BE536529A - - Google Patents
Info
- Publication number
- BE536529A BE536529A BE536529DA BE536529A BE 536529 A BE536529 A BE 536529A BE 536529D A BE536529D A BE 536529DA BE 536529 A BE536529 A BE 536529A
- Authority
- BE
- Belgium
- Prior art keywords
- water
- heat
- reaction
- process according
- circulates
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 10
- 230000002194 synthesizing Effects 0.000 claims description 10
- 230000003197 catalytic Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000003507 refrigerant Substances 0.000 claims description 2
- 238000006555 catalytic reaction Methods 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atoms Chemical class [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
- C01C1/0417—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
- C01C1/0423—Cold wall reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/04—Pressure vessels, e.g. autoclaves
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
- C01C1/0417—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/18—Details relating to the spatial orientation of the reactor
- B01J2219/185—Details relating to the spatial orientation of the reactor vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/19—Details relating to the geometry of the reactor
- B01J2219/194—Details relating to the geometry of the reactor round
- B01J2219/1941—Details relating to the geometry of the reactor round circular or disk-shaped
- B01J2219/1943—Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
<Desc/Clms Page number 1>
Il est connu que pour obtenir un rendement élevé de combinaison dans certaines réactions exothermiques effectuées à haute pression, telles que par exemple la synthèse de l'ammoniac et du méthanol, il est nécessaire de maintenir la température du catalyseur entre des limites bien définies! la chaleur développée par la réaction doit donc être éliminée avec soin au fur et à mesure qu'elle se produit.
Pour effectuer cette opération, il a déjà été proposé de diviser la masse catalytique en différentes couches et d'insérer dans les espaces intermédiaires des tuyaux en spirale en acier inoxydable, dans lesquels on injecte de l'eau ; decette façon, la chaleur de réaction peut être utilisée pour la production de vapeur.
Cependant, la construction des tuyaux destinés à fonctionner à l'intérieur des colonnes de synthèse à la pression de plusieurs oentaines d'atmosphères et à des températures qui peuvent atteindre 600 C, présente de grandes difficultés. En effet, à ces températures, la résistance des aciers diminue considérablement et, même si l'on emploie des aciers ayant des teneurs élevées de chrome et de nickel;. il faut employer des tuyaux r
EMI1.1
-ayant des ëpa3,sseuxsexaessives; 'poùr cette raiisoù, la constrûdtion'de ces appareils devient impossible n pratique lorsque la pression de marche est supérieure à 350 - 40Q atm.
La présente invention offre une solution rationnelle pour vaincre les difficultés mentionnées ci-dessus, qui permet de réduire au mimi ' l'épaisseur des tuyaux dans lesquels on fait circuler l'eau destinée à emporter la chaleur de réaction, même si le procès s'applique à des pres- sions de 800 - 1000 at
L'invention consiste essentiellement en ce qu'on réalise le re- froidissement de la masse catalytique au moyen d'une circulation d'eau à thermosiphon, en mettant en communication le circuit de l'eau destinée à emporter la chaleur de réaction, avec le circuit de synthèse, de façon à assurer l'existence de la même pression dans les deux circuits.
Le dessin annexé montre un exemple d'exécution de l'invention appliquée à la synthèse de l'ammoniac.
Le mélange d'azote et d'hydrogène, venant du compresseur M et se trouvant sons haute pression, traverse l'échangeur de chaleur D, situé dans la partie inférieure de la colonne de synthèse A, après quoi, suivant le parcours indiqué par les flèches, il pénètre dans la chambre de cata- lyse à une température suffisante pour déclencher la réaction, c'est-à-dire à environ 400 C.
La masse catalytique est divisée en plusieurs coubhes B1, B2, B3,B4 soutenues par des .grilles. Le gaz sort de la prémière couche à une température d'environ 550 C, et en traversant le dispositifn de refroidis- sement C1, il se refroidit à environ 450 C. L'eau qui se chauffe dans le tuyau C1 devient spécifiquement plus légère et partant il s'établit une circulation à thermosiphon par suite de laquelle la chaleur produite dans la réaction est transférée à l'eau contenue dans la chaudière à vapeur L.
EMI1.2
Au moyen de la soupape HZ, le débit d'eau est proportionnée à'l'intensité de la réaction. De façon analogue, on règle la température du gaz dans les couches successives de la masse catalytique, de façon à réaliser un gradient thermique décroissant, néccessaire pour obtenir un rendement élevé de com- binaison. Les gaz catalysés, après avoir transféré leur chaleur dans l'é- changeur D, sont refroidis dans le réfrigérant E; l'ammoniac condensé se sépare dans le récipient F, tandis que les gaz qui n'ont pas réagi sont ren- voyés, au moyen de la pompe G, dans la colonne de synthèse A.
<Desc/Clms Page number 2>
Le vase d'expansion P, dans lequel on recueille l'eau chaude venant du circuit à thermo-siphon, est mis en communication, au moyen du tuyau Q, avec le séparateur de l'ammoniace, F. Pour éviter que la vapeur d'eau ne puisse pénétrer dans le circuit de synthèse, le vase d'expansion P est maintenu à une température inférieure au point critique de l'eau.
Grâce à ce dispositif, la pression de l'eau a l'intérieur des tuyaux C1, C2,C3, reste pratiquement égale à celle existant dans la chambre de cata- lyse A ; cette raison, même si l'on emploie des pressions synthèse très élevées, on peut employer des tuyaux ayant des parois minces et réali- ser ainsi un économie considérable du coût de construction de la chambre de réaction.
Il va de soi qu'il est possible d'employer, comme moyen refroidis- sant, au lieu de l'eau, tout autre liquide approprié.
<Desc / Clms Page number 1>
It is known that in order to obtain a high efficiency of combination in certain exothermic reactions carried out at high pressure, such as for example the synthesis of ammonia and methanol, it is necessary to maintain the temperature of the catalyst between well defined limits! the heat developed by the reaction must therefore be carefully removed as it occurs.
To perform this operation, it has already been proposed to divide the catalytic mass into different layers and to insert in the intermediate spaces spiral pipes of stainless steel, into which water is injected; In this way, the heat of reaction can be used for the production of steam.
However, the construction of the pipes intended to operate inside synthesis columns at the pressure of several hundred atmospheres and at temperatures which can reach 600 ° C. presents great difficulties. Indeed, at these temperatures, the resistance of steels decreases considerably and, even if one uses steels having high contents of chromium and nickel ;. it is necessary to use pipes r
EMI1.1
-having epa3, sseuxsexaessives; For this reason, the construction of these devices becomes impracticable when the operating pressure is above 350 - 40Q atm.
The present invention offers a rational solution to overcome the difficulties mentioned above, which allows to reduce to a minimum the thickness of the pipes in which the water is circulated, intended to take away the heat of reaction, even if the process takes place. applies to pressures of 800 - 1000 at
The invention consists essentially in that the cooling of the catalytic mass is carried out by means of a thermosiphon water circulation, by putting in communication the water circuit intended to take away the heat of reaction, with the synthesis circuit, so as to ensure the existence of the same pressure in the two circuits.
The appended drawing shows an exemplary embodiment of the invention applied to the synthesis of ammonia.
The mixture of nitrogen and hydrogen, coming from the compressor M and being at high pressure, passes through the heat exchanger D, located in the lower part of the synthesis column A, after which, following the path indicated by the arrows, it enters the catalyst chamber at a temperature sufficient to initiate the reaction, ie at about 400 C.
The catalytic mass is divided into several coubhes B1, B2, B3, B4 supported by .grids. The gas exits the first layer at a temperature of about 550 C, and passing through the cooler C1 it cools down to about 450 C. The water that heats up in pipe C1 becomes specifically lighter and lighter. hence a thermosiphon circulation is established, as a result of which the heat produced in the reaction is transferred to the water contained in the steam boiler L.
EMI1.2
By means of the HZ valve, the water flow is proportional to the intensity of the reaction. Similarly, the temperature of the gas in the successive layers of the catalytic mass is adjusted so as to produce a decreasing thermal gradient, necessary to obtain a high efficiency of the combination. The catalyzed gases, after having transferred their heat to the exchanger D, are cooled in the refrigerant E; the condensed ammonia separates in vessel F, while the unreacted gases are returned, by means of the pump G, to synthesis column A.
<Desc / Clms Page number 2>
The expansion vessel P, in which the hot water coming from the thermo-siphon circuit is collected, is placed in communication, by means of the pipe Q, with the ammonia separator, F. To prevent the vapor d If water cannot enter the synthesis circuit, the expansion vessel P is kept at a temperature below the critical point of water.
Thanks to this device, the water pressure inside the pipes C1, C2, C3 remains practically equal to that existing in the catalyst chamber A; For this reason, even if very high synthesis pressures are employed, pipes having thin walls can be employed and thus achieve a considerable saving in the construction cost of the reaction chamber.
It goes without saying that it is possible to use, as cooling means, instead of water, any other suitable liquid.
Claims (1)
Publications (1)
Publication Number | Publication Date |
---|---|
BE536529A true BE536529A (en) |
Family
ID=167188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE536529D BE536529A (en) |
Country Status (1)
Country | Link |
---|---|
BE (1) | BE536529A (en) |
-
0
- BE BE536529D patent/BE536529A/fr unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO116649B (en) | ||
JP2007308318A (en) | Reforming apparatus and its operation method | |
EP2265855B1 (en) | Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid | |
WO2008148971A2 (en) | Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation | |
BE536529A (en) | ||
FR2883861A1 (en) | Hydrogen generating device from diesel oil, oxygen and water, for power supply to fuel cells, comprises a reaction chamber, in which fluids are introduced to produce hydrogen and carbon monoxide, three cylindrical zones and a mixer | |
BE875118A (en) | METHOD AND APPARATUS FOR VAPORIZING LIQUEFIED NATURAL GAS | |
EP3747522A1 (en) | Distilling device having reduced power consumption | |
EP3049181B1 (en) | Methanation reactor for reacting hydrogen with at least one carbon-based compound and producing methane and water | |
FR3096901A1 (en) | Distillation device with reduced energy consumption | |
FR3145876A1 (en) | Distillation device comprising a mechanical vapor compression heating system and a condenser optimized to reduce energy consumption | |
EP0706632A1 (en) | Method for producing very low temperatures | |
FR2494420A3 (en) | Heat exchanger assembly for absorption refrigerator - has profiled trunk with inner and outer radial ribs supporting inner and outer tubes | |
BE373460A (en) | ||
FR3097037A1 (en) | Distillation device with improved cooling system | |
FR2557963A1 (en) | Trithermal heat pump operating according to an absorption-resorption cycle. | |
FR3029208A1 (en) | COOLING AND HEATING SYSTEM FOR THERMOVINIFICATION | |
FR3133664A1 (en) | Hydrogen cooling method and apparatus | |
BE391416A (en) | ||
FR2730299A1 (en) | DIPHASIC HEAT EXCHANGER WITH CONTROLLED TEMPERATURE | |
EP0093051A2 (en) | Resorption method for heat pumps | |
FR3065065A1 (en) | METHOD FOR CONTROLLING THE TEMPERATURE OF FLOW FLOW | |
BE552522A (en) | ||
CH95741A (en) | Process and installation for the separation of a gas mixture into its constituents. | |
BE365381A (en) |