WO2009119877A1 - Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board - Google Patents

Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board Download PDF

Info

Publication number
WO2009119877A1
WO2009119877A1 PCT/JP2009/056454 JP2009056454W WO2009119877A1 WO 2009119877 A1 WO2009119877 A1 WO 2009119877A1 JP 2009056454 W JP2009056454 W JP 2009056454W WO 2009119877 A1 WO2009119877 A1 WO 2009119877A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
wiring board
forming
support
Prior art date
Application number
PCT/JP2009/056454
Other languages
French (fr)
Japanese (ja)
Inventor
智章 柴田
大地 酒井
敏裕 黒田
成行 八木
敦之 高橋
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008261621A external-priority patent/JP2009258611A/en
Priority claimed from JP2008261629A external-priority patent/JP2009258612A/en
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to CN2009801111668A priority Critical patent/CN101982028A/en
Priority to US12/736,297 priority patent/US20110013865A1/en
Publication of WO2009119877A1 publication Critical patent/WO2009119877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/016Temporary inorganic, non-metallic carrier, e.g. for processing or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards

Definitions

  • the present invention relates to a method of manufacturing a wiring board capable of uniformly processing the width of wiring and forming a circuit with good dimensional stability, and a method of manufacturing a photoelectric composite member in which distortion generated in an optical waveguide in the manufacturing process is reduced
  • the present invention relates to a method for manufacturing a photoelectric composite substrate, a photoelectric composite substrate manufactured thereby, and a photoelectric composite substrate module using the same.
  • the wiring width / wiring interval 50 ⁇ m / 50 ⁇ m is the limit of wiring that can be formed with a high yield by the subtract method of forming wiring by etching.
  • a relatively thin metal layer seed layer
  • a plating resist is formed thereon
  • wiring is formed to the required thickness by electroplating.
  • a semi-additive method in which the seed layer is removed by soft etching has begun to be used.
  • an electroless plating method, a method of bonding a thin metal foil, and a method of forming by using a sputtering method are generally known, and the pitch tends to decrease year by year.
  • a wiring board in which a mixed layer between wirings is removed so that an insulation resistance value is 1 G ⁇ or more see Patent Document 1.
  • the fine wiring board provided with the fine wiring as described above is manufactured by forming a metal pattern on the insulating resin layer.
  • accurate front and back alignment is required.
  • if double-sided simultaneous wiring formation is performed with a thin substrate, dimensional distortion occurs, making it difficult to align the laminated electric wiring and optical waveguide.
  • the method described in Patent Document 1 is useful as a method for forming fine wiring on one side, but it is difficult to form simultaneous wiring on both sides, resulting in circuit processing for each side.
  • Patent Document 4 proposes that an optical circuit board (optical waveguide) and an electric circuit board are simply combined using a sheet-like adhesive.
  • a method of combining the optical wiring and the electrical wiring can be easily conceived as a method of joining the optical waveguide and the optical wiring substrate through the adhesive layer.
  • Patent Document 5 first, a flexible optical wiring film is formed, a base metal layer is formed on the back surface thereof by electroless plating or vacuum deposition, and after patterning, electrolytic plating is performed to construct an electrical wiring.
  • the adhesion strength between the back surface of the flexible optical wiring film and the base metal layer (electrical wiring) is not sufficient, and the reliability may be impaired.
  • An object of the present invention is to provide a method of manufacturing a wiring board capable of uniformly processing the width of wiring and forming a circuit with good dimensional stability (first object).
  • first object a method of manufacturing a wiring board capable of uniformly processing the width of wiring and forming a circuit with good dimensional stability (first object).
  • the support since the optical waveguide is formed on the support, the support is peeled off, the sheet-like adhesive and the optical waveguide are bonded, and the electrical wiring board is laminated. If the peeling strength when peeling the waveguide from the support is large, the optical waveguide will be stretched, and even if it can be peeled with a small peeling strength, the stress accumulated in the waveguide is released, resulting in distortion. There is a problem that the dimension of the optical waveguide becomes unstable.
  • an object of the present invention is to provide a method for manufacturing an optoelectric composite member in which distortion generated in an optical waveguide in a manufacturing process is reduced and dimensional stabilization can be achieved (second object). It is another object of the present invention to provide an optoelectric composite substrate manufacturing method excellent in productivity, an optoelectric composite substrate manufactured thereby, and an optoelectric composite substrate module using the same (third object).
  • the present inventors have (1) The substrate on which the circuit is formed is fixed to a support through a release layer, and the circuit on the substrate is embedded in the release layer, thereby achieving the first object. (2) In addition to the conventional method, the second object can be achieved by peeling the lower support after attaching the upper support on the electrical wiring board; (3) After obtaining an electrical wiring substrate with a lower cladding layer, by constructing an optical waveguide having the lower cladding layer as a constituent element, the third object can be achieved; (4) A lower clad layer is formed on the substrate surface of the substrate with metal foil, and then an optical waveguide having the lower clad layer as a constituent element and an electric wiring substrate from the metal foil substrate are sequentially constructed. To achieve the third object, I found.
  • the present invention (1) Step A for forming a circuit on the first substrate, Step B for laminating the first support on the circuit forming surface of the first substrate via the first release layer, the first substrate A method of manufacturing a wiring board (first invention) having in sequence a step C of forming a second substrate or circuit on the opposite surface of the circuit forming surface; (2) The step of laminating the electric wiring board on the second support, the step of laminating the first support, the step of peeling the second support, and the light on the peeling surface of the second support A method for producing a photoelectric composite member having the steps of forming a waveguide in this order (second invention), (3) After forming the lower cladding layer directly on the substrate surface of the electric wiring substrate or via the adhesive layer, or forming the lower cladding layer directly or via the adhesive layer on the substrate surface of the substrate with metal foil, the metal A first step of obtaining an electric wiring substrate with a lower cladding layer by forming an electric wiring substrate by forming a metal pattern of a metal substrate of the foil
  • the method for manufacturing a wiring board (first invention) of the present invention when the front and back wirings are sequentially formed, the unevenness of the wiring formed previously is not transferred to the back surface of the substrate, and the wiring width is uniformly processed. Circuit formation can be performed with good dimensional stability. Moreover, according to the manufacturing method (2nd invention) of the photoelectric composite member of this invention, the distortion which arises in an optical waveguide at a manufacturing process is reduced, and dimension stabilization can be aimed at. Furthermore, according to the present invention (third invention), the optical waveguide is constructed while observing the conductive pattern of the already constructed electrical wiring board that is very easy to visually recognize. Therefore, a photoelectric composite substrate having a large area can be manufactured easily and with high productivity.
  • the conductive pattern and the like are formed while looking at the already constructed optical waveguide, so that the optical waveguide and the electric wiring board can be combined with high positional accuracy, and thus a large A photoelectric composite substrate having an area can be easily manufactured with good productivity.
  • the lower clad layer is to be joined to the electric wiring board and the electric wiring board is severely uneven, an air residue is generated in the joined portion, resulting in deterioration of the quality or the joined lower clad layer.
  • unevenness may be formed, which may hinder subsequent optical waveguide construction, in the present invention, since flat objects are joined together, such a problem does not occur.
  • the present invention can cope with a case where the electric wiring board has a rugged surface as well as an electric wiring board having a flat shape having an inner layer circuit.
  • a wiring board manufactured according to the present invention includes, for example, a first substrate 1-1 on a first support 1-4 as shown in FIG. 1 (c).
  • the circuit is laminated via the first release layer 1-2, and the circuit 1-9 of the first substrate 1-1 is embedded in the first release layer 1-2.
  • a first adhesive layer 1-3 is used to fix the first support 1-4 and the first substrate 1-1.
  • a circuit is formed on the surface of the first substrate 1-1 opposite to the first support 1-4 (see FIG. 1 (f)), or as shown in FIG. 2 (f) -1.
  • the layers in which the circuit is formed are multi-layered or, as shown in FIG.
  • FIG. 2 (f) -2 the lower cladding layer 1-11, the core pattern 1-12, and the upper cladding layer 1-13 through the adhesive layer 1-10.
  • a substrate is further laminated on the upper cladding layer 1-13 surface of FIG. 2 (f) -2 as shown in FIG. 2 (f) -3.
  • FIG. 2 (f) -4 after the layers in which the circuit is formed are multilayered as shown in FIG. 2 (f) -1, the optical waveguide 1-15 is formed as shown in FIG. 2 (f) -2. Or to form.
  • the optical waveguide 1-15 is disposed in the first layer in the first substrate 1-1, and the circuit is installed above and below.
  • the circuit means an electric circuit and an optical circuit (optical waveguide).
  • the first support 1-4 and the first substrate 1-1 are smaller than each side by 5 to 30 mm.
  • a first adhesive layer 1-3 having the same size as the first support 1-4 is interposed between the first release layer 1-2 and the first support 1-4 with the release layer 1-2 interposed therebetween.
  • the circuit 1-9 can be embedded in the first release layer 1-2 by bonding together, and at the same time, the first substrate 1-1 can be fixed to the first support 1-4 ( (Refer FIG.1 (c)).
  • the lamination method is not particularly specified, and hand bonding, laminator, vacuum laminator, press, and vacuum press are preferable.
  • hand bonding, laminator, vacuum laminator, press, and vacuum press are preferable.
  • a vacuum laminator or a vacuum press is more preferable as a bonding method that does not allow air to enter.
  • the first substrate 1-1 is supported by a hard plate from the opposite side to the first support 1-4, or the first substrate 1-1 and the first support 1-4 are More preferably, the second support 1-8 is stacked on the first substrate 1-1 before the support 1-4 is stacked.
  • the hard plate may be a material that is less deformed by pressure than the first release layer 1-2.
  • the first substrate 1-1 may be attached via the second peelable adhesive layer 1-7.
  • the second support 1-8 and the second adhesive layer 1-7 may be peeled off from the first substrate 1-1. If the second support 1-8 is not laminated, the second release layer 1-6 and the second adhesive layer 71- are not necessary.
  • the first support 1-4 And the second support 1-8 are sequentially separated so that the second release layer 1-6 having a side 1 to 30 mm smaller than the first release layer 1-2 is sandwiched between the second release layers 1-8.
  • the first substrate 1-1 is bonded between the layer 1-6 and the second support 1-8 via a second adhesive layer 1-7 having the same size as the second support 1-8.
  • the second substrate 1-5 can be fixed to the second support 1-8.
  • the method for stacking is not particularly specified, and may be the same as the method for stacking the first support and the first substrate. Further, from the viewpoint of forming the circuit 1-9 on the opposite surface to the second support 1-8 of the first substrate 1-1, the second support 1-8 of the first substrate 1-1.
  • the side surface is preferably a flat surface, and the second release layer 1-6 at that time is more preferably less deformed by pressure than the first release layer 1-2.
  • first support and second support The types of the first support 1-4 and the second support 1-8 are not particularly limited. For example, an FR-4 substrate, a semiconductor substrate, a silicon substrate, a glass substrate, a metal plate, etc.
  • the non-flexible hard material is preferable.
  • first substrate 1-1 and the second substrate 1-5 are used. Dimensional stability can be imparted to itself, and the embedding property of the circuit 1-9 can be improved.
  • the thickness of the support having a thickness having dimensional stability is not particularly limited, but an FR-4 substrate, a semiconductor substrate, a silicon plate, a glass plate, a metal plate, and the like are preferable from the viewpoint of dimensional stability.
  • the thickness of the support may be appropriately changed depending on the warp, dimensional stability, and productivity of the support, but is preferably 0.1 to 10.0 mm.
  • the said hard board may also be the same material and support body thickness as the above.
  • the substrates (first substrate 1-1, second substrate 1-5, and substrate X16) used in the present invention (first invention) are not particularly limited, but as described above, Since the surface on the second support 1-8 side of the substrate 1-1 is preferably a flat surface, the flat surface of the metal layer before the circuit formation by the subtractive method or the resin flatness before the circuit formation by the semi-additive method is used. More preferably, the surface is a resin or metal flat surface suitable for forming the optical waveguide 1-15. The presence or absence of metal layers arranged above and below the substrate shown in FIGS. 1 to 3 may be determined by a circuit formation method.
  • the type of the substrate is not particularly limited, and for example, an FR-4 substrate, a build-up substrate, a polyimide substrate, a semiconductor substrate, a silicon substrate, a glass substrate, or the like can be used. However, when forming fine wiring, an insulating resin layer for fine wiring is preferable.
  • Thermosetting resin or thermoplastic resin can be used as the material of the insulating resin layer, and as the thermosetting resin, phenol resin, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin , Epoxy resin, silicone resin, resin synthesized from cyclopentadiene, resin containing tris (2-hydroxyethyl) isocyanurate, resin synthesized from aromatic nitrile, trimerized aromatic dicyanamide resin, triallyl trimetallate Resins, furan resins, ketone resins, xylene resins, thermosetting resins containing condensed polycyclic aromatics, and the like can be used.
  • the thermosetting resin phenol resin, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin , Epoxy resin, silicone resin, resin synthesized from cyclopentadiene, resin containing tris (2-hydroxyethyl) is
  • thermoplastic resin examples include polyimide resin, polyphenylene oxide resin, polyphenylene sulfide resin, and aramid resin. Further, by using a film as the substrate, flexibility and toughness can be imparted to the first substrate 1-1, the second substrate 1-5, the substrate X1-16, and the optical waveguide 1-15.
  • the material of the film is not particularly limited, but from the viewpoint of having flexibility and toughness, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyethylene, polypropylene, polyamide, polycarbonate, polyphenylene ether, polyether
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyethylene, polypropylene, polyamide, polycarbonate, polyphenylene ether, polyether
  • Preferable examples include films of sulfide, polyarylate, liquid crystal polymer, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, and polyimide.
  • the thickness of the film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 ⁇ m. If it is 5 ⁇ m or more, there is an advantage that toughness is easily obtained, and if it is 250 ⁇ m or less, sufficient flexibility
  • the type of the release layer is not particularly limited, and for example, a release sheet for press, a release resin or adhesive, UV or heat release resin, and the like can be used. Further, since the surface on the second support 1-8 side of the first substrate 1-1 is preferably a flat surface as described above, a film-like material is used as the second release layer 1-6. By using it, planarization can be achieved.
  • the material of the film is not particularly limited, but from the viewpoint of having flatness, polyester such as copper foil, silver foil, gold foil, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyamide, polycarbonate, polyphenylene Preferred examples include ether, polyether sulfide, polyarylate, liquid crystal polymer, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyamide imide, and polyimide. From the viewpoint of heat resistance and releasability from the substrate, copper foil, polyimide film, and aramid film are more preferable.
  • the thickness of the film may be appropriately changed depending on the intended flatness, but is preferably 5 to 250 ⁇ m. If it is 5 ⁇ m or more, there is an advantage that toughness is easily obtained, and if it is 250 ⁇ m or less, sufficient embedding by the second adhesive layer 1-7 can be obtained. Furthermore, since it is necessary to embed the circuit 1-9 of the first substrate 1-1 in the first release layer 1-2, it is preferable to use a material with good circuit embeddability. As the first release layer 1-2, the same material as that of the second release layer 1-6 is preferably used, but a release sheet for press is more preferable from the viewpoint of circuit embedding property. The thickness of the release layer may be appropriately changed depending on the intended circuit thickness, but is preferably 5 ⁇ m or more thicker than the circuit thickness.
  • Adhesive layer Adhesion between the first substrate 1-1 or the second substrate 1-5 and the first support 1-4 or the second support 1-8 is not particularly limited, but a release layer / adhesion layer In this case, the adhesive layers 1-3 and 1-7 having removability are preferable. The layer structure at that time is shown in FIG. Suitable examples of the material for the releasable adhesive layer include single-sided slightly adhesive double-sided tapes, hot melt adhesives, and UV curable adhesives. As described above, since it is necessary to embed the circuit 1-9 of the first substrate 1-1 in the first release layer 1-2, it is preferable to use a material having a thickness capable of embedding the circuit.
  • a heat-resistant adhesive layer is preferable, and the material of the adhesive layer that does not need to be peeled again is not particularly limited.
  • a prepreg, a build-up material, a heat-resistant adhesive Preferable examples include insulating resins listed for the base material.
  • an adhesive layer having a high transmittance is required for adhesion of a portion through which an optical signal is transmitted.
  • the material of the adhesive layer 1-10 is not particularly limited, but (PCT / JP2008 / 05465) It is more preferable to use the adhesive described in 1.
  • the thickness is preferably 5 ⁇ m or more thicker than the release layer.
  • Circuit formation method As a method of forming a circuit, a metal layer is formed on a surface on which a circuit is formed, an etching resist is further formed, an unnecessary portion of the metal layer is removed by etching (subtract method), a plating resist is formed, and a circuit is formed.
  • a method of forming a circuit by plating only on the necessary part of the surface on which the metal is to be formed (additive method), forming a thin metal layer (seed layer) on the surface on which the circuit is to be formed, further forming a plating resist, and then electroplating
  • Additive method a method in which a thin metal layer is removed by etching after forming a necessary circuit. Any method may be used for forming the circuit, but the semi-additive method is more preferable in order to form fine wiring with (circuit width) ⁇ 20 ⁇ m.
  • the etching resist or plating resist used for circuit formation can be either a positive type or a negative type. However, the positive type resist is more preferable because fine wiring can be easily formed.
  • the sputtering apparatus used to form the thin film copper layer is a bipolar sputtering, a three-pole sputtering, a four-pole sputtering, a magnetron sputtering, a mirror.
  • Tron sputtering or the like can be used.
  • the target used for sputtering is sputtered 5 to 50 nm using a metal such as Cr, Ni, Co, Pd, Zr, Ni / Cr, or Ni / Cu as a base metal in order to ensure adhesion.
  • a seed layer can be formed by sputtering 200 to 500 nm using copper as a target.
  • plated copper on the surface on which the circuit is formed by electroless copper plating of 0.5 to 3 ⁇ m.
  • the seed layer can also be formed by laminating the metal layer by pressing or laminating.
  • the former has a three-layer copper foil of carrier copper / nickel / thin film copper, the carrier copper is removed with an alkali etching solution, nickel is removed with a nickel etching solution, and the latter is made of aluminum, copper, insulating resin, etc.
  • the peelable copper foil can be used, and a seed layer of 5 ⁇ m or less can be formed. Alternatively, a 9 to 18 ⁇ m thick copper foil may be attached, and the seed layer may be formed by etching so that the thickness is uniformly 5 ⁇ m or less. What is necessary is just to use what is generally used about the kind of electroplating in a semi-additive method, although it does not specifically limit, In order to form a circuit, it is preferable to use copper as a plating metal.
  • circuit formation by additive method In the case of circuit formation by the additive method, as with the semi-additive method, it is formed by plating only on the necessary part of the surface on which the circuit is formed.
  • the plating used in the additive method is usually electroless plating. used. For example, after depositing an electroless plating catalyst on the surface on which the circuit is to be formed, a plating resist is formed on the surface portion where plating is not performed, and the substrate is immersed in an electroless plating solution and not covered with the plating resist Only the electroless plating is performed to form a circuit.
  • Multi-layer circuit board with circuit When a circuit board is multilayered, an insulating layer substrate is formed on the circuit forming surface, and circuit formation is performed on the insulating layer substrate surface using at least one of the subtractive method, semi-additive method, and additive method described above. Can be done.
  • a substrate for the insulating layer a build-up substrate, a prepreg, a polyimide substrate, and the like are preferably exemplified.
  • the method of forming the insulating layer substrate is not particularly limited. When a build-up substrate is used, the insulating layer substrate is formed using a roll laminator or a vacuum laminator, and then a circuit is formed using a semi-additive method or an additive method. be able to.
  • a prepreg and a metal layer are sequentially formed on the circuit formation surface, and after press lamination, the metal layer can be formed using a subtractive method or a semi-additive method.
  • a polyimide substrate if a polyimide substrate with a metal layer is used, circuit formation is performed using a subtractive method or a semi-additive method after press lamination, roll lamination, or vacuum lamination on the circuit formation surface via an adhesive layer.
  • a polyimide substrate without a metal layer is used, a circuit can be formed using a semi-additive method or an additive method after laminating the polyimide substrate in the same manner as described above.
  • circuit interlayer connection Connections between circuits in each layer can be made as appropriate.
  • the circuit interlayer connection method is described in detail below.
  • a via hole for electrically connecting the circuits of each layer can be provided.
  • the via hole can be formed by providing a hole for connection in a substrate between circuit layers and filling the hole with a conductive paste, plating or the like.
  • Examples of the hole processing method include mechanical processing such as punching and drilling, laser processing, chemical etching processing using a chemical solution, and dry etching using plasma.
  • a dry process or a wet process can be used as the smear removal of the via hole formed by the above-described method.
  • a dry treatment plasma treatment, reverse sputtering treatment, or ion gun treatment can be used.
  • plasma processing includes atmospheric pressure plasma processing, vacuum plasma processing, and RIE processing, which can be selected as necessary.
  • nitrogen, oxygen, argon, freon (CF 4 ), or a mixed gas thereof is preferable.
  • An oxidizing agent such as chromate or permanganate can be used for the wet treatment.
  • Interlayer connection As an interlayer connection method, in addition to the above-described method using via holes, a method in which a conductive layer is formed on the insulating layer with a conductive paste or plating, and is laminated on the surface of the insulating layer on which the circuit is formed by pressing or laminating. There are also.
  • An insulating coating can be formed on the circuit surface located on the outermost layer of the wiring board of the present invention, which is performed either before or after the first support 1-1 and the second support 1-5 are laminated. May be. Pattern formation of the insulating coating can be performed by printing if it is a varnish-like material, but in order to ensure more accuracy, it is possible to use a photosensitive solder resist, a coverlay film, or a film-like resist. preferable.
  • a material an epoxy-based material, a polyimide-based material, an epoxy acrylate-based material, or a fluorene-based material can be used.
  • a lower clad layer 1-11 is provided on a first substrate 1-1 fixed to a second support 1-8, and a core is formed thereon.
  • a pattern 1-12 is formed, and an upper clad layer 1-13 is further laminated. If the first substrate 1-1 and the lower clad layer 1-11 do not have an adhesive force, they may be attached via the adhesive layer 1-10.
  • an optical waveguide having the lower clad layer 1-11, the core pattern 1-12, and the upper clad layer 1-13 as described above is directly attached onto a circuit with an adhesive.
  • the formation of the lower clad layer 1-11 on the support is not particularly limited, and may be performed by a known method.
  • a material for forming the lower clad layer 1-11 is applied on the lower support film by spin coating or the like. After prebaking, the thin film can be cured by irradiating with ultraviolet rays.
  • the formation of the core pattern 1-12 is not particularly limited.
  • a core layer having a refractive index higher than that of the lower cladding layer 1-11 is formed on the lower cladding layer 1-11, and the core pattern is formed by etching. Just do it.
  • the method of forming the upper cladding layer 1-13 is not particularly limited, and may be formed by the same method as that of the lower cladding layer 1-11, for example.
  • the lower clad layer 1-11 may be coated with an adhesive or an adhesive sheet may be bonded between the lower clad layer 1-11 and the substrate from the viewpoint of adhesion to the substrate.
  • the lower clad layer 1-11 and the upper clad layer 1-13 used in the present invention will be described.
  • a cladding layer forming resin or a cladding layer forming resin film can be used as the lower cladding layer 1-11 and the upper cladding layer 1-13.
  • the clad layer forming resin used in the present invention is not particularly limited as long as it is a resin composition that has a lower refractive index than the core layer and is cured by light or heat, and includes a thermosetting resin composition and a photosensitive resin composition. It can be preferably used. More preferably, the clad layer forming resin is preferably composed of a resin composition containing (A) a base polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator.
  • the resin composition used for the clad layer forming resin may be the same or different in the components contained in the resin composition in the upper clad layer 1-13 and the lower clad layer 1-11.
  • the refractive index of the resin composition may be the same or different.
  • the (A) base polymer used here is for forming a clad layer and ensuring the strength of the clad layer, and is not particularly limited as long as the object can be achieved, phenoxy resin, epoxy resin, (Meth) acrylic resin, polycarbonate resin, polyarylate resin, polyether amide, polyether imide, polyether sulfone, etc., or derivatives thereof. These base polymers may be used alone or in combination of two or more.
  • the main chain has an aromatic skeleton from the viewpoint of high heat resistance, and a phenoxy resin is particularly preferable.
  • an epoxy resin particularly an epoxy resin that is solid at room temperature is preferable.
  • compatibility with the photopolymerizable compound (B) described in detail later is important for ensuring the transparency of the resin for forming the cladding layer.
  • the phenoxy resin and the (meth) acrylic resin are used. Is preferred.
  • (meth) acrylic resin means acrylic resin and methacrylic resin.
  • phenoxy resins those containing bisphenol A, bisphenol A type epoxy compounds or derivatives thereof, and bisphenol F, bisphenol F type epoxy compounds or derivatives thereof as a constituent unit of the copolymer component are heat resistant, adhesive and soluble. It is preferable because of its excellent properties.
  • Preferred examples of the bisphenol A or bisphenol A type epoxy compound include tetrabromobisphenol A and tetrabromobisphenol A type epoxy compounds.
  • tetrabromobisphenol F, a tetrabromobisphenol F-type epoxy compound, etc. are mentioned suitably.
  • Specific examples of the bisphenol A / bisphenol F copolymer type phenoxy resin include “Phenotote YP-70” (trade name) manufactured by Toto Kasei Co., Ltd.
  • epoxy resin that is solid at room temperature examples include, for example, “Epototo YD-7020, Epototo YD-7019, Epototo YD-7007” (all trade names) manufactured by Toto Chemical Co., Ltd., and “Epicoat 1010” manufactured by Japan Epoxy Resins Co., Ltd. Bisphenol A type epoxy resin such as “Epicoat 1009, Epicoat 1008” (both trade names).
  • the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and the compound having an ethylenically unsaturated group in the molecule or two or more in the molecule.
  • examples thereof include compounds having an epoxy group.
  • examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, vinyl ether, vinyl pyridine, vinyl phenol, etc., among these, from the viewpoint of transparency and heat resistance, (Meth) acrylate is preferred.
  • the (meth) acrylate any of monofunctional, bifunctional, trifunctional or higher polyfunctional ones can be used.
  • (meth) acrylate means acrylate and methacrylate.
  • the compound having two or more epoxy groups in the molecule include bifunctional or polyfunctional aromatic glycidyl ethers such as bisphenol A type epoxy resins, bifunctional or polyfunctional aliphatic glycidyl ethers such as polyethylene glycol type epoxy resins, and water.
  • Bifunctional alicyclic glycidyl ether such as bisphenol A type epoxy resin, bifunctional aromatic glycidyl ester such as diglycidyl phthalate, bifunctional alicyclic glycidyl ester such as tetrahydrophthalic acid diglycidyl ester, N, N- Bifunctional or polyfunctional aromatic glycidylamine such as diglycidylaniline, bifunctional alicyclic epoxy resin such as alicyclic diepoxycarboxylate, bifunctional heterocyclic epoxy resin, polyfunctional heterocyclic epoxy resin, bifunctional Or polyfunctional silicon-containing epoxy resin It is.
  • These (B) photopolymerizable compounds can be used alone or in combination of two or more.
  • the photopolymerization initiator of component (C) is not particularly limited.
  • aryldiazonium salt, diaryliodonium salt, triarylsulfonium salt, triallyl examples include selenonium salts, dialkylphenazylsulfonium salts, dialkyl-4-hydroxyphenylsulfonium salts, and sulfonate esters.
  • aromatic ketones such as benzophenone, quinones such as 2-ethylanthraquinone, benzoin ethers such as benzoin methyl ether
  • benzoin compounds such as benzoin
  • benzyl derivatives such as benzyldimethyl ketal
  • 2,4,5-triarylimidazole dimers such as 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer
  • 2- Benzimidazoles such as mercaptobenzimidazole
  • phosphine oxides such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide
  • acridine derivatives such as 9-phenylacridine, N-phenylglycine, N-phenylglycine derivatives , Coumarin compound And the like.
  • thioxanthone type compound and a tertiary amine compound like the combination of diethyl thioxanthone and dimethylamino benzoic acid.
  • aromatic ketones and phosphine oxides are preferred from the viewpoint of improving the transparency of the core layer and the clad layer.
  • These (C) photopolymerization initiators can be used alone or in combination of two or more.
  • the blending amount of the (A) base polymer is preferably 5 to 80% by mass with respect to the total amount of the components (A) and (B).
  • the blending amount of the (B) photopolymerizable compound is preferably 95 to 20% by mass with respect to the total amount of the components (A) and (B).
  • the component (A) is 80% by mass or less and the component (B) is 20% by mass or more, the (A) base polymer can be easily entangled and cured, and an optical waveguide is formed.
  • the blending amounts of the component (A) and the component (B) are more preferably 10 to 85% by mass of the component (A) and 90 to 15% by mass of the component (B). More preferably, the content is 80% by mass and the component (B) is 80 to 30% by mass.
  • the blending amount of the (C) photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B).
  • the blending amount is 0.1 parts by mass or more, the photosensitivity is sufficient, while when it is 10 parts by mass or less, the absorption in the surface layer of the photosensitive resin composition does not increase during exposure, and the internal Is sufficiently cured. Furthermore, when used as an optical waveguide, it is preferable that the propagation loss does not increase due to the light absorption effect of the polymerization initiator itself. From the above viewpoint, the blending amount of the (C) photopolymerization initiator is more preferably 0.2 to 5 parts by mass.
  • an antioxidant an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, a filler, etc. You may add what is called an additive in the ratio which does not have a bad influence on the effect of this invention.
  • the method for forming the clad layer is not particularly limited.
  • the clad layer may be formed by applying a clad layer forming resin or laminating a clad layer forming resin film.
  • the method is not limited.
  • the resin composition containing the components (A) to (C) may be applied by a conventional method.
  • the resin film for clad layer formation used for a lamination can be easily manufactured, for example by melt
  • the material of the support film used in the production process of the clad layer forming resin film is not particularly limited, and various types can be used. From the viewpoints of flexibility and toughness as a support film, those exemplified above as the first support 1-1, the second support 1-5, and the film material of the substrate can be similarly mentioned.
  • the thickness of the support film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 ⁇ m. If it is 5 ⁇ m or more, there is an advantage that toughness is easily obtained, and if it is 250 ⁇ m or less, sufficient flexibility can be obtained.
  • the solvent used here is not particularly limited as long as it can dissolve the resin composition.
  • a solvent such as glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used.
  • the solid concentration in the resin solution is preferably about 30 to 80% by mass.
  • the thickness of the lower cladding layer 1-11 and the upper cladding layer 1-13 (hereinafter abbreviated as the cladding layers 1-11, 1-13) is preferably in the range of 5 to 500 ⁇ m after drying.
  • the thickness is 5 ⁇ m or more, a clad thickness necessary for light confinement can be secured, and when the thickness is 500 ⁇ m or less, it is easy to control the film thickness uniformly.
  • the thickness of the cladding layers 11 and 13 is more preferably in the range of 10 to 100 ⁇ m.
  • the thicknesses of the cladding layers 1-11, 1-13 are the same in the lower cladding layer 1-11 formed first and the upper cladding layer 1-13 for embedding the core pattern 1-12. However, in order to embed the core pattern 1-12, the thickness of the upper clad layer 13 is preferably larger than the thickness of the core layer.
  • the method for forming the core layer laminated on the lower clad layer 1-11 to form the core pattern 1-12 is not particularly limited.
  • the core layer forming resin is applied or the core layer forming resin is formed. What is necessary is just to form by the lamination of a resin film.
  • the core layer forming resin a resin composition that is designed so that the core pattern 1-12 has a higher refractive index than the cladding layers 1-11, 1-13, and can form the core pattern 1-12 by actinic rays.
  • a photosensitive resin composition can be used. Specifically, it is preferable to use the same resin composition as that used in the clad layer forming resin.
  • the method is not limited, and the resin composition may be applied by a conventional method.
  • the resin film for core layer formation used for lamination is explained in full detail.
  • the resin film for forming the core layer can be easily produced by dissolving the resin composition in a solvent and applying the resin composition to the lower cladding layer 2 and removing the solvent.
  • the solvent used here is not particularly limited as long as it can dissolve the resin composition.
  • a solvent such as acetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone or a mixed solvent thereof can be used.
  • the solid concentration in the resin solution is usually preferably 30 to 80% by mass.
  • the thickness of the core layer-forming resin film is not particularly limited, and the thickness of the core layer after drying is usually adjusted to be 10 to 100 ⁇ m.
  • the thickness of the film is 10 ⁇ m or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed.
  • the thickness of the film is preferably in the range of 30 to 70 ⁇ m.
  • the support film used in the manufacturing process of the core layer forming resin is a support film that supports the core layer forming resin, and the material thereof is not particularly limited, but it is easy to peel off the core layer forming resin later.
  • polyesters such as polyethylene terephthalate, polypropylene, polyethylene, and the like are preferable.
  • the thickness of the support film is preferably 5 to 50 ⁇ m. When it is 5 ⁇ m or more, there is an advantage that the strength as a support film is easily obtained, and when it is 50 ⁇ m or less, there is an advantage that a gap with the mask at the time of pattern formation becomes small and a finer pattern can be formed. From the above viewpoint, the thickness of the support film is more preferably in the range of 10 to 40 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the optical waveguide used in the present invention may be a multilayer optical waveguide in which a plurality of polymer layers having a core pattern and a cladding layer are stacked. Since lamination of insulating substrates accompanying such multilayering and insulation coating is subject to shrinkage at the time of curing, if formed on only one side, the substrate is likely to be greatly warped. Therefore, if necessary, the same material can be formed on the surface of the support opposite to the surface on which insulation coating or lamination is performed. Furthermore, since the warpage varies depending on the thickness of the insulating coating and the insulating substrate, it is more preferable to adjust the thickness of the insulating coating and the insulating substrate formed on the support surface so that no warpage occurs. In that case, it is preferable to conduct preliminary examination and determine the thicknesses of the insulating coatings on both sides.
  • the electric circuit or electric wiring board that may be formed on the optical waveguide is not particularly limited, and various electric wiring boards can be used, for example, an insulating resin layer or a substrate.
  • a single-sided or double-sided metal layer substrate, or a resin layer with a metal layer on one or both sides can be used.
  • An electrical wiring board is formed by laminating metal layers on both sides. Examples of the material for the substrate and the resin layer include the same materials as those described for the substrate.
  • the metal forming the metal layer includes copper, gold, silver, Al, Ni, Cr, Co, Ti, Pd, Sn, Zn, Na, alloys thereof, and two or more layers of these metals. Etc. Further, the above wiring board may be multilayered.
  • An optoelectric composite substrate manufactured according to the present invention (second invention) has, for example, a lower clad layer 2-2 on an electric wiring board 2-2 as shown in FIG. 4, an optical waveguide 2-8 in which a core pattern 2-5 and an upper cladding layer 2-6 are sequentially laminated.
  • the term “electrical wiring board” simply refers to those in which the electric circuit layer is not formed, but the term “electrical wiring board” used after the circuit layer is formed is the electric circuit layer. Refers to an electrical wiring board on which is formed.
  • the method for producing a photoelectric composite member of the present invention includes a step of laminating an electric wiring board on a second support, a step of laminating the first support, and peeling off the second support. It has a process and the process of forming an optical waveguide in the peeling surface of said 2nd support body in this order.
  • An example in which the lower support 2-1 is used as the second support and the upper support 2-3 is used as the first support will be described. First, as shown in FIGS.
  • an electric wiring board 2-2 is provided on the lower support 2-1, and an electric circuit 2-10 is formed thereon.
  • the upper support 2-3 is laminated on the formation surface of the electric circuit 2-10 (see FIG. 6C), and the lower support 2-1 is peeled off (see FIG. 6D).
  • the electric circuit 2-10 is formed again on the peeling surface of the lower support 2-1, and a lower clad layer 2-4 is provided on the electric wiring board 2-2 as shown in FIG. 6 (e).
  • a core pattern 2-5 is formed thereon, and an upper clad layer 2-6 is further laminated.
  • the method of forming the lower clad layer 2-4 on the electric wiring board 2-2 is not particularly limited, and may be a known method.
  • the core pattern 2-5 is not particularly limited.
  • a core layer having a refractive index higher than that of the lower cladding layer 2-4 is formed on the lower cladding layer 2-4, and the core pattern 2-5 is etched. 5 may be formed.
  • the method of forming the upper cladding layer 2-6 is not particularly limited, and may be formed by the same method as that of the lower cladding layer 2-4, for example.
  • the lower cladding layer 2-4 is preferably flat with no step on the surface on the core layer lamination side, from the viewpoint of adhesion to the core layer. Further, the surface flatness of the clad 2-layer 4 can be ensured by using the clad layer forming resin film.
  • the method of laminating the lower support 2-1 and the upper support 2-3 and the electric wiring board 2-2 is not particularly limited.
  • an adhesive or an adhesive film 2-11 having good removability is used.
  • the electric wiring board 2-2 lower support body 2-1 and upper support board 2-3 are bonded together, or the product outer frame portion (outside the required pattern area) of the electric wiring board 2-2 is bonded with an adhesive. Any lamination method may be used as long as it can be separated by cutting off the adhesive portion after forming the circuit of the electric wiring board 2-2 or after forming the optical waveguide 2-8.
  • the upper support 2-3 is peeled from the electrical wiring board 2-2 to obtain a photoelectric composite member (see FIG. 6G).
  • the obtained composite body of the electrical wiring board 2-2 and the optical waveguide 2-8 can be used for various devices as a normal photoelectric composite member.
  • the types of the lower support 2-1, the upper support 2-3, and the substrate 2-7 are not particularly limited.
  • an FR-4 substrate, a polyimide substrate, a semiconductor substrate, a silicon substrate, and a glass substrate are used.
  • a flexible material that is flexible or a non-flexible hard material is used.
  • a flexible photoelectric composite member can be obtained by using a flexible material for the substrate 2-7.
  • the material of the material having flexibility is not particularly limited, but from the viewpoint of having flexibility and toughness, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyamide, polycarbonate, Preferable examples include polyphenylene ether, polyether sulfide, polyarylate, liquid crystal polymer, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyamide imide, and polyimide.
  • the thickness of the film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 ⁇ m. If it is 5 ⁇ m or more, there is an advantage that toughness is easily obtained, and if it is 250 ⁇ m or less, sufficient flexibility can be obtained.
  • the dimensional stability of the optical waveguide itself can be imparted.
  • the material of the dimensionally stable and thick substrate is not particularly limited, but FR-4 substrate, semiconductor substrate, silicon plate, glass plate, metal plate and the like are preferable from the viewpoint of dimensional stability.
  • the electrical wiring board 2 can be obtained by subjecting the above-described thick substrate having dimensional stability to a release treatment, or applying the release treatment to the film surface after the film is attached. -2 can be imparted with re-peelability.
  • preferred examples of the film material include polyimide and aramid.
  • the plate thickness may be appropriately changed depending on the warp and dimensional stability of the plate, but is preferably 0.1 to 10.0 mm.
  • an adhesive may be used for bonding the lower support body 2-1 or the upper support body 2-3 to the electric wiring board 2-2, and it is easy to release from the electric wiring board 2-2. When a certain adhesive is used, the entire surface may be affixed. However, when an adhesive having no releasability with respect to the electric wiring board 2-2 is used, the releasability is 5 to 30 mm smaller than the product size.
  • the material of the releasable sheet is not particularly limited, but from the viewpoint of releasability with respect to the electrical wiring board 2-2 and heat resistance, preferred examples include copper foil, polyimide, aramid, and release sheet for pressing. .
  • Adhesive and adhesive film Adhesion between the lower support 2-1 or the upper support 2-3 and the electric wiring board 2-2 is not particularly limited, but when it is necessary to re-peel, an adhesive or an adhesive film having re-peelability Is preferred.
  • the material for the adhesive or adhesive film include single-sided slightly adhesive double-sided tape, hot-melt adhesive, UV or heat-peelable adhesive.
  • Adhesion that does not require re-peeling during formation (such as when a non-flexible material and a film for performing a release treatment are bonded to the electric wiring board 2-2) or the lower cladding layer 2- 4 and the electrical wiring board 2-2 have no adhesive force, and therefore it is preferable to use a heat-resistant adhesive or adhesive film, and the adhesive or adhesive film material does not need to be peeled off again.
  • a heat resistant viewpoint A prepreg, a buildup material, a heat resistant adhesive agent etc. are mentioned suitably.
  • An adhesive or adhesive film having a high transmittance is required for adhesion of a portion through which an optical signal is transmitted.
  • the material of the adhesive or adhesive film is not particularly limited, but the adhesion described in (PCT / JP2008 / 05465) It is more preferable to use a film.
  • the thickness of the adhesive and the adhesive film is not particularly limited, but is preferably 5 ⁇ m to 3.0 mm. When the lower support 2-1 or the upper support 2-3 and the electric wiring board 2-2 are bonded to each other with the release sheet interposed therebetween, it is preferably 5 ⁇ m or more thicker than the release sheet.
  • the lower cladding layer 2-4 and the upper cladding layer 2-6 used in the present invention (second invention) will be described.
  • a cladding layer forming resin or a cladding layer forming resin film can be used as the lower cladding layer 2-4 and the upper cladding layer 2-6.
  • the same resin as described in the first invention can be used.
  • the resin composition used for the cladding layer forming resin may be the same or different in the components contained in the resin composition in the upper cladding layer 2-6 and the lower cladding layer 2-4.
  • the refractive index of the resin composition may be the same or different.
  • the method for forming the cladding layer is not particularly limited, and the same method as that described in the first invention can be used. Further, the thicknesses of the lower cladding layer 2-4 and the upper cladding layer 2-6 are the same as described in the first invention.
  • the core layer forming resin and the core layer forming resin film used in the present invention are the same as those described in the first invention.
  • the optical waveguide 2-8 used in the present invention may be a multilayer optical waveguide in which a plurality of polymer layers having a core pattern 2-5 and a cladding layer are stacked.
  • the electric wiring board 2-2 used in the present invention (second invention) is not particularly limited, and various electric wiring boards used for the photoelectric composite member can be used.
  • a resin layer or a substrate provided with a direct wiring on the substrate 2-7, a substrate with a single or double-sided metal layer, or a resin layer with a metal layer on one or both sides can be used.
  • the electric wiring board is formed by laminating a metal layer on one side or both sides of the resin layer or the substrate. Examples of the material of the substrate and the resin layer include the same materials as those described for the substrate 2-7.
  • the metal forming the metal layer includes copper, gold, silver, Al, Ni, Cr, Co, Ti, Pd, Sn, Zn, Na, alloys thereof, and two or more layers of these metals.
  • the electrical wiring board 2-2 may be one in which an electrical wiring pattern is formed after lamination with the optical waveguide. Further, the above wiring board may be multilayered.
  • the method for producing an optoelectric composite substrate according to the present invention includes forming a lower clad layer directly or via an adhesive layer on the substrate surface of the electrical wiring substrate, or An electric wiring board with a lower clad layer is formed by forming a lower clad layer directly on the substrate surface of the board with a metal foil or via an adhesive layer, and then forming an electric wiring board by forming a conductive pattern on the metal foil of the board with the metal foil. And a second step of constructing an optical waveguide by sequentially forming a core pattern and an upper clad layer on the lower clad layer. That is, there is a feature in that an electrical wiring board with a lower cladding layer is first manufactured, and then an optical waveguide is constructed by stacking components other than the lower cladding layer constituting the optical waveguide on the lower cladding layer.
  • a conductor pattern 3-11a is formed on a substrate 3-12 as shown in FIG. Forming the lower cladding layer 3-31 directly or via the adhesive layer 3-20 on the surface of the substrate 3-12 of the electrical wiring substrate 3-10 on which the conductor protective layer 3-14 is formed, or (2) As shown in FIG. 12 (a′-1), directly or directly on the surface of the substrate 3-12 of the substrate 3-13 with the metal foil having the metal foil 3-11 and the substrate 3-12, the adhesive layer 3-20. Then, the lower clad layer 3-31 is formed, and then the metal foil 3-11 is processed into a conductor pattern 3-11a as shown in FIG.
  • a conductor protective layer 3-14 is formed as necessary to obtain an electric wiring board with a lower cladding layer. It is a process.
  • the conductor protective layer is formed for the purpose of insulation protection of the conductor pattern and further protection from dust, moisture, mechanical damage, etc., and refers to, for example, a solder resist or a coverlay of a printed wiring board. .
  • a varnish of a cladding layer forming resin is formed by a known method such as a spin coating method. The method is performed by applying and removing the solvent.
  • a clad layer forming resin film is used.
  • the resin film for forming a clad layer can be easily produced by applying a varnish of a resin for forming a clad layer onto a base film by a known method such as a spin coat method, if necessary, and removing the solvent.
  • a method using a resin film for forming a cladding layer is preferable because the accuracy of the thickness of the lower cladding layer can be secured.
  • the adhesive layer 3-20 on the surface of the substrate 3-12 and the adhesive composition may be directly applied to the surface of the substrate 3-12.
  • the method of transferring the adhesive layer from the sheet adhesive to the surface of the substrate 12 is excellent in the smoothness of the adhesive layer and ensures the accuracy of the thickness of the adhesive layer.
  • it is preferable because the problem that the resin composition for forming the adhesive layer flows does not occur when forming the adhesive layer.
  • the second step in the manufacturing method of the present invention is a step of constructing an optical waveguide. Specifically, as shown in FIG. 12 (b), on the lower cladding layer 3-31.
  • the core pattern 3-32 can be formed by forming a core forming resin layer (core layer) on the lower clad layer 3-31, and exposing and developing the core layer.
  • core layer core forming resin layer
  • a desired core pattern 3-32 is formed by exposing and developing the core layer thus formed.
  • the varnish of the clad layer forming resin is formed by a known method such as a spin coat method.
  • a method of forming directly on the core pattern 3-32 by applying and removing the solvent may be used, but a method using a resin film for forming a clad layer is preferable because accuracy of the thickness of the core layer can be secured.
  • the method for producing an optoelectric composite substrate of the present invention includes a first step of forming a lower clad layer directly on the substrate surface of a substrate with a metal foil or via an adhesive layer, and on the lower clad layer. It has a 2nd process of constructing
  • the first step in the manufacturing method of the present invention is directly or directly on the surface of the substrate 4-13 with the metal foil having the metal foil 4-11 and the substrate 4-12.
  • the lower cladding layer 4-31 is formed via the adhesive layer 4-20.
  • the second step in the manufacturing method of the present invention is a step of constructing an optical waveguide. Specifically, as shown in FIG. 13B, the core pattern 4-32 is formed on the lower cladding layer 4-31. Next, as shown in FIG. 13C, the upper cladding layer 4-33 is formed on the core pattern 4-32 to construct the optical waveguide 4-30.
  • the third step in the manufacturing method of the present invention is a step of constructing an electric wiring board.
  • the metal foil 4-11 is used as a conductor pattern 4-11a. This is a process of constructing the electrical wiring board 4-10.
  • a conductor protective layer 4-14 is formed on a necessary portion of the conductor pattern 4-11a in order to protect the conductor pattern 4-11a.
  • the conductor protective layer is formed for the purpose of insulation protection of the conductor pattern and further protection from dust, moisture, mechanical damage, etc., and refers to, for example, a solder resist or a coverlay of a printed wiring board. .
  • the materials used in each step in the third and fourth inventions will be described in detail.
  • the electric wiring board used in the third invention is not particularly limited as long as the electric wiring board is provided with a conductor pattern on the board and further provided with a conductor protective layer on the conductor pattern as necessary.
  • the conductive metal is copper, aluminum, gold or the like
  • the substrate is a glass epoxy substrate, polyimide polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, or the like.
  • ceramic wiring substrates such as organic wiring substrates, alumina substrates, and aluminum nitride substrates, and semiconductor wafers such as silicon.
  • a substrate material such as polyimide, polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, etc. is used. Generally, heat resistance and availability are easily obtained. From this viewpoint, a substrate using polyimide as a substrate is used. Further, when the optical waveguide is constructed, a transparent substrate is preferable in order to make the conductor pattern easily visible through the substrate.
  • substrate with metal foil used in the present invention various substrates can be used according to the purpose.
  • the metal copper, aluminum, gold, etc.
  • glass epoxy substrate, polyimide polyamide examples thereof include organic wiring substrates using polyetherimide, polyethylene terephthalate, liquid crystal polymer, ceramic wiring substrates such as alumina substrates and aluminum nitride substrates, and semiconductor wafers such as silicon.
  • polyimide, polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, etc. are used, but generally heat resistance and availability are easy. From this viewpoint, polyimide is used.
  • a transparent substrate is preferable in order to make the conductor pattern easily visible through the substrate.
  • patterning of the wiring is necessary.
  • a metal foil having a thickness required for metal wiring is laminated on the board via an adhesive layer.
  • Many so-called subtractive methods have been performed in which an unnecessary portion as a conductor pattern is removed from a metal foil of a substrate with a metal foil by etching using the three-layered substrate with a metal foil.
  • the presence of the adhesive layer affects the performance of the substrate, particularly the reliability against bending, so that the metal foil was directly laminated on the substrate without using the adhesive layer.
  • Two-layer substrates with metal foil have been developed, and many attempts have been made to increase the adhesive strength between the metal foil and the substrate.
  • the two-layer metal foil substrate is manufactured by forming a metal thin film on the substrate by sputtering or direct plating, and is further manufactured by thickening the conductor metal by a method such as electrolytic plating.
  • the conductor pattern is usually processed by the above-described subtractive method.
  • substrate with 2 layers of metal foil there exists what was manufactured by forming a metal thin film on a board
  • a conductor pattern is processed by a so-called semi-additive method in which a conductor metal is deposited only on a necessary portion as a conductor pattern by a method such as electrolytic plating to obtain a necessary thickness.
  • the metal thin film need not be the same as a conductive metal such as copper, aluminum, or gold, but may be nickel, palladium, iron, or the like.
  • the present invention includes a method (semi-additive method) in which an electric wiring substrate is formed later by an additive method using such a two-layer substrate with a metal foil as the substrate with a metal foil.
  • the electric wiring board is formed by a subtractive method.
  • substrate and metal foil is suitably determined according to a use, and there is no restriction
  • Such substrates with metal foil are commercially available, manufactured by Kaneka Co., Ltd., trade name ⁇ Pixio '', Ube Industries, Ltd., trade name ⁇ Yupisel '', manufactured by Nippon Steel Chemical Co., Ltd.
  • the sheet-like adhesive may be one in which an adhesive layer is directly formed on a supporting substrate, but in order to easily peel the supporting substrate from the adhesive layer, the adhesive is bonded to the adhesive layer on the supporting substrate.
  • An adhesive layer in which an adhesive layer is sequentially formed, and an adhesive sheet in which an adhesive layer is formed on a support substrate are preferable.
  • the pressure-sensitive adhesive sheet is more preferable because it is not necessary to prepare a pressure-sensitive adhesive and an adhesive separately, and the manufacturing process is simplified.
  • the adhesive composition for forming the adhesive layer those usually used in the optical field can be used, but the adhesive composition was measured at 125 ° C. under the following conditions.
  • the storage elastic modulus in is preferably 10 MPa or less.
  • the storage elastic modulus is 10 MPa or less, the adhesive layer acts as a stress relaxation layer when the optical waveguide is heated and expanded, so that the optical waveguide is caused by the difference in thermal expansion coefficient between the optical waveguide and the substrate. This is advantageous in that no peeling occurs. From the above viewpoint, it is more preferable that the storage elastic modulus at 125 ° C. is 5 MPa or less.
  • the thickness of the adhesive layer is not particularly limited but is preferably 3 to 200 ⁇ m. When the thickness is 3 ⁇ m or more, a sufficient stress relaxation effect can be obtained, and when the thickness is 200 ⁇ m or less, it is possible to meet the demand for miniaturization of the optical device and it is economically advantageous. From the above viewpoint, the thickness of the adhesive layer is more preferably 5 to 50 ⁇ m, further preferably 8 to 30 ⁇ m, and particularly preferably 10 to 25 ⁇ m.
  • the test piece has a length of 20 mm, a width of 4 mm, and a film thickness of 80 ⁇ m, and is measured with a temperature rising rate of 5 ° C./min, a tension mode, a frequency of 10 Hz, and an automatic static load.
  • the adhesive composition for forming the adhesive layer is not particularly limited as long as it satisfies the above storage elastic modulus condition. Specifically, two or more epoxy groups are included in the molecule. Or a compound having an ethylenically unsaturated group in the molecule. These compounds can be used individually by 1 type or in combination of 2 or more types.
  • suitable adhesive compositions include (a) a high molecular weight component having a functional group-containing weight average molecular weight of 100,000 or more, (b) an epoxy resin, and (c) a phenolic epoxy. Contains a resin curing agent, (d) a photoreactive monomer whose Tg of the cured product obtained by ultraviolet irradiation is 250 ° C. or higher, and (e) a photoinitiator that generates bases and radicals by ultraviolet irradiation with a wavelength of 200 to 450 nm. And the like.
  • the components (a) and (c) to (e) are respectively represented by (a) a high molecular weight component, (c) an epoxy resin curing agent, (d) a photoreactive monomer, and (e) a photoinitiator.
  • agent a photoinitiator
  • agent a photoinitiator
  • the high molecular weight component having a functional group-containing weight average molecular weight of 100,000 or more includes functional groups such as a glycidyl group, an acryloyl group, a methacryloyl group, a carboxyl group, a hydroxyl group, and an episulfide group in terms of improving adhesiveness. What is contained is preferable, and a glycidyl group is particularly preferable in terms of crosslinkability.
  • glycidyl group-containing (meth) containing glycidyl acrylate or glycidyl methacrylate (hereinafter collectively referred to as “glycidyl (meth) acrylate”) as a raw material monomer and having a weight average molecular weight of 100,000 or more.
  • An acrylic copolymer can be mentioned.
  • compatibility is not determined only by the characteristics of (a) high molecular weight component, a combination in which both are not compatible is selected.
  • the glycidyl group-containing (meth) acrylic copolymer is a phrase indicating both a glycidyl group-containing acrylic copolymer and a glycidyl group-containing methacrylic copolymer.
  • a copolymer for example, a (meth) acrylic ester copolymer, acrylic rubber or the like can be used, and acrylic rubber is more preferable.
  • Acrylic rubber is a rubber mainly composed of an acrylate ester and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, or the like.
  • the copolymer monomer include butyl acrylate, ethyl acrylate, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, acrylonitrile and the like.
  • glycidyl (meth) acrylate or the like As a copolymer monomer component, it is preferable to use glycidyl (meth) acrylate or the like as a copolymer monomer component.
  • glycidyl (meth) acrylate or the like Such a glycidyl group-containing (meth) acrylic copolymer having a weight average molecular weight of 100,000 or more can be produced by appropriately selecting a monomer from the above monomers, or a commercially available product (for example, Nagase ChemteX Corporation). HTR-860P-3, HTR-860P-5, etc.) are also available.
  • the high molecular weight component since the number of functional groups affects the crosslink density, it varies depending on the resin used, but when the high molecular weight component is obtained as a copolymer of a plurality of monomers, it contains a functional group used as a raw material.
  • the amount of the monomer is preferably 0.5 to 6% by mass of the copolymer.
  • the amount of the glycidyl group-containing monomer such as glycidyl (meth) acrylate used as the raw material and the amount of the glycidyl group-containing repeating unit are 0 of the copolymer. 0.5 to 6% by mass is preferable, 0.5 to 5% by mass is more preferable, and 0.8 to 5% by mass is particularly preferable.
  • the amount of the glycidyl group-containing repeating unit is within this range, the glycidyl group gradually crosslinks, so that an adhesive force can be secured and gelation can be prevented.
  • it becomes incompatible with (b) epoxy resin it becomes excellent in stress relaxation property.
  • Tg glass transition temperature
  • the polymerization method is not particularly limited, For example, methods such as pearl polymerization and solution polymerization can be used.
  • the (a) high molecular weight component has a weight average molecular weight of 100,000 or more, preferably 300,000 to 3,000,000, more preferably 400,000 to 2,500,000, and 500,000 to 2,000,000. Is particularly preferred.
  • the weight average molecular weight is within this range, the strength, flexibility, and tackiness of the sheet or film are appropriate, and the flowability is appropriate, so that followability to the unevenness of the substrate can be ensured.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted using a standard polystyrene calibration curve.
  • the (b) epoxy resin used in the adhesive composition is not particularly limited as long as it is cured and has an adhesive action, and is described in, for example, the epoxy resin handbook (edited by Masaki Shinbo, Nikkan Kogyo Shimbun).
  • Epoxy resin can be widely used.
  • a bifunctional epoxy resin such as a bisphenol A type epoxy resin, a novolac type epoxy resin such as a phenol novolac type epoxy resin or a cresol novolac type epoxy resin, or the like can be used.
  • a polyfunctional epoxy resin such as a polyfunctional epoxy resin, a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.
  • bisphenol A type epoxy resin which is a kind of epoxy resin
  • Epicoat 807, 815, 825, 827, 828, 834, 1001, 1004, 1007, 1009 manufactured by Yuka Shell Epoxy Co., Ltd., manufactured by Dow Chemical Co., Ltd. DER-330, 301, 361, YD8125, YDF8170, etc. manufactured by Tohto Kasei Co., Ltd. may be mentioned.
  • Examples of the phenol novolac type epoxy resin include Epicoat 152,154 manufactured by Yuka Shell Epoxy Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., DEN-438 manufactured by Dow Chemical Co., Ltd., and o-cresol novolak type epoxy resin.
  • Examples of the resin include EOCN-102S, 103S, 104S, 1012, 1025, 1027 manufactured by Nippon Kayaku Co., Ltd., YDCN701, 702, 703, 704 manufactured by Toto Kasei Co., Ltd., and the like.
  • the polyfunctional epoxy resin Epon 1031S manufactured by Yuka Shell Epoxy Co., Ltd., Araldite 0163 manufactured by Ciba Specialty Chemicals Co., Ltd., Denacol EX-611, 614, 614B, 622, 512, 521, 421, 411 manufactured by Nagase Kasei Co., Ltd. , 321 and the like.
  • amine type epoxy resin Epiquat 604 manufactured by Yuka Shell Epoxy Co., Ltd., YH-434 manufactured by Tohto Kasei Co., Ltd., TETRAD-X, TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd., ELM manufactured by Sumitomo Chemical Co., Ltd. -120 and the like.
  • heterocyclic ring-containing epoxy resin include ERL4234, 4299, 4221, 4206 and the like manufactured by UCC, such as Araldite PT810 manufactured by Ciba Specialty Chemicals. These epoxy resins can be used alone or in combination of two or more.
  • a bisphenol A type epoxy resin and a phenol novolak type epoxy resin are preferable.
  • the amount of the (b) epoxy resin used in the adhesive composition is preferably 5 to 250 parts by mass with respect to 100 parts by mass of the (a) high molecular weight component.
  • the amount of the epoxy resin used is more preferably 10 to 100 parts by mass, and particularly preferably 20 to 50 parts by mass. As already stated, it is preferable that the (b) epoxy resin is not compatible with the (a) high molecular weight component.
  • the (c) phenolic epoxy resin curing agent used in the adhesive composition is excellent in impact resistance under high temperature and high pressure when combined with an epoxy resin, and retains sufficient adhesive properties even under severe thermal moisture absorption. It is effective because it can.
  • component (c) include phenol resins such as phenol novolak resin, bisphenol A novolak resin, and cresol novolak resin. More specifically, for example, trade names: Phenolite LF2882, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, Phenolite VH4170, manufactured by Dainippon Ink and Chemicals, Inc. These may be used alone or in combination of two or more.
  • the amount of component (c) used is such that the equivalent ratio of phenolic hydroxyl groups per epoxy group of (b) epoxy resin is 0.5 to 1.
  • the range is preferably 5, and more preferably 0.8 to 1.2. If the equivalent ratio is within this range, the resin is sufficiently cured (crosslinked), and the heat resistance and moisture resistance of the cured product can be improved.
  • the photoreactive monomer whose Tg of the cured product obtained by ultraviolet irradiation is 250 ° C. or higher is used for the adhesive composition, and improves the heat resistance after ultraviolet irradiation of the adhesive sheet described below, The adhesive strength and reflow resistance during heating can be improved.
  • (D) As a method for measuring the Tg of the photoreactive monomer (d) a photoinitiator is added to the photoreactive monomer, and a cured product irradiated with ultraviolet rays is molded to a size of about 5 ⁇ 5 mm to prepare a sample. . Tg is determined by measuring the prepared sample in a compression mode using EXSTRA6000 manufactured by Seiko Instruments Inc. When Tg is 250 ° C.
  • Tg is more preferably 260 ° C. or higher corresponding to lead-free solder. Moreover, since the thing with too high Tg tends to become inferior in the normal temperature sticking property of the adhesive sheet after ultraviolet irradiation, 350 degreeC is preferable as an upper limit.
  • photoreactive monomer examples include pentaerythritol triacrylate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, trimethylolpropane triacrylate, isocyanuric acid ethylene oxide (EO) modified triacrylate, ditrile Examples thereof include polyfunctional acrylates such as methylolpropane tetraacrylate and pentaerythritol tetraacrylate. These photoreactive monomers can be used alone or in combination of two or more.
  • the polyfunctional acrylates dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, and the like are preferable from the viewpoint of residual monomers after ultraviolet irradiation.
  • Specific examples include trade names: A-DPH and A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the Tg is Tg when the mixture is measured by the said measuring method, and it is not required that Tg of each monomer is 250 degreeC or more.
  • the amount of the (d) photoreactive monomer used in the adhesive composition is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the (a) high molecular weight component. If this usage amount is 5 parts by mass or more, the polymerization reaction of the photoreactive monomer due to ultraviolet irradiation is likely to occur, so that the peelability of the adhesive sheet from the support substrate tends to be improved. Conversely, if it is 100 parts by mass or less, the low elasticity of the high molecular weight component functions, the film does not become brittle, and the heat resistance and moisture resistance of the cured product tend to be improved. Therefore, 10 to 70 parts by mass is more preferable, and 20 to 50 parts by mass is particularly preferable.
  • a photoinitiator that generates a base and a radical upon irradiation with ultraviolet rays having a wavelength of 200 to 450 nm is generally called an ⁇ -aminoketone compound.
  • Such compounds are described, for example, in J. Org. Photopolym. Sci. Technol, Vol. 13, No. 20001, etc., and reacts as shown in the following formula when irradiated with ultraviolet rays.
  • the ⁇ -aminoketone compound does not have radicals before being irradiated with ultraviolet rays, so that the polymerization reaction of the photoreactive monomer does not occur.
  • curing of the thermosetting resin is not accelerated due to steric hindrance.
  • the ⁇ -aminoketone compound is dissociated by ultraviolet irradiation, and a polymerization reaction of the photoreactive monomer occurs with the generation of radicals.
  • the dissociation of the ⁇ -aminoketone compound reduces the steric hindrance so that activated amines are present. For this reason, it is presumed that the amine has a curing accelerating action of the thermosetting resin, and the heating accelerating action is subsequently exerted by heating.
  • Examples of the (e) photoinitiator (base generator) include 2-methyl-1 (4- (methylthio) phenyl-2-morpholinopropan-1-one (Irgacure 907 manufactured by Ciba Specialty Chemicals), 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1-one (Irgacure 369 manufactured by Ciba Specialty Chemicals), hexaarylbisimidazole derivative (halogen, alkoxy group, nitro group, cyano, A substituent such as a group may be substituted with a phenyl group), benzoisoxazolone derivatives, and the like.
  • 2-methyl-1 (4- (methylthio) phenyl-2-morpholinopropan-1-one Irgacure 907 manufactured by Ciba Specialty Chemicals
  • the photoinitiator may be a low molecular compound having a molecular weight of 500 or less, or a compound introduced into a main chain and side chain of a polymer.
  • the molecular weight in this case is preferably a weight average molecular weight of 1,000 to 100,000, more preferably 5,000 to 30,000 from the viewpoints of adhesiveness and fluidity as an adhesive.
  • the amount of (e) photoinitiator used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of (a) high molecular weight component. If it is 0.1 part by mass or more, the reactivity is good and the residual monomer is reduced, and if it is 20 parts by mass or less, the molecular weight increase due to the polymerization reaction functions moderately, the low molecular weight component is small, and the reflow resistance is affected. The possibility of exerting is reduced. Accordingly, the amount is more preferably 0.5 to 15 parts by mass, and further preferably 1 to 5 parts by mass.
  • a high molecular weight resin compatible with the epoxy resin can be added to the adhesive resin composition.
  • a high molecular weight resin examples include phenoxy resin, high molecular weight epoxy resin, and ultra high molecular weight epoxy resin. These may be used alone or in combination of two or more.
  • (B) When using an epoxy resin that is compatible with (a) a high molecular weight component, when (f) a high molecular weight resin compatible with the epoxy resin is used, (b) the epoxy resin is As a result, it may be possible to make the (b) epoxy resin and the (a) high molecular weight component incompatible with each other.
  • the usage-amount of high molecular weight resin compatible with an epoxy resin shall be 40 mass parts or less with respect to a total of 100 mass parts of (b) epoxy resin and (c) epoxy resin hardening
  • various coupling agents can be added to the adhesive composition in order to improve interfacial bonding between different materials.
  • the coupling agent include silane, titanium, and aluminum.
  • the silane coupling agent is not particularly limited.
  • ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane and the like can be used, and these can be used alone or in combination of two or more.
  • NUCA-189 and NUCA-1160 manufactured by Nippon Unicar Co., Ltd.
  • the amount of the coupling agent used is from 0.01 to 100 parts by mass with respect to 100 parts by mass of the high molecular weight component having a weight average molecular weight containing a functional group of 100,000 or more in view of its effect, heat resistance and cost.
  • the amount is preferably 10 parts by mass.
  • An ion scavenger can be further added to the adhesive composition in order to adsorb ionic impurities and improve moisture resistance reliability.
  • Such an ion scavenger is not particularly limited, for example, triazine thiol compound, bisphenol-based reducing agent, etc., a compound known as a copper damage preventive agent for preventing copper ionization and dissolution, zirconium-based And inorganic ion adsorbents such as antimony bismuth-based magnesium aluminum compounds.
  • the amount of the ion scavenger used is from the viewpoint of the effect of addition, heat resistance, cost, etc. to (a) 100 parts by mass of the high molecular weight component having a functional group-containing weight average molecular weight of 100,000 or more. 1 to 10 parts by mass is preferred.
  • the adhesive sheet can be obtained by dissolving or dispersing the adhesive composition in a solvent to obtain a varnish, applying the composition onto a support substrate, heating the composition, and removing the solvent. That is, first, a knife coating method, a roll coating method, a spray coating method, a gravure coating method is performed by dissolving an adhesive composition in an organic solvent or the like on a protective film (also called a release sheet). According to a generally known method such as a bar coating method or a curtain coating method, it is applied and dried to form an adhesive layer. Then, a support base material is laminated
  • the protective film or support substrate used for the adhesive sheet examples include plastic films such as polytetrafluoroethylene film, polyethylene film, polypropylene film, and polymethylpentene film, and polyester such as polyethylene terephthalate.
  • the adhesive sheet is irradiated with ultraviolet rays, the ultraviolet-curing adhesive is polymerized and cured, and the adhesive force at the interface between the adhesive and the supporting substrate is lowered to form a supporting group. Allows stripping of material.
  • the support substrate is preferably one having ultraviolet transparency.
  • the solvent for varnishing is not particularly limited as long as it is an organic solvent, but can be determined in consideration of the volatility during film production from the boiling point.
  • a solvent having a relatively low boiling point such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene, etc.
  • a solvent having a relatively high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, cyclohexanone.
  • the thickness of the supporting substrate in the adhesive sheet is not particularly limited, but is preferably 5 to 250 ⁇ m. If it is 5 micrometers or more, workability
  • the total thickness of the adhesive layer and the supporting substrate in the adhesive sheet is usually 10 to 250 ⁇ m.
  • the workability is good when the support substrate is set to be the same as or slightly thicker than the adhesive layer.
  • the adhesive layer / support substrate ( ⁇ m) is 5/25, 10/30, 10 /
  • the adhesive sheet has two or more separately prepared adhesives on the adhesive layer side of the adhesive sheet in order to improve fluidity during heating. It can also be pasted together. In this case, it is necessary to select a bonding condition so that peeling between the adhesive layers does not occur.
  • the adhesive sheet having the structure as described above When the adhesive sheet having the structure as described above is irradiated with ultraviolet rays, the adhesive strength of the support base material is greatly reduced after the ultraviolet irradiation, and the adhesive sheet of the adhesive sheet is retained while holding the adhesive layer on the substrate.
  • the supporting substrate can be easily peeled off.
  • the cured product of the clad forming resin film has a lower refractive index than the cured product of the core layer forming resin film described later, and
  • the resin is not particularly limited as long as it is a resin that is cured by light or heat, and a thermosetting resin or a photosensitive resin can be used, but (a) a base polymer, (b) a photopolymerizable compound, and (c) photopolymerization. It is preferable that it is comprised with the resin composition containing an initiator.
  • the base polymer the same (A) base polymer as described in the first invention can be used.
  • an epoxy resin particularly an epoxy resin that is solid at room temperature is preferable from the viewpoint of three-dimensional crosslinking and improved heat resistance.
  • the epoxy resin that is solid at room temperature include, for example, “Epototo YD-7020, Epototo YD-7019, Epototo YD-7007” (all trade names) manufactured by Toto Chemical Co., Ltd., and “Epicoat 1010” manufactured by Japan Epoxy Resins Co., Ltd. Bisphenol A type epoxy resin such as “Epicoat 1009, Epicoat 1008” (both trade names).
  • the molecular weight of the base polymer is usually 5,000 or more in terms of number average molecular weight from the viewpoint of film formability.
  • the number average molecular weight is preferably 10,000 or more, more preferably 30,000 or more.
  • the upper limit of the number average molecular weight is not particularly limited, but is usually 1,000,000 or less from the viewpoint of (i) compatibility with the photopolymerizable compound and exposure and developability.
  • the upper limit of the number average molecular weight is preferably 500,000 or less, more preferably 200,000 or less.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • the blending amount of the (a) base polymer is usually about 10 to 80% by mass with respect to the total amount of the base polymer of the component (a) and the photopolymerizable compound of the component (a).
  • the blending amount is 10% by mass or more, there is an advantage that it is easy to form a thick film of about 50 to 500 ⁇ m necessary for the construction of the optical waveguide.
  • the amount of component (a) is preferably 20 to 70% by mass, more preferably 25 to 65% by mass.
  • the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and a compound having two or more epoxy groups in the molecule or an ethylenically non-polymerizable compound in the molecule.
  • examples thereof include compounds having a saturated group.
  • Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, tetrabromobisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, naphthalene type epoxy resins, etc.
  • Polyfunctional aromatic glycidyl ethers such as bifunctional aromatic glycidyl ether, phenol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene-phenol type epoxy resin, tetraphenylolethane type epoxy resin, polyethylene glycol type epoxy resin, Bifunctional aliphatic glycidyl ether such as polypropylene glycol type epoxy resin, neopentyl glycol type epoxy resin, hexanediol type epoxy resin, hydrogenated bisphenol A type Bifunctional aromatic glycidyl ethers such as bifunctional alicyclic glycidyl ethers such as poxy resins, polyfunctional aliphatic glycidyl ethers such as trimethylolpropane type epoxy resins, sorbitol type epoxy resins and glycerin type epoxy resins, and diglycidyl esters of phthalic acid , Bifunctional alicyclic glycidyl esters such
  • These compounds having two or more epoxy groups in the molecule are usually those having a molecular weight of 100 to 2000 and liquid at room temperature.
  • the molecular weight is preferably 150 to 1,000, more preferably 200 to 800.
  • these compounds may be used independently, may be used together 2 or more types, and also can be used in combination with another photopolymerizable compound.
  • the molecular weight can be measured using a gel permeation chromatography (GPC) method or a mass spectrometry method.
  • GPC gel permeation chromatography
  • Specific examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, vinyl ether, vinyl pyridine, vinyl phenol, etc. Of these, transparency and heat resistance From the viewpoint, (meth) acrylate is preferable, and any of monofunctional, bifunctional, trifunctional or higher can be used.
  • Monofunctional (meth) acrylates include methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid , Paracumylphenoxyethylene glycol (meth) acrylate, 2-tetrahydropyranyl (meth) acrylate, isobornyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate Etc.
  • Bifunctional (meth) acrylates include ethoxylated 2-methyl-1,3-propanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6-hexanediol di (meth).
  • ethoxylated isocyanuric acid tri (meth) acrylate ethoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, caprolactone modified ditri Examples include methylolpropane tetraacrylate and dipentaerythritol hexa (meth) acrylate. These may be used alone
  • the blending amount of the (a) photopolymerizable compound is usually about 20 to 90% by mass with respect to the total amount of the base polymer of the component (a) and the photopolymerizable compound of the component (a).
  • the amount of component (a) is preferably 25 to 85% by mass, more preferably 30 to 80% by mass.
  • the photopolymerization initiator of the component (c) is not particularly limited.
  • aryl diazonium salts such as p-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphonium salt, diphenyl Diaryliodonium salts such as iodonium hexafluoroantimonate salt, triphenylsulfonium hexafluorophosphonium salt, triphenylsulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenyl Sulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenylsulfonium pentafluorohydroxyantimonate Triarylsulfonium salt
  • benzophenone N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4 '-Diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2,2-dimethoxy-1,2 -Diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy- 2-Methyl-1-propan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morph Aromatic ketones such
  • the substituents of the two aryl groups may be the same and symmetrical dimers, or differently. It may be an asymmetric dimer.
  • you may combine a thioxanthone type compound and a tertiary amine compound like the combination of diethyl thioxanthone and dimethylamino benzoic acid.
  • aromatic ketones and phosphine oxides are preferable among the photopolymerization initiators.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator is usually about 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the base polymer of component (a) and the photopolymerizable compound of component (a). If it is 0.1 parts by mass or more, the photosensitivity is sufficient, while if it is 10 parts by mass or less, only the surface of the optical waveguide is selectively cured, and curing does not become insufficient, Propagation loss does not increase due to absorption of the photopolymerization initiator itself. From the above viewpoint, the blending amount of the component (c) is preferably 0.5 to 5 parts by mass, more preferably 1 to 4 parts by mass.
  • the clad layer forming resin of the present invention may contain an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, and a filler. So-called additives such as an agent may be added at a rate that does not adversely affect the effects of the present invention.
  • the resin for forming the clad layer is used as a resin varnish for forming the clad layer by dissolving a resin composition containing (a) a base polymer, (b) a photopolymerizable compound, and (c) a photopolymerization initiator in a solvent.
  • a resin composition containing (a) a base polymer, (b) a photopolymerizable compound, and (c) a photopolymerization initiator in a solvent.
  • a resin film for forming a clad layer for forming the lower clad layer and the upper clad layer. It can be easily manufactured by coating on a material film and removing the solvent.
  • the base film used as necessary is a support for supporting the clad layer forming resin film, and the material thereof is not particularly limited.
  • the clad layer forming resin Polyester such as polyethylene terephthalate (PET), polypropylene, polyethylene, and the like are preferably used from the viewpoint that the film can be easily peeled and has heat resistance and solvent resistance.
  • the base film may be subjected to a release treatment, an antistatic treatment, or the like in order to facilitate later peeling of the clad layer forming resin film.
  • the thickness of the base film is usually 5 to 50 ⁇ m.
  • the thickness of the substrate film is 5 ⁇ m or more, there is an advantage that the strength as a support is easily obtained, and when it is 50 ⁇ m or less, there is an advantage that the winding property in the case of manufacturing in a roll shape is improved.
  • the thickness of the base film is preferably 10 to 40 ⁇ m, more preferably 15 to 30 ⁇ m.
  • a protective film may be bonded to the resin film for forming a clad layer in consideration of film protection and rollability in the case of manufacturing into a roll.
  • a protective film the thing similar to what was mentioned as an example of the said base film can be used, and the mold release process and the antistatic process may be performed as needed.
  • the solvent used in the resin varnish for forming the clad layer is not particularly limited as long as it can dissolve the resin composition containing the components (a) to (c).
  • acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve , Toluene, N, N-dimethylacetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used.
  • the solid content concentration in the resin varnish for forming the cladding layer is usually 30 to 80% by mass, preferably 35 to 75% by mass, and more preferably 40 to 70% by mass.
  • the thickness of the clad layer-forming resin film is not particularly limited, but the thickness of the clad layer after drying is usually adjusted to 5 to 500 ⁇ m.
  • the thickness of the cladding layer is 5 ⁇ m or more, the thickness of the cladding layer necessary for light confinement can be secured, and when it is 500 ⁇ m or less, the thickness of the cladding layer can be easily controlled uniformly.
  • the thickness of the cladding layer is preferably 10 to 100 ⁇ m, more preferably 20 to 90 ⁇ m.
  • the thickness of the clad layer may be the same or different between the lower clad layer formed first and the upper clad layer for embedding the core pattern.
  • the thickness of the layer is preferably larger than the thickness of the core layer.
  • the core layer forming resin used in the present invention is designed such that the cured product has a higher refractive index than the clad layer, and a resin composition capable of forming a core pattern with ultraviolet rays can be used.
  • Resin compositions are preferred.
  • the cured product of the core layer forming resin film is designed to have a higher refractive index than the cured product of the optical waveguide forming resin film used for the cladding layer.
  • the resin for core layer formation is used as a resin varnish for core layer formation by dissolving a resin composition containing (a) a base polymer, (b) a photopolymerizable compound and (c) a photopolymerization initiator in a solvent. You can also.
  • the core layer-forming resin film can be easily produced by applying the core layer-forming resin varnish on the base film as necessary and removing the solvent.
  • the base film used as necessary is a support for supporting the core layer forming resin film, and the material thereof is not particularly limited.
  • polyesters such as polyethylene terephthalate (PET), polypropylene, polyethylene, and the like are preferably used from the viewpoint that it is easy to peel off the resin film for forming the core layer and has heat resistance and solvent resistance. Can do.
  • a highly transparent flexible base film in order to improve the transmittance of the exposure light beam and reduce the side wall roughness of the core pattern.
  • the haze value of the highly transparent base film is usually 5% or less, preferably 3% or less, more preferably 2% or less.
  • a base film Toyobo Co., Ltd. product name "Cosmo Shine A1517” and “Cosmo Shine A4100" are available.
  • the base film may be subjected to a release treatment, an antistatic treatment or the like in order to facilitate later peeling of the core layer forming resin film.
  • the thickness of the base film is usually 5 to 50 ⁇ m.
  • the thickness of the base film is 5 ⁇ m or more, there is an advantage that the strength as a support is easily obtained, and when it is 50 ⁇ m or less, the gap with the mask at the time of pattern formation becomes small, and a finer pattern is formed. There is an advantage that you can. From the above viewpoint, the thickness of the base film is preferably 10 to 40 ⁇ m, more preferably 15 to 30 ⁇ m.
  • a protective film may be bonded to the core layer forming resin film as necessary, such as protection of the core layer forming resin film and rollability when manufacturing in a roll shape.
  • a protective film the thing similar to the base film used in the resin film for clad layer formation can be used, and the mold release process and the antistatic process may be performed as needed.
  • the solvent used in the resin varnish for forming the core layer is not particularly limited as long as it can dissolve the resin composition containing the components (a) to (c).
  • acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve , Toluene, N, N-dimethylacetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used.
  • the solid content concentration in the core layer-forming resin varnish is usually 30 to 80% by mass, preferably 35 to 75% by mass, and more preferably 40 to 70% by mass.
  • the thickness of the resin film for forming the core layer is not particularly limited, but the thickness of the core layer after drying is usually adjusted to be 10 to 100 ⁇ m.
  • the thickness of the core layer is 10 ⁇ m or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the construction of the optical waveguide.
  • the thickness is 100 ⁇ m or less, the acceptance after the construction of the optical waveguide is obtained.
  • the thickness of the core layer is preferably 29 to 90 ⁇ m, more preferably 30 to 80 ⁇ m.
  • the core layer can also be easily manufactured by applying a resin varnish for forming a core layer on the clad layer by spin coating or the like and removing the solvent.
  • a conductor pattern 3-11a is formed on a substrate 3-12, and a conductor protective layer 3-14 is further formed as necessary.
  • the lower clad layer 3-31 is formed on the surface of the substrate 12 of the electrical wiring substrate 3-10 directly or via the adhesive layer 3-20, or (2) as shown in (a′-1) of FIG. Further, the lower cladding layer 3-31 is formed on the surface of the substrate 3-12 of the metal foil-attached substrate 3-13 having the metal foil 3-11 and the substrate 3-12, either directly or via the adhesive layer 3-20. Then, as shown in FIG.
  • the metal foil 3-11 is processed into a conductor pattern 3-11a, and further, as shown in FIG. 12 (a′-3).
  • the conductor protective layer 3-14 is formed to obtain an electric wiring board with a lower cladding layer.
  • the varnish of the clad layer forming resin is applied by a known method such as a spin coat method, and the solvent is removed. To do so.
  • a clad layer forming resin film is used.
  • the resin film for forming a clad layer can be easily produced by applying a varnish of a resin for forming a clad layer onto a base film by a known method such as a spin coat method, if necessary, and removing the solvent.
  • the adhesive layer 3-20 may be formed by directly applying an adhesive composition to the surface of the substrate 3-12.
  • a sheet-like adhesive having an adhesive layer on a support substrate In particular, it is preferable to use an adhesive sheet having an adhesive layer on a supporting substrate.
  • the adhesive sheet is used, after the protective film of the adhesive layer is peeled off, the adhesive layer is attached to the electric wiring substrate 3-10 or the substrate 3-12 of the substrate 3-13 with metal foil. Lamination is performed on the surface, and then the supporting substrate is peeled to form the adhesive layer 3-20.
  • the adhesive sheet having the above-described configuration is irradiated with ultraviolet rays, the adhesive strength with the supporting base material is greatly reduced, and the supporting base material is easily peeled off while the adhesive layer is held on the substrate 3-12. can do.
  • the heating temperature at the time of lamination is preferably 50 to 130 ° C.
  • the pressing pressure is preferably about 0.1 to 1.0 MPa (1 to 10 kgf / cm 2), but these conditions are particularly limited. There is no.
  • the protective film and the supporting substrate are not subjected to an adhesive treatment in order to facilitate peeling from the adhesive layer, and may be subjected to a release treatment as necessary.
  • a resin film for forming a cladding layer is attached to the adhesive layer formed on the surface of the substrate 3-12 in this way.
  • the laminator described above can be used for pasting.
  • a protective film is provided on the opposite side of the base film in the resin film for forming the clad layer, the protective film is peeled off, and the resin film for forming the clad layer is then heat bonded to the adhesive layer. And cured by light or heating to form a clad layer.
  • trackability The conditions are the same as the case where the above-mentioned adhesive agent layer is laminated
  • the method in which the adhesive layer 3-20 is formed on the surface of the substrate 3-12 and then bonded to the resin film for forming the clad layer has been described. However, this order may be reversed.
  • a photocurable film is formed on the surface of the metal foil, exposed through a photomask, developed, and then a resist pattern is formed with an etching resist. Then, the portion not covered with the etching resist is removed by etching to form a conductor pattern, and finally the etching resist is removed to construct an electric wiring board.
  • the photocurable film formed on the surface of the metal foil is composed of a thermosetting resin such as an epoxy resin, a photocuring agent, a curing accelerator, a pigment, a fluidity adjusting agent, a viscosity adjusting agent, etc., if necessary.
  • the varnish that has been mixed and dispersed in can be applied directly to the surface of the metal foil and dried to form it, or the varnish can be applied to a carrier film and dried to form a semi-cured dry film. It can also be formed by laminating a metal foil.
  • a varnish-like etching resist material is commercially available, and there is OPT ER N-350 (trade name, manufactured by Nippon Paint Co., Ltd.).
  • a dry film-like etching resist material is commercially available.
  • Fotec H-N930 (trade name, manufactured by Hitachi Chemical Co., Ltd.).
  • cupric chloride solution ferric chloride solution, ammonium persulfate solution, etc.
  • etchants cupric chloride solution, ferric chloride solution, ammonium persulfate solution, etc.
  • these etchants Can be sprayed to etch away portions not covered with the etching resist, thereby forming a conductor pattern.
  • a method of forming a conductor pattern by the semi-additive method after applying a photoresist material to a metal foil, photolithography is performed to form a plating resist layer (resist pattern), and then electrolysis is performed using the metal foil as a power supply film. After conducting plating to deposit a conductor on the exposed portion of the metal foil without the resist layer to form a conductor layer (conductor pattern), then removing the plating resist layer to expose the metal foil, Etching is performed as a mask to remove the metal foil exposed by removing the plating resist layer, thereby constructing an electric wiring board.
  • the photoresist material is not particularly limited, and various commercially available materials can be used.
  • a liquid positive resist containing a novolac resin as a main component and containing a solvent such as a photosensitizer, ethyl lactate, and normal butyl acetate can be used.
  • a liquid positive resist is available as, for example, commercially available OFPR (manufactured by Tokyo Ohka Kogyo Co., Ltd.).
  • a photoresist film may be attached as a photoresist material.
  • the photoresist film is not particularly limited, and various commercially available materials can be used.
  • the electrolytic plating solution may be a sulfate bath or a sulfamine bath.
  • a cyan bath can be used.
  • the resist layer is removed to expose the metal foil.
  • the photoresist may be peeled or dissolved by dipping in a stripping solution.
  • the resist is removed using an aqueous solution of about 2 to 3% sodium hydroxide or potassium hydroxide, or an organic amine-based stripping solution. It can be carried out.
  • a stripping solution containing an organic solvent such as propylene glycol methyl ether acetate or alkylbenzene sulfonic acid can be used.
  • the etching solution is determined depending on the metal of the metal foil film and the metal of the conductor layer, and it is preferable to use an etching solution having a selectivity that removes the metal foil but not the conductor layer. Since there is a difference in thickness between the layers, the metal foil can be completely removed without adjusting the conductor layer by adjusting the etching time, so even the metal foil can be removed by etching. Any liquid may be used. Of course, when the metal foil and the conductor layer are the same metal, the metal foil is completely removed by adjusting the etching time without completely removing the conductor layer.
  • an FeCl 3 aqueous solution, HNO 3 , or an acid containing HNO 3 can be used as the etching solution.
  • nickel can be dissolved, but copper is not dissolved, which is particularly desirable.
  • an aqueous solution such as FeCl 3 , CuCl 2 , (NH 4) 2 S 2 O 8 , aqueous ammonia, or the like can be used.
  • the etching solution can be HNO 3 , a mixed solution of H 2 SO 4 and H 2 O 2 , an Fe (NO 3 ) 3 aqueous solution, or the like.
  • HNO 3 a mixed solution of H 2 SO 4 and H 2 O 2
  • Fe (NO 3 ) 3 aqueous solution or the like.
  • the metal foil is made of iron
  • HNO 3 or the like can be used as the etching solution.
  • an NH 3 I aqueous solution or the like can be used as the etching solution.
  • a photocurable film is formed on the surface of the conductor pattern 3-11a, exposed through a photomask, developed, and developed.
  • a conductor protective layer 14 for insulating and protecting the conductor pattern is formed.
  • the photocurable film formed on the surface of the conductor pattern is diluted with a thermosetting resin such as epoxy resin, a photocuring agent, a curing accelerator, and if necessary, a pigment, a fluidity adjusting agent, a viscosity adjusting agent, etc.
  • a varnish that is mixed and dispersed in an agent can be directly applied to the surface of the conductor pattern and dried to form it.
  • the varnish is applied to a carrier film and dried to form a semi-cured dry film. It can also be formed by laminating to a substrate.
  • a varnish-like solder resist material is commercially available, Provicoat 5000 (trade name, manufactured by Nippon Paint Co., Ltd.), and a dry film-like solder resist material is commercially available.
  • SR-2300G-50 trade name, manufactured by Hitachi Chemical Co., Ltd.
  • the core pattern can be formed by providing a core forming resin layer (core layer) on the lower clad layer, and exposing and developing the core layer.
  • core layer core forming resin layer
  • the core layer-forming resin film is composed of a core layer-forming resin layer and a base film, it is easy to handle, but it may be composed of a core layer-forming resin layer alone.
  • the core layer forming resin film when a protective film is provided on the opposite side of the base film, the core layer forming resin film is laminated after the protective film is peeled off.
  • the protective film and the base film are preferably not subjected to an adhesion treatment in order to facilitate peeling from the core layer, and may be subjected to a release treatment as necessary.
  • a desired core pattern is formed by exposing and developing the core layer thus provided.
  • ultraviolet rays are irradiated in an image form through a photomask pattern.
  • the ultraviolet light source include known light sources that effectively emit ultraviolet light, such as a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, and a xenon lamp.
  • the base film remains on the core layer, the base film is peeled off, and the unexposed portion is removed and developed by wet development or the like to form a core pattern.
  • wet development using an organic solvent-based developer or alkali developer suitable for the composition of the core layer-forming resin film or the core layer-forming resin varnish, spraying, rocking immersion, brushing, scraping, etc. Develop by the method of.
  • organic solvent developers examples include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl
  • organic solvent developers include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl
  • examples include ether and propylene glycol monomethyl ether acetate. In order to prevent ignition, these organic solvents may be added with water in an amount of usually 1 to 20 parts by mass with respect to 100 parts by mass of the organic solvent
  • alkaline developer an alkaline aqueous solution, an aqueous developer, or the like can be used, and the base of the alkaline aqueous solution is not particularly limited.
  • alkali hydroxide such as lithium, sodium or potassium hydroxide
  • lithium Carbonates such as sodium, potassium or ammonium carbonates or bicarbonates
  • alkali metal phosphates such as potassium phosphate and sodium phosphate
  • alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate
  • borax Sodium salts such as sodium metasilicate
  • tetramethylammonium hydroxide triethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, 1,3-diaminopropanol-2-morpholine, etc.
  • the pH of the alkaline aqueous solution used for development is preferably 9 to 11, and the temperature is adjusted according to the developability of the core-forming resin composition layer.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • lithium carbonate, sodium carbonate, and potassium carbonate aqueous solution are particularly preferable because they are less irritating to the human body and less burden on the environment.
  • an organic solvent can be used in combination with the alkaline aqueous solution.
  • the organic solvent herein is not particularly limited as long as it is miscible with an alkaline aqueous solution.
  • alcohol such as methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol; acetone, 4-hydroxy-4-methyl -2-Ketones such as pentanone; polyhydric alcohol alkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, etc. Is mentioned. These can be used alone or in combination of two or more.
  • the core pattern of the optical waveguide may be cleaned using a cleaning liquid composed of water and the above organic solvent as necessary.
  • An organic solvent can be used individually or in combination of 2 or more types.
  • the concentration of the organic solvent is usually preferably 2 to 90% by mass, and the temperature is adjusted according to the developability of the core-forming resin composition.
  • the development method examples include a dip method, a battle method, a spray method such as a high-pressure spray method, brushing, and scraping.
  • the high-pressure spray method is most suitable for improving the resolution.
  • the core pattern may be further cured and used by heating at about 60 to 250 ° C. or exposure at about 0.1 to 1,000 mJ / cm 2 as necessary.
  • a clad layer forming resin layer is provided on the core pattern, and the upper clad layer is formed by curing the resin layer.
  • the varnish of the clad layer forming resin composition can be applied directly, but it is preferable to use an upper clad layer forming resin film.
  • an operation of laminating the resin film for forming the upper clad layer for embedding the core pattern and an operation of forming the upper clad layer by curing the resin layer for forming the clad layer of the resin film for forming the upper clad layer are performed.
  • the thickness of the upper clad layer is preferably larger than the thickness of the core layer as described above. Curing is performed by light or heat in the same manner as described above.
  • the clad layer forming resin film when a protective film is provided on the opposite side of the base film, after peeling the protective film, the clad layer forming resin film is heat-pressed and cured by light or heating, A cladding layer is formed.
  • the base film may be peeled off or may be left bonded if necessary.
  • the clad layer forming resin layer is preferably formed on a base film subjected to an adhesion treatment.
  • the protective film is preferably not subjected to adhesion treatment in order to facilitate peeling from the clad layer forming resin film, and may be subjected to mold release treatment as necessary.
  • the optoelectric composite substrate obtained by the manufacturing method of the present invention it is possible to easily achieve the coupling between the electric wiring substrate portion and the optical waveguide portion by mounting an optical path conversion mirror, a light receiving element and the like.
  • a photoelectric composite module can be easily obtained by mounting an optical element such as a surface emitting laser or a diode on the photoelectric composite substrate obtained by the manufacturing method of the present invention.
  • the manufacturing method of the photoelectric composite substrate of the present invention (the fourth invention) will be described with reference to FIG.
  • the first ′ step is directly or directly on the surface of the substrate 4-12 of the metal foil-attached substrate 4-13 having the metal foil 4-11 and the substrate 4-12.
  • the lower clad layer 4-31 is formed via the adhesive layer 4-20.
  • a varnish of a clad layer forming resin is applied by a known method such as a spin coat method and the solvent is removed.
  • a clad layer forming resin film is used.
  • the resin film for forming a clad layer can be easily produced by applying a varnish of a resin for forming a clad layer onto a base film by a known method such as a spin coat method, if necessary, and removing the solvent.
  • a method using a resin film for forming a cladding layer is preferable because the accuracy of the thickness of the lower cladding layer can be secured.
  • the adhesive composition may be directly applied to the surface of the substrate, but it is a sheet having an adhesive layer on the supporting base material.
  • the method of using an adhesive and transferring the adhesive layer from the sheet adhesive to the surface of the substrate 4-12 is excellent in the smoothness of the adhesive layer and can ensure the accuracy of the thickness of the adhesive layer.
  • the sheet-like adhesive an adhesive sheet having an adhesive layer on a supporting substrate is particularly preferable.
  • the adhesive layer is laminated on the surface of the substrate 4-12 of the substrate 4-13 with metal foil,
  • the support base material is peeled off to form the adhesive layer 4-20.
  • the heating temperature at the time of lamination is preferably 50 to 130 ° C.
  • the pressing pressure is preferably about 0.1 to 1.0 MPa (1 to 10 kgf / cm 2 ).
  • the protective film and the supporting substrate are not subjected to an adhesive treatment in order to facilitate peeling from the adhesive layer, and may be subjected to a release treatment as necessary.
  • a resin film for forming a clad layer is laminated on the adhesive layer thus formed.
  • the protective film is peeled off and then the resin film for forming the clad layer is heated to the adhesive layer.
  • the clad layer is formed by pressure bonding and curing by light or heating.
  • trackability The conditions are the same as the case where the above-mentioned adhesive agent layer is laminated
  • the method in which the adhesive layer 4-20 is formed on the surface of the substrate 4-12 and then bonded to the resin film for forming the clad layer has been described. However, this order may be reversed.
  • the second step in the manufacturing method of the present invention is a step of constructing an optical waveguide. Specifically, as shown in FIG. 13B, on the lower cladding layer 4-31.
  • the core pattern 4-32 can be formed by forming a core forming resin layer (core layer) on the lower clad layer 4-31, and exposing and developing the core layer.
  • the method for forming the core layer is the same as described in the third invention.
  • the third step in the manufacturing method of the present invention is a step of constructing an electric wiring board from a substrate with metal foil. Specifically, as shown in FIG. This is a step of constructing the electric wiring board 4-10 using 4-11 as the conductor pattern 4-11a. This step is the same as the step of forming the metal foil of the substrate with metal foil in the third invention as a conductor pattern (first step of the third invention), and the method, conditions and the like are the same as those of the third invention.
  • the coupling between the electric wiring substrate portion and the optical waveguide portion is easily achieved by mounting an optical path conversion mirror, a light receiving element, and the like. be able to.
  • a photoelectric composite module can be easily obtained by mounting an optical element such as a surface emitting laser or a diode on the photoelectric composite substrate obtained by the manufacturing method of the present invention.
  • a clad layer forming resin varnish A was prepared. After that, using a polyflon filter (trade name: PF020, manufactured by Advantech Toyo Co., Ltd.) with a pore diameter of 2 ⁇ m, the mixture is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further the degree of vacuum using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of 50 mmHg.
  • PF020 trade name: PF020, manufactured by Advantech Toyo Co., Ltd.
  • the clad layer forming resin varnish A obtained above is applied to a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) with a coating machine (Multicoater TM-MC, Co., Ltd.). It is applied using Hirano Tech Seed, dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then a release PET film (trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m as a protective film) ) Was attached so that the release surface was on the resin side, and a resin film for forming a clad layer was obtained.
  • a release PET film trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m
  • a release PET film trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m as a protective film
  • the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine.
  • the thickness after curing is 25 ⁇ m for the lower cladding layer and 70 ⁇ m for the upper cladding layer. Adjusted.
  • the core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m) in the same manner as in the above production example.
  • a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained.
  • the gap of the coating machine was adjusted so that the film thickness after curing was 50 ⁇ m.
  • the first substrate 1-1 is a polyimide surface with a 150 mm square single-sided copper foil.
  • a 140 mm square copper foil (trade name: 3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 ⁇ m), which is the second release layer 1-6, is installed in the center, and the second adhesive layer 1 is formed thereon.
  • a photosensitive dry film resist (trade name: Photec, manufactured by Hitachi Chemical Co., Ltd., thickness: 25 ⁇ m) is applied to the polyimide copper foil surface with single-sided copper foil, and a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.).
  • HLM-1500 manufactured by Hitachi Chemical Technoplant Co., Ltd.
  • a pressure of 0.4 MPa Under a pressure of 0.4 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min, and then a width of 50 ⁇ m from the photosensitive dry film resist side with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.).
  • the negative photomask was irradiated with ultraviolet light (wavelength 365 nm) of 120 mJ / cm 2, and the unexposed photosensitive dry film resist was removed with a dilute solution of 0.1 to 5 mass% sodium carbonate at 35 ° C. Then, using a ferric chloride solution, the exposed copper foil was removed by etching to remove the photosensitive dry film resist, and exposure was performed using a 1-10 mass% sodium hydroxide aqueous solution at 35 ° C. A portion of the photosensitive dry film resist was removed. As a result, a second support 1-8 with the first substrate 1-1 having the circuit 1-9 formed on one side was obtained. (See Fig. 1 (b))
  • the first release layer 1-2 of the second support 1-8 with the first substrate 1-1 on which the circuit 1-9 is formed on one side formed as described above is 130 mm on the circuit 1-9 formation surface.
  • a corner release sheet (trade name: Aflex, manufactured by Asahi Glass Co., Ltd., thickness: 30 ⁇ m) is installed in the center, and a 150 mm square build-up material (product name) is the first adhesive layer 1-3 from above.
  • An adhesive film described in Example 1 of PCT / JP2008 / 05465 was produced. That is, (a) YDCN-703 (trade name, manufactured by Toto Kasei Co., Ltd., cresol novolak type epoxy resin, epoxy equivalent 210) 55 parts by mass as an epoxy resin, (b) Millex XLC-LL (Mitsui Chemicals, Inc.) as a curing agent Product name, phenol resin, hydroxyl group equivalent 175, water absorption rate 1.8% by mass, heating weight loss rate 4% at 350 ° C.
  • silane coupling agent NUC A-189 (trade name, manufactured by Nihon Unicar Co., Ltd.) 1.7 parts by mass of ⁇ -mercaptopropyltrimethoxysilane) and 3.2 parts by mass of NUC A-1160 (trade name, ⁇ -ureidopropyltriethoxysilane, manufactured by Nippon Unicar Co., Ltd.), (d) Aerosil R972 (silica) as filler
  • the surface is coated with dimethyldichlorosilane and hydrolyzed in a 400 ° C reactor.
  • a filler having an organic group such as a methyl group on its surface, Nippon Aerosil Co., Ltd., trade name, silica, average particle size 0.016 ⁇ m) 32 parts by mass, cyclohexanone is added to the mixture, and the mixture is further stirred. And kneaded for 90 minutes.
  • This adhesive varnish was applied onto a 75 ⁇ m-thick polyethylene terephthalate (PET) film (Purex A31) subjected to a release treatment, and heated and dried at 140 ° C. for 5 minutes to form a coating film having a thickness of 10 ⁇ m.
  • PET polyethylene terephthalate
  • a 25 ⁇ m release-treated polyethylene terephthalate (PET) film (Purex A31) was attached as a second protective film so that the release surface was on the resin side to obtain an adhesive film.
  • the release PET film (Purex A31), which is a protective film for the adhesive film obtained above, is peeled off, and a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used with a pressure of 0. Lamination was performed on the polyimide surface of the first substrate 1-1 under the conditions of 4 MPa, temperature of 50 ° C., and laminating speed of 0.2 m / min.
  • ultraviolet light (wavelength 365 nm) is irradiated from the adhesive film side by 1 J / cm 2 with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.), and a release PET film as a second protective film of the adhesive film (Purex A31) was peeled off.
  • the lower cladding layer 1-11 was formed by heat treatment at a temperature of 10 ° C. for 10 minutes.
  • the core layer-forming resin film was laminated on the lower clad layer 1-11 under the same lamination conditions as above to form a core layer.
  • a 45 ° mirror is formed by using a dicing saw (DAC552, manufactured by DISCO Corporation) from the upper clad layer 1-13 side of the obtained first substrate 1-1 and optical waveguide 1-15 with circuit 1-9.
  • DAC552 manufactured by DISCO Corporation
  • the measurement was performed before separating the first support 1-3.
  • the X and Y coordinates of 30 alignment markers placed in the circuit on the outermost layer of the first substrate 1-1 were measured, and the diagonal markers were connected using the alignment markers at the four corners.
  • the intersection was determined as the scaling factor origin (hereinafter abbreviated as S / F origin), and the average value obtained by dividing the distance between the four alignment markers by the design value was determined as the scaling factor (hereinafter abbreviated as S / F).
  • the alignment markers at the four corners of the design value are A, B, C, and D
  • the measured alignment markers at the four corners are A ′, B ′, C ′, and D ′, and A (or A ′) and C ( Or C ′)
  • B (or B ′) and D (or D ′) are located on the diagonal line
  • the intersection of the straight line connecting A and C and the straight line connecting B and D is S of the design value.
  • / F origin and the intersection of the straight line connecting A ′ and C ′ and the straight line connecting B ′ and D ′ is the S / F origin of the measured value.
  • the average value of the inter-distance / DA distance is S / F.
  • the measured X and Y coordinates are corrected to the position of the S / F origin of the actual measurement S / F origin, and the design value obtained by multiplying the design value by S / F.
  • the amount of deviation from the X and Y coordinates was calculated. This deviation corresponds to the minimum deviation when the optical waveguide 1-15 or another circuit is aligned.
  • the shrinkage ratio of the optical waveguide was calculated from (1-S / F) ⁇ 100 (%) determined above.
  • X represents the amount of displacement in the horizontal direction
  • Y represents the amount of displacement in the vertical direction
  • XY represents the distance of displacement. From the results shown in Table 1, the maximum deviation was 7.5 ⁇ m, and the shrinkage was 0.04%.
  • the first substrate 1-1 is cut using the dicing saw described above, and the first substrate that is the opposite surface to the first support from the cross section The unevenness of the 1-1 polyimide substrate was measured. Next, the measurement method is shown.
  • the height difference of 102 was measured. As a result, it was 0.5 ⁇ m.
  • the core width of the optical waveguide varied from a minimum value of 49.9 ⁇ m to a maximum value of 50.2 ⁇ m.
  • Example 2 In Example 1, the first substrate 1-1 is a polyimide substrate with a single-sided copper foil, and the circuit formation after separating the second support 1-8 is described in Example 2 of JP-A-2006-93199. The semi-additive method was used under the conditions described below.
  • the displacement amount of the circuit position in the outermost layer of the first substrate 1-1 was measured in the same manner as in Example 1. The results are shown in Table 2. From the results in Table 2, the maximum deviation was 7.2 ⁇ m, and the shrinkage was 0.05%.
  • the substrate 1-101 on the separation surface side where the circuit is located on the first substrate 1-1 and the separation surface side where the circuit is absent on the first substrate 1-1 was measured. As a result, it was 0.5 ⁇ m. Further, the core width of the optical waveguide varied from a minimum value of 50.0 ⁇ m to a maximum value of 50.3 ⁇ m.
  • Example 3 In Example 1, instead of an optical waveguide as the second substrate 1-5, a prepreg (trade name: GEA-679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 ⁇ m) is used on the circuit formation surface of the first substrate 1-1. ), Copper foil (trade name: 3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 ⁇ m) are sequentially formed, vacuumed to 4 kPa or less, pressure 2.5 MPa, temperature 180 ° C., pressurization time 1 Heat lamination was performed under conditions of time. Further, a circuit was formed on the copper foil using the subtractive method (see FIG. 2 (f) -1).
  • Example 2 For the obtained wiring board, in the same manner as in Example 1, the amount of deviation of the circuit position in the outermost layer of the first substrate 1-1 was measured. The results are shown in Table 3. From the results in Table 3, the maximum deviation was 9.6 ⁇ m, and the shrinkage was 0.05%.
  • Example 4 an optical waveguide 1-15 was further formed on the circuit formation surface of the second substrate 1-5 under the same conditions as in Example 1 (see FIG. 2 (f) -4).
  • the height difference of 102 was measured. As a result, it was 1.5 ⁇ m.
  • the core width of the optical waveguide varied from a minimum value of 50.1 ⁇ m to a maximum value of 50.2 ⁇ m.
  • Example 5 In the first embodiment, after forming the circuit 1-9 as the process A, the optical waveguide 1-15 and the polyimide substrate (substrate X16) are formed on the circuit 1-9 forming surface under the same conditions as in the second embodiment. One substrate 1-1 was obtained. Subsequent steps B and thereafter were performed in the same manner as in Example 3 except that the second substrate 1-5 was not formed (see FIG. 3). As in Example 1, the substrate 1-101 on the separation surface side where the circuit is located on the first substrate 1-1 and the substrate 1- 1 on the separation surface side where the circuit is not present on the first substrate 1-1. The height difference of 102 was measured. As a result, it was 1.0 ⁇ m. Further, when the core width of the optical waveguide was measured, there was a variation from a minimum value of 49.7 ⁇ m to a maximum value of 50.3 ⁇ m.
  • Example 1 Comparative Example 1 In Example 1, the first release layer 1-2, the first adhesive layer 1-3, the first support 1-4, the second release layer 1-6, and the second adhesive layer 1-7.
  • the second substrate 1-8 was not used, and a polyimide substrate circuit was formed in the same manner except that the circuit formation was simultaneously performed using the subtractive method.
  • the displacement amount of the circuit position in the outermost layer of the first substrate 1-1 was measured in the same manner as in Example 1. The results are shown in Table 4. From the results of Table 4, the maximum deviation was 32.3 ⁇ m, and the shrinkage was 0.15%.
  • Example 1 the substrate surface 1-101 on the release surface side of the portion where the circuit is located on the first substrate 1-1, and the substrate surface on the release surface side of the portion where the circuit is not present on the first substrate 1-1.
  • the height difference of 1-102 was measured. As a result, it was 3.0 ⁇ m.
  • the core width of the optical waveguide varied from a minimum value of 48 ⁇ m to a maximum value of 53 ⁇ m.
  • Example 6 (Production of optoelectric composite member)
  • a method for producing the photoelectric composite member will be described with reference to FIGS.
  • 150 mm square polyimide foil with double-sided copper foil Trade name: Iupicel N, Ube Nitto Kasei Kogyo Co., Ltd., copper foil thickness: 5 ⁇ m, polyimide thickness 12.5 ⁇ m) on a copper foil surface of 140 mm square copper foil (trade name: 3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 ⁇ m), and a 150 mm square prepreg (trade name: GEA-679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 ⁇ m)
  • MCL-E679F manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm
  • a 130 mm square release sheet (trade name: Aflex, manufactured by Asahi Glass Co., Ltd., thickness: 30 ⁇ m) is placed in the center on the electrical wiring surface of the lower support 2-1 with the electrical wiring board 2-2 formed above.
  • a 150 mm square build-up material (trade name: AS-ZII, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 ⁇ m) is evacuated to 500 Pa or less, pressure 0.4 MPa, temperature 110 ° C., pressure After thermocompression bonding under conditions of 30 seconds, a copper-clad laminate (MCL-E679F, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm) is further formed on the build-up surface, and the same conditions as above The upper support 2-3 was laminated by thermocompression bonding. (See FIG. 6C) A detailed layer structure is shown in FIG.
  • ultraviolet light (wavelength 365 nm) is irradiated from the adhesive film side by 1 J / cm 2 with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.), and a release PET film as a second protective film of the adhesive film (Purex A31) was peeled off.
  • a vacuum pressurization laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) is used as a flat plate laminator. After vacuuming to 500 Pa or less, the pressure is 0.4 MPa, the temperature is 50 ° C., and the pressurization time is 30 seconds.
  • the resin film for forming a clad layer was laminated as an upper clad layer 2-6 by thermocompression bonding. Further, after irradiation with ultraviolet rays (wavelength 365 nm) at 3 J / cm 2 , heat treatment was performed at 160 ° C. for 1 hour to cure the upper clad layer and produce an optical waveguide 2-8. (See Fig.
  • a 45 ° mirror is formed by using a dicing saw (DAC552, manufactured by Disco Corporation) from the side of the upper clad layer 2-6 of the obtained optical waveguide 2-8 with the electric wiring board 2-2, and the photoelectric composite A member was obtained. (See FIG. 6 (f))
  • Example 7 In Example 6, after separating the upper support 2-3, an FR-4 plate having a thickness of 0.6 mm, on which a circuit was formed using the subtractive method, was formed using the adhesive prepared in Example 1. -4 After being bonded to the plate under the above conditions, the adhesion surface was evacuated to 500 Pa or less using a vacuum pressure laminator (MVLP-500 manufactured by Meiki Seisakusho Co., Ltd.) from the upper clad side, Thermocompression bonding was performed on the optical waveguide 2-8 under the conditions of 4 MPa, temperature of 100 ° C., and pressurization time of 30 seconds. Otherwise, an optoelectric composite member was produced in the same manner.
  • MVLP-500 manufactured by Meiki Seisakusho Co., Ltd.
  • Example 8 In Example 6, instead of polyimide with double-sided copper foil, polyimide with single-sided copper foil (trade name: Iupicel N, manufactured by Ube Nitto Kasei Kogyo Co., Ltd., copper foil thickness: 5 ⁇ m, polyimide thickness 12.5 ⁇ m)
  • the polyimide surface and the lower support 2-1 were attached using a single-sided slightly adhesive Kapton double-sided tape (product number: 4309, manufactured by Sumitomo 3M Co., Ltd.).
  • the strongly adhesive surface was on the lower support 2-1 side, and the slightly adhesive surface was a polyimide surface.
  • a vacuum pressurization type laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) was used to evacuate to 500 Pa or less, then pressure 0.4 MPa, temperature 100 ° C., pressurization time 30
  • An optoelectric composite member was produced in the same manner except that it was thermocompression bonded to the upper clad side of the optical waveguide 2-8 under the condition of seconds.
  • Example 9 the upper support 2-3 is a copper-clad laminate (trade name: MCL-E-679FB, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm) using a subtractive method for a double-sided circuit.
  • a 150 mm square build-up material (trade name: AS-ZII, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 ⁇ m) is thermocompression bonded to the circuit processed surface under the above conditions, and then the above conditions are satisfied. Then, the photoelectric composite member was manufactured in the same manner except that it was bonded to the electric wiring board 2-2 and the upper support 2-3 was not separated.
  • Example 10 The lower support 2-1 and the electric wiring board 2-2 are laminated in the same manner as in the sixth embodiment, and after forming a circuit, the optical waveguide 2-8 is formed on the electric wiring board 2-2 under the same conditions as in the sixth embodiment. Formed. Thereafter, a mirror was formed under the above conditions.
  • a 150 mm square prepreg (trade name: GEA-679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 ⁇ m), a 130 mm square copper foil (trade name: 3EC- VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 ⁇ m, 150 mm square copper foil (trade name: 3EC-VLP, manufactured by Mitsui Kinzoku Mining Co., Ltd., thickness: 18 ⁇ m), 150 mm square prepreg (trade name: GEA -679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 ⁇ m), copper-clad laminate (MCL-E679F, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm) were sequentially constructed and evacuated to 4 kPa or less.
  • MCL-E679F copper-clad laminate
  • FIG. 11B shows a layer configuration diagram.
  • the amount of deviation of the core position of the optical waveguide 2-8 was measured in the same manner as in Example 6.
  • Table 9 shows the results of the inner optical waveguide 2-8
  • Table 10 shows the results of the outer optical waveguide 2-8. From the results of Table 9, the maximum deviation was 7.2 ⁇ m and the shrinkage was 0.08%. From the results shown in Table 10, the maximum deviation was 11.2 ⁇ m, and the shrinkage was 0.05%.
  • Comparative Example 2 A photoelectric composite member was produced in the same manner as in Example 6 except that the upper support 2-3 and the lower support 2-1 were not attached. With respect to the obtained photoelectric composite member, the amount of deviation of the core position of the optical waveguide 2-8 was measured in the same manner as in Example 6. The results are shown in Table 11. From the results shown in Table 11, the maximum deviation was 75 ⁇ m, and the shrinkage was 1.0%.
  • Example 11 Each step was carried out as follows to produce a photoelectric composite substrate.
  • adhesive sheet (a) As a high molecular weight component, HTR-860P-3 (trade name, manufactured by Nagase ChemteX Corporation, glycidyl group-containing acrylic rubber, weight average molecular weight 800,000, Tg: ⁇ 7 ° C. ) 100 parts by mass, (b) As an epoxy resin, YDCN-703 (trade name, manufactured by Toto Kasei Co., Ltd., o-cresol novolac type epoxy resin, epoxy equivalent 210), 5.4 parts by mass, YDCN-8170C (Toto Kasei ( Co., Ltd.
  • This adhesive sheet is laminated with an 80 ⁇ m-thick UV transparent support substrate (manufactured by Thermo Co., Ltd., low density polyethylene terephthalate / vinyl acetate / low density polyethylene terephthalate three-layer film: FHF-100).
  • an adhesive sheet composed of a protective film (the surface release-treated polyethylene terephthalate), an adhesive layer, and an ultraviolet transmissive supporting substrate was prepared.
  • the storage elastic modulus of the adhesive resin composition obtained by irradiating the adhesive sheet with ultraviolet light of 365 nm at 500 mJ / cm 2 and then curing at 160 ° C. for 1 hour is measured with a dynamic viscoelasticity measuring device (Rheology Co., Ltd.).
  • Example size length 20 mm, width 4 mm, film thickness 80 ⁇ m, heating rate 5 ° C./min, tensile mode 10 Hz, automatic static load.
  • 400 MPa at 25 ° C. It was 1 MPa at 125 ° C. and 5 MPa at 260 ° C.
  • the adhesive sheet is irradiated with ultraviolet rays (365 nm) at 250 mJ / cm 2 from the support substrate side to reduce the adhesive force between the adhesive layer and the support substrate interface, and the support substrate is peeled off to perform adhesion.
  • the agent layer was exposed.
  • the protective film of the clad layer forming resin film prepared in Example 1 is peeled off so that the clad layer forming resin layer is in contact with the adhesive layer, and a roll laminator (manufactured by Hitachi Chemical Technoplant Co., Ltd., HLM-1500) is roll-laminated under the conditions of 80 ° C., 0.5 MPa, feed rate of 0.5 m, and further irradiated with ultraviolet rays (wavelength 365 nm) at 1 J / cm 2 , and then the support base of the resin film for forming the clad layer
  • the material was peeled off and heat-treated at 80 ° C. for 10 minutes to form a lower clad layer, and a substrate with a copper foil having the lower clad layer on the substrate surface was obtained.
  • solder resist layer SR-2300G-50 (trade name, manufactured by Hitachi Chemical Co., Ltd.), a dry film for solder resist, has a thickness of 50 ⁇ m on a substrate on which a conductor pattern is formed.
  • a photomask having a conductor pattern to be protected was placed on a dry film for a solder resist, and exposed under a vacuum of 60 mmHg. Thereafter, development was performed, a solder resist layer was formed, and dried to construct an electric wiring board.
  • Formation of core pattern A roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used on the lower clad layer of the electric wiring board with the lower clad layer produced in (4) above, and the pressure is 0.
  • the core layer-forming resin film produced in Example 1 was laminated under the conditions of 4 MPa, temperature of 50 ° C., and laminating speed of 0.2 m / min, and then a vacuum pressure laminator (Meiki Seisakusho Co., Ltd.) as a flat plate laminator. MVLP-500) was used, and after vacuuming to 500 Pa or less, the core layer was formed by thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a pressurization time of 30 seconds.
  • the above-mentioned resin film for forming a clad layer was laminated under the same laminating conditions as those for laminating the lower clad layer. Further, after irradiating with ultraviolet rays (wavelength 365 nm) at 3 J / cm 2 , the support base of the resin film for forming the cladding layer is peeled off, and heat treatment is performed at 180 ° C. for 1 hour to form an upper cladding layer. It was constructed. When the refractive index of the core layer and the clad layer was measured with a prism coupler (Model 2010) manufactured by Metricon, the core layer was 1.584 and the clad layer was 1.550 at a wavelength of 830 nm.
  • the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using a surface-emitting laser (850 nm, manufactured by EXFO, FLS-300-01-VCL) as a light source, and Q82214, manufactured by Advantest Corporation as a light receiving sensor.
  • Measurement waveguide length 10, 5, 3, 2 cm
  • Example 12 The substrate with metal foil in (2) in Example 11 is replaced with a flexible electrical wiring substrate (length 48 mm, width 4 mm, base material: Kapton EN, 25 ⁇ m, copper circuit thickness: 12 ⁇ m) having electrical wiring, and The same operation as in Example 11 was performed except that (3) and (4) in Example 1 were not performed.
  • a flexible electrical wiring substrate (length 48 mm, width 4 mm, base material: Kapton EN, 25 ⁇ m, copper circuit thickness: 12 ⁇ m) having electrical wiring, and The same operation as in Example 11 was performed except that (3) and (4) in Example 1 were not performed.
  • the photoelectric composite substrates obtained in Examples 11 and 12 were extremely excellent in coupling efficiency because the positional deviation between the optical wiring and the electrical wiring was 10 ⁇ m / 100 mm or less.
  • Example 13 (1) Construction of optical waveguide On the lower clad layer of the substrate with copper foil having the lower clad layer produced in Example 11, a similar roll laminator was used, pressure 0.4 MPa, temperature 50 ° C., laminating speed 0.
  • the core layer-forming resin film produced in Example 1 was laminated under the condition of 2 m / min, and then a vacuum / pressure laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) was used as a flat plate laminator, and 500 Pa or less. Then, the core layer was formed by thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a pressurization time of 30 seconds.
  • MVLP-500 vacuum / pressure laminator
  • the clad layer forming resin film produced in Example 1 was laminated under the same laminating conditions as the lower clad layer. Further, after irradiating with ultraviolet rays (wavelength 365 nm) at 3 J / cm 2 , the support base of the resin film for forming the cladding layer is peeled off, and heat treatment is performed at 180 ° C. for 1 hour to form an upper cladding layer. It was constructed.
  • the refractive index of the core layer and the clad layer was measured with a prism coupler (Model 2010) manufactured by Metricon, the core layer was 1.584 and the clad layer was 1.550 at a wavelength of 830 nm.
  • the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using a surface-emitting laser (850 nm, manufactured by EXFO, FLS-300-01-VCL) as a light source, and Q82214, manufactured by Advantest Corporation as a light receiving sensor.
  • Measurement waveguide length 10, 5, 3, 2 cm
  • solder resist layer SR-2300G-50 (trade name, manufactured by Hitachi Chemical Co., Ltd.), a dry film for solder resist, has a thickness of 50 ⁇ m on a substrate on which a conductor pattern is formed.
  • a photomask having a conductor pattern to be protected was placed on a dry film for a solder resist, and exposed under a vacuum of 60 mmHg. Thereafter, development was performed, a solder resist was formed, and dried to construct an electric wiring board.
  • the optoelectric composite substrate obtained by the above process had a positional deviation between the optical wiring and the electrical wiring of 10 ⁇ m / 100 mm or less, and was extremely excellent in coupling efficiency.
  • a wiring board having only an electric circuit has a fine wiring because a fine wiring board with less unevenness of the base material in the manufacturing process and reduced defects due to short circuit or opening can be obtained.
  • Reliable wiring boards motherboards, semiconductor chip mounting boards
  • semiconductor packages, and flexible boards can be manufactured.
  • For wiring boards combined with optical waveguides distortions that occur in the optical waveguides during the manufacturing process are remarkably reduced, dimensional stability can be achieved, and the core width can be formed uniformly with little unevenness on the substrate. It can be applied to a wide range of fields such as optical interconnection with low propagation loss.
  • the method for manufacturing an optoelectric composite member of the present invention distortion generated in an optical waveguide in a manufacturing process is remarkably reduced and dimensional stabilization can be achieved. Therefore, the method can be applied to a wide range of fields such as optical interconnection between boards or within a board. Is possible. According to the method for producing an optoelectric composite substrate of the present invention, an excellent optoelectric composite substrate can be efficiently produced without causing a problem of alignment.
  • the optoelectric composite substrate manufactured by the method of the present invention can be applied to a wide range of fields such as optical interconnection, especially when a very precise core pattern is required or a large area optoelectronic composite substrate is required. It is effective for.

Abstract

Disclosed are a method of manufacturing a wiring board including, in order of mention, step A of fabricating a circuit on a first board, step B of providing a first support over the circuit fabrication surface of the first board with a first separation layer therebetween, and step C of providing a second board or a circuit on the opposite side of the circuit fabrication surface of the first board and a method of manufacturing an optoelectric composite member including, in order of mention, a step of providing an electric wiring board on a second support, a step of providing a first support, a step of removing the second support, and a step of fabricating an optical waveguide on the separation surface of the second support. The method of manufacturing the wiring board enables fabrication of the circuit with uniform wiring width and good dimensional stability. The method of manufacturing an optoelectric composite member enables reduction of distortion of the optical waveguide during the manufacturing steps, thereby improving the dimensional stability.

Description

配線板の製造方法、光電気複合部材の製造方法及び光電気複合基板の製造方法Wiring board manufacturing method, optoelectric composite member manufacturing method, and optoelectric composite substrate manufacturing method
 本発明は、配線の幅を均一に加工することができ、かつ寸法安定性よく回路形成を行える配線板の製造方法、製造工程で光導波路に生じる歪みが低減された光電気複合部材の製造方法、光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合基板モジュールに関するものである。 The present invention relates to a method of manufacturing a wiring board capable of uniformly processing the width of wiring and forming a circuit with good dimensional stability, and a method of manufacturing a photoelectric composite member in which distortion generated in an optical waveguide in the manufacturing process is reduced The present invention relates to a method for manufacturing a photoelectric composite substrate, a photoelectric composite substrate manufactured thereby, and a photoelectric composite substrate module using the same.
 近年の情報化社会の発展は目覚しく、民生機器ではパソコン、携帯電話などの小型化、軽量化、高性能化、高機能化が進められ、産業用機器としては無線基地局、光通信装置、サーバ、ルータなどのネットワーク関連機器など、大型、小型を問わず、同じように機能の向上が求められている。
 また、情報伝達量の増加に伴い、年々扱う信号の高周波化が進む傾向にあり、高速処理および高速伝送技術の開発が進められている。
 このために、半導体チップ搭載基板やマザーボードを始め、フレキシブル基板も、高周波化、高密度配線化、高機能化に対応するために、ビルドアップ方式の多層配線基板が使用されるようになってきた。
 このような高密度微細配線の形成において、エッチングにより配線を形成するサブトラクト法で、歩留り良く形成できる配線は、配線幅/配線間隔=50μm/50μmが限度である。
 更に微細な配線形成では、絶縁層表面に比較的薄い金属層(シード層)を形成しておき、その上にめっきレジストを形成して、電気めっきで配線を必要な厚さに形成し、めっきレジストを剥離後に、シード層をソフトエッチングで除去するというセミアディティブ法が使用され始めている。シード層を形成する方法としては、無電解めっき法、薄い金属箔を貼り合わせる方法、スパッタリング法を用いて形成する方法が一般的に知られており、年々狭ピッチ化が進む傾向にある。
 また、層間絶縁層と配線が一層以上形成された配線基板であって、少なくとも配線の一層において、配線と層間絶縁層の間に、金属と絶縁材料を含む混合層を有し、かつ配線間の絶縁抵抗値が1GΩ以上となるように配線間の混合層が除去されていることを特徴とする配線基板が提案されている(特許文献1参照)。
The development of the information society in recent years has been remarkable, and consumer devices have been reduced in size, weight, performance, and functionality, such as personal computers and mobile phones. Industrial equipment includes wireless base stations, optical communication devices, and servers. In addition, there is a demand for improvement in functions in the same way regardless of whether it is large or small, such as routers and other network-related devices.
In addition, with the increase in the amount of information transmitted, the frequency of signals handled tends to increase year by year, and high-speed processing and high-speed transmission technology are being developed.
For this reason, built-up multilayer wiring boards have come to be used in order to cope with higher frequency, higher density wiring, and higher functionality for flexible boards, including semiconductor chip mounting boards and motherboards. .
In the formation of such high-density fine wiring, the wiring width / wiring interval = 50 μm / 50 μm is the limit of wiring that can be formed with a high yield by the subtract method of forming wiring by etching.
For finer wiring formation, a relatively thin metal layer (seed layer) is formed on the surface of the insulating layer, a plating resist is formed thereon, and wiring is formed to the required thickness by electroplating. After removing the resist, a semi-additive method in which the seed layer is removed by soft etching has begun to be used. As a method for forming the seed layer, an electroless plating method, a method of bonding a thin metal foil, and a method of forming by using a sputtering method are generally known, and the pitch tends to decrease year by year.
In addition, a wiring board in which one or more interlayer insulating layers and wirings are formed, wherein at least one wiring layer has a mixed layer containing a metal and an insulating material between the wirings and the interlayer insulating layer, and between the wirings. There has been proposed a wiring board in which a mixed layer between wirings is removed so that an insulation resistance value is 1 GΩ or more (see Patent Document 1).
 また、電子素子間や配線基板間の高速・高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めている。これを打ち破るため電子素子間や配線基板間を光で接続する技術、いわゆる光インターコネクションが提案されており、電気配線と光配線の複合化に関して種々の検討が行われている。
 具体的には、ルータやサーバ装置内のボード間あるいはボード内の短距離信号伝送に光を用いるために、電気配線板に光伝送路を複合した光電気複合基板の開発がなされている。光伝送路としては、光ファイバに比べ、配線の自由度が高く、かつ高密度化が可能な光導波路を用いることが望ましく、中でも、加工性や経済性に優れたポリマー材料を用いた光導波路が有望である。
In addition, in high-speed and high-density signal transmission between electronic elements and between wiring boards, signal transmission interference and attenuation become barriers in conventional transmission using electric wiring, and the limits of high speed and high density are beginning to appear. In order to overcome this, a technique for connecting between electronic elements and wiring boards with light, so-called optical interconnection, has been proposed, and various studies have been made on the combination of electrical wiring and optical wiring.
Specifically, in order to use light for short-distance signal transmission between boards in a router or a server device or in a board, an opto-electric composite board in which an optical transmission path is combined with an electric wiring board has been developed. As an optical transmission line, it is desirable to use an optical waveguide that has a higher degree of freedom in wiring and can be densified than an optical fiber, and in particular, an optical waveguide that uses a polymer material with excellent workability and economy. Is promising.
 上記のような微細配線を設けた微細配線板は絶縁樹脂層上に金属パターンを形成して製造するが、絶縁層の薄膜化や高密度微細配線に伴い、精度の高い表裏位置合わせが必要となる。しかし、薄い基板のまま両面同時配線形成を行うと寸法のゆがみが発生し、積層する電気配線や光導波路との位置合わせが困難であった。また、特許文献1記載の方法では、片面に微細配線を形成する方法としては有用だが、両面同時配線形成が困難で、片面ずつの回路加工となる。一般的に寸法安定化のために、あて板や支持基板に固定して表裏の配線を順次形成すると先に形成した配線の凹凸が基板反対面に転写し、反対面の金属パターンにミスレジストレーションによる短絡不良や、配線幅の不均一化、表裏の配線位置ズレなどが発生しやすいという問題があった。一方、光導波路も同様であり、凹凸のある樹脂や基材に光導波路をビルドアップ形成すると、配線幅の不均一化に繋がり、伝搬損失に大きく影響している。そのため、特許文献2のように光導波路形成後に電気配線の回路を形成する工法がとられている。 The fine wiring board provided with the fine wiring as described above is manufactured by forming a metal pattern on the insulating resin layer. However, with the thinning of the insulating layer and high-density fine wiring, accurate front and back alignment is required. Become. However, if double-sided simultaneous wiring formation is performed with a thin substrate, dimensional distortion occurs, making it difficult to align the laminated electric wiring and optical waveguide. In addition, the method described in Patent Document 1 is useful as a method for forming fine wiring on one side, but it is difficult to form simultaneous wiring on both sides, resulting in circuit processing for each side. In general, for dimensional stability, when the front and back wiring are formed in order by fixing to a support plate or support substrate, the irregularities of the wiring formed earlier are transferred to the opposite surface of the substrate and misregistered to the metal pattern on the opposite surface There is a problem that short circuit failure due to, non-uniformity of the wiring width, misalignment of the wiring on the front and back sides, etc. are likely to occur. On the other hand, the same applies to the optical waveguide, and when the optical waveguide is built up on a resin or substrate having unevenness, it leads to non-uniform wiring width and greatly affects the propagation loss. Therefore, as in Patent Document 2, a method of forming an electric wiring circuit after forming an optical waveguide is employed.
 ところで、光配線と電気配線の複合化に関し、例えば特許文献3に記載のように接着シートを介して半導体チップと光導波路を接着する方法が提案されている。しかしながら、この方法では光導波路の個片化と接着フィルムの切り出しがそれぞれ別工程であるため、組み立てが煩雑であるという課題があった。
 また、特許文献4には、シート状接着剤を用いて、光回路基板(光導波路)と電気回路基板とを簡易に複合化することが提案されている。
By the way, regarding the combination of optical wiring and electrical wiring, for example, a method of bonding a semiconductor chip and an optical waveguide via an adhesive sheet as described in Patent Document 3 has been proposed. However, in this method, there is a problem that assembly is complicated because the optical waveguide is separated into pieces and the adhesive film is cut out separately.
Patent Document 4 proposes that an optical circuit board (optical waveguide) and an electric circuit board are simply combined using a sheet-like adhesive.
 また、光配線と電気配線との複合化の方法として容易に想到し得るのは、上述のように、光導波路と光配線基板とを接着剤層を介して接合する方法であるが、この方法では、光導波路と光配線基板との相対的な位置を正確に合わせて接合するのが難しく、光配線と電気配線との結合効率の低下により生産性が低下することが懸念される。これに対して、特許文献5のように、先ずフレキシブル光配線フィルムを作成し、その裏面に無電解めっき又は真空蒸着により下地金属層を形成し、パターニングした後に電解めっきを行って電気配線を構築する方法も提案されているが、この方法では、フレキシブル光配線フィルムの裏面と下地金属層(電気配線)との密着強度が十分ではなく、信頼性を損なう恐れがある。 Further, as described above, a method of combining the optical wiring and the electrical wiring can be easily conceived as a method of joining the optical waveguide and the optical wiring substrate through the adhesive layer. However, it is difficult to accurately match and join the relative positions of the optical waveguide and the optical wiring board, and there is a concern that productivity may be reduced due to a decrease in the coupling efficiency between the optical wiring and the electrical wiring. On the other hand, as in Patent Document 5, first, a flexible optical wiring film is formed, a base metal layer is formed on the back surface thereof by electroless plating or vacuum deposition, and after patterning, electrolytic plating is performed to construct an electrical wiring. However, in this method, the adhesion strength between the back surface of the flexible optical wiring film and the base metal layer (electrical wiring) is not sufficient, and the reliability may be impaired.
特開2006-93199号公報JP 2006-93199 A 特開2004-341454号公報JP 2004-341454 A 特開2006-39390号公報JP 2006-39390 A 特開2008-122908号公報JP 2008-122908 A 特許第3193500号公報Japanese Patent No. 3193500
 本発明は、配線の幅を均一に加工することができ、かつ寸法安定性よく回路形成を行える配線板の製造方法を提供することを目的とする(第1の目的)。
 また、特許文献4に記載の方法では、支持体に光導波路を形成してから、支持体を剥離し、シート状接着剤と光導波路を貼り合わせ、電気配線板と積層しているため、光導波路を支持体から剥離する際の剥離強度が大きいと、光導波路が伸びてしまい、小さい剥離強度で剥離できたとしても導波路に溜まった応力が解放されるために、ゆがみが発生してしまい、光導波路の寸法が不安定になるという問題がある。したがって、本発明は、製造工程で光導波路に生じる歪みが低減され、寸法安定化が図れる光電気複合部材の製造方法を提供することを目的とする(第2の目的)。
 さらに、生産性に優れた光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合基板モジュールを提供することを目的とする(第3の目的)。
An object of the present invention is to provide a method of manufacturing a wiring board capable of uniformly processing the width of wiring and forming a circuit with good dimensional stability (first object).
In the method described in Patent Document 4, since the optical waveguide is formed on the support, the support is peeled off, the sheet-like adhesive and the optical waveguide are bonded, and the electrical wiring board is laminated. If the peeling strength when peeling the waveguide from the support is large, the optical waveguide will be stretched, and even if it can be peeled with a small peeling strength, the stress accumulated in the waveguide is released, resulting in distortion. There is a problem that the dimension of the optical waveguide becomes unstable. Accordingly, an object of the present invention is to provide a method for manufacturing an optoelectric composite member in which distortion generated in an optical waveguide in a manufacturing process is reduced and dimensional stabilization can be achieved (second object).
It is another object of the present invention to provide an optoelectric composite substrate manufacturing method excellent in productivity, an optoelectric composite substrate manufactured thereby, and an optoelectric composite substrate module using the same (third object).
 本発明者らは、鋭意検討を重ねた結果、
(1)回路が形成された基板を、離型層を介して支持体に固定し、前記基板上の回路を離型層に埋め込むことにより、上記第1の目的を達成し得ること、
(2)従来法に加え、電気配線板上に上部支持体を貼り付けてから下部支持体を剥離することにより、上記第2の目的を達成し得ること、
(3)下部クラッド層付き電気配線基板を得たのち、下部クラッド層を構成要素とする光導波路の構築を行うことにより、上記第3の目的を達成し得ること、
(4)金属箔付き基板の基板表面に下部クラッド層を形成し、次いで、下部クラッド層を構成要素とする光導波路の構築と、金属箔付き基板からの電気配線基板の構築とを順次行うことにより、上記第3の目的を達成し得ること、
を見出した。
As a result of intensive studies, the present inventors have
(1) The substrate on which the circuit is formed is fixed to a support through a release layer, and the circuit on the substrate is embedded in the release layer, thereby achieving the first object.
(2) In addition to the conventional method, the second object can be achieved by peeling the lower support after attaching the upper support on the electrical wiring board;
(3) After obtaining an electrical wiring substrate with a lower cladding layer, by constructing an optical waveguide having the lower cladding layer as a constituent element, the third object can be achieved;
(4) A lower clad layer is formed on the substrate surface of the substrate with metal foil, and then an optical waveguide having the lower clad layer as a constituent element and an electric wiring substrate from the metal foil substrate are sequentially constructed. To achieve the third object,
I found.
 すなわち、本発明は、
(1)第一の基板に回路を形成する工程A、前記第一の基板の回路形成面に、第一の離型層を介して第一の支持体を積層する工程B、第一の基板の回路形成面の反対面に第二の基板又は回路を形成する工程Cを順に有する配線板の製造方法(第1の発明)、
(2)第二の支持体上に電気配線板を積層する工程、第一の支持体を積層する工程、第二の支持体を剥離する工程、及び前記第二の支持体の剥離面に光導波路を形成する工程を、この順に有する光電気複合部材の製造方法(第2の発明)、
(3)電気配線基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成するか又は金属箔付き基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成した後に金属箔付き基板の金属箔を導体パターン化して電気配線基板を構築することにより下部クラッド層付き電気配線基板を得る第1の工程と、下部クラッド層上にコアパターン及び上部クラッド層を順次形成して光導波路を構築する第2の工程を有する光電気複合基板の製造方法(第3の発明)、及び
(4)金属箔付き基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成する第1’の工程と、下部クラッド層上にコアパターン及び上部クラッド層を順次形成して光導波路を構築する第2の工程と、金属箔付き基板の金属箔を導体パターン化して電気配線基板を構築する第3の工程を有する光電気複合基板の製造方法(第4の発明)、
を提供するものである。
That is, the present invention
(1) Step A for forming a circuit on the first substrate, Step B for laminating the first support on the circuit forming surface of the first substrate via the first release layer, the first substrate A method of manufacturing a wiring board (first invention) having in sequence a step C of forming a second substrate or circuit on the opposite surface of the circuit forming surface;
(2) The step of laminating the electric wiring board on the second support, the step of laminating the first support, the step of peeling the second support, and the light on the peeling surface of the second support A method for producing a photoelectric composite member having the steps of forming a waveguide in this order (second invention),
(3) After forming the lower cladding layer directly on the substrate surface of the electric wiring substrate or via the adhesive layer, or forming the lower cladding layer directly or via the adhesive layer on the substrate surface of the substrate with metal foil, the metal A first step of obtaining an electric wiring substrate with a lower cladding layer by forming an electric wiring substrate by forming a metal pattern of a metal substrate of the foil-coated substrate, and sequentially forming a core pattern and an upper cladding layer on the lower cladding layer A method for manufacturing an optoelectric composite substrate having a second step of constructing an optical waveguide (third invention), and (4) forming a lower clad layer directly on the substrate surface of the substrate with metal foil or via an adhesive layer A first step, a second step in which a core pattern and an upper clad layer are sequentially formed on the lower clad layer to construct an optical waveguide, and the metal foil of the substrate with the metal foil is made into a conductor pattern and electric wiring An optoelectric composite substrate manufacturing method having a third step of constructing a substrate (fourth invention);
Is to provide.
 本発明の配線板の製造方法(第1の発明)によれば表裏の配線を順次形成する際に、先に形成した配線の凹凸が基材裏面に転写せず、配線幅を均一に加工することができ、かつ寸法安定性よく回路形成を行うことができる。
 また、本発明の光電気複合部材の製造方法(第2の発明)によれば、製造工程で光導波路に生じる歪みが低減され、寸法安定化が図れる。
 さらに、本発明(第3の発明)によれば、既に構築されている電気配線基板の、非常に視認し易い導電パターンを見ながら光導波路を構築してゆくので、光導波路と電気配線基板とを高い位置精度で複合でき、従って、大きな面積の光電気複合基板を、容易に且つ生産性良く製造することができる。
 また、本発明(第4の発明)によれば、既に構築されている光導波路を見ながら導電パターン等を形成するので、光導波路と電気配線基板とを高い位置精度で複合でき、従って、大きな面積の光電気複合基板を、容易に且つ生産性良く製造することができる。又、電気配線基板に下部クラッド層を接合しようとした場合で、電気配線基板が凹凸の激しいものであるときは、接合部分に空気残りが生じて品質を低下したり、接合した下部クラッド層に凹凸ができて、以降の光導波路構築に支障となる恐れがあるが、本発明では、平らなもの同士を接合するので、そのような問題は起らない。即ち、本発明は、電気配線基板が内層回路を持つ平坦形状のものである場合はむろん、電気配線基板が凹凸の激しいものである場合にも対応し得るものである。
According to the method for manufacturing a wiring board (first invention) of the present invention, when the front and back wirings are sequentially formed, the unevenness of the wiring formed previously is not transferred to the back surface of the substrate, and the wiring width is uniformly processed. Circuit formation can be performed with good dimensional stability.
Moreover, according to the manufacturing method (2nd invention) of the photoelectric composite member of this invention, the distortion which arises in an optical waveguide at a manufacturing process is reduced, and dimension stabilization can be aimed at.
Furthermore, according to the present invention (third invention), the optical waveguide is constructed while observing the conductive pattern of the already constructed electrical wiring board that is very easy to visually recognize. Therefore, a photoelectric composite substrate having a large area can be manufactured easily and with high productivity.
In addition, according to the present invention (fourth invention), the conductive pattern and the like are formed while looking at the already constructed optical waveguide, so that the optical waveguide and the electric wiring board can be combined with high positional accuracy, and thus a large A photoelectric composite substrate having an area can be easily manufactured with good productivity. In addition, when the lower clad layer is to be joined to the electric wiring board and the electric wiring board is severely uneven, an air residue is generated in the joined portion, resulting in deterioration of the quality or the joined lower clad layer. Although unevenness may be formed, which may hinder subsequent optical waveguide construction, in the present invention, since flat objects are joined together, such a problem does not occur. In other words, the present invention can cope with a case where the electric wiring board has a rugged surface as well as an electric wiring board having a flat shape having an inner layer circuit.
本発明(第1の発明)の配線板の製造方法を説明する図である。It is a figure explaining the manufacturing method of the wiring board of this invention (1st invention). 本発明(第1の発明)の配線板の製造方法の一実施態様を説明する図である。It is a figure explaining one embodiment of the manufacturing method of the wiring board of this invention (1st invention). 本発明(第1の発明)の配線板の製造方法の別の一実施態様を説明する図である。It is a figure explaining another embodiment of the manufacturing method of the wiring board of this invention (1st invention). 本発明(第1の発明)の配線板の製造方法の別の一実施態様を説明する図である。It is a figure explaining another embodiment of the manufacturing method of the wiring board of this invention (1st invention). 本発明(第1の発明)の基板の凹凸の測定方法を説明する図である。It is a figure explaining the measuring method of the unevenness | corrugation of the board | substrate of this invention (1st invention). 本発明(第2の発明)の光電気複合部材の製造方法を説明する図である。It is a figure explaining the manufacturing method of the photoelectric composite member of this invention (2nd invention). 本発明(第2の発明)の光電気複合部材の製造方法の一実施態様を説明する図である。It is a figure explaining one embodiment of the manufacturing method of the photoelectric composite member of this invention (2nd invention). 本発明(第2の発明)の光電気複合部材の製造方法の別の一実施態様を説明する図である。It is a figure explaining another embodiment of the manufacturing method of the photoelectric composite member of this invention (2nd invention). 本発明(第2の発明)の光電気複合部材の製造方法の別の一実施態様を説明する図である。It is a figure explaining another embodiment of the manufacturing method of the photoelectric composite member of this invention (2nd invention). 本発明(第2の発明)の光電気複合部材の製造方法の別の一実施態様を説明する図である。It is a figure explaining another embodiment of the manufacturing method of the photoelectric composite member of this invention (2nd invention). 本発明(第2の発明)の光電気複合部材の製造方法の別の一実施態様を説明する図である。It is a figure explaining another embodiment of the manufacturing method of the photoelectric composite member of this invention (2nd invention). 本発明(第3の発明)の光電気複合基板の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the photoelectric composite board | substrate of this invention (3rd invention). 本発明(第4の発明)の光電気複合基板の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the photoelectric composite board | substrate of this invention (4th invention).
符号の説明Explanation of symbols
1-1;第一の基板
1-2;第一の離型層
1-3;第一の接着層
1-4;第一の支持体
1-5;第二の基板
1-6;第二の離型層
1-7;第二の接着層
1-8;第二の支持体
1-9;回路
1-10;接着層
1-11;下部クラッド層
1-12; コアパターン
1-13;上部クラッド層
1-14;基板
1-15;光導波路
1-16;基板X
1-17;金属層
1-101;第一の基板1に配線がある部分の剥離面側の基板面
1-102;第一の基板1に配線がない部分の剥離面側の基板面
2-1;下部支持体
2-2;電気配線板
2-3;上部支持体
2-4;下部クラッド層
2-5;コアパターン
2-6;上部クラッド層
2-7;基板
2-8;光導波路
2-9;ミラー部
2-10;電気回路
2-11;接着剤または接着フィルム
2-12;離型シート
2-13;下部支持体分離面
2-14;上部支持体分離面
3-10、4-10;電気配線基板
3-11、4-11;金属箔
3-12、4-12;基板
3-13、4-13;金属箔付き基板
3-14、4-14;導体保護層
3-20、4-20;接着剤層
3-30、4-30;光導波路
3-31、4-31;下部クラッド層
3-32、4-32;コアパターン
3-33、4-33;上部クラッド層
1-1; first substrate 1-2; first release layer 1-3; first adhesive layer 1-4; first support 1-5; second substrate 1-6; Release layer 1-7; second adhesive layer 1-8; second support 1-9; circuit 1-10; adhesive layer 1-11; lower clad layer 1-12; Upper clad layer 1-14; substrate 1-15; optical waveguide 1-16; substrate X
1-17; metal layer 1-101; substrate surface 1-102 on the peeling surface side of the first substrate 1 where the wiring is present; substrate surface 2-102 on the peeling surface side where the first substrate 1 has no wiring DESCRIPTION OF SYMBOLS 1; Lower support body 2-2; Electrical wiring board 2-3; Upper support body 2-4; Lower clad layer 2-5; Core pattern 2-6; Upper clad layer 2-7; 2-9; mirror part 2-10; electric circuit 2-11; adhesive or adhesive film 2-12; release sheet 2-13; lower support separating surface 2-14; upper support separating surface 3-10; 4-10; electric wiring boards 3-11, 4-11; metal foils 3-12, 4-12; boards 3-13, 4-13; boards 3-14, 4-14 with metal foil; conductor protective layer 3 -20, 4-20; adhesive layer 3-30, 4-30; optical waveguide 3-31, 4-31; lower cladding layer 3-32, 4 32; core pattern 3-33,4-33; upper cladding layer
(I)第1発明
 本発明(第1発明)により製造される配線板は、例えば、図1(c)に示すように、第一の支持体1-4に第一の基板1-1が第一の離型層1-2を介して積層され、第一の基板1-1の回路1-9を第一の離型層1-2に埋め込んだものである。第一の支持体1-4と第一の基板1-1の固定には第一の接着層1-3を用いている。
 その後、第一の基板1-1の第一の支持体1-4に対して反対面に、回路を形成したり(図1(f)参照)、図2(f)-1に示すように、回路を形成した層を多層化したり、図2(f)-2に示すように、接着層1-10を介して下部クラッド層1-11、コアパターン1-12及び上部クラッド層1-13が順に積層されてなる光導波路1-15を積層したり、図2(f)-3に示すように、図2(f)-2の上部クラッド層1-13面にさらに基板を積層したり、図2(f)-4に示すように、図2(f)-1のように回路を形成した層を多層化した後、図2(f)-2のように光導波路1-15を形成したりするものである。また図3のように第一の基板1-1内に光導波路1-15が内層に配置されており、上下に回路が設置されているものでもある。このときは、基板X側の基板Xの光導波路形成面とは反対面に回路が形成され、第一の離型層1-2に回路1-9が埋め込まれる形となる(図3(e)参照)。
 なお、本発明において、回路とは、電気回路および光回路(光導波路)のことを言う。
(I) First Invention A wiring board manufactured according to the present invention (first invention) includes, for example, a first substrate 1-1 on a first support 1-4 as shown in FIG. 1 (c). The circuit is laminated via the first release layer 1-2, and the circuit 1-9 of the first substrate 1-1 is embedded in the first release layer 1-2. A first adhesive layer 1-3 is used to fix the first support 1-4 and the first substrate 1-1.
Thereafter, a circuit is formed on the surface of the first substrate 1-1 opposite to the first support 1-4 (see FIG. 1 (f)), or as shown in FIG. 2 (f) -1. The layers in which the circuit is formed are multi-layered or, as shown in FIG. 2 (f) -2, the lower cladding layer 1-11, the core pattern 1-12, and the upper cladding layer 1-13 through the adhesive layer 1-10. Are laminated in order, or a substrate is further laminated on the upper cladding layer 1-13 surface of FIG. 2 (f) -2 as shown in FIG. 2 (f) -3. As shown in FIG. 2 (f) -4, after the layers in which the circuit is formed are multilayered as shown in FIG. 2 (f) -1, the optical waveguide 1-15 is formed as shown in FIG. 2 (f) -2. Or to form. In addition, as shown in FIG. 3, the optical waveguide 1-15 is disposed in the first layer in the first substrate 1-1, and the circuit is installed above and below. At this time, a circuit is formed on the surface opposite to the optical waveguide forming surface of the substrate X on the substrate X side, and the circuit 1-9 is embedded in the first release layer 1-2 (FIG. 3 (e)). )reference).
In the present invention, the circuit means an electric circuit and an optical circuit (optical waveguide).
 以下、第一の基板1-1と第一の支持体1-4の積層方法について説明する。
(第一の基板と第一の支持体の積層方法)
 第一の支持体1-4に第一の基板1-1を積層する前工程として、第一の支持体1-4及び第一の基板1-1よりも各辺5~30mm小さい第一の離型層1-2を挟み、第一の離型層1-2と第一の支持体1-4間に第一の支持体1-4と同サイズの第一の接着層1-3を介して貼り合わせることで第一の離型層1-2に回路1-9を埋め込むことができ、同時に第一の基板1-1を第一の支持体1-4に固定することが出来る(図1(c)参照)。
 積層の方法には、特に指定はなく、手貼り、ラミネータ、真空ラミネータ、プレス、真空プレスが好適に挙げられる。第一の支持体1-4と第一の基板間1-1に空気が入ると加熱工程で膨れにつながるため、空気が入らない貼り付け方法としては、真空ラミネータや真空プレスがより好ましい。
 更に、回路1-9の埋め込み性の向上や、第一の基板1-1の第一の支持体1-4に対して反対面を平坦化するために、第一の基板1-1と第一の支持体1-4の積層時に第一の支持体1-4に対して反対側から第一の基板1-1を硬い板で支持するか、第一の基板1-1と第一の支持体1-4を積層する前に、第一の基板1-1に第二の支持体1-8を積層しておくと尚良い。上記の硬い板は第一の離型層1-2よりも圧力による変形が少ない素材であれば良い。
Hereinafter, a method for laminating the first substrate 1-1 and the first support 1-4 will be described.
(Lamination method of first substrate and first support)
As a pre-process for stacking the first substrate 1-1 on the first support 1-4, the first support 1-4 and the first substrate 1-1 are smaller than each side by 5 to 30 mm. A first adhesive layer 1-3 having the same size as the first support 1-4 is interposed between the first release layer 1-2 and the first support 1-4 with the release layer 1-2 interposed therebetween. The circuit 1-9 can be embedded in the first release layer 1-2 by bonding together, and at the same time, the first substrate 1-1 can be fixed to the first support 1-4 ( (Refer FIG.1 (c)).
The lamination method is not particularly specified, and hand bonding, laminator, vacuum laminator, press, and vacuum press are preferable. When air enters the space between the first support 1-4 and the first substrate 1-1, the heating process leads to blistering. Therefore, a vacuum laminator or a vacuum press is more preferable as a bonding method that does not allow air to enter.
Further, in order to improve the embedding property of the circuit 1-9 and to flatten the surface opposite to the first support 1-4 of the first substrate 1-1, When laminating one support 1-4, the first substrate 1-1 is supported by a hard plate from the opposite side to the first support 1-4, or the first substrate 1-1 and the first support 1-4 are More preferably, the second support 1-8 is stacked on the first substrate 1-1 before the support 1-4 is stacked. The hard plate may be a material that is less deformed by pressure than the first release layer 1-2.
 次に、第一の基板1-1と第二の支持体1-8の積層方法について説明する。
(第一の基板と第二の支持体の積層方法)
 工程Dにおいて第二の支持体1-8に第一の基板1-1を積層するためには、再剥離性のある第二の接着層1-7を介して貼り付けても良く、分離の際に第二の支持体1-8及び第二の接着層1-7を第一の基板1-1から引き剥がせば良い。また第二の支持体1-8を積層しない場合には上記の第二の離型層1-6や第二の接着層71-は必要ない。
 再剥離性のない第二の接着層1-7を用いる場合には、第二の支持体1-8に第一の基板1-1を積層する前工程として、第一の支持体1-4と第二の支持体1-8を順次分離する関係上、第一の離型層1-2よりも各辺1~30mm小さい第二の離型層1-6を挟み、第二の離型層1-6と第二の支持体1-8間に第二の支持体1-8と同サイズの第二の接着層1-7を介して貼り合わせることで、第一の基板1-1又は第二の基板1-5を第二の支持体1-8に固定することが出来る。第二の支持体1-8を積層後に第一の支持体1-4のみを分離する際には、第一の離型層1-2よりも小さく、第二の離型層1-6よりも大きいサイズに製品を切断すれば良い。
 積層の方法には、特に指定はなく、第一の支持体と第一の基板を積層する方法と同一で良い。
 また、第一の基板1-1の第二の支持体1-8に対して反対面に回路1-9を形成する観点から、第一の基板1-1の第二の支持体1-8側の面は平坦面であることが好ましく、その際の第二の離型層1-6は第一の離型層1-2よりも圧力による変形が少ないとより好ましい。
Next, a method for laminating the first substrate 1-1 and the second support 1-8 will be described.
(Lamination method of first substrate and second support)
In order to laminate the first substrate 1-1 on the second support 1-8 in the step D, the first substrate 1-1 may be attached via the second peelable adhesive layer 1-7. At this time, the second support 1-8 and the second adhesive layer 1-7 may be peeled off from the first substrate 1-1. If the second support 1-8 is not laminated, the second release layer 1-6 and the second adhesive layer 71- are not necessary.
When the second adhesive layer 1-7 having no removability is used, as a pre-process for laminating the first substrate 1-1 on the second support 1-8, the first support 1-4 And the second support 1-8 are sequentially separated so that the second release layer 1-6 having a side 1 to 30 mm smaller than the first release layer 1-2 is sandwiched between the second release layers 1-8. The first substrate 1-1 is bonded between the layer 1-6 and the second support 1-8 via a second adhesive layer 1-7 having the same size as the second support 1-8. Alternatively, the second substrate 1-5 can be fixed to the second support 1-8. When only the first support 1-4 is separated after laminating the second support 1-8, it is smaller than the first release layer 1-2, and less than the second release layer 1-6. You can cut the product to a larger size.
The method for stacking is not particularly specified, and may be the same as the method for stacking the first support and the first substrate.
Further, from the viewpoint of forming the circuit 1-9 on the opposite surface to the second support 1-8 of the first substrate 1-1, the second support 1-8 of the first substrate 1-1. The side surface is preferably a flat surface, and the second release layer 1-6 at that time is more preferably less deformed by pressure than the first release layer 1-2.
 以下、第一の支持体1-4及び第二の支持体1-8に第一の基板1-1及び第二の基板1-5を積層するのに必要な各構成部分について説明する。
(第一の支持体及び第二の支持体)
 第一の支持体1-4及び第二の支持体1-8の種類としては、特に制限されるものではないが、例えば、FR-4基板、半導体基板、シリコン基板、ガラス基板、金属板等を用いることができ、非可撓性の固い材質のものが好ましい。
 また、第一の支持体1-4及び第二の支持体1-8として寸法安定性のある厚みのある支持体を用いることで、第一の基板1-1及び第二の基板1-5自体に寸法安定性を付与したり、回路1-9の埋め込み性を向上させたりすることができる。寸法安定性のある厚みのある支持体の材料としては、特に限定されないが、寸法安定性の観点からFR-4基板、半導体基板、シリコン板、ガラス板や金属板などが好適に挙げられる。
 支持体厚は、支持体の反り、寸法安定性、生産性により、適宜変えてよいが、0.1~10.0mmであることが好ましい。
 また、前記硬い板も、上記と同様の材料及び支持体厚であることがあることが好ましい。
Hereinafter, each component necessary for stacking the first substrate 1-1 and the second substrate 1-5 on the first support 1-4 and the second support 1-8 will be described.
(First support and second support)
The types of the first support 1-4 and the second support 1-8 are not particularly limited. For example, an FR-4 substrate, a semiconductor substrate, a silicon substrate, a glass substrate, a metal plate, etc. The non-flexible hard material is preferable.
Further, by using dimensionally stable thick supports as the first support 1-4 and the second support 1-8, the first substrate 1-1 and the second substrate 1-5 are used. Dimensional stability can be imparted to itself, and the embedding property of the circuit 1-9 can be improved. The thickness of the support having a thickness having dimensional stability is not particularly limited, but an FR-4 substrate, a semiconductor substrate, a silicon plate, a glass plate, a metal plate, and the like are preferable from the viewpoint of dimensional stability.
The thickness of the support may be appropriately changed depending on the warp, dimensional stability, and productivity of the support, but is preferably 0.1 to 10.0 mm.
Moreover, it is preferable that the said hard board may also be the same material and support body thickness as the above.
(基板)
 本発明(第1発明)において用いられる基板(第1の基板1-1、第2の基板1-5及び基板X16)としては、特に限定されるものではないが、上記のように第一の基板1-1の第二の支持体1-8側の面は平坦面であることが好ましいため、サブトラクティブ法による回路形成前の金属層平坦面や、セミアディティブ法による回路形成前の樹脂平坦面や、光導波路1-15を形成するために適した樹脂又は金属平坦面であることがより好ましい。図1~3に示した基板上下に配置した金属層の有無は回路形成方法によって決定して良い。
 基板の種類としては、特に制限されるものではないが、例えば、FR-4基板、ビルドアップ基板、ポリイミド基板、半導体基板、シリコン基板やガラス基板等を用いることができ、可撓性があるフレキシブルな材質でも、非可撓性の固い材質のものであっても良いが、微細配線を形成する場合、微細配線用の絶縁樹脂層であることが好ましい。
 絶縁樹脂層の材料としては、熱硬化性樹脂または熱可塑性樹脂が使用でき、熱硬化性樹脂としては、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、シクロペンタジエンから合成した樹脂、トリス(2-ヒドロキシエチル)イソシアヌラートを含む樹脂、芳香族ニトリルから合成した樹脂、3量化芳香族ジシアナミド樹脂、トリアリルトリメタリレートを含む樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、縮合多環芳香族を含む熱硬化性樹脂等を用いることができる。
 熱可塑性樹脂としては、ポリイミド樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、アラミド樹脂等がある。
 また、基板としてフィルムを用いることで、第一の基板1-1、第二の基板1-5、基板X1-16、光導波路1-15に柔軟性及び強靭性を付与させることができる。フィルムの材料としては、特に限定されないが、柔軟性、強靭性を有するとの観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどのフィルムが好適に挙げられる。
 フィルムの厚さは、目的とする柔軟性により適宜変えてよいが、5~250μmであることが好ましい。5μm以上であると強靭性が得易いという利点があり、250μm以下であると十分な柔軟性が得られる。
(substrate)
The substrates (first substrate 1-1, second substrate 1-5, and substrate X16) used in the present invention (first invention) are not particularly limited, but as described above, Since the surface on the second support 1-8 side of the substrate 1-1 is preferably a flat surface, the flat surface of the metal layer before the circuit formation by the subtractive method or the resin flatness before the circuit formation by the semi-additive method is used. More preferably, the surface is a resin or metal flat surface suitable for forming the optical waveguide 1-15. The presence or absence of metal layers arranged above and below the substrate shown in FIGS. 1 to 3 may be determined by a circuit formation method.
The type of the substrate is not particularly limited, and for example, an FR-4 substrate, a build-up substrate, a polyimide substrate, a semiconductor substrate, a silicon substrate, a glass substrate, or the like can be used. However, when forming fine wiring, an insulating resin layer for fine wiring is preferable.
Thermosetting resin or thermoplastic resin can be used as the material of the insulating resin layer, and as the thermosetting resin, phenol resin, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin , Epoxy resin, silicone resin, resin synthesized from cyclopentadiene, resin containing tris (2-hydroxyethyl) isocyanurate, resin synthesized from aromatic nitrile, trimerized aromatic dicyanamide resin, triallyl trimetallate Resins, furan resins, ketone resins, xylene resins, thermosetting resins containing condensed polycyclic aromatics, and the like can be used.
Examples of the thermoplastic resin include polyimide resin, polyphenylene oxide resin, polyphenylene sulfide resin, and aramid resin.
Further, by using a film as the substrate, flexibility and toughness can be imparted to the first substrate 1-1, the second substrate 1-5, the substrate X1-16, and the optical waveguide 1-15. The material of the film is not particularly limited, but from the viewpoint of having flexibility and toughness, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyethylene, polypropylene, polyamide, polycarbonate, polyphenylene ether, polyether Preferable examples include films of sulfide, polyarylate, liquid crystal polymer, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, and polyimide.
The thickness of the film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 μm. If it is 5 μm or more, there is an advantage that toughness is easily obtained, and if it is 250 μm or less, sufficient flexibility can be obtained.
(離型層)
 離型層の種類としては、特に制限されるものではないが、例えば、プレス用の離型シート、離型性のある樹脂又は接着剤、UV又は熱剥離性の樹脂等を用いることができる。
 また、上記のように第一の基板1-1の第二の支持体1-8側の面は平坦面であることが好ましいため、第二の離型層1-6としてフィルム状の材料を用いることで、平坦化を図ることができる。フィルムの材料としては、特に限定されないが、平坦性を有するとの観点から、銅箔、銀箔、金箔、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどが好適に挙げられる。耐熱性や基板との離型性の観点から、銅箔、ポリイミドフィルム、アラミドフィルムがより好適に挙げられる。
 フィルムの厚さは、目的とする平坦性により適宜変えてよいが、5~250μmであることが好ましい。5μm以上であると強靭性が得易いという利点があり、250μm以下であると第二の接着層1-7による十分な埋め込み性が得られる。
 更に、第一の離型層1-2には第一の基板1-1の回路1-9を埋め込む必要があるため、回路埋め込み性の良い材料を用いることが好ましい。第一の離型層1-2として第二の離型層1-6と同様の材料が好適に挙げられるが、回路埋め込み性の観点からプレス用の離型シートがより好ましい。
 離型層の厚さは、目的とする回路厚みにより適宜変えてよいが、回路厚みより5μm以上厚いことが好ましい。
(Release layer)
The type of the release layer is not particularly limited, and for example, a release sheet for press, a release resin or adhesive, UV or heat release resin, and the like can be used.
Further, since the surface on the second support 1-8 side of the first substrate 1-1 is preferably a flat surface as described above, a film-like material is used as the second release layer 1-6. By using it, planarization can be achieved. The material of the film is not particularly limited, but from the viewpoint of having flatness, polyester such as copper foil, silver foil, gold foil, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyamide, polycarbonate, polyphenylene Preferred examples include ether, polyether sulfide, polyarylate, liquid crystal polymer, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyamide imide, and polyimide. From the viewpoint of heat resistance and releasability from the substrate, copper foil, polyimide film, and aramid film are more preferable.
The thickness of the film may be appropriately changed depending on the intended flatness, but is preferably 5 to 250 μm. If it is 5 μm or more, there is an advantage that toughness is easily obtained, and if it is 250 μm or less, sufficient embedding by the second adhesive layer 1-7 can be obtained.
Furthermore, since it is necessary to embed the circuit 1-9 of the first substrate 1-1 in the first release layer 1-2, it is preferable to use a material with good circuit embeddability. As the first release layer 1-2, the same material as that of the second release layer 1-6 is preferably used, but a release sheet for press is more preferable from the viewpoint of circuit embedding property.
The thickness of the release layer may be appropriately changed depending on the intended circuit thickness, but is preferably 5 μm or more thicker than the circuit thickness.
(接着層)
 第一の基板1-1や第二の基板1-5と第一の支持体1-4や第二の支持体1-8との接着には、特に限定されないが、離型層兼接着層とする場合には再剥離性のある接着層1-3及び1-7であることが好ましい。その際の層構成を図4に示す。再剥離性のある接着層の材料としては、片面微粘着の両面テープ、ホットメルト接着剤、UV硬化型接着剤などが好適に挙げられる。上記のように第一の離型層1-2には第一の基板1-1の回路1-9を埋め込む必要があるため、回路を埋め込める厚みの材料を用いることが好ましい。
 また、再剥離する必要がない離型層を挟んだ場合の接着や、第一の基板1-1、第二の基板1-5、光導波路1-15間の接着(接着層1-10)などには、耐熱性のある接着層が好ましく、再剥離する必要がない接着層の材料としては、特に限定されないが、耐熱性の観点からプリプレグ、ビルドアップ材、耐熱性の接着剤、上記の基材で列挙した絶縁性の樹脂などが好適に挙げられる。光導波路1-15において、光信号が透過する部分の接着には高い透過率の接着層が必要であり、接着層1-10の材料としては、特に限定されないが、(PCT/JP2008/05465)に記載の接着剤を使用することがより好ましい。第一の基板1-1や第二の基板1-5と第一の支持体1-4や第二の支持体1-8を、離型層を挟んで接着する場合には、接着層の厚みが離型層よりも5μm以上厚いことが好ましい。
(Adhesive layer)
Adhesion between the first substrate 1-1 or the second substrate 1-5 and the first support 1-4 or the second support 1-8 is not particularly limited, but a release layer / adhesion layer In this case, the adhesive layers 1-3 and 1-7 having removability are preferable. The layer structure at that time is shown in FIG. Suitable examples of the material for the releasable adhesive layer include single-sided slightly adhesive double-sided tapes, hot melt adhesives, and UV curable adhesives. As described above, since it is necessary to embed the circuit 1-9 of the first substrate 1-1 in the first release layer 1-2, it is preferable to use a material having a thickness capable of embedding the circuit.
Also, adhesion when a release layer that does not need to be peeled again is sandwiched, or adhesion between the first substrate 1-1, the second substrate 1-5, and the optical waveguide 1-15 (adhesion layer 1-10) For example, a heat-resistant adhesive layer is preferable, and the material of the adhesive layer that does not need to be peeled again is not particularly limited. However, from the viewpoint of heat resistance, a prepreg, a build-up material, a heat-resistant adhesive, Preferable examples include insulating resins listed for the base material. In the optical waveguide 1-15, an adhesive layer having a high transmittance is required for adhesion of a portion through which an optical signal is transmitted. The material of the adhesive layer 1-10 is not particularly limited, but (PCT / JP2008 / 05465) It is more preferable to use the adhesive described in 1. When the first substrate 1-1 or the second substrate 1-5 is bonded to the first support 1-4 or the second support 1-8 with the release layer interposed therebetween, The thickness is preferably 5 μm or more thicker than the release layer.
 次に、本発明における配線板を構成する各層の形成方法等について説明する。
(回路の形成方法)
 回路の形成方法としては、回路を形成する面に金属層を形成し、更にエッチングレジストを形成し、金属層の不要な箇所をエッチングで除去する方法(サブトラクト法)、めっきレジストを形成し、回路を形成する面の必要な箇所にのみめっきにより回路を形成する方法(アディティブ法)、回路を形成する面に薄い金属層(シード層)を形成し、更にめっきレジストを形成し、その後、電気めっきで必要な回路を形成した後、薄い金属層をエッチングで除去する方法(セミアディティブ法)がある。
 回路の形成方法はいずれの方法を用いても良いが、(回路幅)≦20μmの微細配線を形成するためには、セミアディティブ法がより好ましい。
 また、回路形成に用いるエッチングレジスト又はめっきレジストは、ポジ型、ネガ型いずれでも可能であるが、ポジ型レジストの方が、微細配線形成が容易であり、より好ましい。
Next, a method for forming each layer constituting the wiring board in the present invention will be described.
(Circuit formation method)
As a method of forming a circuit, a metal layer is formed on a surface on which a circuit is formed, an etching resist is further formed, an unnecessary portion of the metal layer is removed by etching (subtract method), a plating resist is formed, and a circuit is formed. A method of forming a circuit by plating only on the necessary part of the surface on which the metal is to be formed (additive method), forming a thin metal layer (seed layer) on the surface on which the circuit is to be formed, further forming a plating resist, and then electroplating There is a method (semi-additive method) in which a thin metal layer is removed by etching after forming a necessary circuit.
Any method may be used for forming the circuit, but the semi-additive method is more preferable in order to form fine wiring with (circuit width) ≦ 20 μm.
The etching resist or plating resist used for circuit formation can be either a positive type or a negative type. However, the positive type resist is more preferable because fine wiring can be easily formed.
(セミアディティブ法におけるシード層の形成)
 セミアディティブ法による回路形成の場合、回路を形成する面にシード層を形成する方法は、蒸着またはめっきによる方法と、金属層を貼り合わせる方法がある。
 (蒸着またはめっきによるシード層の形成)
 前述の通り、回路を形成する面に蒸着またはめっきによってシード層を形成することができる。
 例えば、シード層として、スパッタリングにより下地金属と薄膜銅層を形成する場合、薄膜銅層を形成するために使用されるスパッタリング装置は、2極スパッタ、3極スパッタ、4極スパッタ、マグネトロンスパッタ、ミラートロンスパッタ等を用いることができる。
 スパッタに用いるターゲットは、密着を確保するために、例えばCr、Ni、Co、Pd、Zr、Ni/Cr、Ni/Cu等の金属を下地金属として用い、5~50nmスパッタリングする。
 その後、銅をターゲットにして200~500nmスパッタリングしてシード層を形成できる。
 また、回路を形成する面にめっき銅を、0.5~3μm無電解銅めっきを行い形成することもできる。
(Formation of seed layer in semi-additive process)
In the case of circuit formation by a semi-additive method, there are a method for forming a seed layer on a surface on which a circuit is formed, a method by vapor deposition or plating, and a method of bonding a metal layer.
(Formation of seed layer by vapor deposition or plating)
As described above, the seed layer can be formed on the surface on which the circuit is formed by vapor deposition or plating.
For example, when a base metal and a thin film copper layer are formed by sputtering as a seed layer, the sputtering apparatus used to form the thin film copper layer is a bipolar sputtering, a three-pole sputtering, a four-pole sputtering, a magnetron sputtering, a mirror. Tron sputtering or the like can be used.
The target used for sputtering is sputtered 5 to 50 nm using a metal such as Cr, Ni, Co, Pd, Zr, Ni / Cr, or Ni / Cu as a base metal in order to ensure adhesion.
Thereafter, a seed layer can be formed by sputtering 200 to 500 nm using copper as a target.
Alternatively, it is possible to form plated copper on the surface on which the circuit is formed by electroless copper plating of 0.5 to 3 μm.
 (金属層を貼り合わせる方法)
 また、回路を形成する面に接着機能がある場合は、前述の通り、金属層をプレスやラミネートによって貼り合わせることによりシード層を形成することもできる。
 しかし、薄い金属層を直接貼り合わせるのは非常に困難であるため、厚い金属層を張り合わせた後にエッチング等により薄くする方法や、キャリア付金属層を貼り合わせた後にキャリア層を除去する方法などがある。
 例えば、前者としてはキャリア銅/ニッケル/薄膜銅の三層銅箔があり、キャリア銅をアルカリエッチング液で、ニッケルをニッケルエッチング液で除去し、後者としてはアルミ、銅、絶縁樹脂などをキャリアとしたピーラブル銅箔などが使用でき、5μm以下のシード層を形成できる。
 また、厚み9~18μmの銅箔を貼り付け、5μm以下になるように、エッチングにより均一に薄くし、シード層を形成してもかまわない。
 セミアディティブ法における、電気めっきの種類については一般的に使用されるものを使用すればよく、特に限定しないが、回路を形成するためには、めっき金属として銅を使用するのが好ましい。
(Method of bonding metal layers)
When the surface on which the circuit is formed has an adhesive function, as described above, the seed layer can also be formed by laminating the metal layer by pressing or laminating.
However, since it is very difficult to directly bond a thin metal layer, there are methods such as a method of thinning by attaching a thick metal layer and then a method of removing the carrier layer after bonding a metal layer with a carrier. is there.
For example, the former has a three-layer copper foil of carrier copper / nickel / thin film copper, the carrier copper is removed with an alkali etching solution, nickel is removed with a nickel etching solution, and the latter is made of aluminum, copper, insulating resin, etc. The peelable copper foil can be used, and a seed layer of 5 μm or less can be formed.
Alternatively, a 9 to 18 μm thick copper foil may be attached, and the seed layer may be formed by etching so that the thickness is uniformly 5 μm or less.
What is necessary is just to use what is generally used about the kind of electroplating in a semi-additive method, Although it does not specifically limit, In order to form a circuit, it is preferable to use copper as a plating metal.
(アディティブ法による回路形成)
 アディティブ法による回路形成の場合もセミアディティブ法と同様、回路を形成する面の必要な箇所にのみ、めっきを行うことで形成されるが、アディティブ法で使用されるめっきは通常、無電解めっきが使用される。
 例えば、回路を形成する面に無電解めっき用触媒を付着させた後、めっきが行われない表面部分にめっきレジストを形成して、無電解めっき液に浸漬し、めっきレジストに覆われていない箇所にのみ、無電解めっきを行い回路を形成する。
(Circuit formation by additive method)
In the case of circuit formation by the additive method, as with the semi-additive method, it is formed by plating only on the necessary part of the surface on which the circuit is formed. However, the plating used in the additive method is usually electroless plating. used.
For example, after depositing an electroless plating catalyst on the surface on which the circuit is to be formed, a plating resist is formed on the surface portion where plating is not performed, and the substrate is immersed in an electroless plating solution and not covered with the plating resist Only the electroless plating is performed to form a circuit.
(回路がある基板の多層化)
 回路がある基板を多層化する場合、回路形成面に絶縁層の基板を形成し、絶縁層の基板表面に上記のサブトラクティブ法、セミアディティブ法、アディティブ法の少なくともいずれかを用いて回路形成を行うことが出来る。絶縁層の基板としては、ビルドアップ基板、プリプレグ、ポリイミド基板などが好適に挙げられる。
 絶縁層の基板の形成方法は特に問わないが、ビルドアップ基板を用いる場合は、ロールラミネータ又は真空ラミネータを用いて絶縁層の基板を形成後、セミアディティブ法又はアディティブ法を用いて回路形成を行うことができる。プリプレグを用いる場合は、回路形成面上にプリプレグ、金属層と順次構成し、プレス積層後、金属層をサブトラクティブ法又はセミアディティブ法を用いて回路形成を行うことができる。ポリイミド基板を用いる場合は、金属層付きポリイミド基板を用いれば、接着層を介して回路形成面にプレス積層又はロールラミネート又は真空ラミネート後に、サブトラクティブ法又はセミアディティブ法を用いて回路形成を行うことができ、金属層がないポリイミド基板を用いれば、上記と同様の方法でポリイミド基板を積層後に、セミアディティブ法又はアディティブ法を用いて回路形成を行うことができる。
(Multi-layer circuit board with circuit)
When a circuit board is multilayered, an insulating layer substrate is formed on the circuit forming surface, and circuit formation is performed on the insulating layer substrate surface using at least one of the subtractive method, semi-additive method, and additive method described above. Can be done. As the substrate for the insulating layer, a build-up substrate, a prepreg, a polyimide substrate, and the like are preferably exemplified.
The method of forming the insulating layer substrate is not particularly limited. When a build-up substrate is used, the insulating layer substrate is formed using a roll laminator or a vacuum laminator, and then a circuit is formed using a semi-additive method or an additive method. be able to. When a prepreg is used, a prepreg and a metal layer are sequentially formed on the circuit formation surface, and after press lamination, the metal layer can be formed using a subtractive method or a semi-additive method. When a polyimide substrate is used, if a polyimide substrate with a metal layer is used, circuit formation is performed using a subtractive method or a semi-additive method after press lamination, roll lamination, or vacuum lamination on the circuit formation surface via an adhesive layer. If a polyimide substrate without a metal layer is used, a circuit can be formed using a semi-additive method or an additive method after laminating the polyimide substrate in the same manner as described above.
(回路の層間接続)
 各層の回路の間の接続は適宜行うことができる。以下に回路の層間接続方法について詳しく記述する。
(バイアホール)
 本発明の配線板は、複数の回路がある層を有することがあるため、各層の回路を電気的に接続するためのバイアホールを設けることができる。
 バイアホールは、回路層間の基板に接続用の穴を設け、この穴を導電性ペーストやめっき等で充填し形成できる。
 穴の加工方法としては、パンチやドリルなどの機械加工、レーザ加工、薬液による化学エッチング加工、プラズマを用いたドライエッチング法などがある。
(Circuit interlayer connection)
Connections between circuits in each layer can be made as appropriate. The circuit interlayer connection method is described in detail below.
(Bahia Hall)
Since the wiring board of the present invention may have a layer having a plurality of circuits, a via hole for electrically connecting the circuits of each layer can be provided.
The via hole can be formed by providing a hole for connection in a substrate between circuit layers and filling the hole with a conductive paste, plating or the like.
Examples of the hole processing method include mechanical processing such as punching and drilling, laser processing, chemical etching processing using a chemical solution, and dry etching using plasma.
(デスミア)
 前述の方法により形成されたバイアホールのスミア除去としては、ドライ処理またはウェット処理を用いることができる。
 ドライ処理としては、プラズマ処理、逆スパッタリング処理、イオンガン処理が使用できる。
 さらに、プラズマ処理には大気圧プラズマ処理、真空プラズマ処理、RIE処理があり、必要に応じて選択できる。
 これらの処理に使用するガスとしては、窒素、酸素、アルゴン、フレオン(CF4)、またはこれらの混合ガスが好ましい。
 ウェット処理にはクロム酸塩、過マンガン酸塩等の酸化剤を用いることができる。
(Desmear)
As the smear removal of the via hole formed by the above-described method, a dry process or a wet process can be used.
As the dry treatment, plasma treatment, reverse sputtering treatment, or ion gun treatment can be used.
Furthermore, plasma processing includes atmospheric pressure plasma processing, vacuum plasma processing, and RIE processing, which can be selected as necessary.
As a gas used for these treatments, nitrogen, oxygen, argon, freon (CF 4 ), or a mixed gas thereof is preferable.
An oxidizing agent such as chromate or permanganate can be used for the wet treatment.
 (層間接続)
 層間接続の方法としては、前述のバイアホールによる方法以外に、絶縁層に導電性ペーストやめっきなどで導電層を形成し、この絶縁層の回路を形成した面にプレスやラミネート等で積層する方法などもある。
(Interlayer connection)
As an interlayer connection method, in addition to the above-described method using via holes, a method in which a conductive layer is formed on the insulating layer with a conductive paste or plating, and is laminated on the surface of the insulating layer on which the circuit is formed by pressing or laminating. There are also.
(絶縁被覆の形成)
 本発明の配線板の最外層に位置する回路面には絶縁被覆を形成することができ、第一の支持体1-1及び第二の支持体1-5を積層する前後のいずれかで行っても良い。
 絶縁被覆のパターン形成は、ワニス状の材料であれば印刷で行うことも可能であるが、より精度を確保するためには、感光性のソルダーレジスト、カバーレイフィルム、フィルム状レジストを用いるのが好ましい。
 材質としては、エポキシ系、ポリイミド系、エポキシアクリレート系、フルオレン系の材料を用いることができる。
(Formation of insulation coating)
An insulating coating can be formed on the circuit surface located on the outermost layer of the wiring board of the present invention, which is performed either before or after the first support 1-1 and the second support 1-5 are laminated. May be.
Pattern formation of the insulating coating can be performed by printing if it is a varnish-like material, but in order to ensure more accuracy, it is possible to use a photosensitive solder resist, a coverlay film, or a film-like resist. preferable.
As a material, an epoxy-based material, a polyimide-based material, an epoxy acrylate-based material, or a fluorene-based material can be used.
(光電気複合基板の製造方法)
 以下、第二の基板1-5として光導波路を用いた本発明の配線板の製造方法について詳述する(図3参照)。
 まず、図3(a)~(c)に示すように、第二の支持体1-8に固定した第一の基板1-1上に、下部クラッド層1-11を設け、その上にコアパターン1-12を形成し、さらに上部クラッド層1-13を積層する。第一の基板1-1と下部クラッド層1-11に接着力がない場合は接着層1-10を介して貼り付けても良い。さらに上記のような下部クラッド層1-11、コアパターン1-12、上部クラッド層1-13を有する光導波路を、接着剤を介して回路上に、直接貼り付ける方法を用いてもできる。
 支持体上への下部クラッド層1-11の形成は、特に限定されず公知の方法によれば良く、例えば、下部クラッド層1-11の形成材料をスピンコート等により下部支持フィルム上に塗布し、プリベイクを行った後、紫外線を照射して薄膜を硬化させることにより形成できる。また、コアパターン1-12の形成も、特に限定されず、例えば、下部クラッド層1-11上に、下部クラッド層1-11より屈折率の高いコア層を形成し、エッチングによりコアパターンを形成すれば良い。上部クラッド層1-13の形成方法も特に限定されず、例えば、下部クラッド層1-11と同様の方法で形成すれば良い。
 この下部クラッド層1-11は、基板との密着性の観点から、下部クラッド層1-11と基板の間に接着剤を塗布したり、接着シートを貼り合わせたりしても良い。
(Photoelectric composite substrate manufacturing method)
Hereinafter, a method for manufacturing a wiring board of the present invention using an optical waveguide as the second substrate 1-5 will be described in detail (see FIG. 3).
First, as shown in FIGS. 3A to 3C, a lower clad layer 1-11 is provided on a first substrate 1-1 fixed to a second support 1-8, and a core is formed thereon. A pattern 1-12 is formed, and an upper clad layer 1-13 is further laminated. If the first substrate 1-1 and the lower clad layer 1-11 do not have an adhesive force, they may be attached via the adhesive layer 1-10. Further, it is possible to use a method in which an optical waveguide having the lower clad layer 1-11, the core pattern 1-12, and the upper clad layer 1-13 as described above is directly attached onto a circuit with an adhesive.
The formation of the lower clad layer 1-11 on the support is not particularly limited, and may be performed by a known method. For example, a material for forming the lower clad layer 1-11 is applied on the lower support film by spin coating or the like. After prebaking, the thin film can be cured by irradiating with ultraviolet rays. Also, the formation of the core pattern 1-12 is not particularly limited. For example, a core layer having a refractive index higher than that of the lower cladding layer 1-11 is formed on the lower cladding layer 1-11, and the core pattern is formed by etching. Just do it. The method of forming the upper cladding layer 1-13 is not particularly limited, and may be formed by the same method as that of the lower cladding layer 1-11, for example.
The lower clad layer 1-11 may be coated with an adhesive or an adhesive sheet may be bonded between the lower clad layer 1-11 and the substrate from the viewpoint of adhesion to the substrate.
(下部クラッド層及び上部クラッド層)
 以下、本発明で使用される下部クラッド層1-11及び上部クラッド層1-13について説明する。下部クラッド層1-11及び上部クラッド層1-13としては、クラッド層形成用樹脂又はクラッド層形成用樹脂フィルムを用いることができる。
(Lower cladding layer and upper cladding layer)
Hereinafter, the lower clad layer 1-11 and the upper clad layer 1-13 used in the present invention will be described. As the lower cladding layer 1-11 and the upper cladding layer 1-13, a cladding layer forming resin or a cladding layer forming resin film can be used.
 本発明で用いるクラッド層形成用樹脂としては、コア層より低屈折率で、光又は熱により硬化する樹脂組成物であれば特に限定されず、熱硬化性樹脂組成物や感光性樹脂組成物を好適に使用することができる。より好適にはクラッド層形成用樹脂が、(A)ベースポリマー、(B)光重合性化合物及び(C)光重合開始剤を含有する樹脂組成物により構成されることが好ましい。なお、クラッド層形成用樹脂に用いる樹脂組成物は、上部クラッド層1-13と下部クラッド層1-11において、該樹脂組成物に含有する成分が同一であっても異なっていてもよく、該樹脂組成物の屈折率が同一であっても異なっていてもよい。 The clad layer forming resin used in the present invention is not particularly limited as long as it is a resin composition that has a lower refractive index than the core layer and is cured by light or heat, and includes a thermosetting resin composition and a photosensitive resin composition. It can be preferably used. More preferably, the clad layer forming resin is preferably composed of a resin composition containing (A) a base polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator. The resin composition used for the clad layer forming resin may be the same or different in the components contained in the resin composition in the upper clad layer 1-13 and the lower clad layer 1-11. The refractive index of the resin composition may be the same or different.
 ここで用いる(A)ベースポリマーはクラッド層を形成し、該クラッド層の強度を確保するためのものであり、該目的を達成し得るものであれば特に限定されず、フェノキシ樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホン等、あるいはこれらの誘導体などが挙げられる。これらのベースポリマーは1種単独でも、また2種以上を混合して用いてもよい。上記で例示したベースポリマーのうち、耐熱性が高いとの観点から、主鎖に芳香族骨格を有することが好ましく、特にフェノキシ樹脂が好ましい。また、3次元架橋し、耐熱性を向上できるとの観点からは、エポキシ樹脂、特に室温で固形のエポキシ樹脂が好ましい。さらに、後に詳述する(B)光重合性化合物との相溶性が、クラッド層形成用樹脂の透明性を確保するために重要であるが、この点からは上記フェノキシ樹脂及び(メタ)アクリル樹脂が好ましい。なお、ここで(メタ)アクリル樹脂とは、アクリル樹脂及びメタクリル樹脂を意味するものである。 The (A) base polymer used here is for forming a clad layer and ensuring the strength of the clad layer, and is not particularly limited as long as the object can be achieved, phenoxy resin, epoxy resin, (Meth) acrylic resin, polycarbonate resin, polyarylate resin, polyether amide, polyether imide, polyether sulfone, etc., or derivatives thereof. These base polymers may be used alone or in combination of two or more. Among the base polymers exemplified above, it is preferable that the main chain has an aromatic skeleton from the viewpoint of high heat resistance, and a phenoxy resin is particularly preferable. From the viewpoint of three-dimensional crosslinking and improving heat resistance, an epoxy resin, particularly an epoxy resin that is solid at room temperature is preferable. Further, compatibility with the photopolymerizable compound (B) described in detail later is important for ensuring the transparency of the resin for forming the cladding layer. From this point, the phenoxy resin and the (meth) acrylic resin are used. Is preferred. Here, (meth) acrylic resin means acrylic resin and methacrylic resin.
 フェノキシ樹脂の中でも、ビスフェノールA、ビスフェノールA型エポキシ化合物又はそれらの誘導体、及びビスフェノールF、ビスフェノールF型エポキシ化合物又はそれらの誘導体を共重合成分の構成単位として含むものは、耐熱性、密着性及び溶解性に優れるため好ましい。ビスフェノールA又はビスフェノールA型エポキシ化合物の誘導体としては、テトラブロモビスフェノールA、テトラブロモビスフェノールA型エポキシ化合物等が好適に挙げられる。また、ビスフェノールF又はビスフェノールF型エポキシ化合物の誘導体としては、テトラブロモビスフェノールF、テトラブロモビスフェノールF型エポキシ化合物等が好適に挙げられる。ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂の具体例としては、東都化成(株)製「フェノトートYP-70」(商品名)が挙げられる。 Among phenoxy resins, those containing bisphenol A, bisphenol A type epoxy compounds or derivatives thereof, and bisphenol F, bisphenol F type epoxy compounds or derivatives thereof as a constituent unit of the copolymer component are heat resistant, adhesive and soluble. It is preferable because of its excellent properties. Preferred examples of the bisphenol A or bisphenol A type epoxy compound include tetrabromobisphenol A and tetrabromobisphenol A type epoxy compounds. Moreover, as a derivative of bisphenol F or a bisphenol F-type epoxy compound, tetrabromobisphenol F, a tetrabromobisphenol F-type epoxy compound, etc. are mentioned suitably. Specific examples of the bisphenol A / bisphenol F copolymer type phenoxy resin include “Phenotote YP-70” (trade name) manufactured by Toto Kasei Co., Ltd.
 室温で固形のエポキシ樹脂としては、例えば、東都化学(株)製「エポトートYD-7020、エポトートYD-7019、エポトートYD-7017」(いずれも商品名)、ジャパンエポキシレジン(株)製「エピコート1010、エピコート1009、エピコート1008」(いずれも商品名)などのビスフェノールA型エポキシ樹脂が挙げられる。 Examples of the epoxy resin that is solid at room temperature include, for example, “Epototo YD-7020, Epototo YD-7019, Epototo YD-7007” (all trade names) manufactured by Toto Chemical Co., Ltd., and “Epicoat 1010” manufactured by Japan Epoxy Resins Co., Ltd. Bisphenol A type epoxy resin such as “Epicoat 1009, Epicoat 1008” (both trade names).
 次に、(B)光重合性化合物としては、紫外線等の光の照射によって重合するものであれば特に限定されず、分子内にエチレン性不飽和基を有する化合物や分子内に2つ以上のエポキシ基を有する化合物などが挙げられる。
 分子内にエチレン性不飽和基を有する化合物としては、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらの中で、透明性と耐熱性の観点から、(メタ)アクリレートが好ましい。
 (メタ)アクリレートとしては、1官能性のもの、2官能性のもの、3官能性以上の多官能性のもののいずれをも用いることができる。なお、ここで(メタ)アクリレートとは、アクリレート及びメタクリレートを意味するものである。
 分子内に2つ以上のエポキシ基を有する化合物としては、ビスフェノールA型エポキシ樹脂等の2官能又は多官能芳香族グリシジルエーテル、ポリエチレングリコール型エポキシ樹脂等の2官能又は多官能脂肪族グリシジルエーテル、水添ビスフェノールA型エポキシ樹脂等の2官能脂環式グリシジルエーテル、フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル、N,N-ジグリシジルアニリン等の2官能又は多官能芳香族グリシジルアミン、アリサイクリックジエポキシカルボキシレート等の2官能脂環式エポキシ樹脂、2官能複素環式エポキシ樹脂、多官能複素環式エポキシ樹脂、2官能又は多官能ケイ素含有エポキシ樹脂などが挙げられる。これらの(B)光重合性化合物は、単独で又は2種類以上組み合わせて用いることができる。
Next, (B) the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and the compound having an ethylenically unsaturated group in the molecule or two or more in the molecule. Examples thereof include compounds having an epoxy group.
Examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, vinyl ether, vinyl pyridine, vinyl phenol, etc., among these, from the viewpoint of transparency and heat resistance, (Meth) acrylate is preferred.
As the (meth) acrylate, any of monofunctional, bifunctional, trifunctional or higher polyfunctional ones can be used. Here, (meth) acrylate means acrylate and methacrylate.
Examples of the compound having two or more epoxy groups in the molecule include bifunctional or polyfunctional aromatic glycidyl ethers such as bisphenol A type epoxy resins, bifunctional or polyfunctional aliphatic glycidyl ethers such as polyethylene glycol type epoxy resins, and water. Bifunctional alicyclic glycidyl ether such as bisphenol A type epoxy resin, bifunctional aromatic glycidyl ester such as diglycidyl phthalate, bifunctional alicyclic glycidyl ester such as tetrahydrophthalic acid diglycidyl ester, N, N- Bifunctional or polyfunctional aromatic glycidylamine such as diglycidylaniline, bifunctional alicyclic epoxy resin such as alicyclic diepoxycarboxylate, bifunctional heterocyclic epoxy resin, polyfunctional heterocyclic epoxy resin, bifunctional Or polyfunctional silicon-containing epoxy resin It is. These (B) photopolymerizable compounds can be used alone or in combination of two or more.
 次に(C)成分の光重合開始剤としては、特に制限はなく、例えば(B)成分にエポキシ化合物を用いる場合の開始剤として、アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩、トリアリルセレノニウム塩、ジアルキルフェナジルスルホニウム塩、ジアルキル-4-ヒドロキシフェニルスルホニウム塩、スルホン酸エステルなどが挙げられる。 Next, the photopolymerization initiator of component (C) is not particularly limited. For example, as an initiator when an epoxy compound is used as component (B), aryldiazonium salt, diaryliodonium salt, triarylsulfonium salt, triallyl Examples include selenonium salts, dialkylphenazylsulfonium salts, dialkyl-4-hydroxyphenylsulfonium salts, and sulfonate esters.
 また、(B)成分に分子内にエチレン性不飽和基を有する化合物を用いる場合の開始剤としては、ベンゾフェノン等の芳香族ケトン、2-エチルアントラキノン等のキノン類、ベンゾインメチルエーテル等のベンゾインエーテル化合物、ベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体、2-メルカプトベンゾイミダゾール等のベンゾイミダゾール類、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等のフォスフィンオキサイド類、9-フェニルアクリジン等のアクリジン誘導体、N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物などが挙げられる。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。なお、コア層及びクラッド層の透明性を向上させる観点からは、上記化合物のうち、芳香族ケトン及びフォスフィンオキサイド類が好ましい。
 これらの(C)光重合開始剤は、単独で又は2種類以上組み合わせて用いることができる。
In addition, as an initiator when a compound having an ethylenically unsaturated group in the molecule is used as the component (B), aromatic ketones such as benzophenone, quinones such as 2-ethylanthraquinone, benzoin ethers such as benzoin methyl ether Compounds, benzoin compounds such as benzoin, benzyl derivatives such as benzyldimethyl ketal, 2,4,5-triarylimidazole dimers such as 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- Benzimidazoles such as mercaptobenzimidazole, phosphine oxides such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, acridine derivatives such as 9-phenylacridine, N-phenylglycine, N-phenylglycine derivatives , Coumarin compound And the like. Moreover, you may combine a thioxanthone type compound and a tertiary amine compound like the combination of diethyl thioxanthone and dimethylamino benzoic acid. Of the above compounds, aromatic ketones and phosphine oxides are preferred from the viewpoint of improving the transparency of the core layer and the clad layer.
These (C) photopolymerization initiators can be used alone or in combination of two or more.
 (A)ベースポリマーの配合量は、(A)成分及び(B)成分の総量に対して、5~80質量%とすることが好ましい。また、(B)光重合性化合物の配合量は、(A)及び(B)成分の総量に対して、95~20質量%とすることが好ましい。
 この(A)成分及び(B)成分の配合量として、(A)成分が5質量%以上であり、(B)成分が95質量%以下であると、樹脂組成物を容易にフィルム化することができる。一方、(A)成分が80質量%以下あり、(B)成分が20質量%以上であると、(A)ベースポリマーを絡み込んで硬化させることが容易にでき、光導波路を形成する際に、パターン形成性が向上し、かつ光硬化反応が十分に進行する。以上の観点から、この(A)成分及び(B)成分の配合量として、(A)成分10~85質量%、(B)成分90~15質量%がより好ましく、(A)成分20~70質量%、(B)成分80~30質量%がさらに好ましい。
 (C)光重合開始剤の配合量は、(A)成分及び(B)成分の総量100質量部に対して、0.1~10質量部とすることが好ましい。この配合量が0.1質量部以上であると、光感度が十分であり、一方10質量部以下であると、露光時に感光性樹脂組成物の表層での吸収が増大することがなく、内部の光硬化が十分となる。さらに、光導波路として使用する際には、重合開始剤自身の光吸収の影響により伝搬損失が増大することもなく好適である。以上の観点から、(C)光重合開始剤の配合量は、0.2~5質量部とすることがより好ましい。
 また、このほかに必要に応じて、クラッド層形成用樹脂中には、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤などのいわゆる添加剤を本発明の効果に悪影響を与えない割合で添加してもよい。
The blending amount of the (A) base polymer is preferably 5 to 80% by mass with respect to the total amount of the components (A) and (B). The blending amount of the (B) photopolymerizable compound is preferably 95 to 20% by mass with respect to the total amount of the components (A) and (B).
As a blending amount of the component (A) and the component (B), when the component (A) is 5% by mass or more and the component (B) is 95% by mass or less, the resin composition is easily formed into a film. Can do. On the other hand, when the component (A) is 80% by mass or less and the component (B) is 20% by mass or more, the (A) base polymer can be easily entangled and cured, and an optical waveguide is formed. The pattern forming property is improved and the photocuring reaction proceeds sufficiently. From the above viewpoint, the blending amounts of the component (A) and the component (B) are more preferably 10 to 85% by mass of the component (A) and 90 to 15% by mass of the component (B). More preferably, the content is 80% by mass and the component (B) is 80 to 30% by mass.
The blending amount of the (C) photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). When the blending amount is 0.1 parts by mass or more, the photosensitivity is sufficient, while when it is 10 parts by mass or less, the absorption in the surface layer of the photosensitive resin composition does not increase during exposure, and the internal Is sufficiently cured. Furthermore, when used as an optical waveguide, it is preferable that the propagation loss does not increase due to the light absorption effect of the polymerization initiator itself. From the above viewpoint, the blending amount of the (C) photopolymerization initiator is more preferably 0.2 to 5 parts by mass.
In addition, if necessary, in the cladding layer forming resin, an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, a filler, etc. You may add what is called an additive in the ratio which does not have a bad influence on the effect of this invention.
 本発明においては、クラッド層の形成方法は特に限定されず、例えば、クラッド層形成用樹脂の塗布又はクラッド層形成用樹脂フィルムのラミネートにより形成すれば良い。
 塗布による場合には、その方法は限定されず、例えば、前記(A)~(C)成分を含有する樹脂組成物を常法により塗布すれば良い。
 また、ラミネートに用いるクラッド層形成用樹脂フィルムは、例えば、前記樹脂組成物を溶媒に溶解して、支持フィルムに塗布し、溶媒を除去することにより容易に製造することができる。
In the present invention, the method for forming the clad layer is not particularly limited. For example, the clad layer may be formed by applying a clad layer forming resin or laminating a clad layer forming resin film.
In the case of application, the method is not limited. For example, the resin composition containing the components (A) to (C) may be applied by a conventional method.
Moreover, the resin film for clad layer formation used for a lamination can be easily manufactured, for example by melt | dissolving the said resin composition in a solvent, apply | coating to a support film, and removing a solvent.
 クラッド層形成用樹脂フィルムの製造過程で用いられる支持フィルムは、その材料については特に限定されず、種々のものを用いることができる。支持フィルムとしての柔軟性及び強靭性の観点から、上記した、第一の支持体1-1、第二の支持体1-5及び基板のフィルム材料として例示したものが同様に挙げられる。
 支持フィルムの厚さは、目的とする柔軟性により適宜変えてよいが、5~250μmであることが好ましい。5μm以上であると強靭性が得易いという利点があり、250μm以下であると十分な柔軟性が得られる。
 ここで用いる溶媒としては、該樹脂組成物溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N-メチル-2-ピロリドン等の溶媒又はこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は30~80質量%程度であることが好ましい。
The material of the support film used in the production process of the clad layer forming resin film is not particularly limited, and various types can be used. From the viewpoints of flexibility and toughness as a support film, those exemplified above as the first support 1-1, the second support 1-5, and the film material of the substrate can be similarly mentioned.
The thickness of the support film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 μm. If it is 5 μm or more, there is an advantage that toughness is easily obtained, and if it is 250 μm or less, sufficient flexibility can be obtained.
The solvent used here is not particularly limited as long as it can dissolve the resin composition. For example, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylacetamide, propylene glycol monomethyl ether, propylene A solvent such as glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used. The solid concentration in the resin solution is preferably about 30 to 80% by mass.
 下部クラッド層1-11及び上部クラッド層1-13(以下、クラッド層1-11,1-13と略す)の厚さに関しては、乾燥後の厚さで、5~500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、クラッド層11、13の厚さは、さらに10~100μmの範囲であることがより好ましい。 The thickness of the lower cladding layer 1-11 and the upper cladding layer 1-13 (hereinafter abbreviated as the cladding layers 1-11, 1-13) is preferably in the range of 5 to 500 μm after drying. When the thickness is 5 μm or more, a clad thickness necessary for light confinement can be secured, and when the thickness is 500 μm or less, it is easy to control the film thickness uniformly. From the above viewpoint, the thickness of the cladding layers 11 and 13 is more preferably in the range of 10 to 100 μm.
 また、クラッド層1-11,1-13の厚さは、最初に形成される下部クラッド層1-11と、コアパターン1-12を埋め込むための上部クラッド層1-13において、同一であっても異なってもよいが、コアパターン1-12を埋め込むために、上部クラッド層13の厚さは、コア層の厚さよりも厚くすることが好ましい。 The thicknesses of the cladding layers 1-11, 1-13 are the same in the lower cladding layer 1-11 formed first and the upper cladding layer 1-13 for embedding the core pattern 1-12. However, in order to embed the core pattern 1-12, the thickness of the upper clad layer 13 is preferably larger than the thickness of the core layer.
(コア層形成用樹脂及びコア層形成用樹脂フィルム)
 本発明においては、コアパターン1-12を形成するために、下部クラッド層1-11に積層するコア層の形成方法は特に限定されず、例えば、コア層形成用樹脂の塗布又はコア層形成用樹脂フィルムのラミネートにより形成すれば良い。
 コア層形成用樹脂としては、コアパターン1-12がクラッド層1-11,1-13より高屈折率であるように設計され、活性光線によりコアパターン1-12を形成し得る樹脂組成物を用いることができ、感光性樹脂組成物が好適である。具体的には、前記クラッド層形成用樹脂で用いたのと同様の樹脂組成物を用いることが好ましい。
 塗布による場合には、方法は限定されず、前記樹脂組成物を常法により塗布すれば良い。
(Core layer forming resin and core layer forming resin film)
In the present invention, the method for forming the core layer laminated on the lower clad layer 1-11 to form the core pattern 1-12 is not particularly limited. For example, the core layer forming resin is applied or the core layer forming resin is formed. What is necessary is just to form by the lamination of a resin film.
As the core layer forming resin, a resin composition that is designed so that the core pattern 1-12 has a higher refractive index than the cladding layers 1-11, 1-13, and can form the core pattern 1-12 by actinic rays. A photosensitive resin composition can be used. Specifically, it is preferable to use the same resin composition as that used in the clad layer forming resin.
In the case of application, the method is not limited, and the resin composition may be applied by a conventional method.
 以下、ラミネートに用いるコア層形成用樹脂フィルムについて詳述する。
 コア層形成用樹脂フィルムは、前記樹脂組成物を溶媒に溶解して下部クラッド層2に塗布し、溶媒を除去することにより容易に製造することができる。ここで用いる溶媒としては、該樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N-メチル-2-ピロリドン等の溶媒又はこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は、通常30~80質量%であることが好ましい。
Hereinafter, the resin film for core layer formation used for lamination is explained in full detail.
The resin film for forming the core layer can be easily produced by dissolving the resin composition in a solvent and applying the resin composition to the lower cladding layer 2 and removing the solvent. The solvent used here is not particularly limited as long as it can dissolve the resin composition. For example, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, N, N-dimethyl A solvent such as acetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone or a mixed solvent thereof can be used. The solid concentration in the resin solution is usually preferably 30 to 80% by mass.
 コア層形成用樹脂フィルムの厚さについては特に限定されず、乾燥後のコア層の厚さが、通常は10~100μmとなるように調整される。該フィルムの厚さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30~70μmの範囲であることが好ましい。 The thickness of the core layer-forming resin film is not particularly limited, and the thickness of the core layer after drying is usually adjusted to be 10 to 100 μm. When the thickness of the film is 10 μm or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed. There is an advantage that coupling efficiency is improved in coupling with a light emitting element or an optical fiber. From the above viewpoint, the thickness of the film is preferably in the range of 30 to 70 μm.
 コア層形成用樹脂の製造過程で用いる支持フィルムは、コア層形成用樹脂を支持する支持フィルムであって、その材料については特に限定されないが、後にコア層形成用樹脂を剥離することが容易であり、かつ、耐熱性及び耐溶剤性を有するとの観点から、ポリエチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレンなどが好適に挙げられる。
 支持フィルムの厚さは、5~50μmであることが好ましい。5μm以上であると、支持フィルムとしての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、支持フィルムの厚さは10~40μmの範囲であることがより好ましく、15~30μmであることが特に好ましい。
The support film used in the manufacturing process of the core layer forming resin is a support film that supports the core layer forming resin, and the material thereof is not particularly limited, but it is easy to peel off the core layer forming resin later. From the viewpoint of having heat resistance and solvent resistance, polyesters such as polyethylene terephthalate, polypropylene, polyethylene, and the like are preferable.
The thickness of the support film is preferably 5 to 50 μm. When it is 5 μm or more, there is an advantage that the strength as a support film is easily obtained, and when it is 50 μm or less, there is an advantage that a gap with the mask at the time of pattern formation becomes small and a finer pattern can be formed. From the above viewpoint, the thickness of the support film is more preferably in the range of 10 to 40 μm, and particularly preferably 15 to 30 μm.
 本発明において用いられる光導波路は、コアパターン及びクラッド層を有する高分子層を複数積層し、多層光導波路であってもよい。
 このような多層化や絶縁被覆を設けたことに伴う絶縁性の基板の積層には硬化時の収縮があるため、片面だけに形成すると基板に大きな反りを生じやすい。
 そこで、必要に応じて絶縁被覆や積層をする面と反対の支持体表面に同一の材料を形成することもできる。
 さらに、反りは絶縁被覆や絶縁性の基板の厚みによって変化するため、支持体表面に形成する絶縁被覆や絶縁性の基板の厚みは、反りが発生しないように調整することがより好ましい。
 その場合、予備検討を行い、両面の絶縁被覆の厚みを決定することが好ましい。
The optical waveguide used in the present invention may be a multilayer optical waveguide in which a plurality of polymer layers having a core pattern and a cladding layer are stacked.
Since lamination of insulating substrates accompanying such multilayering and insulation coating is subject to shrinkage at the time of curing, if formed on only one side, the substrate is likely to be greatly warped.
Therefore, if necessary, the same material can be formed on the surface of the support opposite to the surface on which insulation coating or lamination is performed.
Furthermore, since the warpage varies depending on the thickness of the insulating coating and the insulating substrate, it is more preferable to adjust the thickness of the insulating coating and the insulating substrate formed on the support surface so that no warpage occurs.
In that case, it is preferable to conduct preliminary examination and determine the thicknesses of the insulating coatings on both sides.
(電気回路又は電気配線板)
 本発明において、光導波路上に形成しても良い電気回路又は電気配線板としては、特に限定されるものではなく、種々の電気配線板を用いることができ、例えば、絶縁性の樹脂層又は基板に直接配線が設けられているものや、片面又は両面金属層付き基板、もしくは片面又は両面に金属層が付いた樹脂層を用いることができ、これらは、絶縁性の樹脂層又は基板の片面又は両面に金属層を積層することにより電気配線板が形成される。
 この基板及び樹脂層の材質としては、前記基板で説明したものと同様のものが挙げられる。
 また、金属層を形成する金属としては、銅、金、銀、Al、Ni、Cr、Co、Ti、Pd、Sn、Zn、Na、それらの合金、それらの金属を2層以上層形成したもの等が挙げられる。
 さらに上記の配線板を多層化してあってもよい。
(Electric circuit or electric wiring board)
In the present invention, the electric circuit or electric wiring board that may be formed on the optical waveguide is not particularly limited, and various electric wiring boards can be used, for example, an insulating resin layer or a substrate. In other words, a single-sided or double-sided metal layer substrate, or a resin layer with a metal layer on one or both sides can be used. An electrical wiring board is formed by laminating metal layers on both sides.
Examples of the material for the substrate and the resin layer include the same materials as those described for the substrate.
The metal forming the metal layer includes copper, gold, silver, Al, Ni, Cr, Co, Ti, Pd, Sn, Zn, Na, alloys thereof, and two or more layers of these metals. Etc.
Further, the above wiring board may be multilayered.
(II)第2発明
 本発明(第2発明)により製造される光電気複合基板は、例えば、図6(e)に示すように、電気配線板2-2の上に、下部クラッド層2-4、コアパターン2-5及び上部クラッド層2-6が順に積層されてなる光導波路2-8を積層したものである。なお、本発明において、単に「電気配線板」というときは、電気回路層が形成されていないものをいうが、回路層が形成された後に用いられる「電気配線板」なる用語は、電気回路層が形成されている電気配線板を指す。
(II) Second Invention An optoelectric composite substrate manufactured according to the present invention (second invention) has, for example, a lower clad layer 2-2 on an electric wiring board 2-2 as shown in FIG. 4, an optical waveguide 2-8 in which a core pattern 2-5 and an upper cladding layer 2-6 are sequentially laminated. In the present invention, the term “electrical wiring board” simply refers to those in which the electric circuit layer is not formed, but the term “electrical wiring board” used after the circuit layer is formed is the electric circuit layer. Refers to an electrical wiring board on which is formed.
(光電気複合部材の製造方法)
 以下、本発明(第2発明)の光電気複合部材の製造方法について詳述する(図6参照)。本発明(第2発明)の光電気複合部材の製造方法は、第二の支持体上に電気配線板を積層する工程、第一の支持体を積層する工程、第二の支持体を剥離する工程、及び前記第二の支持体の剥離面に光導波路を形成する工程を、この順に有する。第二の支持体として下部支持体2-1、第一の支持体として上部支持体2-3を用いた例を記載する。
 まず、図6(a)および(b)に示すように、下部支持体2-1に、電気配線板2-2を設け、その上部に電気回路2-10の形成を行う。次いで上部支持体2-3を電気回路2-10の形成面に積層し(図6(c)参照)、下部支持体2-1を剥離する(図6(d)参照)。次いで下部支持体2-1の剥離面に再度電気回路2-10の形成を行い、図6(e)に示すように、電気配線板2-2の上に、下部クラッド層2-4を設け、その上にコアパターン2-5を形成し、さらに上部クラッド層2-6を積層する。
 電気配線板2-2上への下部クラッド層2-4の形成方法は、特に限定されず公知の方法によれば良く、例えば、下部クラッド層2-4の形成材料をスピンコート等により電気配線板2-2上に塗布し、プリベイクを行った後、紫外線を照射して薄膜を硬化させることにより形成できる。また、コアパターン2-5の形成も、特に限定されず、例えば、下部クラッド層2-4上に、下部クラッド層2-4より屈折率の高いコア層を形成し、エッチングによりコアパターン2-5を形成すれば良い。上部クラッド層2-6の形成方法も特に限定されず、例えば、下部クラッド層2-4と同様の方法で形成すれば良い。
 この下部クラッド層2-4は、コア層との密着性の観点から、コア層積層側の表面において段差がなく平坦であることが好ましい。また、クラッド層形成用樹脂フィルムを用いることにより、クラッド2-層4の表面平坦性を確保することができる。
(Manufacturing method of photoelectric composite member)
Hereinafter, the manufacturing method of the photoelectric composite member of the present invention (second invention) will be described in detail (see FIG. 6). The method for producing a photoelectric composite member of the present invention (second invention) includes a step of laminating an electric wiring board on a second support, a step of laminating the first support, and peeling off the second support. It has a process and the process of forming an optical waveguide in the peeling surface of said 2nd support body in this order. An example in which the lower support 2-1 is used as the second support and the upper support 2-3 is used as the first support will be described.
First, as shown in FIGS. 6A and 6B, an electric wiring board 2-2 is provided on the lower support 2-1, and an electric circuit 2-10 is formed thereon. Next, the upper support 2-3 is laminated on the formation surface of the electric circuit 2-10 (see FIG. 6C), and the lower support 2-1 is peeled off (see FIG. 6D). Next, the electric circuit 2-10 is formed again on the peeling surface of the lower support 2-1, and a lower clad layer 2-4 is provided on the electric wiring board 2-2 as shown in FIG. 6 (e). A core pattern 2-5 is formed thereon, and an upper clad layer 2-6 is further laminated.
The method of forming the lower clad layer 2-4 on the electric wiring board 2-2 is not particularly limited, and may be a known method. It can be formed by coating on the plate 2-2, pre-baking, and then irradiating with ultraviolet rays to cure the thin film. Also, the formation of the core pattern 2-5 is not particularly limited. For example, a core layer having a refractive index higher than that of the lower cladding layer 2-4 is formed on the lower cladding layer 2-4, and the core pattern 2-5 is etched. 5 may be formed. The method of forming the upper cladding layer 2-6 is not particularly limited, and may be formed by the same method as that of the lower cladding layer 2-4, for example.
The lower cladding layer 2-4 is preferably flat with no step on the surface on the core layer lamination side, from the viewpoint of adhesion to the core layer. Further, the surface flatness of the clad 2-layer 4 can be ensured by using the clad layer forming resin film.
 次に、下部支持体2-1および上部支持体2-3と電気配線板2-2の積層方法としては、特に限定されないが、例えば、再剥離性の良い接着剤又は接着フィルム2-11を介して電気配線板2-2下部支持体2-1および上部支持板2-3を貼り合わせたり、電気配線板2-2の製品外枠部分(必要とするパターン領域外)を、接着剤を用いて貼り合わせて、電気配線板2-2の回路形成後または光導波路2-8形成後に上記接着部分を切り落とすことで分離できるようする積層方法であれば良い。
 次に、図6(e)に示すように、上部支持体2-3を電気配線板2-2から剥離することで光電気複合部材が得られる(図6(g)参照)。得られた電気配線板2-2と光導波路2-8との複合体は、通常の光電気複合部材として各種機器に用いることもできる。
Next, the method of laminating the lower support 2-1 and the upper support 2-3 and the electric wiring board 2-2 is not particularly limited. For example, an adhesive or an adhesive film 2-11 having good removability is used. The electric wiring board 2-2 lower support body 2-1 and upper support board 2-3 are bonded together, or the product outer frame portion (outside the required pattern area) of the electric wiring board 2-2 is bonded with an adhesive. Any lamination method may be used as long as it can be separated by cutting off the adhesive portion after forming the circuit of the electric wiring board 2-2 or after forming the optical waveguide 2-8.
Next, as shown in FIG. 6E, the upper support 2-3 is peeled from the electrical wiring board 2-2 to obtain a photoelectric composite member (see FIG. 6G). The obtained composite body of the electrical wiring board 2-2 and the optical waveguide 2-8 can be used for various devices as a normal photoelectric composite member.
 以下、光電気複合部材の各構成部分について説明する。
(支持体及び基板)
 下部支持体2-1、上部支持体2-3及び基板2-7の種類としては、特に制限されるものではないが、例えば、FR-4基板、ポリイミド基板、半導体基板、シリコン基板やガラス基板等を用いることができ、可撓性があるフレキシブルな材質でも、非可撓性の固い材質のものであっても良い。
 また、基板2-7に可撓性を有する素材を用いることにより、フレキシブルな光電気複合部材を得ることができる。可撓性を有する素材の材料としては、特に限定されないが、柔軟性、強靭性を有するとの観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどが好適に挙げられる。
 フィルムの厚さは、目的とする柔軟性により適宜変えてよいが、5~250μmであることが好ましい。5μm以上であると強靭性が得易いという利点があり、250μm以下であると十分な柔軟性が得られる。
Hereinafter, each component of the photoelectric composite member will be described.
(Support and substrate)
The types of the lower support 2-1, the upper support 2-3, and the substrate 2-7 are not particularly limited. For example, an FR-4 substrate, a polyimide substrate, a semiconductor substrate, a silicon substrate, and a glass substrate are used. Or a flexible material that is flexible or a non-flexible hard material.
Moreover, a flexible photoelectric composite member can be obtained by using a flexible material for the substrate 2-7. The material of the material having flexibility is not particularly limited, but from the viewpoint of having flexibility and toughness, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyamide, polycarbonate, Preferable examples include polyphenylene ether, polyether sulfide, polyarylate, liquid crystal polymer, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyamide imide, and polyimide.
The thickness of the film may be appropriately changed depending on the intended flexibility, but is preferably 5 to 250 μm. If it is 5 μm or more, there is an advantage that toughness is easily obtained, and if it is 250 μm or less, sufficient flexibility can be obtained.
 また、下部支持体2-1及び上部支持体2-3として寸法安定性のある厚みのある非可撓性の素材を用いることで、光導波路自体の寸法安定性を付与させることができる。寸法安定性のある厚みのある基板の材料としては、特に限定されないが、寸法安定性の観点からFR-4基板、半導体基板、シリコン板、ガラス板や金属板などが好適に挙げられる。
 また、上記に挙げた寸法安定性のある厚みのある基板に離型処理を施したり、上記のフィルムを貼り付けた後で上記のフィルム面に離型処理を施したりすることで電気配線板2-2との再剥離性を付与させることができる。耐熱性の観点からフィルムの材料としてはポリイミドやアラミドが好適に挙げられる。
 板厚は、板の反りや寸法安定性により、適宜変えてよいが、0.1~10.0mmであることが好ましい。
 また、下部支持体2-1や上部支持体2-3と電気配線板2-2との貼り合わせには、接着剤を用いても良く、電気配線板2-2に対して離型性のある接着剤を介する場合には全面貼り付けで良いが、電気配線板2-2に対して離型性のない接着剤を使用する場合には、製品サイズより5~30mm小さな離型性の高いシートを電気配線板2と接着剤間に挟むことで、光導波路の製品外枠部分(必要とするパターン領域外)のみを積層し、光導波路形成後に上記積層部分を切り落とすことで容易に分離することも可能である。離型性のシートの材料としては、特に限定されないが、電気配線板2-2に対する離型性および耐熱性の観点から、銅箔、ポリイミド、アラミド、プレス用離型シートなどが好適に挙げられる。
Further, by using a non-flexible material having a dimensional stability and thickness as the lower support 2-1 and the upper support 2-3, the dimensional stability of the optical waveguide itself can be imparted. The material of the dimensionally stable and thick substrate is not particularly limited, but FR-4 substrate, semiconductor substrate, silicon plate, glass plate, metal plate and the like are preferable from the viewpoint of dimensional stability.
Moreover, the electrical wiring board 2 can be obtained by subjecting the above-described thick substrate having dimensional stability to a release treatment, or applying the release treatment to the film surface after the film is attached. -2 can be imparted with re-peelability. From the viewpoint of heat resistance, preferred examples of the film material include polyimide and aramid.
The plate thickness may be appropriately changed depending on the warp and dimensional stability of the plate, but is preferably 0.1 to 10.0 mm.
In addition, an adhesive may be used for bonding the lower support body 2-1 or the upper support body 2-3 to the electric wiring board 2-2, and it is easy to release from the electric wiring board 2-2. When a certain adhesive is used, the entire surface may be affixed. However, when an adhesive having no releasability with respect to the electric wiring board 2-2 is used, the releasability is 5 to 30 mm smaller than the product size. By sandwiching the sheet between the electric wiring board 2 and the adhesive, only the product outer frame portion (outside the necessary pattern region) of the optical waveguide is laminated, and after the optical waveguide is formed, the laminated portion is cut off and easily separated. It is also possible. The material of the releasable sheet is not particularly limited, but from the viewpoint of releasability with respect to the electrical wiring board 2-2 and heat resistance, preferred examples include copper foil, polyimide, aramid, and release sheet for pressing. .
(接着剤および接着フィルム)
 下部支持体2-1や上部支持体2-3と電気配線板2-2との接着には、特に限定されないが、再剥離する必要がある場合には再剥離性のある接着剤または接着フィルムが好ましい。
 接着剤または接着フィルムの材料としては、片面微粘着の両面テープ、ホットメルト接着剤、UVまたは熱剥離型接着剤などが好適に挙げられる。
 また、下部支持体2-1や上部支持体2-3に電気配線板2-2との再剥離性が備わっている場合は接着剤または接着フィルムを用いる必要はない。
 また、下部支持体2-1や上部支持体2-3と電気配線板2-2の接着または光導波路2-8と電気配線板2-2に再剥離する必要がない場合や、各支持体形成時(非可撓性の素材と、電気配線板2-2に対して離型処理を施すためのフィルムを貼り合わせる場合等)などの再剥離を必要としない接着や、下部クラッド層2-4と電気配線板2-2に接着力がないため接着剤を介する必要がある場合には、耐熱性のある接着剤または接着フィルムが好ましく、再剥離する必要がない接着剤または接着フィルムの材料としては、特に限定されないが、耐熱性の観点からプリプレグ、ビルドアップ材、耐熱性の接着剤などが好適に挙げられる。光信号が透過する部分の接着には高い透過率の接着剤または接着フィルムが必要であり、接着剤または接着フィルムの材料としては、特に限定されないが、(PCT/JP2008/05465)に記載の接着フィルムを使用することがより好ましい。
 接着剤および接着フィルムの厚さは、特に限定されないが、5μm~3.0mmであることが好ましい。下部支持体2-1や上部支持体2-3と電気配線板2-2とを上記離型性のシートを挟んで接着する場合は、離型性のシートよりも5μm以上厚いことが好ましい。
(Adhesive and adhesive film)
Adhesion between the lower support 2-1 or the upper support 2-3 and the electric wiring board 2-2 is not particularly limited, but when it is necessary to re-peel, an adhesive or an adhesive film having re-peelability Is preferred.
Preferable examples of the material for the adhesive or adhesive film include single-sided slightly adhesive double-sided tape, hot-melt adhesive, UV or heat-peelable adhesive.
Further, when the lower support 2-1 and the upper support 2-3 have removability from the electric wiring board 2-2, it is not necessary to use an adhesive or an adhesive film.
Further, when there is no need to bond the lower support 2-1 or the upper support 2-3 to the electric wiring board 2-2 or to separate the optical waveguide 2-8 and the electric wiring board 2-2, Adhesion that does not require re-peeling during formation (such as when a non-flexible material and a film for performing a release treatment are bonded to the electric wiring board 2-2) or the lower cladding layer 2- 4 and the electrical wiring board 2-2 have no adhesive force, and therefore it is preferable to use a heat-resistant adhesive or adhesive film, and the adhesive or adhesive film material does not need to be peeled off again. Although it does not specifically limit as a heat resistant viewpoint, A prepreg, a buildup material, a heat resistant adhesive agent etc. are mentioned suitably. An adhesive or adhesive film having a high transmittance is required for adhesion of a portion through which an optical signal is transmitted. The material of the adhesive or adhesive film is not particularly limited, but the adhesion described in (PCT / JP2008 / 05465) It is more preferable to use a film.
The thickness of the adhesive and the adhesive film is not particularly limited, but is preferably 5 μm to 3.0 mm. When the lower support 2-1 or the upper support 2-3 and the electric wiring board 2-2 are bonded to each other with the release sheet interposed therebetween, it is preferably 5 μm or more thicker than the release sheet.
(下部クラッド層及び上部クラッド層)
 以下、本発明(第2発明)で使用される下部クラッド層2-4及び上部クラッド層2-6について説明する。下部クラッド層2-4及び上部クラッド層2-6としては、クラッド層形成用樹脂又はクラッド層形成用樹脂フィルムを用いることができる。
(Lower cladding layer and upper cladding layer)
Hereinafter, the lower cladding layer 2-4 and the upper cladding layer 2-6 used in the present invention (second invention) will be described. As the lower cladding layer 2-4 and the upper cladding layer 2-6, a cladding layer forming resin or a cladding layer forming resin film can be used.
 本発明で用いるクラッド層形成用樹脂としては、第1発明で記載したものと同様のものを用いることができる。なお、クラッド層形成用樹脂に用いる樹脂組成物は、上部クラッド層2-6と下部クラッド層2-4において、該樹脂組成物に含有する成分が同一であっても異なっていてもよく、該樹脂組成物の屈折率が同一であっても異なっていてもよい。
 また、クラッド層の形成方法については、特に限定されず、第1発明で記載したものと同様の方法を用いることができる。
 さらに、下部クラッド層2-4及び上部クラッド層2-6の厚さに関しても、第1発明で記載したのと同様である。
As the clad layer forming resin used in the present invention, the same resin as described in the first invention can be used. The resin composition used for the cladding layer forming resin may be the same or different in the components contained in the resin composition in the upper cladding layer 2-6 and the lower cladding layer 2-4. The refractive index of the resin composition may be the same or different.
The method for forming the cladding layer is not particularly limited, and the same method as that described in the first invention can be used.
Further, the thicknesses of the lower cladding layer 2-4 and the upper cladding layer 2-6 are the same as described in the first invention.
 本発明(第2発明)で用いるコア層形成用樹脂及びコア層形成用樹脂フィルムについても、第1発明で記載したものと同様である。
 また、本発明において用いられる光導波路2-8は、コアパターン2-5及びクラッド層を有する高分子層を複数積層し、多層光導波路であってもよい。
The core layer forming resin and the core layer forming resin film used in the present invention (second invention) are the same as those described in the first invention.
The optical waveguide 2-8 used in the present invention may be a multilayer optical waveguide in which a plurality of polymer layers having a core pattern 2-5 and a cladding layer are stacked.
(電気配線板)
 本発明(第2発明)において用いられる電気配線板2-2としては、特に限定されるものではなく、光電気複合部材に用いられる種々の電気配線板を用いることができ、例えば、絶縁性の樹脂層又は基板2-7に直接配線が設けられているものや、片面又は両面金属層付き基板、もしくは片面又は両面に金属層が付いた樹脂層を用いることができ、これらは、絶縁性の樹脂層又は基板の片面又は両面に金属層を積層することにより該電気配線板が形成される。
 この基板及び樹脂層の材質としては、前記基板2-7で説明したものと同様のものが挙げられる。
 また、金属層を形成する金属としては、銅、金、銀、Al、Ni、Cr、Co、Ti、Pd、Sn、Zn、Na、それらの合金、それらの金属を2層以上層形成したもの等が挙げられる。
 さらに、電気配線板2-2として、光導波路と積層後に、電気配線パターンを形成したものであっても良い。さらに上記の配線板を多層化してあってもよい。
(Electric wiring board)
The electric wiring board 2-2 used in the present invention (second invention) is not particularly limited, and various electric wiring boards used for the photoelectric composite member can be used. A resin layer or a substrate provided with a direct wiring on the substrate 2-7, a substrate with a single or double-sided metal layer, or a resin layer with a metal layer on one or both sides can be used. The electric wiring board is formed by laminating a metal layer on one side or both sides of the resin layer or the substrate.
Examples of the material of the substrate and the resin layer include the same materials as those described for the substrate 2-7.
The metal forming the metal layer includes copper, gold, silver, Al, Ni, Cr, Co, Ti, Pd, Sn, Zn, Na, alloys thereof, and two or more layers of these metals. Etc.
Further, the electrical wiring board 2-2 may be one in which an electrical wiring pattern is formed after lamination with the optical waveguide. Further, the above wiring board may be multilayered.
(III)第3発明及び第4発明
 本発明(第3発明)の光電気複合基板の製造方法は、電気配線基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成するか又は金属箔付き基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成した後に金属箔付き基板の金属箔を導体パターン化して電気配線基板を構築することにより下部クラッド層付き電気配線基板を得る第1の工程と、下部クラッド層上にコアパターン及び上部クラッド層を順次形成して光導波路を構築する第2の工程を有することを特徴とする。すなわち、下部クラッド層付き電気配線基板をまず製造し、次いで、下部クラッド層の上に光導波路を構成する下部クラッド層以外の構成要素を積み上げて光導波路を構築する点に特徴がある。
(III) Third and fourth inventions The method for producing an optoelectric composite substrate according to the present invention (third invention) includes forming a lower clad layer directly or via an adhesive layer on the substrate surface of the electrical wiring substrate, or An electric wiring board with a lower clad layer is formed by forming a lower clad layer directly on the substrate surface of the board with a metal foil or via an adhesive layer, and then forming an electric wiring board by forming a conductive pattern on the metal foil of the board with the metal foil. And a second step of constructing an optical waveguide by sequentially forming a core pattern and an upper clad layer on the lower clad layer. That is, there is a feature in that an electrical wiring board with a lower cladding layer is first manufactured, and then an optical waveguide is constructed by stacking components other than the lower cladding layer constituting the optical waveguide on the lower cladding layer.
 本発明(第3発明)の製造方法における第1の工程は、(1)図12の(a)に示すように、基板3-12上に導体パターン3-11aを形成し、更に必要に応じて導体保護層3-14を形成した電気配線基板3-10の基板3-12の表面に直接又は接着剤層3-20を介して下部クラッド層3-31を形成する
か、又は(2)図12の(a'-1)のように、金属箔3-11と基板3-12とを有する金属箔付き基板3-13の基板3-12の表面に、直接又は接着剤層3-20を介して、下部クラッド層3-31を形成し、次いで、図12の(a'-2)のように、金属箔3-11を導体パターン3-11aに加工して、更に、図12の(a'-3)のように、必要に応じて導体保護層3-14を形成して、下部クラッド層付きの電気配線基板を得る工程である。ここで、導体保護層とは、導体パターンの絶縁保護、さらにはほこりや水分、機械的ダメージ等からの保護を目的に形成されるものであり、例えばプリント配線板のソルダーレジストやカバーレイを指す。
In the first step of the manufacturing method of the present invention (third invention), (1) a conductor pattern 3-11a is formed on a substrate 3-12 as shown in FIG. Forming the lower cladding layer 3-31 directly or via the adhesive layer 3-20 on the surface of the substrate 3-12 of the electrical wiring substrate 3-10 on which the conductor protective layer 3-14 is formed, or (2) As shown in FIG. 12 (a′-1), directly or directly on the surface of the substrate 3-12 of the substrate 3-13 with the metal foil having the metal foil 3-11 and the substrate 3-12, the adhesive layer 3-20. Then, the lower clad layer 3-31 is formed, and then the metal foil 3-11 is processed into a conductor pattern 3-11a as shown in FIG. As in (a'-3), a conductor protective layer 3-14 is formed as necessary to obtain an electric wiring board with a lower cladding layer. It is a process. Here, the conductor protective layer is formed for the purpose of insulation protection of the conductor pattern and further protection from dust, moisture, mechanical damage, etc., and refers to, for example, a solder resist or a coverlay of a printed wiring board. .
下部クラッド層3-31を電気配線基板3-10又は金属箔付き基板3-13の基板表面に直接形成する場合には、クラッド層形成用樹脂のワニスを、スピンコート法等の公知の方法により塗布し、溶剤を除去する方法により行う。
一方、下部クラッド層3-31を基板表面に接着剤層3-20を介して形成する場合は、クラッド層形成用樹脂フィルムを用いる。クラッド層形成用樹脂フィルムは、クラッド層形成用樹脂のワニスを、必要により基材フィルム上にスピンコート法等の公知の方法により塗布し、溶剤を除去することにより容易に製造することができる。クラッド層形成用樹脂フィルムを用いる方法が、下部クラッド層の厚さの精度が確保できるので好ましい。基板3-12の表面に接着剤層3-20を形成する方法について制限はなく、基板3-12の表面に接着剤組成物を直接塗布してもよいが、支持基材上に接着剤層を有するシート状接着剤を使用し、接着剤層を該シート状接着剤から基板12の表面に転写する方法が、接着剤層の平滑性に優れ、かつ接着剤層の厚さの精度が確保でき、しかも、接着剤層を形成する際に接着剤層形成用の樹脂組成物が流れる等の問題も生じないので好ましい。図12の(a'-2)のように、金属箔3-11を導体パターン3-11aに加工する方法及び図12の(a'-3)のように、導体保護層3-14を形成する方法については、後に説明するが、従来
公知の方法が用いられる。
When the lower cladding layer 3-31 is formed directly on the surface of the electric wiring substrate 3-10 or the substrate 3-13 with metal foil, a varnish of a cladding layer forming resin is formed by a known method such as a spin coating method. The method is performed by applying and removing the solvent.
On the other hand, when the lower clad layer 3-31 is formed on the substrate surface via the adhesive layer 3-20, a clad layer forming resin film is used. The resin film for forming a clad layer can be easily produced by applying a varnish of a resin for forming a clad layer onto a base film by a known method such as a spin coat method, if necessary, and removing the solvent. A method using a resin film for forming a cladding layer is preferable because the accuracy of the thickness of the lower cladding layer can be secured. There is no limitation on the method of forming the adhesive layer 3-20 on the surface of the substrate 3-12, and the adhesive composition may be directly applied to the surface of the substrate 3-12. The method of transferring the adhesive layer from the sheet adhesive to the surface of the substrate 12 is excellent in the smoothness of the adhesive layer and ensures the accuracy of the thickness of the adhesive layer. In addition, it is preferable because the problem that the resin composition for forming the adhesive layer flows does not occur when forming the adhesive layer. A method of processing the metal foil 3-11 into a conductor pattern 3-11a as shown in (a'-2) of FIG. 12 and a conductor protective layer 3-14 as shown in (a'-3) of FIG. Although the method to do is demonstrated later, a conventionally well-known method is used.
本発明(第3発明)の製造方法における第2の工程は、光導波路を構築する工程であり、具体的には、図12の(b)に示すように、下部クラッド層3-31上にコアパターン3-32を形成し、次いで、図12の(c)に示すように、コアパターン3-32上に上部クラッド層3-33を形成して、光導波路3-30を構築する工程である。コアパターン3-32は、下部クラッド層3-31上にコア形成用樹脂の層(コア層)を形成し、そのコア層を露光・現像することにより形成することができる。コア層を形成する方法について制限はなく、下部クラッド層3-31上にコア形成用樹脂のワニスを直接塗布し、乾燥する方法でもよいが、コア層形成用樹脂フィルムを用いる方法が、コア層の厚さの精度が確保できるので好ましい。このようにして形成したコア層に対して露光・現像を行うことにより、所望のコアパターン3-32を形成する。コアパターン3-32上に上部クラッド層3-33を形成する方法についても、下部クラッド層3-31の場合と同様に、クラッド層形成用樹脂のワニスを、スピンコート法等の公知の方法により塗布し、溶剤を除去することにより、コアパターン3-32上に直接形成する方法でもよいが、クラッド層形成用樹脂フィルムを用いる方法が、コア層の厚さの精度が確保できるので好ましい。 The second step in the manufacturing method of the present invention (third invention) is a step of constructing an optical waveguide. Specifically, as shown in FIG. 12 (b), on the lower cladding layer 3-31. In the process of forming the optical waveguide 3-30 by forming the core pattern 3-32 and then forming the upper cladding layer 3-33 on the core pattern 3-32 as shown in FIG. is there. The core pattern 3-32 can be formed by forming a core forming resin layer (core layer) on the lower clad layer 3-31, and exposing and developing the core layer. There is no limitation on the method of forming the core layer, and a method of directly applying the core forming resin varnish on the lower clad layer 3-31 and drying it may be used. It is preferable because the accuracy of the thickness can be secured. A desired core pattern 3-32 is formed by exposing and developing the core layer thus formed. Regarding the method of forming the upper clad layer 3-33 on the core pattern 3-32, as in the case of the lower clad layer 3-31, the varnish of the clad layer forming resin is formed by a known method such as a spin coat method. A method of forming directly on the core pattern 3-32 by applying and removing the solvent may be used, but a method using a resin film for forming a clad layer is preferable because accuracy of the thickness of the core layer can be secured.
 本発明(第4発明)の光電気複合基板の製造方法は、金属箔付き基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成する第1の工程と、下部クラッド層上にコアパターン及び上部クラッド層を順次形成して光導波路を構築する第2の工程と、金属箔付き基板から電気配線基板を構築する第3の工程を有することを特徴とする。すなわち、金属箔付き基板の基板表面に下部クラッド層をまず形成し、次いで、下部クラッド層の上に下部クラッド層以外の構成要素を積み上げて光導波路を構築し、その後に金属箔付き基板から電気配線基板を構築する点に特徴がある。 The method for producing an optoelectric composite substrate of the present invention (fourth invention) includes a first step of forming a lower clad layer directly on the substrate surface of a substrate with a metal foil or via an adhesive layer, and on the lower clad layer. It has a 2nd process of constructing | assembling an optical waveguide by forming a core pattern and an upper clad layer one by one, and a 3rd process of constructing | assembling an electrical wiring board | substrate from a board | substrate with metal foil. That is, a lower clad layer is first formed on the surface of a substrate with a metal foil, and then an optical waveguide is constructed by stacking components other than the lower clad layer on the lower clad layer. It is characterized in that a wiring board is constructed.
本発明の製造方法における第1の工程は、図13の(a)に示すように、金属箔4-11と基板4-12とを有する金属箔付き基板4-13の基板表面に、直接又は接着剤層4-20を介して、下部クラッド層4-31を形成する工程である。 As shown in FIG. 13 (a), the first step in the manufacturing method of the present invention is directly or directly on the surface of the substrate 4-13 with the metal foil having the metal foil 4-11 and the substrate 4-12. In this step, the lower cladding layer 4-31 is formed via the adhesive layer 4-20.
本発明の製造方法における第2の工程は、光導波路を構築する工程であり、具体的には、図13の(b)に示すように、下部クラッド層4-31上にコアパターン4-32を形成し、次いで、図13の(c)に示すように、コアパターン4-32上に上部クラッド層4-33を形成して、光導波路4-30を構築する工程である。 The second step in the manufacturing method of the present invention is a step of constructing an optical waveguide. Specifically, as shown in FIG. 13B, the core pattern 4-32 is formed on the lower cladding layer 4-31. Next, as shown in FIG. 13C, the upper cladding layer 4-33 is formed on the core pattern 4-32 to construct the optical waveguide 4-30.
 本発明の製造方法における第3の工程は、電気配線基板を構築する工程であり、具体的には、図13の(d)に示すように、金属箔4-11を導体パターン4-11aとして電気配線基板4-10を構築する工程である。必要に応じて、図13の(e)に示すように、導体パターン4-11aを保護するため、導体パターン4-11aの必要部分の上に導体保護層4-14を形成する。ここで、導体保護層とは、導体パターンの絶縁保護、さらにはほこりや水分、機械的ダメージ等からの保護を目的に形成されるものであり、例えばプリント配線板のソルダーレジストやカバーレイを指す。 The third step in the manufacturing method of the present invention is a step of constructing an electric wiring board. Specifically, as shown in FIG. 13 (d), the metal foil 4-11 is used as a conductor pattern 4-11a. This is a process of constructing the electrical wiring board 4-10. If necessary, as shown in FIG. 13E, a conductor protective layer 4-14 is formed on a necessary portion of the conductor pattern 4-11a in order to protect the conductor pattern 4-11a. Here, the conductor protective layer is formed for the purpose of insulation protection of the conductor pattern and further protection from dust, moisture, mechanical damage, etc., and refers to, for example, a solder resist or a coverlay of a printed wiring board. .
 上記第3発明及び第4発明における各工程で、用いられる材料等について詳細に説明する。
<電気配線基板>
 上記第3の発明で用いられる電気配線基板としては、基板の上に導体パターンが設けられ、更に必要に応じて導体パターン上に導体保護層が設けられた電気配線基板であれば特に制約はなく、目的に応じて種々のものを用いることができ、例えば、導体金属が銅、アルミニウム、金等で、基板が、ガラスエポキシ基板、ポリイミドポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマー等を用いた有機配線基板、アルミナ基板、窒化アルミ基板などのセラミック配線基板、シリコンなどの半導体ウエハ等が挙げられる。
 フレキシブルタイプの光電気複合基板を製造するためには、基板材料が、ポリイミド、ポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマー等のものが用いられるが、一般的には耐熱性や入手のしやすさの観点からポリイミドを基板とするものが用いられる。
 又、光導波路の構築に際して、基板を通して導体パターンを視認し易くするためには、透明な基板が好ましい。
The materials used in each step in the third and fourth inventions will be described in detail.
<Electric wiring board>
The electric wiring board used in the third invention is not particularly limited as long as the electric wiring board is provided with a conductor pattern on the board and further provided with a conductor protective layer on the conductor pattern as necessary. Depending on the purpose, various materials can be used. For example, the conductive metal is copper, aluminum, gold or the like, and the substrate is a glass epoxy substrate, polyimide polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, or the like. Examples thereof include ceramic wiring substrates such as organic wiring substrates, alumina substrates, and aluminum nitride substrates, and semiconductor wafers such as silicon.
In order to manufacture a flexible type optoelectric composite substrate, a substrate material such as polyimide, polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, etc. is used. Generally, heat resistance and availability are easily obtained. From this viewpoint, a substrate using polyimide as a substrate is used.
Further, when the optical waveguide is constructed, a transparent substrate is preferable in order to make the conductor pattern easily visible through the substrate.
<金属箔付き基板>
本発明で用いられる金属箔付き基板としては、目的に応じて種々のものを用いることができ、例えば、金属としては、銅、アルミニウム、金等が、基板としては、ガラスエポキシ基板、ポリイミドポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマー等を用いた有機配線基板、アルミナ基板、窒化アルミ基板などのセラミック配線基板、シリコンなどの半導体ウエハ等が挙げられる。
 フレキシブルタイプの光電気複合基板を製造するためには、基板材料として、ポリイミド、ポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマー等のものが用いられるが、一般的には耐熱性や入手のしやすさの観点からポリイミドが用いられる。
 又、光導波路の構築に際して、基板を通して導体パターンを視認し易くするためには、透明な基板が好ましい。金属箔付き基板を電気配線基板に加工するためには配線のパターニングが必要であるが、その方法として、従来、金属配線に必要とされる厚みの金属箔が接着剤層を介して基板に積層された3層の金属箔付き基板を用い、金属箔付き基板の金属箔から導体パターンとしての不要部分をエッチング除去する、いわゆるサブトラクティブ法が多く行われてきた。
<Substrate with metal foil>
As the substrate with metal foil used in the present invention, various substrates can be used according to the purpose. For example, as the metal, copper, aluminum, gold, etc., as the substrate, glass epoxy substrate, polyimide polyamide, Examples thereof include organic wiring substrates using polyetherimide, polyethylene terephthalate, liquid crystal polymer, ceramic wiring substrates such as alumina substrates and aluminum nitride substrates, and semiconductor wafers such as silicon.
In order to manufacture a flexible type photoelectric composite substrate, as a substrate material, polyimide, polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, etc. are used, but generally heat resistance and availability are easy. From this viewpoint, polyimide is used.
Further, when the optical waveguide is constructed, a transparent substrate is preferable in order to make the conductor pattern easily visible through the substrate. In order to process a board with metal foil into an electric wiring board, patterning of the wiring is necessary. As a method for this, conventionally, a metal foil having a thickness required for metal wiring is laminated on the board via an adhesive layer. Many so-called subtractive methods have been performed in which an unnecessary portion as a conductor pattern is removed from a metal foil of a substrate with a metal foil by etching using the three-layered substrate with a metal foil.
 然しながら、3層の金属箔付き基板においては、接着剤層の存在が基板の性能、特に、折れ曲げに対する信頼性に影響するため、接着剤層を介さずに金属箔が直接基板に積層された2層の金属箔付き基板が開発されており、金属箔と基板との接着強度を高める試みも多くなされている。
 2層の金属箔付き基板としては、スパッタ法や直接めっき法によって基板上に金属薄膜を形成する方法で製造し、更に、電解めっき等の方法で導体金属の厚付けがされることによって製造されたものがあり、そのような2層の金属箔付き基板については、通常、上述のサブトラクティブ法で導体パターンを加工する。
 また、2層の金属箔付き基板としては、スパッタ法や直接めっき法によって基板上に金属薄膜を形成して製造されたものがあり、そのような2層の金属箔付き基板については、通常、導体パターンとしての必要部分にのみ電解めっき等の方法で導体金属を析出させて必要な厚みとする、いわゆるセミアディティブ法で導体パターンを加工する。これらの2層の金属箔付き基板の場合、金属薄膜は銅、アルミニウム、金等の導体金属と同じである必要はなく、ニッケル、パラジューム、鉄等であってもよい。
 本発明には、金属箔付き基板としてこのような2層の金属箔付き基板を用い、後に、アディティブ法で電気配線基板を形成する方法(セミアディティブ法)も含まれる。むろん、2層の金属箔付き基板が金属配線に必要とされる厚みの金属箔を有する場合は、サブトラクティブ法で電気配線基板を形成する。
 基板及び金属箔の厚さは、用途に応じて適宜決定されるものであって、特に制限はない。例えば、銅張りポリイミドフィルムの場合には、銅箔の厚みが1μm~50μm程度、基板の厚みが5μm~100μm程度である。このような金属箔付き基板としては、市販のもので、(株)カネカ製、商品名「ピクシオ」、宇部興産(株)製、商品名「ユピセル」、新日鐵化学(株)製、商品名「エスパネックス」、東レフィルム加工(株)製、商品名「メタロイヤル」、シェルダール製、商品名「フレックスベース」等がある。
However, in the three-layered substrate with metal foil, the presence of the adhesive layer affects the performance of the substrate, particularly the reliability against bending, so that the metal foil was directly laminated on the substrate without using the adhesive layer. Two-layer substrates with metal foil have been developed, and many attempts have been made to increase the adhesive strength between the metal foil and the substrate.
The two-layer metal foil substrate is manufactured by forming a metal thin film on the substrate by sputtering or direct plating, and is further manufactured by thickening the conductor metal by a method such as electrolytic plating. For such a two-layered board with metal foil, the conductor pattern is usually processed by the above-described subtractive method.
Moreover, as a board | substrate with 2 layers of metal foil, there exists what was manufactured by forming a metal thin film on a board | substrate by a sputtering method or a direct plating method, About such a board | substrate with 2 layers of metal foil, A conductor pattern is processed by a so-called semi-additive method in which a conductor metal is deposited only on a necessary portion as a conductor pattern by a method such as electrolytic plating to obtain a necessary thickness. In the case of these two-layered substrates with metal foil, the metal thin film need not be the same as a conductive metal such as copper, aluminum, or gold, but may be nickel, palladium, iron, or the like.
The present invention includes a method (semi-additive method) in which an electric wiring substrate is formed later by an additive method using such a two-layer substrate with a metal foil as the substrate with a metal foil. Of course, when the two-layered board with metal foil has a metal foil having a thickness required for the metal wiring, the electric wiring board is formed by a subtractive method.
The thickness of a board | substrate and metal foil is suitably determined according to a use, and there is no restriction | limiting in particular. For example, in the case of a copper-clad polyimide film, the thickness of the copper foil is about 1 μm to 50 μm, and the thickness of the substrate is about 5 μm to 100 μm. Such substrates with metal foil are commercially available, manufactured by Kaneka Co., Ltd., trade name `` Pixio '', Ube Industries, Ltd., trade name `` Yupisel '', manufactured by Nippon Steel Chemical Co., Ltd. The names "Espanex", manufactured by Toray Film Processing Co., Ltd., trade name "Metaroyal", Sheldal, trade name "Flex Base", etc.
<接着剤層>
 前記のように、金属箔付き基板の基板表面に下部クラッド層を、接着剤層を介して形成する場合には、シート状接着剤を使用した方が、接着剤層の平滑性に優れ、かつ接着剤層の厚さの精度が確保でき、しかも、接着剤層を形成する際に接着剤層形成用の樹脂組成物が流れる等の問題も生じないので好ましい。
 シート状接着剤としては、支持基材上に直接接着剤層を形成したものでもよいが、接着剤層から支持基材を容易に剥離するためには、支持基材上に粘着剤層と接着剤層とを順次形成したものや、支持基材上に粘接着剤層を形成した粘接着シートが好ましい。特に、粘接着シートは、粘着剤と接着剤を別に用意する必要がないため、作製工程が簡単になるので、より好ましい。
 粘接着剤層を形成するための粘接着剤組成物としては、光学分野で通常用いられるものを使用することができるが、該粘接着剤組成物を下記の条件で測定した125℃における貯蔵弾性率が10MPa以下であるものが好ましい。貯蔵弾性率が10MPa以下であると、光導波路が加熱されて膨張等した際に、粘接着剤層が応力緩和層として働くため、光導波路と基板の熱膨張率の差に起因する光導波路の剥離が生じない点で有利である。以上の観点から、125℃における貯蔵弾性率が5MPa以下であることがさらに好ましい。
 また、粘接着剤層の厚さとしては、特に制限はないが、3~200μmが好ましい。3μm以上であると十分な応力緩和効果が得られ、200μm以下であると光学装置の小型化の要求に合致させることができ、かつ経済的にも有利である。以上の観点から、粘接着剤層の厚さは、5~50μmがより好ましく、8~30μmがさらに好ましく、10~25μmが特に好ましい。
<Adhesive layer>
As described above, when the lower clad layer is formed on the substrate surface of the substrate with the metal foil via the adhesive layer, it is better to use the sheet-like adhesive, and the adhesive layer is more smooth. Since the accuracy of the thickness of the adhesive layer can be ensured, and the problem that the resin composition for forming the adhesive layer flows does not occur when forming the adhesive layer, it is preferable.
The sheet-like adhesive may be one in which an adhesive layer is directly formed on a supporting substrate, but in order to easily peel the supporting substrate from the adhesive layer, the adhesive is bonded to the adhesive layer on the supporting substrate. An adhesive layer in which an adhesive layer is sequentially formed, and an adhesive sheet in which an adhesive layer is formed on a support substrate are preferable. In particular, the pressure-sensitive adhesive sheet is more preferable because it is not necessary to prepare a pressure-sensitive adhesive and an adhesive separately, and the manufacturing process is simplified.
As the adhesive composition for forming the adhesive layer, those usually used in the optical field can be used, but the adhesive composition was measured at 125 ° C. under the following conditions. The storage elastic modulus in is preferably 10 MPa or less. When the storage elastic modulus is 10 MPa or less, the adhesive layer acts as a stress relaxation layer when the optical waveguide is heated and expanded, so that the optical waveguide is caused by the difference in thermal expansion coefficient between the optical waveguide and the substrate. This is advantageous in that no peeling occurs. From the above viewpoint, it is more preferable that the storage elastic modulus at 125 ° C. is 5 MPa or less.
The thickness of the adhesive layer is not particularly limited but is preferably 3 to 200 μm. When the thickness is 3 μm or more, a sufficient stress relaxation effect can be obtained, and when the thickness is 200 μm or less, it is possible to meet the demand for miniaturization of the optical device and it is economically advantageous. From the above viewpoint, the thickness of the adhesive layer is more preferably 5 to 50 μm, further preferably 8 to 30 μm, and particularly preferably 10 to 25 μm.
(貯蔵弾性率の測定条件)
 試験片の大きさが、長さ20mm、幅4mm、膜厚80μmであり、昇温速度が5℃/min、引張りモード、振動数10Hz、自動静荷重で測定する。
 粘接着剤層を形成するための粘接着剤組成物は、上記貯蔵弾性率の条件を満足するものであれば特に制限はなく、具体的には、分子内に2つ以上のエポキシ基を有する化合物又は分子内にエチレン性不飽和基を有する化合物などが挙げられる。これらの化合物は1種を単独で、又は2種以上を組み合わせて用いることができる。
 また、粘接着剤組成物として、好適なものの具体例としては、(a)官能基を含む重量平均分子量が10万以上である高分子量成分、(b)エポキシ樹脂、(c)フェノール系エポキシ樹脂硬化剤、(d)紫外線照射によって得られる硬化物のTgが250℃以上である光反応性モノマー、及び(e)波長200~450nmの紫外線照射により塩基とラジカルを発生する光開始剤を含有してなるものなどが挙げられる。
(Conditions for measuring storage modulus)
The test piece has a length of 20 mm, a width of 4 mm, and a film thickness of 80 μm, and is measured with a temperature rising rate of 5 ° C./min, a tension mode, a frequency of 10 Hz, and an automatic static load.
The adhesive composition for forming the adhesive layer is not particularly limited as long as it satisfies the above storage elastic modulus condition. Specifically, two or more epoxy groups are included in the molecule. Or a compound having an ethylenically unsaturated group in the molecule. These compounds can be used individually by 1 type or in combination of 2 or more types.
Specific examples of suitable adhesive compositions include (a) a high molecular weight component having a functional group-containing weight average molecular weight of 100,000 or more, (b) an epoxy resin, and (c) a phenolic epoxy. Contains a resin curing agent, (d) a photoreactive monomer whose Tg of the cured product obtained by ultraviolet irradiation is 250 ° C. or higher, and (e) a photoinitiator that generates bases and radicals by ultraviolet irradiation with a wavelength of 200 to 450 nm. And the like.
 以下、本明細書において、(a)及び(c)~(e)成分を、それぞれ(a)高分子量成分、(c)エポキシ樹脂硬化剤、(d)光反応性モノマー及び(e)光開始剤と略記することがある。
 本発明においては、粘接着剤層の形成に際し、上述のように、粘接着シートを用いることが好ましいが、上記(a)~(e)成分を用いる場合には、さらに以下に示すような利点がある。すなわち、
(1)(a)高分子量成分と(b)エポキシ樹脂は、組み合わせによっては非相溶とすることができ、いわゆる海島構造を取りやすく、低弾性、接着性、作業性及び高温時の信頼性が得られること、
(2)(c)エポキシ樹脂硬化剤と(d)光反応性モノマーを用いることにより耐熱性、耐リフロー性に優れること、
(3)(c)エポキシ樹脂硬化剤及び(d)光反応性モノマーの存在下で(e)光開始剤を使用するため、光が当たらない状態では(b)エポキシ樹脂、及び(d)光反応性モノマーがほとんど反応せず、保存安定性に優れる上に、光を照射すれば光反応が促進され、またエポキシ樹脂の硬化促進剤が発生するため、加熱するとスムーズにエポキシ樹脂の硬化が進むという、反応性と保存安定性とを両立し得ること、である。
Hereinafter, in the present specification, the components (a) and (c) to (e) are respectively represented by (a) a high molecular weight component, (c) an epoxy resin curing agent, (d) a photoreactive monomer, and (e) a photoinitiator. Sometimes abbreviated as agent.
In the present invention, it is preferable to use an adhesive sheet as described above when forming the adhesive layer, but when the above components (a) to (e) are used, the following is further shown. There are significant advantages. That is,
(1) (a) High molecular weight component and (b) epoxy resin can be incompatible depending on the combination, so that a so-called sea-island structure is easy to take, low elasticity, adhesiveness, workability, and reliability at high temperature Is obtained,
(2) Excellent heat resistance and reflow resistance by using (c) epoxy resin curing agent and (d) photoreactive monomer,
(3) (c) an epoxy resin curing agent and (d) a photoinitiator used in the presence of a photoreactive monomer, so that (b) an epoxy resin and (d) light in the absence of light The reactive monomer hardly reacts and is excellent in storage stability. In addition, irradiation with light accelerates the photoreaction and generates an epoxy resin curing accelerator. That is, it is possible to achieve both reactivity and storage stability.
 以下、好ましい粘接着剤組成物を構成する各成分についてより具体的に説明する。
 (a)官能基を含む重量平均分子量が10万以上である高分子量成分としては、接着性向上の点で、グリシジル基、アクリロイル基、メタクリロイル基、カルボキシル基、水酸基、エピスルフィド基などの官能基を含有するものが好ましく、中でも架橋性の点でグリシジル基が好ましい。具体的には、原料モノマーとして、グリシジルアクリレート又はグリシジルメタクリレート(以下、総称して、「グリシジル(メタ)アクリレート」という)を含有し、かつ重量平均分子量が10万以上であるグリシジル基含有(メタ)アクリル共重合体を挙げることができる。
 また、耐リフロー性の点で、(b)エポキシ樹脂と非相溶であることが好ましい。但し、相溶性は(a)高分子量成分の特性のみでは決定しないので、両者が相溶しない組み合わせを選択することになる。本発明において、上記グリシジル基含有(メタ)アクリル共重合体とは、グリシジル基含有アクリル共重合体とグリシジル基含有メタクリル共重合体の両方を示す語句である。
Hereinafter, each component which comprises a preferable adhesive composition is demonstrated more concretely.
(A) The high molecular weight component having a functional group-containing weight average molecular weight of 100,000 or more includes functional groups such as a glycidyl group, an acryloyl group, a methacryloyl group, a carboxyl group, a hydroxyl group, and an episulfide group in terms of improving adhesiveness. What is contained is preferable, and a glycidyl group is particularly preferable in terms of crosslinkability. Specifically, glycidyl group-containing (meth) containing glycidyl acrylate or glycidyl methacrylate (hereinafter collectively referred to as “glycidyl (meth) acrylate”) as a raw material monomer and having a weight average molecular weight of 100,000 or more. An acrylic copolymer can be mentioned.
Moreover, it is preferable that it is incompatible with (b) epoxy resin at the point of reflow resistance. However, since compatibility is not determined only by the characteristics of (a) high molecular weight component, a combination in which both are not compatible is selected. In the present invention, the glycidyl group-containing (meth) acrylic copolymer is a phrase indicating both a glycidyl group-containing acrylic copolymer and a glycidyl group-containing methacrylic copolymer.
 このような共重合体としては、例えば、(メタ)アクリルエステル共重合体、アクリルゴムなどを使用することができ、アクリルゴムがより好ましい。アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリルなどの共重合体や、エチルアクリレートとアクリロニトリルなどの共重合体などからなるゴムである。共重合体モノマーとしては例えば、ブチルアクリレート、エチルアクリレート、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、アクリロニトリル等を挙げることができる。 As such a copolymer, for example, a (meth) acrylic ester copolymer, acrylic rubber or the like can be used, and acrylic rubber is more preferable. Acrylic rubber is a rubber mainly composed of an acrylate ester and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, or the like. Examples of the copolymer monomer include butyl acrylate, ethyl acrylate, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, acrylonitrile and the like.
 官能基としてグリシジル基を選択する場合、共重合体モノマー成分としてグリシジル(メタ)アクリレート等を使用することが好ましい。このような重量平均分子量が10万以上であるグリシジル基含有(メタ)アクリル共重合体は、上記モノマーから適宜モノマーを選択して製造することもできるし、市販品(例えばナガセケムテックス(株)製HTR-860P-3、HTR-860P-5等)もある。 When selecting a glycidyl group as a functional group, it is preferable to use glycidyl (meth) acrylate or the like as a copolymer monomer component. Such a glycidyl group-containing (meth) acrylic copolymer having a weight average molecular weight of 100,000 or more can be produced by appropriately selecting a monomer from the above monomers, or a commercially available product (for example, Nagase ChemteX Corporation). HTR-860P-3, HTR-860P-5, etc.) are also available.
 (a)高分子量成分において、官能基の数は架橋密度に影響するので、用いる樹脂によっても異なるが、高分子量成分を複数のモノマーの共重合体として得る場合は、原料として使用する官能基含有モノマーの量としては、共重合体の0.5~6質量%含まれることが好ましい。 (A) In the high molecular weight component, since the number of functional groups affects the crosslink density, it varies depending on the resin used, but when the high molecular weight component is obtained as a copolymer of a plurality of monomers, it contains a functional group used as a raw material. The amount of the monomer is preferably 0.5 to 6% by mass of the copolymer.
 (a)成分としてグリシジル基含有アクリル共重合体を使用する場合、原料として使用するグリシジル(メタ)アクリレート等のグリシジル基含有モノマーの量、及びグリシジル基含有繰り返し単位の量は、共重合体の0.5~6質量%が好ましく、0.5~5質量%がより好ましく、0.8~5質量%が特に好ましい。グリシジル基含有繰り返し単位の量がこの範囲にあると、グリシジル基の緩やかな架橋が起こるため接着力が確保できるとともに、ゲル化を防止することができる。また、(b)エポキシ樹脂と非相溶になるため、応力緩和性に優れるようになる。 When the glycidyl group-containing acrylic copolymer is used as the component (a), the amount of the glycidyl group-containing monomer such as glycidyl (meth) acrylate used as the raw material and the amount of the glycidyl group-containing repeating unit are 0 of the copolymer. 0.5 to 6% by mass is preferable, 0.5 to 5% by mass is more preferable, and 0.8 to 5% by mass is particularly preferable. When the amount of the glycidyl group-containing repeating unit is within this range, the glycidyl group gradually crosslinks, so that an adhesive force can be secured and gelation can be prevented. Moreover, since it becomes incompatible with (b) epoxy resin, it becomes excellent in stress relaxation property.
 グリシジル(メタ)アクリレート等に他の官能基を組み込んでモノマーとすることもできる。その場合の混合比率は、グリシジル基含有(メタ)アクリル共重合体のガラス転移温度(以下「Tg」という)を考慮して決定し、Tgは-10℃以上であることが好ましい。Tgが-10℃以上であると、Bステージ状態での粘接着層のタック性が適当であり、取り扱い性に問題を生じないからである。 Other functional groups can be incorporated into glycidyl (meth) acrylate or the like to form a monomer. In this case, the mixing ratio is determined in consideration of the glass transition temperature (hereinafter referred to as “Tg”) of the glycidyl group-containing (meth) acrylic copolymer, and Tg is preferably −10 ° C. or higher. This is because when the Tg is −10 ° C. or higher, the tackiness of the adhesive layer in the B-stage state is appropriate, and no problem is caused in handling.
 (a)官能基を含む重量平均分子量が10万以上である高分子量成分として、上記モノマーを重合させて、グリシジル基含有アクリル共重合体を使用する場合、その重合方法としては特に制限はなく、例えば、パール重合、溶液重合などの方法を使用することができる。
 本発明において、(a)高分子量成分の重量平均分子量は10万以上であるが、30万~300万であることが好ましく、40万~250万がより好ましく、50万~200万であることが特に好ましい。重量平均分子量がこの範囲にあると、シート状又はフィルム状としたときの強度、可撓性、及びタック性が適当であり、また、フロー性が適当のため基板の凹凸に対する追従性が確保できる。なお、本発明において、重量平均分子量とは、ゲルパーミエーションクロマトグラフィーで測定し、標準ポリスチレン検量線を用いて換算した値を示す。
(A) As a high molecular weight component having a functional group-containing weight average molecular weight of 100,000 or more, when the monomer is polymerized and a glycidyl group-containing acrylic copolymer is used, the polymerization method is not particularly limited, For example, methods such as pearl polymerization and solution polymerization can be used.
In the present invention, the (a) high molecular weight component has a weight average molecular weight of 100,000 or more, preferably 300,000 to 3,000,000, more preferably 400,000 to 2,500,000, and 500,000 to 2,000,000. Is particularly preferred. When the weight average molecular weight is within this range, the strength, flexibility, and tackiness of the sheet or film are appropriate, and the flowability is appropriate, so that followability to the unevenness of the substrate can be ensured. . In the present invention, the weight average molecular weight is a value measured by gel permeation chromatography and converted using a standard polystyrene calibration curve.
 粘接着剤組成物に使用する(b)エポキシ樹脂は、硬化して接着作用を有するものであれば特に限定されず、例えばエポキシ樹脂ハンドブック(新保正樹編、日刊工業新聞社)等に記載されるエポキシ樹脂を広く使用することができる。具体的には、例えば、ビスフェノールA型エポキシ樹脂などの二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂などを使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂又は脂環式エポキシ樹脂など、一般に知られているものを適用することができる。 The (b) epoxy resin used in the adhesive composition is not particularly limited as long as it is cured and has an adhesive action, and is described in, for example, the epoxy resin handbook (edited by Masaki Shinbo, Nikkan Kogyo Shimbun). Epoxy resin can be widely used. Specifically, for example, a bifunctional epoxy resin such as a bisphenol A type epoxy resin, a novolac type epoxy resin such as a phenol novolac type epoxy resin or a cresol novolac type epoxy resin, or the like can be used. Moreover, what is generally known, such as a polyfunctional epoxy resin, a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.
 このようなエポキシ樹脂の一種であるビスフェノールA型エポキシ樹脂としては、油化シェルエポキシ(株)製エピコート807,815,825,827,828,834,1001,1004,1007,1009、ダウケミカル社製DER-330,301,361、東都化成(株)製YD8125,YDF8170等が挙げられる。フェノールノボラック型エポキシ樹脂としては、油化シェルエポキシ(株)製エピコート152,154、日本化薬(株)製EPPN-201、ダウケミカル社製DEN-438等が、また、o-クレゾールノボラック型エポキシ樹脂としては、日本化薬(株)製EOCN-102S,103S,104S,1012,1025,1027、東都化成(株)製YDCN701,702,703,704等が挙げられる。多官能エポキシ樹脂としては、油化シェルエポキシ(株)製Epon1031S、チバスペシャリティーケミカルズ社製アラルダイト0163、ナガセ化成(株)製デナコールEX-611,614,614B,622,512,521,421,411,321等が挙げられる。アミン型エポキシ樹脂としては、油化シェルエポキシ(株)製エピコート604、東都化成(株)製YH-434、三菱ガス化学(株)製TETRAD-X,TETRAD-C、住友化学(株)製ELM-120等が挙げられる。複素環含有エポキシ樹脂としては、チバスペシャリティーケミカルズ社製アラルダイトPT810等の、UCC社製ERL4234,4299,4221,4206等が挙げられる。これらのエポキシ樹脂は、単独で又は2種類以上を組み合わせても、使用することができる。また、本発明において、高接着力を付与するためには、ビスフェノールA型エポキシ樹脂及びフェノールノボラック型エポキシ樹脂が好ましい。 As such bisphenol A type epoxy resin, which is a kind of epoxy resin, Epicoat 807, 815, 825, 827, 828, 834, 1001, 1004, 1007, 1009 manufactured by Yuka Shell Epoxy Co., Ltd., manufactured by Dow Chemical Co., Ltd. DER-330, 301, 361, YD8125, YDF8170, etc. manufactured by Tohto Kasei Co., Ltd. may be mentioned. Examples of the phenol novolac type epoxy resin include Epicoat 152,154 manufactured by Yuka Shell Epoxy Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., DEN-438 manufactured by Dow Chemical Co., Ltd., and o-cresol novolak type epoxy resin. Examples of the resin include EOCN-102S, 103S, 104S, 1012, 1025, 1027 manufactured by Nippon Kayaku Co., Ltd., YDCN701, 702, 703, 704 manufactured by Toto Kasei Co., Ltd., and the like. As the polyfunctional epoxy resin, Epon 1031S manufactured by Yuka Shell Epoxy Co., Ltd., Araldite 0163 manufactured by Ciba Specialty Chemicals Co., Ltd., Denacol EX-611, 614, 614B, 622, 512, 521, 421, 411 manufactured by Nagase Kasei Co., Ltd. , 321 and the like. As the amine type epoxy resin, Epiquat 604 manufactured by Yuka Shell Epoxy Co., Ltd., YH-434 manufactured by Tohto Kasei Co., Ltd., TETRAD-X, TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd., ELM manufactured by Sumitomo Chemical Co., Ltd. -120 and the like. Examples of the heterocyclic ring-containing epoxy resin include ERL4234, 4299, 4221, 4206 and the like manufactured by UCC, such as Araldite PT810 manufactured by Ciba Specialty Chemicals. These epoxy resins can be used alone or in combination of two or more. Moreover, in this invention, in order to provide high adhesive force, a bisphenol A type epoxy resin and a phenol novolak type epoxy resin are preferable.
 粘接着剤組成物における(b)エポキシ樹脂の使用量は、(a)高分子量成分100質量部に対して、5~250質量部が好ましい。(b)エポキシ樹脂の使用量がこの範囲内にあると、弾性率及び成型時のフロー性抑制が確保でき、また高温での取り扱い性も十分に得られる。(b)エポキシ樹脂の使用量は、10~100質量部がより好ましく、20~50質量部が特に好ましい。既に述べたように、(b)エポキシ樹脂は、(a)高分子量成分と相溶しないことが好ましい。 The amount of the (b) epoxy resin used in the adhesive composition is preferably 5 to 250 parts by mass with respect to 100 parts by mass of the (a) high molecular weight component. (B) When the usage-amount of an epoxy resin exists in this range, elastic modulus and the flow control at the time of shaping | molding can be ensured, and the handleability in high temperature is fully obtained. (B) The amount of the epoxy resin used is more preferably 10 to 100 parts by mass, and particularly preferably 20 to 50 parts by mass. As already stated, it is preferable that the (b) epoxy resin is not compatible with the (a) high molecular weight component.
 粘接着剤組成物に使用する(c)フェノール系エポキシ樹脂硬化剤は、エポキシ樹脂と組み合わせることによって、高温高圧下において耐衝撃性が優れ、厳しい熱吸湿下においても充分な接着物性を保持することができるため有効である。
 このような(c)成分としては、例えば、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂又はクレゾールノボラック樹脂などのフェノール樹脂等を挙げることができる。より具体的には、例えば、大日本インキ化学工業(株)製、商品名:フェノライトLF2882、フェノライトLF2822、フェノライトTD-2090、フェノライトTD-2149、フェノライトVH-4150、フェノライトVH4170等が挙げられ、これらは単独で又は2種類以上を組み合わせて使用することができる。
The (c) phenolic epoxy resin curing agent used in the adhesive composition is excellent in impact resistance under high temperature and high pressure when combined with an epoxy resin, and retains sufficient adhesive properties even under severe thermal moisture absorption. It is effective because it can.
Examples of such component (c) include phenol resins such as phenol novolak resin, bisphenol A novolak resin, and cresol novolak resin. More specifically, for example, trade names: Phenolite LF2882, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, Phenolite VH4170, manufactured by Dainippon Ink and Chemicals, Inc. These may be used alone or in combination of two or more.
 粘接着剤組成物に耐湿信頼性を付与するためには、(c)成分の使用量は、(b)エポキシ樹脂のエポキシ基1個当たりフェノール性水酸基の当量比が0.5~1.5の範囲であることが好ましく、0.8~1.2であることがより好ましい。当量比がこの範囲内であれば、樹脂が十分に硬化(橋かけ)し、硬化物の耐熱性や耐湿性などを向上させることができる。 In order to impart moisture resistance reliability to the adhesive composition, the amount of component (c) used is such that the equivalent ratio of phenolic hydroxyl groups per epoxy group of (b) epoxy resin is 0.5 to 1. The range is preferably 5, and more preferably 0.8 to 1.2. If the equivalent ratio is within this range, the resin is sufficiently cured (crosslinked), and the heat resistance and moisture resistance of the cured product can be improved.
 粘接着剤組成物に使用する(d)紫外線照射によって得られる硬化物のTgが250℃以上である光反応性モノマーは、後述する粘接着シートの紫外線照射後の耐熱性を向上させ、熱時接着力及び耐リフロー性を向上させることができる。
 (d)光反応性モノマーのTgを測定する方法としては、(d)光反応性モノマーに光開始剤を添加し紫外線照射した硬化物を5×5mm程度の大きさに成形しサンプルを作製する。作製したサンプルをセイコーインスツルメンツ(株)製:EXSTRA6000によって圧縮モードにより測定してTgを決定する。Tgが250℃以上であると、耐熱性が優れ、耐リフロークラック性評価における250℃以上の熱に耐えうる。そのため、耐リフロークラック性が良好である。Tgとしては、さらに好ましくは、鉛フリーハンダ対応の260℃以上である。またTgがあまり高すぎるものは紫外線照射後の粘接着シートの常温貼り付け性が劣るようになる傾向があるので、上限としては、350℃が好ましい。
(D) The photoreactive monomer whose Tg of the cured product obtained by ultraviolet irradiation is 250 ° C. or higher is used for the adhesive composition, and improves the heat resistance after ultraviolet irradiation of the adhesive sheet described below, The adhesive strength and reflow resistance during heating can be improved.
(D) As a method for measuring the Tg of the photoreactive monomer, (d) a photoinitiator is added to the photoreactive monomer, and a cured product irradiated with ultraviolet rays is molded to a size of about 5 × 5 mm to prepare a sample. . Tg is determined by measuring the prepared sample in a compression mode using EXSTRA6000 manufactured by Seiko Instruments Inc. When Tg is 250 ° C. or higher, the heat resistance is excellent, and it can withstand heat of 250 ° C. or higher in the reflow crack resistance evaluation. Therefore, the reflow crack resistance is good. Tg is more preferably 260 ° C. or higher corresponding to lead-free solder. Moreover, since the thing with too high Tg tends to become inferior in the normal temperature sticking property of the adhesive sheet after ultraviolet irradiation, 350 degreeC is preferable as an upper limit.
 (d)光反応性モノマーの具体例としては、例えば、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、トリメチロールプロパントリアクリレート、イソシアヌル酸エチレンオキサイド(EO)変性トリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレートのような多官能アクリレート等が挙げられ、これらの光反応性モノマーは、単独で又は2種類以上を組み合わせても、使用することができる。紫外線照射後の残存モノマーの観点から、多官能アクリレートの中で、ジペンタエリスリトールヘキサアクリレートやジペンタエリスリトールペンタアクリレートなどが好ましい。具体的には新中村化学(株)製、商品名:A-DPH、A-9300等がある。
 なお、複数の(d)光反応性モノマーを使用する場合、そのTgはその混合物を上記測定方法で測定したときのTgであり、それぞれのモノマーのTgが250℃以上であることを要しない。
(D) Specific examples of the photoreactive monomer include pentaerythritol triacrylate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, trimethylolpropane triacrylate, isocyanuric acid ethylene oxide (EO) modified triacrylate, ditrile Examples thereof include polyfunctional acrylates such as methylolpropane tetraacrylate and pentaerythritol tetraacrylate. These photoreactive monomers can be used alone or in combination of two or more. Of the polyfunctional acrylates, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, and the like are preferable from the viewpoint of residual monomers after ultraviolet irradiation. Specific examples include trade names: A-DPH and A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd.
In addition, when using several (d) photoreactive monomer, the Tg is Tg when the mixture is measured by the said measuring method, and it is not required that Tg of each monomer is 250 degreeC or more.
 粘接着剤組成物における(d)光反応性モノマーの使用量は、(a)高分子量成分100質量部に対して、5~100質量部が好ましい。この使用量が5質量部以上であれば、紫外線照射による光反応性モノマーの重合反応が起こりやすくなるために粘接着シートの支持基材からの剥離性が向上する傾向がある。逆に100質量部以下であれば、高分子量成分の低弾性が機能し、フィルムが脆くならず、硬化物の耐熱性や耐湿性などが向上する傾向がある。したがって、10~70質量部がより好ましく、20~50質量部が特に好ましい。 The amount of the (d) photoreactive monomer used in the adhesive composition is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the (a) high molecular weight component. If this usage amount is 5 parts by mass or more, the polymerization reaction of the photoreactive monomer due to ultraviolet irradiation is likely to occur, so that the peelability of the adhesive sheet from the support substrate tends to be improved. Conversely, if it is 100 parts by mass or less, the low elasticity of the high molecular weight component functions, the film does not become brittle, and the heat resistance and moisture resistance of the cured product tend to be improved. Therefore, 10 to 70 parts by mass is more preferable, and 20 to 50 parts by mass is particularly preferable.
 粘接着剤組成物における(e)波長200~450nmの紫外線照射により塩基とラジカルを発生する光開始剤は、一般的にはα-アミノケトン化合物と呼ばれるものである。このような化合物は、例えば、J.Photopolym.Sci.Technol,Vol.13,No12001等に記載されているもので、紫外線を照射すると次式のように反応する。 In the adhesive composition, (e) a photoinitiator that generates a base and a radical upon irradiation with ultraviolet rays having a wavelength of 200 to 450 nm is generally called an α-aminoketone compound. Such compounds are described, for example, in J. Org. Photopolym. Sci. Technol, Vol. 13, No. 20001, etc., and reacts as shown in the following formula when irradiated with ultraviolet rays.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 α-アミノケトン化合物は、紫外線照射する前は、ラジカルが存在しないため光反応性モノマーの重合反応は起きない。また、立体障害のため熱硬化性樹脂の硬化も促進しない。しかし、紫外線照射により、α-アミノケトン化合物の解離が起こり、ラジカルの発生に伴い、光反応性モノマーの重合反応が起こる。また、α-アミノケトン化合物の解離により、立体障害が低下し活性化したアミンが存在するようになる。そのため、アミンが熱硬化性樹脂の硬化促進作用を有するようになり、以後加熱により硬化促進作用が働くと類推される。このような作用により、紫外線照射する以前には、ラジカルや活性化したアミンが存在しないため、室温での保存安定性に非常に優れている粘接着シートを提供することができる。また、紫外線照射により生じるラジカル及びアミンの構造によって光反応性モノマーやエポキシ樹脂の硬化速度が変化するので、用いる(b)~(d)成分によって、適宜(e)光開始剤(塩基発生剤)を決定することができる。 The α-aminoketone compound does not have radicals before being irradiated with ultraviolet rays, so that the polymerization reaction of the photoreactive monomer does not occur. In addition, curing of the thermosetting resin is not accelerated due to steric hindrance. However, the α-aminoketone compound is dissociated by ultraviolet irradiation, and a polymerization reaction of the photoreactive monomer occurs with the generation of radicals. Further, the dissociation of the α-aminoketone compound reduces the steric hindrance so that activated amines are present. For this reason, it is presumed that the amine has a curing accelerating action of the thermosetting resin, and the heating accelerating action is subsequently exerted by heating. By such an action, there is no radical or activated amine before irradiation with ultraviolet rays, so that an adhesive sheet having excellent storage stability at room temperature can be provided. In addition, since the curing rate of the photoreactive monomer and epoxy resin varies depending on the radical and amine structure generated by ultraviolet irradiation, depending on the components (b) to (d) used, (e) a photoinitiator (base generator) Can be determined.
 前記(e)光開始剤(塩基発生剤)としては、例えば、2-メチル-1(4-(メチルチオ)フェニル-2-モルフォリノプロパン-1-オン(Ciba Speciality Chemicals社製イルガキュア907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1-オン(Ciba Speciality Chemicals社製社製イルガキュア369)、ヘキサアリールビスイミダゾール誘導体(ハロゲン、アルコキシ基、ニトロ基、シアノ基等の置換基がフェニル基に置換されても良い)、ベンゾイソオキサゾロン誘導体等を用いることができる。
 前記光開始剤(塩基発生剤)のほかに、光フリース転位、光クライゼン転位やクルチウス転位、スチーブンス転位によって塩基を発生させる方法を用いることができる。
 前記光開始剤(塩基発生剤)は、分子量500以下の低分子化合物として用いるほか、高分子の主鎖及び側鎖に導入した化合物を用いても良い。この場合の分子量としては、粘接着剤としての粘接着性、流動性の観点から重量平均分子量1000~100000が好ましく、より好ましくは5000~30000である。
Examples of the (e) photoinitiator (base generator) include 2-methyl-1 (4- (methylthio) phenyl-2-morpholinopropan-1-one (Irgacure 907 manufactured by Ciba Specialty Chemicals), 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1-one (Irgacure 369 manufactured by Ciba Specialty Chemicals), hexaarylbisimidazole derivative (halogen, alkoxy group, nitro group, cyano, A substituent such as a group may be substituted with a phenyl group), benzoisoxazolone derivatives, and the like.
In addition to the photoinitiator (base generator), a method of generating a base by photo-Fries rearrangement, photo-Claisen rearrangement, Curtius rearrangement, or Stevens rearrangement can be used.
The photoinitiator (base generator) may be a low molecular compound having a molecular weight of 500 or less, or a compound introduced into a main chain and side chain of a polymer. The molecular weight in this case is preferably a weight average molecular weight of 1,000 to 100,000, more preferably 5,000 to 30,000 from the viewpoints of adhesiveness and fluidity as an adhesive.
 粘接着剤組成物において、(e)光開始剤の使用量は、(a)高分子量成分100質量部に対して、0.1~20質量部であることが好ましい。0.1質量部以上であれば、反応性良好で残存モノマーが少なくなり、20質量部以下であれば、重合反応による分子量増加が適度に機能し、低分子量成分が少なく、耐リフロー性に影響を及ぼす可能性が低減される。従って、より好ましくは0.5~15質量部であり、さらに好ましくは、1~5質量部である。 In the adhesive composition, the amount of (e) photoinitiator used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of (a) high molecular weight component. If it is 0.1 part by mass or more, the reactivity is good and the residual monomer is reduced, and if it is 20 parts by mass or less, the molecular weight increase due to the polymerization reaction functions moderately, the low molecular weight component is small, and the reflow resistance is affected. The possibility of exerting is reduced. Accordingly, the amount is more preferably 0.5 to 15 parts by mass, and further preferably 1 to 5 parts by mass.
 次に、上記(a)~(e)成分以外に、粘接着剤層に含有させることのできる成分について説明する。粘接着剤樹脂組成物には、可撓性や耐リフロークラック性を向上させる目的で、(f)エポキシ樹脂と相溶性がある高分子量樹脂を添加することができる。このような高分子量樹脂としては、(a)高分子量成分と非相溶になるものが信頼性向上の観点で好ましく、例えばフェノキシ樹脂、高分子量エポキシ樹脂、超高分子量エポキシ樹脂などが挙げられる。これらは、単独で又は2種類以上を組み合わせて使用することもできる。(b)エポキシ樹脂として(a)高分子量成分と相溶性があるものを使用するとき、(f)エポキシ樹脂と相溶性がある高分子量樹脂を使用すると、(b)エポキシ樹脂は、該(f)成分とより相溶しやすいため、結果的に(b)エポキシ樹脂と(a)高分子量成分とを非相溶にすることが可能となる場合がある。
 (f)エポキシ樹脂と相溶性がある高分子量樹脂の使用量は、(b)エポキシ樹脂及び(c)エポキシ樹脂硬化剤の合計100質量部に対して、40質量部以下とすることが好ましい。この範囲であると、粘接着剤層のTgを確保できる。
Next, in addition to the components (a) to (e), components that can be contained in the adhesive layer will be described. For the purpose of improving flexibility and reflow crack resistance, (f) a high molecular weight resin compatible with the epoxy resin can be added to the adhesive resin composition. As such a high molecular weight resin, (a) those which are incompatible with the high molecular weight component are preferable from the viewpoint of improving reliability, and examples thereof include phenoxy resin, high molecular weight epoxy resin, and ultra high molecular weight epoxy resin. These may be used alone or in combination of two or more. (B) When using an epoxy resin that is compatible with (a) a high molecular weight component, when (f) a high molecular weight resin compatible with the epoxy resin is used, (b) the epoxy resin is As a result, it may be possible to make the (b) epoxy resin and the (a) high molecular weight component incompatible with each other.
(F) It is preferable that the usage-amount of high molecular weight resin compatible with an epoxy resin shall be 40 mass parts or less with respect to a total of 100 mass parts of (b) epoxy resin and (c) epoxy resin hardening | curing agent. Within this range, the Tg of the adhesive layer can be secured.
 また、粘接着剤組成物には、異種材料間の界面結合を良くするために、各種カップリング剤を添加することもできる。カップリング剤としては、例えば、シラン系、チタン系、アルミニウム系等が挙げられる。
 上記シラン系カップリング剤としては、特に制限はなく、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシランなどを使用することができ、単独で又は二種類以上を組み合わせて使用することができる。具体的には日本ユニカー(株)製NUCA-189、NUCA-1160がある。
In addition, various coupling agents can be added to the adhesive composition in order to improve interfacial bonding between different materials. Examples of the coupling agent include silane, titanium, and aluminum.
The silane coupling agent is not particularly limited. For example, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane and the like can be used, and these can be used alone or in combination of two or more. Specifically, there are NUCA-189 and NUCA-1160 manufactured by Nippon Unicar Co., Ltd.
 上記カップリング剤の使用量は、その効果や耐熱性及びコストの面から、(a)官能基を含む重量平均分子量が10万以上である高分子量成分100質量部に対して、0.01~10質量部とするのが好ましい。 The amount of the coupling agent used is from 0.01 to 100 parts by mass with respect to 100 parts by mass of the high molecular weight component having a weight average molecular weight containing a functional group of 100,000 or more in view of its effect, heat resistance and cost. The amount is preferably 10 parts by mass.
 粘接着剤組成物には、イオン性不純物を吸着して、耐湿信頼性を向上させるために、さらにイオン捕捉剤を添加することもできる。このようなイオン捕捉剤としては、特に制限はなく、例えば、トリアジンチオール化合物、ビスフェノール系還元剤等の、銅がイオン化して溶け出すのを防止するため銅害防止剤として知られる化合物、ジルコニウム系、アンチモンビスマス系マグネシウムアルミニウム化合物等の無機イオン吸着剤などが挙げられる。
 上記イオン捕捉剤の使用量は、添加による効果や耐熱性、コスト等の点から、(a)官能基を含む重量平均分子量が10万以上である高分子量成分100質量部に対して、0.1~10質量部が好ましい。
An ion scavenger can be further added to the adhesive composition in order to adsorb ionic impurities and improve moisture resistance reliability. Such an ion scavenger is not particularly limited, for example, triazine thiol compound, bisphenol-based reducing agent, etc., a compound known as a copper damage preventive agent for preventing copper ionization and dissolution, zirconium-based And inorganic ion adsorbents such as antimony bismuth-based magnesium aluminum compounds.
The amount of the ion scavenger used is from the viewpoint of the effect of addition, heat resistance, cost, etc. to (a) 100 parts by mass of the high molecular weight component having a functional group-containing weight average molecular weight of 100,000 or more. 1 to 10 parts by mass is preferred.
 粘接着シートは、前記粘接着剤組成物を溶剤に溶解あるいは分散してワニスとし、支持基材上に塗布、加熱し溶剤を除去することによって得ることができる。
 すなわち、まず保護フィルム(離型シートともいう)上に、粘接着剤組成物を有機溶剤等に溶解させてワニス化したものを、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等、一般に周知の方法に従って、塗布し、乾燥させて粘接着層を形成する。その後、支持基材を積層し、離型シート(保護フィルム)、粘接着層及び支持基材からなる粘接着シートを得ることができる。または、支持基材上に直接、粘接着剤組成物を同様の方法で塗布し、乾燥させて、粘接着シートを得ることができる。この場合、必要に応じ保護フィルムを積層してもよい。
The adhesive sheet can be obtained by dissolving or dispersing the adhesive composition in a solvent to obtain a varnish, applying the composition onto a support substrate, heating the composition, and removing the solvent.
That is, first, a knife coating method, a roll coating method, a spray coating method, a gravure coating method is performed by dissolving an adhesive composition in an organic solvent or the like on a protective film (also called a release sheet). According to a generally known method such as a bar coating method or a curtain coating method, it is applied and dried to form an adhesive layer. Then, a support base material is laminated | stacked and the adhesive sheet which consists of a release sheet (protective film), an adhesive layer, and a support base material can be obtained. Alternatively, the adhesive composition can be applied directly on the supporting substrate by the same method and dried to obtain an adhesive sheet. In this case, you may laminate | stack a protective film as needed.
 粘接着シートに用いる保護フィルムまたは支持基材としては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルムなどのプラスチックフィルム、ポリエチレンテレフタレート等のポリエステル等が挙げられる。ここで、後述するように、紫外線を粘接着シートに照射し、紫外線重合性を有する粘接着剤を重合硬化せしめ、粘接着剤と支持基材界面の接着力を低下させて支持基材の剥離を可能にする。そのため、支持基材は紫外線透過性を有するものが好ましい。 Examples of the protective film or support substrate used for the adhesive sheet include plastic films such as polytetrafluoroethylene film, polyethylene film, polypropylene film, and polymethylpentene film, and polyester such as polyethylene terephthalate. Here, as will be described later, the adhesive sheet is irradiated with ultraviolet rays, the ultraviolet-curing adhesive is polymerized and cured, and the adhesive force at the interface between the adhesive and the supporting substrate is lowered to form a supporting group. Allows stripping of material. For this reason, the support substrate is preferably one having ultraviolet transparency.
 また、上記ワニス化するための溶剤としては、有機溶媒であれば特に限定されないが、フィルム作製時の揮発性などを沸点から考慮して決めることができる。具体的には、例えば、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶媒はフィルム作製時にフィルムの硬化が進まない点で好ましい。また、塗膜性を向上させるなどの目的では、例えば、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、シクロヘキサノンなどの比較的高沸点の溶媒を使用することが好ましい。これらの溶媒は、単独で又は2種類以上を組み合わせて使用することができる。
 粘接着シートにおける支持基材の厚さは、特に制限はないが、5~250μmが好ましい。5μm以上であれば作業性が向上し、250μm以下であれば、経済的であり好ましい。以上の観点から、支持基材の厚さは、10~200μmがより好ましく、20~150μmがさらに好ましく、25~125μmが特に好ましい。
The solvent for varnishing is not particularly limited as long as it is an organic solvent, but can be determined in consideration of the volatility during film production from the boiling point. Specifically, for example, a solvent having a relatively low boiling point such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene, etc. This is preferable in that the curing of the resin does not proceed. For the purpose of improving the coating properties, it is preferable to use a solvent having a relatively high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, cyclohexanone. These solvents can be used alone or in combination of two or more.
The thickness of the supporting substrate in the adhesive sheet is not particularly limited, but is preferably 5 to 250 μm. If it is 5 micrometers or more, workability | operativity will improve, and if it is 250 micrometers or less, it is economical and preferable. From the above viewpoints, the thickness of the supporting substrate is more preferably 10 to 200 μm, further preferably 20 to 150 μm, and particularly preferably 25 to 125 μm.
 粘接着シートにおける粘接着層と支持基材の合計の厚さとしては、通常10~250μmである。支持基材は粘接着層と同じかやや厚めに設定すると作業性がよく、具体的な組み合わせとしては粘接着層/支持基材(μm)が、5/25、10/30、10/50、25/50、50/50、50/75等があり、使用する条件や装置等によって適宜決定することができる。
 また、粘接着シートは、所望の厚さを得るため、熱時の流動性を向上させるために、粘接着シートの粘接着層側に、別途作製した粘接着剤を2枚以上貼り合わせることもできる。この場合には、粘接着層同士の剥離が発生しないように貼り合わせ条件を選定する必要がある。
 以上説明したような構成の粘接着シートに紫外線を照射すると、紫外線照射後には支持基材の接着力は大きく低下し、基板に粘接着剤層を保持したまま、該粘接着シートの支持基材を容易に剥離することができる。
The total thickness of the adhesive layer and the supporting substrate in the adhesive sheet is usually 10 to 250 μm. The workability is good when the support substrate is set to be the same as or slightly thicker than the adhesive layer. As a specific combination, the adhesive layer / support substrate (μm) is 5/25, 10/30, 10 / There are 50, 25/50, 50/50, 50/75, etc., which can be appropriately determined according to the conditions and apparatus used.
Moreover, in order to obtain a desired thickness, the adhesive sheet has two or more separately prepared adhesives on the adhesive layer side of the adhesive sheet in order to improve fluidity during heating. It can also be pasted together. In this case, it is necessary to select a bonding condition so that peeling between the adhesive layers does not occur.
When the adhesive sheet having the structure as described above is irradiated with ultraviolet rays, the adhesive strength of the support base material is greatly reduced after the ultraviolet irradiation, and the adhesive sheet of the adhesive sheet is retained while holding the adhesive layer on the substrate. The supporting substrate can be easily peeled off.
<クラッド層形成用樹脂>
 下部クラッド層及び上部クラッド層に使用するクラッド層形成用樹脂としては、クラッド形成用樹脂フィルムの硬化物が、後記するコア層形成用樹脂フィルムの硬化物より低屈折率となるものであり、かつ光又は熱により硬化する樹脂であれば特に限定されず、熱硬化性樹脂や感光性樹脂を用いることができるが、(ア)ベースポリマー、(イ)光重合性化合物、及び(ウ)光重合開始剤を含有する樹脂組成物により構成されていることが好ましい。
 (ア)ベースポリマーとしては、第1発明で説明したのと同様の、(A)ベースポリマーを用いることができる。
<Clad layer forming resin>
As the clad layer forming resin used for the lower clad layer and the upper clad layer, the cured product of the clad forming resin film has a lower refractive index than the cured product of the core layer forming resin film described later, and The resin is not particularly limited as long as it is a resin that is cured by light or heat, and a thermosetting resin or a photosensitive resin can be used, but (a) a base polymer, (b) a photopolymerizable compound, and (c) photopolymerization. It is preferable that it is comprised with the resin composition containing an initiator.
(A) As the base polymer, the same (A) base polymer as described in the first invention can be used.
 また、(A)ベースポリマーとしては、3次元架橋し、耐熱性が向上するという観点からは、エポキシ樹脂、特に室温で固形のエポキシ樹脂が好ましい。
 室温で固形のエポキシ樹脂としては、例えば、東都化学(株)製「エポトートYD-7020、エポトートYD-7019、エポトートYD-7017」(いずれも商品名)、ジャパンエポキシレジン(株)製「エピコート1010、エピコート1009、エピコート1008」(いずれも商品名)などのビスフェノールA型エポキシ樹脂が挙げられる。
 (ア)ベースポリマーの分子量は、フィルム形成性の点から、通常、数平均分子量が5,000以上である。該数平均分子量は、好ましくは10,000以上、より好ましくは30,000以上である。
 数平均分子量の上限は、特に制限はないが、(イ)光重合性化合物との相溶性や露光現像性の観点から、通常、1,000,000以下である。
 数平均分子量の上限は、好ましくは500,000以下、より好ましくは200,000以下である。
 なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定し、標準ポリスチレン換算した値である。
As the base polymer (A), an epoxy resin, particularly an epoxy resin that is solid at room temperature is preferable from the viewpoint of three-dimensional crosslinking and improved heat resistance.
Examples of the epoxy resin that is solid at room temperature include, for example, “Epototo YD-7020, Epototo YD-7019, Epototo YD-7007” (all trade names) manufactured by Toto Chemical Co., Ltd., and “Epicoat 1010” manufactured by Japan Epoxy Resins Co., Ltd. Bisphenol A type epoxy resin such as “Epicoat 1009, Epicoat 1008” (both trade names).
(A) The molecular weight of the base polymer is usually 5,000 or more in terms of number average molecular weight from the viewpoint of film formability. The number average molecular weight is preferably 10,000 or more, more preferably 30,000 or more.
The upper limit of the number average molecular weight is not particularly limited, but is usually 1,000,000 or less from the viewpoint of (i) compatibility with the photopolymerizable compound and exposure and developability.
The upper limit of the number average molecular weight is preferably 500,000 or less, more preferably 200,000 or less.
The number average molecular weight is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
 (ア)ベースポリマーの配合量は、(ア)成分のベースポリマー及び(イ)成分の光重合性化合物の総量に対して、通常10~80質量%程度である。
 配合量が10質量%以上であると、光導波路構築に必要な50~500μm程度の厚膜フィルムの形成が容易であるという利点があり、一方、80質量%以下であると、光硬化反応が十分に進行する。
 以上の観点から、(ア)成分の配合量は、好ましくは20~70質量%、より好ましくは25~65質量%である。
The blending amount of the (a) base polymer is usually about 10 to 80% by mass with respect to the total amount of the base polymer of the component (a) and the photopolymerizable compound of the component (a).
When the blending amount is 10% by mass or more, there is an advantage that it is easy to form a thick film of about 50 to 500 μm necessary for the construction of the optical waveguide. On the other hand, when the blending amount is 80% by mass or less, the photocuring reaction occurs. Proceed sufficiently.
From the above viewpoint, the amount of component (a) is preferably 20 to 70% by mass, more preferably 25 to 65% by mass.
 次に、(イ)光重合性化合物としては、紫外線等の光の照射によって重合するものであれば特に限定されず、分子内に2つ以上のエポキシ基を有する化合物や分子内にエチレン性不飽和基を有する化合物などが挙げられる。
 分子内に2つ以上のエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂などの2官能芳香族グリシジルエーテル、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン-フェノール型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂などの多官能芳香族グリシジルエーテル、ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ネオペンチルグリコール型エポキシ樹脂、ヘキサンジオール型エポキシ樹脂などの2官能脂肪族グリシジルエーテル、水添ビスフェノールA型エポキシ樹脂などの2官能脂環式グリシジルエーテル、トリメチロールプロパン型エポキシ樹脂、ソルビトール型エポキシ樹脂、グリセリン型エポキシ樹脂などの多官能脂肪族グリシジルエーテル、フタル酸ジグリシジルエステルなどの2官能芳香族グリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステルなどの2官能脂環式グリシジルエステル、N,N-ジグリシジルアニリン、N,N-ジグリシジルトリフルオロメチルアニリンなどの2官能芳香族グリシジルアミン、N,N,N',N'-テトラグリシジル-4,4-ジアミノジフェニルメタン、1,3-ビス(N,N-グリシジルアミノメチル)シクロヘキサン、N,N,O-トリグリシジル-p-アミノフェノールなどの多官能芳香族グリシジルアミン、アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ビニルシクロヘキセンジオキシドなどの2官能脂環式エポキシ樹脂、ジグリシジルヒダントインなどの2官能複素環式エポキシ樹脂、トリグリシジルイソシアヌレートなどの多官能複素環式エポキシ樹脂、オルガノポリシロキサン型エポキシ樹脂などの2官能又は多官能ケイ素含有エポキシ樹脂などが挙げられる。
Next, (a) the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and a compound having two or more epoxy groups in the molecule or an ethylenically non-polymerizable compound in the molecule. Examples thereof include compounds having a saturated group.
Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, tetrabromobisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, naphthalene type epoxy resins, etc. Polyfunctional aromatic glycidyl ethers such as bifunctional aromatic glycidyl ether, phenol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene-phenol type epoxy resin, tetraphenylolethane type epoxy resin, polyethylene glycol type epoxy resin, Bifunctional aliphatic glycidyl ether such as polypropylene glycol type epoxy resin, neopentyl glycol type epoxy resin, hexanediol type epoxy resin, hydrogenated bisphenol A type Bifunctional aromatic glycidyl ethers such as bifunctional alicyclic glycidyl ethers such as poxy resins, polyfunctional aliphatic glycidyl ethers such as trimethylolpropane type epoxy resins, sorbitol type epoxy resins and glycerin type epoxy resins, and diglycidyl esters of phthalic acid , Bifunctional alicyclic glycidyl esters such as tetrahydrophthalic acid diglycidyl ester and hexahydrophthalic acid diglycidyl ester, bifunctional aromatic glycidyl such as N, N-diglycidylaniline and N, N-diglycidyltrifluoromethylaniline Amine, N, N, N ′, N′-tetraglycidyl-4,4-diaminodiphenylmethane, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, N, N, O-triglycidyl-p-amino Polyfunctionality such as phenol Bifunctional cycloaliphatic epoxy resins such as aromatic glycidylamine, alicyclic diepoxy acetal, alicyclic diepoxy adipate, alicyclic diepoxycarboxylate, vinylcyclohexene dioxide, and bifunctional heterocycles such as diglycidylhydantoin And a bifunctional or polyfunctional silicon-containing epoxy resin such as an epoxy resin, a polyfunctional heterocyclic epoxy resin such as triglycidyl isocyanurate, and an organopolysiloxane type epoxy resin.
 これらの分子内に2つ以上のエポキシ基を有する化合物は、通常、その分子量が100~2000であって、室温で液状のものが用いられる。該分子量は、好ましくは150~1,000、より好ましくは200~800である。
 また、これらの化合物は、単独で用いてもよく、2種類以上併用してもよく、更にその他の光重合性化合物と組み合わせて用いることもできる。
 なお、分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法又は質量分析法を用いて測定することができる。
 また、分子内にエチレン性不飽和基を有する化合物の具体例としては、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノールなどが挙げられるが、これらのうち透明性と耐熱性の観点から、(メタ)アクリレートが好ましく、1官能性のもの、2官能性のもの、3官能性以上のもののいずれも用いることができる。
These compounds having two or more epoxy groups in the molecule are usually those having a molecular weight of 100 to 2000 and liquid at room temperature. The molecular weight is preferably 150 to 1,000, more preferably 200 to 800.
Moreover, these compounds may be used independently, may be used together 2 or more types, and also can be used in combination with another photopolymerizable compound.
The molecular weight can be measured using a gel permeation chromatography (GPC) method or a mass spectrometry method.
Specific examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, vinyl ether, vinyl pyridine, vinyl phenol, etc. Of these, transparency and heat resistance From the viewpoint, (meth) acrylate is preferable, and any of monofunctional, bifunctional, trifunctional or higher can be used.
 1官能性(メタ)アクリレートとしては、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、パラクミルフェノキシエチレングリコール(メタ)アクリレート、2-テトラヒドロピラニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどが挙げられる。 Monofunctional (meth) acrylates include methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid , Paracumylphenoxyethylene glycol (meth) acrylate, 2-tetrahydropyranyl (meth) acrylate, isobornyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate Etc.
 また、2官能性(メタ)アクリレートとしては、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-ノナンジオールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、2-ヒドロキシ-1-アクリロキシ-3-メタクリロキシプロパン、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[3-フェニル-4-アクリロイルポリオキシエトキシ)フルオレン、ビスフェノールA型、フェノールノボラック型、クレゾールノボラック型、及びグリシジルエーテル型のエポキシ(メタ)アクリレートなどが挙げられる。 Bifunctional (meth) acrylates include ethoxylated 2-methyl-1,3-propanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6-hexanediol di (meth). Acrylate, 2-methyl-1,8-octanediol diacrylate, 1,9-nonanediol di (meth) acrylate, 1,10-nonanediol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, propoxy Ethoxylated bisphenol A diacrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol Cold di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane di (meth) acrylate, ethoxylated cyclohexanedimethanol di (meth) acrylate, 2-hydroxy-1-acryloxy-3-methacryloxypropane, 2-hydroxy-1,3-dimethacryloxypropane, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, 9,9-bis [3-phenyl-4-acryloylpolyoxyethoxy) fluorene Bisphenol A type, phenol novolak type, cresol novolak type, glycidyl ether type epoxy (meth) acrylate, and the like.
 更に、3官能以上の(メタ)アクリレートとしては、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、カプロラクトン変性ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
 これらは、単独で用いてもよく、2種類以上併用してもよい。
 なお、ここで(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。
Furthermore, as tri- or more functional (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, ethoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, caprolactone modified ditri Examples include methylolpropane tetraacrylate and dipentaerythritol hexa (meth) acrylate.
These may be used alone or in combination of two or more.
Here, (meth) acrylate means acrylate and methacrylate.
 (イ)光重合性化合物の配合量は、(ア)成分のベースポリマー及び(イ)成分の光重合性化合物の総量に対して、通常20~90質量%程度である。
 配合量が、20質量%以上であると、光重合性化合物にベースポリマーを絡み込んで硬化させることが容易にでき、一方、90質量%以下であると、十分な厚さのクラッド層を容易に形成することできる。
 以上の観点から、(イ)成分の配合量は、好ましくは25~85質量%、より好ましくは30~80質量%である。
The blending amount of the (a) photopolymerizable compound is usually about 20 to 90% by mass with respect to the total amount of the base polymer of the component (a) and the photopolymerizable compound of the component (a).
When the blending amount is 20% by mass or more, the base polymer can be easily entangled with the photopolymerizable compound and cured, while when it is 90% by mass or less, a sufficiently thick clad layer can be easily formed. Can be formed.
From the above viewpoint, the amount of component (a) is preferably 25 to 85% by mass, more preferably 30 to 80% by mass.
 次に(ウ)成分の光重合開始剤としては、特に制限はなく、例えば、エポキシ化合物の開始剤として、p-メトキシベンゼンジアゾニウムヘキサフルオロホスフェートなどのアリールジアゾニウム塩、ジフェニルヨードニウムヘキサフロロホスホニウム塩、ジフェニルヨードニウムヘキサフロロアンチモネート塩などのジアリールヨードニウム塩、トリフェニルスルホニウムヘキサフロロホスホニウム塩、トリフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル-4-チオフェノキシフェニルスルホニウムペンタフロロヒドロキシアンチモネート塩などのトリアリールスルホニウム塩、トリフェニルセレノニウムヘキサフロロホスホニウム塩、トリフェニルセレノニウムホウフッ化塩、トリフェニルセレノニウムヘキサフロロアンチモネート塩などのトリアリルセレノニウム塩、ジメチルフェナシルスルホニウムヘキサフロロアンチモネート塩、ジエチルフェナシルスルホニウムヘキサフロロアンチモネート塩などのジアルキルフェナジルスルホニウム塩、4-ヒドロキシフェニルジメチルスルホニウムヘキサフロロアンチモネート塩、4-ヒドロキシフェニルベンジルメチルスルホニウムヘキサフロロアンチモネートなどのジアルキル-4-ヒドロキシフェニルスルホニウム塩、α-ヒドロキシメチルベンゾインスルホン酸エステル、N-ヒドロキシイミドスルホネート、α-スルホニロキシケトン、β-スルホニロキシケトンなどのスルホン酸エステル等が挙げられる。 Next, the photopolymerization initiator of the component (c) is not particularly limited. For example, as an initiator for an epoxy compound, aryl diazonium salts such as p-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphonium salt, diphenyl Diaryliodonium salts such as iodonium hexafluoroantimonate salt, triphenylsulfonium hexafluorophosphonium salt, triphenylsulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenyl Sulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenylsulfonium pentafluorohydroxyantimonate Triarylsulfonium salts such as triphenylselenonium hexafluorophosphonium salt, triphenylselenonium borofluoride, triarylselenonium salts such as triphenylselenonium hexafluoroantimonate salt, dimethylphenacylsulfonium hexafluoroantimonate salt Dialkylphenazylsulfonium salts such as diethylphenacylsulfonium hexafluoroantimonate, 4-hydroxyphenyldimethylsulfonium hexafluoroantimonate, dialkyl-4-hydroxyphenylsulfonium such as 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate Salt, α-hydroxymethylbenzoin sulfonate, N-hydroxyimide sulfonate, α-sulfonate Kishiketon, sulfonic acid esters such as β- sulfo Niro carboxymethyl ketone.
 また、分子内にエチレン性不飽和基を有する化合物の開始剤としては、ベンゾフェノン、N,N'-テトラメチル-4,4'-ジアミノベンゾフェノン(ミヒラーケトン)、N,N'-テトラエチル-4,4'-ジアミノベンゾフェノン、4-メトキシ-4'-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンなどの芳香族ケトン、2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル1,4-ナフトキノン、2,3-ジメチルアントラキノンなどのキノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテルなどのベンゾインエーテル化合物、ベンゾイン、メチルベンゾイン、エチルベンゾインなどのベンゾイン化合物;ベンジルジメチルケタールなどのベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体などの2,4,5-トリアリールイミダゾール二量体、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドなどのホスフィンオキサイド類、9-フェニルアクリジン、1,7-ビス(9,9'-アクリジニル)ヘプタンなどのアクリジン誘導体、N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物などが挙げられる。
 また、2,4,5-トリアリールイミダゾール二量体において、アリール基が置換されている場合、2つのアリール基の置換基は同一で対称な二量体であってもよいし、相違して非対称な二量体であってもよい。
 また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。
 なお、コア層及びクラッド層の透明性を向上させる観点からは、上記光重合開始剤のうち、芳香族ケトン及びホスフィンオキサイド類が好ましい。
 これらの(ウ)光重合開始剤は、単独で用いてもよく、2種類以上併用してもよい。
In addition, as an initiator for a compound having an ethylenically unsaturated group in the molecule, benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4 '-Diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2,2-dimethoxy-1,2 -Diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy- 2-Methyl-1-propan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morph Aromatic ketones such as linopropan-1-one, 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2 Quinones such as 1,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone Benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether and benzoin phenyl ether, benzoin compounds such as benzoin, methyl benzoin and ethyl benzoin; benzyldimethyl ketal and the like 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluoro) Phenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer 2,4,5-triarylimidazole dimer such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide Phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, - phenyl acridine, 1,7-bis (9,9'-acridinyl) acridine derivatives such as heptane, N- phenylglycine, N- phenylglycine derivatives, coumarin-based compounds.
Further, in the 2,4,5-triarylimidazole dimer, when the aryl group is substituted, the substituents of the two aryl groups may be the same and symmetrical dimers, or differently. It may be an asymmetric dimer.
Moreover, you may combine a thioxanthone type compound and a tertiary amine compound like the combination of diethyl thioxanthone and dimethylamino benzoic acid.
From the viewpoint of improving the transparency of the core layer and the clad layer, aromatic ketones and phosphine oxides are preferable among the photopolymerization initiators.
These (c) photopolymerization initiators may be used alone or in combination of two or more.
 (ウ)光重合開始剤の配合量は、(ア)成分のベースポリマー及び(イ)成分の光重合性化合物総量100質量部に対して、通常0.1~10質量部程度である。
 0.1質量部以上であると、光感度が十分であり、一方10質量部以下であれば、光導波路の表面のみが選択的に硬化し、硬化が不十分となることがなく、また、光重合開始剤自身の吸収により伝搬損失が増大することもない。
 以上の観点から、(ウ)成分の配合量は、好ましくは0.5~5質量部、より好ましくは1~4質量部である。
 また、この他に必要に応じて、本発明のクラッド層形成用樹脂中には、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤などの所謂添加剤を本発明の効果に悪影響を与えない割合で添加してもよい。
(C) The amount of the photopolymerization initiator is usually about 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the base polymer of component (a) and the photopolymerizable compound of component (a).
If it is 0.1 parts by mass or more, the photosensitivity is sufficient, while if it is 10 parts by mass or less, only the surface of the optical waveguide is selectively cured, and curing does not become insufficient, Propagation loss does not increase due to absorption of the photopolymerization initiator itself.
From the above viewpoint, the blending amount of the component (c) is preferably 0.5 to 5 parts by mass, more preferably 1 to 4 parts by mass.
In addition, if necessary, the clad layer forming resin of the present invention may contain an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, and a filler. So-called additives such as an agent may be added at a rate that does not adversely affect the effects of the present invention.
 クラッド層形成用樹脂は、(ア)ベースポリマー、(イ)光重合性化合物、及び(ウ)光重合開始剤を含有する樹脂組成物を溶剤に溶解して、クラッド層形成用樹脂ワニスとして用いることもできる。
 前記のように、下部クラッド層及び上部クラッド層の形成には、クラッド層形成用樹脂フィルムを使用するのが好ましいが、このクラッド層形成用樹脂フィルムは、クラッド層形成用樹脂ワニスを必要により基材フィルム上に塗布し、溶剤を除去することにより容易に製造することができる。
The resin for forming the clad layer is used as a resin varnish for forming the clad layer by dissolving a resin composition containing (a) a base polymer, (b) a photopolymerizable compound, and (c) a photopolymerization initiator in a solvent. You can also
As described above, it is preferable to use a resin film for forming a clad layer for forming the lower clad layer and the upper clad layer. It can be easily manufactured by coating on a material film and removing the solvent.
 クラッド層形成用樹脂フィルムの製造過程において、必要により用いる基材フィルムは、クラッド層形成用樹脂フィルムを支持する支持体であって、その材料については特に限定されないが、例えば、クラッド層形成用樹脂フィルムを剥離することが容易であり、かつ、耐熱性及び耐溶剤性を有するとの観点から、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン、ポリエチレンなどが好適に用いられる。
 なお、上記基材フィルムは、後にクラッド層形成用樹脂フィルムの剥離を容易とするため、離型処理、帯電防止処理などが施されていてもよい。
 該基材フィルムの厚さは、通常5~50μmである。基材フィルムの厚さが5μm以上であると、支持体としての強度が得やすいという利点があり、50μm以下であると、ロール状に製造する場合の巻き取り性が向上するという利点がある。以上の観点から、該基材フィルムの厚さは、好ましくは10~40μm、より好ましくは15~30μmである。
In the production process of the clad layer forming resin film, the base film used as necessary is a support for supporting the clad layer forming resin film, and the material thereof is not particularly limited. For example, the clad layer forming resin Polyester such as polyethylene terephthalate (PET), polypropylene, polyethylene, and the like are preferably used from the viewpoint that the film can be easily peeled and has heat resistance and solvent resistance.
The base film may be subjected to a release treatment, an antistatic treatment, or the like in order to facilitate later peeling of the clad layer forming resin film.
The thickness of the base film is usually 5 to 50 μm. When the thickness of the substrate film is 5 μm or more, there is an advantage that the strength as a support is easily obtained, and when it is 50 μm or less, there is an advantage that the winding property in the case of manufacturing in a roll shape is improved. From the above viewpoints, the thickness of the base film is preferably 10 to 40 μm, more preferably 15 to 30 μm.
 更に、クラッド層形成用樹脂フィルムには、フィルムの保護やロール状に製造する場合の巻き取り性などを考慮して、保護フィルムを貼り合わせてもよい。
 保護フィルムとしては、上記基材フィルムの例として挙げたものと同様なものを用いることができ、必要に応じ離型処理や帯電防止処理がされていてもよい。
Further, a protective film may be bonded to the resin film for forming a clad layer in consideration of film protection and rollability in the case of manufacturing into a roll.
As a protective film, the thing similar to what was mentioned as an example of the said base film can be used, and the mold release process and the antistatic process may be performed as needed.
 クラッド層形成用樹脂ワニスに用いる溶媒としては、(ア)~(ウ)成分を含有する樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N-メチル-2-ピロリドンなどの溶媒又はこれらの混合溶媒を用いることができる。
 クラッド層形成用樹脂ワニス中の固形分濃度は、通常30~80質量%、好ましくは35~75質量%、より好ましくは40~70質量%である。
The solvent used in the resin varnish for forming the clad layer is not particularly limited as long as it can dissolve the resin composition containing the components (a) to (c). For example, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve , Toluene, N, N-dimethylacetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used.
The solid content concentration in the resin varnish for forming the cladding layer is usually 30 to 80% by mass, preferably 35 to 75% by mass, and more preferably 40 to 70% by mass.
 クラッド層形成用樹脂フィルムの厚さについては、特に限定されないが、乾燥後のクラッド層の厚さが、通常、5~500μmとなるように調整される。クラッド層の厚さが5μm以上であると、光の閉じ込めに必要なクラッド層厚さが確保でき、500μm以下であると、クラッド層膜厚を均一に制御することが容易である。以上の観点から、クラッド層の厚さは、好ましくは10~100μm、より好ましくは20~90μmである。
 また、クラッド層の厚さは、最初に形成される下部クラッド層と、コアパターンを埋め込むための上部クラッド層において、同一であっても異なってもよいが、コアパターンを埋め込むために、上部クラッド層の厚さはコア層の厚さよりも厚くすることが好ましい。
The thickness of the clad layer-forming resin film is not particularly limited, but the thickness of the clad layer after drying is usually adjusted to 5 to 500 μm. When the thickness of the cladding layer is 5 μm or more, the thickness of the cladding layer necessary for light confinement can be secured, and when it is 500 μm or less, the thickness of the cladding layer can be easily controlled uniformly. From the above viewpoint, the thickness of the cladding layer is preferably 10 to 100 μm, more preferably 20 to 90 μm.
The thickness of the clad layer may be the same or different between the lower clad layer formed first and the upper clad layer for embedding the core pattern. The thickness of the layer is preferably larger than the thickness of the core layer.
<コア層形成用樹脂>
 次に、本発明で用いるコア層形成用樹脂は、その硬化物がクラッド層より高屈折率であるように設計され、紫外線によりコアパターンを形成し得る樹脂組成物を用いることができ、感光性樹脂組成物が好適である。
 具体的には、上記クラッド層形成用樹脂と同様の樹脂組成物を用いることが好ましい。
 すなわち、上記(ア)ベースポリマー、(イ)光重合性化合物及び(ウ)光重合開始剤を含有し、必要に応じて、上記任意成分を含有する樹脂組成物である。
<Core layer forming resin>
Next, the core layer forming resin used in the present invention is designed such that the cured product has a higher refractive index than the clad layer, and a resin composition capable of forming a core pattern with ultraviolet rays can be used. Resin compositions are preferred.
Specifically, it is preferable to use the same resin composition as the cladding layer forming resin.
That is, it is a resin composition containing the (a) base polymer, (b) a photopolymerizable compound, and (c) a photopolymerization initiator, and, if necessary, the above optional components.
 従って、コア層形成用樹脂フィルムの硬化物は、クラッド層に用いる光導波路形成用樹脂フィルムの硬化物より高屈折率であるように設計される。コア層形成用樹脂は、(ア)ベースポリマー、(イ)光重合性化合物及び(ウ)光重合開始剤を含有する樹脂組成物を溶剤に溶解して、コア層形成用樹脂ワニスとして用いることもできる。
 コア層形成用樹脂フィルムは、コア層形成用樹脂ワニスを必要により基材フィルム上に塗布し、溶剤を除去することにより容易に製造することができる。コア層形成用樹脂フィルムの製造過程において、必要により用いる基材フィルムは、コア層形成用樹脂フィルムを支持する支持体であって、その材料については特に限定されず、クラッド層形成用樹脂フィルムの製造過程で用いる基材フィルムと同様のものを用いることができる。
 例えば、コア層形成用樹脂フィルムを剥離することが容易であり、かつ、耐熱性及び耐溶剤性を有するとの観点から、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン、ポリエチレンなどを好適に用いることができる。
Therefore, the cured product of the core layer forming resin film is designed to have a higher refractive index than the cured product of the optical waveguide forming resin film used for the cladding layer. The resin for core layer formation is used as a resin varnish for core layer formation by dissolving a resin composition containing (a) a base polymer, (b) a photopolymerizable compound and (c) a photopolymerization initiator in a solvent. You can also.
The core layer-forming resin film can be easily produced by applying the core layer-forming resin varnish on the base film as necessary and removing the solvent. In the production process of the core layer forming resin film, the base film used as necessary is a support for supporting the core layer forming resin film, and the material thereof is not particularly limited. The same base film used in the production process can be used.
For example, polyesters such as polyethylene terephthalate (PET), polypropylene, polyethylene, and the like are preferably used from the viewpoint that it is easy to peel off the resin film for forming the core layer and has heat resistance and solvent resistance. Can do.
 また、露光用光線の透過率向上及びコアパターンの側壁荒れ低減のため、高透明タイプのフレキシブルな基材フィルムを用いるのが好ましい。高透明タイプの基材フィルムのヘイズ値は、通常5%以下、好ましくは3%以下、よりより好ましくは2%以下である。
 このような基材フィルムとしては、東洋紡績(株)製、商品名「コスモシャインA1517」や「コスモシャインA4100」が入手可能である。
 なお、上記基材フィルムは、後にコア層形成用樹脂フィルムの剥離を容易とするため、離型処理、帯電防止処理などが施されていてもよい。
Moreover, it is preferable to use a highly transparent flexible base film in order to improve the transmittance of the exposure light beam and reduce the side wall roughness of the core pattern. The haze value of the highly transparent base film is usually 5% or less, preferably 3% or less, more preferably 2% or less.
As such a base film, Toyobo Co., Ltd. product name "Cosmo Shine A1517" and "Cosmo Shine A4100" are available.
The base film may be subjected to a release treatment, an antistatic treatment or the like in order to facilitate later peeling of the core layer forming resin film.
 該基材フィルムの厚さは、通常5~50μmである。基材フィルムの厚さが5μm以上であると、支持体としての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、該基材フィルムの厚さは、好ましくは10~40μm、より好ましくは15~30μmである。 The thickness of the base film is usually 5 to 50 μm. When the thickness of the base film is 5 μm or more, there is an advantage that the strength as a support is easily obtained, and when it is 50 μm or less, the gap with the mask at the time of pattern formation becomes small, and a finer pattern is formed. There is an advantage that you can. From the above viewpoint, the thickness of the base film is preferably 10 to 40 μm, more preferably 15 to 30 μm.
 また、コア層形成用樹脂フィルムの保護やロール状に製造する場合の巻き取り性など、必要に応じコア層形成用樹脂フィルムに保護フィルムを貼り合わせてもよい。保護フィルムとしては、クラッド層形成用樹脂フィルムにおいて用いられる基材フィルムと同様なものを用いることができ、必要に応じ、離型処理や帯電防止処理がされていてもよい。 In addition, a protective film may be bonded to the core layer forming resin film as necessary, such as protection of the core layer forming resin film and rollability when manufacturing in a roll shape. As a protective film, the thing similar to the base film used in the resin film for clad layer formation can be used, and the mold release process and the antistatic process may be performed as needed.
 コア層形成用樹脂ワニスに用いる溶媒としては、(ア)~(ウ)成分を含有する樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N-メチル-2-ピロリドンなどの溶媒又はこれらの混合溶媒を用いることができる。
 コア層形成用樹脂ワニス中の固形分濃度は、通常30~80質量%、好ましくは35~75質量%、より好ましくは40~70質量%である。
The solvent used in the resin varnish for forming the core layer is not particularly limited as long as it can dissolve the resin composition containing the components (a) to (c). For example, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve , Toluene, N, N-dimethylacetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used.
The solid content concentration in the core layer-forming resin varnish is usually 30 to 80% by mass, preferably 35 to 75% by mass, and more preferably 40 to 70% by mass.
 コア層形成用樹脂フィルムの厚さについては、特に限定されないが、乾燥後のコア層の厚さが、通常、10~100μmとなるように調整される。コア層の厚さが10μm以上であると、光導波路構築後の受発光素子又は光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路構築後の受発光素子又は光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、コア層の厚さは、好ましくは29~90μm、より好ましくは30~80μmである。
 また、コア層はスピンコート法などによりコア層形成用樹脂ワニスをクラッド層上に塗布し、溶媒を除去することによっても容易に製造することができる。
The thickness of the resin film for forming the core layer is not particularly limited, but the thickness of the core layer after drying is usually adjusted to be 10 to 100 μm. When the thickness of the core layer is 10 μm or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the construction of the optical waveguide. When the thickness is 100 μm or less, the acceptance after the construction of the optical waveguide is obtained. There is an advantage that coupling efficiency is improved in coupling with a light emitting element or an optical fiber. From the above viewpoint, the thickness of the core layer is preferably 29 to 90 μm, more preferably 30 to 80 μm.
The core layer can also be easily manufactured by applying a resin varnish for forming a core layer on the clad layer by spin coating or the like and removing the solvent.
以下、本発明(第3発明)の光電気複合基板の製造方法について図12を用いて説明する。先ず、第1の工程は、(1)図12の(a)に示すように、基板3-12上に導体パターン3-11aを形成し、更に必要に応じて導体保護層3-14を形成した電気配線基板3-10の基板12の表面に直接又は接着剤層3-20を介して下部クラッド層3-31を形成するか、又は(2)図12の(a'-1)のように、金属箔3-11と基板3-12とを有する金属箔付き基板3-13の基板3-12の表面に、直接又は接着剤層3-20を介して、下部クラッド層3-31を形成し、次いで、図12の(a'-2)のように、金属箔3-11を導体パターン3-11aに加工して、更に、図12の(a'-3)のように、必要に応じて導体保護層3-14を形成して、下部クラッド層付きの電気配線基板を得る工程である。 Hereinafter, the manufacturing method of the photoelectric composite substrate of the present invention (third invention) will be described with reference to FIG. First, in the first step, (1) as shown in FIG. 12A, a conductor pattern 3-11a is formed on a substrate 3-12, and a conductor protective layer 3-14 is further formed as necessary. The lower clad layer 3-31 is formed on the surface of the substrate 12 of the electrical wiring substrate 3-10 directly or via the adhesive layer 3-20, or (2) as shown in (a′-1) of FIG. Further, the lower cladding layer 3-31 is formed on the surface of the substrate 3-12 of the metal foil-attached substrate 3-13 having the metal foil 3-11 and the substrate 3-12, either directly or via the adhesive layer 3-20. Then, as shown in FIG. 12 (a′-2), the metal foil 3-11 is processed into a conductor pattern 3-11a, and further, as shown in FIG. 12 (a′-3). In this step, the conductor protective layer 3-14 is formed to obtain an electric wiring board with a lower cladding layer.
 前記のように、下部クラッド層3-31を基板3-12の表面に直接形成する場合には、クラッド層形成用樹脂のワニスを、スピンコート法等の公知の方法により塗布し、溶剤を除去する方法により行う。
 一方、下部クラッド層3-31を基板3-12の表面に接着剤層3-20を介して形成する場合は、クラッド層形成用樹脂フィルムを用いる。クラッド層形成用樹脂フィルムは、クラッド層形成用樹脂のワニスを、必要により基材フィルム上にスピンコート法等の公知の方法により塗布し、溶剤を除去することにより容易に製造することができる。クラッド層形成用樹脂フィルムを用いる方法が、下部クラッド層の厚さの精度が確保できるので好ましい。接着剤層3-20は接着剤組成物を基板3-12の表面に直接塗布して形成してもよいが、前記したように、支持基材上に接着剤層を有するシート状接着剤、特に、支持基材上に粘接着剤層を有する粘接着シートを使用するのが好ましい。
 粘接着シートを使用する場合には、粘接着剤層の保護フィルムを剥離した後、粘接着剤層を電気配線基板3-10又は金属箔付き基板3-13の基板3-12の表面に積層し、次いで、支持基材を剥離して、粘接着剤層3-20を形成する。前記のような構成の粘接着シートに紫外線を照射すると、支持基材との接着力は大きく低下し、基板3-12に粘接着剤層を保持したまま、支持基材を容易に剥離することができる。積層の際の加熱温度は50~130℃とすることが好ましく、圧着圧力は、0.1~1.0MPa(1~10kgf/cm2)程度とすることが好ましいが、これらの条件には特に制限はない。なお、保護フィルム及び支持基材は、粘接着剤層からの剥離を容易にするため接着処理を行っていないことが好ましく、必要に応じ離型処理が施されていてもよい。
As described above, when the lower clad layer 3-31 is directly formed on the surface of the substrate 3-12, the varnish of the clad layer forming resin is applied by a known method such as a spin coat method, and the solvent is removed. To do so.
On the other hand, when the lower clad layer 3-31 is formed on the surface of the substrate 3-12 via the adhesive layer 3-20, a clad layer forming resin film is used. The resin film for forming a clad layer can be easily produced by applying a varnish of a resin for forming a clad layer onto a base film by a known method such as a spin coat method, if necessary, and removing the solvent. A method using a resin film for forming a cladding layer is preferable because the accuracy of the thickness of the lower cladding layer can be secured. The adhesive layer 3-20 may be formed by directly applying an adhesive composition to the surface of the substrate 3-12. As described above, as described above, a sheet-like adhesive having an adhesive layer on a support substrate, In particular, it is preferable to use an adhesive sheet having an adhesive layer on a supporting substrate.
When the adhesive sheet is used, after the protective film of the adhesive layer is peeled off, the adhesive layer is attached to the electric wiring substrate 3-10 or the substrate 3-12 of the substrate 3-13 with metal foil. Lamination is performed on the surface, and then the supporting substrate is peeled to form the adhesive layer 3-20. When the adhesive sheet having the above-described configuration is irradiated with ultraviolet rays, the adhesive strength with the supporting base material is greatly reduced, and the supporting base material is easily peeled off while the adhesive layer is held on the substrate 3-12. can do. The heating temperature at the time of lamination is preferably 50 to 130 ° C., and the pressing pressure is preferably about 0.1 to 1.0 MPa (1 to 10 kgf / cm 2), but these conditions are particularly limited. There is no. In addition, it is preferable that the protective film and the supporting substrate are not subjected to an adhesive treatment in order to facilitate peeling from the adhesive layer, and may be subjected to a release treatment as necessary.
 このようにして基板3-12の表面に形成した粘接着剤層にクラッド層形成用樹脂フィルムを貼り付ける。貼り付けには、上述のラミネータを用いることができる。この際、クラッド層形成用樹脂フィルムにおいて、基材フィルムの反対側に保護フィルムを設けている場合には、該保護フィルムを剥離後、クラッド層形成用樹脂フィルムを粘接着剤層に加熱圧着させ、光又は加熱により硬化し、クラッド層を形成する。ここで、密着性及び追従性の見地から減圧下で積層することが好ましく、その条件は前述の粘接着剤層を積層する場合と同様である。
 なお、上記方法は、基板3-12の表面に接着剤層3-20を形成し、その後クラッド層形成用樹脂フィルムに張り合わせる方法を説明したが、この順序が逆であってもよい。
A resin film for forming a cladding layer is attached to the adhesive layer formed on the surface of the substrate 3-12 in this way. The laminator described above can be used for pasting. At this time, if a protective film is provided on the opposite side of the base film in the resin film for forming the clad layer, the protective film is peeled off, and the resin film for forming the clad layer is then heat bonded to the adhesive layer. And cured by light or heating to form a clad layer. Here, it is preferable to laminate | stack under reduced pressure from the viewpoint of adhesiveness and followable | trackability, The conditions are the same as the case where the above-mentioned adhesive agent layer is laminated | stacked.
In the above method, the method in which the adhesive layer 3-20 is formed on the surface of the substrate 3-12 and then bonded to the resin film for forming the clad layer has been described. However, this order may be reversed.
 図12の(a'-2)のように、金属箔3-11から導体パターン3-11aを形成する方法として、必要とされる厚みの金属箔から導体パターンとしての不要部分を除去するサブトラクティブ法と、比較的薄い金属箔上の導体パターンとしての必要部分に電解めっき等で金属を析出させて必要な厚みとする、セミアディティブ法とがある。 As shown in FIG. 12 (a'-2), as a method of forming the conductor pattern 3-11a from the metal foil 3-11, a subtractive method of removing unnecessary portions as the conductor pattern from the metal foil having a required thickness. And a semi-additive method in which a metal is deposited on a necessary portion as a conductor pattern on a relatively thin metal foil by electrolytic plating or the like to obtain a necessary thickness.
 サブトラクティブ法による導体パターンの形成方法の場合は、先ず、金属箔の表面に光硬化性膜を形成し、フォトマスクを介して露光した後に現像して、エッチングレジストでレジストパターンを形成し、その後、エッチングレジストに覆われていない箇所をエッチング除去して、導体パターンを形成し、最後にエッチングレジストを除去して電気配線基板を構築する。金属箔の表面に形成する光硬化性膜は、エポキシ樹脂等の熱硬化性樹脂と光硬化剤、硬化促進剤、必要な場合には顔料や流動性調整剤、粘度調整剤などを、希釈剤に混合・分散し、ワニスとしたものを、直接金属箔の表面に塗布・乾燥し、形成することもでき、また、そのワニスをキャリアフィルムに塗布・乾燥して半硬化状にしたドライフィルムを金属箔にラミネートして形成することもできる。
 このようなワニス状のエッチング用レジスト材としては、市販のもので、オプトER N-350(日本ペイント株式会社製、商品名)があり、ドライフィルム状のエッチング用レジスト材としては、市販のもので、フォテックH-N930(日立化成工業株式会社製、商品名)がある。レジストパターンを形成し、その後、エッチングレジストに覆われていない箇所をエッチング除去するには、エッチング液として、塩化第二銅溶液、塩化第二鉄溶液、過硫酸アンモニウム溶液などがあり、これらのエッチング液をスプレー噴霧して、エッチングレジストに覆われていない箇所を腐食除去して、導体パターンを形成することができる。
In the case of the method of forming a conductor pattern by the subtractive method, first, a photocurable film is formed on the surface of the metal foil, exposed through a photomask, developed, and then a resist pattern is formed with an etching resist. Then, the portion not covered with the etching resist is removed by etching to form a conductor pattern, and finally the etching resist is removed to construct an electric wiring board. The photocurable film formed on the surface of the metal foil is composed of a thermosetting resin such as an epoxy resin, a photocuring agent, a curing accelerator, a pigment, a fluidity adjusting agent, a viscosity adjusting agent, etc., if necessary. The varnish that has been mixed and dispersed in can be applied directly to the surface of the metal foil and dried to form it, or the varnish can be applied to a carrier film and dried to form a semi-cured dry film. It can also be formed by laminating a metal foil.
Such a varnish-like etching resist material is commercially available, and there is OPT ER N-350 (trade name, manufactured by Nippon Paint Co., Ltd.). A dry film-like etching resist material is commercially available. And Fotec H-N930 (trade name, manufactured by Hitachi Chemical Co., Ltd.). In order to form a resist pattern and then etch away portions not covered with the etching resist, there are cupric chloride solution, ferric chloride solution, ammonium persulfate solution, etc. as etchants, and these etchants Can be sprayed to etch away portions not covered with the etching resist, thereby forming a conductor pattern.
 セミアディティブ法による導体パターンの形成方法の場合は、金属箔にフォトレジスト材料を適用した後フォトリソグラフィを実施してめっきレジスト層(レジストパターン)を形成した後、金属箔を給電膜として用いて電解めっきを行って前記レジスト層のない金属箔の露出部に導体を析出させて導体層(導体パターン)を形成し、次いで、めっきレジスト層を除去して金属箔を露出させた後、導体層をマスクとして用いてエッチングを行ってめっきレジスト層の除去で露出した金属箔を除去することにより電気配線基板を構築する。 In the case of a method of forming a conductor pattern by the semi-additive method, after applying a photoresist material to a metal foil, photolithography is performed to form a plating resist layer (resist pattern), and then electrolysis is performed using the metal foil as a power supply film. After conducting plating to deposit a conductor on the exposed portion of the metal foil without the resist layer to form a conductor layer (conductor pattern), then removing the plating resist layer to expose the metal foil, Etching is performed as a mask to remove the metal foil exposed by removing the plating resist layer, thereby constructing an electric wiring board.
 フォトレジスト材料としては特に限定されることなく、市販されている様々な材料を用いることができる。例えば、ノボラック樹脂を主成分とし、感光剤、乳酸エチル、酢酸ノルマルブチルなどの溶剤を含有する液状ポジレジストを使用することができる。そのような液状ポジレジストは例えば、市販のOFPR(東京応化製)として入手可能である。フォトレジスト材料としてフォトレジストフィルムを貼付してもよい。フォトレジストフィルムとしては特に限定することなく、市販されている様々な材料を用いることができる。例えば、旭化成製SUNFORT(R) ASG-253を用いる場合には、市販のフィルムラミネータを用いて、110℃で加熱しながら、0.4MPa程度の圧力でポリイミドフィルム上に貼り付けを行う。現像に際しては、炭酸ナトリウム水溶液を用いて、非露光部分の除去を行うことができる。 The photoresist material is not particularly limited, and various commercially available materials can be used. For example, a liquid positive resist containing a novolac resin as a main component and containing a solvent such as a photosensitizer, ethyl lactate, and normal butyl acetate can be used. Such a liquid positive resist is available as, for example, commercially available OFPR (manufactured by Tokyo Ohka Kogyo Co., Ltd.). A photoresist film may be attached as a photoresist material. The photoresist film is not particularly limited, and various commercially available materials can be used. For example, when using SUNFORT (R) ASG-253 manufactured by Asahi Kasei, a commercially available film laminator is used to apply the film onto a polyimide film at a pressure of about 0.4 MPa while heating at 110 ° C. At the time of development, an unexposed portion can be removed using an aqueous sodium carbonate solution.
 レジスト層の形成後に、金属箔を給電膜として用いて電解めっきを行い、金属箔の露出部に導体層を析出させる。電解めっき液は、銅をめっきする場合は、硫酸塩浴やスルファミン浴などが挙げられる。銀、金やそれらの合金をめっきする場合には、シアン系浴などが挙げられる。電解めっき後は、レジスト層を除去して、金属箔を露出させる。例えば、剥離液に浸漬し、フォトレジストを剥離または溶解すればよい。具体的には、例えば上記の旭化成製フィルムレジストを用いた場合には、2~3%程度の水酸化ナトリウムか水酸化カリウムの水溶液、もしくは、有機アミン系の剥離液を用いてレジストの除去を行うことができる。また例えば、いわゆるノボラック系樹脂を主成分とする液状レジストの場合には、プロピレングリコールメチルエーテルアセテートやアルキルベンゼンスルホン酸などの有機溶剤を含む剥離液を用いることができる。レジスト層の形成後に、レジスト層除去で露出した金属箔をエッチング除去し、導体パターン領域にのみ金属箔及び導体層を残存させる。 After the formation of the resist layer, electrolytic plating is performed using the metal foil as a power supply film to deposit a conductor layer on the exposed portion of the metal foil. In the case of plating copper, the electrolytic plating solution may be a sulfate bath or a sulfamine bath. In the case of plating silver, gold or an alloy thereof, a cyan bath can be used. After the electrolytic plating, the resist layer is removed to expose the metal foil. For example, the photoresist may be peeled or dissolved by dipping in a stripping solution. Specifically, for example, when the above-mentioned film resist manufactured by Asahi Kasei is used, the resist is removed using an aqueous solution of about 2 to 3% sodium hydroxide or potassium hydroxide, or an organic amine-based stripping solution. It can be carried out. For example, in the case of a liquid resist mainly composed of a so-called novolac resin, a stripping solution containing an organic solvent such as propylene glycol methyl ether acetate or alkylbenzene sulfonic acid can be used. After the resist layer is formed, the metal foil exposed by removing the resist layer is removed by etching to leave the metal foil and the conductor layer only in the conductor pattern region.
 エッチング液は金属箔膜の金属および導体層の金属に依存して決定され、エッチング液として金属箔は除去するが導体層は除去しない選択性を有するものを用いることが好ましいが、金属箔と導体層との間には厚さの差があるために、エッチング時間の調整により、導体層を完全に除去することなく、金属箔を完全除去することは可能であるから、金属箔さえエッチング除去できる液であればよい。むろん、金属箔と導体層とが同じ金属である場合には、エッチング時間の調整により、導体層を完全に除去することなく、金属箔を完全除去することとなる。
 例えば、金属箔がニッケルからなり、導体層が銅からなる場合、エッチング液はFeCl3水溶液、HNO3、またはHNO3を含む酸が使用できる。特にHNO3の場合は、ニッケルを溶解できるが、銅を溶解しないため、特に望ましい。
 また例えば、金属箔が銅からなり、導体層も銅からなる場合には、FeCl3、CuCl2、(NH4)228などの水溶液、アンモニア水などが使用できる。
 また例えば、金属箔が銀からなる場合には、エッチング液はHNO3、H2SO4とH22の混合液、Fe(NO33水溶液などが使用できる。
 また例えば、金属箔が鉄からなる場合には、エッチング液はHNO3などが使用できる。また例えば、金属箔がパラジウムからなる場合には、エッチング液はNH3I水溶液などが使用できる。
The etching solution is determined depending on the metal of the metal foil film and the metal of the conductor layer, and it is preferable to use an etching solution having a selectivity that removes the metal foil but not the conductor layer. Since there is a difference in thickness between the layers, the metal foil can be completely removed without adjusting the conductor layer by adjusting the etching time, so even the metal foil can be removed by etching. Any liquid may be used. Of course, when the metal foil and the conductor layer are the same metal, the metal foil is completely removed by adjusting the etching time without completely removing the conductor layer.
For example, when the metal foil is made of nickel and the conductor layer is made of copper, an FeCl 3 aqueous solution, HNO 3 , or an acid containing HNO 3 can be used as the etching solution. In particular, in the case of HNO 3 , nickel can be dissolved, but copper is not dissolved, which is particularly desirable.
For example, when the metal foil is made of copper and the conductor layer is also made of copper, an aqueous solution such as FeCl 3 , CuCl 2 , (NH 4) 2 S 2 O 8 , aqueous ammonia, or the like can be used.
For example, when the metal foil is made of silver, the etching solution can be HNO 3 , a mixed solution of H 2 SO 4 and H 2 O 2 , an Fe (NO 3 ) 3 aqueous solution, or the like.
For example, when the metal foil is made of iron, HNO 3 or the like can be used as the etching solution. For example, when the metal foil is made of palladium, an NH 3 I aqueous solution or the like can be used as the etching solution.
 導体パターン3-11a上に導体保護層3-14を形成する場合には、導体パターン3-11aの表面に光硬化性膜を形成し、フォトマスクを介して露光した後に現像して、図12の(e)に示すように、導体パターンを絶縁保護するための導体保護層14を形成する。導体パターンの表面に形成する光硬化性膜には、エポキシ樹脂等の熱硬化性樹脂と光硬化剤、硬化促進剤、必要な場合には顔料や流動性調整剤、粘度調整剤などを、希釈剤に混合・分散し、ワニスとしたものを、直接導体パターンの表面に塗布・乾燥し、形成することもでき、また、そのワニスをキャリアフィルムに塗布・乾燥して半硬化状にしたドライフィルムを基材にラミネートして形成することもできる。このようなワニス状のソルダーレジスト用材料としては、市販のもので、プロビコート5000(日本ペイント株式会社製,商品名)があり、ドライフィルム状のソルダーレジスト用材料としては、市販のもので、フォテックSR-2300G-50(日立化成工業株式会社製,商品名)がある。 In the case of forming the conductor protective layer 3-14 on the conductor pattern 3-11a, a photocurable film is formed on the surface of the conductor pattern 3-11a, exposed through a photomask, developed, and developed. As shown in (e), a conductor protective layer 14 for insulating and protecting the conductor pattern is formed. The photocurable film formed on the surface of the conductor pattern is diluted with a thermosetting resin such as epoxy resin, a photocuring agent, a curing accelerator, and if necessary, a pigment, a fluidity adjusting agent, a viscosity adjusting agent, etc. A varnish that is mixed and dispersed in an agent can be directly applied to the surface of the conductor pattern and dried to form it. Also, the varnish is applied to a carrier film and dried to form a semi-cured dry film. It can also be formed by laminating to a substrate. Such a varnish-like solder resist material is commercially available, Provicoat 5000 (trade name, manufactured by Nippon Paint Co., Ltd.), and a dry film-like solder resist material is commercially available. SR-2300G-50 (trade name, manufactured by Hitachi Chemical Co., Ltd.).
 コアパターンは、下部クラッド層上にコア形成用樹脂の層(コア層)を設け、そのコア層を露光・現像することにより形成することができる。コア層を形成する方法について制限はなく、下部クラッド層上にコア形成用樹脂のワニスを直接塗布し、乾燥する方法でもよいが、コア層形成用樹脂フィルムを用いる方法が、コア層の厚さの精度が確保できるので好ましい。
 コア層形成用樹脂フィルムは、コア層形成用樹脂層と基材フィルムとから構成されている場合は取扱が容易で好ましいが、コア層形成用樹脂層単独で構成されていてもよい。
 コア層形成用樹脂フィルムにおいて、基材フィルムの反対側に保護フィルムを設けている場合には、該保護フィルムを剥離後、コア層形成用樹脂フィルムを積層する。この場合、保護フィルム及び基材フィルムは、コア層からの剥離を容易にするため接着処理を行っていないことが好ましく、必要に応じ離型処理が施されていてもよい。
The core pattern can be formed by providing a core forming resin layer (core layer) on the lower clad layer, and exposing and developing the core layer. There is no limitation on the method of forming the core layer, and a method of directly applying the core-forming resin varnish on the lower clad layer and drying it may be used, but the method of using the core layer-forming resin film is the thickness of the core layer. This is preferable because the accuracy of the above can be ensured.
When the core layer-forming resin film is composed of a core layer-forming resin layer and a base film, it is easy to handle, but it may be composed of a core layer-forming resin layer alone.
In the core layer forming resin film, when a protective film is provided on the opposite side of the base film, the core layer forming resin film is laminated after the protective film is peeled off. In this case, the protective film and the base film are preferably not subjected to an adhesion treatment in order to facilitate peeling from the core layer, and may be subjected to a release treatment as necessary.
 このようにして設けたコア層に対して露光・現像を行うことにより、所望のコアパターンを形成する。具体的には、フォトマスクパターンを通して、紫外線を画像状に照射する。
 紫外線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプなどの紫外線を有効に放射する公知の光源が挙げられる。
A desired core pattern is formed by exposing and developing the core layer thus provided. Specifically, ultraviolet rays are irradiated in an image form through a photomask pattern.
Examples of the ultraviolet light source include known light sources that effectively emit ultraviolet light, such as a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, and a xenon lamp.
 次いで、コア層上に基材フィルムが残っている場合には、基材フィルムを剥離し、ウェット現像などで未露光部を除去して現像し、コアパターンを形成する。
 ウェット現像の場合は、コア層形成用樹脂フィルムやコア層形成用樹脂ワニスの組成に適した有機溶剤系現像液又はアルカリ現像液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッピングなどの公知の方法により現像する。
Next, when the base film remains on the core layer, the base film is peeled off, and the unexposed portion is removed and developed by wet development or the like to form a core pattern.
In the case of wet development, using an organic solvent-based developer or alkali developer suitable for the composition of the core layer-forming resin film or the core layer-forming resin varnish, spraying, rocking immersion, brushing, scraping, etc. Develop by the method of.
 有機溶剤系現像液としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、γ-ブチロラクトン、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。
 これらの有機溶剤は、引火防止のため、有機溶剤100質量部に対し、通常1~20質量部の範囲で水を添加してもよい。
Examples of organic solvent developers include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, γ-butyrolactone, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl Examples include ether and propylene glycol monomethyl ether acetate.
In order to prevent ignition, these organic solvents may be added with water in an amount of usually 1 to 20 parts by mass with respect to 100 parts by mass of the organic solvent.
 アルカリ現像液としては、アルカリ性水溶液、水系現像液などを用いることができ、アルカリ性水溶液の塩基としては、特に制限はないが、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ;リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩などの炭酸アルカリ;リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩;ホウ砂、メタケイ酸ナトリウム等のナトリウム塩;水酸化テトラメチルアンモニウム、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール、1,3-ジアミノプロパノール-2-モルホリン等の有機塩基などが挙げられる。 As the alkaline developer, an alkaline aqueous solution, an aqueous developer, or the like can be used, and the base of the alkaline aqueous solution is not particularly limited. For example, alkali hydroxide such as lithium, sodium or potassium hydroxide; lithium Carbonates such as sodium, potassium or ammonium carbonates or bicarbonates; alkali metal phosphates such as potassium phosphate and sodium phosphate; alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate; borax Sodium salts such as sodium metasilicate; tetramethylammonium hydroxide, triethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, 1,3-diaminopropanol-2-morpholine, etc. Possession of Bases and the like.
 現像に用いるアルカリ性水溶液のpHは9~11であることが好ましく、その温度はコア形成用樹脂組成物層の現像性に合わせて調節される。
 また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤などを混入させてもよい。
 この中でも、特に炭酸リチウム、炭酸ナトリウム、炭酸カリウム水溶液は人体への刺激や環境への負荷が少ないため好ましい。
The pH of the alkaline aqueous solution used for development is preferably 9 to 11, and the temperature is adjusted according to the developability of the core-forming resin composition layer.
Further, in the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
Among these, lithium carbonate, sodium carbonate, and potassium carbonate aqueous solution are particularly preferable because they are less irritating to the human body and less burden on the environment.
 また、必要に応じ、上記アルカリ水溶液には有機溶媒を併用することも可能である。ここでいう有機溶媒とは、アルカリ水溶液と混和可能であれば特に制限はないが、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、4-ヒドロキシ-4-メチル-2-ペンタノンなどのケトン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等の多価アルコールアルキルエーテルなどが挙げられる。
 これらは、単独で又は2種類以上を組み合わせて使用することができる。
If necessary, an organic solvent can be used in combination with the alkaline aqueous solution. The organic solvent herein is not particularly limited as long as it is miscible with an alkaline aqueous solution. For example, alcohol such as methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol; acetone, 4-hydroxy-4-methyl -2-Ketones such as pentanone; polyhydric alcohol alkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, etc. Is mentioned.
These can be used alone or in combination of two or more.
 現像後の処理として、必要に応じて水と上記有機溶剤からなる洗浄液を用いて光導波路のコアパターンを洗浄してもよい。有機溶剤は単独で又は2種類以上を組み合わせて使用することができる。有機溶剤の濃度は通常、2~90質量%とすることが好ましく、その温度はコア形成用樹脂組成物の現像性に合わせて調節される。 As the post-development processing, the core pattern of the optical waveguide may be cleaned using a cleaning liquid composed of water and the above organic solvent as necessary. An organic solvent can be used individually or in combination of 2 or more types. The concentration of the organic solvent is usually preferably 2 to 90% by mass, and the temperature is adjusted according to the developability of the core-forming resin composition.
 現像の方式としては、例えば、ディップ方式、バトル方式、高圧スプレー方式などのスプレー方式、ブラッシング、スクラッピングなどが挙げられ、高圧スプレー方式が解像度向上のためには最も適している。
 また、必要に応じて2種類以上の現像方法を併用してもよい。
現像後の処理として、必要に応じて、60~250℃程度の加熱又は0.1~1,000mJ/cm2程度の露光を行うことにより、コアパターンを更に硬化して用いてもよい。
Examples of the development method include a dip method, a battle method, a spray method such as a high-pressure spray method, brushing, and scraping. The high-pressure spray method is most suitable for improving the resolution.
Moreover, you may use together 2 or more types of image development methods as needed.
As processing after development, the core pattern may be further cured and used by heating at about 60 to 250 ° C. or exposure at about 0.1 to 1,000 mJ / cm 2 as necessary.
続いて、コアパターン上にクラッド層形成用樹脂層を設け、それを硬化させることにより上部クラッド層を形成する。前記のように、クラッド層形成用樹脂組成物のワニスを塗布して直接形成することもできるが、上部クラッド層形成用樹脂フィルムを使用するのが好ましい。その場合、コアパターン埋込みのため上部クラッド層形成用樹脂フィルムを積層する操作と、該上部クラッド層形成用樹脂フィルムのクラッド層形成用樹脂層を硬化し、上部クラッド層を形成する操作を行う。
 この場合の上部クラッド層の厚さは、上記のようにコア層の厚さより大きくすることが好ましい。
 なお、硬化は、光又は熱によって上記と同様に行う。
Subsequently, a clad layer forming resin layer is provided on the core pattern, and the upper clad layer is formed by curing the resin layer. As described above, the varnish of the clad layer forming resin composition can be applied directly, but it is preferable to use an upper clad layer forming resin film. In that case, an operation of laminating the resin film for forming the upper clad layer for embedding the core pattern and an operation of forming the upper clad layer by curing the resin layer for forming the clad layer of the resin film for forming the upper clad layer are performed.
In this case, the thickness of the upper clad layer is preferably larger than the thickness of the core layer as described above.
Curing is performed by light or heat in the same manner as described above.
 クラッド層形成用樹脂フィルムにおいて、基材フィルムの反対側に保護フィルムを設けている場合には、該保護フィルムを剥離後、クラッド層形成用樹脂フィルムを加熱圧着し、光又は加熱により硬化させ、クラッド層を形成する。この場合、基材フィルムは剥離してもよいし、必要により貼り合せたままでもよい。
 貼り合せたままの場合には、クラッド層形成用樹脂層は接着処理を施した基材フィルム上に製膜されていることが好ましい。
 一方、保護フィルムは、クラッド層形成用樹脂フィルムからの剥離を容易にするため接着処理は行っていないことが好ましく、必要に応じ離型処理が施されていてもよい。
In the clad layer forming resin film, when a protective film is provided on the opposite side of the base film, after peeling the protective film, the clad layer forming resin film is heat-pressed and cured by light or heating, A cladding layer is formed. In this case, the base film may be peeled off or may be left bonded if necessary.
In the case where it is still bonded, the clad layer forming resin layer is preferably formed on a base film subjected to an adhesion treatment.
On the other hand, the protective film is preferably not subjected to adhesion treatment in order to facilitate peeling from the clad layer forming resin film, and may be subjected to mold release treatment as necessary.
 本発明の製造方法で得られた光電気複合基板においては、光路変換ミラーや受光素子等を搭載することにより、電気配線基板部分と光導波路部分との結合を容易に達成することができる。また、本発明の製造方法で得られた光電気複合基板に面発光レーザー又はダイオード等の光素子を実装することにより、光電気複合モジュールを容易に得ることができる。 In the optoelectric composite substrate obtained by the manufacturing method of the present invention, it is possible to easily achieve the coupling between the electric wiring substrate portion and the optical waveguide portion by mounting an optical path conversion mirror, a light receiving element and the like. Moreover, a photoelectric composite module can be easily obtained by mounting an optical element such as a surface emitting laser or a diode on the photoelectric composite substrate obtained by the manufacturing method of the present invention.
 以下、本発明(第4発明)の光電気複合基板の製造方法について図13を用いて説明する。先ず、第1’の工程は、図13の(a)に示すように、金属箔4-11と基板4-12とを有する金属箔付き基板4-13の基板4-12の表面に直接又は接着剤層4-20を介して下部クラッド層4-31を形成する工程である。
 下部クラッド層4-31を基板4-12の表面に直接形成する場合には、クラッド層形成用樹脂のワニスを、スピンコート法等の公知の方法により塗布し、溶剤を除去する方法により行う。
 一方、下部クラッド層4-31を基板4-12の表面に接着剤層4-20を介して形成する場合は、クラッド層形成用樹脂フィルムを用いる。クラッド層形成用樹脂フィルムは、クラッド層形成用樹脂のワニスを、必要により基材フィルム上にスピンコート法等の公知の方法により塗布し、溶剤を除去することにより容易に製造することができる。クラッド層形成用樹脂フィルムを用いる方法が、下部クラッド層の厚さの精度が確保できるので好ましい。
Hereinafter, the manufacturing method of the photoelectric composite substrate of the present invention (the fourth invention) will be described with reference to FIG. First, as shown in FIG. 13 (a), the first ′ step is directly or directly on the surface of the substrate 4-12 of the metal foil-attached substrate 4-13 having the metal foil 4-11 and the substrate 4-12. In this step, the lower clad layer 4-31 is formed via the adhesive layer 4-20.
When the lower clad layer 4-31 is directly formed on the surface of the substrate 4-12, a varnish of a clad layer forming resin is applied by a known method such as a spin coat method and the solvent is removed.
On the other hand, when the lower clad layer 4-31 is formed on the surface of the substrate 4-12 via the adhesive layer 4-20, a clad layer forming resin film is used. The resin film for forming a clad layer can be easily produced by applying a varnish of a resin for forming a clad layer onto a base film by a known method such as a spin coat method, if necessary, and removing the solvent. A method using a resin film for forming a cladding layer is preferable because the accuracy of the thickness of the lower cladding layer can be secured.
 基板4-12の表面に接着剤層4-20を形成する方法について制限はなく、基板表面に接着剤組成物を直接塗布してもよいが、支持基材上に接着剤層を有するシート状接着剤を使用し、接着剤層を該シート状接着剤から基板4-12の表面に転写する方法が、接着剤層の平滑性に優れ、かつ接着剤層の厚さの精度が確保でき、しかも、接着剤層を形成する際に接着剤層形成用の樹脂組成物が流れる等の問題も生じないので好ましい。シート状接着剤としては、支持基材上に粘接着剤層を有する粘接着シートが特に好ましい。
 粘接着シートを使用する場合には、粘接着剤層の保護フィルムを剥離した後、粘接着剤層を金属箔付き基板4-13の基板4-12の表面に積層し、次いで、支持基材を剥離して、粘接着剤層4-20を形成する。前記のような構成の粘接着シートに紫外線を照射すると、支持基材との接着力は大きく低下し、基板に粘接着剤層を保持したまま、支持基材を容易に剥離することができる。
 積層の際の加熱温度は50~130℃とすることが好ましく、圧着圧力は、0.1~1.0MPa(1~10kgf/cm2)程度とすることが好ましいが、これらの条件には特に制限はない。なお、保護フィルム及び支持基材は、粘接着剤層からの剥離を容易にするため接着処理を行っていないことが好ましく、必要に応じ離型処理が施されていてもよい。
There is no restriction on the method of forming the adhesive layer 4-20 on the surface of the substrate 4-12, and the adhesive composition may be directly applied to the surface of the substrate, but it is a sheet having an adhesive layer on the supporting base material. The method of using an adhesive and transferring the adhesive layer from the sheet adhesive to the surface of the substrate 4-12 is excellent in the smoothness of the adhesive layer and can ensure the accuracy of the thickness of the adhesive layer. In addition, since the problem that the resin composition for forming the adhesive layer flows does not occur when forming the adhesive layer, it is preferable. As the sheet-like adhesive, an adhesive sheet having an adhesive layer on a supporting substrate is particularly preferable.
When using an adhesive sheet, after peeling off the protective film of the adhesive layer, the adhesive layer is laminated on the surface of the substrate 4-12 of the substrate 4-13 with metal foil, The support base material is peeled off to form the adhesive layer 4-20. When the adhesive sheet having the above-described configuration is irradiated with ultraviolet rays, the adhesive strength with the supporting base material is greatly reduced, and the supporting base material can be easily peeled while the adhesive layer is held on the substrate. it can.
The heating temperature at the time of lamination is preferably 50 to 130 ° C., and the pressing pressure is preferably about 0.1 to 1.0 MPa (1 to 10 kgf / cm 2 ). There is no limit. In addition, it is preferable that the protective film and the supporting substrate are not subjected to an adhesive treatment in order to facilitate peeling from the adhesive layer, and may be subjected to a release treatment as necessary.
 このようにして形成した粘接着剤層にクラッド層形成用樹脂フィルムを積層する。この際、クラッド層形成用樹脂フィルムにおいて、基材フィルムの反対側に保護フィルムを形成している場合には、該保護フィルムを剥離後、クラッド層形成用樹脂フィルムを粘接着剤層に加熱圧着させ、光又は加熱により硬化し、クラッド層を形成する。ここで、密着性及び追従性の見地から減圧下で積層することが好ましく、その条件は前述の粘接着剤層を積層する場合と同様である。
 なお、上記方法は、基板4-12の表面に接着剤層4-20を形成し、その後クラッド層形成用樹脂フィルムに張り合わせる方法を説明したが、この順序が逆であってもよい。
A resin film for forming a clad layer is laminated on the adhesive layer thus formed. At this time, if a protective film is formed on the opposite side of the base film in the resin film for forming the clad layer, the protective film is peeled off and then the resin film for forming the clad layer is heated to the adhesive layer. The clad layer is formed by pressure bonding and curing by light or heating. Here, it is preferable to laminate | stack under reduced pressure from the viewpoint of adhesiveness and followable | trackability, The conditions are the same as the case where the above-mentioned adhesive agent layer is laminated | stacked.
In the above method, the method in which the adhesive layer 4-20 is formed on the surface of the substrate 4-12 and then bonded to the resin film for forming the clad layer has been described. However, this order may be reversed.
 本発明(第4発明)の製造方法における第2の工程は、光導波路を構築する工程であり、具体的には、図13の(b)に示すように、下部クラッド層4-31上にコアパターン4-32を形成し、次いで、図13の(c)に示すように、コアパターン4-32上に上部クラッド層4-33を形成して、光導波路4-30を構築する工程である。
 コアパターン4-32は、下部クラッド層4-31上にコア形成用樹脂の層(コア層)を形成し、そのコア層を露光・現像することにより形成することができる。
 コア層を形成する方法については、第3発明で記載したのと同様である。
The second step in the manufacturing method of the present invention (fourth invention) is a step of constructing an optical waveguide. Specifically, as shown in FIG. 13B, on the lower cladding layer 4-31. In the process of forming the optical waveguide 4-30 by forming the core pattern 4-32 and then forming the upper cladding layer 4-33 on the core pattern 4-32 as shown in FIG. is there.
The core pattern 4-32 can be formed by forming a core forming resin layer (core layer) on the lower clad layer 4-31, and exposing and developing the core layer.
The method for forming the core layer is the same as described in the third invention.
 本発明(第4発明)の製造方法における第3の工程は、金属箔付き基板から電気配線基板を構築する工程であり、具体的には、図13の(d)に示すように、金属箔4-11を導体パターン4-11aとして電気配線基板4-10を構築する工程である。この工程は、第3発明における金属箔付き基板の金属箔を導体パターン化する工程(第3発明の第1工程)と同一であり、方法、条件等も第3発明と同様である。 The third step in the manufacturing method of the present invention (fourth invention) is a step of constructing an electric wiring board from a substrate with metal foil. Specifically, as shown in FIG. This is a step of constructing the electric wiring board 4-10 using 4-11 as the conductor pattern 4-11a. This step is the same as the step of forming the metal foil of the substrate with metal foil in the third invention as a conductor pattern (first step of the third invention), and the method, conditions and the like are the same as those of the third invention.
 本発明(第4発明)の製造方法で得られた光電気複合基板においては、光路変換ミラーや受光素子等を搭載することにより、電気配線基板部分と光導波路部分との結合を容易に達成することができる。
 また、本発明の製造方法で得られた光電気複合基板に面発光レーザー又はダイオード等の光素子を実装することにより、光電気複合モジュールを容易に得ることができる。
In the optoelectric composite substrate obtained by the manufacturing method of the present invention (fourth invention), the coupling between the electric wiring substrate portion and the optical waveguide portion is easily achieved by mounting an optical path conversion mirror, a light receiving element, and the like. be able to.
Moreover, a photoelectric composite module can be easily obtained by mounting an optical element such as a surface emitting laser or a diode on the photoelectric composite substrate obtained by the manufacturing method of the present invention.
 以下に、本発明を実施例によりさらに具体的に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 以下に、本発明を実施例によりさらに具体的に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
(1)光導波路の作製
〔クラッド層形成用樹脂フィルムの作製〕
 (A)ベースポリマーとして、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM-2110、分子量:252、旭電化工業株式会社製)50質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP-170、旭電化工業株式会社製)2質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
 上記で得られたクラッド層形成用樹脂ワニスAを、離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)に塗工機(マルチコーターTM-MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層25μm、上部クラッド層70μmとなるように調節した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(1) Production of optical waveguide [production of resin film for forming clad layer]
(A) As a base polymer, 48 parts by mass of phenoxy resin (trade name: Phenototo YP-70, manufactured by Toto Kasei Co., Ltd.), (B) As a photopolymerizable compound, alicyclic diepoxycarboxylate (trade name: KRM) -2110, molecular weight: 252, Asahi Denka Kogyo Co., Ltd.) 50 parts by mass, (C) Triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi Denka Kogyo Co., Ltd.) as a photopolymerization initiator 2 parts by weight, 40 parts by weight of propylene glycol monomethyl ether acetate as an organic solvent are weighed in a wide-mouthed plastic bottle, and stirred for 6 hours under the conditions of a temperature of 25 ° C. and a rotation speed of 400 rpm using a mechanical stirrer, shaft and propeller. A clad layer forming resin varnish A was prepared. After that, using a polyflon filter (trade name: PF020, manufactured by Advantech Toyo Co., Ltd.) with a pore diameter of 2 μm, the mixture is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further the degree of vacuum using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of 50 mmHg.
The clad layer forming resin varnish A obtained above is applied to a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) with a coating machine (Multicoater TM-MC, Co., Ltd.). It is applied using Hirano Tech Seed, dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then a release PET film (trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm as a protective film) ) Was attached so that the release surface was on the resin side, and a resin film for forming a clad layer was obtained. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the thickness after curing is 25 μm for the lower cladding layer and 70 μm for the upper cladding layer. Adjusted.
〔コア層形成用樹脂フィルムの作製〕
 (A)ベースポリマーとして、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A-BPEF、新中村化学工業株式会社製)36質量部、及びビスフェノールA型エポキシアクリレート(商品名:EA-1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャルティ・ケミカルズ社製)1質量部、及び1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名:イルガキュア2959、チバ・スペシャルティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法及び条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法及び条件で加圧濾過さらに減圧脱泡した。
 上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。
[Production of resin film for core layer formation]
(A) As a base polymer, 26 parts by mass of a phenoxy resin (trade name: Phenototo YP-70, manufactured by Toto Kasei Co., Ltd.), (B) 9,9-bis [4- (2-acryloyl) as a photopolymerizable compound Oxyethoxy) phenyl] fluorene (trade name: A-BPEF, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, and bisphenol A type epoxy acrylate (trade name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 36 mass Parts, (C) 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and 1- [4 -(2-Hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (trade name: Ile (Cure 2959, manufactured by Ciba Specialty Chemicals) 1 part by weight, and 40 parts by weight of propylene glycol monomethyl ether acetate as the organic solvent were used to form the resin varnish B for forming the core layer in the same manner and under the same conditions as in the above production example. Prepared. Thereafter, pressure filtration and degassing under reduced pressure were performed under the same method and conditions as in the above production example.
The core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm) in the same manner as in the above production example. After coating and drying, a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained. In this example, the gap of the coating machine was adjusted so that the film thickness after curing was 50 μm.
(2)配線板の作製
 次に、光導波路と複合してなる配線板の作製方法について、以下、図2枝番2を参照しつつ説明する。
〔第二の支持体1-8と第一の基板1-1の積層〕
 第一の基板1-1である150mm角の片面銅箔付きポリイミド商品名:ユピセルN、宇部日東化成工業株式会社製、銅箔厚さ:5μm、ポリイミド厚さ12.5μm)のポリイミド面に第二の離型層1-6である140mm角の銅箔(商品名:3EC-VLP、三井金属鉱業株式会社製、厚さ:18μm)を中央に設置し、その上から第二の接着層1-7である150mm角のプリプレグ(商品名:GEA-679FG、日立化成工業株式会社製、厚さ:40μm)および第二の支持体1-8である銅張り積層板(MCL-E679F、日立化成工業株式会社製、厚さ:0.6mm)を構成し、4kPa以下に真空引きした後、圧力2.5MPa、温度180℃、加圧時間1時間の条件にて加熱積層して、第一の基板1-1を第二の支持体1-8に積層した。(図2(a)参照)
(2) Production of Wiring Board Next, a method for producing a wiring board combined with an optical waveguide will be described below with reference to FIG.
[Lamination of second support 1-8 and first substrate 1-1]
The first substrate 1-1 is a polyimide surface with a 150 mm square single-sided copper foil. Product name: Iupicel N, Ube Nitto Kasei Kogyo Co., Ltd., copper foil thickness: 5 μm, polyimide thickness 12.5 μm) A 140 mm square copper foil (trade name: 3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 μm), which is the second release layer 1-6, is installed in the center, and the second adhesive layer 1 is formed thereon. -7, 150 mm square prepreg (trade name: GEA-679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm) and the second support 1-8, copper-clad laminate (MCL-E679F, Hitachi Chemical) Made by Kogyo Co., Ltd., thickness: 0.6 mm), evacuated to 4 kPa or less, then heated and laminated under the conditions of pressure 2.5 MPa, temperature 180 ° C., pressurization time 1 hour, The substrate 1-1 is attached to the second support 1-8. Laminated. (See Fig. 2 (a))
〔サブトラクティブ法による回路形成〕
 その後、片面銅箔付きポリイミドの銅箔面に感光性ドライフィルムレジスト(商品名:フォテック、日立化成工業株式会製、厚さ:25μm)をロールラミネータ(日立化成テクノプラント株式会社製、HLM-1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で貼り、次いで紫外線露光機(株式会社オーク製作所製、EXM-1172)にて感光性ドライフィルムレジスト側から幅50μmのネガ型フォトマスクを介し、紫外線(波長365nm)を120mJ/cm2照射し、未露光部分の感光性ドライフィルムレジストを35℃の0.1~5質量%炭酸ナトリウムの希薄溶液で除去した。その後、塩化第二鉄溶液を用いて、感光性ドライフィルムレジストが除去されむき出しになった部分の銅箔をエッチングにより除去し、35℃の1~10質量%水酸化ナトリウム水溶液を用いて、露光部分の感光性ドライフィルムレジストを除去した。これにより片面に回路1-9が形成された第一の基板1-1付きの第二の支持体1-8を得た。(図1(b)参照)
[Circuit formation by subtractive method]
Thereafter, a photosensitive dry film resist (trade name: Photec, manufactured by Hitachi Chemical Co., Ltd., thickness: 25 μm) is applied to the polyimide copper foil surface with single-sided copper foil, and a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.). ) Under a pressure of 0.4 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min, and then a width of 50 μm from the photosensitive dry film resist side with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.). The negative photomask was irradiated with ultraviolet light (wavelength 365 nm) of 120 mJ / cm 2, and the unexposed photosensitive dry film resist was removed with a dilute solution of 0.1 to 5 mass% sodium carbonate at 35 ° C. Then, using a ferric chloride solution, the exposed copper foil was removed by etching to remove the photosensitive dry film resist, and exposure was performed using a 1-10 mass% sodium hydroxide aqueous solution at 35 ° C. A portion of the photosensitive dry film resist was removed. As a result, a second support 1-8 with the first substrate 1-1 having the circuit 1-9 formed on one side was obtained. (See Fig. 1 (b))
〔第一の支持体1-4の積層〕
 上記で形成した片面に回路1-9が形成された第一の基板1-1付きの第二の支持体1-8の第一の離型層1-2として回路1-9形成面に130mm角の離型シート(商品名:アフレックス、旭硝子株式会社製、厚さ:30μm)を中央に設置し、その上から第一の接着層1-3である150mm角のビルドアップ材(商品名:AS-ZII、日立化成工業株式会社製、厚さ:40μm) を500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着した後、ビルドアップ材面に第一の支持体1-4である銅張り積層板(MCL-E679F、日立化成工業株式会社製、厚さ:0.6mm)をさらに構成し、上記と同一の条件にて加熱圧着して第一の支持体1-4を積層した(図2(c)参照)。
[Lamination of first support 1-4]
The first release layer 1-2 of the second support 1-8 with the first substrate 1-1 on which the circuit 1-9 is formed on one side formed as described above is 130 mm on the circuit 1-9 formation surface. A corner release sheet (trade name: Aflex, manufactured by Asahi Glass Co., Ltd., thickness: 30 μm) is installed in the center, and a 150 mm square build-up material (product name) is the first adhesive layer 1-3 from above. : AS-ZII, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm), vacuumed to 500 Pa or less, then thermocompression bonded under conditions of pressure 0.4 MPa, temperature 110 ° C., pressurization time 30 seconds, build A copper-clad laminate (MCL-E679F, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm) as the first support 1-4 is further formed on the up material surface, and heated under the same conditions as above. The first support 1-4 was laminated by pressure bonding (see FIG. 2C).
〔第二の支持体の分離〕
 上記で形成した製品の各辺を各12mmずつ切断し、第二の支持体1-8のみを分離した。(図1(d)参照)これにより、第一の支持体1-4に積層した片面回路付きポリイミドを得た。
[Separation of second support]
Each side of the product formed above was cut by 12 mm, and only the second support 1-8 was separated. (See FIG. 1 (d)) Thus, a polyimide with a single-sided circuit laminated on the first support 1-4 was obtained.
〔接着フィルムの作製〕
 PCT/JP2008/05465の実施例1に記載の接着フィルムを作製した。すなわち、(a)エポキシ樹脂としてYDCN-703(東都化成株式会社製商品名、クレゾールノボラック型エポキシ樹脂、エポキシ当量210)55質量部、(b)硬化剤としてミレックスXLC-LL(三井化学株式会社製商品名、フェノール樹脂、水酸基当量175、吸水率1.8質量%、350℃における加熱重量減少率4%)45質量部、シランカップリング剤としてNUC A-189(日本ユニカー株式会社製商品名、γ-メルカプトプロピルトリメトキシシラン)1.7質量部とNUC A-1160(日本ユニカー株式会社製商品名、γ-ウレイドプロピルトリエトキシシラン)3.2質量部、(d)フィラーとしてアエロジルR972(シリカ表面にジメチルジクロロシランを被覆し、400℃の反応器中で加水分解させた、メチル基などの有機基を表面に有するフィラー、日本アエロジル株式会社製商品名、シリカ、平均粒径0.016μm)32質量部からなる組成物に、シクロヘキサノンを加えて攪拌混合し、更にビーズミルを用いて90分混練した。これに(c)高分子化合物としてグリシジルアクリレート又はグリシジルメタクリレート3質量%を含むアクリルゴムHTR-860P-3(ナガセケムテックス株式会社製商品名、重量平均分子量80万)を280質量部、及び(e)硬化促進剤としてキュアゾール2PZ-CN(四国化成工業株式会社製商品名、1-シアノエチル-2-フェニルイミダゾール)を0.5質量部加え、攪拌混合、真空脱気した。この接着剤ワニスを厚さ75μmの離型処理したポリエチレンテレフタレート(PET)フィルム(ピューレックスA31)上に塗布し、140℃で5分間加熱乾燥して、膜厚が10μmの塗膜を形成した。次いで第2の保護フィルムとして25μmの離型処理したポリエチレンテレフタレート(PET)フィルム(ピューレックスA31)を離型面が樹脂側になるように貼り付け、接着フィルムを得た。
[Production of adhesive film]
An adhesive film described in Example 1 of PCT / JP2008 / 05465 was produced. That is, (a) YDCN-703 (trade name, manufactured by Toto Kasei Co., Ltd., cresol novolak type epoxy resin, epoxy equivalent 210) 55 parts by mass as an epoxy resin, (b) Millex XLC-LL (Mitsui Chemicals, Inc.) as a curing agent Product name, phenol resin, hydroxyl group equivalent 175, water absorption rate 1.8% by mass, heating weight loss rate 4% at 350 ° C. 45% by mass, silane coupling agent NUC A-189 (trade name, manufactured by Nihon Unicar Co., Ltd.) 1.7 parts by mass of γ-mercaptopropyltrimethoxysilane) and 3.2 parts by mass of NUC A-1160 (trade name, γ-ureidopropyltriethoxysilane, manufactured by Nippon Unicar Co., Ltd.), (d) Aerosil R972 (silica) as filler The surface is coated with dimethyldichlorosilane and hydrolyzed in a 400 ° C reactor. , A filler having an organic group such as a methyl group on its surface, Nippon Aerosil Co., Ltd., trade name, silica, average particle size 0.016 μm) 32 parts by mass, cyclohexanone is added to the mixture, and the mixture is further stirred. And kneaded for 90 minutes. 280 parts by mass of (c) acrylic rubber HTR-860P-3 (trade name, manufactured by Nagase ChemteX Corporation, weight average molecular weight: 800,000) containing 3% by mass of glycidyl acrylate or glycidyl methacrylate as a polymer compound, and (e ) Curazole 2PZ-CN (trade name, 1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator was added in an amount of 0.5 parts by mass, stirred, mixed and vacuum degassed. This adhesive varnish was applied onto a 75 μm-thick polyethylene terephthalate (PET) film (Purex A31) subjected to a release treatment, and heated and dried at 140 ° C. for 5 minutes to form a coating film having a thickness of 10 μm. Next, a 25 μm release-treated polyethylene terephthalate (PET) film (Purex A31) was attached as a second protective film so that the release surface was on the resin side to obtain an adhesive film.
〔光導波路と複合してなる配線板の作製〕
 接着層1-10として前記で得た接着フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、ロールラミネータ(日立化成テクノプラント株式会社製、HLM-1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記第一の基板1-1のポリイミド面にラミネートした。その後、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて接着フィルム側から紫外線(波長365nm)を1J/cm2照射し、前記接着フィルムの第2の保護フィルムである離型PETフィルム(ピューレックスA31)を剥離した。
 次に、上記で得られたクラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、上記で得られた第一の基板1-1の接着フィルム上に、上記と同様なラミネート条件で貼り付け、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて下部クラッド層1-11に紫外線(波長365nm)を1.5J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層1-11を形成した。
 次に、下部クラッド層1-11上に、上記と同様なラミネート条件で、上記コア層形成用樹脂フィルムをラミネートし、コア層を形成した。
[Manufacture of wiring board combined with optical waveguide]
As the adhesive layer 1-10, the release PET film (Purex A31), which is a protective film for the adhesive film obtained above, is peeled off, and a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used with a pressure of 0. Lamination was performed on the polyimide surface of the first substrate 1-1 under the conditions of 4 MPa, temperature of 50 ° C., and laminating speed of 0.2 m / min. Thereafter, ultraviolet light (wavelength 365 nm) is irradiated from the adhesive film side by 1 J / cm 2 with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.), and a release PET film as a second protective film of the adhesive film (Purex A31) was peeled off.
Next, the release PET film (Purex A31), which is a protective film of the resin film for forming a clad layer obtained above, is peeled off, and on the adhesive film of the first substrate 1-1 obtained above, Affixing was performed under the same laminating conditions as described above, and the lower clad layer 1-11 was irradiated with 1.5 J / cm 2 of ultraviolet light (wavelength 365 nm) with an ultraviolet exposure machine (manufactured by Oak Manufacturing Co., Ltd., EXM-1172). The lower cladding layer 1-11 was formed by heat treatment at a temperature of 10 ° C. for 10 minutes.
Next, the core layer-forming resin film was laminated on the lower clad layer 1-11 under the same lamination conditions as above to form a core layer.
 次に、幅50μmのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.8J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N-ジメチルアセトアミド=7/3、質量比)を用いて、コアパターン1-12を現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
 次いで平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、加圧時間30秒の条件にて加熱圧着して、上部クラッド層1-13として上記クラッド層形成用樹脂フィルムをラミネートした。
 さらに、紫外線(波長365nm)を3J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層を硬化させ光導波路1-15を作製した。(図2(e)-2参照)
 得られた第一の基板1-1および回路1-9付き光導波路1-15の上部クラッド層1-13側からダイシングソー(DAC552、株式会社ディスコ社製)を用いて45°のミラーを形成して、光導波路と複合してなる配線板を得た。
Next, ultraviolet light (wavelength 365 nm) was irradiated with 0.8 J / cm 2 through the negative photomask having a width of 50 μm with the above-described ultraviolet exposure machine, and then after exposure at 80 ° C. for 5 minutes, heating was performed. Thereafter, the PET film as the support film was peeled off, and the core pattern 1-12 was developed using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 7/3, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s).
Next, using a vacuum pressurization type laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) as a flat plate type laminator, after evacuating to 500 Pa or less, under conditions of pressure 0.4 MPa, temperature 50 ° C., pressurization time 30 seconds. The resin film for forming a clad layer was laminated as the upper clad layer 1-13 by thermocompression bonding.
Further, after irradiation with ultraviolet rays (wavelength 365 nm) at 3 J / cm 2 , heat treatment was performed at 160 ° C. for 1 hour to cure the upper clad layer and produce an optical waveguide 1-15. (See Fig. 2 (e) -2)
A 45 ° mirror is formed by using a dicing saw (DAC552, manufactured by DISCO Corporation) from the upper clad layer 1-13 side of the obtained first substrate 1-1 and optical waveguide 1-15 with circuit 1-9. Thus, a wiring board combined with the optical waveguide was obtained.
[第一の支持体の分離]
 上記で形成した第一の支持体1-3付き第一の基板1-1の各辺をさらに各10mmずつ切断し、第一の支持体1-3を分離した(図2(f)-2参照)。
 得られた光導波路と複合してなる配線板について、以下のようにして、第一の基板1-1の最外層にある回路の設計値からのズレ量を測定した。その結果を表1に示す。
[Separation of the first support]
Each side of the first substrate 1-1 with the first support 1-3 formed above is further cut by 10 mm each to separate the first support 1-3 (FIG. 2F-2). reference).
With respect to the obtained wiring board combined with the optical waveguide, the amount of deviation from the design value of the circuit on the outermost layer of the first substrate 1-1 was measured as follows. The results are shown in Table 1.
(ズレ量の測定方法)
 測定は第一の支持体1-3を分離する前に行った。第一の基板1-1の最外層にある回路に中に配置した30ヵ所のアライメントマーカのX座標とY座標を測定し、4隅のアライメントマーカを用いて、対角線にあるマーカ同士を結んだ交点をスケーリングファクタ原点(以下、S/F原点と略す)、4つのアライメントマーカ間の距離を設計値で割った平均値をスケーリングファクタ(以下、S/Fと略す)として決定した。例えば、設計値の4隅のアライメントマーカをA、B、C、Dとし、実測した4隅のアライメントマーカをA’、B’、C’、D’とし、A(又はA’)とC(又はC’)、B(又はB’)とD(又はD’)が対角線上に位置する場合、AとCを結んだ直線と、BとDを結んだ直線との交点が設計値のS/F原点であり、A’とC’を結んだ直線と、B’とD’を結んだ直線との交点が実測値のS/F原点である。また、A’-B’間距離/A-B間距離、B’-C’間距離/B-C間距離、C’-D’間距離/C-D間距離、及びD’-A’間距離/D-A間距離の平均値がS/Fである。その後、測定したX座標およびY座標を、実測値のS/F原点を設計値のS/F原点の位置に補正し、さらに設計値にS/Fを乗じて、それによって得られた設計値のX座標およびY座標とのズレ量を算出した。このズレ量は光導波路1-15や他の回路との位置合わせした際の最小ズレ量に相当する。
 また、光導波路の収縮率は、上記で決定した(1-S/F)×100(%)から算出した。
 表1において、Xは横方向のズレ量、Yは縦方向のズレ量、XYはズレの距離を示す。表1の結果より、ズレ量は最大で7.5μmで、また、収縮率は、0.04%であった。
(Measurement method of deviation)
The measurement was performed before separating the first support 1-3. The X and Y coordinates of 30 alignment markers placed in the circuit on the outermost layer of the first substrate 1-1 were measured, and the diagonal markers were connected using the alignment markers at the four corners. The intersection was determined as the scaling factor origin (hereinafter abbreviated as S / F origin), and the average value obtained by dividing the distance between the four alignment markers by the design value was determined as the scaling factor (hereinafter abbreviated as S / F). For example, the alignment markers at the four corners of the design value are A, B, C, and D, and the measured alignment markers at the four corners are A ′, B ′, C ′, and D ′, and A (or A ′) and C ( Or C ′), when B (or B ′) and D (or D ′) are located on the diagonal line, the intersection of the straight line connecting A and C and the straight line connecting B and D is S of the design value. / F origin, and the intersection of the straight line connecting A ′ and C ′ and the straight line connecting B ′ and D ′ is the S / F origin of the measured value. Also, A'-B 'distance / AB distance, B'-C' distance / BC distance, C'-D 'distance / CD distance, and D'-A'. The average value of the inter-distance / DA distance is S / F. Thereafter, the measured X and Y coordinates are corrected to the position of the S / F origin of the actual measurement S / F origin, and the design value obtained by multiplying the design value by S / F. The amount of deviation from the X and Y coordinates was calculated. This deviation corresponds to the minimum deviation when the optical waveguide 1-15 or another circuit is aligned.
Further, the shrinkage ratio of the optical waveguide was calculated from (1-S / F) × 100 (%) determined above.
In Table 1, X represents the amount of displacement in the horizontal direction, Y represents the amount of displacement in the vertical direction, and XY represents the distance of displacement. From the results shown in Table 1, the maximum deviation was 7.5 μm, and the shrinkage was 0.04%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第二の支持体1-8を分離した後に、上記のダイシングソーを用いて、第一の基板1-1を切断し、断面から第一の支持体に対して反対面である第一の基板1-1のポリイミド基板の凹凸を測定した。次に測定方法を示す。 After the second support 1-8 is separated, the first substrate 1-1 is cut using the dicing saw described above, and the first substrate that is the opposite surface to the first support from the cross section The unevenness of the 1-1 polyimide substrate was measured. Next, the measurement method is shown.
(凹凸の測定方法)
 図5に示すように、第一の基板1-1に回路がある部分の剥離面側の基板1-101と、第一の基板1-1に回路がない部分の剥離面側の基板1-102の高さの差を測定した。その結果、0.5μmであった。
 さらに光導波路のコア幅は最小値49.9μm~最大値50.2μmのばらつきがあった。
(Measurement method of unevenness)
As shown in FIG. 5, the substrate 1-101 on the separation surface side where the circuit is on the first substrate 1-1 and the substrate 1- 1 on the separation surface side where the circuit is not on the first substrate 1-1. The height difference of 102 was measured. As a result, it was 0.5 μm.
Furthermore, the core width of the optical waveguide varied from a minimum value of 49.9 μm to a maximum value of 50.2 μm.
実施例2
 実施例1において第一の基板1-1を、片面銅箔付きポリイミド基板を用い、第二の支持体1-8を分離した後の回路形成を特開2006-93199号公報の実施例2に記載の下記条件にてセミアディティブ法を用いて行った。
(セミアディティブ法条件)
装置:プラズマリアクター装置型式PR-501A(ヤマト科学株式会社製、商品名)
エッチング深さ:1.5μm
パワー:300W
使用ガスと流量:CF4;20SCCM、酸素;50SCCM
基板温度:室温(25℃)
真空度:100Pa
エッチングレート:300nm/min
 第一の支持体1-1を積層する前の工程で、実施例1と同様に光導波路1-15を形成した。さらにあらかじめ上記のサブトラクティブ法によって回路を形成した片面のポリイミド基板を、ポリイミド面に前記で得た接着フィルムを貼り合せた後に、接着フィルム面と光導波路1-15を貼り合せた。その他の工程は実施例1と同様に行った(図2(f)-3)。
Example 2
In Example 1, the first substrate 1-1 is a polyimide substrate with a single-sided copper foil, and the circuit formation after separating the second support 1-8 is described in Example 2 of JP-A-2006-93199. The semi-additive method was used under the conditions described below.
(Semi-additive process conditions)
Apparatus: Plasma reactor apparatus model PR-501A (trade name, manufactured by Yamato Scientific Co., Ltd.)
Etching depth: 1.5 μm
Power: 300W
Gas and flow rate: CF 4 ; 20 SCCM, oxygen; 50 SCCM
Substrate temperature: Room temperature (25 ° C)
Degree of vacuum: 100Pa
Etching rate: 300 nm / min
An optical waveguide 1-15 was formed in the same manner as in Example 1 before the first support 1-1 was laminated. Further, a single-sided polyimide substrate on which a circuit was previously formed by the subtractive method was bonded to the polyimide surface, and then the adhesive film surface and the optical waveguide 1-15 were bonded. Other steps were performed in the same manner as in Example 1 (FIG. 2 (f) -3).
 得られた光導波路と複合してなる配線板について、実施例1と同様にして、第一の基板1-1の最外層にある回路位置のズレ量を測定した。その結果を表2に示す。
 表2の結果より、ズレ量は最大で7.2μmで、また、収縮率は0.05%であった。
With respect to the obtained wiring board combined with the optical waveguide, the displacement amount of the circuit position in the outermost layer of the first substrate 1-1 was measured in the same manner as in Example 1. The results are shown in Table 2.
From the results in Table 2, the maximum deviation was 7.2 μm, and the shrinkage was 0.05%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に、実施例1と同様に、第一の基板1-1に回路がある部分の剥離面側の基板1-101と、第一の基板1-1に回路がない部分の剥離面側の基板1-102の高さの差を測定した。その結果、0.5μmであった。
 さらに光導波路のコア幅は最小値50.0μm~最大値50.3μmのばらつきがあった。
Next, in the same manner as in Example 1, the substrate 1-101 on the separation surface side where the circuit is located on the first substrate 1-1 and the separation surface side where the circuit is absent on the first substrate 1-1. The difference in height of the substrate 1-102 was measured. As a result, it was 0.5 μm.
Further, the core width of the optical waveguide varied from a minimum value of 50.0 μm to a maximum value of 50.3 μm.
実施例3
 実施例1において第二の基板1-5として光導波路の代わりに、第一の基板1-1の回路形成面にプリプレグ(商品名:GEA-679FG、日立化成工業株式会社製、厚さ:40μm)、銅箔(商品名:3EC-VLP、三井金属鉱業株式会社製、厚さ:18μm)を順次形成し、4kPa以下に真空引きした後、圧力2.5MPa、温度180℃、加圧時間1時間の条件にて加熱積層した。さらに上記の銅箔を上記のサブトラクティブ法を用いて回路形成した(図2(f)-1参照)。
Example 3
In Example 1, instead of an optical waveguide as the second substrate 1-5, a prepreg (trade name: GEA-679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm) is used on the circuit formation surface of the first substrate 1-1. ), Copper foil (trade name: 3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 μm) are sequentially formed, vacuumed to 4 kPa or less, pressure 2.5 MPa, temperature 180 ° C., pressurization time 1 Heat lamination was performed under conditions of time. Further, a circuit was formed on the copper foil using the subtractive method (see FIG. 2 (f) -1).
 得られた配線板について、実施例1と同様にして、第一の基板1-1の最外層にある回路位置のズレ量を測定した。その結果を表3に示す。
 表3の結果より、ズレ量は最大で9.6μmで、また、収縮率は0.05%であった。
For the obtained wiring board, in the same manner as in Example 1, the amount of deviation of the circuit position in the outermost layer of the first substrate 1-1 was measured. The results are shown in Table 3.
From the results in Table 3, the maximum deviation was 9.6 μm, and the shrinkage was 0.05%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例4
 実施例3において、実施例1と同様の条件で第二の基板1-5の回路形成面にさらに光導波路1-15を形成した(図2(f)-4参照)。
 実施例1と同様に、第一の基板1-1に回路がある部分の剥離面側の基板1-101と、第一の基板1-1に回路がない部分の剥離面側の基板1-102の高さの差を測定した。その結果、1.5μmであった。
 さらに光導波路のコア幅は最小値50.1μm~最大値50.2μmのばらつきがあった。
Example 4
In Example 3, an optical waveguide 1-15 was further formed on the circuit formation surface of the second substrate 1-5 under the same conditions as in Example 1 (see FIG. 2 (f) -4).
As in Example 1, the substrate 1-101 on the separation surface side where the circuit is located on the first substrate 1-1 and the substrate 1- 1 on the separation surface side where the circuit is not present on the first substrate 1-1. The height difference of 102 was measured. As a result, it was 1.5 μm.
Further, the core width of the optical waveguide varied from a minimum value of 50.1 μm to a maximum value of 50.2 μm.
実施例5
 実施例1において、工程Aとして回路1-9を形成した後に、実施例2と同様の条件で回路1-9形成面に光導波路1-15およびポリイミド基板(基板X16)を形成し、改めて第一の基板1-1とした。それ以降の工程B以降として第二の基板1-5を形成しない以外は、実施例3と同様に行った(図3参照)。
 実施例1と同様に、第一の基板1-1に回路がある部分の剥離面側の基板1-101と、第一の基板1-1に回路がない部分の剥離面側の基板1-102の高さの差を測定した。その結果、1.0μmであった。
 さらに光導波路のコア幅を測定したところ、最小値49.7μm~最大値50.3μmのばらつきがあった。
Example 5
In the first embodiment, after forming the circuit 1-9 as the process A, the optical waveguide 1-15 and the polyimide substrate (substrate X16) are formed on the circuit 1-9 forming surface under the same conditions as in the second embodiment. One substrate 1-1 was obtained. Subsequent steps B and thereafter were performed in the same manner as in Example 3 except that the second substrate 1-5 was not formed (see FIG. 3).
As in Example 1, the substrate 1-101 on the separation surface side where the circuit is located on the first substrate 1-1 and the substrate 1- 1 on the separation surface side where the circuit is not present on the first substrate 1-1. The height difference of 102 was measured. As a result, it was 1.0 μm.
Further, when the core width of the optical waveguide was measured, there was a variation from a minimum value of 49.7 μm to a maximum value of 50.3 μm.
比較例1
 実施例1において第一の離型層1-2、第一の接着層1-3、第一の支持体1-4、第二の離型層1-6、第二の接着層1-7、第二の支持体1-8を使用せず、ポリイミド基板の回路形成を、サブトラクティブ法を用いて同時に行った以外は同様にして行った。
 得られた光導波路と複合してなる配線板について、実施例1と同様にして、第一の基板1-1の最外層にある回路位置のズレ量を測定した。その結果を表4に示す。
 表4の結果より、ズレ量は最大で32.3μmで、また、収縮率は0.15%であった。
Comparative Example 1
In Example 1, the first release layer 1-2, the first adhesive layer 1-3, the first support 1-4, the second release layer 1-6, and the second adhesive layer 1-7. The second substrate 1-8 was not used, and a polyimide substrate circuit was formed in the same manner except that the circuit formation was simultaneously performed using the subtractive method.
With respect to the obtained wiring board combined with the optical waveguide, the displacement amount of the circuit position in the outermost layer of the first substrate 1-1 was measured in the same manner as in Example 1. The results are shown in Table 4.
From the results of Table 4, the maximum deviation was 32.3 μm, and the shrinkage was 0.15%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1と同様に、第一の基板1-1に回路がある部分の剥離面側の基板面1-101と、第一の基板1-1に回路がない部分の剥離面側の基板面1-102の高さの差を測定した。その結果、3.0μmであった。さらに光導波路のコア幅は最小値48μm~最大値53μmとばらつきがあった。 As in Example 1, the substrate surface 1-101 on the release surface side of the portion where the circuit is located on the first substrate 1-1, and the substrate surface on the release surface side of the portion where the circuit is not present on the first substrate 1-1. The height difference of 1-102 was measured. As a result, it was 3.0 μm. Furthermore, the core width of the optical waveguide varied from a minimum value of 48 μm to a maximum value of 53 μm.
実施例6
(光電気複合部材の作製)
 光電気複合部材の作製方法について、以下、図6および図7を参照しつつ説明する。
[下部支持体の積層]
 150mm角の両面銅箔付きポリイミド商品名:ユピセルN、宇部日東化成工業株式会社製、銅箔厚さ:5μm、ポリイミド厚さ12.5μm)の銅箔面に140mm角の銅箔(商品名:3EC-VLP、三井金属鉱業株式会社製、厚さ:18μm)を中央に設置し、その上から150mm角のプリプレグ(商品名:GEA-679FG、日立化成工業株式会社製、厚さ:40μm)および銅張り積層板(MCL-E679F、日立化成工業株式会社製、厚さ:0.6mm)を構成し、4kPa以下に真空引きした後、圧力2.5MPa、温度180℃、加圧時間1時間の条件にて加熱積層して、電気配線2-2を下部支持体2-1に積層した。(図6(a)参照)その後、両面銅箔付きポリイミドの片面を、サブトラクティブ法を用いて回路形成を行った。これにより片面電気配線の電気配線板2-2付きの下部支持体2-1を得た。(図6(b)参照)
Example 6
(Production of optoelectric composite member)
Hereinafter, a method for producing the photoelectric composite member will be described with reference to FIGS.
[Lamination of lower support]
150 mm square polyimide foil with double-sided copper foil Trade name: Iupicel N, Ube Nitto Kasei Kogyo Co., Ltd., copper foil thickness: 5 μm, polyimide thickness 12.5 μm) on a copper foil surface of 140 mm square copper foil (trade name: 3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 μm), and a 150 mm square prepreg (trade name: GEA-679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm) After constructing a copper-clad laminate (MCL-E679F, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm), vacuuming to 4 kPa or less, pressure 2.5 MPa, temperature 180 ° C., pressurization time 1 hour The electrical wiring 2-2 was laminated on the lower support 2-1 by heating lamination under conditions. (See FIG. 6 (a)) Thereafter, circuit formation was performed on one side of the polyimide with double-sided copper foil using a subtractive method. As a result, a lower support body 2-1 with an electric wiring board 2-2 for single-sided electric wiring was obtained. (See FIG. 6 (b))
[上部支持体の積層]
 上記で形成した電気配線板2-2付き下部支持体2-1の電気配線面に130mm角の離型シート(商品名:アフレックス、旭硝子株式会社製、厚さ:30μm)を中央に設置し、その上から150mm角のビルドアップ材(商品名:AS-ZII、日立化成工業株式会社製、厚さ:40μm) を500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着した後、ビルドアップ材面に銅張り積層板(MCL-E679F、日立化成工業株式会社製、厚さ:0.6mm)をさらに構成し、上記と同一の条件にて加熱圧着して上部支持体2-3を積層した。(図6(c)参照)詳しい層構成を図7(a)に示す。
[Lamination of upper support]
A 130 mm square release sheet (trade name: Aflex, manufactured by Asahi Glass Co., Ltd., thickness: 30 μm) is placed in the center on the electrical wiring surface of the lower support 2-1 with the electrical wiring board 2-2 formed above. A 150 mm square build-up material (trade name: AS-ZII, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm) is evacuated to 500 Pa or less, pressure 0.4 MPa, temperature 110 ° C., pressure After thermocompression bonding under conditions of 30 seconds, a copper-clad laminate (MCL-E679F, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm) is further formed on the build-up surface, and the same conditions as above The upper support 2-3 was laminated by thermocompression bonding. (See FIG. 6C) A detailed layer structure is shown in FIG.
[下部支持体の分離]
 上記で形成した製品の各辺を各12mmずつ切断し、下部支持体2-1のみを分離した。(図6(d)参照)その後、剥離面である銅箔付きポリイミドの銅箔面を、サブトラクティブ法を用いて回路形成を行った。これにより、上部支持体2-3に積層した両面電気配線付きポリイミドを得た。
[Separation of lower support]
Each side of the product formed above was cut by 12 mm, and only the lower support 2-1 was separated. (Refer to FIG. 6 (d)) Thereafter, a circuit was formed on the copper foil surface of the polyimide with copper foil, which was the peel surface, using a subtractive method. As a result, polyimide with double-sided electrical wiring laminated on the upper support 2-3 was obtained.
[光電気複合部材の作製]
 実施例1で得た接着フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、ロールラミネータ(日立化成テクノプラント株式会社製、HLM-1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記下部支持体2-1のポリイミド面にラミネートした。その後、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて接着フィルム側から紫外線(波長365nm)を1J/cm2照射し、前記接着フィルムの第2の保護フィルムである離型PETフィルム(ピューレックスA31)を剥離した。
 次に、上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、上記で得られた下部支持体2-1の接着フィルム上に、上記と同様なラミネート条件で貼り付け、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて下部クラッド層2-4に紫外線(波長365nm)を1.5J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層2-4を形成した。
 次に、下部クラッド層4上に、上記と同様なラミネート条件で、上記コア層形成用樹脂フィルムをラミネートし、コア層を形成した。
[Production of optoelectric composite members]
A release PET film (Purex A31), which is a protective film for the adhesive film obtained in Example 1, was peeled off, and a pressure laminator (manufactured by Hitachi Chemical Technoplant Co., Ltd., HLM-1500) was used. Pressure 0.4 MPa, temperature 50 Lamination was performed on the polyimide surface of the lower support 2-1 under the conditions of 0 ° C. and a laminating speed of 0.2 m / min. Thereafter, ultraviolet light (wavelength 365 nm) is irradiated from the adhesive film side by 1 J / cm 2 with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.), and a release PET film as a second protective film of the adhesive film (Purex A31) was peeled off.
Next, the release PET film (Purex A31), which is a protective film of the resin film for forming the lower cladding layer obtained above, is peeled off, and on the adhesive film of the lower support 2-1 obtained above, Affixing under the same laminating conditions as described above, the lower clad layer 2-4 was irradiated with 1.5 J / cm 2 of ultraviolet light (wavelength 365 nm) with an ultraviolet exposure machine (EXM-1172 manufactured by Oak Manufacturing Co., Ltd.), and then 80 The lower clad layer 2-4 was formed by heat treatment at a temperature of 10 ° C. for 10 minutes.
Next, the core layer-forming resin film was laminated on the lower clad layer 4 under the same lamination conditions as described above to form a core layer.
 次に、幅50μmのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.8J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N-ジメチルアセトアミド=7/3、質量比)を用いて、コアパターン2-5を現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
 次いで平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、加圧時間30秒の条件にて加熱圧着して、上部クラッド層2-6として上記クラッド層形成用樹脂フィルムをラミネートした。
 さらに、紫外線(波長365nm)を3J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層を硬化させ光導波路2-8を作製した。(図6(e)参照)
 得られた電気配線板2-2付き光導波路2-8の上部クラッド層2-6側からダイシングソー(DAC552、株式会社ディスコ社製)を用いて45°のミラーを形成して、光電気複合部材を得た。(図6(f)参照)
Next, ultraviolet light (wavelength 365 nm) was irradiated with 0.8 J / cm 2 through the negative photomask having a width of 50 μm with the above-described ultraviolet exposure machine, and then after exposure at 80 ° C. for 5 minutes, heating was performed. Thereafter, the PET film as the support film was peeled off, and the core pattern 2-5 was developed using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 7/3, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s).
Next, a vacuum pressurization laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) is used as a flat plate laminator. After vacuuming to 500 Pa or less, the pressure is 0.4 MPa, the temperature is 50 ° C., and the pressurization time is 30 seconds. The resin film for forming a clad layer was laminated as an upper clad layer 2-6 by thermocompression bonding.
Further, after irradiation with ultraviolet rays (wavelength 365 nm) at 3 J / cm 2 , heat treatment was performed at 160 ° C. for 1 hour to cure the upper clad layer and produce an optical waveguide 2-8. (See Fig. 6 (e))
A 45 ° mirror is formed by using a dicing saw (DAC552, manufactured by Disco Corporation) from the side of the upper clad layer 2-6 of the obtained optical waveguide 2-8 with the electric wiring board 2-2, and the photoelectric composite A member was obtained. (See FIG. 6 (f))
[上部支持体の分離]
 上記で形成した上部支持体2-3付き電気配線板2-2の各辺をさらに各10mmずつ切断し、上部支持体2-3を分離した。(図6(g)および図7(b)参照)
 得られた光電気複合部材について、光導波路に生じる歪みを、設計値に対する光導波路2-8のコア位置のズレ量で評価した。その結果を表5に示す。
[Separation of upper support]
Each side of the electric wiring board 2-2 with the upper support 2-3 formed as described above was further cut by 10 mm each to separate the upper support 2-3. (See FIG. 6 (g) and FIG. 7 (b))
With respect to the obtained photoelectric composite member, the distortion generated in the optical waveguide was evaluated by the amount of deviation of the core position of the optical waveguide 2-8 from the design value. The results are shown in Table 5.
(ズレ量の測定方法)
 測定は上部支持体2-3を分離する前に行った。光導波路2-8の125mm角中に配置した30ヵ所のアライメントマーカのX座標とY座標を測定し、実施例1と同様の方法で算出した。
(Measurement method of deviation)
The measurement was performed before separating the upper support 2-3. The X and Y coordinates of 30 alignment markers arranged in a 125 mm square of the optical waveguide 2-8 were measured and calculated in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例7
 実施例6において、上部支持体2-3を分離した後に、サブトラクティブ法を用いて回路形成した厚さ0.6mmのFR-4板を、実施例1にて作製した接着剤を用いてFR-4板に上記の条件で貼り合わせた後に、接着面を上部クラッド側から真空加圧式ラミネータ(株式会社名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度100℃、加圧時間30秒の条件にて光導波路2-8に加熱圧着した。それ以外は同様にして、光電気複合部材を製造した。(図8参照)
 得られた光電気複合部材について、実施例6と同様にして、光導波路2-8のコア位置のズレ量を測定した。その結果を表6に示す。
 表6の結果より、ズレ量は最大で6.9μmで、また、収縮率は0.05%であった。
Example 7
In Example 6, after separating the upper support 2-3, an FR-4 plate having a thickness of 0.6 mm, on which a circuit was formed using the subtractive method, was formed using the adhesive prepared in Example 1. -4 After being bonded to the plate under the above conditions, the adhesion surface was evacuated to 500 Pa or less using a vacuum pressure laminator (MVLP-500 manufactured by Meiki Seisakusho Co., Ltd.) from the upper clad side, Thermocompression bonding was performed on the optical waveguide 2-8 under the conditions of 4 MPa, temperature of 100 ° C., and pressurization time of 30 seconds. Otherwise, an optoelectric composite member was produced in the same manner. (See Figure 8)
With respect to the obtained photoelectric composite member, the amount of deviation of the core position of the optical waveguide 2-8 was measured in the same manner as in Example 6. The results are shown in Table 6.
From the results shown in Table 6, the maximum deviation was 6.9 μm, and the shrinkage was 0.05%.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例8
 実施例6において、両面銅箔付きポリイミドの代わりに片面銅箔付きポリイミド(商品名:ユピセルN、宇部日東化成工業株式会社製、銅箔厚さ:5μm、ポリイミド厚さ12.5μm)を用い、ポリイミド面と下部支持体2-1を片面微粘着カプトン両面テープ(商品番号:4309、住友3M株式会社製)を用いて貼り付けた。強粘着面を下部支持体2-1側にし、微粘着面をポリイミド面とした。また、上部支持体2-3を分離した後に、上部クラッド側から両面エッチング処理をした厚さ0.6mmのFR-4板を前記接着フィルムの作製で得た接着剤を用いてFR-4板に上記の条件で貼り合わせた後に、真空加圧式ラミネータ(株式会社名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度100℃、加圧時間30秒の条件にて光導波路2-8の上部クラッド側に加熱圧着した以外は同様にして、光電気複合部材を製造した。(図9参照)
 得られた光電気複合部材について、実施例6と同様にして、光導波路2-8のコア位置のズレ量を測定した。その結果を表7に示す。
 表7の結果より、ズレ量は最大で7μmで、また、収縮率は0.05%であった。
Example 8
In Example 6, instead of polyimide with double-sided copper foil, polyimide with single-sided copper foil (trade name: Iupicel N, manufactured by Ube Nitto Kasei Kogyo Co., Ltd., copper foil thickness: 5 μm, polyimide thickness 12.5 μm) The polyimide surface and the lower support 2-1 were attached using a single-sided slightly adhesive Kapton double-sided tape (product number: 4309, manufactured by Sumitomo 3M Co., Ltd.). The strongly adhesive surface was on the lower support 2-1 side, and the slightly adhesive surface was a polyimide surface. Further, after separating the upper support 2-3, an FR-4 plate having a thickness of 0.6 mm, which has been subjected to double-side etching from the upper clad side, is obtained using the adhesive obtained in the production of the adhesive film. After being bonded to each other under the above conditions, a vacuum pressurization type laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) was used to evacuate to 500 Pa or less, then pressure 0.4 MPa, temperature 100 ° C., pressurization time 30 An optoelectric composite member was produced in the same manner except that it was thermocompression bonded to the upper clad side of the optical waveguide 2-8 under the condition of seconds. (See Figure 9)
With respect to the obtained photoelectric composite member, the amount of deviation of the core position of the optical waveguide 2-8 was measured in the same manner as in Example 6. The results are shown in Table 7.
From the results shown in Table 7, the maximum deviation was 7 μm, and the shrinkage was 0.05%.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例9
 実施例6において、上部支持体2-3が銅張り積層板(商品名:MCL-E-679FB、日立化成工業株式会社製、厚さ:0.6mm)を、サブトラクティブ法を用いて両面回路形成したものであり、回路加工面に150mm角のビルドアップ材(商品名:AS-ZII、日立化成工業株式会社製、厚さ:40μm) を上記の条件にて加熱圧着した後に、上記の条件にて電気配線板2-2と貼り合わせ、上部支持体2-3を分離しない以外は同様にして、光電気複合部材を製造した。(図10参照)
 得られた光電気複合部材について、実施例6と同様にして、光導波路2-8のコア位置のズレ量を測定した。その結果を表8に示す。
 表4の結果より、ズレ量は最大で5.7μmで、また、収縮率は0.05%であった。
Example 9
In Example 6, the upper support 2-3 is a copper-clad laminate (trade name: MCL-E-679FB, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm) using a subtractive method for a double-sided circuit. A 150 mm square build-up material (trade name: AS-ZII, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm) is thermocompression bonded to the circuit processed surface under the above conditions, and then the above conditions are satisfied. Then, the photoelectric composite member was manufactured in the same manner except that it was bonded to the electric wiring board 2-2 and the upper support 2-3 was not separated. (See Figure 10)
With respect to the obtained photoelectric composite member, the amount of deviation of the core position of the optical waveguide 2-8 was measured in the same manner as in Example 6. The results are shown in Table 8.
From the results shown in Table 4, the maximum deviation was 5.7 μm, and the shrinkage was 0.05%.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例10
 実施例6と同様に下部支持体2-1と電気配線板2-2を積層し、回路形成をした後に、電気配線板2-2上に実施例6と同様の条件で光導波路2-8を形成した。その後、上記の条件でミラーを形成した。次に上部支持体2-1を積層する工程として、150mm角のプリプレグ(商品名:GEA-679FG、日立化成工業株式会社製、厚さ:40μm)、130mm角の銅箔(商品名:3EC-VLP、三井金属鉱業株式会社製、厚さ:18μm)、150mm角の銅箔(商品名:3EC-VLP、三井金属鉱業株式会社製、厚さ:18μm)、150mm角のプリプレグ(商品名:GEA-679FG、日立化成工業株式会社製、厚さ:40μm)、銅張り積層板(MCL-E679F、日立化成工業株式会社製、厚さ:0.6mm)を順次構成し、4kPa以下に真空引きした後、圧力2.5MPa、温度180℃、加圧時間1時間の条件にて加熱積層して、内層に光導波路2-8を配置した電気配線付き下部支持体2-1を形成した。詳しい層構成を図11(a)に示す。製品ワークを各辺12mmずつ切断し、下部支持体2-1を分離した後に、剥離面である銅箔付きポリイミドの銅箔面をサブトラクティブ法を用いて回路形成を行った。
 さらに、実施例6と同一の方法で銅箔付きポリイミドの銅箔面の回路形成面に光導波路8を形成した後に、製品ワークを各辺さらに10mmずつ切断し、上部支持体2-3を分離し、上部支持体2-3の分離後の剥離面である140mm角の銅箔にサブトラクティブ法を用いて回路形成を行った。次に、最外層の光導波路2-8に上記の条件にてミラー部を形成し、製品ワークをさらに各辺10mmずつ切断し、光電気複合部材を得た。図11(b)に層構成図を示す。
 得られた光電気複合部材について、外層の光導波路2-8を形成後に、実施例6と同様にして、光導波路2-8のコア位置のズレ量を測定した。内層の光導波路2-8の結果を表9に、外層の光導波路2-8の結果を表10示す。
 表9の結果より、ズレ量は最大で7.2μmで、収縮率は0.08%であった。表10の結果より、ズレ量は最大で11.2μmで、また、収縮率は0.05%であった。
Example 10
The lower support 2-1 and the electric wiring board 2-2 are laminated in the same manner as in the sixth embodiment, and after forming a circuit, the optical waveguide 2-8 is formed on the electric wiring board 2-2 under the same conditions as in the sixth embodiment. Formed. Thereafter, a mirror was formed under the above conditions. Next, as a step of laminating the upper support 2-1, a 150 mm square prepreg (trade name: GEA-679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm), a 130 mm square copper foil (trade name: 3EC- VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness: 18 μm, 150 mm square copper foil (trade name: 3EC-VLP, manufactured by Mitsui Kinzoku Mining Co., Ltd., thickness: 18 μm), 150 mm square prepreg (trade name: GEA -679FG, manufactured by Hitachi Chemical Co., Ltd., thickness: 40 μm), copper-clad laminate (MCL-E679F, manufactured by Hitachi Chemical Co., Ltd., thickness: 0.6 mm) were sequentially constructed and evacuated to 4 kPa or less. Thereafter, heat lamination was performed under the conditions of a pressure of 2.5 MPa, a temperature of 180 ° C., and a pressurization time of 1 hour to form a lower support body 2-1 with electric wiring in which an optical waveguide 2-8 was arranged in the inner layer. A detailed layer structure is shown in FIG. The product workpiece was cut by 12 mm on each side to separate the lower support 2-1, and then the copper foil surface of the polyimide with copper foil, which was the release surface, was formed using a subtractive method.
Further, after forming the optical waveguide 8 on the circuit forming surface of the copper foil surface of polyimide with copper foil by the same method as in Example 6, the product work is further cut by 10 mm on each side to separate the upper support 2-3. Then, a circuit was formed by using a subtractive method on a 140 mm square copper foil, which is a peeled surface after separation of the upper support 2-3. Next, a mirror part was formed on the outermost optical waveguide 2-8 under the above conditions, and the product workpiece was further cut by 10 mm on each side to obtain a photoelectric composite member. FIG. 11B shows a layer configuration diagram.
For the obtained optical / electrical composite member, after forming the outer optical waveguide 2-8, the amount of deviation of the core position of the optical waveguide 2-8 was measured in the same manner as in Example 6. Table 9 shows the results of the inner optical waveguide 2-8, and Table 10 shows the results of the outer optical waveguide 2-8.
From the results of Table 9, the maximum deviation was 7.2 μm and the shrinkage was 0.08%. From the results shown in Table 10, the maximum deviation was 11.2 μm, and the shrinkage was 0.05%.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
比較例2
 実施例6において、上部支持体2-3および下部支持体2-1の貼り付けを行わなかったこと以外は同様にして、光電気複合部材を製造した。
 得られた光電気複合部材について、実施例6と同様にして、光導波路2-8のコア位置のズレ量を測定した。その結果を表11に示す。
 表11の結果より、ズレ量は最大で75μmで、また、収縮率は1.0%であった。
Comparative Example 2
A photoelectric composite member was produced in the same manner as in Example 6 except that the upper support 2-3 and the lower support 2-1 were not attached.
With respect to the obtained photoelectric composite member, the amount of deviation of the core position of the optical waveguide 2-8 was measured in the same manner as in Example 6. The results are shown in Table 11.
From the results shown in Table 11, the maximum deviation was 75 μm, and the shrinkage was 1.0%.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
実施例11
 以下の如くに各工程を実施し、光電気複合基板を作製した。
(1)粘接着シートの作製
(a)高分子量成分として、HTR-860P-3(ナガセケムテックス(株)製商品名、グリシジル基含有アクリルゴム、重量平均分子量80万、Tg:-7℃)100質量部、(b)エポキシ樹脂として、YDCN-703(東都化成(株)製商品名、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量210)5.4質量部、YDCN-8170C(東都化成(株)製商品名、ビスフェノールF型エポキシ樹脂、エポキシ当量157)16.2質量部、(c)エポキシ樹脂硬化剤として、フェノライトLF2882(大日本インキ化学工業(株)製商品名、ビスフェノールAノボラック樹脂、水酸基当量118g/eq)15.3質量部、シランカップリング剤として、NUCA-189(日本ユニカー(株)製商品名、γ-メルカプトプロピルトリメトキシシラン)0.1質量部、及びNUCA-1160(日本ユニカー(株)製商品名、3-ウレイドプロピルトリエトキシシラン)0.3質量部、(d)光反応性モノマーとして、A-DPH(新中村化学工業(株)製商品名、ジペンタエリスリトールヘキサアクリレート)30質量部、(e)光塩基発生剤として、イルガキュア369(チバスペシャリティーケミカルズ社製商品名、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1-オン:I-369)1.5質量部、有機溶剤としてシクロヘキサノンを加えて攪拌混合し、真空脱気した。この粘接着剤樹脂組成物ワニスを、厚さ75μmの表面離型処理ポリエチレンテレフタレート(帝人(株)製、テイジンテトロンフィルム:A-31)上に塗布し、80℃で30分間加熱乾燥し粘接着シートを得た。この粘接着シートに、厚さ80μmの紫外線透過性の支持基材(サーモ(株)製、低密度ポリエチレンテレフタレート/酢酸ビニル/低密度ポリエチレンテレフタレート三層フィルム:FHF-100)をあわせてラミネートすることにより保護フィルム(前記表面離型処理ポリエチレンテレフタレート)、粘接着層、及び紫外線透過性の支持基材からなる粘接着シートを作製した。
 上記粘接着シートに、365nmの紫外線を500mJ/cm2照射後、160℃で1時間硬化させた粘接着剤樹脂組成物の貯蔵弾性率を、動的粘弾性測定装置((株)レオロジ製、DVE-V4)を用いて測定(サンプルサイズ:長さ20mm、幅4mm、膜厚80μm、昇温速度5℃/min、引張りモード、10Hz、自動静荷重)した結果、25℃で400MPa、125℃で1MPa、260℃で5MPaであった。
Example 11
Each step was carried out as follows to produce a photoelectric composite substrate.
(1) Production of adhesive sheet (a) As a high molecular weight component, HTR-860P-3 (trade name, manufactured by Nagase ChemteX Corporation, glycidyl group-containing acrylic rubber, weight average molecular weight 800,000, Tg: −7 ° C. ) 100 parts by mass, (b) As an epoxy resin, YDCN-703 (trade name, manufactured by Toto Kasei Co., Ltd., o-cresol novolac type epoxy resin, epoxy equivalent 210), 5.4 parts by mass, YDCN-8170C (Toto Kasei ( Co., Ltd. trade name, bisphenol F type epoxy resin, epoxy equivalent 157) 16.2 parts by mass, (c) epoxy resin curing agent, Phenolite LF2882 (Dainippon Ink Chemical Co., Ltd. trade name, bisphenol A novolak) Resin, 15.3 parts by mass of hydroxyl group equivalent 118 g / eq), NUCA-189 (Nihon Unica) as silane coupling agent Trade name, γ-mercaptopropyltrimethoxysilane) 0.1 parts by mass, and NUCA-1160 (Nihon Unicar Co., Ltd., product name, 3-ureidopropyltriethoxysilane) 0.3 parts by mass, d) 30 parts by mass of A-DPH (trade name, dipentaerythritol hexaacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. as a photoreactive monomer, and (e) Irgacure 369 (Ciba Specialty Chemicals Co., Ltd.) as a photobase generator. Product name, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1-one: I-369) 1.5 parts by mass, cyclohexanone as an organic solvent was added and mixed with stirring. Vacuum degassed. This adhesive resin composition varnish was applied onto a 75 μm-thick surface-release-treated polyethylene terephthalate (manufactured by Teijin Ltd., Teijin Tetron Film: A-31), and dried by heating at 80 ° C. for 30 minutes. An adhesive sheet was obtained. This adhesive sheet is laminated with an 80 μm-thick UV transparent support substrate (manufactured by Thermo Co., Ltd., low density polyethylene terephthalate / vinyl acetate / low density polyethylene terephthalate three-layer film: FHF-100). Thus, an adhesive sheet composed of a protective film (the surface release-treated polyethylene terephthalate), an adhesive layer, and an ultraviolet transmissive supporting substrate was prepared.
The storage elastic modulus of the adhesive resin composition obtained by irradiating the adhesive sheet with ultraviolet light of 365 nm at 500 mJ / cm 2 and then curing at 160 ° C. for 1 hour is measured with a dynamic viscoelasticity measuring device (Rheology Co., Ltd.). Manufactured by DVE-V4) (sample size: length 20 mm, width 4 mm, film thickness 80 μm, heating rate 5 ° C./min, tensile mode 10 Hz, automatic static load). As a result, 400 MPa at 25 ° C., It was 1 MPa at 125 ° C. and 5 MPa at 260 ° C.
(2)金属箔付き基板の基板表面への下部クラッド層の形成
 上記(1)で作製した粘接着シートの保護フィルムを剥離し、銅箔付き基板(長さ150mm、幅150mm、基板:ポリイミド(厚さ:25μm)、銅箔厚さ:18μm、東レフィルム加工(株)製、商品名「メタロイヤル」)のポリイミド面に、ロールラミネータ(日立化成テクノプラント(株)製、HLM-1500)を用い、温度60℃、圧力0.5MPa、送り速度0.2m/minの条件で、粘接着剤層が基板に接するように積層した。該粘接着剤層の厚さは10μmであった。続いて粘接着シートに支持基材側から紫外線(365nm)を250mJ/cm2照射し、粘接着剤層と支持基材界面の密着力を低下させ、支持基材を剥がして粘接着剤層を露出させた。
 その後、実施例1で作製したクラッド層形成用樹脂フィルムの保護フィルムを剥がし、クラッド層形成用樹脂層が粘接着剤層に接するようにして、ロールラミネータ(日立化成テクノプラント(株)製、HLM-1500)を用い、80℃、0.5MPa、送り速度0.5mの条件でロールラミネートし、さらに、紫外線(波長365nm)を1J/cm2照射後、クラッド層形成用樹脂フィルムの支持基材を剥がし、80℃で10分間加熱処理することによって、下部クラッド層を形成し、基板表面に下部クラッド層を有する銅箔付きの基板を得た。
(2) Formation of lower clad layer on substrate surface of substrate with metal foil Peel off protective film of adhesive sheet prepared in (1) above, substrate with copper foil (length 150 mm, width 150 mm, substrate: polyimide) (Thickness: 25 μm), copper foil thickness: 18 μm, roll laminator (manufactured by Hitachi Chemical Technoplant Co., Ltd., HLM-1500) on the polyimide surface of Toray Film Processing Co., Ltd. Was used so that the adhesive layer was in contact with the substrate under the conditions of a temperature of 60 ° C., a pressure of 0.5 MPa, and a feed rate of 0.2 m / min. The thickness of the adhesive layer was 10 μm. Subsequently, the adhesive sheet is irradiated with ultraviolet rays (365 nm) at 250 mJ / cm 2 from the support substrate side to reduce the adhesive force between the adhesive layer and the support substrate interface, and the support substrate is peeled off to perform adhesion. The agent layer was exposed.
Thereafter, the protective film of the clad layer forming resin film prepared in Example 1 is peeled off so that the clad layer forming resin layer is in contact with the adhesive layer, and a roll laminator (manufactured by Hitachi Chemical Technoplant Co., Ltd., HLM-1500) is roll-laminated under the conditions of 80 ° C., 0.5 MPa, feed rate of 0.5 m, and further irradiated with ultraviolet rays (wavelength 365 nm) at 1 J / cm 2 , and then the support base of the resin film for forming the clad layer The material was peeled off and heat-treated at 80 ° C. for 10 minutes to form a lower clad layer, and a substrate with a copper foil having the lower clad layer on the substrate surface was obtained.
(3)導体パターンの形成
 上記(2)で作製した、下部クラッド層を有する銅箔付きの基板の銅箔表面に光硬化性膜である厚さ30μmのエッチングレジスト用・フォテックH-N930(日立化成工業株式会社製、商品名)をラミネートした。導体パターンのフォトマスクをエッチングレジスト用ドライフィルムに重ね、60mmHgの真空下に、露光を行った。その後現像を行い、エッチングレジストを形成した後、塩化第二銅溶液をスプレー噴霧して、不要な銅箔をエッチング除去し、導体パターンを形成した。
(3) Formation of Conductor Pattern Photo-curable H-N930 (Hitachi, 30 μm thick photo-curable film on the copper foil surface of the copper foil substrate having the lower clad layer prepared in (2) above. (Trade name, manufactured by Kasei Kogyo Co., Ltd.) was laminated. The photomask of the conductor pattern was overlaid on the etching resist dry film, and exposure was performed under a vacuum of 60 mmHg. Thereafter, development was performed to form an etching resist, and then a cupric chloride solution was sprayed and sprayed to remove unnecessary copper foil, thereby forming a conductor pattern.
(4)導体保護層(ソルダーレジスト層)の形成
 導体パターンを形成した基板に、ソルダーレジスト用ドライフィルムであるSR-2300G-50(日立化成工業株式会社製、商品名)の厚さ50μmのものをラミネートした。保護すべき導体パターンのフォトマスクをソルダーレジスト用ドライフィルムに重ね、60mmHgの真空下に、露光を行った。その後現像を行い、ソルダーレジスト層を形成し、乾燥して、電気配線基板を構築した。
(4) Formation of conductor protective layer (solder resist layer) SR-2300G-50 (trade name, manufactured by Hitachi Chemical Co., Ltd.), a dry film for solder resist, has a thickness of 50 μm on a substrate on which a conductor pattern is formed. Was laminated. A photomask having a conductor pattern to be protected was placed on a dry film for a solder resist, and exposed under a vacuum of 60 mmHg. Thereafter, development was performed, a solder resist layer was formed, and dried to construct an electric wiring board.
(5)コアパターンの形成
 上記(4)で作製した、下部クラッド層付き電気配線基板の下部クラッド層上に、ロールラミネータ(日立化成テクノプラント(株)製、HLM-1500)を用い、圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、実施例1で作製したコア層形成用樹脂フィルムをラミネートし、次いで平板型ラミネータとして真空加圧式ラミネータ((株)名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、加圧時間30秒の条件にて加熱圧着して、コア層を形成した。
(5) Formation of core pattern A roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used on the lower clad layer of the electric wiring board with the lower clad layer produced in (4) above, and the pressure is 0. The core layer-forming resin film produced in Example 1 was laminated under the conditions of 4 MPa, temperature of 50 ° C., and laminating speed of 0.2 m / min, and then a vacuum pressure laminator (Meiki Seisakusho Co., Ltd.) as a flat plate laminator. MVLP-500) was used, and after vacuuming to 500 Pa or less, the core layer was formed by thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a pressurization time of 30 seconds.
 次に、幅50μmのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N-ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
 次いで、下部クラッド層のラミネートと同様のラミネート条件にて、上記クラッド層形成用樹脂フィルムをラミネートした。さらに、紫外線(波長365nm)を3J/cm2照射後、クラッド層形成用樹脂フィルムの支持基材を剥がし、180℃で1時間加熱処理することによって、上部クラッド層を形成して、光導波路を構築した。
 なお、コア層及びクラッド層の屈折率をMetricon社製プリズムカプラー(Model 2010)で測定したところ、波長830nmにて、コア層が1.584、クラッド層が1.550であった。また、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに株式会社アドバンテスト製、Q82214を用い、カットバック法(測定導波路長10、5、3、2cm、入射ファイバ;GI-50/125マルチモードファイバ(NA=0.20)、出射ファイバ;SI-114/125(NA=0.22))により測定したところ、0.1dB/cmであった。
Next, ultraviolet rays (wavelength 365 nm) were irradiated with 0.6 J / cm 2 with a UV photomask through a negative photomask having a width of 50 μm, followed by heating at 80 ° C. for 5 minutes. Thereafter, the PET film as the support film was peeled off, and the core pattern was developed using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 8/2, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s).
Subsequently, the above-mentioned resin film for forming a clad layer was laminated under the same laminating conditions as those for laminating the lower clad layer. Further, after irradiating with ultraviolet rays (wavelength 365 nm) at 3 J / cm 2 , the support base of the resin film for forming the cladding layer is peeled off, and heat treatment is performed at 180 ° C. for 1 hour to form an upper cladding layer. It was constructed.
When the refractive index of the core layer and the clad layer was measured with a prism coupler (Model 2010) manufactured by Metricon, the core layer was 1.584 and the clad layer was 1.550 at a wavelength of 830 nm. In addition, the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using a surface-emitting laser (850 nm, manufactured by EXFO, FLS-300-01-VCL) as a light source, and Q82214, manufactured by Advantest Corporation as a light receiving sensor. Measurement waveguide length: 10, 5, 3, 2 cm, incident fiber: GI-50 / 125 multimode fiber (NA = 0.20), outgoing fiber: SI-114 / 125 (NA = 0.22)) However, it was 0.1 dB / cm.
実施例12
 実施例11での(2)における金属箔付き基板を、電気配線を有するフレキシブル電気配線基板(長さ48mm、幅4mm、基材:カプトンEN、25μm、銅回路厚さ:12μm)に代え、且つ実施例1での(3)及び(4)を行わなかった以外は実施例11と同様に実施した。
Example 12
The substrate with metal foil in (2) in Example 11 is replaced with a flexible electrical wiring substrate (length 48 mm, width 4 mm, base material: Kapton EN, 25 μm, copper circuit thickness: 12 μm) having electrical wiring, and The same operation as in Example 11 was performed except that (3) and (4) in Example 1 were not performed.
 実施例11及び12により得られた光電気複合基板は、光配線と電気配線との位置ズレが10μm/100mm以下であり、結合効率にきわめて優れたものであった。 The photoelectric composite substrates obtained in Examples 11 and 12 were extremely excellent in coupling efficiency because the positional deviation between the optical wiring and the electrical wiring was 10 μm / 100 mm or less.
実施例13
(1)光導波路の構築
 実施例11で作製した下部クラッド層を有する銅箔付きの基板の下部クラッド層上に、同様のロールラミネータを用い、圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、実施例1で作製したコア層形成用樹脂フィルムをラミネートし、次いで平板型ラミネータとして真空加圧式ラミネータ((株)名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、加圧時間30秒の条件にて加熱圧着して、コア層を形成した。
 次に、幅50μmのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N-ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
 次いで、下部クラッド層のラミネートと同様のラミネート条件にて、実施例1にて作製した上記クラッド層形成用樹脂フィルムをラミネートした。さらに、紫外線(波長365nm)を3J/cm2照射後、クラッド層形成用樹脂フィルムの支持基材を剥がし、180℃で1時間加熱処理することによって、上部クラッド層を形成して、光導波路を構築した。
 なお、コア層及びクラッド層の屈折率をMetricon社製プリズムカプラー(Model 2010)で測定したところ、波長830nmにて、コア層が1.584、クラッド層が1.550であった。また、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに株式会社アドバンテスト製、Q82214を用い、カットバック法(測定導波路長10、5、3、2cm、入射ファイバ;GI-50/125マルチモードファイバ(NA=0.20)、出射ファイバ;SI-114/125(NA=0.22))により測定したところ、0.1dB/cmであった。
Example 13
(1) Construction of optical waveguide On the lower clad layer of the substrate with copper foil having the lower clad layer produced in Example 11, a similar roll laminator was used, pressure 0.4 MPa, temperature 50 ° C., laminating speed 0. The core layer-forming resin film produced in Example 1 was laminated under the condition of 2 m / min, and then a vacuum / pressure laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) was used as a flat plate laminator, and 500 Pa or less. Then, the core layer was formed by thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a pressurization time of 30 seconds.
Next, ultraviolet rays (wavelength 365 nm) were irradiated with 0.6 J / cm 2 with a UV photomask through a negative photomask having a width of 50 μm, followed by heating at 80 ° C. for 5 minutes. Thereafter, the PET film as the support film was peeled off, and the core pattern was developed using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 8/2, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s).
Next, the clad layer forming resin film produced in Example 1 was laminated under the same laminating conditions as the lower clad layer. Further, after irradiating with ultraviolet rays (wavelength 365 nm) at 3 J / cm 2 , the support base of the resin film for forming the cladding layer is peeled off, and heat treatment is performed at 180 ° C. for 1 hour to form an upper cladding layer. It was constructed.
When the refractive index of the core layer and the clad layer was measured with a prism coupler (Model 2010) manufactured by Metricon, the core layer was 1.584 and the clad layer was 1.550 at a wavelength of 830 nm. In addition, the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using a surface-emitting laser (850 nm, manufactured by EXFO, FLS-300-01-VCL) as a light source, and Q82214, manufactured by Advantest Corporation as a light receiving sensor. Measurement waveguide length: 10, 5, 3, 2 cm, incident fiber: GI-50 / 125 multimode fiber (NA = 0.20), outgoing fiber: SI-114 / 125 (NA = 0.22)) However, it was 0.1 dB / cm.
(2)導体パターンの形成
 前記した銅箔付き基板の銅箔表面に光硬化性膜である厚さ30μmのエッチングレジスト用・フォテックH-N930(日立化成工業株式会社製、商品名)をラミネートした。導体パターンのフォトマスクをエッチングレジスト用ドライフィルムに重ね、60mmHgの真空下に、露光を行った。その後現像を行い、エッチングレジストを形成した後、塩化第二銅溶液をスプレー噴霧して、不要な銅箔をエッチング除去し、導体パターンを形成した。
(3)導体保護層(ソルダーレジスト層)の形成
 導体パターンを形成した基板に、ソルダーレジスト用ドライフィルムであるSR-2300G-50(日立化成工業株式会社製、商品名)の厚さ50μmのものをラミネートした。保護すべき導体パターンのフォトマスクをソルダーレジスト用ドライフィルムに重ね、60mmHgの真空下に、露光を行った。その後現像を行い、ソルダーレジストを形成し、乾燥して、電気配線基板を構築した。
 以上の工程により得られた光電気複合基板は、光配線と電気配線との位置ズレが10μm/100mm以下であり、結合効率にきわめて優れたものであった。
(2) Conductor pattern formation A photo-curable film for photo resist, FOTECH H-N930 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was laminated on the surface of the copper foil of the substrate with copper foil. . The photomask of the conductor pattern was overlaid on the etching resist dry film, and exposure was performed under a vacuum of 60 mmHg. Thereafter, development was performed to form an etching resist, and then a cupric chloride solution was sprayed and sprayed to remove unnecessary copper foil, thereby forming a conductor pattern.
(3) Formation of conductor protective layer (solder resist layer) SR-2300G-50 (trade name, manufactured by Hitachi Chemical Co., Ltd.), a dry film for solder resist, has a thickness of 50 μm on a substrate on which a conductor pattern is formed. Was laminated. A photomask having a conductor pattern to be protected was placed on a dry film for a solder resist, and exposed under a vacuum of 60 mmHg. Thereafter, development was performed, a solder resist was formed, and dried to construct an electric wiring board.
The optoelectric composite substrate obtained by the above process had a positional deviation between the optical wiring and the electrical wiring of 10 μm / 100 mm or less, and was extremely excellent in coupling efficiency.
 本発明の配線板の製造方法によれば、電気回路のみの配線板に関しては、製造工程で基材の凹凸が少なく短絡や開放による不良を低減した微細配線板ができるため、微細な配線を有する信頼性の高い配線基板(マザーボード、半導体チップ搭載基板)と半導体パッケージとフレキシブル基板が製造できる。光導波路と複合した配線板に関しては、製造工程で光導波路に生じる歪みが著しく低減されて、寸法安定化が図れ、基材の凹凸が少なくコア幅も均一に形成できるため、ボード間あるいはボード内における低伝搬損失な光インターコネクション等の幅広い分野に適用可能である。
 本発明の光電気複合部材の製造方法によれば、製造工程で光導波路に生じる歪みが著しく低減されて、寸法安定化が図れるため、ボード間あるいはボード内における光インターコネクション等の幅広い分野に適用可能である。
 本発明の光電気複合基板の製造方法によれば、位置合わせの問題が生じることなく、優れた光電気複合基板を効率的に製造することができる。本発明の方法で製造された光電気複合基板は、光インターコネクション等の幅広い分野に適用でき、特に、非常に精密なコアパターンが求められる場合や、大面積の光電気複合基板が求められる場合に有効である。
According to the method for manufacturing a wiring board of the present invention, a wiring board having only an electric circuit has a fine wiring because a fine wiring board with less unevenness of the base material in the manufacturing process and reduced defects due to short circuit or opening can be obtained. Reliable wiring boards (motherboards, semiconductor chip mounting boards), semiconductor packages, and flexible boards can be manufactured. For wiring boards combined with optical waveguides, distortions that occur in the optical waveguides during the manufacturing process are remarkably reduced, dimensional stability can be achieved, and the core width can be formed uniformly with little unevenness on the substrate. It can be applied to a wide range of fields such as optical interconnection with low propagation loss.
According to the method for manufacturing an optoelectric composite member of the present invention, distortion generated in an optical waveguide in a manufacturing process is remarkably reduced and dimensional stabilization can be achieved. Therefore, the method can be applied to a wide range of fields such as optical interconnection between boards or within a board. Is possible.
According to the method for producing an optoelectric composite substrate of the present invention, an excellent optoelectric composite substrate can be efficiently produced without causing a problem of alignment. The optoelectric composite substrate manufactured by the method of the present invention can be applied to a wide range of fields such as optical interconnection, especially when a very precise core pattern is required or a large area optoelectronic composite substrate is required. It is effective for.

Claims (37)

  1.  第一の基板に回路を形成する工程A、前記第一の基板の回路形成面に、第一の離型層を介して第一の支持体を積層する工程B、第一の基板の回路形成面の反対面に第二の基板又は回路を形成する工程Cを順に有する配線板の製造方法。 Step A for forming a circuit on the first substrate, Step B for laminating a first support on the circuit forming surface of the first substrate via a first release layer, Circuit formation for the first substrate A method for manufacturing a wiring board, which includes a step C of forming a second substrate or circuit on the opposite surface of the surface in order.
  2.  前記工程Bにおいて、前記第一の離型層に、第一の基板に形成された回路を埋め込ませることを特徴とする請求項1に記載の配線板の製造方法。 The method for manufacturing a wiring board according to claim 1, wherein in the step B, a circuit formed on the first substrate is embedded in the first release layer.
  3.  前記工程Aの前に、前記第一の基板を第二の支持体に積層する工程Dをさらに有し、前記工程Aにおいて、前記第一の基板の第二の支持体形成面の反対面に回路を形成し、前記工程Cの前に前記第二の支持体を前記第一の基板から除去する工程Eをさらに有する請求項1又は2に記載の配線板の製造方法。 Before the step A, the method further includes a step D of laminating the first substrate on a second support, and in the step A, on the surface opposite to the second support forming surface of the first substrate. The method for manufacturing a wiring board according to claim 1, further comprising a step E of forming a circuit and removing the second support from the first substrate before the step C. 4.
  4.  第二の支持体上に電気配線板を積層する工程、第一の支持体を積層する工程、第二の支持体を剥離する工程、及び前記第二の支持体の剥離面に光導波路を形成する工程を、この順に有する光電気複合部材の製造方法。 A step of laminating an electric wiring board on the second support, a step of laminating the first support, a step of peeling the second support, and forming an optical waveguide on the peel surface of the second support The manufacturing method of the photoelectric composite member which has the process to perform in this order.
  5.  前記電気配線板を前記第二の支持体に積層後で、かつ光導波路を形成する前に、該電気配線板に回路形成を行い、電気回路層が形成された電気配線板とする工程を有する請求項4に記載の光電気複合部材の製造方法。 After laminating the electrical wiring board on the second support and before forming the optical waveguide, a circuit is formed on the electrical wiring board to obtain an electrical wiring board on which an electrical circuit layer is formed. The manufacturing method of the photoelectric composite member of Claim 4.
  6.  電気配線基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成するか又は金属箔付き基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成した後に金属箔付き基板の金属箔を導体パターン化して電気配線基板を構築することにより下部クラッド層付き電気配線基板を得る第1の工程と、下部クラッド層上にコアパターン及び上部クラッド層を順次形成して光導波路を構築する第2の工程を有する光電気複合基板の製造方法。 A substrate with a metal foil after forming a lower clad layer directly or via an adhesive layer on the substrate surface of an electric wiring substrate or after forming a lower clad layer directly or via an adhesive layer on a substrate surface of a metal foil substrate The first step of obtaining an electric wiring board with a lower cladding layer by constructing an electric wiring board by forming a conductive pattern of the metal foil, and forming an optical waveguide by sequentially forming a core pattern and an upper cladding layer on the lower cladding layer A method of manufacturing an optoelectric composite substrate having a second step of construction.
  7.  金属箔付き基板の基板表面に直接又は接着剤層を介して下部クラッド層を形成する第1’の工程と、下部クラッド層上にコアパターン及び上部クラッド層を順次形成して光導波路を構築する第2の工程と、金属箔付き基板の金属箔を導体パターン化して電気配線基板を構築する第3の工程を有する光電気複合基板の製造方法。 An optical waveguide is constructed by sequentially forming a core pattern and an upper clad layer on the lower clad layer in the first step of forming a lower clad layer directly on the substrate surface of the substrate with metal foil or via an adhesive layer. The manufacturing method of the photoelectric composite board | substrate which has a 2nd process and the 3rd process of forming metal wiring of the board | substrate with metal foil into a conductor pattern, and constructing | assembling an electrical wiring board.
  8.  前記工程Dにおいて、第二の離型層を介して前記第一の基板を前記第二の基板上に形成し、前記工程Eにおいて、前記第二の離型層及び前記第二の支持体を前記第一の基板から除去する請求項3に記載の配線板の製造方法。 In the step D, the first substrate is formed on the second substrate through a second release layer. In the step E, the second release layer and the second support are formed. The method for manufacturing a wiring board according to claim 3, wherein the wiring board is removed from the first substrate.
  9.  前記工程Cの後に、前記第一の支持体及び前記第一の離型層を前記第一の基板から除去する工程Fをさらに有する請求項1~3及び8のいずれかに記載の配線板の製造方法。 9. The wiring board according to claim 1, further comprising a step F of removing the first support and the first release layer from the first substrate after the step C. Production method.
  10.  前記工程Aにおいて、前記第一の基板が金属層付き基板であって、前記金属箔をパターニングして回路を形成する請求項1~3、8及び9のいずれかに記載の配線板の製造方法。 The method of manufacturing a wiring board according to any one of claims 1 to 3, 8, and 9, wherein in the step A, the first substrate is a substrate with a metal layer, and the circuit is formed by patterning the metal foil. .
  11.  前記第二の基板が光導波路である請求項1~3及び8~10のいずれかに記載の配線板の製造方法。 The method of manufacturing a wiring board according to any one of claims 1 to 3 and 8 to 10, wherein the second substrate is an optical waveguide.
  12.  前記第二の基板が多層基板である請求項1~3及び8~11のいずれかに記載の配線板の製造方法。 The method for manufacturing a wiring board according to any one of claims 1 to 3 and 8 to 11, wherein the second substrate is a multilayer substrate.
  13.  前記第二の基板が光導波路上に電気回路又は電気配線板が形成された光電気混載基板である請求項1~3及び8~12のいずれかに記載の配線板の製造方法。 The method for manufacturing a wiring board according to any one of claims 1 to 3 and 8 to 12, wherein the second substrate is an opto-electric hybrid board in which an electric circuit or an electric wiring board is formed on an optical waveguide.
  14.  前記工程Aにおいて、前記第一の基板が、基板X上に光導波路及び電気配線板が順に形成された光電気混載基板であって、前記基板Xの光導波路形成面とは反対面に前記回路を形成することを特徴とする請求項1~3及び8~13のいずれかに記載の配線板の製造方法。 In the step A, the first substrate is an opto-electric hybrid substrate in which an optical waveguide and an electric wiring board are sequentially formed on the substrate X, and the circuit is formed on a surface opposite to the optical waveguide forming surface of the substrate X. The method for manufacturing a wiring board according to any one of claims 1 to 3 and 8 to 13, wherein
  15.  前記第二の支持体を剥離した後で、かつ光導波路を形成する前に、前記第二の支持体の剥離面の該電気配線板に回路形成を行い、電気回路層が形成された電気配線板とする工程を有する請求項4又は5に記載の光電気複合部材の製造方法。 Electrical wiring in which an electrical circuit layer is formed by forming a circuit on the electrical wiring board on the release surface of the second support after peeling the second support and before forming an optical waveguide The method for producing an optoelectric composite member according to claim 4, comprising a step of forming a plate.
  16.  前記光導波路を形成した後に、前記光導波路上に電気配線板を積層する工程をさらに有する請求項4、5及び15のいずれかに記載の光電気複合部材の製造方法。 16. The method for producing an optoelectric composite member according to claim 4, further comprising a step of laminating an electric wiring board on the optical waveguide after forming the optical waveguide.
  17.  前記光導波路を形成した後に、又は光導波路上に電気配線板を積層した後に、前記第一の支持体を剥離する工程をさらに有する請求項4、5、15及び16のいずれかに記載の光電気複合部材の製造方法。 The light according to any one of claims 4, 5, 15, and 16, further comprising a step of peeling the first support after forming the optical waveguide or after laminating an electric wiring board on the optical waveguide. A method for producing an electrical composite member.
  18.  前記電気配線板から第一の支持体を剥離した後に、前記第一の支持体の剥離面に電気配線板又は光導波路を形成する工程をさらに有する請求項17に記載の光電気複合部材の製造方法。 18. The photoelectric composite member according to claim 17, further comprising a step of forming an electric wiring board or an optical waveguide on the peeling surface of the first support after peeling the first support from the electric wiring board. Method.
  19.  前記第一の支持体が電気配線板又は光導波路である請求項4、5及び15~18のいずれかに記載の光電気複合部材の製造方法。 The method for producing an optoelectric composite member according to any one of claims 4, 5, and 15 to 18, wherein the first support is an electric wiring board or an optical waveguide.
  20.  前記電気配線板が片面又は両面金属層付き基板であることを特徴とする請求項4、5及び15~19のいずれかに記載の光電気複合部材の製造方法。 The method for producing an optoelectric composite member according to any one of claims 4, 5, and 15 to 19, wherein the electric wiring board is a single-sided or double-sided metal layered substrate.
  21.  前記電気配線板が片面又は両面に金属層付き樹脂層であることを特徴とする請求項4、5及び15~20のいずれかに記載の光電気複合部材の製造方法。 21. The method for producing an optoelectric composite member according to claim 4, wherein the electric wiring board is a resin layer with a metal layer on one side or both sides.
  22.  前記電気配線板が絶縁性の樹脂層又は基板であり、該絶縁性の樹脂層又は基板の片面又は両面に金属層を積層する工程をさらに有する請求項4、5及び15~19のいずれかに記載の光電気複合部材の製造方法。 The electrical wiring board is an insulating resin layer or substrate, and further includes a step of laminating a metal layer on one or both surfaces of the insulating resin layer or substrate. The manufacturing method of the photoelectric composite member of description.
  23.  前記電気回路層が、前記電気配線板をサブトラクティブ法、セミアディティブ法、及びアディティブ法のいずれかを用いてパターニングすることにより形成されることを特徴とする請求項5及び15~22のいずれかに記載の光電気複合部材の製造方法。 The electric circuit layer is formed by patterning the electric wiring board using any one of a subtractive method, a semi-additive method, and an additive method. The manufacturing method of the photoelectric composite member as described in any one of Claims 1-3.
  24.  前記電気回路層又は前記電気配線板が、複数層積層されたものである請求項20~23のいずれかに記載の光電気複合部材の製造方法。 The method for producing an optoelectric composite member according to any one of claims 20 to 23, wherein the electric circuit layer or the electric wiring board is laminated in a plurality of layers.
  25.  前記光導波路の形成が、電気配線板上又は複数層積層された電気配線板に下部クラッド層を形成後、該下部クラッド層上にコア層形成用樹脂を積層してコアパターンを形成し、該コアパターン上に上部クラッド層を形成することによってなされることを特徴とする請求項4、5及び15~24のいずれかに記載の光電気複合部材の製造方法。 The optical waveguide is formed by forming a lower clad layer on an electric wiring board or a multi-layered electric wiring board, and then laminating a core layer forming resin on the lower clad layer to form a core pattern, The method for producing an optoelectric composite member according to any one of claims 4, 5 and 15 to 24, wherein the method is carried out by forming an upper clad layer on the core pattern.
  26.  前記光導波路の形成が、下部クラッド層、コアパターン及び上部クラッド層を有する光導波路を、電気配線板上又は複数層積層された電気配線板に積層することによりなされることを特徴とする請求項4、5及び15~25のいずれかに記載の光電気複合部材の製造方法。 The optical waveguide is formed by laminating an optical waveguide having a lower clad layer, a core pattern, and an upper clad layer on an electric wiring board or an electric wiring board laminated in a plurality of layers. The method for producing an optoelectric composite member according to any one of 4, 5, and 15 to 25.
  27.  前記電気配線板が、リジット配線板又はフレキシブル配線板である請求項4、5及び15~26のいずれかに記載の光電気複合部材の製造方法。 The method for producing an optoelectric composite member according to any one of claims 4, 5, and 15 to 26, wherein the electrical wiring board is a rigid wiring board or a flexible wiring board.
  28.  前記光導波路に光路変換ミラーを形成する工程をさらに有する請求項4、5及び15~27のいずれかに記載の光電気複合部材の製造方法。 The method for producing an optoelectric composite member according to any one of claims 4, 5, and 15 to 27, further comprising a step of forming an optical path conversion mirror in the optical waveguide.
  29.  前記第2の工程が、下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成した後に、露光・現像によりコアパターンを形成し、次いでコアパターン上に上部クラッド層形成用樹脂フィルムを積層することからなる、請求項6又は7に記載の光電気複合基板の製造方法。 In the second step, a core layer forming resin film is laminated on the lower clad layer to form a core layer, and then a core pattern is formed by exposure and development, and then an upper clad layer forming resin is formed on the core pattern. The manufacturing method of the photoelectric composite board | substrate of Claim 6 or 7 consisting of laminating | stacking a film.
  30.  金属箔付き基板の金属箔上にエッチングレジストでレジストパターンを形成した後に、エッチングにより導体パターンを形成し、次いでエッチングレジスト除去を行なうことにより電気配線基板を構築する、請求項6又は29に記載の光電気複合基板の製造方法。 30. The electrical wiring board is constructed according to claim 6 or 29, wherein after forming a resist pattern with an etching resist on a metal foil of a substrate with a metal foil, an electric wiring board is constructed by forming a conductor pattern by etching and then removing the etching resist. A method for manufacturing a photoelectric composite substrate.
  31.  金属箔付き基板の金属箔上にめっきレジストでレジストパターンを形成した後に、パターンめっきにより導体パターンを形成し、次いでめっきレジスト除去と露出金属箔エッチングとを行うことにより電気配線基板を構築する、請求項6又は29に記載の光電気複合基板の製造方法。 After forming a resist pattern with a plating resist on a metal foil of a substrate with a metal foil, a conductor pattern is formed by pattern plating, and then an electric wiring board is constructed by performing plating resist removal and exposed metal foil etching Item 30. A method for producing a photoelectric composite substrate according to Item 6 or 29.
  32.  前記第3の工程が、金属箔上にエッチングレジストでレジストパターンを形成した後に、エッチングにより導体パターンを形成し、次いでエッチングレジスト除去を行なうことからなる、請求項7又は29に記載の光電気複合基板の製造方法。 30. The photoelectric composite according to claim 7, wherein the third step comprises forming a resist pattern on the metal foil with an etching resist, forming a conductor pattern by etching, and then removing the etching resist. A method for manufacturing a substrate.
  33.  前記第3の工程が、金属箔上にめっきレジストでレジストパターンを形成した後に、パターンめっきにより導体パターンを形成し、次いでめっきレジスト除去と露出金属箔エッチングとを行うことからなる、請求項7又は29に記載の光電気複合基板の製造方法。 The third step comprises forming a resist pattern on a metal foil with a plating resist, forming a conductor pattern by pattern plating, and then performing plating resist removal and exposed metal foil etching. 29. A method for producing an optoelectric composite substrate according to 29.
  34.  更に導体パターン上に導体保護層を形成する、請求項6、7及び29~33のいずれかに記載の光電気複合基板の製造方法。 34. The method for producing an optoelectric composite substrate according to claim 6, further comprising forming a conductor protective layer on the conductor pattern.
  35.  光電気複合基板がフレキシブルタイプである、請求項6、7及び29~34のいずれかに記載の光電気複合基板の製造方法。 The method for producing a photoelectric composite substrate according to any one of claims 6, 7, and 29 to 34, wherein the photoelectric composite substrate is a flexible type.
  36.  請求項6、7及び29~35のいずれかに記載の製造方法を用いて製造される光電気複合基板。 An optoelectric composite substrate manufactured using the manufacturing method according to any one of claims 6, 7, and 29 to 35.
  37.  請求項36に記載の光電気複合基板を用いた光電気複合モジュール。 An optoelectric composite module using the optoelectric composite substrate according to claim 36.
PCT/JP2009/056454 2008-03-28 2009-03-30 Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board WO2009119877A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801111668A CN101982028A (en) 2008-03-28 2009-03-30 Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board
US12/736,297 US20110013865A1 (en) 2008-03-28 2009-03-30 Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008086987 2008-03-28
JP2008-086981 2008-03-28
JP2008086981 2008-03-28
JP2008-086987 2008-03-28
JP2008-261621 2008-10-08
JP2008-261629 2008-10-08
JP2008261621A JP2009258611A (en) 2008-03-28 2008-10-08 Method of manufacturing optoelectric composite board, optoelectric composite board manufactured thereby, and optoelectric composite module using the same
JP2008261629A JP2009258612A (en) 2008-03-28 2008-10-08 Method of manufacturing optoelectric composite board, optoelectric composite board manufactured thereby, and optoelectric composite module using the same

Publications (1)

Publication Number Publication Date
WO2009119877A1 true WO2009119877A1 (en) 2009-10-01

Family

ID=41114058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056454 WO2009119877A1 (en) 2008-03-28 2009-03-30 Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board

Country Status (1)

Country Link
WO (1) WO2009119877A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221288A (en) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd Method for manufacturing light waveguide and photo-electrical composite substrate, and light waveguide and photo-electrical composite substrate obtained by the same
CN102436154A (en) * 2011-12-21 2012-05-02 信利半导体有限公司 Photoresist stripping method in repairing process of TFT (thin film transistor) liquid crystal display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311846A (en) * 2000-04-28 2001-11-09 Oki Printed Circuit Kk Method for manufacturing electric wiring/optical wiring coexisting multilayer sheet and method for manufacturing electric wiring/optical wiring coexisting multilayer substrate
JP2002277694A (en) * 2001-03-19 2002-09-25 Mitsubishi Electric Corp Substrate having optical waveguide and electric circuit and method for manufacturing the substrate
JP2004146602A (en) * 2002-10-24 2004-05-20 Sony Corp Hybrid circuit board mounting optical wiring and electrical wiring mixedly and its producing process, hybrid circuit module mounting wiring and electrical wiring mixedly and its producing method
WO2004089049A1 (en) * 2003-03-28 2004-10-14 Tdk Corporation Multilayer substrate and method for producing same
JP2007188986A (en) * 2006-01-12 2007-07-26 Tdk Corp Multilayer circuit board, and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311846A (en) * 2000-04-28 2001-11-09 Oki Printed Circuit Kk Method for manufacturing electric wiring/optical wiring coexisting multilayer sheet and method for manufacturing electric wiring/optical wiring coexisting multilayer substrate
JP2002277694A (en) * 2001-03-19 2002-09-25 Mitsubishi Electric Corp Substrate having optical waveguide and electric circuit and method for manufacturing the substrate
JP2004146602A (en) * 2002-10-24 2004-05-20 Sony Corp Hybrid circuit board mounting optical wiring and electrical wiring mixedly and its producing process, hybrid circuit module mounting wiring and electrical wiring mixedly and its producing method
WO2004089049A1 (en) * 2003-03-28 2004-10-14 Tdk Corporation Multilayer substrate and method for producing same
JP2007188986A (en) * 2006-01-12 2007-07-26 Tdk Corp Multilayer circuit board, and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221288A (en) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd Method for manufacturing light waveguide and photo-electrical composite substrate, and light waveguide and photo-electrical composite substrate obtained by the same
CN102436154A (en) * 2011-12-21 2012-05-02 信利半导体有限公司 Photoresist stripping method in repairing process of TFT (thin film transistor) liquid crystal display

Similar Documents

Publication Publication Date Title
US20110013865A1 (en) Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board
JP2009258612A (en) Method of manufacturing optoelectric composite board, optoelectric composite board manufactured thereby, and optoelectric composite module using the same
JP5035244B2 (en) Opto-electric hybrid board
JP4265695B2 (en) Flexible optical waveguide, manufacturing method thereof, and optical module
JP5293503B2 (en) Manufacturing method of opto-electric flexible wiring board
JP5338410B2 (en) Wiring board manufacturing method
JP5540505B2 (en) Manufacturing method of photoelectric composite member
WO2009119877A1 (en) Method of manufacturing wiring board, method of manufacturing optoelectric composite member, and method of manufacturing optoelectric composite board
KR101665740B1 (en) Method for producing optical waveguide, optical waveguide, and photoelectric composite wiring board
JP5446543B2 (en) Wiring board manufacturing method
JP5685926B2 (en) Photoelectric composite substrate and manufacturing method thereof
JP2009258611A (en) Method of manufacturing optoelectric composite board, optoelectric composite board manufactured thereby, and optoelectric composite module using the same
JP5195558B2 (en) Manufacturing method of photoelectric composite member
JP2007293239A (en) Optical module
JP2009260231A (en) Method of manufacturing photoelectric composite substrate, photoelectric composite substrate manufactured by the method, and photoelectric composite module using the same
JP5685925B2 (en) Photoelectric composite substrate manufacturing method and photoelectric composite substrate obtained thereby
JP5754130B2 (en) Photoelectric composite substrate and manufacturing method thereof
JP2010079058A (en) Method of manufacturing opto-electro circuit board
JP2011221288A (en) Method for manufacturing light waveguide and photo-electrical composite substrate, and light waveguide and photo-electrical composite substrate obtained by the same
JP2012133118A (en) Photoelectric composite substrate, method for manufacturing the same, and photoelectric composite module using the same
JP2015018834A (en) Lamination method of resin layer and resin laminate for use therein
JP5685924B2 (en) Photoelectric composite substrate manufacturing method and optoelectric composite module manufacturing method
JP5870489B2 (en) Optical waveguide, photoelectric composite substrate, optical waveguide manufacturing method, and photoelectric composite substrate manufacturing method
JP2011029409A (en) Method of manufacturing wiring board
JP2010164656A (en) Method of manufacturing light guide with mirror, and light guide with mirror

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111166.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12736297

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725259

Country of ref document: EP

Kind code of ref document: A1