un autre échangeur opérant selon l'invention. La Figure 4 montre une coupe à travers les passages parallèles de l'échangeur dans le sens de la largeur de l'échangeur, la Figure 5 montre un passage d'azote basse pression coupé dans le sens de sa longueur et la Figure 5 montre un passage de GNL coupé dans le sens de sa longueur. Selon l'invention, un passage du type de la Figure 1 sera placé entre chaque passage du type de la Figure 2 et chaque type de la Figure 3. Ainsi chaque passage de séries du type de la Figure 2 est séparé de chaque passage de la série de type de la Figure 3 par un passage du type de la Figure 1 pour former un échangeur à plaque et ailettes brasé en aluminium, ou autre matériau. Les ailettes ne sont pas illustrées pour simplifier le dessin.Figures 4 to 6 show another exchanger operating according to the invention. Figure 4 shows a section through the parallel passages of the exchanger in the direction of the width of the exchanger, Figure 5 shows a passage of low pressure nitrogen cut in the direction of its length and Figure 5 shows a passage of LNG cut in the direction of its length. According to the invention, a passage of the type of FIG. 1 will be placed between each passage of the type of FIG. 2 and each type of FIG. 3. Thus each passage of series of the type of FIG. 2 is separated from each passage of the type series of Figure 3 by a passage of the type of Figure 1 to form a brazed plate and fin exchanger made of aluminum, or other material. The fins are not illustrated to simplify the drawing.
La Figure 1 est le passage auxiliaire d'azote gazeux basse pression de inerte dont l'entrée 9 est en bas à droite et la sortie 11 en haut à gauche.Figure 1 is the auxiliary passage of low pressure nitrogen gas inert whose inlet 9 is bottom right and the outlet 11 in the upper left.
Dans la Figure 2 est illustré un passage de réchauffement de gaz naturel liquéfié (GNL) qui entre dans le passage en bas à gauche 1 et sort en haut à droite 3. Une double barre isole le haut et le bas du passage de GNL du passage d'azote inerte.In Figure 2 is illustrated a liquefied natural gas (LNG) warming passage that enters the lower left passage 1 and exits at the top right 3. A double bar isolates the top and bottom of the LNG passageway inert nitrogen.
La Figure 3 montre un passage de refroidissement d'azote gazeux haute pression qui entre en haut du passage par l'entrée 7 et sort en bas par la sortie 5. Le passage d'azote gazeux haute pression est moins large que les passages d'azote basse pression de la Figure 1 et de gaz naturel liquéfié de la Figure 2.Figure 3 shows a high pressure nitrogen gas cooling passage that enters the top of the passage through the inlet 7 and exits at the bottom through the outlet 5. The passage of high pressure nitrogen gas is narrower than the passages of low pressure nitrogen of Figure 1 and liquefied natural gas in Figure 2.
Pour éviter une pollution de l'azote par le gaz naturel liquéfié, on interpose entre chaque couple de passages d'azote et d'LNG un passage auxiliaire. L'échange thermique entre les passages d'azote et de GNL se fera au travers des ailettes du passage auxiliaire par conduction. Evidemment l'onde choisie pour le passage auxiliaire aura un rapport hauteur / épaisseur optimal.In order to avoid nitrogen pollution by liquefied natural gas, an auxiliary passage is interposed between each pair of nitrogen and LNG passages. The thermal exchange between the nitrogen and LNG passages will be through the fins of the auxiliary passage by conduction. Obviously the wave chosen for the auxiliary passage will have an optimal height / thickness ratio.
Dans le cas illustré, les passages auxiliaires seront balayés à l'azote gazeux basse pression (pression inférieure à celle du GNL de la Figure 2 et à celle de l'azote de la Figure 3) et collectés vers l'atmosphère ou éventuellement une torche. Les boites qui couvrent l'empilage et peuvent donc être sources de pollution seront donc isolées de l'autre fluide au moyen de zones mortes Z.In the case illustrated, the auxiliary passages will be swept with low pressure nitrogen gas (lower pressure than the LNG of Figure 2 and that of the nitrogen of Figure 3) and collected to the atmosphere or possibly a torch . The boxes that cover the stack and can therefore be sources of pollution will therefore be isolated from the other fluid by means of Z dead zones.
Les zones mortes Z seront collectées et éventuellement balayées à l'azote basse pression.Dead zones Z will be collected and possibly flushed with low pressure nitrogen.
Les zones mortes ci-dessus peuvent être isolées des circuits de GNL et d'azote au moyen d'un système de doubles barres 2 afin de parfaire l'étanchéité. Le jeu entre les doubles barres 2 peut lui-même être collecté afin de renforcer la sécurité intrinsèque. Ceci est expliqué en plus de détail pour le procédé des Figures 5 et 6 mais s'applique également au procédé des Figures 1 à 3.The dead zones above can be isolated from the LNG and nitrogen circuits by means of a double bar system 2 in order to complete the sealing. The play between the double bars 2 can itself be collected to enhance the intrinsic safety. This is explained in more detail for the process of Figures 5 and 6 but also applies to the process of Figures 1 to 3.
Les passages de la Figure 1 sont utilisés lors des démarrages pour mettre en froid l'échangeur de manière progressive et contrôlée au moyen d'un débit d'azote basse pression venant d'une capacité annexe.The passages of FIG. 1 are used during start-ups to cool the exchanger in a progressive and controlled manner by means of a low-pressure nitrogen flow coming from an auxiliary capacity.
Selon un autre aspect de l'invention, illustré aux Figures 4, chaque passage d'azote à réchauffer (N2 BP) est isolé des passages de GNL à vaporiser par un passage contenant un gaz de procédé inerte à pression élevée (N2 HP), dans ce cas de l'azote à plus haute pression que l'azote à réchauffer (35 bars) et que le gaz naturel liquéfié à vaporiser (15 bars).According to another aspect of the invention, illustrated in FIGS. 4, each passage of nitrogen to be heated (N 2 BP) is isolated from the LNG passages to be vaporized by a passage containing an inert process gas at high pressure (N 2 HP ), in this case the nitrogen at higher pressure than the nitrogen to be heated (35 bar) and the liquefied natural gas to vaporize (15 bar).
Comme on voit aux figures 5 et 6, les barres qui séparent un circuit d'azote à réchauffer d'un circuit GNL sont doublées, de sorte que l'espace entre elles forme une zone morte Z ouverte à l'atmosphère par un évent V, de sorte que toute fuite de gaz naturel liquéfié puisse s'y échapper. Les passages des Figures 5 et 6 sont séparés pas un passage de gaz inerte à haute pression. As can be seen in FIGS. 5 and 6, the bars which separate a nitrogen circuit to be heated from an LNG circuit are doubled, so that the space between them forms a dead zone Z open to the atmosphere by a vent V so that any leakage of liquefied natural gas can escape. The passages of Figures 5 and 6 are separated by a passage of high pressure inert gas.

Claims

REVENDICATIONS
1. Procédé de réchauffement d'un premier fluide par échange de chaleur avec un deuxième fluide dans un échangeur à plaques et à ailettes dans lequel le premier fluide se réchauffe dans une première série de passages séparés et le deuxième fluide se refroidit dans une deuxième série de passages séparés caractérisé en ce que chaque passage de la première série est séparé du passage le plus proche de la deuxième série par un passage auxiliaire contenant des ailettes où circule un gaz inerte .A method of heating a first fluid by exchanging heat with a second fluid in a plate and fin heat exchanger in which the first fluid is heated in a first series of separate passages and the second fluid is cooled in a second series separate passages characterized in that each passage of the first series is separated from the passage closest to the second series by an auxiliary passage containing fins which circulates an inert gas.
2. Procédé selon la revendication 1 dans lequel le premier fluide est constitué par du gaz naturel liquéfié qui se vaporise ou se réchauffe dans la première série de passages séparés.The method of claim 1 wherein the first fluid is liquefied natural gas that vaporizes or heats in the first series of separate passages.
3. Procédé selon la revendication 1 ou 2 dans lequel le deuxième fluide est constitué par de l'azote gazeux qui se refroidit ou se liquéfie dans la deuxième série de passages séparés.3. The method of claim 1 or 2 wherein the second fluid is nitrogen gas which cools or liquefies in the second series of separate passages.
4. Procédé selon l'une des revendications 1 à 3 dans lequel le gaz inerte est à une pression au moins 0,1 bars, voire au moins 0.5 bars supérieure à celles du premier fluide et du deuxième fluide.4. Method according to one of claims 1 to 3 wherein the inert gas is at a pressure at least 0.1 bar, or at least 0.5 bars greater than those of the first fluid and the second fluid.
5. Procédé selon l'une des revendications 1 à 3 dans lequel le gaz inerte est à une pression au moins 0,1 bars, voire au moins 0.5 bars inférieure à celles du premier fluide et du deuxième fluide.5. Method according to one of claims 1 to 3 wherein the inert gas is at a pressure at least 0.1 bar, or at least 0.5 bars lower than those of the first fluid and the second fluid.
6. Procédé selon l'une des revendications précédentes dans lequel le gaz inerte est de l'azote gazeux.6. Method according to one of the preceding claims wherein the inert gas is nitrogen gas.
7. Procédé selon l'une des revendications précédentes dans lequel le gaz inerte envoyé dans au moins certains passages auxiliaires est envoyé ensuite à l'atmosphère ou torché.7. Method according to one of the preceding claims wherein the inert gas sent into at least some auxiliary passages is then sent to the atmosphere or flared.
8. Procédé selon l'une des revendications précédentes dans lequel au moins une boîte d'entrée et/ou de sortie d'un des premier et deuxième fluides est séparée des passages où circule l'autre des premier et deuxième fluides au moyen d'un système de double barres (2), les barres étant éventuellement séparées par une zone morte (Z).8. Method according to one of the preceding claims wherein at least one inlet and / or outlet box of one of the first and second fluids is separated from the passages where the other of the first and second fluids circulates by means of a system of double bars (2), the bars optionally being separated by a dead zone (Z).
9. Procédé selon l'une des revendications précédentes dans lequel le premier fluide se réchauffe à une pression d'au moins 60 bars abs. 9. Method according to one of the preceding claims wherein the first fluid is heated to a pressure of at least 60 bar abs.
10. Procédé de démarrage d'un échangeur à plaques et à ailettes dans lequel en plein régime un premier fluide se réchauffe par échange de chaleur avec un deuxième fluide dans un échangeur à plaques et à ailettes, le premier fluide se réchauffant dans une première série de passages séparés et le deuxième fluide se refroidissant dans une deuxième série de passages séparés caractérisé en ce que chaque passage de la première série est séparé du passage le plus proche de la deuxième série par un passage auxiliaire contenant des ailettes et dans lequel pendant le démarrage un gaz inerte à une température inférieur à la température ambiante, éventuellement à température cryogénique, est envoyé à au moins un passage auxiliaire pour accélérer la mise en froid. 10. A method of starting a plate and fin heat exchanger wherein in full speed a first fluid is heated by heat exchange with a second fluid in a plate heat exchanger and fins, the first fluid heating in a first series of separate passages and the second fluid cooling in a second series of separate passages characterized in that each passage of the first series is separated from the passage closest to the second series by an auxiliary passage containing fins and in which during startup an inert gas at a temperature below room temperature, optionally at cryogenic temperature, is sent to at least one auxiliary passage to accelerate the cold setting.
PCT/FR2009/050410 2008-03-27 2009-03-12 Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid WO2009122064A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES09726865T ES2373858T3 (en) 2008-03-27 2009-03-12 VAPORIZATION PROCEDURE OF A CRIOGENIC LIQUID BY HEAT EXCHANGE WITH A CALORIGENIC FLUID.
JP2011501272A JP2011515646A (en) 2008-03-27 2009-03-12 Method for vaporizing a cryogenic liquid by heat exchange with a heat producing fluid
US12/933,571 US20110017429A1 (en) 2008-03-27 2009-03-12 Method For Vaporizing Cryogenic Liquid Through Heat Exchange Using Calorigenic Fluid
AT09726865T ATE526539T1 (en) 2008-03-27 2009-03-12 METHOD FOR EVAPORATION OF A CRYOGENIC LIQUID BY HEAT EXCHANGE USING A CALORIGENIC LIQUID
EP09726865A EP2265855B1 (en) 2008-03-27 2009-03-12 Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid
CN2009801110896A CN101981365B (en) 2008-03-27 2009-03-12 Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0851970 2008-03-27
FR0851970A FR2929369A1 (en) 2008-03-27 2008-03-27 METHOD FOR VAPORIZING A CRYOGENIC LIQUID BY EXCHANGING HEAT WITH A CALORIGENE FLUID

Publications (1)

Publication Number Publication Date
WO2009122064A1 true WO2009122064A1 (en) 2009-10-08

Family

ID=39736847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050410 WO2009122064A1 (en) 2008-03-27 2009-03-12 Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid

Country Status (8)

Country Link
US (1) US20110017429A1 (en)
EP (1) EP2265855B1 (en)
JP (1) JP2011515646A (en)
CN (1) CN101981365B (en)
AT (1) ATE526539T1 (en)
ES (1) ES2373858T3 (en)
FR (1) FR2929369A1 (en)
WO (1) WO2009122064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266415A (en) * 2014-10-09 2015-01-07 中国石油大学(华东) Multilayer plate condenser utilizing LNG (liquefied natural gas) cold energy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982221B2 (en) * 2012-08-21 2016-08-31 株式会社神戸製鋼所 Plate fin heat exchanger and repair method of plate fin heat exchanger
US20150247601A1 (en) * 2012-09-18 2015-09-03 Basf Se Method and system for heating natural gas
JP5781487B2 (en) * 2012-10-30 2015-09-24 株式会社神戸製鋼所 Oxygen-enriched air production system
CN102980425A (en) * 2012-11-14 2013-03-20 无锡市豫达换热器有限公司 Low-temperature heat exchanger
WO2018066128A1 (en) 2016-10-07 2018-04-12 住友精密工業株式会社 Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4031950A1 (en) * 1989-11-15 1991-05-16 Jw Kuehl Geraete Bau Gmbh Heat exchanger vaporising liquefied carbon di:oxide - has flow duct pipe coils embedded in block of material of high heat conductivity
EP0915311A1 (en) * 1997-05-07 1999-05-12 Praxair Technology, Inc. Nonfreezing heat exchanger
US6164247A (en) * 1999-02-04 2000-12-26 Kabushiki Kaishi Kobe Seiko Sho Intermediate fluid type vaporizer, and natural gas supply method using the vaporizer
FR2882129A1 (en) * 2005-02-17 2006-08-18 Inst Francais Du Petrole LIQUEFIED NATURAL GAS REGASIFICATION INSTALLATION
EP1855047A1 (en) 2006-05-12 2007-11-14 Black & Veatch Corporation A system and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL265913A (en) * 1960-06-16
US3537513A (en) * 1968-03-11 1970-11-03 Garrett Corp Three-fluid heat exchanger
JPS50140047U (en) * 1974-05-07 1975-11-18
JPS56120895A (en) * 1980-02-25 1981-09-22 Kobe Steel Ltd Regasification for liquid natural gas
JPS6484614A (en) * 1987-09-28 1989-03-29 Ishikawajima Harima Heavy Ind Cooling system for superconducting energy storage device
US5048597A (en) * 1989-12-18 1991-09-17 Rockwell International Corporation Leak-safe hydrogen/air heat exchanger in an ACE system
GB9104155D0 (en) * 1991-02-27 1991-04-17 Rolls Royce Plc Heat exchanger
JP3857747B2 (en) * 1996-05-10 2006-12-13 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP2001280864A (en) * 2000-03-30 2001-10-10 Hitachi Ltd Heat exchanger and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4031950A1 (en) * 1989-11-15 1991-05-16 Jw Kuehl Geraete Bau Gmbh Heat exchanger vaporising liquefied carbon di:oxide - has flow duct pipe coils embedded in block of material of high heat conductivity
EP0915311A1 (en) * 1997-05-07 1999-05-12 Praxair Technology, Inc. Nonfreezing heat exchanger
US6164247A (en) * 1999-02-04 2000-12-26 Kabushiki Kaishi Kobe Seiko Sho Intermediate fluid type vaporizer, and natural gas supply method using the vaporizer
FR2882129A1 (en) * 2005-02-17 2006-08-18 Inst Francais Du Petrole LIQUEFIED NATURAL GAS REGASIFICATION INSTALLATION
EP1855047A1 (en) 2006-05-12 2007-11-14 Black & Veatch Corporation A system and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266415A (en) * 2014-10-09 2015-01-07 中国石油大学(华东) Multilayer plate condenser utilizing LNG (liquefied natural gas) cold energy
CN104266415B (en) * 2014-10-09 2016-06-08 上海交通大学 A kind of Multi-layer plate condenser utilizing LNG cold energy

Also Published As

Publication number Publication date
CN101981365B (en) 2012-12-12
US20110017429A1 (en) 2011-01-27
JP2011515646A (en) 2011-05-19
FR2929369A1 (en) 2009-10-02
ATE526539T1 (en) 2011-10-15
EP2265855A1 (en) 2010-12-29
CN101981365A (en) 2011-02-23
ES2373858T3 (en) 2012-02-09
EP2265855B1 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
EP2265855B1 (en) Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid
FR2714722A1 (en) Method and apparatus for liquefying a natural gas
EP2938413B1 (en) Method and apparatus for purifying a carbon dioxide-rich mixture at a low temperature
EP2872237B1 (en) Method for separating a carbon dioxide-rich gas by partial condensation and permeation
EP0507649B1 (en) Method for the evaporation of a liquid, heat exchanger for carrying out the method, and use in an air distillation plant with a double column
EP2938414B1 (en) Method and apparatus for separating a carbon dioxide-rich gas
FR2935473A1 (en) Heat exchanger e.g. printed circuit heat exchanger, for heating liquefied natural gas, has auxiliary passage traversing or adjacent to thickness of plates such that passage connects channels of each plate with atmosphere
WO2016132086A1 (en) Method and apparatus for separation at sub-ambient temperature
EP4279848B1 (en) Method and apparatus for cooling a co2-rich flow
EP4417915A1 (en) Method and apparatus for liquefying a carbon dioxide rich gas
FR3065065A1 (en) METHOD FOR CONTROLLING THE TEMPERATURE OF FLOW FLOW
WO2016132082A1 (en) Method and apparatus for separation at sub-ambient temperature
FR2714720A1 (en) Natural gas liquefaction process
FR3110962A3 (en) APPARATUS FOR SEPARATING A GAS MIXTURE BY CRYOGENIC DISTILLATION
FR3033397A1 (en) PROCESS FOR COMPRESSING AND COOLING A GASEOUS MIXTURE
FR2930326A1 (en) Air e.g. low pressure low purity oxygen, separating method, involves dividing fluid issued from cryogenic distillation into two parts, and utilizing part of refrigerating capacity of turbines by cooling compressor
FR3071827A3 (en) PROCESS FOR THE PRODUCTION OF A RICH CARBON MONOXIDE PRODUCT
WO2016132087A2 (en) Method and apparatus for separation at sub-ambient temperature
WO2002046669A1 (en) Evaporator-condenser and air distillation plant comprising same
WO2016139425A1 (en) Method and device for separation at sub-ambient temperature
FR2977303A1 (en) Method for producing nitrogen by cryogenic distillation, involves withdrawing nitrogen gas flow of top of column at room temperature, and providing nitrogen gas flow to customer at cold temperature equal to, or lower than room temperature
FR3066265A1 (en) HEAT EXCHANGE APPARATUS
BE536529A (en)
FR2961892A1 (en) Installation for separating air by cryogenic distillation, has conduit sending product to auxiliary exchanger, and conveying unit sending compressed air from adsorption unit to main exchanger
FR2986311A1 (en) METHOD AND APPARATUS FOR CONDENSING OR PSEUDOCONDENSING A GAS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111089.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009726865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12933571

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011501272

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE