WO2009119440A1 - Microchip and molding die - Google Patents

Microchip and molding die Download PDF

Info

Publication number
WO2009119440A1
WO2009119440A1 PCT/JP2009/055433 JP2009055433W WO2009119440A1 WO 2009119440 A1 WO2009119440 A1 WO 2009119440A1 JP 2009055433 W JP2009055433 W JP 2009055433W WO 2009119440 A1 WO2009119440 A1 WO 2009119440A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
groove
resin substrate
depth
path groove
Prior art date
Application number
PCT/JP2009/055433
Other languages
French (fr)
Japanese (ja)
Inventor
信 高木
幹司 関原
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2009119440A1 publication Critical patent/WO2009119440A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves

Definitions

  • the step portion 5 formed at the intersecting portion 4 where the first channel groove 2 and the second channel groove 3 intersect is used for evaluating the transferability of the channel groove in molding.
  • the resin substrate 1 is manufactured by an injection molding method using a molding die.
  • the molding die is formed with a convex portion corresponding to the first flow channel groove 2 and a convex portion corresponding to the second flow channel groove 3, and the shape of the convex portion of the molding die is a resin.
  • the resin substrate 1 having the first flow path groove 2 and the second flow path groove 3 is produced.
  • a step portion is provided on the upper surface of the convex portion of the molding die, at a position corresponding to the intersecting portion 4 where the first flow path groove 2 and the second flow path groove 3 intersect. Thereby, the step of the molding die is transferred to the resin, and the step portion 5 is formed on the bottom surface of the intersecting portion 4 where the first flow path groove 2 and the second flow path groove 3 intersect.
  • the transferability can be evaluated at a deep portion of the flow path groove.
  • the depth of one of the flow channel grooves becomes deeper than the depth of the other flow channel grooves at the intersecting portion 4.
  • the depth of the second flow path groove 3 is deeper than the depth of the first flow path groove 2.
  • the stepped portion 5 can be easily specified, and further, the stepped portion 5 at the crossing portion 4 can be specified. By confirming the shape, the transferability of the resin substrate 1 can be evaluated.
  • a linear first flow path forming groove 11 and a straight second flow path forming groove 12 are formed on one surface of the electroforming master 10.
  • the first flow path forming groove 11 and the second flow path forming groove 12 are formed orthogonally on the surface of the electroforming master 10.
  • the depth of the first flow path forming groove 11 and the depth of the second flow path forming groove 12 are different, and the intersection where the first flow path forming groove 11 and the second flow path forming groove 12 intersect.
  • a step portion 14 is formed on the bottom surface of 13.
  • the depth of the second flow path forming groove 12 is deeper than the depth of the first flow path forming groove 11. Therefore, a stepped portion 14 that is orthogonal to the length direction of the first flow path forming groove 11 is formed on the bottom surface of the intersecting portion 13 across the width direction of the first flow path forming groove 11.
  • the step portion 14 corresponds to the step portion 5 formed on the resin substrate 1.
  • the second flow path is formed across the width direction of the second flow path forming groove 12 by making the depth of the first flow path forming groove 11 deeper than the depth of the second flow path forming groove 12. You may form the level
  • a method for manufacturing the electroforming master 10 will be described.
  • a metal layer is formed on the surface of the master blank by performing Ni—P plating or Cu plating on the master blank.
  • the first flow path forming groove 11 and the second flow path forming groove 12 are formed by etching the upper surface of the metal layer.
  • the electroforming master 10 obtained in this way becomes a base of a molding die for the resin substrate 1.
  • the first flow path forming groove 11 corresponds to the first flow path groove 2 of the resin substrate 1
  • the second flow path forming groove 12 corresponds to the second flow path groove 3 of the resin substrate 1.
  • the step portion 14 corresponds to the step portion 5 of the resin substrate 1.
  • the metal layer may not be formed on the master blank.
  • the master blank may be made of a material such as an aluminum alloy or oxygen-free copper, and the master blank 10 may be manufactured by etching the master blank.
  • an electroformed body is produced by electroforming the electroformed master 10, and then the electroformed body is released from the electroformed master 10.
  • the molding die which has a convex part corresponding to the groove for channel formation of electroforming master 10 can be produced.
  • a molding die produced by the electroforming master 10 is shown in FIG.
  • a linear first convex portion 21 corresponding to the first flow path forming groove 11 and a linear second convex corresponding to the second flow path forming groove 12 are formed on one surface of the molding die 20, a linear first convex portion 21 corresponding to the first flow path forming groove 11 and a linear second convex corresponding to the second flow path forming groove 12 are formed.
  • a portion 22 is formed.
  • the height of the first convex portion 21 and the height of the second convex portion 22 are different, and a step portion 23 is formed on the upper surface of the intersection where the first convex portion 21 and the second convex portion 22 intersect.
  • the height of the second convex portion 22 is higher than the height of the first convex portion 21.
  • the relationship of height d2> height d1 is established between the height d1 of the first convex portion 21 and the height d2 of the second convex portion 22, and the height difference ⁇ t is It
  • the shape of the step portion 5 formed on the resin substrate 1 is observed with an observation device such as a microscope, and the shape of the step portion 5 and the molding die 20 are formed.
  • the shape of the stepped portion 23 is compared. Then, the transferability is evaluated based on the difference in the shape of the step portion.
  • FIG. 7 is an enlarged cross-sectional view of a part of the molding die according to the embodiment of the present invention.
  • the resin substrate 1 is manufactured by injection molding using a mold in which a flat groove for forming a cavity is formed and the molding mold 20 according to this embodiment. With the flat groove inside, the molding die 20 and the mold in which the groove is formed face each other and are brought into contact with each other, so that the molding die 20 and the mold in which the groove is formed are in contact with each other. Cavity is formed in By filling the cavity with resin, the resin substrate 1 to which the shape of the first protrusion 21 and the shape of the second protrusion 22 are transferred is produced.
  • the shape of the step portion 23 formed in the molding die 20 is made of resin. Good transfer onto the substrate 1. Specifically, the shape of the corner of the step portion 23 and the shape of the wall portion are transferred to the resin substrate 1, and the step portion 5 having a shape corresponding to the shape of the step portion 23 is formed on the resin substrate 1. The And when the level difference part 5 is observed with observation apparatuses, such as a microscope, the boundary line of the level difference part 5 can be recognized with a comparatively dark line. As a result, the inspector can confirm that the transfer has been successfully performed.
  • the shape of the step portion 23 formed in the molding die 20 is resin. It is not transferred well to the substrate 1. Specifically, the shape of the corner of the step 23 and the shape of the wall are not transferred well to the resin substrate 1, and the corner and wall of the step 5 formed on the resin substrate 1 are curved. Thus, the shape corresponding to the shape of the stepped portion 23 is not formed on the resin substrate 1. And when the level difference part 5 is observed with observation apparatuses, such as a microscope, the boundary line of the level difference part 5 can be recognized blurry. Thereby, the inspector can confirm that the transfer is not performed well.
  • FIG. 8 is a top view of a resin substrate according to a modification.
  • FIG. 9 is a cross-sectional view of a resin substrate according to a modification, and is a IX-IX cross-sectional view of FIG. In this modification, a resin substrate in which a T-shaped groove is formed by two channel grooves having different depths will be described.
  • the resin substrate 1A is a plate-shaped substrate, and on one surface of the resin substrate 1A, a linear first flow channel groove 2A and a linear second flow channel groove are formed. 3A is formed.
  • the first flow path groove 2A and the second flow path groove 3A are orthogonally formed on the surface of the resin substrate 1A.
  • the second flow path groove 3A is formed halfway through the first flow path groove 2A.
  • the first channel groove 2A and the second channel groove 3A constitute a T-shaped groove. Since the depth of the second flow path groove 3A is deeper than the depth of the first flow path groove 2A, the intersection of the first flow path groove 2A and the second flow path groove 3A intersects.
  • a step portion 5A is formed on the bottom surface.
  • the depth of the first flow path groove 2A is defined as depth d1
  • the depth of the second flow path groove 3A is defined as depth d2. Since the depth of the second flow path groove 3A is deeper than the depth of the first flow path groove 2A, the relationship of depth d2> depth d1 is established, and the depth difference ⁇ t is the step portion 5A. Of height.
  • a microchip is manufactured by bonding the resin substrate 1A and the flat resin substrate with the surface on which the first flow channel groove 2A and the second flow channel groove 3A are formed inside. To do. As a result, a fine channel is formed by the first channel groove 2A and the second channel groove 3A.
  • the resin substrate 1A is manufactured by an injection molding method using a molding die.
  • the molding die is formed with a convex portion corresponding to the first flow channel groove 2A and a convex portion corresponding to the second flow channel groove 3A, and the shape of the convex portion of the molding die is a resin.
  • the resin substrate 1A having the first flow path groove 2A and the second flow path groove 3A is produced. Further, a step portion is provided on the upper surface of the convex portion of the molding die at a position corresponding to the intersecting portion 4A where the first flow path groove 2A and the second flow path groove 3A intersect.
  • a resin substrate 1A according to the above-described modification was produced.
  • a molding die for producing the resin substrate 1A was produced. Specifically, a molding die having convex portions corresponding to the first channel groove 2A and the second channel groove 3A was produced. Then, by molding PMMA which is a transparent resin material with an injection molding machine using the molding die, the first flow path groove 2A and the second flow path are formed on the surface of a plate-like member having a 30 mm square and a thickness of 1 mm.
  • a resin substrate having a channel groove 3A formed thereon was produced. The dimensions of the groove are shown below.
  • first channel groove 2A 26.5 [ ⁇ m]
  • Depth d2 of second channel groove 3A 26.7 [ ⁇ m]
  • the depth ⁇ t of the step portion 5A 0.18 [ ⁇ m]
  • Width of first flow path groove 2A 40.3 [ ⁇ m] (Evaluation)
  • Two resin substrates 1A were produced by molding PMMA, which is a transparent resin material, using an injection molding machine under two different molding conditions, and the transferability of each resin substrate 1A was examined. The appearance of the stepped portion 5A was observed with a general-purpose optical microscope having a magnification of about 400 times, and the difference in the shape of the stepped portion 5A in the resin substrate 1A could be confirmed. In one resin substrate 1A, the step portion 5A was observed to be thick, and in the other resin substrate 1A, the step portion 5A was observed to be thin.
  • the shape of the two resin substrates 1A was measured with a shape measuring device, and the transferability of the molding was confirmed. It was confirmed that the shape of the resin substrate 1A in which the stepped portion 5A was observed to be thick was largely different from the shape of the molding die, and sufficient molding transfer was not obtained. On the other hand, it was confirmed that the shape of the resin substrate 1A in which the step portion 5A was thinly observed was small in deviation from the shape of the molding die, and sufficient molding transfer was obtained. From the above, the correlation between the observation image by the optical microscope and the molding transferability was confirmed.
  • the materials and dimensions of the resin substrate shown in the above-described embodiments are for confirming the effects of the present invention, and the present invention is not limited to these. For example, even when the resin mentioned in the above-described embodiment is used, transferability in molding can be evaluated by providing a stepped portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided is a microchip in which the transferability in molding can be evaluated without quantitatively measuring the shapes of flow channel grooves. A first flow channel groove (2) and a second flow channel groove (3) are formed to intersect each other in one surface of a resinous substrate (1). A step portion (5) is provided at an intersection thereof. The depth d1 of the first flow channel groove (2) and the depth d2 of the second flow channel groove (3) have a relationship of depth d2 > depth d1, and a difference δt in depth is the height of the step portion (5). The flow channel grooves of the resinous substrate (1) are fabricated by molding using a molding die. The step portion (5) is used for evaluating the transferability in the molding. The shape of the step portion (5) is observed by an observation device such as a microscope, and the transferability is evaluated on the basis of the observation.

Description

マイクロチップ、及び成形用金型Microchip and mold for molding
 この発明は、流路用溝が形成された樹脂製基板を接合することで作製されるマイクロチップに関する。また、この発明は、流路用溝が形成された樹脂製基板を作製するための成形用金型に関する。 This invention relates to a microchip manufactured by bonding a resin substrate on which a channel groove is formed. The present invention also relates to a molding die for producing a resin substrate in which a channel groove is formed.
 微細加工技術を利用してシリコンやガラス基板上に微細な流路や回路を形成し、微小空間上で核酸、タンパク質、血液などの液体試料の化学反応や、分離、分析などを行うマイクロ分析チップ、あるいはμTAS(Micro Total Analysis Systems)と称される装置が実用化されている。このようなマイクロチップの利点としては、サンプルや試薬の使用量又は廃液の排出量が軽減され、省スペースで持ち運び可能な安価なシステムの実現が考えられる。 A micro-analysis chip that uses microfabrication technology to form fine channels and circuits on silicon and glass substrates, and to perform chemical reactions, separation, and analysis of liquid samples such as nucleic acids, proteins, and blood in a minute space Alternatively, an apparatus called μTAS (Micro Total Analysis Systems) has been put into practical use. As an advantage of such a microchip, it is conceivable to realize an inexpensive system that can be carried in a small space because the amount of sample or reagent used or the amount of discharged waste liquid is reduced.
 マイクロチップは、少なくとも一方の部材に微細加工が施された2つの部材をはり合わせることにより製造される。従来においては、マイクロチップにはガラス基板が用いられ、様々な微細加工方法が提案されている。しかしながら、ガラス基板は大量生産には向かず、非常に高コストであるため、廉価で使い捨て可能な樹脂製のマイクロチップの開発が望まれている。 A microchip is manufactured by bonding two members having at least one member subjected to microfabrication. Conventionally, a glass substrate is used for the microchip, and various fine processing methods have been proposed. However, since glass substrates are not suitable for mass production and are extremely expensive, development of inexpensive and disposable resin microchips is desired.
 樹脂製のマイクロチップを製造するためには、流路用溝が形成された樹脂製基板と、流路用溝をカバーする樹脂製基板とを接合する。流路用溝が形成された樹脂製基板は、例えば射出成形によって作製される。従来、微細流路内において液体の旋回流を促すために、成形によって螺旋状の凹凸を流路用溝に形成した複数流路が分岐した流路溝が形成されているマイクロチップが提案されている(特許文献1)。
特開2006-142210号公報
In order to manufacture a resin microchip, a resin substrate on which a channel groove is formed and a resin substrate that covers the channel groove are joined. The resin substrate on which the channel grooves are formed is produced by, for example, injection molding. Conventionally, in order to promote a swirling flow of liquid in a fine channel, there has been proposed a microchip in which a channel groove is formed by branching a plurality of channels in which spiral irregularities are formed in a channel groove by molding. (Patent Document 1).
JP 2006-142210 A
 しかしながら、特許文献1にあるように最近の流路用溝は、複数の流路が分岐、交差している複雑なパターンを有するものが多い。このような複雑な流路用溝パターンを射出成形によって形成する場合、成形時の樹脂転写性が流路用溝全体に亘って十分でないことがある。その場合、流路の複数箇所の転写性を測定して評価することとなるが、各流路について転写性を評価することは手間がかかるという問題がある。また当該評価を測定装置に基づく測定結果に基づいて評価する方法は、検査に時間を要し、成形における転写性を簡便に評価することが更に困難であった。また、その測定に用いる測定装置もコストがかかっていた。そのため、検査に要する手間やコストを低減し、かつ、成形による転写性を簡便に評価できる方法が望まれていた。 However, as disclosed in Patent Document 1, many of the recent channel grooves have a complicated pattern in which a plurality of channels are branched and intersected. When such a complicated flow path groove pattern is formed by injection molding, the resin transferability during molding may not be sufficient over the entire flow path groove. In that case, the transferability at a plurality of locations in the flow path is measured and evaluated, but there is a problem that it takes time to evaluate the transferability for each flow path. Moreover, the method of evaluating the evaluation based on the measurement result based on the measuring apparatus requires time for inspection, and it is further difficult to easily evaluate the transferability in molding. Also, the measuring device used for the measurement is expensive. Therefore, there has been a demand for a method that can reduce labor and cost required for inspection and can easily evaluate transferability by molding.
 この発明は上記の問題を解決するものであり、このような複雑な流路溝パターンを形成した場合でも、各々の流路溝を測定しなくても、成形における転写性を評価することができるマイクロチップ、及び流路用溝が形成された樹脂製基板を作製するための成形用金型を提供することを目的とする。 The present invention solves the above problems, and even when such a complicated flow groove pattern is formed, the transferability in molding can be evaluated without measuring each flow groove. It is an object of the present invention to provide a molding die for producing a microchip and a resin substrate in which a channel groove is formed.
 この発明の第1の形態は、樹脂を成形することで作製された2つの樹脂製基板のうち、少なくとも一方の樹脂製基板の表面には流路用溝が形成され、前記2つの樹脂製基板を、前記流路用溝が形成された面を内側にして接合されたマイクロチップであって、前記流路用溝は第1流路用溝と、前記第1流路用溝と交差する第2流路用溝とを含み、前記第1流路用溝と前記第2流路用溝とは溝深さが異なることを特徴とするマイクロチップである。 According to a first aspect of the present invention, a channel groove is formed on the surface of at least one of the two resin substrates produced by molding a resin, and the two resin substrates are formed. Are joined with the surface on which the channel groove is formed facing inward, and the channel groove intersects the first channel groove and the first channel groove. The microchip includes a two-channel groove, wherein the first channel groove and the second channel groove have different groove depths.
 また、この発明の第2の形態は、第1の形態に係るマイクロチップであって、前記第1流路用溝と前記第2流路用溝とが交差する交差部に形成される段差が、成形における転写性の検査に用いられることを特徴とする。 According to a second aspect of the present invention, there is provided a microchip according to the first aspect, wherein there is a step formed at an intersection where the first flow path groove and the second flow path groove intersect. It is used for inspection of transferability in molding.
 また、この発明の第3の形態は、第1の形態又は第2の形態のいずれかに係るマイクロチップであって、前記第1流路用溝と前記第2流路用溝とが交差する交差部の段差の高さは、前記第1流路用溝の溝深さと前記第2流路用溝の溝深さとのうち、深い方の溝深さの0.3%~5%の範囲に設定されていることを特徴とする。 According to a third aspect of the present invention, there is provided the microchip according to the first aspect or the second aspect, wherein the first flow path groove and the second flow path groove intersect. The height of the step at the intersection is in the range of 0.3% to 5% of the deeper groove depth of the groove depth of the first flow path groove and the groove depth of the second flow path groove. It is characterized by being set to.
 また、この発明の第4の形態は、少なくとも2つの樹脂製基板のうち、一方の樹脂製基板の表面には少なくとも2つの流路用溝が互いに交差して形成され、前記2つの樹脂製基板を、前記複数の流路用溝が形成された面を内側にして接合されるマイクロチップの前記流路用溝が形成された樹脂製基板を成形するための成形用金型であって、前記交差する少なくとも2つの流路用溝の一方に対応する第1凸部を有し、前記第1凸部の上面であって、前記少なくとも2つの流路用溝が交差する交差部の位置に対応する位置に、前記2つの流路用溝のうち少なくとも一方の溝の幅と同じ幅を有する段差を以って第2凸部が設けられていることを特徴とする成形用金型である。 According to a fourth aspect of the present invention, at least two flow path grooves are formed to intersect each other on the surface of one of the at least two resin substrates, and the two resin substrates. A molding die for molding the resin substrate formed with the channel groove of the microchip to be joined with the surface on which the plurality of channel grooves are formed inside. A first convex portion corresponding to one of at least two intersecting channel grooves, and corresponding to a position of an upper surface of the first convex portion where the at least two channel grooves intersect The molding die is characterized in that a second convex portion is provided at a position where a step having the same width as that of at least one of the two flow path grooves is provided.
 また、この発明の第5の形態は、第4の形態に係る成形用金型であって、前記第2凸部が、成形における転写性の検査に用いられることを特徴とする。 Further, a fifth aspect of the present invention is a molding die according to the fourth aspect, wherein the second convex portion is used for inspection of transferability in molding.
 また、この発明の第6の形態は、第4の形態又は第5の形態のいずれかに係る成形用金型であって、前記第2凸部の高さは、前記第1凸部及び前記第2凸部の全体の高さの0.3%~5%の範囲に設定されていることを特徴とする。 Further, a sixth aspect of the present invention is a molding die according to either the fourth aspect or the fifth aspect, wherein the height of the second convex part is the first convex part and the above-mentioned It is characterized by being set in the range of 0.3% to 5% of the total height of the second convex portion.
 また、この発明の第7の形態は、第4から第6の形態のいずれかに係る成形用金型であって、複数の凹部が交差するように、前記複数の凹部のそれぞれをエッチング加工によって形成することで、前記交差する交差部における前記凹部の底面に段差が形成された電鋳マスターを用いて、電鋳加工によって前記凹部に対応する前記凸部が形成されたことを特徴とする。 According to a seventh aspect of the present invention, there is provided a molding die according to any one of the fourth to sixth aspects, wherein each of the plurality of recesses is etched by etching so that the plurality of recesses intersect. By forming, using the electroforming master in which a step is formed on the bottom surface of the recess at the intersecting intersection, the projection corresponding to the recess is formed by electroforming.
 この発明によると、流路用溝が交差する交差部に段差を設けており、当該交差部の段差部により流路溝の転写性を評価する事が可能となる。係る構成は、複数の流路が交差する交差部分が射出成形時における樹脂転写性が最も不十分となる恐れがあるという知見に鑑みて成されたものである。つまり該交差部に形成されている段差部を設けて樹脂転写性の評価を行う事により、各々の流路溝の形状の転写性を一つ一つ評価しなくても、数少ない交差部の評価によって樹脂製基板に対する流路用溝の転写性を評価することが可能となり、手間を軽減でき、また測定装置を使用してのコストの係る評価であってもコストダウンに繋がる。 According to the present invention, the step is provided at the intersection where the channel grooves intersect, and the transferability of the channel groove can be evaluated by the step at the intersection. Such a configuration is made in view of the knowledge that there is a possibility that the resin transferability at the time of injection molding may be the least satisfactory at an intersection where a plurality of flow paths intersect. In other words, by evaluating the resin transferability by providing stepped portions formed at the intersections, it is possible to evaluate a few intersections without having to evaluate the transferability of the shape of each channel groove one by one. As a result, it is possible to evaluate the transferability of the groove for the flow path with respect to the resin substrate, the labor can be reduced, and even the cost-related evaluation using the measuring apparatus leads to cost reduction.
 また流路の段差よりも更に深い段差部が形成されていることにより、測定装置に基づく測定結果による評価を用いなくても、段差部を顕微鏡などの観察評価で簡易的に転写性を推定する事が可能となるため、その場合、更なるコストダウンにも繋がる。 In addition, by forming a step deeper than the step of the flow path, transferability can be easily estimated by observation evaluation using a microscope, etc., without using evaluation based on measurement results based on a measurement device. In that case, it leads to further cost reduction.
この発明の実施形態に係る樹脂製基板の上面図である。1 is a top view of a resin substrate according to an embodiment of the present invention. この発明の実施形態に係る樹脂製基板の断面図であり、図1のII-II断面図である。FIG. 2 is a cross-sectional view of a resin substrate according to an embodiment of the present invention, and is a cross-sectional view taken along the line II-II in FIG. この発明の実施形態に係るマイクロチップの断面図である。It is sectional drawing of the microchip which concerns on embodiment of this invention. この発明の実施形態に係る電鋳マスターの上面図である。1 is a top view of an electroforming master according to an embodiment of the present invention. この発明の実施形態に係る電鋳マスターの断面図であり、図4のV-V断面図である。FIG. 5 is a cross-sectional view of an electroforming master according to an embodiment of the present invention, and is a VV cross-sectional view of FIG. この発明の実施形態に係る成形用金型の断面図である。It is sectional drawing of the metal mold | die for shaping | molding which concerns on embodiment of this invention. この発明の実施形態に係る成形用金型の一部を拡大した断面図である。1 is an enlarged cross-sectional view of a part of a molding die according to an embodiment of the present invention. 変形例に係る樹脂製基板の上面図である。It is a top view of the resin-made board | substrates concerning a modification. 変形例に係る樹脂製基板の断面図であり、図8のIX-IX断面図である。FIG. 9 is a cross-sectional view of a resin substrate according to a modification, and is a IX-IX cross-sectional view of FIG.
符号の説明Explanation of symbols
 1、1A、6 樹脂製基板
 2、2A 第1流路用溝
 3、3A 第2流路用溝
 4、4A、13 交差部
 5、5A、14、23 段差部
 7 貫通孔
 8 マイクロチップ
 10 電鋳マスター
 11 第1流路形成用溝
 12 第2流路形成用溝
 20 成形用金型
 21 第1凸部
 22 第2凸部
DESCRIPTION OF SYMBOLS 1, 1A, 6 Resin substrate 2, 2A 1st channel groove 3, 3A 2nd channel groove 4, 4A, 13 Intersection 5, 5A, 14, 23 Step part 7 Through hole 8 Microchip 10 Electricity Casting master 11 First flow path forming groove 12 Second flow path forming groove 20 Molding die 21 First convex portion 22 Second convex portion
 この発明の実施形態に係るマイクロチップについて、図1から図3を参照して説明する。図1は、この発明の実施形態に係る樹脂製基板の上面図である。図2は、この発明の実施形態に係る樹脂製基板の断面図であり、図1のII-II断面図である。図3は、この発明の実施形態に係るマイクロチップの断面図である。 A microchip according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a top view of a resin substrate according to an embodiment of the present invention. 2 is a cross-sectional view of the resin substrate according to the embodiment of the present invention, and is a cross-sectional view taken along the line II-II in FIG. FIG. 3 is a cross-sectional view of a microchip according to an embodiment of the present invention.
 図1に示すように、樹脂製基板1は板状の基板であり、樹脂製基板1の一方の表面には、直線状の第1流路用溝2と直線状の第2流路用溝3とが形成されている。この実施形態では、1例として、第1流路用溝2と第2流路用溝3とが直交して樹脂製基板1の表面に形成されている。なお、第1流路用溝2と第2流路用溝3とは直交せずに樹脂製基板1に形成されていても良い。 As shown in FIG. 1, the resin substrate 1 is a plate-like substrate, and a linear first flow channel groove 2 and a straight second flow channel groove are formed on one surface of the resin substrate 1. 3 are formed. In this embodiment, as an example, the first flow path groove 2 and the second flow path groove 3 are formed orthogonally on the surface of the resin substrate 1. The first flow path groove 2 and the second flow path groove 3 may be formed on the resin substrate 1 without being orthogonal to each other.
 また、第1流路用溝2の深さと第2流路用溝3の深さとが異なり、第1流路用溝2と第2流路用溝3とが交差する交差部4の底面に段差部5が形成されている。この実施形態では、第1流路用溝2の深さよりも第2流路用溝3の深さの方が深い。そのため、交差部4の底面に、第1流路用溝2の幅方向に亘って、第1流路用溝2の長さ方向に直交する段差部5が形成される。段差部5は、第1流路用溝2の幅と同じ幅を有している。なお、第1流路用溝2の深さを第2流路用溝3の深さよりも深くすることで、第2流路用溝3の幅方向に亘って、第2流路用溝3の長さ方向に直交する段差部を形成しても良い。 Further, the depth of the first flow path groove 2 and the depth of the second flow path groove 3 are different, and the first flow path groove 2 and the second flow path groove 3 intersect each other at the bottom surface of the intersection 4. A step portion 5 is formed. In this embodiment, the depth of the second flow path groove 3 is deeper than the depth of the first flow path groove 2. Therefore, a stepped portion 5 that is orthogonal to the length direction of the first flow path groove 2 is formed on the bottom surface of the intersecting portion 4 across the width direction of the first flow path groove 2. The step portion 5 has the same width as the width of the first flow path groove 2. In addition, by making the depth of the first flow path groove 2 deeper than the depth of the second flow path groove 3, the second flow path groove 3 extends across the width direction of the second flow path groove 3. You may form the level | step-difference part orthogonal to this length direction.
 例えば図2に示すように、第1流路用溝2の深さを深さd1とし、第2流路用溝3の深さを深さd2とする。この実施形態においては、第1流路用溝2の深さよりも第2流路用溝3の深さの方が深いため、深さd2>深さd1の関係が成立し、深さの差分δtが、段差部5の高さとなる。 For example, as shown in FIG. 2, the depth of the first flow path groove 2 is defined as depth d1, and the depth of the second flow path groove 3 is defined as depth d2. In this embodiment, since the depth of the second flow path groove 3 is deeper than the depth of the first flow path groove 2, the relationship of depth d2> depth d1 is established, and the difference in depth δt is the height of the stepped portion 5.
 また、樹脂製基板1の接合の相手方となる樹脂製基板6は平板状の基板である。そして、図3に示すように、第1流路用溝2と第2流路用溝3とが形成されている面を内側にして、樹脂製基板1と樹脂製基板6とを接合することでマイクロチップ8を製造する。この接合によって、樹脂製基板6が第1流路用溝2と第2流路用溝3との蓋(カバー)として機能する。そのことにより、樹脂製基板1に形成された第1流路用溝2と樹脂製基板6とによって微細流路が形成され、第2流路用溝3と樹脂製基板6とによって微細流路が形成される。 Further, the resin substrate 6 which is a counterpart of the resin substrate 1 is a flat substrate. Then, as shown in FIG. 3, the resin substrate 1 and the resin substrate 6 are joined with the surface on which the first flow path groove 2 and the second flow path groove 3 are formed facing inward. The microchip 8 is manufactured. By this bonding, the resin substrate 6 functions as a cover (cover) for the first flow path groove 2 and the second flow path groove 3. As a result, a fine flow path is formed by the first flow path groove 2 and the resin substrate 6 formed in the resin substrate 1, and the fine flow path is formed by the second flow path groove 3 and the resin substrate 6. Is formed.
 また、樹脂製基板6には、第1流路用溝2の両端部に対応する位置と、第2流路用溝3の両端部に対応する位置とに、樹脂製基板6の厚さ方向に貫通する貫通孔7が形成されている。樹脂製基板1と樹脂製基板6と接合することで、貫通孔7に対応する開口部がマイクロチップ8に形成される。この貫通孔7による開口部は、微細流路に繋がっており、ゲル、試料、緩衝液の導入、保存、又は排出を行うための孔である。開口部(貫通孔7)の形状は、円形状や矩形状の他、様々な形状であっても良い。開口部に、分析装置に設けられたチューブやノズルを接続し、そのチューブやノズルを介して、ゲル、試料、又は緩衝液などを微細流路に導入し、又は、微細流路から試料などを排出する。 The resin substrate 6 has a thickness direction of the resin substrate 6 at positions corresponding to both ends of the first flow path groove 2 and positions corresponding to both ends of the second flow path groove 3. A through hole 7 penetrating therethrough is formed. By bonding the resin substrate 1 and the resin substrate 6, an opening corresponding to the through hole 7 is formed in the microchip 8. The opening part by this through-hole 7 is connected to the fine flow path, and is a hole for introducing, storing, or discharging the gel, sample, and buffer solution. The shape of the opening (through hole 7) may be various shapes other than a circular shape or a rectangular shape. A tube or nozzle provided in the analyzer is connected to the opening, and a gel, sample, buffer solution, or the like is introduced into the fine channel through the tube or nozzle, or a sample or the like is removed from the fine channel. Discharge.
 なお、樹脂製基板6に貫通孔7を設けずに、樹脂製基板1に貫通孔を設けても良い。例えば、第1流路用溝2の両端部に、樹脂製基板1の厚さ方向に貫通する貫通孔を形成し、第2流路用溝3の両端部に、樹脂製基板1の厚さ方向に貫通する貫通孔を形成する。そして、樹脂製基板1と樹脂製基板6とを接合することで、樹脂製基板1に形成された貫通孔によって、微細流路に繋がる開口部を形成しても良い。 It should be noted that a through hole may be provided in the resin substrate 1 without providing the through hole 7 in the resin substrate 6. For example, through holes penetrating in the thickness direction of the resin substrate 1 are formed at both ends of the first flow path groove 2, and the thickness of the resin substrate 1 is formed at both ends of the second flow path groove 3. A through hole penetrating in the direction is formed. Then, by joining the resin substrate 1 and the resin substrate 6, an opening connected to the fine flow path may be formed by a through hole formed in the resin substrate 1.
 樹脂製基板1、6の形状は、ハンドリング、分析しやすい形状であればどのような形状であっても良い。例えば、10mm角~200mm角の大きさが好ましく、10mm角~100mm角がより好ましい。樹脂製基板1、6の形状は、分析手法、分析装置に合わせれば良く、正方形、長方形、円形などの形状が好ましい。また、貫通孔7の径は、分析手法や分析装置に合わせれば良く、例えば2mm程度であることが好ましい。 The shape of the resin substrates 1 and 6 may be any shape as long as it is easy to handle and analyze. For example, a size of 10 mm square to 200 mm square is preferable, and a size of 10 mm square to 100 mm square is more preferable. The shape of the resin substrates 1 and 6 may be matched to the analysis method and the analysis apparatus, and a shape such as a square, a rectangle, or a circle is preferable. Moreover, the diameter of the through-hole 7 should just be match | combined with an analysis method or an analyzer, and it is preferable that it is about 2 mm, for example.
 第1流路用溝2及び第2流路用溝3の形状とは、分析試料、試薬の使用量を少なくできること、成形金型の作製精度、転写性、離型性などを考慮して、幅、深さともに、10μm~200μmの範囲内の値であることが好ましいが、特に限定されるものではない。また、アスペクト比(溝の深さ/溝の幅)は、0.1~3が好ましく、0.2~2がより好ましい。また、第1流路用溝2及び第2流路用溝3の幅と深さとは、マイクロチップの用途によって決めれば良い。なお、説明を簡便にするために、図2に示す第1流路用溝2及び第2流路用溝3の断面の形状は矩形状となっているが、この形状は流路用溝の1例であり、曲面状となっていても良い。 The shape of the first flow channel groove 2 and the second flow channel groove 3 is that the amount of analysis sample and reagent used can be reduced, the production accuracy of the mold, transferability, releasability, etc. The width and depth are preferably values in the range of 10 μm to 200 μm, but are not particularly limited. The aspect ratio (groove depth / groove width) is preferably 0.1 to 3, and more preferably 0.2 to 2. The width and depth of the first channel groove 2 and the second channel groove 3 may be determined according to the use of the microchip. In order to simplify the explanation, the cross-sectional shapes of the first flow path groove 2 and the second flow path groove 3 shown in FIG. 2 are rectangular. It is an example and may be curved.
 また、第1流路用溝2と第2流路用溝3とが形成された樹脂製基板1の板厚は、成形性を考慮して、0.2mm~5mmが好ましく、0.5mm~2mmがより好ましい。第1流路用溝2と第2流路用溝3とを覆うための蓋(カバー)として機能する樹脂製基板6の板厚は、成形性を考慮して、0.2mm~5mmが好ましく、0.5mm~2mmがより好ましい。また、蓋(カバー)として機能する樹脂製基板6に流路用溝を形成しない場合、フィルム(シート状の部材)を用いても良い。この場合、フィルムの厚さは、30μm~300μmであることが好ましく、50μm~150μmであることがより好ましい。
(樹脂製基板の材料)
 樹脂製基板1、6には樹脂が用いられる。その樹脂としては、成形性(転写性、離型性)が良いこと、透明性が高いこと、紫外線や可視光に対する自己蛍光性が低いことなどが条件として挙げられるが、特に限定されるものではない。例えば、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン6、ナイロン66、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソプレン、ポリエチレン、ポリジメチルシロキサン、環状ポリオレフィンなどが好ましい。特に、ポリメタクリル酸メチル、環状ポリオレフィンなどが好ましい。なお、樹脂製基板1と樹脂製基板6とで、同じ材料を用いても良いし、異なる材料を用いても良い。
(樹脂製基板の接合)
 第1流路用溝2と第2流路用溝3とが形成されている面を内側にして、樹脂製基板1と樹脂製基板6とを接合する。樹脂製基板の接合は、例えば、熱融着、超音波融着、又はレーザ融着によって行うことができる。さらに、紫外線、プラズマ、又はイオンビームによって樹脂製基板の表面を活性化させて樹脂製基板を接合しても良い。
The plate thickness of the resin substrate 1 on which the first flow path groove 2 and the second flow path groove 3 are formed is preferably 0.2 mm to 5 mm in consideration of moldability, and preferably 0.5 mm to 2 mm is more preferable. The plate thickness of the resin substrate 6 that functions as a lid (cover) for covering the first flow path groove 2 and the second flow path groove 3 is preferably 0.2 mm to 5 mm in consideration of moldability. 0.5 mm to 2 mm is more preferable. In addition, when the flow path groove is not formed in the resin substrate 6 that functions as a lid (cover), a film (sheet-like member) may be used. In this case, the thickness of the film is preferably 30 μm to 300 μm, and more preferably 50 μm to 150 μm.
(Material of resin substrate)
Resin is used for the resin substrates 1 and 6. Examples of the resin include good moldability (transferability and releasability), high transparency, and low autofluorescence with respect to ultraviolet rays and visible light, but are not particularly limited. Absent. For example, polycarbonate, polymethyl methacrylate, polystyrene, polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate, nylon 6, nylon 66, polyvinyl acetate, polyvinylidene chloride, polypropylene, polyisoprene, polyethylene, polydimethylsiloxane, cyclic polyolefin, etc. preferable. In particular, polymethyl methacrylate and cyclic polyolefin are preferable. The resin substrate 1 and the resin substrate 6 may be made of the same material or different materials.
(Joining resin substrates)
The resin substrate 1 and the resin substrate 6 are joined with the surface on which the first flow path groove 2 and the second flow path groove 3 are formed facing inward. The bonding of the resin substrates can be performed by, for example, heat fusion, ultrasonic fusion, or laser fusion. Further, the resin substrate may be bonded by activating the surface of the resin substrate with ultraviolet light, plasma, or ion beam.
 なお、樹脂製基板6にも流路用溝を形成して、流量用溝が形成された樹脂製基板同士を接合しても良い。例えば、樹脂製基板6に形成された流路用溝を内側にし、樹脂製基板1に形成された流路用溝を内側にして、樹脂製基板1と樹脂製基板6とを接合することでマイクロチップを作製する。また、複数の樹脂製基板を重ねて接合しても良い。 It should be noted that a flow path groove may also be formed in the resin substrate 6 and the resin substrates having the flow rate groove formed thereon may be joined together. For example, by bonding the resin substrate 1 and the resin substrate 6 with the flow channel groove formed on the resin substrate 6 on the inside and the flow channel groove formed on the resin substrate 1 on the inside, Make a microchip. A plurality of resin substrates may be stacked and bonded.
 第1流路用溝2と第2流路用溝3とが交差する交差部4に形成された段差部5は、成形における流路用溝の転写性の評価に用いられる。樹脂製基板1は、成形用金型を用いて射出成形法などによって作製される。成形用金型には、第1流路用溝2に対応する凸部と第2流路用溝3に対応する凸部とが形成されており、成形用金型の凸部の形状が樹脂に転写されることで、第1流路用溝2と第2流路用溝3とを有する樹脂製基板1が作製される。さらに、成形用金型の凸部の上面であって、第1流路用溝2と第2流路用溝3とが交差する交差部4に対応する位置に、段差部を設ける。これにより、成形用金型の段差が樹脂に転写され、第1流路用溝2と第2流路用溝3とが交差する交差部4の底面に段差部5が形成される。 The step portion 5 formed at the intersecting portion 4 where the first channel groove 2 and the second channel groove 3 intersect is used for evaluating the transferability of the channel groove in molding. The resin substrate 1 is manufactured by an injection molding method using a molding die. The molding die is formed with a convex portion corresponding to the first flow channel groove 2 and a convex portion corresponding to the second flow channel groove 3, and the shape of the convex portion of the molding die is a resin. The resin substrate 1 having the first flow path groove 2 and the second flow path groove 3 is produced. Furthermore, a step portion is provided on the upper surface of the convex portion of the molding die, at a position corresponding to the intersecting portion 4 where the first flow path groove 2 and the second flow path groove 3 intersect. Thereby, the step of the molding die is transferred to the resin, and the step portion 5 is formed on the bottom surface of the intersecting portion 4 where the first flow path groove 2 and the second flow path groove 3 intersect.
 そして、樹脂製基板1に形成された段差部5の形状を観察することで、第1流路用溝2及び第2流路用溝3の転写性を評価することができる。例えば、顕微鏡などの観察装置を用いて、樹脂製基板1に形成された段差部5の形状と、成形用金型に形成された段差部の形状とを比べ、段差部の形状の差異に基づいて転写性を評価することができる。成形品である樹脂製基板1の段差部5の形状が、成形用金型の段差部の形状からみて維持されていれば、成形用金型に樹脂が十分に充填されて、そこで交差している第1流路用溝2及び第2流路用溝3全体の転写が良好であると判断できる。一方、樹脂製基板1の段差部5の形状が維持されていない場合は、成形用金型に樹脂が十分に充填されておらず、そこで交差している第1流路用溝2及び第2流路用溝3の転写が不十分であると判断できる。このように、この実施形態に係る樹脂製基板1を用いたマイクロチップによると、各々の流路用溝の形状を測定しなくても、係る交差部の段差を測定する事、すなわちもっとも転写性が懸念される交差部の段差を測定する事により、そこで交差している流路用溝全体の転写性を評価する事が可能となる。また流路溝の段差よりもさらに深い段差の形状を備えているため、測定装置で測定し、その測定結果に基づいて評価しなくても、顕微鏡などの観察装置によって、流路用溝の転写性を評価することが可能となる。そのことにより、検査に要するコストを低減し、かつ、成形による転写性を簡便に評価することが可能となる。 Then, by observing the shape of the step portion 5 formed on the resin substrate 1, the transferability of the first channel groove 2 and the second channel groove 3 can be evaluated. For example, using an observation device such as a microscope, the shape of the stepped portion 5 formed on the resin substrate 1 is compared with the shape of the stepped portion formed on the molding die, based on the difference in the shape of the stepped portion. Transferability can be evaluated. If the shape of the stepped portion 5 of the resin substrate 1 which is a molded product is maintained in view of the shape of the stepped portion of the molding die, the molding die is sufficiently filled with resin, and intersects there. It can be determined that the transfer of the entire first flow path groove 2 and the second flow path groove 3 is good. On the other hand, when the shape of the stepped portion 5 of the resin substrate 1 is not maintained, the molding die is not sufficiently filled with the resin, and the first flow path groove 2 and the second flow passage 2 intersect therewith. It can be determined that the transfer of the channel 3 is insufficient. As described above, according to the microchip using the resin substrate 1 according to this embodiment, it is possible to measure the level difference of the intersecting portion without measuring the shape of each channel groove, that is, the most transferable. By measuring the level difference at the intersection where there is a concern, it is possible to evaluate the transferability of the entire channel groove intersecting there. In addition, since it has a step shape that is deeper than the step of the channel groove, it is possible to transfer the channel groove using an observation device such as a microscope without measuring with a measuring device and evaluating it based on the measurement result. It becomes possible to evaluate sex. As a result, the cost required for inspection can be reduced, and the transferability by molding can be easily evaluated.
 また、第1流路用溝2と第2流路用溝3とが交差する交差部4に段差部5を設けることで、流路用溝が深い部分において転写性を評価することができる。交差部4に段差部5を設けることで、その交差部4において、一方の流路用溝の深さは他の流路用溝の深さよりも深くなる。この実施形態では、第2流路用溝3の深さの方が、第1流路用溝2の深さよりも深くなる。このように、流路用溝が交差する交差部4では、その段差部5によって深さが異なる流路用溝が交差することになる。そのため、その段差部5の形状を観察することで、溝が深い部分において成形の転写性を評価することが可能となり、その評価によって、樹脂製基板1全体に対する流路用溝の転写性を評価することが可能となる。すなわち、溝の深さが深い部分において転写性が良好であれば、溝の深さが浅い部分においても、転写性は良好であると推定できる。このように、交差部4の段差部5を使って評価することにより、一つ一つの溝の転写状態を評価する必要性が軽減され、簡易に流路溝全体の転写が良好になされているかを判定することが可能となる。 Further, by providing the step portion 5 at the intersection 4 where the first flow path groove 2 and the second flow path groove 3 intersect, the transferability can be evaluated at a deep portion of the flow path groove. By providing the stepped portion 5 at the intersecting portion 4, the depth of one of the flow channel grooves becomes deeper than the depth of the other flow channel grooves at the intersecting portion 4. In this embodiment, the depth of the second flow path groove 3 is deeper than the depth of the first flow path groove 2. Thus, at the intersection 4 where the flow path grooves intersect, the flow path grooves having different depths intersect with each other by the stepped portion 5. Therefore, by observing the shape of the stepped portion 5, it becomes possible to evaluate the transferability of the molding in the deep groove portion, and the transferability of the channel groove to the entire resin substrate 1 is evaluated by the evaluation. It becomes possible to do. In other words, if the transferability is good in the portion where the groove depth is deep, it can be estimated that the transferability is good even in the portion where the groove depth is shallow. Thus, by evaluating using the level | step-difference part 5 of the cross | intersection part 4, the necessity to evaluate the transcription | transfer state of every groove | channel is reduced, and the transfer of the whole flow-path groove | channel is simply made favorable. Can be determined.
 また、このような段差部5は、転写性を検査するときに、位置を比較的容易に特定することができる。そのことにより、検査に要する時間を短縮することができる。仮に、流路用溝の任意の場所に検査用の段差部を設けた場合には、転写性を検査するときに、段差部が設けられた場所を顕微鏡などの検査装置によって探す必要がある。この実施形態では、交差部4に段差部5を備えているため、段差部5は流路パターンで即座に場所を特定することができる。交差部以外の任意の位置での段差の場合には、その発見した段差部が、成形用金型に設けられた段差部に基づく段差部なのか、別の要因で形成された段差部なのかを見極めるのは困難であるため、高い精度で転写性の評価を行うことは困難である。 Further, such a stepped portion 5 can relatively easily specify the position when inspecting transferability. As a result, the time required for the inspection can be shortened. If a step for inspection is provided at an arbitrary position in the channel groove, it is necessary to search for the place where the step is provided by an inspection device such as a microscope when inspecting transferability. In this embodiment, since the level difference part 5 is provided in the intersection part 4, the level difference part 5 can pinpoint a place immediately by a flow-path pattern. In the case of a step at an arbitrary position other than the intersection, is the step found as a step based on the step provided in the molding die or a step formed by another factor? Therefore, it is difficult to evaluate transferability with high accuracy.
 また、顕微鏡などの観察装置によって段差部を発見できない場合、成形用金型に段差部が形成されているにも関わらず、転写性が悪いためにその段差部が転写されなかったのか、元々、観察している場所に段差部が設けられていなかったのかを判定することは困難である。そのため、流路用溝のすべての場所を顕微鏡などの観察装置によって観察して、すべての場所で段差部が発見されなかった場合に、流路用溝の転写性が悪いと判断できることになる。また、流路用溝に段差部が発見された場合であっても、上述したように、成形用金型に形成された段差部に基づく段差部なのか否かを判定することは困難である。 In addition, if the stepped portion cannot be found by an observation device such as a microscope, the stepped portion was not transferred due to poor transferability even though the stepped portion was formed on the molding die. It is difficult to determine whether or not the step portion is not provided at the place being observed. Therefore, when all the locations of the channel groove are observed with an observation device such as a microscope, and no stepped portion is found at any location, it can be determined that the transfer property of the channel groove is poor. Further, even when a step portion is found in the channel groove, as described above, it is difficult to determine whether or not the step portion is based on the step portion formed in the molding die. .
 これに対して、この実施形態に係る樹脂製基板1によると、交差部4に段差部5があるため、段差部5を容易に特定することができ、さらに、その交差部4における段差部5の形状を確認することで、樹脂製基板1の転写性を評価することができる。 On the other hand, according to the resin substrate 1 according to this embodiment, since the crossing portion 4 has the stepped portion 5, the stepped portion 5 can be easily specified, and further, the stepped portion 5 at the crossing portion 4 can be specified. By confirming the shape, the transferability of the resin substrate 1 can be evaluated.
 なお、段差部5の高さが高すぎると、段差部5において、マイクロチップ内を流れる試料に乱流が発生するおそれがあり、その結果、マイクロチップを用いた分析に影響を与えるおそれがある。特に、係る段差は流路が交差する部分に設けられているため、他の段差に比べ、より厳しい段差高さの制限が要求される。そのため、段差部5の高さδtは、第2流路用溝3の深さd2の0.3%~5%の範囲に設定されていることが好ましい。また、段差部5の高さδtは、転写が良好に行われた場合に、顕微鏡などによって検査者が段差部5の形状を認識できる高さがあれば良い。例えば、段差部5の高さδtは、0.01μm~1μmであることが好ましい。 If the height of the step portion 5 is too high, turbulence may occur in the sample flowing in the microchip at the step portion 5, and as a result, the analysis using the microchip may be affected. . In particular, since such a step is provided at a portion where the flow paths intersect, a more severe restriction on the step height is required as compared with other steps. Therefore, the height δt of the step portion 5 is preferably set in a range of 0.3% to 5% of the depth d2 of the second flow path groove 3. Further, the height δt of the stepped portion 5 only needs to be high enough that the inspector can recognize the shape of the stepped portion 5 with a microscope or the like when the transfer is performed well. For example, the height δt of the step portion 5 is preferably 0.01 μm to 1 μm.
 この実施形態に係る樹脂製基板1には、1つの交差部4が形成され、その交差部4に段差部5が設けられているが、この発明はこの例に限られない。例えば、複数の交差部が形成されるように、樹脂製基板に複数の流路用溝を形成して、複数の段差部を設けても良い。そして、成形における転写性を評価するときには、各交差部における段差部の形状を顕微鏡などの観察装置で観察し、その観察結果に基づいて転写性を評価しても良い。また、複数の段差部を設ける場合は、各段差部の高さは同じ高さであっても良いし、それぞれで異なる高さであっても良い。例えば、この実施形態に係る樹脂製基板1には、2つの段差部5が形成されている。これら2つの段差部5の高さは同じ高さであっても良いし、異なる高さであっても良い。また、第1流路用溝2の幅方向に亘って段差部5を設けるとともに、第2流路用溝3の幅方向に亘って段差部を更に設けても良い。 In the resin substrate 1 according to this embodiment, one intersecting portion 4 is formed and a stepped portion 5 is provided at the intersecting portion 4, but the present invention is not limited to this example. For example, a plurality of step portions may be provided by forming a plurality of flow channel grooves in the resin substrate so that a plurality of intersections are formed. And when evaluating the transferability in shaping | molding, the shape of the level | step-difference part in each cross | intersection part may be observed with observation apparatuses, such as a microscope, and transferability may be evaluated based on the observation result. Moreover, when providing a several level | step-difference part, the height of each level | step-difference part may be the same height, and may differ in each height. For example, two step portions 5 are formed on the resin substrate 1 according to this embodiment. The heights of these two step portions 5 may be the same height or different heights. Further, the step portion 5 may be provided over the width direction of the first flow path groove 2, and the step portion may be further provided along the width direction of the second flow path groove 3.
 また、この実施形態に係る樹脂製基板1では、第1流路用溝2と第2流路用溝3とを互いに直交させているが、この発明はこの例に限られない。例えば、流路用溝をY字状又はT字状に形成し、流路用溝が分岐する分岐点や、流路用溝が交差する交差部に、段差部を設けても良い。つまり、この発明に係る「第1流路用溝」と「第2流路用溝」とは、いずれも直線状に形成されている溝であって、それが互いに交差する交差部を備えているものであれば良く、その意味で、前述のY字状の流路用溝と、T字状の流路用溝もこの範疇に含まれる。また、3つ以上の流路用溝が交差する場合、段差部は1つの段差部を設けるものに限らず、2つ又はそれ以上の段差部を設けても良い。なお、流路用溝が分岐する分岐点に段差部を設けた場合も、この実施形態に係る樹脂製基板1と同様に、顕微鏡などの観察装置によってその段差部を観察することで、成形における転写性を評価することができる。
(製造方法)
 段差部5が形成された樹脂製基板1を作製するために、段差部5に対応する段差部が形成された成形用金型を用いる。金型の加工は、公知のエッチング加工によって行う。第1流路用溝2と第2流路用溝3とに対応する凸部を成型用金型に形成し、さらに、段差部5に対応する段差部を凸部の上面に形成する。この実施形態では、凸部の上面であって、第1流路用溝2と第2流路用溝3とが交差する交差部4に対応する位置に、段差部5に対応する段差部を形成する。また、成形用金型を電鋳加工によって作製しても良い。この場合、エッチング加工によって、第1流路用溝2と第2流路用溝3とに対応する流路形成用溝を電鋳マスターに形成する。そして、その電鋳マスターによって成形用金型を作製する。
In the resin substrate 1 according to this embodiment, the first flow path groove 2 and the second flow path groove 3 are orthogonal to each other, but the present invention is not limited to this example. For example, the channel groove may be formed in a Y shape or a T shape, and a stepped portion may be provided at a branch point where the channel groove branches or at an intersection where the channel groove intersects. In other words, the “first channel groove” and the “second channel groove” according to the present invention are both grooves formed in a straight line, and have intersections where they intersect each other. In this sense, the above-mentioned Y-shaped channel groove and T-shaped channel groove are also included in this category. Further, when three or more flow path grooves intersect, the stepped portion is not limited to one provided with one stepped portion, and two or more stepped portions may be provided. In the case where a step portion is provided at the branch point where the flow channel groove branches, similarly to the resin substrate 1 according to this embodiment, by observing the step portion with an observation device such as a microscope, Transferability can be evaluated.
(Production method)
In order to produce the resin substrate 1 on which the step portion 5 is formed, a molding die having a step portion corresponding to the step portion 5 is used. The mold is processed by a known etching process. Convex portions corresponding to the first flow path grooves 2 and the second flow path grooves 3 are formed on the molding die, and further, a step portion corresponding to the step portion 5 is formed on the upper surface of the convex portion. In this embodiment, a stepped portion corresponding to the stepped portion 5 is provided on the upper surface of the convex portion at a position corresponding to the intersecting portion 4 where the first flow path groove 2 and the second flow path groove 3 intersect. Form. Further, the molding die may be produced by electroforming. In this case, a flow path forming groove corresponding to the first flow path groove 2 and the second flow path groove 3 is formed in the electroforming master by etching. Then, a molding die is produced by the electroforming master.
 ここでは、1例として、電鋳加工によって成形用金型を作製し、その成形用金型を用いて樹脂製基板1を作製する場合について、図4から図6を参照して説明する。図4は、この発明の実施形態に係る電鋳マスターの上面図である。図5は、この発明の実施形態に係る電鋳マスターの断面図であり、図4のV-V断面図である。図6は、この発明の実施形態に係る成形用金型の断面図である。 Here, as an example, a case where a molding die is produced by electroforming and the resin substrate 1 is produced using the molding die will be described with reference to FIGS. 4 to 6. FIG. 4 is a top view of the electroforming master according to the embodiment of the present invention. FIG. 5 is a cross-sectional view of the electroforming master according to the embodiment of the present invention, and is a VV cross-sectional view of FIG. FIG. 6 is a cross-sectional view of a molding die according to an embodiment of the present invention.
 図4に示すように、電鋳マスター10の一方の面には、直線状の第1流路形成用溝11と直線状の第2流路形成用溝12とが形成されている。この実施形態では、1例として、第1流路形成用溝11と第2流路形成用溝12とが直交して電鋳マスター10の表面に形成されている。 As shown in FIG. 4, a linear first flow path forming groove 11 and a straight second flow path forming groove 12 are formed on one surface of the electroforming master 10. In this embodiment, as an example, the first flow path forming groove 11 and the second flow path forming groove 12 are formed orthogonally on the surface of the electroforming master 10.
 また、第1流路形成用溝11の深さと第2流路形成用溝12の深さとが異なり、第1流路形成用溝11と第2流路形成用溝12とが交差する交差部13の底面には段差部14が形成されている。この実施形態では、第1流路形成用溝11の深さよりも第2流路形成用溝12の深さの方が深い。そのため、交差部13の底面に、第1流路形成用溝11の幅方向に亘って、第1流路形成用溝11の長さ方向に直交する段差部14が形成される。この段差部14は、樹脂製基板1に形成されている段差部5に対応するものである。なお、第1流路形成用溝11の深さを第2流路形成用溝12の深さよりも深くすることで、第2流路形成用溝12の幅方向に亘って、第2流路形成用溝12の長さ方向に直交する段差部を形成しても良い。 Further, the depth of the first flow path forming groove 11 and the depth of the second flow path forming groove 12 are different, and the intersection where the first flow path forming groove 11 and the second flow path forming groove 12 intersect. A step portion 14 is formed on the bottom surface of 13. In this embodiment, the depth of the second flow path forming groove 12 is deeper than the depth of the first flow path forming groove 11. Therefore, a stepped portion 14 that is orthogonal to the length direction of the first flow path forming groove 11 is formed on the bottom surface of the intersecting portion 13 across the width direction of the first flow path forming groove 11. The step portion 14 corresponds to the step portion 5 formed on the resin substrate 1. In addition, the second flow path is formed across the width direction of the second flow path forming groove 12 by making the depth of the first flow path forming groove 11 deeper than the depth of the second flow path forming groove 12. You may form the level | step-difference part orthogonal to the length direction of the groove | channel 12 for formation.
 例えば図5に示すように、第1流路形成用溝11の深さd1と、第2流路形成用溝12の深さd2との間には、深さd2>深さd1の関係が成立し、深さの差分δtが、段差部14の高さとなる。 For example, as shown in FIG. 5, there is a relationship of depth d2> depth d1 between the depth d1 of the first flow path forming groove 11 and the depth d2 of the second flow path forming groove 12. The depth difference δt is established and becomes the height of the step portion 14.
 次に、電鋳マスター10の製造方法について説明する。まず、マスターブランクに対してNi-Pめっき加工やCuめっき加工を施すことで、マスターブランクの表面に金属層を形成する。その後、金属層の上面にエッチング加工を施すことで、第1流路形成用溝11と第2流路形成用溝12とを形成する。こうして得られた電鋳マスター10は、樹脂製基板1の成形用金型の母体になる。第1流路形成用溝11が、樹脂製基板1の第1流路用溝2に対応し、第2流路形成用溝12が樹脂製基板1の第2流路用溝3に対応し、段差部14が樹脂製基板1の段差部5に対応する。なお、マスターブランクに金属層を形成しなくても良い。例えば、マスターブランクをアルミ合金や無酸素銅などの材料で構成し、このマスターブランクをエッチング加工することで電鋳マスター10を作製しても良い。 Next, a method for manufacturing the electroforming master 10 will be described. First, a metal layer is formed on the surface of the master blank by performing Ni—P plating or Cu plating on the master blank. Thereafter, the first flow path forming groove 11 and the second flow path forming groove 12 are formed by etching the upper surface of the metal layer. The electroforming master 10 obtained in this way becomes a base of a molding die for the resin substrate 1. The first flow path forming groove 11 corresponds to the first flow path groove 2 of the resin substrate 1, and the second flow path forming groove 12 corresponds to the second flow path groove 3 of the resin substrate 1. The step portion 14 corresponds to the step portion 5 of the resin substrate 1. Note that the metal layer may not be formed on the master blank. For example, the master blank may be made of a material such as an aluminum alloy or oxygen-free copper, and the master blank 10 may be manufactured by etching the master blank.
 そして、電鋳マスター10に電鋳加工を施すことで、電鋳加工体を作製し、その後、電鋳マスター10から電鋳加工体を離型させる。これにより、電鋳マスター10の流路形成用溝に対応した凸部を有する成形用金型を作製することができる。 Then, an electroformed body is produced by electroforming the electroformed master 10, and then the electroformed body is released from the electroformed master 10. Thereby, the molding die which has a convex part corresponding to the groove for channel formation of electroforming master 10 can be produced.
 電鋳マスター10によって作製された成形用金型を図6に示す。成形用金型20の一方の面には、第1流路形成用溝11に対応する直線状の第1凸部21と、第2流路形成用溝12に対応する直線状の第2凸部22とが形成されている。第1凸部21の高さと第2凸部22の高さとが異なり、第1凸部21と第2凸部22とが交差する交差部の上面に段差部23が形成されている。この実施形態では、第1凸部21の高さよりも第2凸部22の高さの方が高い。第1凸部21の高さd1と、第2凸部22の高さd2との間には、高さd2>高さd1の関係が成立し、高さの差分δtが、段差部23の高さとなる。 A molding die produced by the electroforming master 10 is shown in FIG. On one surface of the molding die 20, a linear first convex portion 21 corresponding to the first flow path forming groove 11 and a linear second convex corresponding to the second flow path forming groove 12 are formed. A portion 22 is formed. The height of the first convex portion 21 and the height of the second convex portion 22 are different, and a step portion 23 is formed on the upper surface of the intersection where the first convex portion 21 and the second convex portion 22 intersect. In this embodiment, the height of the second convex portion 22 is higher than the height of the first convex portion 21. The relationship of height d2> height d1 is established between the height d1 of the first convex portion 21 and the height d2 of the second convex portion 22, and the height difference δt is It becomes height.
 そして、成形用金型20を用いて樹脂を射出成形することで、第1流路用溝2と第2流路用溝3と段差部5とが形成された樹脂製基板1を作製する。第1凸部21によって深さd1の第1流路用溝2が形成され、第2凸部22によって深さd2の第2流路用溝3が形成される。また、第1凸部21と第2凸部22とが交差する交差部に形成された段差部23によって、第1流路用溝2と第2流路用溝3とが交差する交差部4に段差部5が形成される。 Then, the resin substrate 1 on which the first flow path groove 2, the second flow path groove 3, and the stepped portion 5 are formed is manufactured by injection molding of the resin using the molding die 20. A first flow path groove 2 having a depth d1 is formed by the first convex portion 21, and a second flow path groove 3 having a depth d2 is formed by the second convex portion 22. Further, the intersection 4 where the first flow path groove 2 and the second flow path groove 3 intersect with each other by the step portion 23 formed at the intersection where the first convex part 21 and the second convex part 22 intersect. A stepped portion 5 is formed on the surface.
 そして、樹脂製基板1の転写性を評価するときには、樹脂製基板1に形成された段差部5の形状を顕微鏡などの観察装置で観察し、段差部5の形状と成形用金型20に形成された段差部23の形状とを比較する。そして、段差部の形状の差異に基づいて、転写性を評価する。 When the transferability of the resin substrate 1 is evaluated, the shape of the step portion 5 formed on the resin substrate 1 is observed with an observation device such as a microscope, and the shape of the step portion 5 and the molding die 20 are formed. The shape of the stepped portion 23 is compared. Then, the transferability is evaluated based on the difference in the shape of the step portion.
 ここで、流路用溝の転写性について図7を参照して説明する。図7は、この発明の実施形態に係る成形用金型の一部を拡大した断面図である。例えば、キャビティ形成用の平坦な溝が形成された金型と、この実施形態に係る成形用金型20とを用いて、射出成形によって樹脂製基板1を作製する。平坦な溝を内側にして、成形用金型20と溝が形成された金型とを対向して配置して接触させることで、成形用金型20と溝が形成された金型との間にキャビティを形成する。そのキャビティに樹脂を充填することで、第1凸部21の形状と第2凸部22の形状とが転写された樹脂製基板1を作製する。 Here, the transferability of the channel groove will be described with reference to FIG. FIG. 7 is an enlarged cross-sectional view of a part of the molding die according to the embodiment of the present invention. For example, the resin substrate 1 is manufactured by injection molding using a mold in which a flat groove for forming a cavity is formed and the molding mold 20 according to this embodiment. With the flat groove inside, the molding die 20 and the mold in which the groove is formed face each other and are brought into contact with each other, so that the molding die 20 and the mold in which the groove is formed are in contact with each other. Cavity is formed in By filling the cavity with resin, the resin substrate 1 to which the shape of the first protrusion 21 and the shape of the second protrusion 22 are transferred is produced.
 例えば図7(a)に示すように、成形用金型20によって形成されたキャビティに樹脂が十分に充填されている場合は、成形用金型20に形成された段差部23の形状が樹脂製基板1に良好に転写される。具体的には、段差部23の角部の形状や壁部の形状が樹脂製基板1に転写されて、段差部23の形状に対応する形状を有する段差部5が樹脂製基板1に形成される。そして、顕微鏡などの観察装置によって段差部5を観察した場合、段差部5の境界線が比較的濃い線で認識できる。これにより、検査者は転写が良好に行われたことを確認することができる。 For example, as shown in FIG. 7A, when the cavity formed by the molding die 20 is sufficiently filled with resin, the shape of the step portion 23 formed in the molding die 20 is made of resin. Good transfer onto the substrate 1. Specifically, the shape of the corner of the step portion 23 and the shape of the wall portion are transferred to the resin substrate 1, and the step portion 5 having a shape corresponding to the shape of the step portion 23 is formed on the resin substrate 1. The And when the level difference part 5 is observed with observation apparatuses, such as a microscope, the boundary line of the level difference part 5 can be recognized with a comparatively dark line. As a result, the inspector can confirm that the transfer has been successfully performed.
 一方、図7(b)に示すように、成形用金型20によって形成されたキャビティに樹脂が十分に充填されていない場合は、成形用金型20に形成された段差部23の形状が樹脂製基板1に良好に転写されない。具体的には、段差部23の角部の形状や壁部の形状が樹脂製基板1に良好に転写されず、樹脂製基板1に形成された段差部5の角部や壁部が曲線状になり、段差部23の形状に対応する形状が樹脂製基板1に形成されない。そして、顕微鏡などの観察装置によって段差部5を観察した場合、段差部5の境界線がぼやけて認識できる。これにより、検査者は転写が良好に行われていないことを確認することができる。 On the other hand, as shown in FIG. 7B, when the resin formed in the cavity formed by the molding die 20 is not sufficiently filled, the shape of the step portion 23 formed in the molding die 20 is resin. It is not transferred well to the substrate 1. Specifically, the shape of the corner of the step 23 and the shape of the wall are not transferred well to the resin substrate 1, and the corner and wall of the step 5 formed on the resin substrate 1 are curved. Thus, the shape corresponding to the shape of the stepped portion 23 is not formed on the resin substrate 1. And when the level difference part 5 is observed with observation apparatuses, such as a microscope, the boundary line of the level difference part 5 can be recognized blurry. Thereby, the inspector can confirm that the transfer is not performed well.
 以上のように、樹脂製基板1に形成された段差部5の形状を観察することで、成形用金型20に形成された凸部の形状が良好に樹脂製基板1に転写されたか否かを評価することが可能となる。これにより、流路用溝の形状を定量的に測定しなくても、簡便な方法によって転写性を評価することが可能となる。
(変形例)
 次に、上述した実施形態の変形例に係るマイクロチップについて図8と図9とを参照して説明する。図8は、変形例に係る樹脂製基板の上面図である。図9は、変形例に係る樹脂製基板の断面図であり、図8のIX-IX断面図である。この変形例では、深さが異なる2つの流路用溝によってT字状の溝が形成された樹脂製基板について説明する。
As described above, by observing the shape of the step portion 5 formed on the resin substrate 1, whether or not the shape of the convex portion formed on the molding die 20 has been successfully transferred to the resin substrate 1. Can be evaluated. This makes it possible to evaluate transferability by a simple method without quantitatively measuring the shape of the channel groove.
(Modification)
Next, a microchip according to a modification of the above-described embodiment will be described with reference to FIGS. FIG. 8 is a top view of a resin substrate according to a modification. FIG. 9 is a cross-sectional view of a resin substrate according to a modification, and is a IX-IX cross-sectional view of FIG. In this modification, a resin substrate in which a T-shaped groove is formed by two channel grooves having different depths will be described.
 図8に示すように、樹脂製基板1Aは板状の基板であり、樹脂製基板1Aの一方の表面には、直線状の第1流路用溝2Aと直線状の第2流路用溝3Aとが形成されている。この変形例では、1例として、第1流路用溝2Aと第2流路用溝3Aとが直交して樹脂製基板1Aの表面に形成されている。第2流路用溝3Aは、第1流路用溝2Aの途中まで形成されている。これにより、第1流路用溝2Aと第2流路用溝3AとによってT字状の溝が構成される。第1流路用溝2Aの深さよりも第2流路用溝3Aの深さの方が深いため、第1流路用溝2Aと第2流路用溝3Aとが交差する交差部4Aの底面に段差部5Aが形成されている。例えば図9に示すように、第1流路用溝2Aの深さを深さd1とし、第2流路用溝3Aの深さを深さd2とする。第1流路用溝2Aの深さよりも第2流路用溝3Aの深さの方が深いため、深さd2>深さd1の関係が成立し、深さの差分δtが、段差部5Aの高さとなる。 As shown in FIG. 8, the resin substrate 1A is a plate-shaped substrate, and on one surface of the resin substrate 1A, a linear first flow channel groove 2A and a linear second flow channel groove are formed. 3A is formed. In this modification, as an example, the first flow path groove 2A and the second flow path groove 3A are orthogonally formed on the surface of the resin substrate 1A. The second flow path groove 3A is formed halfway through the first flow path groove 2A. As a result, the first channel groove 2A and the second channel groove 3A constitute a T-shaped groove. Since the depth of the second flow path groove 3A is deeper than the depth of the first flow path groove 2A, the intersection of the first flow path groove 2A and the second flow path groove 3A intersects. A step portion 5A is formed on the bottom surface. For example, as shown in FIG. 9, the depth of the first flow path groove 2A is defined as depth d1, and the depth of the second flow path groove 3A is defined as depth d2. Since the depth of the second flow path groove 3A is deeper than the depth of the first flow path groove 2A, the relationship of depth d2> depth d1 is established, and the depth difference δt is the step portion 5A. Of height.
 そして、第1流路用溝2Aと第2流路用溝3Aとが形成されている面を内側にして、樹脂製基板1Aと平板状の樹脂製基板とを接合することでマイクロチップを製造する。これにより、第1流路用溝2Aと第2流路用溝3Aとによって微細流路が形成される。 A microchip is manufactured by bonding the resin substrate 1A and the flat resin substrate with the surface on which the first flow channel groove 2A and the second flow channel groove 3A are formed inside. To do. As a result, a fine channel is formed by the first channel groove 2A and the second channel groove 3A.
 なお、樹脂製基板1Aの寸法は、上述した実施形態に係る樹脂製基板1の寸法と同じであり、第1流路用溝2A及び第2流路用溝3Aの幅及び深さは、上述した実施形態に係る樹脂製基板1の流路用溝の幅及び深さと同じである。 The dimensions of the resin substrate 1A are the same as the dimensions of the resin substrate 1 according to the above-described embodiment, and the width and depth of the first flow path groove 2A and the second flow path groove 3A are the same as described above. This is the same as the width and depth of the channel groove of the resin substrate 1 according to the embodiment.
 上述した実施形態と同様に、樹脂製基板1Aは、成形用金型を用いて射出成形法などによって作製される。成形用金型には、第1流路用溝2Aに対応する凸部と第2流路用溝3Aに対応する凸部とが形成されており、成形用金型の凸部の形状が樹脂に転写されることで、第1流路用溝2Aと第2流路用溝3Aとを有する樹脂製基板1Aが作製される。さらに、成形用金型の凸部の上面であって、第1流路用溝2Aと第2流路用溝3Aとが交差する交差部4Aに対応する位置に、段差部を設ける。これにより、成形用金型の段差が樹脂に転写され、第1流路用溝2Aと第2流路用溝3Aとが交差する交差部4Aの底面に段差部5Aが形成される。この段差部5Aの形状を観察することで、第1流路用溝2A及び第2流路用溝3Aの転写性を評価することができる。 As in the above-described embodiment, the resin substrate 1A is manufactured by an injection molding method using a molding die. The molding die is formed with a convex portion corresponding to the first flow channel groove 2A and a convex portion corresponding to the second flow channel groove 3A, and the shape of the convex portion of the molding die is a resin. The resin substrate 1A having the first flow path groove 2A and the second flow path groove 3A is produced. Further, a step portion is provided on the upper surface of the convex portion of the molding die at a position corresponding to the intersecting portion 4A where the first flow path groove 2A and the second flow path groove 3A intersect. Thereby, the level difference of the molding die is transferred to the resin, and the level difference part 5A is formed on the bottom surface of the intersecting part 4A where the first flow path groove 2A and the second flow path groove 3A intersect. By observing the shape of the step portion 5A, the transferability of the first flow path groove 2A and the second flow path groove 3A can be evaluated.
 次に、具体的な実施例について説明する。 Next, specific examples will be described.
 この実施例では、上記の変形例に係る樹脂製基板1Aを作製した。まず、樹脂製基板1Aを作製するための成形用金型を作製した。具体的には、第1流路用溝2Aと第2流路用溝3Aとに対応する凸部を有する成形用金型を作製した。そして、その成形用金型を用いた射出成形機で透明樹脂材料のPMMAを成形することで、30mm角で厚さが1mmの板状部材の表面に、第1流路用溝2Aと第2流路用溝3Aとが形成された樹脂製基板を作製した。溝の寸法を以下に示す。 In this example, a resin substrate 1A according to the above-described modification was produced. First, a molding die for producing the resin substrate 1A was produced. Specifically, a molding die having convex portions corresponding to the first channel groove 2A and the second channel groove 3A was produced. Then, by molding PMMA which is a transparent resin material with an injection molding machine using the molding die, the first flow path groove 2A and the second flow path are formed on the surface of a plate-like member having a 30 mm square and a thickness of 1 mm. A resin substrate having a channel groove 3A formed thereon was produced. The dimensions of the groove are shown below.
 第1流路用溝2Aの深さd1=26.5[μm]
 第2流路用溝3Aの深さd2=26.7[μm]
 段差部5Aの深さδt=0.18[μm]
 第1流路用溝2Aの幅=40.3[μm]
(評価)
 射出成形機で透明樹脂材料のPMMAを2つの異なる成形条件によって成形することで、2枚の樹脂製基板1Aを作製し、それぞれの樹脂製基板1Aにおける転写性の検査を行った。段差部5Aの外観を倍率400倍程度の汎用的な光学顕微鏡によって観察し、樹脂製基板1Aにおける段差部5Aの形状の差異を確認することができた。一方の樹脂製基板1Aにおいては段差部5Aが太く観察され、他方の樹脂製基板1Aにおいては段差部5Aが細く観察された。
Depth d1 of first channel groove 2A = 26.5 [μm]
Depth d2 of second channel groove 3A = 26.7 [μm]
The depth δt of the step portion 5A = 0.18 [μm]
Width of first flow path groove 2A = 40.3 [μm]
(Evaluation)
Two resin substrates 1A were produced by molding PMMA, which is a transparent resin material, using an injection molding machine under two different molding conditions, and the transferability of each resin substrate 1A was examined. The appearance of the stepped portion 5A was observed with a general-purpose optical microscope having a magnification of about 400 times, and the difference in the shape of the stepped portion 5A in the resin substrate 1A could be confirmed. In one resin substrate 1A, the step portion 5A was observed to be thick, and in the other resin substrate 1A, the step portion 5A was observed to be thin.
 さらに、上記の2つの樹脂製基板1Aを形状測定装置によって形状を測定し、成形の転写性を確認した。段差部5Aが太く観察された樹脂製基板1Aの形状は、成形用金型の形状との乖離が大きく、十分な成形転写が得られていないことが確認された。一方、段差部5Aが細く観察された樹脂製基板1Aの形状は、成形用金型の形状との乖離が小さく、十分な成形転写が得られていることが確認された。以上により、光学顕微鏡による観察像と成形転写性との相関が確認された。 Furthermore, the shape of the two resin substrates 1A was measured with a shape measuring device, and the transferability of the molding was confirmed. It was confirmed that the shape of the resin substrate 1A in which the stepped portion 5A was observed to be thick was largely different from the shape of the molding die, and sufficient molding transfer was not obtained. On the other hand, it was confirmed that the shape of the resin substrate 1A in which the step portion 5A was thinly observed was small in deviation from the shape of the molding die, and sufficient molding transfer was obtained. From the above, the correlation between the observation image by the optical microscope and the molding transferability was confirmed.
 なお、上述した実施例で示した樹脂製基板の材料や寸法は本発明の効果を確認するためのものであり、この発明がこれらに限定されるものではない。例えば、上述した実施形態で挙げた樹脂を用いた場合も、段差部を設けることで、成形における転写性を評価することができる。 The materials and dimensions of the resin substrate shown in the above-described embodiments are for confirming the effects of the present invention, and the present invention is not limited to these. For example, even when the resin mentioned in the above-described embodiment is used, transferability in molding can be evaluated by providing a stepped portion.

Claims (7)

  1.  樹脂を成形することで作製された2つの樹脂製基板のうち、少なくとも一方の樹脂製基板の表面には流路用溝が形成され、前記2つの樹脂製基板を、前記流路用溝が形成された面を内側にして接合されたマイクロチップであって、
     前記流路用溝は第1流路用溝と、前記第1流路用溝と交差する第2流路用溝とを含み、前記第1流路用溝と前記第2流路用溝とは溝深さが異なることを特徴とするマイクロチップ。
    A flow path groove is formed on the surface of at least one of the two resin substrates produced by molding the resin, and the flow path groove is formed on the two resin substrates. A microchip joined with the surface facing inward,
    The flow path groove includes a first flow path groove and a second flow path groove intersecting the first flow path groove, and the first flow path groove and the second flow path groove; Is a microchip characterized by different groove depths.
  2.  前記第1流路用溝と前記第2流路用溝とが交差する交差部に形成される段差が、成形における転写性の検査に用いられることを特徴とする請求の範囲第1項に記載のマイクロチップ。 2. The step according to claim 1, wherein a step formed at an intersecting portion where the first channel groove and the second channel groove intersect is used for transferability inspection in molding. Microchip.
  3.  前記第1流路用溝と前記第2流路用溝とが交差する交差部の段差の高さは、前記第1流路用溝の溝深さと前記第2流路用溝の溝深さとのうち、深い方の溝深さの0.3%~5%の範囲に設定されていることを特徴とする請求の範囲第1項又は第2項のいずれかに記載のマイクロチップ。 The height of the step at the intersection where the first flow path groove and the second flow path groove intersect is determined by the groove depth of the first flow path groove and the groove depth of the second flow path groove. 3. The microchip according to claim 1, wherein the microchip is set in a range of 0.3% to 5% of a deeper groove depth.
  4.  少なくとも2つの樹脂製基板のうち、一方の樹脂製基板の表面には少なくとも2つの流路用溝が互いに交差して形成され、前記2つの樹脂製基板を、前記複数の流路用溝が形成された面を内側にして接合されるマイクロチップの前記流路用溝が形成された樹脂製基板を成形するための成形用金型であって、
     前記交差する少なくとも2つの流路用溝の一方に対応する第1凸部を有し、
     前記第1凸部の上面であって、前記少なくとも2つの流路用溝が交差する交差部の位置に対応する位置に、前記2つの流路用溝のうち少なくとも一方の溝の幅と同じ幅を有する段差を以って第2凸部が設けられていることを特徴とする成形用金型。
    Of the at least two resin substrates, at least two flow path grooves are formed on the surface of one resin substrate so as to cross each other, and the plurality of flow path grooves are formed on the two resin substrates. A molding die for molding a resin substrate on which the channel groove of the microchip to be joined with the formed surface inside is formed,
    A first protrusion corresponding to one of the intersecting at least two flow path grooves;
    The same width as the width of at least one of the two flow path grooves at a position corresponding to the position of the cross section where the at least two flow path grooves intersect on the upper surface of the first convex part. A molding die, wherein the second convex portion is provided with a step having a height.
  5.  前記第2凸部が、成形における転写性の検査に用いられることを特徴とする請求の範囲第4項に記載の成形用金型。 5. The molding die according to claim 4, wherein the second convex portion is used for inspection of transferability in molding.
  6.  前記第2凸部の高さは、前記第1凸部及び前記第2凸部の全体の高さの0.3%~5%の範囲に設定されていることを特徴とする請求の範囲第4項又は第5項のいずれかに記載の成形用金型。 The height of the second convex portion is set in a range of 0.3% to 5% of the total height of the first convex portion and the second convex portion. 6. A molding die according to any one of items 4 and 5.
  7.  複数の凹部が交差するように、前記複数の凹部のそれぞれをエッチング加工によって形成することで、前記交差する交差部における前記凹部の底面に段差が形成された電鋳マスターを用いて、電鋳加工によって前記凹部に対応する前記凸部が形成されたことを特徴とする請求の範囲第4項から第6項のいずれかに記載の成形用金型。 Using each of the plurality of recesses formed by etching so that the plurality of recesses intersect, an electroforming process is performed using an electroforming master in which a step is formed on the bottom surface of the recess at the intersecting intersection. The molding die according to any one of claims 4 to 6, wherein the convex portion corresponding to the concave portion is formed by.
PCT/JP2009/055433 2008-03-27 2009-03-19 Microchip and molding die WO2009119440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-082716 2008-03-27
JP2008082716 2008-03-27

Publications (1)

Publication Number Publication Date
WO2009119440A1 true WO2009119440A1 (en) 2009-10-01

Family

ID=41113635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055433 WO2009119440A1 (en) 2008-03-27 2009-03-19 Microchip and molding die

Country Status (2)

Country Link
TW (1) TW200948706A (en)
WO (1) WO2009119440A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136304A (en) * 2013-01-18 2014-07-28 Dainippon Printing Co Ltd Molding die, manufacturing method of the same, structure, and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114229A (en) * 2001-10-03 2003-04-18 Mitsubishi Chemicals Corp Microchannel chip, measuring device and measuring method using microchannel chip
JP2004503392A (en) * 2000-06-15 2004-02-05 スリーエム イノベイティブ プロパティズ カンパニー Process for manufacturing microfluidic products
JP2004523728A (en) * 2000-07-21 2004-08-05 アクララ バイオサイエンシーズ, インコーポレイテッド Methods and devices for capillary electrophoresis using norbornene-based surface coatings.
JP2005300333A (en) * 2004-04-12 2005-10-27 National Institute Of Advanced Industrial & Technology Method and apparatus for controlling microflow of liquid
JP2006071388A (en) * 2004-09-01 2006-03-16 Horiba Ltd Microchip and fluid control method in microchip
JP2007216123A (en) * 2006-02-15 2007-08-30 Ymc Co Ltd Micro-channel chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503392A (en) * 2000-06-15 2004-02-05 スリーエム イノベイティブ プロパティズ カンパニー Process for manufacturing microfluidic products
JP2004523728A (en) * 2000-07-21 2004-08-05 アクララ バイオサイエンシーズ, インコーポレイテッド Methods and devices for capillary electrophoresis using norbornene-based surface coatings.
JP2003114229A (en) * 2001-10-03 2003-04-18 Mitsubishi Chemicals Corp Microchannel chip, measuring device and measuring method using microchannel chip
JP2005300333A (en) * 2004-04-12 2005-10-27 National Institute Of Advanced Industrial & Technology Method and apparatus for controlling microflow of liquid
JP2006071388A (en) * 2004-09-01 2006-03-16 Horiba Ltd Microchip and fluid control method in microchip
JP2007216123A (en) * 2006-02-15 2007-08-30 Ymc Co Ltd Micro-channel chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136304A (en) * 2013-01-18 2014-07-28 Dainippon Printing Co Ltd Molding die, manufacturing method of the same, structure, and manufacturing method of the same

Also Published As

Publication number Publication date
TW200948706A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
US9470609B2 (en) Preparation of thin layers of a fluid containing cells for analysis
EP2167955B1 (en) Chip for analyzing fluids
JP2009175138A (en) Microchip
JP4753672B2 (en) Manufacturing method of resin microchannel array and blood measurement method using the same
JP5809625B2 (en) Microchannel chip and microanalysis system
CN101505874A (en) A method and apparatus for attaching a fluid cell to a planar substrate
CN102128777A (en) 3D (Three Dimensional) micro-fluidic structure for cell detection and preparation method thereof
JP2016516593A (en) Microfluidic device
JP5282273B2 (en) Microchip and manufacturing method of microchip
JP2014097485A (en) Liquid handling apparatus
US20100075109A1 (en) Microchip, Molding Die and Electroforming Master
WO2006080336A1 (en) Filter and method of manufacturing the same
WO2009119440A1 (en) Microchip and molding die
KR101818566B1 (en) Micro-fluidic chip and fabrication method thereof
JP2016161546A (en) Micro flow channel chip
US9346051B2 (en) Microchip
WO2010116856A1 (en) Microchip
JP2006218611A (en) Plastic product having minute flow passage
JP6049446B2 (en) Microchip
JP2007283437A (en) Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method
WO2011122215A1 (en) Method for producing microchip, and microchip
JP2009281869A (en) Microchip
JP6049463B2 (en) Microchip
CN110963457A (en) High-precision micro-channel network manufacturing method
JP2008232656A (en) Manufacturing method of microchannel array made of resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP