WO2009119543A1 - Tool for friction stir working comprising ni-base double multiphase intermetallic compound alloy, and friction stir working method - Google Patents
Tool for friction stir working comprising ni-base double multiphase intermetallic compound alloy, and friction stir working method Download PDFInfo
- Publication number
- WO2009119543A1 WO2009119543A1 PCT/JP2009/055749 JP2009055749W WO2009119543A1 WO 2009119543 A1 WO2009119543 A1 WO 2009119543A1 JP 2009055749 W JP2009055749 W JP 2009055749W WO 2009119543 A1 WO2009119543 A1 WO 2009119543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- friction stir
- tool
- stir processing
- processing
- atomic
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
- B23K20/1245—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
- B23K20/1255—Tools therefor, e.g. characterised by the shape of the probe
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
Definitions
- the present invention relates to a friction stir processing tool, in particular, a friction stir processing tool comprising a Ni-based dual-phase intermetallic compound alloy suitable when the workpiece is iron or an iron alloy, and friction stir processing using the same.
- the friction stir processing means that a rotating tool such as friction stir welding, friction stir reforming, or friction point welding is pressed against the work material with a strong force, and the work material is plasticized by the generated frictional heat. Processing in a solid phase state.
- a rod-shaped stirring tool (a shoulder portion having a large diameter and its tip are rotated at one end of a joining line formed by abutting the joining surfaces of the materials to be joined together.
- the tool made of hard tool steel with a probe
- the joining surface is moved by the frictional heat generated at that time.
- a joining method in which the joining surfaces of the materials to be joined are joined while plasticizing and applying pressure by the shoulder portion of the tool is called friction stir welding (FSW: Friction Stir Welding) and is widely known (for example, Japanese Patent No. 2712838 (Patent Document 1)).
- the frictional heat between the tool and the material to be joined is used for joining, so that the highest temperature does not reach the melting point and the joining is performed in a solid state, so compared to fusion welding such as arc welding.
- fusion welding such as arc welding.
- a steel tool such as SKD steel is used as a tool when aluminum or an aluminum alloy is used as a workpiece.
- a steel tool such as SKD steel has a problem that the tool is deformed due to wear or the like and cannot be joined.
- ceramic tools have a problem that they are expensive and easy to break, and particularly when the work material is stainless steel, they are easily worn. If the fine pieces of ceramic tool material are dispersed in an iron-based workpiece such as stainless steel when the tool is worn by friction stir processing, there may be a problem in mechanical properties and corrosion resistance. is there.
- Ni-based two-duplex intermetallic compound alloy is known.
- the intermetallic alloy is a Ni 3 Al—Ni 3 Ti—Ni 3 V-based intermetallic compound alloy
- the Ni-based 2-duplex intermetallic alloy disclosed in Patent Document 4 is Ni 3 Al—Ni 3.
- Nb-Ni 3 V-based intermetallic alloys which have excellent mechanical properties at high temperatures, and are expected to be applied to applications such as jet engines and turbine components of gas turbines. However, there is no application to friction stir processing tools.
- the present invention has been made in view of the above-mentioned problems, and the object of the present invention is to reduce friction, high efficiency, and high productivity for workpieces with high processing temperatures such as iron or iron alloys.
- An object of the present invention is to provide an inexpensive friction stir processing tool and friction stir processing method capable of performing stir processing.
- the friction stir processing tool comprising the Ni-based double-duplex intermetallic compound alloy of the present invention and the friction stir processing method using the same. That is, the friction stir processing tool according to the present invention is characterized by comprising a Ni-based double-duplex intermetallic compound alloy.
- the Ni-based double-duplex intermetallic alloy contains 0.5 to 8 atomic% of Ta and / or W.
- the Ni-based double-duplex intermetallic compound alloy contains Ni as a main component and Al: 2-9 atomic%, V: 10-17 atomic%, (Ta and / Or W): 0.5 to 8 atomic%, Nb: 0 to 6 atomic%, Co: 0 to 6 atomic%, Cr: 0 to 6 atomic%, and a total weight of a composition of 100 atomic% in total B: It preferably contains a double- duplex structure containing 10 to 1000 ppm by weight and consisting of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
- the Ni-based double-duplex intermetallic compound alloy contains Ni as a main component and Al: 5.5-13 atomic%, V: 10-17 atomic%, Nb : 0 to 6 atomic%, Ti: 0 to 6 atomic%, Co: 0 to 6 atomic%, Cr: 0 to 6 atomic%, and B: 10 to 1000 weight with respect to the total weight of the total composition of 100 atomic% It preferably has a two-duplex structure containing ppm and consisting of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
- the surface of the base material is hardened by using the Ni-based double-duplex intermetallic compound alloy described above as a base material.
- the hardening treatment is at least one of nitriding treatment or carburizing treatment.
- the friction stir processing method according to the present invention is a friction stir processing for processing a workpiece by pressing the tip of a tool that rotates at high speed against the workpiece and plasticizing and stirring the workpiece by the generated frictional heat.
- the friction stir processing tool described in any one of the above is used.
- the friction stir processing tool of the present invention is made of a Ni-based double-duplex intermetallic compound alloy, the impact and strong pressing load are applied to the probe tip when the tool is applied to the workpiece while rotating. Is less likely to deform, break or break. Furthermore, it is necessary even at high temperatures (800 ° C or higher) that cause the tool side surface to emit orange light due to frictional heat between the shoulder surface of the tool and the workpiece surface and the probe surface embedded in the workpiece. Since it has a high hardness, it is suitable for friction stir processing of high-temperature materials. In particular, the joining material is less worn and hard to break with respect to workpieces such as iron or iron alloy, and can be friction stir processed at low cost.
- the tool material is made of a Ni-based two-phase intermetallic compound alloy, when the tool is worn by friction stir processing, it is difficult to cause problems even if the tool material is dispersed in a ferrous material such as stainless steel. .
- One preferred friction stir processing tool of the present invention is made of a Ni-based double-duplex intermetallic compound alloy containing 0.5 to 8 atomic% of Ta and / or W. In addition to all the effects of the present invention, the risk of the tool being deformed, broken or broken is further reduced.
- the Ni-based double-duplex intermetallic alloy is mainly composed of Ni and Al: 2 to 9 atomic%, V: 10 to 17 atomic%, (Ta and / Or W): 0.5 to 8 atomic%, Nb: 0 to 6 atomic%, Co: 0 to 6 atomic%, Cr: 0 to 6 atomic%, and a total weight of a composition of 100 atomic% in total B: Since it has a two- duplex structure containing 10 to 1000 ppm by weight and consisting of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure, the hardness is further increased. In addition to all of the effects of the preferred friction stir processing tool, there is even less risk of the tool being deformed, broken or broken.
- the Ni-based dual-duplex intermetallic compound alloy is mainly composed of Ni and Al: 5.5 to 13 atomic%, V: 10 to 17 atomic%, B: 10 to 1000 with respect to the total weight of the composition of a total of 100 atom% including Nb: 0 to 6 atom%, Ti: 0 to 6 atom%, Co: 0 to 6 atom%, Cr: 0 to 6 atom% Since it has a double- duplex structure containing a weight ppm and consisting of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure, the same effects as those of the above-described invention can be achieved.
- Another preferred friction stir processing tool is based on the Ni-based double-duplex intermetallic compound alloy described above, and the surface of the base material is hardened. Since the performance is improved, the impact and strong pressing load are applied to the probe tip when the tool is applied to the workpiece while rotating, but the risk of the tool being deformed, broken or broken is further reduced. Furthermore, it is necessary even at high temperatures (800 ° C or higher) that cause the tool side surface to emit orange light due to frictional heat between the shoulder surface of the tool and the workpiece surface and the probe surface embedded in the workpiece. Since it has a high hardness, it is suitable for friction stir processing of high-temperature materials. In particular, the joining material is less worn and hard to break with respect to workpieces such as iron or iron alloy, and can be friction stir processed at low cost.
- the base material is made of a Ni-based double-duplex intermetallic compound alloy containing 0.5 to 8 atomic% of Ta and / or W
- the surface of the base material is hardened. Therefore, since the hardness of the base material itself is high and the wear resistance of the surface is enhanced by the curing treatment, the same effect as described as another advantageous effect of the friction stir processing tool of the present invention is used. The effect is further enhanced.
- the base material is mainly composed of Ni and Al: 2 to 9 atomic%, V: 10 to 17 atomic%, (Ta and / or W): 0.5 to Including B: 10 to 1000 ppm by weight with respect to the total weight of the composition of 100 atom% including 8 atom%, Nb: 0 to 6 atom%, Co: 0 to 6 atom%, Cr: 0 to 6 atom%
- the surface of the base material is hardened when it is made of a Ni-based double-duplex intermetallic compound alloy having a double-phase structure composed of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
- the hardness of the base material itself is higher and the wear resistance of the surface is enhanced by the curing process, the same effect as that described as another advantageous effect of the friction stir processing tool of the present invention is obtained. Increased further.
- the base material is mainly composed of Ni and Al: 5.5 to 13 atomic%, V: 10 to 17 atomic%, Nb: 0 to 6 atomic%, Ti: B: 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atom% including 0 to 6 atom%, Co: 0 to 6 atom%, Cr: 0 to 6 atom%, and proeutectoid L1 2 phase And (L1 2 + D0 22 ) Ni-base dual-phase intermetallic compound alloy having a double-phase structure consisting of a eutectoid structure, the hardness of the base material itself is higher, and the wear resistance of the surface is increased by hardening treatment. Since the property is enhanced, the invention similar to that described as the effect of another preferable tool for friction stir processing of the above invention is produced.
- Still another preferable friction stir processing tool of the present invention is the other preferable friction stir processing tool of the present invention, since the hardening treatment is at least one of nitriding treatment or carburizing treatment, so that the surface wear resistance is further improved. Since it is further enhanced, in addition to the effect of another preferred friction stir processing tool of the present invention, the tool is less likely to be worn or damaged, and the risk of the tool being deformed, broken, broken is further reduced, As a result, the tool life is increased.
- the friction stir processing method of the present invention is a friction stir processing method for processing a workpiece by pressing the tip of a tool that rotates at high speed against the workpiece and plasticizing and stirring the workpiece by the generated frictional heat.
- the friction stir processing tool described in any one of the above is used, the friction stir processing can be performed at a low cost with little wear against the workpiece such as iron or iron alloy and less breakage.
- TEM photograph (a) and a mimetic diagram (b) for explaining the double phase structure of the intermetallic compound alloy of one embodiment of the present invention, respectively.
- FSW friction stir welding
- FIG. 6 is a load-displacement curve during a tensile test of the joined bodies obtained in Example 6, Example 11, and Comparative Example 1.
- FIG. 1 is Comparative Example 1
- 2 is Example 6, and 3 is Example 11.
- Example 22 It is the microscope picture which cut
- the friction stir processing tool of the present invention is made of a Ni-based double-duplex intermetallic compound alloy.
- Ni group 2 double phase intermetallic compound As said Ni group 2 double phase intermetallic compound, it is disclosed by patent document 3, Al: Greater than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Ti: 0 atomic% or more and 3.5 atomic% or less, B: 1000 ppm by weight or more Examples include a Ni 3 Al-based intermetallic compound having a weight ppm or less and the balance being made of Ni excluding impurities and having a two- phase structure of an eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
- Such intermetallic compounds are Al: greater than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Ti: 0 atomic% or more and 3.5 atomic% hereinafter, B: 0 1000 ppm by weight ppm or greater or less, the balance being the alloy material consisting of Ni remove impurities, performing a first heat treatment at a temperature at which coexist with proeutectoid L1 2 phase and Al phase, then L1 or a 2-phase and D0 22 phase is cooled to a temperature to coexist, by a the L1 2 phase and D0 22 phase performs a second heat treatment at a temperature coexist, Al phase (L1 2 + D0 22) eutectoid tissue It can be produced by a method comprising a step of forming a double-duplex structure by changing to the above. Or it can manufacture also by the method of providing the process of forming a double-duplex structure
- Ni-based two-duplex intermetallic compound alloy examples include those disclosed in Patent Document 4, for example, Al: greater than 5 atomic% and not more than 13 atomic%, and V: not less than 9.5 atomic%. Less than 17.5 atomic%, Nb: 0 atomic% or more and 5 atomic% or less, B: 50 weight ppm or more and 1000 weight ppm or less, the balance is made of Ni except impurities, and the pro-eutectoid L1 2 phase and (L1 2 + D0 22 ) Ni 3 Al-based intermetallic compounds having a double-duplex structure with a eutectoid structure.
- Such intermetallic compounds include Al: greater than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Nb: 0 atomic% or more and 5 atomic% or less, B: 50 ppm or greater at 1000 ppm by weight or less, the balance being the alloy material consisting of Ni remove impurities, and pro-eutectoid L1 2 phase and Al phase and the temperature to coexist, or the pro-eutectoid L1 2 phase and Al phase
- the first heat treatment is performed at a temperature at which D0 a coexists, and then the Al phase is reduced to (L1 2 + D0) by cooling to a temperature at which the L1 2 phase and the D0 22 phase coexist or by performing the second heat treatment at that temperature.
- It can be produced by a process of changing to a eutectoid structure to form a double-phase structure. Or it can manufacture also by the method of providing the process of forming a double-duplex structure
- the friction stir processing tool may also be made of a Ni-based two-phase intermetallic alloy containing 0.5 to 8 atomic% of Ta and / or W.
- the friction stir processing tool also includes, for example, Ni as a main component and Al: 2 to 9 atomic%, V: 10 to 17 atomic%, (Ta and / or W): 0.5 to 8 atomic%, Nb : Ni-based intermetallic compound containing B: 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atom% including 0 to 6 atom%, Co: 0 to 6 atom%, and Cr: 0 to 6 atom% It may be made of an alloy.
- “ ⁇ ” includes the composition of both ends.
- the content of Ta and / or W means the content of Ta or W when only one of Ta and W is included, and when both Ta and W are included, the content of Ta and W It means the total content.
- the reason why the content of Ta and / or W is within the above range is that if it is within this range, the effect of improving hardness can be obtained by the addition of Ta and / or W, and the upper limit is 8 atoms. This is because even if an amount exceeding% is added, it does not greatly contribute to the improvement of hardness.
- Nb, Co, and Cr are optional components and may or may not be included. This is because the hardness is improved by the addition of Ta or W regardless of whether Nb, Co, or Cr is contained. Nb is added to improve the strength of the two-phase structure. Co and Cr are added to improve oxidation resistance.
- Ni-based intermetallic alloy has Al: 2.5 to 8 atomic%, V: 10 to 14.5 atomic%, (Ta and / or W): 1 to 5 atomic%, Nb: 0 to 4 atomic% It is preferable that
- the Ni-based intermetallic compound alloy is preferably Ta: 0.5 atomic% or more.
- the Ni-based intermetallic compound alloy is preferably W: 0.5 atomic% or more.
- the Ni-based intermetallic compound alloy preferably has a double-duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure. This is because an intermetallic compound alloy having a two-phase structure is excellent in mechanical properties such as tensile strength and creep resistance.
- Ni, Al, and V are added for the formation of a two-phase structure. When Ni, Al, and V are in the above ranges, a two-phase structure is likely to be formed at least partially.
- a friction stir processing tool made of this alloy is, as one preferred embodiment of the present invention, a friction stir processing tool made of a Ni-based double-duplex intermetallic compound alloy, and comprising a Ni-based double-duplex intermetallic compound
- a friction stir processing tool made of a Ni-based double-duplex intermetallic compound alloy and comprising a Ni-based double-duplex intermetallic compound
- the alloy contains 0.5 to 8 atomic% of Ta and / or W.
- the two-duplex structure first forms an upper double-phase structure composed of a proeutectoid L1 2 phase and an A1 phase at a relatively high temperature, and then lowers the temperature to change the A1 phase into the L1 2 phase and the D0 22 phase. It can be formed by decomposing it.
- a double- phase structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure as shown in the TEM photograph of FIG. 1A and the schematic diagram of FIG. 1B is formed.
- the L1 2 phase is a Ni 3 Al intermetallic compound phase
- the A1 phase is an fcc solid solution phase
- the D0 22 phase is a Ni 3 V intermetallic compound phase.
- An intermetallic compound alloy having a two-duplex structure can be produced by the method described in Patent Document 4.
- an upper multiphase structure is formed by performing a heat treatment at a temperature at which the proeutectoid L1 2 phase and the A1 phase coexist as an independent process.
- the upper multiphase structure can also be formed by slow cooling during solidification. When performing the slow cooling, the melt is to stay relatively long time to a temperature that coexist with proeutectoid L1 2 phase and A1 phase after coagulation, similar to the case of performing the heat treatment proeutectoid L1 2 This is because an upper multiphase structure composed of a phase and an A1 phase is formed.
- the Ni-based intermetallic compound alloy preferably has a Vickers hardness of 550 to 1000 at room temperature.
- Vickers hardness means a value measured under conditions of a load of 300 g and a holding time of 20 seconds unless otherwise specified.
- the processing temperature becomes high, it is desirable that the hardness at high temperature is high.
- the Vickers hardness is 400 or more, more preferably 450 or more, and still more preferably. It is preferable that there are 500 or more.
- the difference between the Vickers hardness at room temperature and 900 ° C. is preferably within 0 to 300, more preferably within 0 to 150.
- Ni-based intermetallic alloy containing B: 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atom% including: 0 to 6 atom% and Cr: 0 to 6 atom% is disclosed in Patent Document 4
- Ni 3 Al—Ni 3 Nb—Ni 3 V-based intermetallic compound alloy is superior in hardness and suitable as a material for a friction stir processing tool that requires wear resistance.
- the Ni-based dual-duplex intermetallic compound alloy used in the present invention is mainly composed of Ni and Al: 5.5 to 13 atomic%, V: 10 to 17 atomic%, Nb: 0 to 6 atomic%, B: 10 to 1000 ppm by weight and proeutectoid L1 with respect to the total weight of the composition of a total of 100 atom% including Ti: 0 to 6 atom%, Co: 0 to 6 atom%, and Cr: 0 to 6 atom%
- a Ni-based double-duplex intermetallic compound alloy having a double-duplex structure composed of two phases and a (L1 2 + D0 22 ) eutectoid structure is also preferable.
- the tool may be produced by melting / casting, casting the cast material by hot forging, plastic working, powder metallurgy, or the like.
- the manufacture of the Ni-based double-duplex intermetallic alloy tool can be performed by various manufacturing methods.
- An ingot is prepared by melting and casting a product obtained by weighing B and having a purity of 99.9% by weight or more) and a vacuum induction melting method or an arc melting method.
- a tool is manufactured by processing the ingot into a predetermined shape by appropriately using electric discharge machining, cutting, grinding, polishing, or the like.
- any of the above-described Ni-based double-duplex intermetallic alloys is used as a base material and the surface of the base material is hardened.
- the surface of the base material is hardened.
- Ni-based double-duplex intermetallic compound alloy a Ni-based double-duplex intermetallic compound alloy containing Ta and / or W in an amount of 0.5 to 8 atomic% is preferable, and Ni is the main component and Al: 2 to 9 atomic%.
- V 10-17 atomic%
- Nb 0-6 atomic%
- Co 0-6 atomic%
- Cr 0-6 atomic%
- Ni-base double overlap with B 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atomic% and having a double-phase structure composed of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure
- a phase intermetallic alloy is particularly preferred.
- Ni and Al 5.5 to 13 atom%, V: 10 to 17 atom%, Nb: 0 to 6 atom%, Ti: 0 to 6 atom%, Co: 0 to 6 atom, Cr : B: 10 to 1000 ppm by weight with respect to the total weight of the composition of 100 atom% including 0 to 6 atom%, and two overlaps consisting of the proeutectoid L1 2 phase and the (L1 2 + D0 22 ) eutectoid structure
- a Ni-based double-duplex intermetallic compound alloy having a phase structure is also particularly preferred.
- the above double-phase structure first forms an upper double-phase structure composed of a proeutectoid L1 2 phase and an A1 phase at a relatively high temperature, and then lowers the temperature to convert the A1 phase into the L1 2 phase and D0 22. It can be formed by decomposing into phases. As a result, a double- phase structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure as shown in the TEM photograph of FIG. 1A and the schematic diagram of FIG. 1B is formed. .
- the L1 2 phase is a Ni 3 Al intermetallic compound phase
- the A1 phase is an fcc solid solution phase
- the D0 22 phase is a Ni 3 V intermetallic compound phase.
- the intermetallic compound alloy having the above two-phase structure can be produced by the methods described in Patent Documents 3 and 4.
- the upper multiphase structure is formed by performing heat treatment at a temperature at which the pro-eutectoid L1 2 phase and the A1 phase coexist as an independent process, but instead of performing this heat treatment
- the upper multiphase structure can be formed also by slow cooling during solidification.
- the melt When performing the slow cooling, the melt is to stay relatively long time to a temperature that coexist with proeutectoid L1 2 phase and A1 phase after coagulation, similar to the case of performing the heat treatment proeutectoid L1 2 This is because an upper multiphase structure composed of a phase and an A1 phase is formed.
- the alloy after the above-mentioned hardening treatment preferably has a Vickers hardness of 500 to 1400 at room temperature measured from the surface with a load of 50 g. Further, the alloy after the hardening treatment preferably has a Vickers hardness of 500 to 1400 measured at a load of 10 g at a position where the depth from the surface is 20 ⁇ m.
- surface treatment by at least one of nitriding treatment or carburizing treatment is preferable.
- the nitriding treatment is a treatment for increasing the amount of nitrogen in the base material surface layer.
- salt bath nitriding treatment mainly treatment for heating and nitriding in a cyan salt bath
- gas nitriding treatment heating the treatment subject in ammonia (NH 3 ) gas for nitriding
- plasma nitridation treatment treatment performed using plasma caused by glow discharge generated between an anode to be treated and an anode in a reduced-pressure nitriding atmosphere, etc., from the viewpoint of treatment efficiency, etc.
- Plasma nitriding is preferred.
- the temperature of the plasma nitriding treatment is not particularly limited, but it is preferably 400 to 900 ° C. in order to efficiently cure the surface.
- the carburizing process is a process for increasing the carbon content of the base material surface layer.
- gas carburizing treatment treatment of heating a carburizing gas in a carburizing gas and carburizing
- vacuum carburizing treatment (treating the treatment object in a carburizing gas reduced in a vacuum furnace) Heating and carburizing treatment
- plasma carburizing treatment treatment performed using plasma by glow discharge generated between the workpiece to be treated as the cathode and the anode in a reduced carburizing atmosphere
- Plasma carburizing treatment is preferable from the viewpoint of treatment efficiency and the like.
- the temperature of the plasma carburizing treatment is not particularly limited, but is preferably 400 to 900 ° C. in order to efficiently cure the surface.
- the plasma nitriding or carburizing apparatus in FIG. 2 includes a vacuum furnace body 1, a hearth 2 disposed in the vacuum furnace body 1, an electrode 3 electrically connected to the hearth 2, and a vacuum furnace body 1.
- a plasma power source 7 connected to be a cathode and a heater 9 for heating the workpiece 8 disposed on the hearth 2 are provided.
- the electrode 3 and the vacuum furnace body 1 are electrically insulated. When the electrode 3 becomes a cathode, the hearth 2 and the workpiece 8 electrically connected thereto also become cathodes.
- the workpiece 8 is placed on the hearth 2.
- the vacuum pump 6 is operated to evacuate the vacuum furnace body 1.
- the heater 9 is operated to heat the inside of the vacuum furnace body 1 and the workpiece 8.
- a process gas is introduced into the vacuum furnace body 1 from the process gas introduction unit 4 and a plasma power source 7 is operated to generate plasma by glow discharge between the vacuum furnace body 1 and the workpiece 8. Plasma nitriding or carburizing of the workpiece 8 is performed by the plasma.
- the process gas used for the plasma nitriding treatment includes a nitrogen source gas.
- the nitrogen source gas include N 2 and NH 3 , and N 2 is preferable.
- the process gas may contain only the nitrogen source gas, but preferably contains a diluent gas composed of an inert gas such as H 2 or Ar. In this case, excessive generation of thin and hard nitride on the sample surface is suppressed, and a relatively uniform nitride layer can be formed deeper.
- the flow rate ratio of nitrogen source gas / dilution gas is not particularly limited, but in one example, it is 0.1 to 10 (preferably 0.5 to 2).
- the process gas may include a gas (for example, a carbon source gas) other than the nitrogen source gas and the dilution gas.
- the atmospheric pressure may be any pressure that can generate plasma by glow discharge, and is, for example, 50 to 2000 Pa (preferably 100 to 1000 Pa).
- the temperature of the plasma nitriding treatment is 400 to 900 ° C., preferably 500 to 800 ° C., more preferably 550 to 700 ° C. This is because when the plasma nitriding treatment is performed at such a temperature, the hardness of the surface is particularly greatly improved.
- the plasma nitriding time is, for example, 1 to 200 hours.
- a Ni-based dual phase intermetallic compound alloy containing 0.5 to 8 atomic% of Ta and / or W is obtained at 575 ° C. for 48 hours.
- the Vickers hardness at normal temperature is 900 to 1200 at a depth of 5 ⁇ m from the surface of the object to be processed, 700 to 900 at a depth of 10 ⁇ m, and a depth of 700 to 900 ⁇ m. And about 560 to 650 at a depth of 600 to 700 and 20 ⁇ m.
- the process gas used for the plasma carburizing process includes a carbon source gas.
- the carbon source gas include hydrocarbon gases such as methane, propane, and acetylene.
- the process gas preferably includes a dilution gas composed of an inert gas such as H 2 or Ar. In this case, it is possible to suppress soot from adhering to the sample surface.
- the flow rate ratio of the carbon source gas / dilution gas is not particularly limited, but in one example, is 0.01 to 1 (preferably 0.05 to 0.2).
- the process gas may include a gas (for example, nitrogen source gas) other than the carbon source gas and the dilution gas.
- the atmospheric pressure may be any pressure that enables plasma generation by glow discharge, and is, for example, 50 to 1000 Pa (preferably 100 to 500 Pa).
- the temperature of the plasma carburizing treatment is 400 to 900 ° C., preferably 680 to 850 ° C., and more preferably 700 to 800 ° C. This is because when the plasma carburizing process is performed at such a temperature, the surface hardness is particularly improved.
- the plasma carburizing time is, for example, 1 to 200 hours.
- Ni-based double-duplex intermetallic alloy containing 0.5 to 8 atomic% of Ta and / or W can be obtained at 750 ° C. for 48 hours.
- the Vickers hardness at normal temperature is 700 to 850 at a depth of 10 ⁇ m from the surface of the workpiece, and a depth of 700 to 850 and 30 ⁇ m at a depth of 20 ⁇ m.
- the plasma nitriding treatment and the plasma carburizing treatment when the plasma carburizing treatment is performed after the plasma nitriding treatment, when performing the plasma nitriding treatment after the plasma carburizing treatment, the case where the plasma nitriding treatment and the plasma carburizing treatment are simultaneously performed may be considered. .
- the plasma nitriding treatment and the plasma carburizing treatment can each be performed under the above conditions.
- the hardness at the outermost surface can be further improved and the hardness distribution can be made gentle.
- the hardness at the outermost surface is low, but a hardness distribution can be formed gently and even inside.
- the plasma nitriding treatment and the plasma carburizing treatment can be performed simultaneously.
- the optimum temperature differs between the plasma nitriding treatment and the plasma carburizing treatment, it is considered that an excellent result can be obtained by selecting an appropriate temperature for both the plasma nitriding treatment and the plasma carburizing treatment.
- the method for producing the friction stir processing tool of the present invention is performed, for example, as follows.
- (1) Ingot production process First, after weighing ingots of predetermined elements (purity 99.9% by weight) and B so as to have a predetermined composition in a crucible, the mold or ceramic mold is used. A sample made of an ingot is produced by solidifying the molten metal. The size of the ingot produced here is, for example, 83 mm ⁇ ⁇ 700 mm. A predetermined tool is cut out from the ingot.
- an iron alloy refers to an alloy containing iron as a main component and one or more other elements. Examples thereof include carbon steel and stainless steel.
- the shape of the workpiece as defined in claim 6 of the present invention is not particularly limited, and examples thereof include a thin plate, a thick plate, and a lump, and in the case of friction stir welding, a thin plate and a thick plate are particularly preferable.
- the friction stir processing method of the present invention will be described in detail.
- the materials to be joined are placed and fixed on a surface plate or a backing jig placed on the surface plate by butt.
- a backing material is placed on the joining portion and then the joining process is performed, but this method is also useful in the processing by the tool of the present invention.
- the backing material preferably has heat resistance, nonflammability, strength, non-contamination, surface smoothness, etc., and foils, plates, molded articles, etc. made of a material such as a refractory metal or ceramics are used.
- the backing material 20 is arranged at a desired position on the surface plate.
- the plate-shaped workpieces 31 and 32 are arranged and fixed so that the bonding line 33 of the plate-shaped workpieces 31 and 32 is located at the center on the backing material 20.
- the materials to be bonded 31 and 32 plate-shaped materials made of iron or iron alloy are mainly used. These materials to be joined 31 and 32 may be flat or simple plate-like or plate-like having a simple curved surface such as a cylindrical shape corresponding to the shape of the backing jig 10. Further, it may be a plate having a three-dimensional curved surface.
- the thin-layer body 20 having a smooth surface is simply placed along the joining line 33 of the materials to be joined 31 and 32.
- the backing material 20 may be pasted on the backing jig 10 with an adhesive or an adhesive in advance. Good.
- a joining rotary tool 40 (a tool made of an alloy of the present invention having a shoulder portion 42 having a large diameter and a probe 41 at the tip thereof).
- the probe 41 of 40 is pressed and inserted with a strong force while rotating at high speed, and the tool 40 is moved to the other end along the joining line 33 while applying pressure by the shoulder portion 42 to generate frictional heat.
- the vicinity of the tool is plasticized and joined in a solid state. It should be noted that the tool is inserted from the substantially normal direction of the surface in the vicinity of the joint portion of the material to be joined and is moved while maintaining the substantially normal direction.
- the joining rotary tool (tool) 40 includes a shoulder portion 42 having a large diameter and a probe 41 provided to protrude from the shoulder portion 42.
- the probe 41 may be threaded or unthreaded.
- the diameter of the shoulder portion 42 of the tool 40 is about 12 to 15 mm, and the diameter of the probe 41 is about 3 to 6 mm. Preferably used.
- the surface of the shoulder portion 42 needs to press the materials to be joined 31 and 32 along the joining line 33.
- the shoulder surface contacting the materials to be joined 31 and 32 is a flat surface or a concave surface having a large curvature radius. Is preferred. Depending on the case, it is also possible to use a slightly arcuate or conical convex surface. A flat plate is preferable because it is easy to process.
- the length of the probe 41 is shorter than the thickness of the materials to be joined 31 and 32 to be joined so as not to contact the backing jig 10.
- the rotation speed of the tool 40 is generally several hundred to several thousand revolutions / minute, and the joining speed is generally several tens to several hundreds mm / minute, but it can be 1 to 2 m / minute depending on conditions.
- the probe 41 is provided so as to protrude from the shoulder surface, but the position is preferably on the rotation axis of the tool.
- the probe should start from the shoulder surface and taper, that is, the tip should gradually narrow.
- the tip of the probe is preferably a flat surface or a curved surface having a large turning radius, for example, a spherical surface, in order to prevent stress concentration and damage.
- the ratio of the probe height to the probe root radius is preferably 1 or smaller than 1.
- the hemisphere is preferably formed in a shape in which a bottom portion is partially buried in the shoulder surface.
- the tool 40 is used by being attached to a known friction stir welding apparatus having three axes of a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z).
- a known 5-axis frame type consisting of a platen axis (X), a transverse axis (Y), a lifting / lowering axis (Z), three axes, and a swing axis (A) and a swivel axis (C), two tool axes. It is also used when attached to a friction stir welding apparatus.
- the friction stir welding (FSW) for joining the materials to be joined 31 and 32 has been described.
- the present invention replaces the two materials to be joined 31 and 32, and the same 1
- FSP friction stir reforming
- the probe can be inserted into the surface of the workpiece, but it can also be applied to a joining technique and a reforming technique in which point machining is performed by pulling out the probe after a certain time without lateral movement.
- This hot ingot was subjected to hot forging at 1300 ° C. with a total reduction of about 60% in order to refine the cast structure composed of coarse crystal grains and to eliminate casting defects such as pores.
- hot forging did not apply a reduction rate of 60% at a time, but was divided into a plurality of times, and the sample was heated to 1300 ° C. for each forging.
- the tool of the present invention was manufactured from this ingot by cutting into the shape shown below.
- the material of this tool will be called “H # 1”.
- the shoulder surface is a circular plane having a diameter of 12 mm, and the probe provided at the center has a spherical surface with a radius of 2 mm partially protruding from the shoulder surface.
- the bottom diameter of the probe is about 4 mm, and the length from the shoulder surface to the tip of the probe (projection height, probe length) is 0.90 mm.
- the friction stir processing was performed by the method shown in FIG. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-like workpieces 31 and 32. In Example 1, one flat plate is used as the workpiece. A bead-on (or star-in-plate, also referred to as a stir-in-plate) friction stir processing test was performed.
- the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z).
- a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z).
- argon gas flows along the side of the tool and wraps around the tool (the same applies to the following examples and comparative examples).
- a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thickness) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20.
- the tool 40 was inserted on the SUS430 flat plate while rotating at a forward angle of 3 degrees and 1200 rpm, and was moved 250 mm linearly at a feed rate of 100 mm / min, and a bead-on friction stir processing test was performed by friction stir processing.
- the load on the tool 40 was set to about 29400N.
- the side of the tool emitted orange during processing.
- the working state of the SUS430 flat plate is good although there is a processing mark 34 by the tool 40 on the surface of the processing portion, and the back surface photograph is shown in FIG. As shown, it was smooth.
- SUS plasticized into the cracks entered and cooled and solidified was seen as convex fine streaks.
- Table 1 summarizes the tool material, workpiece material, FSW machining format, FSW machining conditions, and tool size in Example 1.
- the tool size refers to the size of the tool before being used for FSW processing.
- Table 1 also shows the same items for Examples 2 to 11 and Comparative Example 1 described later.
- Example 2 a friction stir processing tool having the same shape as in Example 1 was produced. Using the obtained tool, instead of the workpiece made of SUS430, the plate-like workpiece (15 cm square, 1.5 mm thickness) made of titanium (2 types of pure titanium (JIS symbol: TB340H)) is used. The bead-on friction stir processing test was carried out in the same manner as in Example 1 except that the movement distance of the tool during processing was set to 120 mm.
- Example 2 Using the friction stir processing tool used in Example 2, a plate-shaped workpiece (15 cm square, 1.5 mm) made of titanium (two types of pure titanium (JIS symbol: TB340H)) different from Example 2 A bead-on friction stir processing test was conducted in the same manner as in Example 2 except that the thickness) was used.
- the titanium flat plate has a processing mark 34 due to the tool 40 on the surface of the processing portion, but there are no defects such as burrs, and a back surface photograph thereof. As shown in FIG. 7, it was smooth. However, since the backing aluminum oxide plate 20 was cracked during processing, the portion where the plasticized titanium entered the cracks and cooled and solidified appeared as convex fine streaks. Further, the tool 40 was slightly worn out in appearance.
- Example 4
- the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z).
- a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thickness) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20.
- the tool 40 was inserted on the SUS430 flat plate while rotating at a forward angle of 3 degrees and 600 rpm, and the SUS430 was softened.
- a bead-on friction stir processing test was conducted by friction stir processing by moving the tool 40 90 mm linearly at a feed rate of 150 mm / min while rotating the tool 40 at a forward angle of 3 degrees and 900 rpm.
- the load on the tool 40 was set to about 9800N.
- the side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 8, the construction state of the SUS430 flat plate was good although there was a processing mark 34 by the tool 40 on the surface of the processing portion. (Example 5)
- the tool of the present invention was manufactured by cutting this ingot into a shape similar to the shape of the friction stir processing tool shown in Example 1.
- the material of this tool will be called “W # 1”.
- the tool 40 was inserted on the SUS430 flat plate while rotating at 400 rpm with an advance angle of 3 degrees to soften the SUS430.
- a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm.
- the load on the tool 40 was set to about 9800N.
- the side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 9, the construction state of the SUS430 flat plate was good although the processing marks 34 by the tool 40 exist on the surface of the processing portion. (Example 6)
- Frition stir processing (friction stir welding)
- friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG.
- the tool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thickness) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20.
- the tool 40 was inserted on the joining line 33 while rotating at a forward angle of 3 degrees and 700 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, the tool 40 is moved about 90 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 150 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm, and friction stir welding is performed. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
- the joined body of the materials to be joined 31 and 32 obtained by the friction stir welding has a processing mark 34 due to the tool 40 on the surface of the joined portion, which is good.
- the back surface photograph is shown in FIG. 11 and was smooth. However, since the backing aluminum oxide plate 20 was cracked during processing, SUS plasticized into the cracks entered and cooled and solidified was seen as convex fine streaks.
- a sample was produced from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed according to JIS Z 2241 “Tensile test method for metal material”.
- the sample had a width of 24.6 mm and a parallel part length of 50 mm in accordance with the shape of the JIS Z 2201 No. 5 test piece.
- the thickness was 1.46 mm.
- the crosshead speed at the time of measurement was 20 mm / min.
- the tensile strength was 505 MPa.
- the tool 40 was inserted on the SUS430 flat plate while rotating at 400 rpm with an advance angle of 3 degrees to soften the SUS430.
- a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm.
- the load on the tool 40 was set to about 9800N.
- the side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 12, the construction state of the SUS430 flat plate was good although there was a processing mark 34 by the tool 40 on the surface of the processing portion. (Example 8)
- the tool 40 was inserted onto the SUS430 flat plate while being rotated at 700 rpm with an advance angle of 3 degrees, and the SUS430 was softened.
- a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly by 200 mm on the SUS430 flat plate while rotating the tool 40 at a forward angle of 3 degrees and 1200 rpm.
- the load on the tool 40 was set to about 9800N.
- the side of the tool emitted orange during processing.
- the construction state of the SUS430 flat plate is good although the processing marks 34 by the tool 40 are present on the surface of the processing portion, and the back surface photograph is shown in FIG. 14. However, it was smooth.
- SUS plasticized into the cracks entered and cooled and solidified was seen as convex fine streaks.
- the tool 40 was inserted onto the SUS430 flat plate while being rotated at 700 rpm with an advance angle of 3 degrees, and the SUS430 was softened.
- a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm.
- the load on the tool 40 was set to about 9800N.
- the side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 15, the working state of the SUS430 flat plate was good although the processing marks 34 by the tool 40 exist on the surface of the processing portion. (Example 10)
- the tool 40 was inserted onto the SUS430 flat plate while being rotated at 700 rpm with an advance angle of 3 degrees, and the SUS430 was softened.
- a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm.
- the load on the tool 40 was set to about 9800N.
- the side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 16, the construction state of the SUS430 flat plate was good although the processing marks 34 by the tool 40 exist on the surface of the processing portion. (Example 11)
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 700 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, the tool 40 is moved about 90 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 150 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm, and friction stir welding is performed. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
- a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed.
- Example 1 (Production of friction stir processing tool) A friction stir processing tool having the shape shown in Example 1 was manufactured by cutting using Inconel alloy # 625.
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 700 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, the tool 40 is moved about 90 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 150 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm, and friction stir welding is performed. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
- the joined body of the materials to be joined 31 and 32 obtained by the friction stir welding has a number of deep hole-like defects with a diameter of several millimeters on the joining line. Bonding was not possible. In addition, wear and wear of the tool was clearly recognized in appearance.
- a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed.
- the tensile strength was 457 MPa.
- the average of n 3 tensile strength of the SUS430 base material measured under the same conditions was 519 MPa, the tensile strength of the joint was inferior to that of the base material.
- a photograph of the fractured test piece is shown in FIG. 19, and this test piece located at the bottom in FIG. 19 (represented by reference numeral 1 in the figure) shows that the fracture occurred at the joint. It was.
- FIG. 20 shows a load-displacement curve. In FIG. 20, it can be seen that the present test piece represented by reference numeral 1 broke before it slightly extended.
- the feed rate of the tool during joining was examined under the condition of a high feed rate of 500 mm / min or more.
- the feed rate of the tool at the time of joining is practically required to be about 500 mm / min.
- the joining surfaces of two plate-like materials to be joined (300 ⁇ 150 mm, 1.5 mm thickness) 31 and 32 made of SUS430 were placed against each other and fixed.
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened.
- friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm.
- a joined body of 31 and 32 was produced.
- the load on the tool 40 was set to about 9800N.
- the friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
- the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a flat plate-shaped workpiece (300 ⁇ 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
- the tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened.
- a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm.
- the load on the tool 40 was set to about 9800N.
- Friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example, except that the feed rate was set to 500 mm / min using the friction stir processing tool used in the above bead-on friction stir processing test. It was.
- a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6.
- the tensile strength was 466 MPa
- the tensile strength of the joint was slightly inferior to that of the base material. The fracture occurred at the joint.
- the joint was cut perpendicular to the joining direction, and the cross section was observed with a stereomicroscope.
- the micrograph is shown in FIG. In FIG. 24, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface had almost completely disappeared by friction stirring.
- Table 2 summarizes the friction stir welding tool material, workpiece material, FSW machining type, and FSW machining conditions in Example 12.
- the tool size refers to the size of the tool before being used for FSW processing.
- Table 2 shows the final friction stir welding conditions among the friction stir welding described above.
- the construction distance in Table 2 indicates the total construction distance. Table 2 summarizes the same matters for Examples 13 to 22 described later.
- Frition stir processing (friction stir welding)
- friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG.
- the tool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- two flat plate-like materials 31 and 32 (300 ⁇ 150 mm, 1.5 mm thickness) made of SUS430 were put in contact with each other and fixed.
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened.
- friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm.
- a joined body of 31 and 32 was produced.
- the load on the tool 40 was set to about 9800N.
- the friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
- the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a flat plate-shaped workpiece (300 ⁇ 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
- the tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened.
- a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm.
- the load on the tool 40 was set to about 9800N.
- Friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example, except that the feed rate was set to 500 mm / min using the friction stir processing tool used in the above bead-on friction stir processing test. It was.
- the bonded body of the materials to be bonded 31 and 32 obtained by the friction stir welding was bonded well as shown in the photograph of FIG.
- Example 6 In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, it was found that the tensile strength was 526 MPa, and the tensile strength of the above-mentioned joint was almost the same as that of the base material. The fracture occurred at the joint.
- An ingot of about 10 kg was produced by melting a V, Nb, Ta ingot (purity 99.9% by weight) and B in a vacuum induction melting furnace and solidifying the molten metal with a ceramic mold. .
- a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot.
- the tool of the present invention was manufactured by cutting this ingot into a shape similar to the shape of the friction stir processing tool shown in Example 1. The material of this tool will be referred to as “Ta # 2”.
- Frition stir processing (friction stir welding)
- friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG.
- the tool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened.
- friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm.
- a joined body of 31 and 32 was produced.
- the load on the tool 40 was set to about 9800N.
- the friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
- the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a flat plate-shaped workpiece (300 mm ⁇ 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
- the tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened.
- a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm.
- the load on the tool 40 was set to about 9800N.
- the bead on friction stir processing test was performed twice in the same manner as described above, and then the same friction stir processing tool used was not changed.
- the friction stir welding was performed once in the same manner as the friction stir welding performed at the beginning of this example, then the same bead-on friction stir processing test was performed three times, and then the same friction stir welding was performed once.
- the same bead-on friction stir processing test was performed three times, then the same friction stir welding test was performed once, then the same bead-on friction stir processing test was performed three times, and finally the feed rate was 500 mm / min.
- the same friction stir welding as described above was performed.
- Example 6 In order to examine the strength of the joint, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 533 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
- the shoulder surface is a circular plane having a diameter of 12 mm, and the probe provided at the center has a spherical surface with a radius of 4.7 mm partially protruding from the shoulder surface.
- the bottom diameter of the probe is about 6 mm, and the length from the shoulder surface to the tip of the probe (projection height, probe length) is 0.90 mm.
- Frition stir processing (friction stir welding)
- friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG.
- the tool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 1000 rpm, and the surrounding SUS430 including the joining line 33 was softened.
- friction stir welding is performed by moving the tool 40 about 250 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 700 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm.
- a joined body of 31 and 32 was produced.
- the load on the tool 40 was set to about 9800N.
- the friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
- the tool 40 was attached to a friction stir welding apparatus composed of three machine axes: a platen axis (X), a transverse axis (Y), and a lifting axis (Z).
- a friction stir welding apparatus composed of three machine axes: a platen axis (X), a transverse axis (Y), and a lifting axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a flat plate-shaped workpiece (300 mm ⁇ 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
- the tool 40 was inserted on the SUS430 flat plate while rotating at a forward angle of 3 degrees and 1000 rpm, and the SUS430 was softened.
- a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 700 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm.
- the load on the tool 40 was set to about 9800N.
- Example 6 In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 534 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
- Frition stir processing (friction stir welding)
- friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG.
- the tool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 1000 rpm, and the surrounding SUS430 including the joining line 33 was softened.
- friction stir welding is performed by moving the tool 40 about 250 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 700 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm.
- a joined body of 31 and 32 was produced.
- the load on the tool 40 was set to about 9800N.
- Example 17 In order to examine the strength of the joint, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 541 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material. (Example 17)
- Frition stir processing (friction stir welding)
- friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG.
- the tool 40 was attached to a friction stir welding apparatus composed of three machine axes including a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- the tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened.
- friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm.
- a joined body of 31 and 32 was produced.
- the load on the tool 40 was set to about 9800N.
- the friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
- the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a flat plate-shaped workpiece (300 mm ⁇ 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
- the tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened.
- a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm.
- the load on the tool 40 was set to about 9800N.
- Example 6 In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 544 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
- Friction stir processing (friction stir welding) was performed in the same manner as in Example 16 except that the above friction stir processing tool was used.
- Example 19 In order to examine the strength of the joined portion, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 545 MPa, the tensile strength of the joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material. (Example 19)
- Friction stir processing (friction stir welding-bead-on friction stirring-bead-on friction stirring-friction stir welding) was performed.
- Example 6 In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 542 MPa, the tensile strength of the above joint exceeded the tensile strength of the base material, and the fracture occurred in the base material.
- Friction stir processing (friction stir welding) was performed in the same manner as in Example 16 except that the above friction stir processing tool was used.
- the bonded body of the materials to be bonded 31 and 32 obtained by the friction stir welding was bonded well as shown in the photograph of FIG.
- Example 21 In order to examine the strength of the joined portion, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 544 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material. (Example 21)
- PN Pulsma nitriding
- the produced tool for friction stir processing was put in the plasma nitriding apparatus shown in FIG. 2, and heated to 575 ° C. under a pressure of 0.05 Pa for about 60 minutes.
- the tool obtained by the above plasma treatment will be referred to as “Ta # 2-PN”.
- Friction stir processing (friction stir welding-bead-on friction stirring-bead-on friction stirring-friction stir welding) was performed in the same manner as in Example 15 except that the above friction stir processing tool was used.
- Example 6 In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 538 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
- Ni, Al, V, Nb, Co, Cr ingots (purity 99.9% by weight) and B were weighed in a vacuum induction melting furnace, and then the molten metal was solidified with a ceramic mold. An ingot of 83 mm ⁇ ⁇ 700 mm was produced.
- the shoulder consists of a plane perpendicular to the rotational axis of a 24 mm ⁇ right cylinder and an inverted frustoconical concave surface that is recessed toward the center with an inclination of 7 °.
- the probe protrudes in the shape of a right truncated cone with a half apex angle of 7 ° at the center of the shoulder surface, and the protrusion height from the plane orthogonal to the rotation axis intersecting the outer periphery of the shoulder surface is 0.9 mm.
- the tip of the probe has a 120 ° rotationally symmetric shape chamfered parallel to the side of the truncated cone with a distance of 0.55 mm between the center of the arcuate chord having a central angle of 60 ° and the center of the arc with respect to a circle having a radius of 4.55 mm.
- Frition stir processing (friction stir welding)
- friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG.
- the tool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z).
- argon gas flows along the side of the tool and wraps around the tool.
- a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thick) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20. Since the probe length was large with respect to the plate thickness, the backing material 20 was greatly damaged, so a metal foil was laid between the backing material 20 and the material to be joined.
- the tool 40 was inserted on the joining line 33 while rotating at 800 rpm with an advance angle of 3 degrees, and the surrounding SUS430 including the joining line 33 was softened.
- friction stir welding is performed by moving the tool 40 about 120 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 100 mm / min while rotating at an advance angle of 3 degrees and 800 rpm, A joined body of 31 and 32 was produced.
- the load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
- the joined body of the materials to be joined 31 and 32 obtained by the above friction stir welding seemed to be joined in appearance, but the machining traces were dirty, and after 120 mm machining, the probe was heavily worn out. It was.
- the sizes of the ingots produced were 83 mm ⁇ ⁇ 700 mm for the ingots of Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 22 (tool material H # 2),
- the ingot of Example 14 was 77 mm ⁇ ⁇ 280 mm.
- Vickers hardness measurement A test piece of 10 mm ⁇ ⁇ 5 mm was cut out from this ingot as a sample for measuring Vickers hardness. Using this sample, Vickers hardness measurement was performed at normal temperature and high temperature (300 ° C, 500 ° C, 600 ° C, 800 ° C, 900 ° C). For the measurement of samples of Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 22 (tool material H # 2), heat treatment (furnace cooling) at 1280 ° C. for 3 hours The sample after performing was used. In the measurement of the sample of Example 14 (tool material Ta # 2), a sample that was not heat-treated was used after the casting. The load was 1 kg and the holding time was 20 seconds. The measurement was performed in a reducing atmosphere (Ar + about 10% H 2 ), and the heating rate was 10 ° C. per minute.
- FIG. 41 The measurement results are shown in FIG. In FIG. 41, 1 is Example 4 (tool material Ta # 1), 2 is Example 5 (tool material W # 1), 3 is Example 14 (tool material Ta # 2), and 4 is Example 22 (tool).
- FIG. 41 also shows the Vickers hardness data for SUS440C, which is the material generally used in applications where wear resistance is required, showing the highest hardness in stainless steel. This data is actually measured under the same measurement conditions using a sample having the same size as the above Vickers hardness measurement.
- Example 22 was measured in the entire temperature range measured. It can be seen that the value of Vickers hardness was higher than that of (tool material H # 2). Therefore, it can be seen that the effect of improving the Vickers hardness by adding Ta or W extends to the entire temperature range measured.
- the hardness of the medium temperature range of the alloy used in the present invention is inferior to that of SUS440C, it is higher than that in the high temperature range, and the alloy used in the present invention exhibits excellent high temperature characteristics.
- the temperature of the FSW tool at the time of joining stainless steel is estimated to be about 600 ° C. or higher, so it is considered that hardness at 600 ° C. or higher is important.
- Vickers hardness of Inconel As for the Vickers hardness of Inconel, according to “Turning of Inconel 713C” by Yamaguchi Prefectural Industrial Technology Center (Masanobu Kagawa, Hideharu Maeda, Satoru Ikeda), for example, A graph is shown in which Vickers hardness is measured using a sample size of ⁇ 10 mm ⁇ 5 mm and a load of 5 kgf. From the graph, it can be seen that the ambient temperature to 600 ° C. is about Hv 350, the 800 ° C. is about Hv 300, and the 1000 ° C. is about Hv 220.
- the Vickers hardness of the alloy used in the present invention is higher than that of Inconel at any temperature from room temperature to 800 ° C., and Example 4 (tool material Ta # 1) and Example 5 (tool material W # 1). And the alloy used in Example 14 (tool material Ta # 2) is particularly higher than Inconel.
- Vickers hardness of WC-based cemented carbide for example, a material according to the standards of the Cemented Carbide Tool Association (CIS019D-2005, cemented carbide for wear and impact resistant tools, and grade selection criteria for ultrafine cemented carbide)
- a cemented carbide of the type classification symbol VC-50 (trade name “Fuji Roy C50” manufactured by Fuji Dice Co., Ltd., sintered using coarse grain tungsten carbide and Co as a binder metal)
- Vickers hardness of 800 ° C. 330 Vickers hardness 210 of 900 ° C. is disclosed.
- Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 14 (tool material Ta # 2) of the present invention have a Vickers hardness of 800 ° C.
- the Vickers hardness at around 500 and 900 ° C. is 450 or more, which is much higher than that of the WC cemented carbide in the high temperature region.
- the friction stir processing tool comprising the Ni-based double-duplex intermetallic compound alloy of the present invention can be effectively used for friction stir processing using iron or an iron alloy as a workpiece.
- the friction stir processing method of the present invention can be effectively used for friction stir processing using iron or an iron alloy as a workpiece.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Disclosed is an inexpensive tool for friction stir working, which is used for workpiece such as iron or iron alloys requiring high working temperatures and can realize friction stir working without significant abrasion and with high efficiency and high productivity. Also disclosed is a friction stir working method. The tool for friction stir working is formed of a Ni-base double multiphase intermetallic compound alloy. The tool for friction stir working comprises a Ni-base double multiphase intermetallic compound alloy as a base metal. The surface of the base metal has been subjected to hardening treatment by at least one of nitriding or carburizing. The friction stir working method comprises pressing the front end of a tool being rotated at a high speed against a workpiece and plasticizing the workpiece by generated frictional heat for stirring to work the workpiece. In the friction stir working method, the tool for friction stir working is used.
Description
本発明は、摩擦攪拌加工用のツール、特に被加工材が鉄又は鉄合金である場合に好適なNi基2重複相金属間化合物合金からなる摩擦攪拌加工用ツールおよびそれを用いた摩擦攪拌加工方法に関する。ここで、摩擦攪拌加工とは、摩擦攪拌接合、摩擦攪拌改質、摩擦点接合等の、回転するツールを強い力で被加工材に押し当て、発生する摩擦熱により被加工材を可塑化させ固相状態で加工することをいう。
The present invention relates to a friction stir processing tool, in particular, a friction stir processing tool comprising a Ni-based dual-phase intermetallic compound alloy suitable when the workpiece is iron or an iron alloy, and friction stir processing using the same. Regarding the method. Here, the friction stir processing means that a rotating tool such as friction stir welding, friction stir reforming, or friction point welding is pressed against the work material with a strong force, and the work material is plasticized by the generated frictional heat. Processing in a solid phase state.
アルミニウム合金板等の被接合材同士を接合するに際し、この被接合材の接合面を互いに突き合わせて形成される接合線の一端に、高速回転する棒状の攪拌工具(径の大きいショルダ部とその先端にプローブを有する硬い工具鋼からなるツール)のプローブを強い力で押し当て挿入し、このツールを高速回転させながら接合線に沿って他端に移動させ、その時に発生する摩擦熱により接合面を可塑化して、ツールのショルダ部によって圧力を付加しながら被接合材の接合面同士を接合する接合方法は、摩擦攪拌接合(FSW:Friction Stir Welding)と呼ばれ、広く知られている(例えば、特許第2712838号公報(特許文献1))。
When joining materials to be joined such as an aluminum alloy plate, a rod-shaped stirring tool (a shoulder portion having a large diameter and its tip are rotated at one end of a joining line formed by abutting the joining surfaces of the materials to be joined together. The tool (made of hard tool steel with a probe) is pressed and inserted with a strong force, and the tool is moved to the other end along the joining line while rotating at high speed. The joining surface is moved by the frictional heat generated at that time. A joining method in which the joining surfaces of the materials to be joined are joined while plasticizing and applying pressure by the shoulder portion of the tool is called friction stir welding (FSW: Friction Stir Welding) and is widely known (for example, Japanese Patent No. 2712838 (Patent Document 1)).
上記摩擦攪拌接合によれば、ツールと被接合材との摩擦熱を利用して接合するので、最高到達温度が融点に達せず固相状態で接合するため、アーク溶接などの溶融溶接に比べて、接合部における強度低下が小さく、気孔や割れなどの接合欠陥がなく、接合面も平坦である等の利点があり、すでに鉄道車両、船舶、土木構造物、自動車などの分野で実用化されている。
According to the friction stir welding described above, the frictional heat between the tool and the material to be joined is used for joining, so that the highest temperature does not reach the melting point and the joining is performed in a solid state, so compared to fusion welding such as arc welding. There are advantages such as low strength reduction at joints, no joint defects such as pores and cracks, and flat joint surfaces, which have already been put to practical use in the fields of railway vehicles, ships, civil engineering structures, automobiles, etc. Yes.
また、アルミニウム合金板等の被加工材の表面に、上記のような高速回転するツールのプローブを強い力で押し当て挿入し、このツールを高速回転させながら移動させ、その時に発生する摩擦熱によりツールのショルダ部およびプローブの近傍の被加工材を可塑化することにより、被加工材の一定の深さまでの結晶粒径を小さくして強度および硬度等を向上させる改質方法は、摩擦攪拌改質(FSP:Friction Stir
Processing)と呼ばれ、広く知られている(例えば、特開2003-64458号公報(特許文献2))。 Also, insert the probe of the tool that rotates at a high speed as described above into the surface of the workpiece such as an aluminum alloy plate with a strong force, move the tool while rotating it at a high speed, and use the frictional heat generated at that time. A modification method that improves the strength, hardness, etc. by reducing the crystal grain size to a certain depth by plasticizing the workpiece material near the shoulder of the tool and the probe is a friction stir modification. Quality (FSP: Friction Stir
It is called “Processing” and is widely known (for example, Japanese Patent Laid-Open No. 2003-64458 (Patent Document 2)).
Processing)と呼ばれ、広く知られている(例えば、特開2003-64458号公報(特許文献2))。 Also, insert the probe of the tool that rotates at a high speed as described above into the surface of the workpiece such as an aluminum alloy plate with a strong force, move the tool while rotating it at a high speed, and use the frictional heat generated at that time. A modification method that improves the strength, hardness, etc. by reducing the crystal grain size to a certain depth by plasticizing the workpiece material near the shoulder of the tool and the probe is a friction stir modification. Quality (FSP: Friction Stir
It is called “Processing” and is widely known (for example, Japanese Patent Laid-Open No. 2003-64458 (Patent Document 2)).
更にツールを被加工材に押し付けるが横移動させることなく一定時間後にそのまま引き抜くという点接合プロセスが開発されており、摩擦点接合(Spot Friction Welding)あるいはフリクションスポット接合(Friction Spot Joining)と呼ばれている。
Furthermore, a point joining process has been developed in which the tool is pressed against the workpiece, but is pulled out after a certain time without lateral movement. Yes.
これらの摩擦攪拌加工において、被加工材としてアルミニウムまたはアルミニウム合金を用いる場合のツールとして、SKD鋼等の鋼製ツールが用いられている。しかし、被加工材として鉄または鉄合金が用いられる場合には、SKD鋼等の鋼製ツールは、ツールがたちまち減耗等により変形し、接合ができないという問題がある。また、セラミックス製ツールは、高価で折れ易いという問題があり、特に被加工材がステンレス鋼の場合は摩耗しやすい。摩擦攪拌加工によりツールが摩耗したときにセラミックス製のツール材料の微細片が鉄系の被加工材、例えば、ステンレス鋼中に分散されると、機械的特性、耐腐食性に問題が生じるおそれがある。
In these friction stir processing, a steel tool such as SKD steel is used as a tool when aluminum or an aluminum alloy is used as a workpiece. However, when iron or an iron alloy is used as a workpiece, a steel tool such as SKD steel has a problem that the tool is deformed due to wear or the like and cannot be joined. In addition, ceramic tools have a problem that they are expensive and easy to break, and particularly when the work material is stainless steel, they are easily worn. If the fine pieces of ceramic tool material are dispersed in an iron-based workpiece such as stainless steel when the tool is worn by friction stir processing, there may be a problem in mechanical properties and corrosion resistance. is there.
ところで、Ni基2重複相金属間化合物合金が知られている。(例えば、国際公開第2006/101212号パンフレット(以下、特許文献3という)と国際公開第2007/086185号パンフレット(以下、特許文献4という)。特許文献3に開示された、Ni基2重複相金属間化合物合金は、Ni3Al-Ni3Ti-Ni3V系金属間化合物合金であり、特許文献4に開示された、Ni基2重複相金属間化合物合金は、Ni3Al-Ni3Nb-Ni3V系金属間化合物合金である。これらの金属間化合物合金は、高温での機械的特性が優れているので、ジェットエンジンやガスタービンのタービン部材のような用途への応用が期待されているが、摩擦攪拌加工用ツールへの応用例はない。
By the way, a Ni-based two-duplex intermetallic compound alloy is known. (For example, International Publication No. 2006/101212 pamphlet (hereinafter referred to as Patent Document 3) and International Publication No. 2007/086185 pamphlet (hereinafter referred to as Patent Document 4). The intermetallic alloy is a Ni 3 Al—Ni 3 Ti—Ni 3 V-based intermetallic compound alloy, and the Ni-based 2-duplex intermetallic alloy disclosed in Patent Document 4 is Ni 3 Al—Ni 3. Nb-Ni 3 V-based intermetallic alloys, which have excellent mechanical properties at high temperatures, and are expected to be applied to applications such as jet engines and turbine components of gas turbines. However, there is no application to friction stir processing tools.
本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、鉄または鉄合金等の加工温度が高温になる被加工材用の、摩耗が少なく高効率で生産性よく摩擦攪拌加工できる安価な摩擦攪拌加工用ツールおよび摩擦攪拌加工方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to reduce friction, high efficiency, and high productivity for workpieces with high processing temperatures such as iron or iron alloys. An object of the present invention is to provide an inexpensive friction stir processing tool and friction stir processing method capable of performing stir processing.
上記の目的は、本発明のNi基2重複相金属間化合物合金からなる摩擦攪拌加工用ツール及びそれを用いた摩擦攪拌加工方法により達成することができる。すなわち、本発明にしたがった摩擦攪拌加工用ツールは、Ni基2重複相金属間化合物合金からなることを特徴とする。
The above object can be achieved by the friction stir processing tool comprising the Ni-based double-duplex intermetallic compound alloy of the present invention and the friction stir processing method using the same. That is, the friction stir processing tool according to the present invention is characterized by comprising a Ni-based double-duplex intermetallic compound alloy.
この発明にしたがった摩擦攪拌加工用ツールにおいて、Ni基2重複相金属間化合物合金がTa及び/又はWを0.5~8原子%含むことが好ましい。
In the friction stir processing tool according to the present invention, it is preferable that the Ni-based double-duplex intermetallic alloy contains 0.5 to 8 atomic% of Ta and / or W.
また、この発明にしたがった摩擦攪拌加工用ツールにおいて、Ni基2重複相金属間化合物合金が、Niを主成分とし且つAl:2~9原子%、V:10~17原子%、(Ta及び/又はW):0.5~8原子%、Nb:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有することが好ましい。
Further, in the friction stir processing tool according to the present invention, the Ni-based double-duplex intermetallic compound alloy contains Ni as a main component and Al: 2-9 atomic%, V: 10-17 atomic%, (Ta and / Or W): 0.5 to 8 atomic%, Nb: 0 to 6 atomic%, Co: 0 to 6 atomic%, Cr: 0 to 6 atomic%, and a total weight of a composition of 100 atomic% in total B: It preferably contains a double- duplex structure containing 10 to 1000 ppm by weight and consisting of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
さらに、この発明にしたがった摩擦攪拌加工用ツールにおいて、Ni基2重複相金属間化合物合金が、Niを主成分とし且つAl:5.5~13原子%、V:10~17原子%、Nb:0~6原子%、Ti:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有することが好ましい。
Further, in the friction stir processing tool according to the present invention, the Ni-based double-duplex intermetallic compound alloy contains Ni as a main component and Al: 5.5-13 atomic%, V: 10-17 atomic%, Nb : 0 to 6 atomic%, Ti: 0 to 6 atomic%, Co: 0 to 6 atomic%, Cr: 0 to 6 atomic%, and B: 10 to 1000 weight with respect to the total weight of the total composition of 100 atomic% It preferably has a two-duplex structure containing ppm and consisting of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
なお、この発明にしたがった摩擦攪拌加工用ツールにおいて、上述のいずれかに記載のNi基2重複相金属間化合物合金を母材とし、母材の表面が硬化処理されてなることが好ましい。
In the friction stir processing tool according to the present invention, it is preferable that the surface of the base material is hardened by using the Ni-based double-duplex intermetallic compound alloy described above as a base material.
この発明にしたがった摩擦攪拌加工用ツールにおいて、上記の硬化処理が窒化処理又は浸炭処理の少なくとも一方であることが好ましい。
In the friction stir processing tool according to the present invention, it is preferable that the hardening treatment is at least one of nitriding treatment or carburizing treatment.
本発明にしたがった摩擦攪拌加工方法は、被加工材に高速回転するツール先端を押し当て、発生する摩擦熱により被加工材を可塑化させて攪拌することにより、被加工材を加工する摩擦攪拌加工方法において、上述のいずれかに記載の摩擦攪拌加工用ツールを用いることを特徴とする。
The friction stir processing method according to the present invention is a friction stir processing for processing a workpiece by pressing the tip of a tool that rotates at high speed against the workpiece and plasticizing and stirring the workpiece by the generated frictional heat. In the processing method, the friction stir processing tool described in any one of the above is used.
この発明の摩擦攪拌加工用ツールは、Ni基2重複相金属間化合物合金にてなるので、回転させながらツールを被加工材に当てる時にその衝撃及び強い押し付け荷重がプローブ先端部にかかるが、ツールが変形、破壊、折損する恐れが少ない。更にツールのショルダー面と被加工材表面および被加工材中に埋没したプローブ表面との間の摩擦熱により高温になり、ツール側面がオレンジ色に発光するほどの高温(800℃以上)においても必要な硬度を有するため、高温材料の摩擦攪拌加工に適し、特に接合材が鉄または鉄合金等の被加工材に対して摩耗が少なく折損しにくく、安価に摩擦攪拌加工できる。
Since the friction stir processing tool of the present invention is made of a Ni-based double-duplex intermetallic compound alloy, the impact and strong pressing load are applied to the probe tip when the tool is applied to the workpiece while rotating. Is less likely to deform, break or break. Furthermore, it is necessary even at high temperatures (800 ° C or higher) that cause the tool side surface to emit orange light due to frictional heat between the shoulder surface of the tool and the workpiece surface and the probe surface embedded in the workpiece. Since it has a high hardness, it is suitable for friction stir processing of high-temperature materials. In particular, the joining material is less worn and hard to break with respect to workpieces such as iron or iron alloy, and can be friction stir processed at low cost.
ツール材料がNi基2重複相金属間化合物合金にてなるので摩擦攪拌加工によりツールが磨耗したときにツール材料が鉄系の被加工材、例えば、ステンレス鋼中に分散されても問題が生じにくい。
Since the tool material is made of a Ni-based two-phase intermetallic compound alloy, when the tool is worn by friction stir processing, it is difficult to cause problems even if the tool material is dispersed in a ferrous material such as stainless steel. .
この発明の一つの好ましい摩擦攪拌加工用ツールは、Ta及び/又はWを0.5~8原子%含むNi基2重複相金属間化合物合金にてなるので、硬さがより硬くなるため、上記の発明の効果の全てに加えて、ツールが変形、破壊、折損する恐れがより一層少なくなる。
One preferred friction stir processing tool of the present invention is made of a Ni-based double-duplex intermetallic compound alloy containing 0.5 to 8 atomic% of Ta and / or W. In addition to all the effects of the present invention, the risk of the tool being deformed, broken or broken is further reduced.
この発明のもう一つの好ましい摩擦攪拌加工用ツールは、Ni基2重複相金属間化合物合金が、Niを主成分とし且つAl:2~9原子%、V:10~17原子%、(Ta及び/又はW):0.5~8原子%、Nb:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するので、硬さが一層硬くなるため、上記の発明の一つの好ましい摩擦攪拌加工用ツールによる効果の全てに加えて、ツールが変形、破壊、折損する恐れが更に一層少なくなる。
In another preferred friction stir processing tool of the present invention, the Ni-based double-duplex intermetallic alloy is mainly composed of Ni and Al: 2 to 9 atomic%, V: 10 to 17 atomic%, (Ta and / Or W): 0.5 to 8 atomic%, Nb: 0 to 6 atomic%, Co: 0 to 6 atomic%, Cr: 0 to 6 atomic%, and a total weight of a composition of 100 atomic% in total B: Since it has a two- duplex structure containing 10 to 1000 ppm by weight and consisting of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure, the hardness is further increased. In addition to all of the effects of the preferred friction stir processing tool, there is even less risk of the tool being deformed, broken or broken.
この発明のさらにもう一つの好ましい摩擦攪拌加工用ツールは、Ni基2重複相金属間化合物合金が、Niを主成分とし且つAl:5.5~13原子%、V:10~17原子%、Nb:0~6原子%、Ti:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するので、上記の発明の効果と同様の効果を奏する。
According to still another preferred friction stir processing tool of the present invention, the Ni-based dual-duplex intermetallic compound alloy is mainly composed of Ni and Al: 5.5 to 13 atomic%, V: 10 to 17 atomic%, B: 10 to 1000 with respect to the total weight of the composition of a total of 100 atom% including Nb: 0 to 6 atom%, Ti: 0 to 6 atom%, Co: 0 to 6 atom%, Cr: 0 to 6 atom% Since it has a double- duplex structure containing a weight ppm and consisting of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure, the same effects as those of the above-described invention can be achieved.
この発明の別の好ましい摩擦攪拌加工用ツールは、上述のいずれかに記載のNi基2重複相金属間化合物合金を母材とし、母材の表面が硬化処理されてなるので、表面の耐摩耗性が高められているため、回転させながらツールを被加工材に当てる時にその衝撃及び強い押し付け荷重がプローブ先端部にかかるが、ツールが変形、破壊、折損する恐れが更により一層少なくなる。更にツールのショルダー面と被加工材表面および被加工材中に埋没したプローブ表面との間の摩擦熱により高温になり、ツール側面がオレンジ色に発光するほどの高温(800℃以上)においても必要な硬度を有するため、高温材料の摩擦攪拌加工に適し、特に接合材が鉄または鉄合金等の被加工材に対して摩耗が少なく折損しにくく、安価に摩擦攪拌加工できる。
Another preferred friction stir processing tool according to the present invention is based on the Ni-based double-duplex intermetallic compound alloy described above, and the surface of the base material is hardened. Since the performance is improved, the impact and strong pressing load are applied to the probe tip when the tool is applied to the workpiece while rotating, but the risk of the tool being deformed, broken or broken is further reduced. Furthermore, it is necessary even at high temperatures (800 ° C or higher) that cause the tool side surface to emit orange light due to frictional heat between the shoulder surface of the tool and the workpiece surface and the probe surface embedded in the workpiece. Since it has a high hardness, it is suitable for friction stir processing of high-temperature materials. In particular, the joining material is less worn and hard to break with respect to workpieces such as iron or iron alloy, and can be friction stir processed at low cost.
上記の別の好ましい摩擦攪拌加工用ツールにおいて、母材がTa及び/又はWを0.5~8原子%含むNi基2重複相金属間化合物合金からなる場合は、母材の表面が硬化処理されてなるので、母材自体の硬度が高い上、硬化処理により表面の耐摩耗性が高められているため、上記の発明の別の好ましい摩擦攪拌加工用ツールによる効果として述べたものと同様の効果が一層高まる。
In another preferable friction stir processing tool described above, when the base material is made of a Ni-based double-duplex intermetallic compound alloy containing 0.5 to 8 atomic% of Ta and / or W, the surface of the base material is hardened. Therefore, since the hardness of the base material itself is high and the wear resistance of the surface is enhanced by the curing treatment, the same effect as described as another advantageous effect of the friction stir processing tool of the present invention is used. The effect is further enhanced.
この発明の別の好ましい摩擦攪拌加工用ツールにおいて、母材がNiを主成分とし且つAl:2~9原子%、V:10~17原子%、(Ta及び/又はW):0.5~8原子%、Nb:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するNi基2重複相金属間化合物合金からなる場合は、母材の表面が硬化処理されてなるので、母材自体の硬度が更に高い上、硬化処理により表面の耐摩耗性が高められているため、上記の発明の別の好ましい摩擦攪拌加工用ツールによる効果として述べたものと同様の効果がより一層高まる。
In another preferred friction stir processing tool of the present invention, the base material is mainly composed of Ni and Al: 2 to 9 atomic%, V: 10 to 17 atomic%, (Ta and / or W): 0.5 to Including B: 10 to 1000 ppm by weight with respect to the total weight of the composition of 100 atom% including 8 atom%, Nb: 0 to 6 atom%, Co: 0 to 6 atom%, Cr: 0 to 6 atom% In addition, since the surface of the base material is hardened when it is made of a Ni-based double-duplex intermetallic compound alloy having a double-phase structure composed of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure. Furthermore, since the hardness of the base material itself is higher and the wear resistance of the surface is enhanced by the curing process, the same effect as that described as another advantageous effect of the friction stir processing tool of the present invention is obtained. Increased further.
この発明の別の好ましい摩擦攪拌加工用ツールにおいて、母材がNiを主成分とし且つAl:5.5~13原子%、V:10~17原子%、Nb:0~6原子%、Ti:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するNi基2重複相金属間化合物合金からなる場合は、母材自体の硬度が更に高い上、硬化処理により表面の耐摩耗性が高められているため、上記の発明の別の好ましい摩擦攪拌加工用ツールによる効果として述べたものと同様の発明を奏する。
In another preferable friction stir processing tool of the present invention, the base material is mainly composed of Ni and Al: 5.5 to 13 atomic%, V: 10 to 17 atomic%, Nb: 0 to 6 atomic%, Ti: B: 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atom% including 0 to 6 atom%, Co: 0 to 6 atom%, Cr: 0 to 6 atom%, and proeutectoid L1 2 phase And (L1 2 + D0 22 ) Ni-base dual-phase intermetallic compound alloy having a double-phase structure consisting of a eutectoid structure, the hardness of the base material itself is higher, and the wear resistance of the surface is increased by hardening treatment. Since the property is enhanced, the invention similar to that described as the effect of another preferable tool for friction stir processing of the above invention is produced.
この発明のさらに別の好ましい摩擦攪拌加工用ツールは、上記の発明の別の好ましい摩擦攪拌加工用ツールにおいて、硬化処理が窒化処理又は浸炭処理の少なくとも一方であるので、表面の耐摩耗性がより一層高められているため、上記の発明の別の好ましい摩擦攪拌加工用ツールによる効果に加え、ツールが摩耗や損傷を受け難くなり、ツールが変形、破壊、折損する恐れがより一層少なくなるとともに、結果としてツールの寿命が長くなる。
Still another preferable friction stir processing tool of the present invention is the other preferable friction stir processing tool of the present invention, since the hardening treatment is at least one of nitriding treatment or carburizing treatment, so that the surface wear resistance is further improved. Since it is further enhanced, in addition to the effect of another preferred friction stir processing tool of the present invention, the tool is less likely to be worn or damaged, and the risk of the tool being deformed, broken, broken is further reduced, As a result, the tool life is increased.
本発明の摩擦攪拌加工方法は、被加工材に高速回転するツール先端を押し当て、発生する摩擦熱により被加工材を可塑化させて攪拌することにより、被加工材を加工する摩擦攪拌加工方法において、上述のいずれかに記載の摩擦攪拌加工用ツールを用いるので、鉄または鉄合金等の被加工材に対して摩耗が少なく折損しにくく、安価に摩擦攪拌加工できる。
The friction stir processing method of the present invention is a friction stir processing method for processing a workpiece by pressing the tip of a tool that rotates at high speed against the workpiece and plasticizing and stirring the workpiece by the generated frictional heat. In the above, since the friction stir processing tool described in any one of the above is used, the friction stir processing can be performed at a low cost with little wear against the workpiece such as iron or iron alloy and less breakage.
1:真空炉体、2:炉床、3:電極(陰極)、4:プロセスガス導入部、5:ガス排気部、6:真空ポンプ、7:プラズマ電源、8:被処理物、9:ヒーター、10:裏当て治具、20:裏当て材、31:被接合材、32:被接合材、33:接合線、34:加工痕、40:ツール、41:ツールのプローブ、42:ツールのショルダ部。
1: vacuum furnace body, 2: hearth, 3: electrode (cathode), 4: process gas introduction section, 5: gas exhaust section, 6: vacuum pump, 7: plasma power source, 8: workpiece, 9: heater 10: backing jig, 20: backing material, 31: material to be joined, 32: material to be joined, 33: joining line, 34: machining trace, 40: tool, 41: probe of tool, 42: tool Shoulder club.
以下、 本発明のNi基2重複相金属間化合物合金からなる摩擦攪拌加工用ツールの実施形態について詳細に説明する。本発明の摩擦攪拌加工用ツールは、Ni基2重複相金属間化合物合金からなる。上記Ni基2重複相金属間化合物合金としては、Ni基2重複相金属間化合物を有する合金であれば、特には、限定されないが、例えば、特許文献3に開示されたものであり、Al:5原子%より大で13原子%以下、V:9.5原子%以上で17.5原子%より小、Ti:0原子%以上で3.5原子%以下、B:0重量ppm以上で1000重量ppm以下、残部は不純物を除きNiからなり、かつ初析L12相と(L12+D022)共析組織との2重複相組織を有するNi3Al基金属間化合物が挙げられる。
Hereinafter, an embodiment of a friction stir processing tool made of the Ni-based two-phase intermetallic compound alloy of the present invention will be described in detail. The friction stir processing tool of the present invention is made of a Ni-based double-duplex intermetallic compound alloy. Although it will not specifically limit if it is an alloy which has a Ni group 2 double phase intermetallic compound as said Ni group 2 double phase intermetallic compound, For example, it is disclosed by patent document 3, Al: Greater than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Ti: 0 atomic% or more and 3.5 atomic% or less, B: 1000 ppm by weight or more Examples include a Ni 3 Al-based intermetallic compound having a weight ppm or less and the balance being made of Ni excluding impurities and having a two- phase structure of an eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure.
このような金属間化合物は、Al:5原子%より大で13原子%以下、V:9.5原子%以上で17.5原子%より小、Ti:0原子%以上で3.5原子%以下、B:0重量ppm以上で1000重量ppm以下、残部は不純物を除きNiからなる合金材に対して、初析L12相とAl相とが共存する温度で第1熱処理を行い、その後L12相とD022相とが共存する温度に冷却するか、当該L12相とD022相とが共存する温度で第2熱処理を行うことによって、Al相を(L12+D022)共析組織に変化させて2重複相組織を形成する工程を備える方法によって製造することができる。もしくは、上記組成の合金を高温のA1単相領域から徐冷することによって2重複相組織を形成する工程を備える方法によっても製造することが出来る。
Such intermetallic compounds are Al: greater than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Ti: 0 atomic% or more and 3.5 atomic% hereinafter, B: 0 1000 ppm by weight ppm or greater or less, the balance being the alloy material consisting of Ni remove impurities, performing a first heat treatment at a temperature at which coexist with proeutectoid L1 2 phase and Al phase, then L1 or a 2-phase and D0 22 phase is cooled to a temperature to coexist, by a the L1 2 phase and D0 22 phase performs a second heat treatment at a temperature coexist, Al phase (L1 2 + D0 22) eutectoid tissue It can be produced by a method comprising a step of forming a double-duplex structure by changing to the above. Or it can manufacture also by the method of providing the process of forming a double-duplex structure | tissue by slowly cooling the alloy of the said composition from high temperature A1 single phase area | region.
上記Ni基2重複相金属間化合物合金としては、また、例えば、特許文献4に開示されたものであり、Al:5原子%より大で13原子%以下、V:9.5原子%以上で17.5原子%より小、Nb:0原子%以上で5原子%以下、B:50重量ppm以上1000重量ppm以下、残部は不純物を除きNiからなり、初析L12相と(L12+D022)共析組織との2重複相組織を有するNi3Al基金属間化合物が挙げられる。
Examples of the Ni-based two-duplex intermetallic compound alloy are those disclosed in Patent Document 4, for example, Al: greater than 5 atomic% and not more than 13 atomic%, and V: not less than 9.5 atomic%. Less than 17.5 atomic%, Nb: 0 atomic% or more and 5 atomic% or less, B: 50 weight ppm or more and 1000 weight ppm or less, the balance is made of Ni except impurities, and the pro-eutectoid L1 2 phase and (L1 2 + D0 22 ) Ni 3 Al-based intermetallic compounds having a double-duplex structure with a eutectoid structure.
このような金属間化合物は、Al:5原子%より大で13原子%以下、V:9.5原子%以上で17.5原子%より小、Nb:0原子%以上で5原子%以下、B:50重量ppm以上で1000重量ppm以下、残部は不純物を除きNiからなる合金材に対して、初析L12相とAl相とが共存する温度、又は初析L12相とAl相とD0aが共存する温度で第1熱処理を行い、その後、L12相とD022相とが共存する温度に冷却するか、その温度で第2熱処理を行うことによって、Al相を(L12+D022)共析組織に変化させて2重複相組織を形成する工程によって製造することができる。もしくは、上記組成の合金を高温のA1単相領域から徐冷することによって2重複相組織を形成する工程を備える方法によっても製造することが出来る。
Such intermetallic compounds include Al: greater than 5 atomic% and 13 atomic% or less, V: 9.5 atomic% or more and less than 17.5 atomic%, Nb: 0 atomic% or more and 5 atomic% or less, B: 50 ppm or greater at 1000 ppm by weight or less, the balance being the alloy material consisting of Ni remove impurities, and pro-eutectoid L1 2 phase and Al phase and the temperature to coexist, or the pro-eutectoid L1 2 phase and Al phase The first heat treatment is performed at a temperature at which D0 a coexists, and then the Al phase is reduced to (L1 2 + D0) by cooling to a temperature at which the L1 2 phase and the D0 22 phase coexist or by performing the second heat treatment at that temperature. 22 ) It can be produced by a process of changing to a eutectoid structure to form a double-phase structure. Or it can manufacture also by the method of providing the process of forming a double-duplex structure | tissue by slowly cooling the alloy of the said composition from high temperature A1 single phase area | region.
摩擦攪拌加工用ツールは、また、Ta及び/又はWを0.5~8原子%含むNi基2重複相金属間化合物合金からなってもよい。
The friction stir processing tool may also be made of a Ni-based two-phase intermetallic alloy containing 0.5 to 8 atomic% of Ta and / or W.
摩擦攪拌加工用ツールは、また、例えば、Niを主成分とし且つAl:2~9原子%、V:10~17原子%、(Ta及び/又はW):0.5~8原子%、Nb:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含むNi基金属間化合物合金からなってもよい。本明細書において、「~」は、両端の組成を含む。なお、Ta及び/又はWの含有量とは、TaとWの何れか一方のみが含まれる場合はTa又はWの含有量を意味し、TaとWの両方が含まれる場合はTaとWの含有量の合計を意味する。Ta及び/又はWの含有量を上記範囲にしたのは、この範囲であれば、Ta及び/又はWの添加によって硬さの向上効果が得られるからであり、また、上限値である8原子%を超える量を添加しても硬さ向上には大きくは寄与しないからである。
The friction stir processing tool also includes, for example, Ni as a main component and Al: 2 to 9 atomic%, V: 10 to 17 atomic%, (Ta and / or W): 0.5 to 8 atomic%, Nb : Ni-based intermetallic compound containing B: 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atom% including 0 to 6 atom%, Co: 0 to 6 atom%, and Cr: 0 to 6 atom% It may be made of an alloy. In the present specification, “˜” includes the composition of both ends. The content of Ta and / or W means the content of Ta or W when only one of Ta and W is included, and when both Ta and W are included, the content of Ta and W It means the total content. The reason why the content of Ta and / or W is within the above range is that if it is within this range, the effect of improving hardness can be obtained by the addition of Ta and / or W, and the upper limit is 8 atoms. This is because even if an amount exceeding% is added, it does not greatly contribute to the improvement of hardness.
Nb、Co、Crは、それぞれ、任意成分であり、含まれていてもいなくてもよい。Nb、Co、Crが含まれているかどうかに関わらず、Ta又はWの添加によって硬さが向上するからである。Nbは、2重複相組織の強度向上のために添加される。また、Co、Crは、耐酸化性向上のために添加される。
Nb, Co, and Cr are optional components and may or may not be included. This is because the hardness is improved by the addition of Ta or W regardless of whether Nb, Co, or Cr is contained. Nb is added to improve the strength of the two-phase structure. Co and Cr are added to improve oxidation resistance.
Bは、得られる合金の延性向上のために添加される。
B is added to improve the ductility of the resulting alloy.
上記Ni基金属間化合物合金は、Al:2.5~8原子%、V:10~14.5原子%、(Ta及び/又はW):1~5原子%、Nb:0~4原子%であることが好ましい。
The above Ni-based intermetallic alloy has Al: 2.5 to 8 atomic%, V: 10 to 14.5 atomic%, (Ta and / or W): 1 to 5 atomic%, Nb: 0 to 4 atomic% It is preferable that
上記Ni基金属間化合物合金は、Ta:0.5原子%以上であることが好ましい。
The Ni-based intermetallic compound alloy is preferably Ta: 0.5 atomic% or more.
上記、Ni基金属間化合物合金は、W:0.5原子%以上であることが好ましい。
The Ni-based intermetallic compound alloy is preferably W: 0.5 atomic% or more.
上記Ni基金属間化合物合金は、初析L12相と(L12+D022)共析組織とからなる2重複相組織を有することが好ましい。これは2重複相組織を有する金属間化合物合金は引張強度などの機械的特性や耐クリープ特性に優れるからである。この場合、Ni、Al、Vは、2重複相組織の形成のために添加される。Ni、Al、Vが上記範囲の場合、2重複相組織が少なくとも部分的に形成されやすい。この合金からなる摩擦攪拌加工用ツールは、本発明の好ましい一つの実施形態として、Ni基2重複相金属間化合物合金にてなる摩擦攪拌加工用ツールであって、Ni基2重複相金属間化合物合金がTa及び/又はWを0.5~8原子%含むことを特徴とする摩擦攪拌加工用ツールの一例となる。
The Ni-based intermetallic compound alloy preferably has a double-duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure. This is because an intermetallic compound alloy having a two-phase structure is excellent in mechanical properties such as tensile strength and creep resistance. In this case, Ni, Al, and V are added for the formation of a two-phase structure. When Ni, Al, and V are in the above ranges, a two-phase structure is likely to be formed at least partially. A friction stir processing tool made of this alloy is, as one preferred embodiment of the present invention, a friction stir processing tool made of a Ni-based double-duplex intermetallic compound alloy, and comprising a Ni-based double-duplex intermetallic compound This is an example of a friction stir processing tool characterized in that the alloy contains 0.5 to 8 atomic% of Ta and / or W.
2重複相組織は、最初に、比較的高い温度において初析L12相とA1相とからなる上部複相組織を形成し、その後、温度を下げることによってA1相をL12相とD022相とに分解させることによって形成することができる。これによって、図1(a)のTEM写真や図1(b)の模式図に示すような初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成される。なお、L12相は、Ni3Al金属間化合物相であり、A1相は、fcc固溶体相であり、D022相は、Ni3V金属間化合物相である。
The two-duplex structure first forms an upper double-phase structure composed of a proeutectoid L1 2 phase and an A1 phase at a relatively high temperature, and then lowers the temperature to change the A1 phase into the L1 2 phase and the D0 22 phase. It can be formed by decomposing it. As a result, a double- phase structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure as shown in the TEM photograph of FIG. 1A and the schematic diagram of FIG. 1B is formed. . The L1 2 phase is a Ni 3 Al intermetallic compound phase, the A1 phase is an fcc solid solution phase, and the D0 22 phase is a Ni 3 V intermetallic compound phase.
2重複相組織を有する金属間化合物合金は、特許文献4に記載された方法によって作製することができる。但し、特許文献4では、独立したプロセスとして初析L12相とA1相とが共存する温度での熱処理を行うことによって上部複相組織を形成しているが、この熱処理を行う代わりに金属間化合物合金の鋳塊を作製する際、凝固時に徐冷をすることによっても上部複相組織を形成することができる。徐冷を行った場合、溶湯が凝固した後に初析L12相とA1相とが共存する温度に比較的長い時間滞在することになるので、上記熱処理を行った場合と同様に初析L12相とA1相とからなる上部複相組織が形成されるからである。
An intermetallic compound alloy having a two-duplex structure can be produced by the method described in Patent Document 4. However, in Patent Document 4, an upper multiphase structure is formed by performing a heat treatment at a temperature at which the proeutectoid L1 2 phase and the A1 phase coexist as an independent process. When producing an ingot of a compound alloy, the upper multiphase structure can also be formed by slow cooling during solidification. When performing the slow cooling, the melt is to stay relatively long time to a temperature that coexist with proeutectoid L1 2 phase and A1 phase after coagulation, similar to the case of performing the heat treatment proeutectoid L1 2 This is because an upper multiphase structure composed of a phase and an A1 phase is formed.
上記Ni基金属間化合物合金は、室温でのビッカース硬さが550~1000であることが好ましい。本発明において、「ビッカース硬さ」とは、別段の指示がない限り、荷重300g、保持時間20秒の条件で測定したものを意味する。
The Ni-based intermetallic compound alloy preferably has a Vickers hardness of 550 to 1000 at room temperature. In the present invention, “Vickers hardness” means a value measured under conditions of a load of 300 g and a holding time of 20 seconds unless otherwise specified.
鉄または鉄合金等の摩擦攪拌加工用ツールにおいては加工温度が高温になるため、高温における硬度が高いことが望ましく、例えば800℃ではビッカース硬さが400以上、より好ましくは450以上、更に好ましくは500以上あることが好ましい。
In a friction stir processing tool such as iron or iron alloy, since the processing temperature becomes high, it is desirable that the hardness at high temperature is high. For example, at 800 ° C., the Vickers hardness is 400 or more, more preferably 450 or more, and still more preferably. It is preferable that there are 500 or more.
上記室温でのビッカース硬さが550~1000であるNi基金属間化合物合金は、室温と900℃のビッカース硬さの差が0~300以内、より好ましくは0~150以内であることが好ましい。
In the Ni-based intermetallic compound alloy having a Vickers hardness of 550 to 1000 at room temperature, the difference between the Vickers hardness at room temperature and 900 ° C. is preferably within 0 to 300, more preferably within 0 to 150.
上記の、Niを主成分とし且つAl:2~9原子%、V:10~17原子%、(Ta及び/又はW):0.5~8原子%、Nb:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含むNi基金属間化合物合金は、特許文献4に開示されたNi3Al-Ni3Nb-Ni3V系金属間化合物合金より硬さに優れており、耐摩耗性を必要とする摩擦攪拌加工用ツールの材料として好適である。
Ni as a main component and Al: 2-9 atomic%, V: 10-17 atomic%, (Ta and / or W): 0.5-8 atomic%, Nb: 0-6 atomic%, Co A Ni-based intermetallic alloy containing B: 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atom% including: 0 to 6 atom% and Cr: 0 to 6 atom% is disclosed in Patent Document 4 Ni 3 Al—Ni 3 Nb—Ni 3 V-based intermetallic compound alloy is superior in hardness and suitable as a material for a friction stir processing tool that requires wear resistance.
また、本発明で用いられるNi基2重複相金属間化合物合金として、Niを主成分とし且つAl:5.5~13原子%、V:10~17原子%、Nb:0~6原子%、Ti:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するNi基2重複相金属間化合物合金も好ましい。ツールの製造は、溶解・鋳造法、鋳造材を熱間鍛造、塑性加工、粉末冶金法等にて賦形してもよい。
Further, the Ni-based dual-duplex intermetallic compound alloy used in the present invention is mainly composed of Ni and Al: 5.5 to 13 atomic%, V: 10 to 17 atomic%, Nb: 0 to 6 atomic%, B: 10 to 1000 ppm by weight and proeutectoid L1 with respect to the total weight of the composition of a total of 100 atom% including Ti: 0 to 6 atom%, Co: 0 to 6 atom%, and Cr: 0 to 6 atom% A Ni-based double-duplex intermetallic compound alloy having a double-duplex structure composed of two phases and a (L1 2 + D0 22 ) eutectoid structure is also preferable. The tool may be produced by melting / casting, casting the cast material by hot forging, plastic working, powder metallurgy, or the like.
上にも一部述べたが、Ni基2重複相金属間化合物合金のツールの製造は、種々の製造方法にて行うことができ、所定の組成になるように所定の元素の地金(それぞれ純度99.9重量%以上)とBを秤量したものを真空誘導溶解法やアーク溶解法等によって溶解、鋳造することによって鋳塊を作製する。この鋳塊から放電加工、切削加工、研削加工、研磨加工等を適宜用いて所定の形状に加工することによりツールを製造する。
As described above in part, the manufacture of the Ni-based double-duplex intermetallic alloy tool can be performed by various manufacturing methods. An ingot is prepared by melting and casting a product obtained by weighing B and having a purity of 99.9% by weight or more) and a vacuum induction melting method or an arc melting method. A tool is manufactured by processing the ingot into a predetermined shape by appropriately using electric discharge machining, cutting, grinding, polishing, or the like.
この発明の摩擦攪拌加工用ツールにおいて、上述のいずれかのNi基2重複相金属間化合物合金を母材とし、母材の表面が硬化処理されてなることが好ましい。以下、この発明の好ましい形態について説明する。
In the friction stir processing tool according to the present invention, it is preferable that any of the above-described Ni-based double-duplex intermetallic alloys is used as a base material and the surface of the base material is hardened. Hereinafter, preferred embodiments of the present invention will be described.
Ni基2重複相金属間化合物合金として、Ta及び/又はWを0.5~8原子%含むNi基2重複相金属間化合物合金が好ましく、Niを主成分とし且つAl:2~9原子%、V:10~17原子%、(Ta及び/又はW):0.5~8原子%、Nb:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するNi基2重複相金属間化合物合金が特に好ましい。
As the Ni-based double-duplex intermetallic compound alloy, a Ni-based double-duplex intermetallic compound alloy containing Ta and / or W in an amount of 0.5 to 8 atomic% is preferable, and Ni is the main component and Al: 2 to 9 atomic%. V: 10-17 atomic%, (Ta and / or W): 0.5-8 atomic%, Nb: 0-6 atomic%, Co: 0-6 atomic%, Cr: 0-6 atomic% Ni-base double overlap with B: 10 to 1000 ppm by weight with respect to the total weight of the composition of a total of 100 atomic% and having a double-phase structure composed of a pro-eutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure A phase intermetallic alloy is particularly preferred.
また、Niを主成分とし且つAl:5.5~13原子%、V:10~17原子%、Nb:0~6原子%、Ti:0~6原子%、Co:0~6原子、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有するNi基2重複相金属間化合物合金も特に好ましい。
Further, it is mainly composed of Ni and Al: 5.5 to 13 atom%, V: 10 to 17 atom%, Nb: 0 to 6 atom%, Ti: 0 to 6 atom%, Co: 0 to 6 atom, Cr : B: 10 to 1000 ppm by weight with respect to the total weight of the composition of 100 atom% including 0 to 6 atom%, and two overlaps consisting of the proeutectoid L1 2 phase and the (L1 2 + D0 22 ) eutectoid structure A Ni-based double-duplex intermetallic compound alloy having a phase structure is also particularly preferred.
上記2重複相組織は、最初に、比較的高い温度において初析L12相とA1相とからなる上部複相組織を形成し、その後、温度を下げることによってA1相をL12相とD022相とに分解させることによって形成することができる。これによって、図1(a)のTEM写真や図1(b)の模式図に示すような初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成される。なお、L12相は、Ni3Al金属間化合物相であり、A1相は、fcc固溶体相であり、D022相は、Ni3V金属間化合物相である。
The above double-phase structure first forms an upper double-phase structure composed of a proeutectoid L1 2 phase and an A1 phase at a relatively high temperature, and then lowers the temperature to convert the A1 phase into the L1 2 phase and D0 22. It can be formed by decomposing into phases. As a result, a double- phase structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure as shown in the TEM photograph of FIG. 1A and the schematic diagram of FIG. 1B is formed. . The L1 2 phase is a Ni 3 Al intermetallic compound phase, the A1 phase is an fcc solid solution phase, and the D0 22 phase is a Ni 3 V intermetallic compound phase.
上記2重複相組織を有する金属間化合物合金は、特許文献3や4に記載された方法によって作製することができる。但し、特許文献3や4では、独立したプロセスとして初析L12相とA1相とが共存する温度での熱処理を行うことによって上部複相組織を形成しているが、この熱処理を行う代わりに金属間化合物合金の鋳塊を作製する際、凝固時に徐冷をすることによっても上部複相組織を形成することができる。徐冷を行った場合、溶湯が凝固した後に初析L12相とA1相とが共存する温度に比較的長い時間滞在することになるので、上記熱処理を行った場合と同様に初析L12相とA1相とからなる上部複相組織が形成されるからである。
The intermetallic compound alloy having the above two-phase structure can be produced by the methods described in Patent Documents 3 and 4. However, in Patent Documents 3 and 4, the upper multiphase structure is formed by performing heat treatment at a temperature at which the pro-eutectoid L1 2 phase and the A1 phase coexist as an independent process, but instead of performing this heat treatment When producing an ingot of an intermetallic compound alloy, the upper multiphase structure can be formed also by slow cooling during solidification. When performing the slow cooling, the melt is to stay relatively long time to a temperature that coexist with proeutectoid L1 2 phase and A1 phase after coagulation, similar to the case of performing the heat treatment proeutectoid L1 2 This is because an upper multiphase structure composed of a phase and an A1 phase is formed.
上記硬化処理後の合金は、表面から荷重50gで測定した常温におけるビッカース硬さが500~1400であることが好ましい。また、上記硬化処理後の合金は、表面からの深さが20μmの位置において荷重10gで測定したビッカース硬さが500~1400であることが好ましい。
The alloy after the above-mentioned hardening treatment preferably has a Vickers hardness of 500 to 1400 at room temperature measured from the surface with a load of 50 g. Further, the alloy after the hardening treatment preferably has a Vickers hardness of 500 to 1400 measured at a load of 10 g at a position where the depth from the surface is 20 μm.
上記硬化処理としては、窒化処理又は浸炭処理の少なくとも一方による表面処理が好ましい。
As the curing treatment, surface treatment by at least one of nitriding treatment or carburizing treatment is preferable.
上記窒化処理とは、母材表面層の窒素量を増加させる処理である。窒化処理としては、塩浴窒化処理(主としてシアン塩浴中に被処理物を加熱し、窒化を行う処理)、ガス窒化処理(被処理物をアンモニア(NH3)ガス中で加熱し、窒化する処理)、プラズマ窒化処理(減圧した窒化性雰囲気中で、陰極とした被処理物と陽極との間に生じるグロー放電によるプラズマを用いて行う処理)等が挙げられるが、処理効率等の観点からプラズマ窒化処理が好ましい。プラズマ窒化処理の温度は特に限定されないが、効率的に表面を硬化させるには400~900℃が好ましい。
The nitriding treatment is a treatment for increasing the amount of nitrogen in the base material surface layer. As the nitriding treatment, salt bath nitriding treatment (mainly treatment for heating and nitriding in a cyan salt bath), gas nitriding treatment (heating the treatment subject in ammonia (NH 3 ) gas for nitriding) Treatment), plasma nitridation treatment (treatment performed using plasma caused by glow discharge generated between an anode to be treated and an anode in a reduced-pressure nitriding atmosphere), etc., from the viewpoint of treatment efficiency, etc. Plasma nitriding is preferred. The temperature of the plasma nitriding treatment is not particularly limited, but it is preferably 400 to 900 ° C. in order to efficiently cure the surface.
上記浸炭処理とは、母材表面層の炭素量を増加させる処理である。浸炭処理としては、ガス浸炭処理(被処理物を、浸炭性ガスの中で加熱し、浸炭を行う処理)、真空浸炭処理(被処理物を、真空炉において、減圧した浸炭性ガスの中で加熱し、浸炭を行う処理)、プラズマ浸炭処理(減圧した浸炭性雰囲気中で、陰極とした被処理物と陽極との間に生じるグロー放電によるプラズマを用いて行う処理)等が挙げられるが、処理効率等の観点からプラズマ浸炭処理が好ましい。プラズマ浸炭処理の温度は特に限定されないが、効率的に表面を硬化させるには400~900℃が好ましい。
The carburizing process is a process for increasing the carbon content of the base material surface layer. As carburizing treatment, gas carburizing treatment (treatment of heating a carburizing gas in a carburizing gas and carburizing), vacuum carburizing treatment (treating the treatment object in a carburizing gas reduced in a vacuum furnace) Heating and carburizing treatment), plasma carburizing treatment (treatment performed using plasma by glow discharge generated between the workpiece to be treated as the cathode and the anode in a reduced carburizing atmosphere), etc. Plasma carburizing treatment is preferable from the viewpoint of treatment efficiency and the like. The temperature of the plasma carburizing treatment is not particularly limited, but is preferably 400 to 900 ° C. in order to efficiently cure the surface.
以下、プラズマ窒化又は浸炭装置の一例と、プラズマ窒化処理、プラズマ浸炭処理、及びプラズマ窒化処理とプラズマ浸炭処理の組み合わせについてそれぞれ説明する。
Hereinafter, an example of a plasma nitriding or carburizing apparatus, a plasma nitriding process, a plasma carburizing process, and a combination of a plasma nitriding process and a plasma carburizing process will be described.
(1)プラズマ窒化又は浸炭装置
図2を用いてプラズマ窒化又は浸炭装置の一例について説明する。図2のプラズマ窒化又は浸炭装置は、真空炉体1と、真空炉体1内に配置された炉床2と、炉床2に電気的に接続された電極3と、真空炉体1内にプロセスガスを導入するプロセスガス導入部4と、真空炉体1内を排気するガス排気部5と、ガス排気部5に接続された真空ポンプ6と、真空炉体1が陽極となり且つ電極3が陰極となるように接続されたプラズマ電源7と、炉床2上に配置される被処理物8を加熱するためのヒーター9とを備える。電極3と真空炉体1とは電気的に絶縁されている。電極3が陰極となると、これに電気的に接続された炉床2及び被処理物8も陰極になる。 (1) Plasma nitriding or carburizing apparatus An example of a plasma nitriding or carburizing apparatus will be described with reference to FIG. The plasma nitriding or carburizing apparatus in FIG. 2 includes avacuum furnace body 1, a hearth 2 disposed in the vacuum furnace body 1, an electrode 3 electrically connected to the hearth 2, and a vacuum furnace body 1. A process gas introduction part 4 for introducing process gas, a gas exhaust part 5 for exhausting the inside of the vacuum furnace body 1, a vacuum pump 6 connected to the gas exhaust part 5, the vacuum furnace body 1 serves as an anode, and an electrode 3 A plasma power source 7 connected to be a cathode and a heater 9 for heating the workpiece 8 disposed on the hearth 2 are provided. The electrode 3 and the vacuum furnace body 1 are electrically insulated. When the electrode 3 becomes a cathode, the hearth 2 and the workpiece 8 electrically connected thereto also become cathodes.
図2を用いてプラズマ窒化又は浸炭装置の一例について説明する。図2のプラズマ窒化又は浸炭装置は、真空炉体1と、真空炉体1内に配置された炉床2と、炉床2に電気的に接続された電極3と、真空炉体1内にプロセスガスを導入するプロセスガス導入部4と、真空炉体1内を排気するガス排気部5と、ガス排気部5に接続された真空ポンプ6と、真空炉体1が陽極となり且つ電極3が陰極となるように接続されたプラズマ電源7と、炉床2上に配置される被処理物8を加熱するためのヒーター9とを備える。電極3と真空炉体1とは電気的に絶縁されている。電極3が陰極となると、これに電気的に接続された炉床2及び被処理物8も陰極になる。 (1) Plasma nitriding or carburizing apparatus An example of a plasma nitriding or carburizing apparatus will be described with reference to FIG. The plasma nitriding or carburizing apparatus in FIG. 2 includes a
以下、この装置を用いたプラズマ窒化又は浸炭処理の概要を説明する。
Hereinafter, the outline of the plasma nitriding or carburizing process using this apparatus will be described.
まず、炉床2上に被処理物8を配置する。次に、真空ポンプ6を作動させて真空炉体1を排気する。次に、ヒーター9を作動させて真空炉体1内及び被処理物8を加熱する。次に、プロセスガス導入部4からプロセスガスを真空炉体1内に導入すると共にプラズマ電源7を作動させることによって真空炉体1と被処理物8の間にグロー放電によるプラズマを生じさせ、このプラズマによって被処理物8のプラズマ窒化又は浸炭処理がなされる。
First, the workpiece 8 is placed on the hearth 2. Next, the vacuum pump 6 is operated to evacuate the vacuum furnace body 1. Next, the heater 9 is operated to heat the inside of the vacuum furnace body 1 and the workpiece 8. Next, a process gas is introduced into the vacuum furnace body 1 from the process gas introduction unit 4 and a plasma power source 7 is operated to generate plasma by glow discharge between the vacuum furnace body 1 and the workpiece 8. Plasma nitriding or carburizing of the workpiece 8 is performed by the plasma.
(2)プラズマ窒化処理
次に、プラズマ窒化処理について説明する。プラズマ窒化処理に用いるプロセスガスは、窒素源ガスを含む。窒素源ガスとしては、N2やNH3が挙げられ、N2が好ましい。プロセスガスは、窒素源ガスのみを含んでもよいが、H2やAr等の不活性ガスからなる希釈ガスを含むことが好ましい。この場合、試料表面に薄くて硬い窒化物が過剰に生成することが抑制され、より深部まで比較的均一な窒化層を形成することができる。窒素源ガス/希釈ガスの流量比は、特に限定されないが、一例では、0.1~10(好ましく0.5~2)である。プロセスガスには、窒素源ガスと希釈ガス以外のガス(例:炭素源ガス)を含めてもよい。雰囲気圧力は、グロー放電によるプラズマ生成が可能な圧力であればよく、例えば、50~2000Pa(好ましくは100~1000Pa)である。 (2) Plasma nitriding treatment Next, the plasma nitriding treatment will be described. The process gas used for the plasma nitriding treatment includes a nitrogen source gas. Examples of the nitrogen source gas include N 2 and NH 3 , and N 2 is preferable. The process gas may contain only the nitrogen source gas, but preferably contains a diluent gas composed of an inert gas such as H 2 or Ar. In this case, excessive generation of thin and hard nitride on the sample surface is suppressed, and a relatively uniform nitride layer can be formed deeper. The flow rate ratio of nitrogen source gas / dilution gas is not particularly limited, but in one example, it is 0.1 to 10 (preferably 0.5 to 2). The process gas may include a gas (for example, a carbon source gas) other than the nitrogen source gas and the dilution gas. The atmospheric pressure may be any pressure that can generate plasma by glow discharge, and is, for example, 50 to 2000 Pa (preferably 100 to 1000 Pa).
次に、プラズマ窒化処理について説明する。プラズマ窒化処理に用いるプロセスガスは、窒素源ガスを含む。窒素源ガスとしては、N2やNH3が挙げられ、N2が好ましい。プロセスガスは、窒素源ガスのみを含んでもよいが、H2やAr等の不活性ガスからなる希釈ガスを含むことが好ましい。この場合、試料表面に薄くて硬い窒化物が過剰に生成することが抑制され、より深部まで比較的均一な窒化層を形成することができる。窒素源ガス/希釈ガスの流量比は、特に限定されないが、一例では、0.1~10(好ましく0.5~2)である。プロセスガスには、窒素源ガスと希釈ガス以外のガス(例:炭素源ガス)を含めてもよい。雰囲気圧力は、グロー放電によるプラズマ生成が可能な圧力であればよく、例えば、50~2000Pa(好ましくは100~1000Pa)である。 (2) Plasma nitriding treatment Next, the plasma nitriding treatment will be described. The process gas used for the plasma nitriding treatment includes a nitrogen source gas. Examples of the nitrogen source gas include N 2 and NH 3 , and N 2 is preferable. The process gas may contain only the nitrogen source gas, but preferably contains a diluent gas composed of an inert gas such as H 2 or Ar. In this case, excessive generation of thin and hard nitride on the sample surface is suppressed, and a relatively uniform nitride layer can be formed deeper. The flow rate ratio of nitrogen source gas / dilution gas is not particularly limited, but in one example, it is 0.1 to 10 (preferably 0.5 to 2). The process gas may include a gas (for example, a carbon source gas) other than the nitrogen source gas and the dilution gas. The atmospheric pressure may be any pressure that can generate plasma by glow discharge, and is, for example, 50 to 2000 Pa (preferably 100 to 1000 Pa).
プラズマ窒化処理の温度は、400~900℃であり、好ましくは、500~800℃であり、さらに好ましくは550~700℃である。このような温度でプラズマ窒化処理を行うと表面の硬さが特に大きく向上するからである。プラズマ窒化処理の時間は、例えば、1~200時間である。
The temperature of the plasma nitriding treatment is 400 to 900 ° C., preferably 500 to 800 ° C., more preferably 550 to 700 ° C. This is because when the plasma nitriding treatment is performed at such a temperature, the hardness of the surface is particularly greatly improved. The plasma nitriding time is, for example, 1 to 200 hours.
プラズマ窒化処理による表面の硬さの向上効果をビッカース硬さでみると、Ta及び/又はWを0.5~8原子%含むNi基2重複相金属間化合物合金を、575℃で48時間の条件でプラズマ窒化処理した場合、常温でのビッカース硬さは、被処理物の表面から5μmの深さの位置で900~1200、10μmの深さの位置で700~900、15μmの深さの位置で600~700、20μmの深さの位置で560~650程度である。
When the effect of improving the surface hardness by plasma nitriding treatment is seen in terms of Vickers hardness, a Ni-based dual phase intermetallic compound alloy containing 0.5 to 8 atomic% of Ta and / or W is obtained at 575 ° C. for 48 hours. When plasma nitriding is performed under conditions, the Vickers hardness at normal temperature is 900 to 1200 at a depth of 5 μm from the surface of the object to be processed, 700 to 900 at a depth of 10 μm, and a depth of 700 to 900 μm. And about 560 to 650 at a depth of 600 to 700 and 20 μm.
(3)プラズマ浸炭処理
次に、プラズマ浸炭処理について説明する。プラズマ浸炭処理に用いるプロセスガスは、炭素源ガスを含む。炭素源ガスとしては、例えばメタン、プロパン、アセチレン等の炭化水素ガスが挙げられる。プロセスガスは、H2やAr等の不活性ガスからなる希釈ガスを含むことが好ましい。この場合、試料表面にススが付着することを抑制することができるからである。炭素源ガス/希釈ガスの流量比は、特に限定されないが、一例では、0.01~1(好ましく0.05~0.2)である。プロセスガスには、炭素源ガスと希釈ガス以外のガス(例:窒素源ガス)を含めてもよい。雰囲気圧力は、グロー放電によるプラズマ生成が可能な圧力であればよく、例えば、50~1000Pa(好ましくは100~500Pa)である。 (3) Plasma carburizing process Next, the plasma carburizing process will be described. The process gas used for the plasma carburizing process includes a carbon source gas. Examples of the carbon source gas include hydrocarbon gases such as methane, propane, and acetylene. The process gas preferably includes a dilution gas composed of an inert gas such as H 2 or Ar. In this case, it is possible to suppress soot from adhering to the sample surface. The flow rate ratio of the carbon source gas / dilution gas is not particularly limited, but in one example, is 0.01 to 1 (preferably 0.05 to 0.2). The process gas may include a gas (for example, nitrogen source gas) other than the carbon source gas and the dilution gas. The atmospheric pressure may be any pressure that enables plasma generation by glow discharge, and is, for example, 50 to 1000 Pa (preferably 100 to 500 Pa).
次に、プラズマ浸炭処理について説明する。プラズマ浸炭処理に用いるプロセスガスは、炭素源ガスを含む。炭素源ガスとしては、例えばメタン、プロパン、アセチレン等の炭化水素ガスが挙げられる。プロセスガスは、H2やAr等の不活性ガスからなる希釈ガスを含むことが好ましい。この場合、試料表面にススが付着することを抑制することができるからである。炭素源ガス/希釈ガスの流量比は、特に限定されないが、一例では、0.01~1(好ましく0.05~0.2)である。プロセスガスには、炭素源ガスと希釈ガス以外のガス(例:窒素源ガス)を含めてもよい。雰囲気圧力は、グロー放電によるプラズマ生成が可能な圧力であればよく、例えば、50~1000Pa(好ましくは100~500Pa)である。 (3) Plasma carburizing process Next, the plasma carburizing process will be described. The process gas used for the plasma carburizing process includes a carbon source gas. Examples of the carbon source gas include hydrocarbon gases such as methane, propane, and acetylene. The process gas preferably includes a dilution gas composed of an inert gas such as H 2 or Ar. In this case, it is possible to suppress soot from adhering to the sample surface. The flow rate ratio of the carbon source gas / dilution gas is not particularly limited, but in one example, is 0.01 to 1 (preferably 0.05 to 0.2). The process gas may include a gas (for example, nitrogen source gas) other than the carbon source gas and the dilution gas. The atmospheric pressure may be any pressure that enables plasma generation by glow discharge, and is, for example, 50 to 1000 Pa (preferably 100 to 500 Pa).
プラズマ浸炭処理の温度は、400~900℃であり、好ましくは680~850℃であり、さらに好ましくは700~800℃である。このような温度でプラズマ浸炭処理を行うと表面の硬さが特に大きく向上するからである。プラズマ浸炭処理の時間は、例えば、1~200時間である。
The temperature of the plasma carburizing treatment is 400 to 900 ° C., preferably 680 to 850 ° C., and more preferably 700 to 800 ° C. This is because when the plasma carburizing process is performed at such a temperature, the surface hardness is particularly improved. The plasma carburizing time is, for example, 1 to 200 hours.
プラズマ浸炭処理による表面の硬さの向上効果をビッカース硬さでみると、Ta及び/又はWを0.5~8原子%含むNi基2重複相金属間化合物合金を、750℃で48時間の条件でプラズマ浸炭処理した場合、常温でのビッカース硬さは、被処理物の表面から10μmの深さの位置で700~850、20μmの深さの位置で700~850、30μmの深さの位置で650~850、50μmの深さの位置で600~700、100μmの深さの位置で600~650程度である。
When the effect of improving the hardness of the surface by plasma carburizing treatment is seen in terms of Vickers hardness, Ni-based double-duplex intermetallic alloy containing 0.5 to 8 atomic% of Ta and / or W can be obtained at 750 ° C. for 48 hours. When plasma carburizing treatment is performed under the conditions, the Vickers hardness at normal temperature is 700 to 850 at a depth of 10 μm from the surface of the workpiece, and a depth of 700 to 850 and 30 μm at a depth of 20 μm. At a depth of 650 to 850 and 50 μm, 600 to 700, and at a depth of 100 μm, about 600 to 650.
(4)プラズマ窒化処理とプラズマ浸炭処理の組み合わせ
次に、プラズマ窒化処理とプラズマ浸炭処理の組み合わせについて説明する。 (4) Combination of plasma nitriding treatment and plasma carburizing treatment Next, a combination of plasma nitriding treatment and plasma carburizing treatment will be described.
次に、プラズマ窒化処理とプラズマ浸炭処理の組み合わせについて説明する。 (4) Combination of plasma nitriding treatment and plasma carburizing treatment Next, a combination of plasma nitriding treatment and plasma carburizing treatment will be described.
プラズマ窒化処理とプラズマ浸炭処理の組み合わせとしては、プラズマ窒化処理の後にプラズマ浸炭処理を行う場合、プラズマ浸炭処理の後にプラズマ窒化処理を行う場合、プラズマ窒化処理とプラズマ浸炭処理を同時に行う場合が考えられる。プラズマ窒化処理とプラズマ浸炭処理は、それぞれ、上記の条件で行うことができる。
As a combination of the plasma nitriding treatment and the plasma carburizing treatment, when the plasma carburizing treatment is performed after the plasma nitriding treatment, when performing the plasma nitriding treatment after the plasma carburizing treatment, the case where the plasma nitriding treatment and the plasma carburizing treatment are simultaneously performed may be considered. . The plasma nitriding treatment and the plasma carburizing treatment can each be performed under the above conditions.
プラズマ浸炭処理の後にプラズマ窒化処理を行うと、最表面での硬さをさらに向上させ且つ硬さ分布を緩やかにすることができる。プラズマ窒化処理の後にプラズマ浸炭処理を行うと、最表面での硬さは低いが、なだらかにしかも内部まで硬さ分布を形成することができる。
When plasma nitriding is performed after plasma carburizing, the hardness at the outermost surface can be further improved and the hardness distribution can be made gentle. When plasma carburizing is performed after plasma nitriding, the hardness at the outermost surface is low, but a hardness distribution can be formed gently and even inside.
また、プロセスガス中に窒素源ガスと炭素源ガスの両方を含めることによって、プラズマ窒化処理とプラズマ浸炭処理とを同時に行うこともできる。しかし、プラズマ窒化処理とプラズマ浸炭処理とでは最適温度が異なるため、プラズマ窒化処理とプラズマ浸炭処理の両方にとって適切な温度を選択することによって、優れた結果を得ることができると考えられる。
Further, by including both the nitrogen source gas and the carbon source gas in the process gas, the plasma nitriding treatment and the plasma carburizing treatment can be performed simultaneously. However, since the optimum temperature differs between the plasma nitriding treatment and the plasma carburizing treatment, it is considered that an excellent result can be obtained by selecting an appropriate temperature for both the plasma nitriding treatment and the plasma carburizing treatment.
本発明の摩擦攪拌加工用ツールを製造する方法は、例えば、以下のように行われる。
(1)鋳塊作製工程
まず、所定の組成になるように所定の元素の地金(それぞれ純度99.9重量%)とBを秤量したものをるつぼで溶解した後、金型またはセラミック鋳型で溶湯を凝固させることによって鋳塊からなる試料を作製する。ここで作製する鋳塊のサイズは、例えば、83mmφ×700mmである。この鋳塊から所定のツールを切り出す。 The method for producing the friction stir processing tool of the present invention is performed, for example, as follows.
(1) Ingot production process First, after weighing ingots of predetermined elements (purity 99.9% by weight) and B so as to have a predetermined composition in a crucible, the mold or ceramic mold is used. A sample made of an ingot is produced by solidifying the molten metal. The size of the ingot produced here is, for example, 83 mmφ × 700 mm. A predetermined tool is cut out from the ingot.
(1)鋳塊作製工程
まず、所定の組成になるように所定の元素の地金(それぞれ純度99.9重量%)とBを秤量したものをるつぼで溶解した後、金型またはセラミック鋳型で溶湯を凝固させることによって鋳塊からなる試料を作製する。ここで作製する鋳塊のサイズは、例えば、83mmφ×700mmである。この鋳塊から所定のツールを切り出す。 The method for producing the friction stir processing tool of the present invention is performed, for example, as follows.
(1) Ingot production process First, after weighing ingots of predetermined elements (purity 99.9% by weight) and B so as to have a predetermined composition in a crucible, the mold or ceramic mold is used. A sample made of an ingot is produced by solidifying the molten metal. The size of the ingot produced here is, for example, 83 mmφ × 700 mm. A predetermined tool is cut out from the ingot.
(2)熱処理工程
次に、上記ツールに対して、例えば、1000℃で10時間の真空熱処理(炉冷)を行う。1000℃は、L12相とD022相の共存温度であり、この熱処理によって(L12+D022)共析組織からなる下部複相組織がより確実に形成される。この熱処理後の試料が金属間化合物合金母材となる。ただし、凝固後徐冷される金属間化合物合金の鋳塊では、2重複相組織が形成される場合があるため、特別な熱処理を加えずともよい場合がある。 (2) Heat treatment step Next, for example, vacuum heat treatment (furnace cooling) is performed on the tool at 1000 ° C. for 10 hours. 1000 ° C. is the coexistence temperature of the L1 2 phase and the D0 22 phase, and the lower multiphase structure composed of the (L1 2 + D0 22 ) eutectoid structure is more reliably formed by this heat treatment. The sample after the heat treatment becomes an intermetallic compound alloy base material. However, in an ingot of an intermetallic compound alloy that is gradually cooled after solidification, a double-duplex structure may be formed.
次に、上記ツールに対して、例えば、1000℃で10時間の真空熱処理(炉冷)を行う。1000℃は、L12相とD022相の共存温度であり、この熱処理によって(L12+D022)共析組織からなる下部複相組織がより確実に形成される。この熱処理後の試料が金属間化合物合金母材となる。ただし、凝固後徐冷される金属間化合物合金の鋳塊では、2重複相組織が形成される場合があるため、特別な熱処理を加えずともよい場合がある。 (2) Heat treatment step Next, for example, vacuum heat treatment (furnace cooling) is performed on the tool at 1000 ° C. for 10 hours. 1000 ° C. is the coexistence temperature of the L1 2 phase and the D0 22 phase, and the lower multiphase structure composed of the (L1 2 + D0 22 ) eutectoid structure is more reliably formed by this heat treatment. The sample after the heat treatment becomes an intermetallic compound alloy base material. However, in an ingot of an intermetallic compound alloy that is gradually cooled after solidification, a double-duplex structure may be formed.
(3)表面処理工程
次に、上記熱処理後のツールに対して、前述の窒化処理や浸炭処理のような表面処理を行う。 (3) Surface treatment process Next, surface treatment like the above-mentioned nitriding treatment or carburizing treatment is performed on the tool after the heat treatment.
次に、上記熱処理後のツールに対して、前述の窒化処理や浸炭処理のような表面処理を行う。 (3) Surface treatment process Next, surface treatment like the above-mentioned nitriding treatment or carburizing treatment is performed on the tool after the heat treatment.
本明細書でいう鉄合金とは、鉄を主成分として他の元素を一つもしくは複数含む合金をいう。例えば、炭素鋼、ステンレスなどが挙げられる。
As used herein, an iron alloy refers to an alloy containing iron as a main component and one or more other elements. Examples thereof include carbon steel and stainless steel.
本発明の請求項6でいう被加工材の形状としては、特に限定されないが、薄板、厚板、塊状物などが挙げられ、摩擦攪拌接合の場合は薄板、厚板が特に好ましい。
The shape of the workpiece as defined in claim 6 of the present invention is not particularly limited, and examples thereof include a thin plate, a thick plate, and a lump, and in the case of friction stir welding, a thin plate and a thick plate are particularly preferable.
本発明の摩擦攪拌加工方法について詳しく説明する。突合せ摩擦攪拌接合においては被接合材を突合せにて定盤上に又は定盤上に置いた裏当て治具上に置き固定する。この際、攪拌接合による裏面からの汚染等の問題があるため、接合部分に裏当て材を置いてその上で接合加工されることがあるが、この方法は本発明のツールによる加工においても有用である。裏当て材は耐熱性、不燃性、強度、非汚染性、表面平滑性等を有することが好ましく、高融点金属、セラミックス等の材質にてなる箔、板、成形物等が用いられる。
The friction stir processing method of the present invention will be described in detail. In butt friction stir welding, the materials to be joined are placed and fixed on a surface plate or a backing jig placed on the surface plate by butt. At this time, because there is a problem such as contamination from the back side due to the stir welding, there is a case where a backing material is placed on the joining portion and then the joining process is performed, but this method is also useful in the processing by the tool of the present invention. It is. The backing material preferably has heat resistance, nonflammability, strength, non-contamination, surface smoothness, etc., and foils, plates, molded articles, etc. made of a material such as a refractory metal or ceramics are used.
上述の裏当て材を用いて、本発明の摩擦攪拌加工方法として、摩擦攪拌接合(FSW)を行う方法を図3を参照しながら説明する。
A method of performing friction stir welding (FSW) using the above backing material as a friction stir processing method of the present invention will be described with reference to FIG.
図3において、先ず、定盤上の所望の位置に、裏当て材20を配置する。
In FIG. 3, first, the backing material 20 is arranged at a desired position on the surface plate.
次に、上記裏当て材20の上の中央に、板状の被接合材31および32の接合線33が位置するように、板状の被接合材31および32を配置し固定する。被接合材31および32としては、主として、鉄または鉄合金からなる板状の被接合材が使用される。これ等の被接合材31および32は、裏当て治具10の形状に対応して、平たい単純な板状のものあるいは円筒状のような単純な曲面を有する板状なものであってもよく、また3次元的な曲面を有する板状のものであってもよい。
Next, the plate-shaped workpieces 31 and 32 are arranged and fixed so that the bonding line 33 of the plate-shaped workpieces 31 and 32 is located at the center on the backing material 20. As the materials to be bonded 31 and 32, plate-shaped materials made of iron or iron alloy are mainly used. These materials to be joined 31 and 32 may be flat or simple plate-like or plate-like having a simple curved surface such as a cylindrical shape corresponding to the shape of the backing jig 10. Further, it may be a plate having a three-dimensional curved surface.
上記裏当て材を、被接合材31および32と裏当て治具10との間に介在させるには、表面平滑な薄層体20を単に被接合材31および32の接合線33に沿って裏当て治具10上に載置するだけでもよいが、挟着作業を容易にするために、予め裏当て治具10の上に裏当て材20を粘着剤や接着剤により貼り付けておいてもよい。
In order to interpose the backing material between the materials to be joined 31 and 32 and the backing jig 10, the thin-layer body 20 having a smooth surface is simply placed along the joining line 33 of the materials to be joined 31 and 32. However, in order to facilitate the clamping operation, the backing material 20 may be pasted on the backing jig 10 with an adhesive or an adhesive in advance. Good.
その後、板状の被接合材31と32の接合線33の一端に、高速回転する接合用回転工具40(径の大きいショルダ部42とその先端にプローブ41を有する本発明の合金にてなるツール40)のプローブ41を高速回転させながら強い力で押し当て挿入し、ショルダ部42による圧力を付加し摩擦熱を発生させながらツール40を接合線33に沿って他端に移動させ、摩擦熱によりツール近傍を可塑化して固相状態で接合する。尚ツールは被接合材の接合部の近傍の表面の略法線方向から挿入されかつ略法線方向を保った状態で移動される。
After that, at one end of the joining line 33 of the plate- like workpieces 31 and 32, a joining rotary tool 40 (a tool made of an alloy of the present invention having a shoulder portion 42 having a large diameter and a probe 41 at the tip thereof). The probe 41 of 40) is pressed and inserted with a strong force while rotating at high speed, and the tool 40 is moved to the other end along the joining line 33 while applying pressure by the shoulder portion 42 to generate frictional heat. The vicinity of the tool is plasticized and joined in a solid state. It should be noted that the tool is inserted from the substantially normal direction of the surface in the vicinity of the joint portion of the material to be joined and is moved while maintaining the substantially normal direction.
ここで上記接合用回転工具(ツール)につき説明する。上記接合用回転工具(ツール)40は、径の大きいショルダ部42とショルダ部42に突出して設けられたプローブ41を有する。プローブ41にはねじが切られていてもよくねじがきられていないものでもよい。また、厚みが6mm程度以下の被接合材(31と32)を使用する場合は、上記ツール40のショルダ部42の直径は12~15mm程度で、プローブ41の直径は3~6mm程度のものが好適に使用される。
Here, the joining rotary tool (tool) will be described. The joining rotary tool (tool) 40 includes a shoulder portion 42 having a large diameter and a probe 41 provided to protrude from the shoulder portion 42. The probe 41 may be threaded or unthreaded. Further, when using a material to be joined (31 and 32) having a thickness of about 6 mm or less, the diameter of the shoulder portion 42 of the tool 40 is about 12 to 15 mm, and the diameter of the probe 41 is about 3 to 6 mm. Preferably used.
ショルダ部42の面は、接合線33に沿った被接合材31および32を押圧する必要があり、通常は被接合材31および32と当接するショルダ面が平面であるものあるいは曲率半径の大きい凹面が好ましい。場合によっては、やや円弧状または円錐状に凸面を形成したものも使用できる。平板状のものが加工が容易であるため好ましい。上記プローブ41の長さは、裏当て治具10と接触しないように、接合する被接合材31と32の厚みよりも短いのが普通である。ツール40の回転速度は一般に数百~数千回転/分、接合速度は一般に数十~数百mm/分であるが、条件によっては1~2m/分も可能である。
The surface of the shoulder portion 42 needs to press the materials to be joined 31 and 32 along the joining line 33. Usually, the shoulder surface contacting the materials to be joined 31 and 32 is a flat surface or a concave surface having a large curvature radius. Is preferred. Depending on the case, it is also possible to use a slightly arcuate or conical convex surface. A flat plate is preferable because it is easy to process. In general, the length of the probe 41 is shorter than the thickness of the materials to be joined 31 and 32 to be joined so as not to contact the backing jig 10. The rotation speed of the tool 40 is generally several hundred to several thousand revolutions / minute, and the joining speed is generally several tens to several hundreds mm / minute, but it can be 1 to 2 m / minute depending on conditions.
プローブ41はショルダ面に突出して設けられるが、位置はツールの回転軸上が好ましい。
The probe 41 is provided so as to protrude from the shoulder surface, but the position is preferably on the rotation axis of the tool.
プローブはショルダ面から発し先細りすなわち徐々に先端が細くなっている方がよい。
プローブの最先端は応力が集中して破損するのを防ぐため平面または回転半径の大きい曲面、例えば球面であるのが好ましい。プローブ高さ対プローブ根元半径の比は1または1より小さい方が好ましく、例えば半球がショルダ面にその底部を一部埋没したような形状に形成されているのが好ましい。回転したツールの先端のプローブが被加工材に当たるときの衝撃に対して強く、折損しにくく、回転により摩擦して可塑化後ツールを移動させるときに、被加工材が十分可塑化していない場合にも折損しにくいからである。また、接合において可塑化部分を攪拌する十分な深さを有することができ、摩擦攪拌加工によって表面から徐々にプローブが減耗したとしても、接合に対してのプローブの形状による影響が小さい。 The probe should start from the shoulder surface and taper, that is, the tip should gradually narrow.
The tip of the probe is preferably a flat surface or a curved surface having a large turning radius, for example, a spherical surface, in order to prevent stress concentration and damage. The ratio of the probe height to the probe root radius is preferably 1 or smaller than 1. For example, the hemisphere is preferably formed in a shape in which a bottom portion is partially buried in the shoulder surface. When the tool at the tip of the rotated tool is strong against impact when it hits the workpiece, is not easily broken, and when the workpiece is not sufficiently plasticized when moving the tool after plasticizing by friction due to rotation This is because it is difficult to break. Moreover, it can have a sufficient depth to stir the plasticized part in the joining, and even if the probe is gradually worn out from the surface by the friction stir processing, the influence of the shape of the probe on the joining is small.
プローブの最先端は応力が集中して破損するのを防ぐため平面または回転半径の大きい曲面、例えば球面であるのが好ましい。プローブ高さ対プローブ根元半径の比は1または1より小さい方が好ましく、例えば半球がショルダ面にその底部を一部埋没したような形状に形成されているのが好ましい。回転したツールの先端のプローブが被加工材に当たるときの衝撃に対して強く、折損しにくく、回転により摩擦して可塑化後ツールを移動させるときに、被加工材が十分可塑化していない場合にも折損しにくいからである。また、接合において可塑化部分を攪拌する十分な深さを有することができ、摩擦攪拌加工によって表面から徐々にプローブが減耗したとしても、接合に対してのプローブの形状による影響が小さい。 The probe should start from the shoulder surface and taper, that is, the tip should gradually narrow.
The tip of the probe is preferably a flat surface or a curved surface having a large turning radius, for example, a spherical surface, in order to prevent stress concentration and damage. The ratio of the probe height to the probe root radius is preferably 1 or smaller than 1. For example, the hemisphere is preferably formed in a shape in which a bottom portion is partially buried in the shoulder surface. When the tool at the tip of the rotated tool is strong against impact when it hits the workpiece, is not easily broken, and when the workpiece is not sufficiently plasticized when moving the tool after plasticizing by friction due to rotation This is because it is difficult to break. Moreover, it can have a sufficient depth to stir the plasticized part in the joining, and even if the probe is gradually worn out from the surface by the friction stir processing, the influence of the shape of the probe on the joining is small.
上記ツール40は、定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる公知の摩擦攪拌接合装置に取り付けられて使用される。また、定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸および揺動軸(A)と旋回軸(C)のツール2軸とからなる公知の5軸枠型の摩擦攪拌接合装置に取り付けられても使用される。また、三つの関節軸と二つの回転軸を具備した公知のロボットアームの先端に搭載されたマシンヘッドに取り付けて使用されることもあるが、これ等に限定されない。
The tool 40 is used by being attached to a known friction stir welding apparatus having three axes of a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z). In addition, a known 5-axis frame type consisting of a platen axis (X), a transverse axis (Y), a lifting / lowering axis (Z), three axes, and a swing axis (A) and a swivel axis (C), two tool axes. It is also used when attached to a friction stir welding apparatus. Moreover, although it may be attached and used for the machine head mounted in the front-end | tip of the well-known robot arm provided with three joint axes and two rotating shafts, it is not limited to these.
こうして、被接合材31と32との接合体が得られる。
Thus, a joined body of the materials to be joined 31 and 32 is obtained.
なお、上例においては、被接合材31と32とを接合する摩擦攪拌接合(FSW)について説明したが、本発明は、2枚の被接合材31と32に替えて、これと同様な1枚の被加工材を用い、その表面に高速回転するツール40のプローブ41を強い力で挿入することにより、その時に発生する摩擦熱により被加工材を改質する摩擦攪拌改質(FSP)にも適用できる。
In the above example, the friction stir welding (FSW) for joining the materials to be joined 31 and 32 has been described. However, the present invention replaces the two materials to be joined 31 and 32, and the same 1 By using a single workpiece and inserting the probe 41 of the tool 40 rotating at a high speed on the surface of the workpiece with a strong force, the friction stir reforming (FSP) for modifying the workpiece by the frictional heat generated at that time is used. Is also applicable.
また、被加工材の表面にプローブを挿入するが横移動させることなく、一定時間後にプローブを引き抜くことにより点加工を行う接合技術および改質技術にも適用できる。
Also, the probe can be inserted into the surface of the workpiece, but it can also be applied to a joining technique and a reforming technique in which point machining is performed by pulling out the probe after a certain time without lateral movement.
以下に、実施例を挙げて本発明を詳しく説明する。
(実施例1) Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
(実施例1) Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
(摩擦攪拌加工用ツールの作製)
Ni:75原子%、Al:8.75原子%、V:13.25原子%、Nb:3原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nbの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、金型で溶湯を凝固させることによって5kgの鋳塊を作製した。 (Production of friction stir processing tool)
Metals of Ni, Al, V, and Nb to have a composition of Ni: 75 atomic%, Al: 8.75 atomic%, V: 13.25 atomic%, Nb: 3 atomic%, B: 50 ppm by weight (Weighing 99.9% by weight) and B were weighed in a vacuum induction melting furnace, and then the molten metal was solidified with a mold to prepare a 5 kg ingot.
Ni:75原子%、Al:8.75原子%、V:13.25原子%、Nb:3原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nbの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、金型で溶湯を凝固させることによって5kgの鋳塊を作製した。 (Production of friction stir processing tool)
Metals of Ni, Al, V, and Nb to have a composition of Ni: 75 atomic%, Al: 8.75 atomic%, V: 13.25 atomic%, Nb: 3 atomic%, B: 50 ppm by weight (Weighing 99.9% by weight) and B were weighed in a vacuum induction melting furnace, and then the molten metal was solidified with a mold to prepare a 5 kg ingot.
この鋳塊に対し、粗大な結晶粒からなる鋳造組織を微細化するためと、気孔等の鋳造欠陥をなくす目的で1300℃で総圧下率約60%の熱間鍛造を行った。このとき、熱間鍛造は一度に60%の圧下率をかけるのではなく、複数回に分けて行い、1回の鍛造毎に試料は1300℃に加熱された。
This hot ingot was subjected to hot forging at 1300 ° C. with a total reduction of about 60% in order to refine the cast structure composed of coarse crystal grains and to eliminate casting defects such as pores. At this time, hot forging did not apply a reduction rate of 60% at a time, but was divided into a plurality of times, and the sample was heated to 1300 ° C. for each forging.
この鋳塊から、以下に示す形状に切削加工して本発明のツールを作製した。このツールの材質を「H#1」と呼ぶことにする。
The tool of the present invention was manufactured from this ingot by cutting into the shape shown below. The material of this tool will be called “H # 1”.
(摩擦攪拌加工用ツールの形状)
ショルダ面は直径12mmの円形の平面であり、その中央に設けたプローブは半径2mmの球面がショルダ面から一部突出している。プローブの底部直径は約4mmであり、ショルダ面からプローブの先端までの長さ(突出高さ、プローブ長さ)は0.90mmである。 (Shape of friction stir processing tool)
The shoulder surface is a circular plane having a diameter of 12 mm, and the probe provided at the center has a spherical surface with a radius of 2 mm partially protruding from the shoulder surface. The bottom diameter of the probe is about 4 mm, and the length from the shoulder surface to the tip of the probe (projection height, probe length) is 0.90 mm.
ショルダ面は直径12mmの円形の平面であり、その中央に設けたプローブは半径2mmの球面がショルダ面から一部突出している。プローブの底部直径は約4mmであり、ショルダ面からプローブの先端までの長さ(突出高さ、プローブ長さ)は0.90mmである。 (Shape of friction stir processing tool)
The shoulder surface is a circular plane having a diameter of 12 mm, and the probe provided at the center has a spherical surface with a radius of 2 mm partially protruding from the shoulder surface. The bottom diameter of the probe is about 4 mm, and the length from the shoulder surface to the tip of the probe (projection height, probe length) is 0.90 mm.
(摩擦攪拌加工)
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、実施例1では、被加工材として1枚の平板を用いてビードオン(bead on。又は、スターインプレート。stir-in-plateともいう)摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the friction stir processing tool, the friction stir processing was performed by the method shown in FIG. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate- like workpieces 31 and 32. In Example 1, one flat plate is used as the workpiece. A bead-on (or star-in-plate, also referred to as a stir-in-plate) friction stir processing test was performed.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、実施例1では、被加工材として1枚の平板を用いてビードオン(bead on。又は、スターインプレート。stir-in-plateともいう)摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the friction stir processing tool, the friction stir processing was performed by the method shown in FIG. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-
定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている(以下の実施例、比較例も同様)。
The tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z). At the time of friction stir processing, argon gas flows along the side of the tool and wraps around the tool (the same applies to the following examples and comparative examples).
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な99.5%純度の酸化アルミ平板(15cm角、2.5mm厚)を裏当て材20として固定した。
As shown in FIG. 3, a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thickness) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20.
酸化アルミ製裏当て材20上に、1枚のSUS430からなる平板状の被加工材(15cm角、1.5mm厚)を載置し固定した。
On the aluminum oxide backing material 20, a flat plate-shaped workpiece (15 cm square, 1.5 mm thickness) made of one SUS430 was placed and fixed.
ツール40を、前進角3度、1200rpmで回転させながら上記SUS430平板上に挿入し、100mm/分の送り速度で直線状に250mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約29400Nに設定した。加工時にツール側面はオレンジ色に発光した。加工後の目視観察によればSUS430平板の施工状態は図4の写真に示すように、加工部の表面にツール40による加工痕34が存在するが良好であり、また、その裏面写真を図5に示すが、平滑であった。ただし、裏当て材の酸化アルミ板20が加工中に割れたため割れ目に可塑化したSUSが入り込み冷却固化した部分が凸状の細い筋となって見えている。
The tool 40 was inserted on the SUS430 flat plate while rotating at a forward angle of 3 degrees and 1200 rpm, and was moved 250 mm linearly at a feed rate of 100 mm / min, and a bead-on friction stir processing test was performed by friction stir processing. The load on the tool 40 was set to about 29400N. The side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 4, the working state of the SUS430 flat plate is good although there is a processing mark 34 by the tool 40 on the surface of the processing portion, and the back surface photograph is shown in FIG. As shown, it was smooth. However, since the backing aluminum oxide plate 20 was cracked during processing, SUS plasticized into the cracks entered and cooled and solidified was seen as convex fine streaks.
実施例1における、ツール材質、被加工材材質、FSW加工形式、FSW加工条件及びツールサイズを纏めて表1に示した。なお、表1において、ツールサイズとはFSW加工に使用される前のツールのサイズをいう。また、表1には、後述の実施例2~11及び比較例1についても、同様の事項を纏めて示した。
Table 1 summarizes the tool material, workpiece material, FSW machining format, FSW machining conditions, and tool size in Example 1. In Table 1, the tool size refers to the size of the tool before being used for FSW processing. Table 1 also shows the same items for Examples 2 to 11 and Comparative Example 1 described later.
実施例1と同様にして、実施例1と同様の形状の摩擦攪拌加工用ツールを作製した。得られたツールを用いて、被加工材をSUS430からなる被加工材の代わりにチタン(純チタン2種(JIS記号:TB340H))からなる平板状の被加工材(15cm角、1.5mm厚)としたこと、加工時のツールの移動距離を120mmにしたことの他は、実施例1と同様にしてビードオン摩擦攪拌加工試験を行った。
In the same manner as in Example 1, a friction stir processing tool having the same shape as in Example 1 was produced. Using the obtained tool, instead of the workpiece made of SUS430, the plate-like workpiece (15 cm square, 1.5 mm thickness) made of titanium (2 types of pure titanium (JIS symbol: TB340H)) is used. The bead-on friction stir processing test was carried out in the same manner as in Example 1 except that the movement distance of the tool during processing was set to 120 mm.
加工後の目視観察によればチタン平板の施工状態は、加工部の表面にツール40による加工痕34が存在するがバリ等の欠陥はなく、また、その裏面も平滑であった。また、ツール40は外観上摩耗は軽微であった。
(実施例3) According to the visual observation after the machining, the titanium flat plate was subjected to themachining mark 34 by the tool 40 on the surface of the machined portion, but there were no defects such as burrs, and the back surface was smooth. Further, the tool 40 was slightly worn out in appearance.
(Example 3)
(実施例3) According to the visual observation after the machining, the titanium flat plate was subjected to the
(Example 3)
実施例2で使用した摩擦攪拌加工用ツールを用いて、実施例2とは別のチタン(純チタン2種(JIS記号:TB340H))からなる平板状の被加工材(15cm角、1.5mm厚)を用いたことの他は、実施例2と同様にしてビードオン摩擦攪拌加工試験を行った。
Using the friction stir processing tool used in Example 2, a plate-shaped workpiece (15 cm square, 1.5 mm) made of titanium (two types of pure titanium (JIS symbol: TB340H)) different from Example 2 A bead-on friction stir processing test was conducted in the same manner as in Example 2 except that the thickness) was used.
加工後の目視観察によればチタン平板の施工状態は図6の写真に示すように、加工部の表面にツール40による加工痕34が存在するがバリ等の欠陥はなく、また、その裏面写真を図7に示すが、平滑であった。ただし、裏当て材の酸化アルミ板20が加工中に割れたため割れ目に可塑化したチタンが入り込み冷却固化した部分が凸状の細い筋となって見えている。また、ツール40は外観上摩耗は軽微であった。
(実施例4) According to the visual observation after processing, as shown in the photograph of FIG. 6, the titanium flat plate has aprocessing mark 34 due to the tool 40 on the surface of the processing portion, but there are no defects such as burrs, and a back surface photograph thereof. As shown in FIG. 7, it was smooth. However, since the backing aluminum oxide plate 20 was cracked during processing, the portion where the plasticized titanium entered the cracks and cooled and solidified appeared as convex fine streaks. Further, the tool 40 was slightly worn out in appearance.
Example 4
(実施例4) According to the visual observation after processing, as shown in the photograph of FIG. 6, the titanium flat plate has a
Example 4
(摩擦攪拌加工用ツールの作製)
Ni:71.5原子%、Al:7原子%、V:10.5原子%、Nb:3原子%、Co:3原子%、Cr:3原子%、Ta:2原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nb、Co、Cr、Taの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって10kgの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。この鋳塊から、実施例1に示した摩擦攪拌加工用ツールの形状と同様の形状に切削加工して本発明のツールを作製した。このツールの材質を「Ta#1」と呼ぶことにする。 (Production of friction stir processing tool)
Ni: 71.5 atomic%, Al: 7 atomic%, V: 10.5 atomic%, Nb: 3 atomic%, Co: 3 atomic%, Cr: 3 atomic%, Ta: 2 atomic%, B: 50 weight After weighing ingots of Ni, Al, V, Nb, Co, Cr and Ta ingots (purity 99.9% by weight) and B so as to have a composition of ppm in a vacuum induction melting furnace, ceramic A 10 kg ingot was produced by solidifying the molten metal with a mold. When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot. The tool of the present invention was manufactured by cutting this ingot into a shape similar to the shape of the friction stir processing tool shown in Example 1. The material of this tool will be called “Ta # 1”.
Ni:71.5原子%、Al:7原子%、V:10.5原子%、Nb:3原子%、Co:3原子%、Cr:3原子%、Ta:2原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nb、Co、Cr、Taの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって10kgの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。この鋳塊から、実施例1に示した摩擦攪拌加工用ツールの形状と同様の形状に切削加工して本発明のツールを作製した。このツールの材質を「Ta#1」と呼ぶことにする。 (Production of friction stir processing tool)
Ni: 71.5 atomic%, Al: 7 atomic%, V: 10.5 atomic%, Nb: 3 atomic%, Co: 3 atomic%, Cr: 3 atomic%, Ta: 2 atomic%, B: 50 weight After weighing ingots of Ni, Al, V, Nb, Co, Cr and Ta ingots (purity 99.9% by weight) and B so as to have a composition of ppm in a vacuum induction melting furnace, ceramic A 10 kg ingot was produced by solidifying the molten metal with a mold. When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot. The tool of the present invention was manufactured by cutting this ingot into a shape similar to the shape of the friction stir processing tool shown in Example 1. The material of this tool will be called “
(摩擦攪拌加工)
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、実施例4では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the friction stir processing tool, the friction stir processing was performed by the method shown in FIG. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate- like workpieces 31 and 32, but in Example 4, one flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、実施例4では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the friction stir processing tool, the friction stir processing was performed by the method shown in FIG. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-
定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。
The tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z). At the time of friction stir processing, argon gas flows along the side of the tool and wraps around the tool.
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な99.5%純度の酸化アルミ平板(15cm角、2.5mm厚)を裏当て材20として固定した。
As shown in FIG. 3, a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thickness) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20.
酸化アルミ製裏当て材20上に、1枚のSUS430からなる平板状の被加工材(15cm角、1.5mm厚)を載置し固定した。
On the aluminum oxide backing material 20, a flat plate-shaped workpiece (15 cm square, 1.5 mm thickness) made of one SUS430 was placed and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、900rpmで回転させながら上記SUS430平板上を、150mm/分の送り速度で直線状に90mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。加工後の目視観察によればSUS430平板の施工状態は図8の写真に示すように、加工部の表面にツール40による加工痕34が存在するが良好であった。
(実施例5) Thetool 40 was inserted on the SUS430 flat plate while rotating at a forward angle of 3 degrees and 600 rpm, and the SUS430 was softened. Next, a bead-on friction stir processing test was conducted by friction stir processing by moving the tool 40 90 mm linearly at a feed rate of 150 mm / min while rotating the tool 40 at a forward angle of 3 degrees and 900 rpm. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 8, the construction state of the SUS430 flat plate was good although there was a processing mark 34 by the tool 40 on the surface of the processing portion.
(Example 5)
(実施例5) The
(Example 5)
(摩擦攪拌加工用ツールの作製)
Ni:71.5原子%、Al:7原子%、V:10.5原子%、Nb:3原子%、Co:3原子%、Cr:3原子%、W:2原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nb、Co、Cr、Wの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって10kgの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。 (Production of friction stir processing tool)
Ni: 71.5 atomic%, Al: 7 atomic%, V: 10.5 atomic%, Nb: 3 atomic%, Co: 3 atomic%, Cr: 3 atomic%, W: 2 atomic%, B: 50 weight After a Ni, Al, V, Nb, Co, Cr, and W bullion (purity 99.9% by weight) and B were weighed in a vacuum induction melting furnace so as to have a ppm composition, A 10 kg ingot was produced by solidifying the molten metal with a mold. When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot.
Ni:71.5原子%、Al:7原子%、V:10.5原子%、Nb:3原子%、Co:3原子%、Cr:3原子%、W:2原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nb、Co、Cr、Wの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって10kgの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。 (Production of friction stir processing tool)
Ni: 71.5 atomic%, Al: 7 atomic%, V: 10.5 atomic%, Nb: 3 atomic%, Co: 3 atomic%, Cr: 3 atomic%, W: 2 atomic%, B: 50 weight After a Ni, Al, V, Nb, Co, Cr, and W bullion (purity 99.9% by weight) and B were weighed in a vacuum induction melting furnace so as to have a ppm composition, A 10 kg ingot was produced by solidifying the molten metal with a mold. When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot.
この鋳塊から、実施例1に示した摩擦攪拌加工用ツールの形状と同様の形状に切削加工して本発明のツールを作製した。このツールの材質を「W#1」と呼ぶことにする。
The tool of the present invention was manufactured by cutting this ingot into a shape similar to the shape of the friction stir processing tool shown in Example 1. The material of this tool will be called “W # 1”.
(摩擦攪拌加工)
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
ツール40を、前進角3度、400rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら上記SUS430平板上を、150mm/分の送り速度で直線状に90mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。加工後の目視観察によればSUS430平板の施工状態は図9の写真に示すように、加工部の表面にツール40による加工痕34が存在するが良好であった。
(実施例6) Thetool 40 was inserted on the SUS430 flat plate while rotating at 400 rpm with an advance angle of 3 degrees to soften the SUS430. Next, a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 9, the construction state of the SUS430 flat plate was good although the processing marks 34 by the tool 40 exist on the surface of the processing portion.
(Example 6)
(実施例6) The
(Example 6)
(摩擦攪拌加工用ツールの作製)
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “W # 1” was produced.
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z). During friction stir welding, argon gas flows along the side of the tool and wraps around the tool.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な99.5%純度の酸化アルミ平板(15cm角、2.5mm厚)を裏当て材20として固定した。
As shown in FIG. 3, a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thickness) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20.
酸化アルミ製裏当て材20上に、SUS430からなる2枚の平板状の被接合材31、32(15cm角、1.5mm厚)の接合面を互いに突き合わせて載置し固定した。
On the aluminum oxide backing material 20, two flat plate-like materials 31 and 32 (15 cm square, 1.5 mm thickness) made of SUS430 were put in contact with each other and fixed.
ツール40を、前進角3度、700rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら150mm/分の送り速度で被接合材31、32の接合線33に沿って約90mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。
The tool 40 was inserted on the joining line 33 while rotating at a forward angle of 3 degrees and 700 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, the tool 40 is moved about 90 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 150 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm, and friction stir welding is performed. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図10の写真に示すように、接合部の表面にツール40による加工痕34が存在するが良好であり、その裏面写真を図11に示すが、平滑であった。ただし、裏当て材の酸化アルミ板20が加工中に割れたため割れ目に可塑化したSUSが入り込み冷却固化した部分が凸状の細い筋となって見えている。
As shown in the photograph of FIG. 10, the joined body of the materials to be joined 31 and 32 obtained by the friction stir welding has a processing mark 34 due to the tool 40 on the surface of the joined portion, which is good. The back surface photograph is shown in FIG. 11 and was smooth. However, since the backing aluminum oxide plate 20 was cracked during processing, SUS plasticized into the cracks entered and cooled and solidified was seen as convex fine streaks.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、JIS Z 2241「金属材料引張試験方法」に準じて引張試験を行った。試料は、JIS Z 2201 5号試験片の形状に準じ、幅24.6mm、平行部長さ50mmとした。厚さは1.46mmであった。測定時のクロスヘッド速度は20mm/minとした。その結果、引張強度は505MPaであった。同様の条件で測定したSUS430母材の引張強度はn=3の平均が519MPaであった。したがって、上記の接合部の引張強度は、ほぼ母材並みであることが分かった。また、破断した試験片の写真を図19に示したが、図19の中で中央部に位置する(図中に符号2で表した)本試験片は破断が接合部でなく母材部分で起こったことを示していた。また、荷重-変位曲線を図20に示したが、図20において、符号2で表される本試験片は、破断までによく伸びていることが分かる。
In order to examine the strength of the above-mentioned joint part, a sample was produced from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed according to JIS Z 2241 “Tensile test method for metal material”. The sample had a width of 24.6 mm and a parallel part length of 50 mm in accordance with the shape of the JIS Z 2201 No. 5 test piece. The thickness was 1.46 mm. The crosshead speed at the time of measurement was 20 mm / min. As a result, the tensile strength was 505 MPa. As for the tensile strength of the SUS430 base material measured under the same conditions, the average of n = 3 was 519 MPa. Therefore, it was found that the tensile strength of the above-mentioned joint portion is almost the same as that of the base material. Moreover, although the photograph of the fractured test piece is shown in FIG. 19, the test piece located at the center in FIG. 19 (represented by reference numeral 2 in the figure) is not the joint but the base material portion. It showed what happened. Further, the load-displacement curve is shown in FIG. 20. In FIG. 20, it can be seen that the present test piece represented by reference numeral 2 is well stretched before breaking.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図21に示した。図21において、この断面の厚みは前述のように1.46mmである。この写真から分かるように、元の突合せ界面は摩擦攪拌により完全に消失し接合できている。
(実施例7) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. The micrograph is shown in FIG. In FIG. 21, the thickness of this cross section is 1.46 mm as described above. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 7)
(実施例7) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. The micrograph is shown in FIG. In FIG. 21, the thickness of this cross section is 1.46 mm as described above. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 7)
(摩擦攪拌加工用ツールの作製)
実施例4と同様にして、ツールの材質「Ta#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 4, a friction stir processing tool made of the tool material “Ta # 1” was produced.
実施例4と同様にして、ツールの材質「Ta#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 4, a friction stir processing tool made of the tool material “
(プラズマ窒化(PN)処理)
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ窒化装置に入れ、圧力0.05Paで約60分真空加熱し575℃にした。次いでN2/H2=1/1の混合ガスを供給し、圧力180Paで、温度575℃にて、48時間かけてプラズマ窒化処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。得られたツールを「Ta#1-PN」と呼ぶことにする。 (Plasma nitriding (PN) treatment)
The obtained tool for friction stir processing was put into the plasma nitriding apparatus shown in FIG. 2, and heated to 575 ° C. under a pressure of 0.05 Pa for about 60 minutes. Next, a mixed gas of N 2 / H 2 = 1/1 was supplied, and plasma nitriding was performed at a pressure of 180 Pa and a temperature of 575 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The obtained tool will be called “Ta # 1-PN”.
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ窒化装置に入れ、圧力0.05Paで約60分真空加熱し575℃にした。次いでN2/H2=1/1の混合ガスを供給し、圧力180Paで、温度575℃にて、48時間かけてプラズマ窒化処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。得られたツールを「Ta#1-PN」と呼ぶことにする。 (Plasma nitriding (PN) treatment)
The obtained tool for friction stir processing was put into the plasma nitriding apparatus shown in FIG. 2, and heated to 575 ° C. under a pressure of 0.05 Pa for about 60 minutes. Next, a mixed gas of N 2 / H 2 = 1/1 was supplied, and plasma nitriding was performed at a pressure of 180 Pa and a temperature of 575 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The obtained tool will be called “Ta # 1-PN”.
(摩擦攪拌加工)
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
ツール40を、前進角3度、400rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら上記SUS430平板上を、150mm/分の送り速度で直線状に90mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。加工後の目視観察によればSUS430平板の施工状態は図12の写真に示すように、加工部の表面にツール40による加工痕34が存在するが良好であった。
(実施例8) Thetool 40 was inserted on the SUS430 flat plate while rotating at 400 rpm with an advance angle of 3 degrees to soften the SUS430. Next, a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 12, the construction state of the SUS430 flat plate was good although there was a processing mark 34 by the tool 40 on the surface of the processing portion.
(Example 8)
(実施例8) The
(Example 8)
(摩擦攪拌加工用ツールの作製)
実施例4と同様にして、ツールの材質「Ta#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 4, a friction stir processing tool made of the tool material “Ta # 1” was produced.
実施例4と同様にして、ツールの材質「Ta#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 4, a friction stir processing tool made of the tool material “
(プラズマ浸炭(PC)処理)
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ浸炭装置に入れ、圧力0.05Paで75分真空加熱し750℃にした。次いでC3H8/H2=1/10の混合ガスを供給し、圧力130Paで、温度750℃にて、48時間かけてプラズマ浸炭処理した。その後、N2ガスを装置内に導入して室温にまで冷却した。得られたツールを「Ta#1-PC」と呼ぶことにする。 (Plasma carburizing (PC) treatment)
The obtained tool for friction stir processing was put into the plasma carburizing apparatus shown in FIG. 2, and heated to 750 ° C. under a pressure of 0.05 Pa for 75 minutes. Next, a mixed gas of C 3 H 8 / H 2 = 1/10 was supplied, and plasma carburization was performed at a pressure of 130 Pa and a temperature of 750 ° C. for 48 hours. Thereafter, N 2 gas was introduced into the apparatus and cooled to room temperature. The obtained tool is called “Ta # 1-PC”.
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ浸炭装置に入れ、圧力0.05Paで75分真空加熱し750℃にした。次いでC3H8/H2=1/10の混合ガスを供給し、圧力130Paで、温度750℃にて、48時間かけてプラズマ浸炭処理した。その後、N2ガスを装置内に導入して室温にまで冷却した。得られたツールを「Ta#1-PC」と呼ぶことにする。 (Plasma carburizing (PC) treatment)
The obtained tool for friction stir processing was put into the plasma carburizing apparatus shown in FIG. 2, and heated to 750 ° C. under a pressure of 0.05 Pa for 75 minutes. Next, a mixed gas of C 3 H 8 / H 2 = 1/10 was supplied, and plasma carburization was performed at a pressure of 130 Pa and a temperature of 750 ° C. for 48 hours. Thereafter, N 2 gas was introduced into the apparatus and cooled to room temperature. The obtained tool is called “Ta # 1-PC”.
(摩擦攪拌加工)
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
ツール40を、前進角3度、700rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら上記SUS430平板上を、150mm/分の送り速度で直線状に200mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。加工後の目視観察によればSUS430平板の施工状態は図13の写真に示すように、加工部の表面にツール40による加工痕34が存在するが良好であり、その裏面写真を図14に示すが、平滑であった。ただし、裏当て材の酸化アルミ板20が加工中に割れたため割れ目に可塑化したSUSが入り込み冷却固化した部分が凸状の細い筋となって見えている。
(実施例9) Thetool 40 was inserted onto the SUS430 flat plate while being rotated at 700 rpm with an advance angle of 3 degrees, and the SUS430 was softened. Next, a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly by 200 mm on the SUS430 flat plate while rotating the tool 40 at a forward angle of 3 degrees and 1200 rpm. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 13, the construction state of the SUS430 flat plate is good although the processing marks 34 by the tool 40 are present on the surface of the processing portion, and the back surface photograph is shown in FIG. 14. However, it was smooth. However, since the backing aluminum oxide plate 20 was cracked during processing, SUS plasticized into the cracks entered and cooled and solidified was seen as convex fine streaks.
Example 9
(実施例9) The
Example 9
(摩擦攪拌加工用ツールの作製)
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “W # 1” was produced.
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “
(プラズマ窒化(PN)処理)
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ窒化装置に入れ、圧力0.05Paで約60分真空加熱し575℃にした。次いでN2/H2=1/1の混合ガスを供給し、圧力180Paで、温度575℃にて、48時間かけてプラズマ窒化処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。得られたツールを「W#1-PN」と呼ぶことにする。 (Plasma nitriding (PN) treatment)
The obtained tool for friction stir processing was put into the plasma nitriding apparatus shown in FIG. 2, and heated to 575 ° C. under a pressure of 0.05 Pa for about 60 minutes. Next, a mixed gas of N 2 / H 2 = 1/1 was supplied, and plasma nitriding was performed at a pressure of 180 Pa and a temperature of 575 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The obtained tool is called “W # 1-PN”.
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ窒化装置に入れ、圧力0.05Paで約60分真空加熱し575℃にした。次いでN2/H2=1/1の混合ガスを供給し、圧力180Paで、温度575℃にて、48時間かけてプラズマ窒化処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。得られたツールを「W#1-PN」と呼ぶことにする。 (Plasma nitriding (PN) treatment)
The obtained tool for friction stir processing was put into the plasma nitriding apparatus shown in FIG. 2, and heated to 575 ° C. under a pressure of 0.05 Pa for about 60 minutes. Next, a mixed gas of N 2 / H 2 = 1/1 was supplied, and plasma nitriding was performed at a pressure of 180 Pa and a temperature of 575 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The obtained tool is called “W # 1-PN”.
(摩擦攪拌加工)
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
ツール40を、前進角3度、700rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら上記SUS430平板上を、150mm/分の送り速度で直線状に90mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。加工後の目視観察によればSUS430平板の施工状態は図15の写真に示すように、加工部の表面にツール40による加工痕34が存在するが良好であった。
(実施例10) Thetool 40 was inserted onto the SUS430 flat plate while being rotated at 700 rpm with an advance angle of 3 degrees, and the SUS430 was softened. Next, a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 15, the working state of the SUS430 flat plate was good although the processing marks 34 by the tool 40 exist on the surface of the processing portion.
(Example 10)
(実施例10) The
(Example 10)
(摩擦攪拌加工用ツールの作製)
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “W # 1” was produced.
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “
(プラズマ浸炭(PC)処理)
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ浸炭装置に入れ、圧力0.05Paで75分真空加熱し750℃にした。次いでC3H8/H2=1/10の混合ガスを供給し、圧力130Paで、温度750℃にて、48時間かけてプラズマ浸炭処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。得られたツールを「W#1-PC」と呼ぶことにする。 (Plasma carburizing (PC) treatment)
The obtained tool for friction stir processing was put into the plasma carburizing apparatus shown in FIG. 2, and heated to 750 ° C. under a pressure of 0.05 Pa for 75 minutes. Next, a mixed gas of C 3 H 8 / H 2 = 1/10 was supplied, and plasma carburization was performed at a pressure of 130 Pa and a temperature of 750 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The obtained tool is called “W # 1-PC”.
得られた摩擦攪拌加工用ツールを、図2に示したプラズマ浸炭装置に入れ、圧力0.05Paで75分真空加熱し750℃にした。次いでC3H8/H2=1/10の混合ガスを供給し、圧力130Paで、温度750℃にて、48時間かけてプラズマ浸炭処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。得られたツールを「W#1-PC」と呼ぶことにする。 (Plasma carburizing (PC) treatment)
The obtained tool for friction stir processing was put into the plasma carburizing apparatus shown in FIG. 2, and heated to 750 ° C. under a pressure of 0.05 Pa for 75 minutes. Next, a mixed gas of C 3 H 8 / H 2 = 1/10 was supplied, and plasma carburization was performed at a pressure of 130 Pa and a temperature of 750 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The obtained tool is called “W # 1-PC”.
(摩擦攪拌加工)
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例4の記載と異なる点を除いては、実施例4と同様にしてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing)
Using the above friction stir processing tool, a bead-on friction stir processing test was performed in the same manner as in Example 4 except that the following description differs from that in Example 4.
ツール40を、前進角3度、700rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら上記SUS430平板上を、150mm/分の送り速度で直線状に90mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。加工後の目視観察によればSUS430平板の施工状態は図16の写真に示すように、加工部の表面にツール40による加工痕34が存在するが良好であった。
(実施例11) Thetool 40 was inserted onto the SUS430 flat plate while being rotated at 700 rpm with an advance angle of 3 degrees, and the SUS430 was softened. Next, a bead-on friction stir processing test by friction stir processing was performed by moving the tool 40 linearly by 90 mm on the SUS430 flat plate at a feed rate of 150 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing. According to the visual observation after the processing, as shown in the photograph of FIG. 16, the construction state of the SUS430 flat plate was good although the processing marks 34 by the tool 40 exist on the surface of the processing portion.
(Example 11)
(実施例11) The
(Example 11)
実施例10と同様にして、プラズマ浸炭(PC)処理された、「W#1-PC」ツールを作製した。
In the same manner as in Example 10, a “W # 1-PC” tool treated with plasma carburizing (PC) was produced.
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例6の記載と異なる点を除いては、実施例6と同様にして突合せ接合による摩擦攪拌加工試験を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool described above, a friction stir processing test by butt joint was performed in the same manner as in Example 6 except that the following description differs from the description of Example 6.
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例6の記載と異なる点を除いては、実施例6と同様にして突合せ接合による摩擦攪拌加工試験を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool described above, a friction stir processing test by butt joint was performed in the same manner as in Example 6 except that the following description differs from the description of Example 6.
ツール40を、前進角3度、700rpmで回転させながら接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら150mm/分の送り速度で被接合材31、32の接合線33に沿って約90mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 700 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, the tool 40 is moved about 90 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 150 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm, and friction stir welding is performed. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図17の写真に示すように、良好に接合していた。
The joined body of the materials to be joined 31 and 32 obtained by the friction stir welding was joined well as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、引張試験を行った。試験片の厚さが1.43mmであった以外は実施例6と同様である。その結果、引張強度は513MPaであった。同様の条件で測定したSUS430母材の引張強度はn=3の平均が519MPaであったので、上記の接合部の引張強度は、ほぼ母材並みであることが分かった。また、破断した試験片の写真を図19に示したが、図19の中で最上部に位置する(図中に符号3で表した)本試験片は破断が接合部でなく母材部分で起こったことを示していた。また、荷重-変位曲線を図20に示したが、図20において、符号3で表される本試験片は、破断までによく伸びていることが分かる。
In order to examine the strength of the joint part, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed. The same as Example 6 except that the thickness of the test piece was 1.43 mm. As a result, the tensile strength was 513 MPa. Since the average of n = 3 tensile strength of the SUS430 base material measured under the same conditions was 519 MPa, it was found that the tensile strength of the above-mentioned joint was almost the same as that of the base material. Further, a photograph of the fractured test piece is shown in FIG. 19, and this test piece located at the top in FIG. 19 (represented by reference numeral 3 in the figure) is not a joint but a base material portion. It showed what happened. Further, the load-displacement curve is shown in FIG. 20. In FIG. 20, it can be seen that the present test piece represented by reference numeral 3 is well stretched before breaking.
(比較例1)
(摩擦攪拌加工用ツールの作製)
インコネル合金♯625を用いて、実施例1に示した形状の摩擦攪拌加工用ツールを切削加工により作製した。 (Comparative Example 1)
(Production of friction stir processing tool)
A friction stir processing tool having the shape shown in Example 1 was manufactured by cutting usingInconel alloy # 625.
(摩擦攪拌加工用ツールの作製)
インコネル合金♯625を用いて、実施例1に示した形状の摩擦攪拌加工用ツールを切削加工により作製した。 (Comparative Example 1)
(Production of friction stir processing tool)
A friction stir processing tool having the shape shown in Example 1 was manufactured by cutting using
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例6の記載と異なる点を除いては、実施例6と同様にして突合せ接合による摩擦攪拌加工試験を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool described above, a friction stir processing test by butt joint was performed in the same manner as in Example 6 except that the following description differs from the description of Example 6.
上記の摩擦攪拌加工用ツールを用いて、以下の記載のうち実施例6の記載と異なる点を除いては、実施例6と同様にして突合せ接合による摩擦攪拌加工試験を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool described above, a friction stir processing test by butt joint was performed in the same manner as in Example 6 except that the following description differs from the description of Example 6.
ツール40を、前進角3度、700rpmで回転させながら接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら150mm/分の送り速度で被接合材31、32の接合線33に沿って約90mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 700 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, the tool 40 is moved about 90 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 150 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm, and friction stir welding is performed. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図18の写真に示すように、数mm径の深い穴状の欠陥が点々と接合線上に存在し良好な接合はできていなかった。また、ツールの摩耗減耗が外観でもはっきりと認められた。
As shown in the photograph of FIG. 18, the joined body of the materials to be joined 31 and 32 obtained by the friction stir welding has a number of deep hole-like defects with a diameter of several millimeters on the joining line. Bonding was not possible. In addition, wear and wear of the tool was clearly recognized in appearance.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、引張試験を行った。試験片の幅が24.5mmであった以外は実施例6と同様である。その結果、引張強度は457MPaであった。同様の条件で測定したSUS430母材の引張強度はn=3の平均が519MPaであったので、上記の接合部の引張強度は、母材より劣っていた。また、破断した試験片の写真を図19に示したが、図19の中で最下部に位置する(図中に符号1で表した)本試験片は破断が接合部で起こったことを示していた。また、荷重-変位曲線を図20に示したが、図20において、符号1で表される本試験片は、僅かしか伸びないうちに破断したことが分かる。
In order to examine the strength of the joint part, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed. The same as Example 6 except that the width of the test piece was 24.5 mm. As a result, the tensile strength was 457 MPa. Since the average of n = 3 tensile strength of the SUS430 base material measured under the same conditions was 519 MPa, the tensile strength of the joint was inferior to that of the base material. Further, a photograph of the fractured test piece is shown in FIG. 19, and this test piece located at the bottom in FIG. 19 (represented by reference numeral 1 in the figure) shows that the fracture occurred at the joint. It was. Further, FIG. 20 shows a load-displacement curve. In FIG. 20, it can be seen that the present test piece represented by reference numeral 1 broke before it slightly extended.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図22に示した。図22において、この断面の厚みは1.46mmである。この写真からみると、摩擦攪拌領域の下部の境界が不鮮明であった。
(実施例12) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 22, the thickness of this cross section is 1.46 mm. From this picture, the lower boundary of the friction stir zone was unclear.
Example 12
(実施例12) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 22, the thickness of this cross section is 1.46 mm. From this picture, the lower boundary of the friction stir zone was unclear.
Example 12
以下の実施例12~21においては、接合時のツールの送り速度を500mm/min以上の高送り速度の条件で検討した。接合時のツールの送り速度は、実用的には、500mm/min程度が必要とされる。
In Examples 12 to 21 below, the feed rate of the tool during joining was examined under the condition of a high feed rate of 500 mm / min or more. The feed rate of the tool at the time of joining is practically required to be about 500 mm / min.
(摩擦攪拌加工用ツールの作製)
実施例4と同様にして、ツールの材質「Ta#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 4, a friction stir processing tool made of the tool material “Ta # 1” was produced.
実施例4と同様にして、ツールの材質「Ta#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 4, a friction stir processing tool made of the tool material “
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。 図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素(主成分として、Si3N4 90重量%、Al203 4~5重量%、Y2O3 4~5重量%他からなる。以下同じ)製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z). As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, surface smooth silicon nitride (90% by weight of Si 3 N 4 as a main component, Al 2 0 3 4-5) 3 % square column (30 mm square, 100 mm length) made of 4% by weight, 4% to 5% by weight of Y 2 O 3, etc. The same applies hereinafter.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。 図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素(主成分として、Si3N4 90重量%、Al203 4~5重量%、Y2O3 4~5重量%他からなる。以下同じ)製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
窒化珪素製裏当て材20上に、SUS430からなる2枚の平板状の被接合材(300×150mm、1.5mm厚)31、32の接合面を互いに突き合わせて載置し固定した。
On the silicon nitride backing material 20, the joining surfaces of two plate-like materials to be joined (300 × 150 mm, 1.5 mm thickness) 31 and 32 made of SUS430 were placed against each other and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら550mm/分の送り速度で被接合材31、32の接合線33に沿って約250mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate- like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-
具体的には、定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。
Specifically, the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z). At the time of friction stir processing, argon gas flows along the side of the tool and wraps around the tool.
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、1枚のSUS430からなる平板状の被加工材(300×150mm、1.5mm厚)を載置し固定した。
On the silicon nitride backing material 20, a flat plate-shaped workpiece (300 × 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら上記SUS430平板上を、550mm/分の送り速度で直線状に250mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened. Next, a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
(摩擦攪拌加工(摩擦攪拌接合))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、送り速度を500mm/分とした他は、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example, except that the feed rate was set to 500 mm / min using the friction stir processing tool used in the above bead-on friction stir processing test. It was.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、送り速度を500mm/分とした他は、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example, except that the feed rate was set to 500 mm / min using the friction stir processing tool used in the above bead-on friction stir processing test. It was.
この結果、この実施例において、このツールを用いて摩擦攪拌加工を行った合計の施工距離は250mm×4=1000mmとなる。
As a result, in this embodiment, the total construction distance in which the friction stir processing is performed using this tool is 250 mm × 4 = 1000 mm.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図23の写真に示すように、良好に接合していた。
The joined body of the materials to be joined 31 and 32 obtained by the above friction stir welding was well joined as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は466MPaであり、上記の接合部の引張強度は、母材よりやや劣っていた。なお、破断は接合部で起こっていた。
In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 466 MPa, and the tensile strength of the joint was slightly inferior to that of the base material. The fracture occurred at the joint.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図24に示した。図24において、この断面の厚みは1.43mmである。この写真から分かるように、摩擦攪拌により、元の突合せ界面はほぼ完全に消失していた。
Further, the joint was cut perpendicular to the joining direction, and the cross section was observed with a stereomicroscope. The micrograph is shown in FIG. In FIG. 24, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface had almost completely disappeared by friction stirring.
実施例12における、摩擦攪拌接合のツール材質、被加工材材質、FSW加工形式、FSW加工条件を纏めて表2に示した。なお、表2において、ツールサイズとはFSW加工に使用される前のツールのサイズをいう。なお、表2には、上記の摩擦攪拌接合のうち、最後の摩擦攪拌接合の条件を示した。ただし、表2における施工距離は、合計の施工距離を示している。表2には、後述の実施例13~22についても、同様の事項を纏めて示した。
Table 2 summarizes the friction stir welding tool material, workpiece material, FSW machining type, and FSW machining conditions in Example 12. In Table 2, the tool size refers to the size of the tool before being used for FSW processing. Table 2 shows the final friction stir welding conditions among the friction stir welding described above. However, the construction distance in Table 2 indicates the total construction distance. Table 2 summarizes the same matters for Examples 13 to 22 described later.
なお、施工距離については、FSW加工の試行毎に、加工は円滑に行われたか、加工後の被加工材の表面の外観(接合部又はビードオン部中に陥没様の欠陥部分がないか、円形状の瘢痕が美麗に残っているか、円形状の瘢痕そのものが毛羽立っていないか等)、被加工材の裏面の外観、ツールの顕著な変形はないか、等の観点により、以後そのツールを用いて更にFSW加工するか否かを判断した。
In addition, as for the construction distance, every trial of FSW processing, the processing was performed smoothly, the appearance of the surface of the processed material after processing (there is no depression-like defect in the joint or bead-on part, The tool is used from the viewpoints of whether the scar of the shape remains beautiful, the scar of the circular shape itself is not fuzzy, etc., the appearance of the back surface of the work material, and whether there is any significant deformation of the tool. It was then determined whether further FSW processing would be performed.
(摩擦攪拌加工用ツールの作製)
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “W # 1” was produced.
実施例5と同様にして、ツールの材質「W#1」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 5, a friction stir processing tool made of the tool material “
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z). During friction stir welding, argon gas flows along the side of the tool and wraps around the tool.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、SUS430からなる2枚の平板状の被接合材31、32(300×150mm、1.5mm厚)の接合面を互いに突き合わせて載置し固定した。
On the silicon nitride backing material 20, two flat plate-like materials 31 and 32 (300 × 150 mm, 1.5 mm thickness) made of SUS430 were put in contact with each other and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら550mm/分の送り速度で被接合材31、32の接合線33に沿って約250mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate- like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-
具体的には、定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。
Specifically, the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z). At the time of friction stir processing, argon gas flows along the side of the tool and wraps around the tool.
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、1枚のSUS430からなる平板状の被加工材(300×150mm、1.5mm厚)を載置し固定した。
On the silicon nitride backing material 20, a flat plate-shaped workpiece (300 × 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら上記SUS430平板上を、550mm/分の送り速度で直線状に250mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened. Next, a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
(摩擦攪拌加工(摩擦攪拌接合))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、送り速度を500mm/分とした他は、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example, except that the feed rate was set to 500 mm / min using the friction stir processing tool used in the above bead-on friction stir processing test. It was.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、送り速度を500mm/分とした他は、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example, except that the feed rate was set to 500 mm / min using the friction stir processing tool used in the above bead-on friction stir processing test. It was.
この結果、この実施例において、このツールを用いて摩擦攪拌加工を行った合計の施工距離は250mm×4=1000mmとなる。
As a result, in this embodiment, the total construction distance in which the friction stir processing is performed using this tool is 250 mm × 4 = 1000 mm.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図25の写真に示すように、良好に接合していた。
The bonded body of the materials to be bonded 31 and 32 obtained by the friction stir welding was bonded well as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は526MPaであり、上記の接合部の引張強度は、ほぼ母材並みであることが分かった。なお、破断は接合部で起こっていた。
In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, it was found that the tensile strength was 526 MPa, and the tensile strength of the above-mentioned joint was almost the same as that of the base material. The fracture occurred at the joint.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図26に示した。図26において、この断面の厚みは1.43mmである。この写真から分かるように、元の突合せ界面は摩擦攪拌により完全に消失し接合できている。
(実施例14) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 26, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 14)
(実施例14) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 26, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 14)
(摩擦攪拌加工用ツールの作製)
Ni:76原子%、Al:5.5原子%、V:13.5原子%、Nb:3原子%、Ta:2原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nb、Taの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって約10kgの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。この鋳塊から、実施例1に示した摩擦攪拌加工用ツールの形状と同様の形状に切削加工して本発明のツールを作製した。
このツールの材質を「Ta#2」と呼ぶことにする。 (Production of friction stir processing tool)
Ni, Al, Ni: 76 atomic%, Al: 5.5 atomic%, V: 13.5 atomic%, Nb: 3 atomic%, Ta: 2 atomic%, B: 50 ppm by weight An ingot of about 10 kg was produced by melting a V, Nb, Ta ingot (purity 99.9% by weight) and B in a vacuum induction melting furnace and solidifying the molten metal with a ceramic mold. . When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot. The tool of the present invention was manufactured by cutting this ingot into a shape similar to the shape of the friction stir processing tool shown in Example 1.
The material of this tool will be referred to as “Ta # 2”.
Ni:76原子%、Al:5.5原子%、V:13.5原子%、Nb:3原子%、Ta:2原子%、B:50重量ppmの組成になるように、Ni、Al、V、Nb、Taの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって約10kgの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。この鋳塊から、実施例1に示した摩擦攪拌加工用ツールの形状と同様の形状に切削加工して本発明のツールを作製した。
このツールの材質を「Ta#2」と呼ぶことにする。 (Production of friction stir processing tool)
Ni, Al, Ni: 76 atomic%, Al: 5.5 atomic%, V: 13.5 atomic%, Nb: 3 atomic%, Ta: 2 atomic%, B: 50 ppm by weight An ingot of about 10 kg was produced by melting a V, Nb, Ta ingot (purity 99.9% by weight) and B in a vacuum induction melting furnace and solidifying the molten metal with a ceramic mold. . When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot. The tool of the present invention was manufactured by cutting this ingot into a shape similar to the shape of the friction stir processing tool shown in Example 1.
The material of this tool will be referred to as “
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z). During friction stir welding, argon gas flows along the side of the tool and wraps around the tool.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、SUS430からなる2枚の平板状の被接合材31、32(300mm×150mm、1.5mm厚)の接合面を互いに突き合わせて載置し固定した。
On the silicon nitride backing material 20, the joining surfaces of two flat plate-like materials 31 and 32 (300 mm × 150 mm, 1.5 mm thickness) made of SUS430 were placed in contact with each other and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら550mm/分の送り速度で被接合材31、32の接合線33に沿って約250mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate- like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-
具体的には、定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。
Specifically, the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z). At the time of friction stir processing, argon gas flows along the side of the tool and wraps around the tool.
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、1枚のSUS430からなる平板状の被加工材(300mm×150mm、1.5mm厚)を載置し固定した。
On the silicon nitride backing material 20, a flat plate-shaped workpiece (300 mm × 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら上記SUS430平板上を、550mm/分の送り速度で直線状に250mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened. Next, a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm. The load on the tool 40 was set to about 9800N.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を2回行い、次いで、使用した摩擦攪拌加工用ツールを変えることなく同一のツールを用いて、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を1回、次いで、同様のビードオン摩擦攪拌加工試験を3回、次いで、同様の摩擦攪拌接合を1回、次いで、同様のビードオン摩擦攪拌加工試験を3回、次いで、同様の摩擦攪拌接合を1回、次いで、同様のビードオン摩擦攪拌加工試験を3回、最後に、送り速度を500mm/分とした他は、上記と同様の摩擦攪拌接合を行った。この結果、この実施例において、このツールを用いて摩擦攪拌加工を行った合計の施工距離は250mm×17=4250mmとなる
Using the friction stir processing tool used in the above bead-on friction stir processing test, the bead on friction stir processing test was performed twice in the same manner as described above, and then the same friction stir processing tool used was not changed. Using the tool, the friction stir welding was performed once in the same manner as the friction stir welding performed at the beginning of this example, then the same bead-on friction stir processing test was performed three times, and then the same friction stir welding was performed once. Then, the same bead-on friction stir processing test was performed three times, then the same friction stir welding test was performed once, then the same bead-on friction stir processing test was performed three times, and finally the feed rate was 500 mm / min. The same friction stir welding as described above was performed. As a result, in this embodiment, the total construction distance when the friction stir processing is performed using this tool is 250 mm × 17 = 4250 mm.
上記の最終の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図27の写真に示すように、良好に接合していた。
The joined body of the materials to be joined 31 and 32 obtained by the final friction stir welding as described above was satisfactorily joined as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し実施例6と同様にして引張試験を行った。その結果、引張強度は533MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
In order to examine the strength of the joint, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 533 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図28に示した。図28において、この断面の厚みは1.45mmである。この写真から分かるように、元の突合せ界面は摩擦攪拌により完全に消失し接合できている。
(実施例15) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 28, the thickness of this cross section is 1.45 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 15)
(実施例15) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 28, the thickness of this cross section is 1.45 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 15)
(摩擦攪拌加工用ツールの作製)
実施例14と同様にして、ツールの材質「Ta#2」からなる鋳塊を作製した。この鋳塊から、以下に示す形状に切削加工して本発明のツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 14, an ingot made of the tool material “Ta # 2” was produced. The tool of the present invention was manufactured from this ingot by cutting into the shape shown below.
実施例14と同様にして、ツールの材質「Ta#2」からなる鋳塊を作製した。この鋳塊から、以下に示す形状に切削加工して本発明のツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 14, an ingot made of the tool material “
(摩擦攪拌加工用ツールの形状)
ショルダ面は直径12mmの円形の平面であり、その中央に設けたプローブは半径4.7mmの球面がショルダ面から一部突出している。プローブの底部直径は約6mmであり、ショルダ面からプローブの先端までの長さ(突出高さ、プローブ長さ)は0.90mmである。 (Shape of friction stir processing tool)
The shoulder surface is a circular plane having a diameter of 12 mm, and the probe provided at the center has a spherical surface with a radius of 4.7 mm partially protruding from the shoulder surface. The bottom diameter of the probe is about 6 mm, and the length from the shoulder surface to the tip of the probe (projection height, probe length) is 0.90 mm.
ショルダ面は直径12mmの円形の平面であり、その中央に設けたプローブは半径4.7mmの球面がショルダ面から一部突出している。プローブの底部直径は約6mmであり、ショルダ面からプローブの先端までの長さ(突出高さ、プローブ長さ)は0.90mmである。 (Shape of friction stir processing tool)
The shoulder surface is a circular plane having a diameter of 12 mm, and the probe provided at the center has a spherical surface with a radius of 4.7 mm partially protruding from the shoulder surface. The bottom diameter of the probe is about 6 mm, and the length from the shoulder surface to the tip of the probe (projection height, probe length) is 0.90 mm.
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z). During friction stir welding, argon gas flows along the side of the tool and wraps around the tool.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、SUS430からなる2枚の平板状の被接合材31、32(300mm×150mm、1.5mm厚)の接合面を互いに突き合わせて載置し固定した。
On the silicon nitride backing material 20, the joining surfaces of two flat plate-like materials 31 and 32 (300 mm × 150 mm, 1.5 mm thickness) made of SUS430 were placed in contact with each other and fixed.
ツール40を、前進角3度、1000rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら700mm/分の送り速度で被接合材31、32の接合線33に沿って約250mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 1000 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, friction stir welding is performed by moving the tool 40 about 250 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 700 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate- like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-
具体的には、定盤軸(X)と横行軸(Y)と昇降軸(Z)の機械3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。
Specifically, the tool 40 was attached to a friction stir welding apparatus composed of three machine axes: a platen axis (X), a transverse axis (Y), and a lifting axis (Z). At the time of friction stir processing, argon gas flows along the side of the tool and wraps around the tool.
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、1枚のSUS430からなる平板状の被加工材(300mm×150mm、1.5mm厚)を載置し固定した。
On the silicon nitride backing material 20, a flat plate-shaped workpiece (300 mm × 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
ツール40を、前進角3度、1000rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら上記SUS430平板上を、700mm/分の送り速度で直線状に250mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted on the SUS430 flat plate while rotating at a forward angle of 3 degrees and 1000 rpm, and the SUS430 was softened. Next, a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 700 mm / min while rotating the tool at a forward angle of 3 degrees and 1200 rpm. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
(摩擦攪拌加工(摩擦攪拌接合))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool used in the bead-on friction stir processing test, friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool used in the bead-on friction stir processing test, friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example.
この結果、この実施例において、このツールを用いて摩擦攪拌加工を行った合計の施工距離は250mm×4=1000mmとなる。
As a result, in this embodiment, the total construction distance in which the friction stir processing is performed using this tool is 250 mm × 4 = 1000 mm.
上記の最終の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図29の写真に示すように、良好に接合していた。
The joined body of the materials to be joined 31 and 32 obtained by the final friction stir welding as described above was satisfactorily joined as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は534MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 534 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図30に示した。図30において、この断面の厚みは1.45mmである。この写真から分かるように、元の突合せ界面は摩擦攪拌により完全に消失し接合できている。
(実施例16) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. The micrograph is shown in FIG. In FIG. 30, the thickness of this cross section is 1.45 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 16)
(実施例16) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. The micrograph is shown in FIG. In FIG. 30, the thickness of this cross section is 1.45 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 16)
(摩擦攪拌加工用ツールの作製)
実施例8と同様にして、「Ta#1-PC」ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 8, a “Ta # 1-PC” tool was produced.
実施例8と同様にして、「Ta#1-PC」ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 8, a “Ta # 1-PC” tool was produced.
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z). During friction stir welding, argon gas flows along the side of the tool and wraps around the tool.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、SUS430からなる2枚の平板状の被接合材31、32(300mm×150mm、1.5mm厚)の接合面を互いに突き合わせて載置し固定した。
On the silicon nitride backing material 20, the joining surfaces of two flat plate-like materials 31 and 32 (300 mm × 150 mm, 1.5 mm thickness) made of SUS430 were placed in contact with each other and fixed.
ツール40を、前進角3度、1000rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、1200rpmで回転させながら700mm/分の送り速度で被接合材31、32の接合線33に沿って約250mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 1000 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, friction stir welding is performed by moving the tool 40 about 250 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 700 mm / min while rotating at a forward angle of 3 degrees and 1200 rpm. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図31の写真に示すように、良好に接合していた。
The joined body of the materials to be joined 31 and 32 obtained by the friction stir welding was well joined as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し実施例6と同様にして引張試験を行った。その結果、引張強度は541MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
(実施例17) In order to examine the strength of the joint, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 541 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
(Example 17)
(実施例17) In order to examine the strength of the joint, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 541 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
(Example 17)
(摩擦攪拌加工用ツールの作製)
実施例10と同様にして、「W#1-PC」ツールを作製した。 (Production of friction stir processing tool)
A “W # 1-PC” tool was fabricated in the same manner as in Example 10.
実施例10と同様にして、「W#1-PC」ツールを作製した。 (Production of friction stir processing tool)
A “W # 1-PC” tool was fabricated in the same manner as in Example 10.
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の機械3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus composed of three machine axes including a platen axis (X), a transverse axis (Y), and a lifting / lowering axis (Z). During friction stir welding, argon gas flows along the side of the tool and wraps around the tool.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の機械3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、SUS430からなる2枚の平板状の被接合材31、32(300mm×150mm、1.5mm厚)の接合面を互いに突き合わせて載置し固定した。
On the silicon nitride backing material 20, the joining surfaces of two flat plate-like materials 31 and 32 (300 mm × 150 mm, 1.5 mm thickness) made of SUS430 were placed in contact with each other and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら550mm/分の送り速度で被接合材31、32の接合線33に沿って約250mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted onto the joining line 33 while rotating at a forward angle of 3 degrees and 600 rpm, and the surrounding SUS430 including the joining line 33 was softened. Next, friction stir welding is performed by moving the tool 40 about 250 mm along the bonding line 33 of the materials to be bonded 31 and 32 at a feed rate of 550 mm / min while rotating at a forward angle of 3 degrees and 800 rpm. A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate- like workpieces 31 and 32. In this embodiment, a single flat plate is used as the workpiece. A bead-on friction stir processing test was conducted.
上記の摩擦攪拌接合に使用した摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工を行った。ただし、図3に示した方法では、2枚の平板状の被接合材31、32を用いて摩擦攪拌接合を行っているが、この実施例では、被加工材として1枚の平板を用いてビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
The friction stir processing was performed by the method shown in FIG. 3 using the friction stir processing tool used in the friction stir welding. However, in the method shown in FIG. 3, the friction stir welding is performed using the two flat plate-
具体的には、定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。
Specifically, the tool 40 was attached to a friction stir welding apparatus composed of three axes: a platen axis (X), a transverse axis (Y), and a lift axis (Z). At the time of friction stir processing, argon gas flows along the side of the tool and wraps around the tool.
図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な窒化珪素製四角柱(30mm角、長さ100mm)を3本長さ方向に連ねて並べ裏当て材20として固定した。
As shown in FIG. 3, on the surface of a flat steel (S50C) backing jig 10, three smooth silicon nitride square columns (30 mm square, 100 mm length) are connected in the length direction. Fixed as a side backing material 20.
窒化珪素製裏当て材20上に、1枚のSUS430からなる平板状の被加工材(300mm×150mm、1.5mm厚)を載置し固定した。
On the silicon nitride backing material 20, a flat plate-shaped workpiece (300 mm × 150 mm, 1.5 mm thickness) made of one SUS430 was placed and fixed.
ツール40を、前進角3度、600rpmで回転させながら上記SUS430平板上に挿入し、SUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら上記SUS430平板上を、550mm/分の送り速度で直線状に250mm移動させて摩擦攪拌加工によるビードオン摩擦攪拌加工試験を行った。ツール40への負荷は約9800Nに設定した。
The tool 40 was inserted on the SUS430 flat plate while rotating at 600 rpm with a forward angle of 3 degrees, and the SUS430 was softened. Next, a bead-on friction stir processing test was performed by friction stir processing by moving the tool 40 linearly 250 mm on the SUS430 flat plate at a feed rate of 550 mm / min while rotating the tool 40 at an advance angle of 3 degrees and 800 rpm. The load on the tool 40 was set to about 9800N.
(摩擦攪拌加工(ビードオン摩擦攪拌))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、上記と同様にして、ビードオン摩擦攪拌加工試験を行った。 (Friction stir processing (bead-on friction stir processing))
Using the friction stir processing tool used in the bead-on friction stir processing test, a bead on friction stir processing test was performed in the same manner as described above.
(摩擦攪拌加工(摩擦攪拌接合))
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool used in the bead-on friction stir processing test, friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example.
上記のビードオン摩擦攪拌加工試験に使用した摩擦攪拌加工用ツールを用いて、この実施例の最初に行った摩擦攪拌接合と同様にして摩擦攪拌接合を行った。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool used in the bead-on friction stir processing test, friction stir welding was performed in the same manner as the friction stir welding performed at the beginning of this example.
この結果、この実施例において、このツールを用いて摩擦攪拌加工を行った合計の施工距離は250mm×4=1000mmとなる。
As a result, in this embodiment, the total construction distance in which the friction stir processing is performed using this tool is 250 mm × 4 = 1000 mm.
上記の最終の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図32の写真に示すように、良好に接合していた。
The joined body of the materials to be joined 31 and 32 obtained by the final friction stir welding as described above was well joined as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は544MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 544 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図33に示した。図33において、この断面の厚みは1.43mmである。この写真から分かるように、元の突合せ界面は摩擦攪拌により完全に消失し接合できている。
(実施例18) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 33, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 18)
(実施例18) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 33, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 18)
(摩擦攪拌加工用ツールの作製)
実施例14と同様にして、ツールの材質「Ta#2」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 14, a friction stir processing tool made of the tool material “Ta # 2” was produced.
実施例14と同様にして、ツールの材質「Ta#2」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 14, a friction stir processing tool made of the tool material “
(プラズマ浸炭(PC)処理)
作製された摩擦攪拌加工用ツールを、図2に示したプラズマ浸炭装置に入れ、圧力0.05Paで75分真空加熱し750℃にした。次いでC3H8/H2=1/10の混合ガスを供給し、圧力130Paで、温度750℃にて、48時間かけてプラズマ浸炭処理した。その後、N2ガスを装置内に導入して室温にまで冷却した。上記プラズマ浸炭処理により得られたツールを「Ta#2-PC」と呼ぶことにする。 (Plasma carburizing (PC) treatment)
The produced tool for friction stir processing was put in the plasma carburizing apparatus shown in FIG. 2 and heated to 750 ° C. under a pressure of 0.05 Pa for 75 minutes. Next, a mixed gas of C 3 H 8 / H 2 = 1/10 was supplied, and plasma carburization was performed at a pressure of 130 Pa and a temperature of 750 ° C. for 48 hours. Thereafter, N 2 gas was introduced into the apparatus and cooled to room temperature. The tool obtained by the plasma carburizing process will be referred to as “Ta # 2-PC”.
作製された摩擦攪拌加工用ツールを、図2に示したプラズマ浸炭装置に入れ、圧力0.05Paで75分真空加熱し750℃にした。次いでC3H8/H2=1/10の混合ガスを供給し、圧力130Paで、温度750℃にて、48時間かけてプラズマ浸炭処理した。その後、N2ガスを装置内に導入して室温にまで冷却した。上記プラズマ浸炭処理により得られたツールを「Ta#2-PC」と呼ぶことにする。 (Plasma carburizing (PC) treatment)
The produced tool for friction stir processing was put in the plasma carburizing apparatus shown in FIG. 2 and heated to 750 ° C. under a pressure of 0.05 Pa for 75 minutes. Next, a mixed gas of C 3 H 8 / H 2 = 1/10 was supplied, and plasma carburization was performed at a pressure of 130 Pa and a temperature of 750 ° C. for 48 hours. Thereafter, N 2 gas was introduced into the apparatus and cooled to room temperature. The tool obtained by the plasma carburizing process will be referred to as “Ta # 2-PC”.
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例16と同様にして、摩擦攪拌加工(摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding))
Friction stir processing (friction stir welding) was performed in the same manner as in Example 16 except that the above friction stir processing tool was used.
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例16と同様にして、摩擦攪拌加工(摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding))
Friction stir processing (friction stir welding) was performed in the same manner as in Example 16 except that the above friction stir processing tool was used.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図34の写真に示すように、良好に接合していた。
34. The joined body of the materials to be joined 31 and 32 obtained by the friction stir welding was joined well as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は545MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
(実施例19) In order to examine the strength of the joined portion, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 545 MPa, the tensile strength of the joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
(Example 19)
(実施例19) In order to examine the strength of the joined portion, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 545 MPa, the tensile strength of the joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
(Example 19)
(摩擦攪拌加工用ツールの作製)
実施例7と同様にして、「Ta#1-PN」ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 7, a “Ta # 1-PN” tool was produced.
実施例7と同様にして、「Ta#1-PN」ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 7, a “Ta # 1-PN” tool was produced.
(摩擦攪拌加工(摩擦攪拌接合-ビードオン摩擦攪拌-ビードオン摩擦攪拌-摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例17と同様にして、
摩擦攪拌加工(摩擦攪拌接合-ビードオン摩擦攪拌-ビードオン摩擦攪拌-摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding-bead-on friction stir-bead-on friction stir-friction stir welding))
Except for using the friction stir processing tool, the same as in Example 17,
Friction stir processing (friction stir welding-bead-on friction stirring-bead-on friction stirring-friction stir welding) was performed.
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例17と同様にして、
摩擦攪拌加工(摩擦攪拌接合-ビードオン摩擦攪拌-ビードオン摩擦攪拌-摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding-bead-on friction stir-bead-on friction stir-friction stir welding))
Except for using the friction stir processing tool, the same as in Example 17,
Friction stir processing (friction stir welding-bead-on friction stirring-bead-on friction stirring-friction stir welding) was performed.
上記の最終の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図35の写真に示すように、良好に接合していた。
The joined body of the materials to be joined 31 and 32 obtained by the final friction stir welding as described above was satisfactorily joined as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は542MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 542 MPa, the tensile strength of the above joint exceeded the tensile strength of the base material, and the fracture occurred in the base material.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図36に示した。図36において、この断面の厚みは1.43mmである。この写真から分かるように、元の突合せ界面は摩擦攪拌により完全に消失し接合できている。
(実施例20) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 36, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 20)
(実施例20) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 36, the thickness of this cross section is 1.43 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 20)
(摩擦攪拌加工用ツールの作製)
実施例9と同様にして、「W#1-PN」ツールを作製した。 (Production of friction stir processing tool)
A “W # 1-PN” tool was produced in the same manner as in Example 9.
実施例9と同様にして、「W#1-PN」ツールを作製した。 (Production of friction stir processing tool)
A “W # 1-PN” tool was produced in the same manner as in Example 9.
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例16と同様にして、摩擦攪拌加工(摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding))
Friction stir processing (friction stir welding) was performed in the same manner as in Example 16 except that the above friction stir processing tool was used.
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例16と同様にして、摩擦攪拌加工(摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding))
Friction stir processing (friction stir welding) was performed in the same manner as in Example 16 except that the above friction stir processing tool was used.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図37の写真に示すように、良好に接合していた。
The bonded body of the materials to be bonded 31 and 32 obtained by the friction stir welding was bonded well as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は544MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
(実施例21) In order to examine the strength of the joined portion, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 544 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
(Example 21)
(実施例21) In order to examine the strength of the joined portion, a sample was prepared from the butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 544 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
(Example 21)
(摩擦攪拌加工用ツールの作製)
実施例14と同様にして、ツールの材質「Ta#2」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 14, a friction stir processing tool made of the tool material “Ta # 2” was produced.
実施例14と同様にして、ツールの材質「Ta#2」からなる摩擦攪拌加工用ツールを作製した。 (Production of friction stir processing tool)
In the same manner as in Example 14, a friction stir processing tool made of the tool material “
(プラズマ窒化(PN)処理)
作製さられた摩擦攪拌加工用ツールを、図2に示したプラズマ窒化装置に入れ、圧力0.05Paで約60分真空加熱し575℃にした。次いでN2/H2=1/1の混合ガスを供給し、圧力180Paで、温度575℃にて、48時間かけてプラズマ窒化処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。上記プラズマ処理により得られたツールを「Ta#2-PN」と呼ぶことにする。 (Plasma nitriding (PN) treatment)
The produced tool for friction stir processing was put in the plasma nitriding apparatus shown in FIG. 2, and heated to 575 ° C. under a pressure of 0.05 Pa for about 60 minutes. Next, a mixed gas of N 2 / H 2 = 1/1 was supplied, and plasma nitriding was performed at a pressure of 180 Pa and a temperature of 575 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The tool obtained by the above plasma treatment will be referred to as “Ta # 2-PN”.
作製さられた摩擦攪拌加工用ツールを、図2に示したプラズマ窒化装置に入れ、圧力0.05Paで約60分真空加熱し575℃にした。次いでN2/H2=1/1の混合ガスを供給し、圧力180Paで、温度575℃にて、48時間かけてプラズマ窒化処理した。その後、装置内にN2ガスを導入して室温にまで冷却した。上記プラズマ処理により得られたツールを「Ta#2-PN」と呼ぶことにする。 (Plasma nitriding (PN) treatment)
The produced tool for friction stir processing was put in the plasma nitriding apparatus shown in FIG. 2, and heated to 575 ° C. under a pressure of 0.05 Pa for about 60 minutes. Next, a mixed gas of N 2 / H 2 = 1/1 was supplied, and plasma nitriding was performed at a pressure of 180 Pa and a temperature of 575 ° C. for 48 hours. Then cooled to room temperature by introducing N 2 gas into the apparatus. The tool obtained by the above plasma treatment will be referred to as “Ta # 2-PN”.
(摩擦攪拌加工(摩擦攪拌接合-ビードオン摩擦攪拌-ビードオン摩擦攪拌-摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例15と同様にして、摩擦攪拌加工(摩擦攪拌接合-ビードオン摩擦攪拌-ビードオン摩擦攪拌-摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding-bead-on friction stir-bead-on friction stir-friction stir welding))
Friction stir processing (friction stir welding-bead-on friction stirring-bead-on friction stirring-friction stir welding) was performed in the same manner as in Example 15 except that the above friction stir processing tool was used.
上記の摩擦攪拌加工用ツールを用いたことの他は、実施例15と同様にして、摩擦攪拌加工(摩擦攪拌接合-ビードオン摩擦攪拌-ビードオン摩擦攪拌-摩擦攪拌接合)を行った。 (Friction stir processing (friction stir welding-bead-on friction stir-bead-on friction stir-friction stir welding))
Friction stir processing (friction stir welding-bead-on friction stirring-bead-on friction stirring-friction stir welding) was performed in the same manner as in Example 15 except that the above friction stir processing tool was used.
上記の最終の摩擦攪拌接合により得られた、被接合材31と32との接合体は、図38の写真に示すように、良好に接合していた。
38. The joined body of the materials to be joined 31 and 32 obtained by the final friction stir welding was satisfactorily joined as shown in the photograph of FIG.
上記接合部の強度を調べるために、突合せ接合した平板から接合方向に対して直交する向きに試料を作製し、実施例6と同様にして引張試験を行った。その結果、引張強度は538MPaであり、上記の接合部の引張強度は母材の引張強度を超えており、破断は母材で起こっていた。
In order to examine the strength of the joint, a sample was prepared from a butt-joined flat plate in a direction orthogonal to the joining direction, and a tensile test was performed in the same manner as in Example 6. As a result, the tensile strength was 538 MPa, the tensile strength of the above-mentioned joint portion exceeded the tensile strength of the base material, and the fracture occurred in the base material.
また、上記接合部を接合方向に対して垂直に切断し断面を実体顕微鏡にて観察した。この顕微鏡写真を図39に示した。図39において、この断面の厚みは1.44mmである。この写真から分かるように、元の突合せ界面は摩擦攪拌により完全に消失し接合できている。
(実施例22) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 39, the thickness of this cross section is 1.44 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 22)
(実施例22) Moreover, the said junction part was cut | disconnected perpendicularly | vertically with respect to the joining direction, and the cross section was observed with the stereomicroscope. This micrograph is shown in FIG. In FIG. 39, the thickness of this cross section is 1.44 mm. As can be seen from this photograph, the original butt interface disappears completely by friction stir and can be joined.
(Example 22)
(摩擦攪拌加工用ツールの作製)
Ni:70.5原子%、Al:10原子%、V:10.5原子%、Nb:3原子%、Co:3原子%、Cr:3原子%、B:500重量ppmの組成になるように、Ni、Al、V、Nb、Co,Crの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって83mmφ×700mmの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。この鋳塊から、切削加工して図40に示した形状の摩擦攪拌加工用ツールを製造した。このツールの材質を「H#2」と呼ぶことにする。 (Production of friction stir processing tool)
Ni: 70.5 atomic%, Al: 10 atomic%, V: 10.5 atomic%, Nb: 3 atomic%, Co: 3 atomic%, Cr: 3 atomic%, B: 500 ppm by weight In addition, Ni, Al, V, Nb, Co, Cr ingots (purity 99.9% by weight) and B were weighed in a vacuum induction melting furnace, and then the molten metal was solidified with a ceramic mold. An ingot of 83 mmφ × 700 mm was produced. When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot. A tool for friction stir processing having a shape shown in FIG. 40 was manufactured by cutting from the ingot. The material of this tool will be called “H # 2”.
Ni:70.5原子%、Al:10原子%、V:10.5原子%、Nb:3原子%、Co:3原子%、Cr:3原子%、B:500重量ppmの組成になるように、Ni、Al、V、Nb、Co,Crの地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって83mmφ×700mmの鋳塊を作製した。鋳塊作製に際して、凝固時に徐冷をしたため、鋳塊には初析L12相と(L12+D022)共析組織とからなる2重複相組織が形成されていた。この鋳塊から、切削加工して図40に示した形状の摩擦攪拌加工用ツールを製造した。このツールの材質を「H#2」と呼ぶことにする。 (Production of friction stir processing tool)
Ni: 70.5 atomic%, Al: 10 atomic%, V: 10.5 atomic%, Nb: 3 atomic%, Co: 3 atomic%, Cr: 3 atomic%, B: 500 ppm by weight In addition, Ni, Al, V, Nb, Co, Cr ingots (purity 99.9% by weight) and B were weighed in a vacuum induction melting furnace, and then the molten metal was solidified with a ceramic mold. An ingot of 83 mmφ × 700 mm was produced. When the ingot was produced, since it was gradually cooled during solidification, a double- duplex structure composed of a proeutectoid L1 2 phase and a (L1 2 + D0 22 ) eutectoid structure was formed in the ingot. A tool for friction stir processing having a shape shown in FIG. 40 was manufactured by cutting from the ingot. The material of this tool will be called “
(摩擦攪拌加工用ツールの形状)
図40に示したツールを詳しく説明する。ショルダは24mmφの直円筒の回転軸に直交する平面と7°の傾斜で中央に向けて窪んだ逆円錐台状の凹面にてなる。プローブはショルダ面の中央に半頂角7°の直円錐台状に突出しており、ショルダ面外周と交わる上記回転軸に直交する平面からの突出高さは0.9mmである。プローブの先端は半径4.55mmの円に対し中心角60°の弓形の弦の中心と弧の中心間の距離を0.55mmとして円錐台の側面に平行に面取りした120°回転対称の形状をなす。 (Shape of friction stir processing tool)
The tool shown in FIG. 40 will be described in detail. The shoulder consists of a plane perpendicular to the rotational axis of a 24 mmφ right cylinder and an inverted frustoconical concave surface that is recessed toward the center with an inclination of 7 °. The probe protrudes in the shape of a right truncated cone with a half apex angle of 7 ° at the center of the shoulder surface, and the protrusion height from the plane orthogonal to the rotation axis intersecting the outer periphery of the shoulder surface is 0.9 mm. The tip of the probe has a 120 ° rotationally symmetric shape chamfered parallel to the side of the truncated cone with a distance of 0.55 mm between the center of the arcuate chord having a central angle of 60 ° and the center of the arc with respect to a circle having a radius of 4.55 mm. Eggplant.
図40に示したツールを詳しく説明する。ショルダは24mmφの直円筒の回転軸に直交する平面と7°の傾斜で中央に向けて窪んだ逆円錐台状の凹面にてなる。プローブはショルダ面の中央に半頂角7°の直円錐台状に突出しており、ショルダ面外周と交わる上記回転軸に直交する平面からの突出高さは0.9mmである。プローブの先端は半径4.55mmの円に対し中心角60°の弓形の弦の中心と弧の中心間の距離を0.55mmとして円錐台の側面に平行に面取りした120°回転対称の形状をなす。 (Shape of friction stir processing tool)
The tool shown in FIG. 40 will be described in detail. The shoulder consists of a plane perpendicular to the rotational axis of a 24 mmφ right cylinder and an inverted frustoconical concave surface that is recessed toward the center with an inclination of 7 °. The probe protrudes in the shape of a right truncated cone with a half apex angle of 7 ° at the center of the shoulder surface, and the protrusion height from the plane orthogonal to the rotation axis intersecting the outer periphery of the shoulder surface is 0.9 mm. The tip of the probe has a 120 ° rotationally symmetric shape chamfered parallel to the side of the truncated cone with a distance of 0.55 mm between the center of the arcuate chord having a central angle of 60 ° and the center of the arc with respect to a circle having a radius of 4.55 mm. Eggplant.
(摩擦攪拌加工(摩擦攪拌接合))
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な99.5%純度の酸化アルミ平板(15cm角、2.5mm厚)を裏当て材20として固定した。板厚に対しプローブ長が大きいので裏当て材20にダメージが大きかったので裏当て材20と被接合材の間に金属箔を敷いた。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. Thetool 40 was attached to a friction stir welding apparatus consisting of three axes, a platen axis (X), a transverse axis (Y), and a lift axis (Z). During friction stir welding, argon gas flows along the side of the tool and wraps around the tool. As shown in FIG. 3, a 99.5% pure aluminum oxide flat plate (15 cm square, 2.5 mm thick) having a smooth surface is applied to the surface of a flat steel (S50C) backing jig 10. Fixed as 20. Since the probe length was large with respect to the plate thickness, the backing material 20 was greatly damaged, so a metal foil was laid between the backing material 20 and the material to be joined.
上記の摩擦攪拌加工用ツールを用いて、図3に示した方法で摩擦攪拌加工(突合せ接合による摩擦攪拌接合)を行った。定盤軸(X)と横行軸(Y)と昇降軸(Z)の3軸からなる摩擦攪拌接合装置に上記ツール40をとりつけた。摩擦攪拌接合加工時にはアルゴンガスがツール側面に沿って流れ下りツールを包むようになっている。図3に示すように、平板状の鋼製(S50C)の裏当て治具10の表面に、表面平滑な99.5%純度の酸化アルミ平板(15cm角、2.5mm厚)を裏当て材20として固定した。板厚に対しプローブ長が大きいので裏当て材20にダメージが大きかったので裏当て材20と被接合材の間に金属箔を敷いた。 (Friction stir processing (friction stir welding))
Using the friction stir processing tool, friction stir processing (friction stir welding by butt joining) was performed by the method shown in FIG. The
金属箔上に、SUS430からなる2枚の平板状の被接合材31、32(300mm×75mm、1.0mm厚)の接合面を互いに突き合わせて載置し固定した。
On the metal foil, the joining surfaces of two flat plate materials 31 and 32 (300 mm × 75 mm, 1.0 mm thickness) made of SUS430 were placed against each other and fixed.
ツール40を、前進角3度、800rpmで回転させながら上記接合線33上に挿入し、接合線33を含むその周囲のSUS430を軟化させた。次いで、ツール40を、前進角3度、800rpmで回転させながら100mm/分の送り速度で被接合材31、32の接合線33に沿って約120mm移動させて摩擦攪拌接合を行い、被接合材31と32との接合体を作製した。ツール40への負荷は約9800Nに設定した。加工時にツール側面はオレンジ色に発光した。
The tool 40 was inserted on the joining line 33 while rotating at 800 rpm with an advance angle of 3 degrees, and the surrounding SUS430 including the joining line 33 was softened. Next, friction stir welding is performed by moving the tool 40 about 120 mm along the joining line 33 of the materials to be joined 31 and 32 at a feed rate of 100 mm / min while rotating at an advance angle of 3 degrees and 800 rpm, A joined body of 31 and 32 was produced. The load on the tool 40 was set to about 9800N. The side of the tool emitted orange during processing.
上記の摩擦攪拌接合により得られた、被接合材31と32との接合体は、外観では接合しているようであったが加工痕が汚く、120mm加工後にはプローブがツールが激しく減耗していた。
The joined body of the materials to be joined 31 and 32 obtained by the above friction stir welding seemed to be joined in appearance, but the machining traces were dirty, and after 120 mm machining, the probe was heavily worn out. It was.
(参考例)
ツール材料のビッカース硬さと測定温度との関係
1.鋳塊作製工程
実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)、実施例14(ツール材質Ta#2)及び実施例22(ツール材質H#2)における、その摩擦攪拌加工用ツールの作製の項に記載した組成になるように、それぞれの元素の地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって鋳塊からなる試料を作製した。作製した鋳塊のサイズは、実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例22(ツール材質H#2)の鋳塊は83mmφ×700mmであり、実施例14の鋳塊は77mmφ×280mmであった。 (Reference example)
Relationship between Vickers hardness of tool material and measurement temperature Ingot production process Example 4 (tool material Ta # 1), Example 5 (tool material W # 1), Example 14 (tool material Ta # 2) and Example 22 (tool material H # 2) After melting in a vacuum induction melting furnace, weighed ingots of each element (purity 99.9% by weight) and B so as to have the composition described in the section of making a friction stir processing tool, and then ceramic A sample made of an ingot was prepared by solidifying the molten metal with a mold. The sizes of the ingots produced were 83 mmφ × 700 mm for the ingots of Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 22 (tool material H # 2), The ingot of Example 14 was 77 mmφ × 280 mm.
ツール材料のビッカース硬さと測定温度との関係
1.鋳塊作製工程
実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)、実施例14(ツール材質Ta#2)及び実施例22(ツール材質H#2)における、その摩擦攪拌加工用ツールの作製の項に記載した組成になるように、それぞれの元素の地金(それぞれ純度99.9重量%)とBを秤量したものを真空誘導溶解炉で溶解した後、セラミック鋳型で溶湯を凝固させることによって鋳塊からなる試料を作製した。作製した鋳塊のサイズは、実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例22(ツール材質H#2)の鋳塊は83mmφ×700mmであり、実施例14の鋳塊は77mmφ×280mmであった。 (Reference example)
Relationship between Vickers hardness of tool material and measurement temperature Ingot production process Example 4 (tool material Ta # 1), Example 5 (tool material W # 1), Example 14 (tool material Ta # 2) and Example 22 (tool material H # 2) After melting in a vacuum induction melting furnace, weighed ingots of each element (purity 99.9% by weight) and B so as to have the composition described in the section of making a friction stir processing tool, and then ceramic A sample made of an ingot was prepared by solidifying the molten metal with a mold. The sizes of the ingots produced were 83 mmφ × 700 mm for the ingots of Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 22 (tool material H # 2), The ingot of Example 14 was 77 mmφ × 280 mm.
2.ビッカース硬さ測定
この鋳塊からビッカース硬さ測定用試料として、10mmφ×5mmの試験片を切り出した。この試料を用いて常温及び高温(300℃、500℃、600℃、800℃,900℃)でのビッカース硬さ測定を行った。実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例22(ツール材質H#2)の試料の測定には、1280℃-3時間の熱処理(炉冷)を行った後の試料を用いた。実施例14(ツール材質Ta#2)の試料の測定には、鋳造後の試料で熱処理を行っていない試料を用いた。荷重は1kgで,保持時間は20秒の条件で測定した。測定は還元雰囲気中(Ar+約10%H2)で行い、昇温速度は毎分10℃で行った。 2. Vickers hardness measurement A test piece of 10 mmφ × 5 mm was cut out from this ingot as a sample for measuring Vickers hardness. Using this sample, Vickers hardness measurement was performed at normal temperature and high temperature (300 ° C, 500 ° C, 600 ° C, 800 ° C, 900 ° C). For the measurement of samples of Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 22 (tool material H # 2), heat treatment (furnace cooling) at 1280 ° C. for 3 hours The sample after performing was used. In the measurement of the sample of Example 14 (tool material Ta # 2), a sample that was not heat-treated was used after the casting. The load was 1 kg and the holding time was 20 seconds. The measurement was performed in a reducing atmosphere (Ar + about 10% H 2 ), and the heating rate was 10 ° C. per minute.
この鋳塊からビッカース硬さ測定用試料として、10mmφ×5mmの試験片を切り出した。この試料を用いて常温及び高温(300℃、500℃、600℃、800℃,900℃)でのビッカース硬さ測定を行った。実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例22(ツール材質H#2)の試料の測定には、1280℃-3時間の熱処理(炉冷)を行った後の試料を用いた。実施例14(ツール材質Ta#2)の試料の測定には、鋳造後の試料で熱処理を行っていない試料を用いた。荷重は1kgで,保持時間は20秒の条件で測定した。測定は還元雰囲気中(Ar+約10%H2)で行い、昇温速度は毎分10℃で行った。 2. Vickers hardness measurement A test piece of 10 mmφ × 5 mm was cut out from this ingot as a sample for measuring Vickers hardness. Using this sample, Vickers hardness measurement was performed at normal temperature and high temperature (300 ° C, 500 ° C, 600 ° C, 800 ° C, 900 ° C). For the measurement of samples of Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 22 (tool material H # 2), heat treatment (furnace cooling) at 1280 ° C. for 3 hours The sample after performing was used. In the measurement of the sample of Example 14 (tool material Ta # 2), a sample that was not heat-treated was used after the casting. The load was 1 kg and the holding time was 20 seconds. The measurement was performed in a reducing atmosphere (Ar + about 10% H 2 ), and the heating rate was 10 ° C. per minute.
測定結果を図41に示す。図41において、1は実施例4(ツール材質Ta#1)、2は実施例5(ツール材質W#1)、3は実施例14(ツール材質Ta#2)、4は実施例22(ツール材質H#2)の試料のビッカース硬さである。また、図41には、ステンレス鋼中で最高硬さを示し、耐摩耗性が要求される用途で一般的に使用される材料であるSUS440Cについてのビッカース硬さのデータも合わせて示す。このデータは、上記のビッカース硬さ測定と同じサイズのサンプルを用いて同じ測定条件にて実測したものである。
The measurement results are shown in FIG. In FIG. 41, 1 is Example 4 (tool material Ta # 1), 2 is Example 5 (tool material W # 1), 3 is Example 14 (tool material Ta # 2), and 4 is Example 22 (tool). This is the Vickers hardness of the sample of material H # 2). FIG. 41 also shows the Vickers hardness data for SUS440C, which is the material generally used in applications where wear resistance is required, showing the highest hardness in stainless steel. This data is actually measured under the same measurement conditions using a sample having the same size as the above Vickers hardness measurement.
図41を参照すると、実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例14(ツール材質Ta#2)では、測定した全温度域において、実施例22(ツール材質H#2)よりもビッカース硬さの値が高かったことが分かる。従って、Ta又はWを添加したことによるビッカース硬さの向上効果は、測定した全温度域に及ぶことが分かる。
Referring to FIG. 41, in Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 14 (tool material Ta # 2), Example 22 was measured in the entire temperature range measured. It can be seen that the value of Vickers hardness was higher than that of (tool material H # 2). Therefore, it can be seen that the effect of improving the Vickers hardness by adding Ta or W extends to the entire temperature range measured.
また、SUS440Cでは、測定温度の上昇に従ってビッカース硬さの値が急激に低下するのに対し、実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)、実施例14(ツール材質Ta#2)及び実施例22(ツール材質H#2)の試料では、温度上昇に伴うビッカース硬さの値の低下が非常に小さいことが分かる。また、測定温度が500℃以上の場合は実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例14(ツール材質Ta#2)の試料のビッカース硬さの値がSUS440Cよりも大きいことが分かる。
In SUS440C, the value of Vickers hardness sharply decreases as the measurement temperature increases, whereas Example 4 (tool material Ta # 1), Example 5 (tool material W # 1), and Example 14 ( It can be seen that in the samples of the tool material Ta # 2) and Example 22 (tool material H # 2), the decrease in the value of the Vickers hardness accompanying the temperature rise is very small. When the measurement temperature is 500 ° C. or higher, the Vickers hardness of the samples of Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 14 (tool material Ta # 2) is measured. It can be seen that the value is larger than SUS440C.
図41より以下のことが言える。本発明で用いた合金の中温度域の硬さは、SUS440Cに劣るが、高温域ではそれを上回っており、本発明で用いた合金は優れた高温特性を示す。摩擦攪拌加工において、ステンレス接合時のFSWツールの温度はおよそ600℃以上と推定されるので、600℃以上での硬さが重要と考えられる。
The following can be said from FIG. Although the hardness of the medium temperature range of the alloy used in the present invention is inferior to that of SUS440C, it is higher than that in the high temperature range, and the alloy used in the present invention exhibits excellent high temperature characteristics. In the friction stir processing, the temperature of the FSW tool at the time of joining stainless steel is estimated to be about 600 ° C. or higher, so it is considered that hardness at 600 ° C. or higher is important.
また、インコネルのビッカース硬さについては、例えば、山口県産業技術センター(香川正信、前田秀治、池田悟至)の「インコネル713Cの旋削加工」によると、高温ビッカース硬度計(明石製作所、AVK2HF)を使用し、試料サイズはφ10mm×5mm、荷重は5Kgfでビッカース硬さを測定したグラフが開示されている。グラフから常温から600℃まではHv350程度、800℃では、Hv300程度、1000℃では、Hv220程度であることが分かる。これに対して本発明で用いる合金のビッカース硬さは常温~800℃のいずれの温度においてもインコネルよりも高く、実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例14(ツール材質Ta#2)で用いる合金においては、インコネルよりも特に高い。
As for the Vickers hardness of Inconel, according to “Turning of Inconel 713C” by Yamaguchi Prefectural Industrial Technology Center (Masanobu Kagawa, Hideharu Maeda, Satoru Ikeda), for example, A graph is shown in which Vickers hardness is measured using a sample size of φ10 mm × 5 mm and a load of 5 kgf. From the graph, it can be seen that the ambient temperature to 600 ° C. is about Hv 350, the 800 ° C. is about Hv 300, and the 1000 ° C. is about Hv 220. On the other hand, the Vickers hardness of the alloy used in the present invention is higher than that of Inconel at any temperature from room temperature to 800 ° C., and Example 4 (tool material Ta # 1) and Example 5 (tool material W # 1). And the alloy used in Example 14 (tool material Ta # 2) is particularly higher than Inconel.
また、WC系の超硬合金のビッカース硬さについては、例えば、超硬工具協会規格(CIS019D-2005 耐摩耗・耐衝撃工具用超硬合金及び超微粒子超硬合金の材種選択基準)による材種分類記号VC-50の超硬合金(冨士ダイス株式会社製、商品名「フジロイC50」。粗粒タングステンカーバイドと、バインダー金属としてCoを用い焼結させたもの)において、800℃のビッカース硬度 330、900℃のビッカース硬度 210と開示されている。これに対し、本発明の実施例4(ツール材質Ta#1)、実施例5(ツール材質W#1)及び実施例14(ツール材質Ta#2)で用いる合金においては、800℃のビッカース硬度 500前後、900℃のビッカース硬度 450以上であり、高温領域においてWC系の超硬合金よりもはるかに高い。
Regarding the Vickers hardness of WC-based cemented carbide, for example, a material according to the standards of the Cemented Carbide Tool Association (CIS019D-2005, cemented carbide for wear and impact resistant tools, and grade selection criteria for ultrafine cemented carbide) In a cemented carbide of the type classification symbol VC-50 (trade name “Fuji Roy C50” manufactured by Fuji Dice Co., Ltd., sintered using coarse grain tungsten carbide and Co as a binder metal), Vickers hardness of 800 ° C. 330 , Vickers hardness 210 of 900 ° C. is disclosed. In contrast, the alloys used in Example 4 (tool material Ta # 1), Example 5 (tool material W # 1) and Example 14 (tool material Ta # 2) of the present invention have a Vickers hardness of 800 ° C. The Vickers hardness at around 500 and 900 ° C. is 450 or more, which is much higher than that of the WC cemented carbide in the high temperature region.
本発明のNi基2重複相金属間化合物合金からなる摩擦攪拌加工用ツールは、鉄または鉄合金等を被加工材とする摩擦攪拌加工に有効に利用できる。本発明の摩擦攪拌加工方法は、鉄または鉄合金等を被加工材とする摩擦攪拌加工に有効に利用できる。
The friction stir processing tool comprising the Ni-based double-duplex intermetallic compound alloy of the present invention can be effectively used for friction stir processing using iron or an iron alloy as a workpiece. The friction stir processing method of the present invention can be effectively used for friction stir processing using iron or an iron alloy as a workpiece.
Claims (7)
- Ni基2重複相金属間化合物合金からなることを特徴とする摩擦攪拌加工用ツール。 A friction stir processing tool characterized by comprising a Ni-based dual-phase intermetallic compound alloy.
- 前記Ni基2重複相金属間化合物合金がTa及び/又はWを0.5~8原子%含むことを特徴とする、請求項1に記載の摩擦攪拌加工用ツール。 The friction stir processing tool according to claim 1, wherein the Ni-based two-phase intermetallic compound alloy contains 0.5 to 8 atomic% of Ta and / or W.
- 前記Ni基2重複相金属間化合物合金が、Niを主成分とし且つAl:2~9原子%、V:10~17原子%、(Ta及び/又はW):0.5~8原子%、Nb:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有することを特徴とする、請求項1に記載の摩擦攪拌加工用ツール。 The Ni-based two-phase intermetallic compound alloy is mainly composed of Ni and Al: 2 to 9 atomic%, V: 10 to 17 atomic%, (Ta and / or W): 0.5 to 8 atomic%, B: 10 to 1000 ppm by weight and proeutectoid L1 with respect to the total weight of the composition of a total of 100 atom% including Nb: 0 to 6 atom%, Co: 0 to 6 atom%, Cr: 0 to 6 atom% 2. The friction stir processing tool according to claim 1, wherein the friction stir processing tool has a two-phase structure composed of two phases and a (L1 2 + D0 22 ) eutectoid structure.
- 前記Ni基2重複相金属間化合物合金が、Niを主成分とし且つAl:5.5~13原子%、V:10~17原子%、Nb:0~6原子%、Ti:0~6原子%、Co:0~6原子%、Cr:0~6原子%を含む合計100原子%の組成の合計重量に対してB:10~1000重量ppmを含み且つ初析L12相と(L12+D022)共析組織とからなる2重複相組織を有することを特徴とする、請求項1に記載の摩擦攪拌加工用ツール。 The Ni-based double-duplex intermetallic compound alloy is mainly composed of Ni and Al: 5.5 to 13 atom%, V: 10 to 17 atom%, Nb: 0 to 6 atom%, Ti: 0 to 6 atom %, Co: 0 to 6 atom%, Cr: 0 to 6 atom%, and B: 10 to 1000 ppm by weight with respect to the total weight of the composition of 100 atom% in total and the proeutectoid L1 2 phase (L1 2 The tool for friction stir processing according to claim 1, wherein the tool has a double-phase structure composed of + D0 22 ) a eutectoid structure.
- 前記Ni基2重複相金属間化合物合金を母材とし、前記母材の表面が硬化処理されてなることを特徴とする、請求項1から請求項4までのいずれか1項に記載の摩擦攪拌加工用ツール。 The friction stirrer according to any one of claims 1 to 4, wherein the Ni-based two-phase intermetallic compound alloy is used as a base material, and a surface of the base material is hardened. Tool for processing.
- 前記硬化処理が窒化処理又は浸炭処理の少なくとも一方であることを特徴とする、請求項5に記載の摩擦攪拌加工用ツール。 The friction stir processing tool according to claim 5, wherein the hardening treatment is at least one of nitriding treatment or carburizing treatment.
- 被加工材に高速回転するツール先端を押し当て、発生する摩擦熱により被加工材を可塑化させて攪拌することにより、被加工材を加工する摩擦攪拌加工方法において、請求項1から請求項4までのいずれか1項に記載の摩擦攪拌加工用ツールを用いることを特徴とする摩擦攪拌加工方法。 The friction stir processing method for processing a workpiece by pressing the tip of a tool rotating at a high speed against the workpiece and plasticizing and stirring the workpiece by the generated frictional heat. A friction stir processing method using the tool for friction stir processing according to any one of the above.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008085036 | 2008-03-27 | ||
JP2008-085036 | 2008-03-27 | ||
JP2009051414A JP5371139B2 (en) | 2008-03-27 | 2009-03-05 | Friction stir processing tool |
JP2009-051414 | 2009-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009119543A1 true WO2009119543A1 (en) | 2009-10-01 |
Family
ID=41113735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055749 WO2009119543A1 (en) | 2008-03-27 | 2009-03-24 | Tool for friction stir working comprising ni-base double multiphase intermetallic compound alloy, and friction stir working method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5371139B2 (en) |
WO (1) | WO2009119543A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102905838A (en) * | 2010-03-24 | 2013-01-30 | 公立大学法人大阪府立大学 | Friction processing tool, and method and apparatus for friction processing using same |
CN103492116A (en) * | 2011-03-29 | 2014-01-01 | 公立大学法人大阪府立大学 | Tool for friction stir processing and method for friction stir processing using same |
JP2015063752A (en) * | 2013-08-27 | 2015-04-09 | 公立大学法人大阪府立大学 | SPRAY COATING FILM OF Ni-BASED INTERMETALLIC COMPOUND ALLOY, SPRAY COATING FILM COATED MEMBER, AND METHOD OF FORMING SPRAY COATING FILM |
US9440288B2 (en) | 2012-11-05 | 2016-09-13 | Fluor Technologies Corporation | FSW tool with graduated composition change |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5424315B2 (en) * | 2009-07-28 | 2014-02-26 | 公立大学法人大阪府立大学 | High temperature bearing formed of Ni-based double-duplex intermetallic alloy and method for manufacturing the same |
JP5633006B2 (en) * | 2010-03-24 | 2014-12-03 | 公立大学法人大阪府立大学 | Friction stir processing apparatus and friction stir processing method |
US9169540B2 (en) | 2010-09-24 | 2015-10-27 | Osaka Prefecture University Public Corporation | Re-added Ni-based dual multi-phase intermetallic compound alloy and method for producing the same |
JP5819084B2 (en) * | 2011-03-29 | 2015-11-18 | 学校法人近畿大学 | Friction stir processing apparatus and friction stir processing method |
JP5706780B2 (en) * | 2011-07-27 | 2015-04-22 | 三菱日立パワーシステムズ株式会社 | Steam turbine rotor and manufacturing method thereof |
JP2016503347A (en) * | 2012-11-05 | 2016-02-04 | フルーア・テクノロジーズ・コーポレイション | FSW tool with incremental composition change |
US10465266B2 (en) | 2014-05-30 | 2019-11-05 | A.L.M.T. Corp. | Heat-resistant tungsten alloy, friction stir welding tool, and production method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003048084A (en) * | 2001-08-01 | 2003-02-18 | Mazda Motor Corp | Rotary tool and manufacturing method thereof, and treatment method using the rotary tool |
JP2004082144A (en) * | 2002-08-23 | 2004-03-18 | Hitachi Cable Ltd | Tool and method for friction stir welding |
JP2005074518A (en) * | 2003-08-29 | 2005-03-24 | Boeing Co:The | Tool and method for forming friction stir weld joint in workpiece |
JP2005519769A (en) * | 2002-04-29 | 2005-07-07 | ザ・ボーイング・カンパニー | Method and apparatus for friction stir welding |
WO2006101212A1 (en) * | 2005-03-25 | 2006-09-28 | Osaka Prefecture University Public Corporation | Ni3Al BASE INTERMETALLIC COMPOUND WITH DOUBLE DUAL PHASE STRUCTURE, PROCESS FOR PRODUCING THE SAME AND HEAT-RESISTANT STRUCTURAL MATERIAL |
WO2007086185A1 (en) * | 2006-01-30 | 2007-08-02 | Osaka Prefecture University Public Corporation | Ni3Al-BASED INTERMETALLIC COMPOUND HAVING DOUBLE-TWO-PHASE STRUCTURE, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT STRUCTURAL MATERIAL |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6776328B2 (en) * | 2002-09-17 | 2004-08-17 | The Boeing Company | Radiation assisted friction welding |
JP5039968B2 (en) * | 2006-09-19 | 2012-10-03 | 国立大学法人北見工業大学 | Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane |
EP2078763A4 (en) * | 2006-09-26 | 2014-09-03 | Ihi Corp | Ni-based compound superalloy having excellent oxidation resistance, method for manufacturing the same, and heat-resistant structural material |
-
2009
- 2009-03-05 JP JP2009051414A patent/JP5371139B2/en not_active Expired - Fee Related
- 2009-03-24 WO PCT/JP2009/055749 patent/WO2009119543A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003048084A (en) * | 2001-08-01 | 2003-02-18 | Mazda Motor Corp | Rotary tool and manufacturing method thereof, and treatment method using the rotary tool |
JP2005519769A (en) * | 2002-04-29 | 2005-07-07 | ザ・ボーイング・カンパニー | Method and apparatus for friction stir welding |
JP2004082144A (en) * | 2002-08-23 | 2004-03-18 | Hitachi Cable Ltd | Tool and method for friction stir welding |
JP2005074518A (en) * | 2003-08-29 | 2005-03-24 | Boeing Co:The | Tool and method for forming friction stir weld joint in workpiece |
WO2006101212A1 (en) * | 2005-03-25 | 2006-09-28 | Osaka Prefecture University Public Corporation | Ni3Al BASE INTERMETALLIC COMPOUND WITH DOUBLE DUAL PHASE STRUCTURE, PROCESS FOR PRODUCING THE SAME AND HEAT-RESISTANT STRUCTURAL MATERIAL |
JP2006299403A (en) * | 2005-03-25 | 2006-11-02 | Osaka Prefecture Univ | Ni3Al BASE INTERMETALLIC COMPOUND WITH DOUBLE DUAL PHASE STRUCTURE, PROCESS FOR PRODUCING THE SAME AND HEAT-RESISTANT STRUCTURAL MATERIAL |
WO2007086185A1 (en) * | 2006-01-30 | 2007-08-02 | Osaka Prefecture University Public Corporation | Ni3Al-BASED INTERMETALLIC COMPOUND HAVING DOUBLE-TWO-PHASE STRUCTURE, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT STRUCTURAL MATERIAL |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102905838A (en) * | 2010-03-24 | 2013-01-30 | 公立大学法人大阪府立大学 | Friction processing tool, and method and apparatus for friction processing using same |
CN103492116A (en) * | 2011-03-29 | 2014-01-01 | 公立大学法人大阪府立大学 | Tool for friction stir processing and method for friction stir processing using same |
US20140027498A1 (en) * | 2011-03-29 | 2014-01-30 | Osaka Prefecture University Public Corporation | Tool and method for friction stir processing using the friction stir processing tool |
US8857695B2 (en) * | 2011-03-29 | 2014-10-14 | Osaka Prefecture University Public Corporation | Tool and method for friction stir processing using the friction stir processing tool |
CN103492116B (en) * | 2011-03-29 | 2016-02-24 | 公立大学法人大阪府立大学 | Mixing yoghurt instrument and use the mixing yoghurt method of this instrument |
US9440288B2 (en) | 2012-11-05 | 2016-09-13 | Fluor Technologies Corporation | FSW tool with graduated composition change |
US10286481B2 (en) | 2012-11-05 | 2019-05-14 | Fluor Technologies Corporation | FSW tool with graduated composition change |
JP2015063752A (en) * | 2013-08-27 | 2015-04-09 | 公立大学法人大阪府立大学 | SPRAY COATING FILM OF Ni-BASED INTERMETALLIC COMPOUND ALLOY, SPRAY COATING FILM COATED MEMBER, AND METHOD OF FORMING SPRAY COATING FILM |
Also Published As
Publication number | Publication date |
---|---|
JP5371139B2 (en) | 2013-12-18 |
JP2009255170A (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5371139B2 (en) | Friction stir processing tool | |
Zhang et al. | Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds | |
JP4325875B2 (en) | Friction stir welding tool and friction stir welding apparatus | |
Günen et al. | A new approach to improve some properties of wire arc additively manufactured stainless steel components: Simultaneous homogenization and boriding | |
EP2076352B1 (en) | Refractory metal tooling for friction stir welding comprising a shoulder made of tantalum, niobium or hafnium alloy and a coated or treated surface | |
EP2692471B1 (en) | Tool for friction stir processing and method for friction stir processing using same | |
US11964338B2 (en) | Method for low-temperature joining of metal materials, and joint structure | |
NO340003B1 (en) | Friction movement method and a pair of workpieces connected by such method | |
WO2020184483A1 (en) | Friction stir welding tool and friction stir welding method | |
EP2298486B1 (en) | Friction stir tool | |
JP6139545B2 (en) | Friction stir welding tool made of carbide tungsten carbide containing nickel and having an AL203 surface coating | |
JP5326096B2 (en) | Friction stir processing tool | |
JP4607133B2 (en) | Friction stir processing tool and method of manufacturing friction stir processed product | |
CN108290244B (en) | Friction stir welding tool | |
Batalha et al. | Evaluation of an AlCrN coated FSW tool | |
Wang et al. | Effect of tin content on the microstructure and property of brazed WC-Co/CrMo alloy steel joints | |
JP5595475B2 (en) | Friction stirring tool | |
Arenas | Weldability of a cast gamma titanium aluminide alloy using gas tungsten arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09725519 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09725519 Country of ref document: EP Kind code of ref document: A1 |