JP2007283437A - Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method - Google Patents

Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method Download PDF

Info

Publication number
JP2007283437A
JP2007283437A JP2006113642A JP2006113642A JP2007283437A JP 2007283437 A JP2007283437 A JP 2007283437A JP 2006113642 A JP2006113642 A JP 2006113642A JP 2006113642 A JP2006113642 A JP 2006113642A JP 2007283437 A JP2007283437 A JP 2007283437A
Authority
JP
Japan
Prior art keywords
plastic
micro
chip
biochip
plastic product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113642A
Other languages
Japanese (ja)
Inventor
Takeshi Furukawa
剛 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006113642A priority Critical patent/JP2007283437A/en
Publication of JP2007283437A publication Critical patent/JP2007283437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance plastic biochip or micro-analysis chip, having high smoothness of a micro-passage, and having no problem in flowing of a liquid and detecting a very small quantity of material. <P>SOLUTION: In this method of forming a micro-structure such as a micro-passage 1 mm or less wide and 1 mm or less deep on the surface made of plastics, cutting is performed using an end mill having an end cutting edge flat, that is, an end cutting edge whose radial concave angle of 0°. The plastic product is obtained by the above method. This biochip or micro-analysis chip is formed of the plastic product. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はプラスチックに平滑で微細なマイクロ流路を形成する方式に関するものであり、さらにその方式を利用して製造したプラスチック製品、特にプラスチック製バイオチップまたはマイクロ分析チップに関するものである。   The present invention relates to a method for forming a smooth and fine micro-channel in plastic, and further relates to a plastic product manufactured using the method, particularly a plastic biochip or a microanalysis chip.

近年、創薬研究や臨床検査のハイスループット化を達成する手段として、生理活性物質を固層基板上に固定化したデバイスであるバイオチップが注目されている。固定化される生理活性物質としては、核酸、たんぱく質、抗体、糖鎖、糖タンパク、アプタマーなどが代表的なものであり、特に核酸を固定化したバイオチップである核酸マイクロアレイはすでに多数の商品が上市されている。チップの形態としては、平板の基板上に各種生理活性物質がスポットされ固定化されている形態であり、主に研究機関における研究分析用に活用されている。   In recent years, biochips, which are devices in which a physiologically active substance is immobilized on a solid substrate, have attracted attention as means for achieving high throughput in drug discovery research and clinical tests. Typical examples of the physiologically active substance to be immobilized include nucleic acids, proteins, antibodies, sugar chains, glycoproteins, aptamers, etc. Nucleic acid microarrays, which are biochips on which nucleic acids are immobilized, are already available in many products. It is on the market. The form of the chip is a form in which various physiologically active substances are spotted and immobilized on a flat substrate, and are mainly used for research analysis in research institutions.

さらに近年、マイクロ分析チップとか、μTAS(micro total analytical system)とか、ラボオンチップと呼ばれる、微細加工技術を利用した化学反応や分離、分析システムの微小化の研究が盛んになっており、マイクロチャネル(微細流路)上で各種の化学反応、特に生理学的反応を行うことが可能となっている。このシステムにおいては、微少量のサンプルを迅速分析できるため、この特長を生かした次期のバイオチップ、特に医療機関における診断用バイオチップとして商品化されることが期待されており、注目されている(これ以降、これらのシステムを、マイクロ分析チップと称する)。   In recent years, research on miniaturization of chemical reaction, separation, and analysis system using microfabrication technology called micro analysis chip, μTAS (micro total analytical system), or lab-on-chip has become active. Various chemical reactions, particularly physiological reactions, can be performed on the (fine channel). In this system, since a very small amount of sample can be analyzed quickly, it is expected to be commercialized as a next-generation biochip that takes advantage of this feature, particularly as a diagnostic biochip in a medical institution ( Hereinafter, these systems are referred to as micro-analysis chips).

このバイオチップや、マイクロ分析チップは、現在はガラス製のものが主流である。ガラス基板でマイクロ分析チップを作成するためには、たとえば、基板に金属、フォトレジスト樹脂をコートし、マイクロチャネルのパターンを焼いた後にエッチング処理を行う方法がある。しかしガラスは大量生産に向かず非常に高コストであり、プラスチック化が望まれている。   Currently, these biochips and microanalysis chips are mainly made of glass. In order to produce a micro-analysis chip with a glass substrate, for example, there is a method in which a substrate is coated with a metal or a photoresist resin, and a microchannel pattern is baked, followed by an etching process. However, glass is not suitable for mass production and is very expensive, and plasticization is desired.

プラスチック製のバイオチップやマイクロ分析チップは、種々のプラスチックを用いて射出成形等の各種の成形方法で製造することが可能であり、効率よく経済的なチップ製造が可能であるため、大量生産に向いている。しかし反面、その欠点として少量生産に不向きという問題がある。射出成形のためにはそれぞれ金型を準備しなければ成形ができないからである。そしてプラスチック製品の最も重要な問題としては、マイクロ流路のように微細な部分を持つ金型作成は一般的にはかなり難しく、金型表面の平滑性や精度を十分高く保てないという点が挙げられる。   Plastic biochips and microanalysis chips can be manufactured by various molding methods such as injection molding using various plastics, and efficient and economical chip manufacturing is possible. It is suitable. However, the disadvantage is that it is not suitable for small-scale production. This is because for injection molding, molding is not possible unless a mold is prepared. The most important problem with plastic products is that it is generally difficult to make a mold with a fine part such as a microchannel, and the smoothness and accuracy of the mold surface cannot be kept high enough. Can be mentioned.

次に、プラスチック製品を少量多品種製造する場合、よく用いられる方法としては切削加工があげられるが、プラスチックは軟化点が低く切削屑が溶け付きやすく、さらに弾性が有り柔らかいために切削加工面がきれいに仕上がらないという問題がある。またバイオチップやマイクロ分析チップ用の微細加工は、通常は凹み部分を作るように流路等を作成する加工であり、この流路の底面を通常の研磨装置等で研磨することは技術的にはかなり難しい。その問題を解決するため、エンドミル等の切削治具の形状を工夫する方法があるが(特許文献1)、加工サイズが小さくなると上記問題は顕著になり、バイオチップやマイクロ化学チップに利用されるマイクロ流路の形成を切削加工で行なうと加工面が非常に汚いことが多く、最適加工条件を見出せない、もしくは見出すのに時間がかかることが多い。特に切削加工における問題としては、エンドミル等の回転歯による切削加工を行うときに発生するツールマークがある。ツールマークとは、ドリルの跡である。加工の過程でごく微細で規則的な凹凸が加工面に発生し、バイオチップやマイクロ化学チップにおける光学式の分析の支障になる場合がある。無論その凹凸が極めて微細であれば全く問題ない場合も多いが、多くの場合その凹凸が大きく光学式の分析の支障となる場合が多い。すなわち切削加工は少量多品種生産には向くが、本特許の対象とするマイクロ流路の加工においては加工精度が不十分に問題がある。以上より、プラスチック製のマイクロ流路を得ようとした場合、現在の成形加工や切削加工やその両者の複合では加工精度の点で不十分であり、特に流路の表面の平滑性が不十分であり、市場の要求を満たさない場合も多い。   Next, in the case of producing a small amount of various types of plastic products, a commonly used method is cutting, but plastic has a low softening point and is easy to melt cutting chips. There is a problem that it does not finish cleanly. In addition, microfabrication for biochips and microanalysis chips is usually a process of creating a flow path or the like so as to form a recessed portion, and it is technically necessary to polish the bottom surface of this flow path with a normal polishing apparatus or the like. Is quite difficult. In order to solve the problem, there is a method of devising the shape of a cutting jig such as an end mill (Patent Document 1). However, when the processing size is reduced, the above problem becomes significant and is used for a biochip or a microchemical chip. When the microchannel is formed by cutting, the machined surface is often very dirty, and the optimum machining condition cannot be found or often takes time to find out. In particular, as a problem in the cutting process, there is a tool mark that is generated when a cutting process using a rotating tooth such as an end mill is performed. A tool mark is a trace of a drill. During processing, very fine and regular irregularities may occur on the processed surface, which may hinder optical analysis in biochips and microchemical chips. Of course, if the unevenness is extremely fine, there is often no problem at all, but in many cases the unevenness is large and often hinders optical analysis. In other words, the cutting process is suitable for the production of a small variety of products, but there is a problem that the machining accuracy is insufficient in the processing of the micro flow path which is the subject of this patent. From the above, when trying to obtain a plastic micro-channel, the current molding and cutting, or a combination of both, is insufficient in terms of processing accuracy, especially the surface smoothness of the channel is insufficient. In many cases, it does not meet market demands.

特開2002−210609号公報JP 2002-210609 A

本発明は、プラスチック表面にマイクロ流路を切削加工で作成するときの特徴に関するものであり、それを実現する方式に関するものであり、それを利用したプラスチック製バイオチップやマイクロ分析チップを作成し提供することを目的とするものである。   The present invention relates to a feature when a micro-channel is formed on a plastic surface by cutting, and relates to a method for realizing it, and a plastic biochip and a micro-analysis chip using the same are prepared and provided. It is intended to do.

本発明者らは、上記課題を達成すべく鋭意検討した結果、底刃フラット、即ち径方向のすかし角が0°の底刃を有するエンドミルを用いて切削加工することにより、ツールマークが非常に小さく平滑性良好で精度も良いプラスチック製のマイクロ流路を作成できることを見出し、本発明に至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the tool mark is extremely sharp by cutting using an end mill having a bottom blade flat, that is, a bottom blade having a radial angle of 0 °. The present inventors have found that a plastic micro-channel can be made that is small, smooth and good in accuracy, and has led to the present invention.

すなわち本発明は、以下の通りである。
(1)プラスチックからなる表面に、幅1mm以下、深さ1mm以下のマイクロ流路等の微細構造を形成する方法において、底刃フラット、即ち径方向のすかし角が0°の底刃を有するエンドミルを用いて切削加工することを特徴とする、プラスチックへのマイクロ流路形成方法。
(2)(1)記載のマイクロ流路形成方法によって形成された前記マイクロ流路を有するプラスチック製品。
(3)前記マイクロ流路の底面の表面平滑性のRaが0.1μm以下である(2)記載のプラスチック製品。
(4)前記マイクロ流路の底面の表面平滑性のRyが1μm以下である(2)又は(3)記載のプラスチック製品。
(5)前記マイクロ流路の底面の表面にツールマークがない、(2)〜(4)いずれか記載のプラスチック製品。
(6)(2)〜(5)いずれか記載のプラスチック製品から構成されるバイオチップもしくはマイクロ分析チップ。
(7)(2)〜(5)いずれか記載のプラスチック製品を型として電鋳法により作成したプラスチック成形用金型。
(8)(7)記載のプラスチック成形用金型を利用して射出成形もしくはホットエンボス成形法で成形するプラスチック製品の製造方法。
(9)(8)記載のプラスチック製品の製造方法より得られたプラスチック製のバイオチップもしくはマイクロ分析チップ。
(10)核酸チップ、プロテインチップ、抗体チップ、アプタマーチップ、及び糖タンパクチップから選ばれる少なくとも1つである(6)又は(9)記載のプラスチック製のバイオチップ。
(11)化学分析用チップ、環境分析用チップ、化学合成用チップから選ばれる少なくとも1つである(6)又は(9)記載のプラスチック製のバイオチップ。
That is, the present invention is as follows.
(1) In a method of forming a fine structure such as a microchannel having a width of 1 mm or less and a depth of 1 mm or less on a surface made of plastic, a bottom blade flat, that is, a bottom blade with a radial angle of 0 ° is provided. A method of forming a micro flow path in a plastic, characterized by cutting using an end mill.
(2) A plastic product having the microchannel formed by the microchannel formation method according to (1).
(3) The plastic product according to (2), wherein Ra of the surface smoothness of the bottom surface of the microchannel is 0.1 μm or less.
(4) The plastic product according to (2) or (3), wherein Ry of the surface smoothness of the bottom surface of the microchannel is 1 μm or less.
(5) The plastic product according to any one of (2) to (4), wherein there is no tool mark on the bottom surface of the microchannel.
(6) A biochip or microanalysis chip comprising the plastic product according to any one of (2) to (5).
(7) A mold for plastic molding produced by electroforming using the plastic product according to any one of (2) to (5) as a mold.
(8) A method for producing a plastic product, which is molded by injection molding or hot embossing using the plastic molding die according to (7).
(9) A plastic biochip or microanalysis chip obtained by the method for producing a plastic product according to (8).
(10) The plastic biochip according to (6) or (9), which is at least one selected from a nucleic acid chip, a protein chip, an antibody chip, an aptamer chip, and a glycoprotein chip.
(11) The plastic biochip according to (6) or (9), which is at least one selected from a chip for chemical analysis, a chip for environmental analysis, and a chip for chemical synthesis.

微細流路を有する、プラスチック製バイオチップやマイクロ分析チップを作成する場合、本発明の製造方法を利用することにより、従来方式と比較して得られた流路の平滑性が非常に高く、液体の流動や、微量物質の検出に問題が無く、高性能のマイクロ流路を作成することが可能となる。さらにその方法で高性能のバイオチップやマイクロ分析チップを安価に提供することが可能となる。 When producing a plastic biochip or microanalysis chip having a fine flow path, the smoothness of the flow path obtained by using the production method of the present invention compared to the conventional method is very high, and the liquid Therefore, it is possible to create a high-performance microchannel without any problem in the flow of liquid and detection of trace substances. Furthermore, it is possible to provide high-performance biochips and microanalysis chips at low cost.

以下、本発明の実施形態について詳細に説明する。
本発明は、プラスチックに切削加工を施して作成するマイクロ流路において、底刃フラット、即ち径方向のすかし角が0°の底刃を有するエンドミルを用いて切削加工することを特徴とするものであり、更にそれによって製造されたプラスチック製品、特にバイオチップやマイクロ分析チップに関するものである。
なお本発明におけるマイクロ流路とは、幅1mm以下、深さ1mm以下の溝を指す。マイクロ流路の長さ、屈曲、分岐等の形状は特に限定はしない。溝の断面形状も特に限定しない。矩形でも三角形でも半円形でも貫通孔でもそれらの複合形でも問題は無い。ただし光学検出等の目的のために一部または全部の流路において、矩形、台形、もしく半円形や楕円形、及びそれらの複合形状などの、基板表面と平行な面の流路底面が存在する断面形状が存在することが必要である。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention is characterized in that, in a micro flow path formed by cutting plastic, cutting is performed using an end mill having a bottom blade flat, that is, a bottom blade having a radial angle of 0 °. Furthermore, the present invention relates to a plastic product produced by the method, in particular, a biochip and a micro analysis chip.
The microchannel in the present invention refers to a groove having a width of 1 mm or less and a depth of 1 mm or less. There are no particular limitations on the shape, such as the length, bending, and branching of the microchannel. The cross-sectional shape of the groove is not particularly limited. There are no problems with rectangular, triangular, semi-circular, through-holes, or a composite of them. However, for the purpose of optical detection, in some or all of the channels, there is a bottom surface of the channel that is parallel to the substrate surface, such as rectangular, trapezoidal, semicircular or elliptical, and their composite shapes. It is necessary that a cross-sectional shape exists.

本発明に使用されるプラスチックとは、たとえば高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、ポリスチレン、各種環状ポリオレフィン、ポリメチルメタクリレート、ポリノルボルネン、ポリフェニレンオキサイド、ポリカーボネート、ポリアミド、ポリエステル、ポリテトラフルオロエチレン、各種シリコーン樹脂、半硬化もしくは完全硬化状態のフェノール樹脂、半硬化もしくは完全硬化状態のエポキシ樹脂、その他各種の熱可塑性もしくは熱硬化性プラスチック全般のことを示す。プラスチックの種類や重合度、融点やTgや弾性率、光の透過率、ガスバリヤ性などの物性に関して特に限定するものではない。また複数のプラスチックの複合体でも問題は無い。さらにプラスチックの表面又は内部に、金属、金属酸化物、各種無機物質、生理活性物質、各種油状物質等が混合/塗布/接着/埋設されていても問題は無い。   Examples of the plastic used in the present invention include high-density polyethylene, low-density polyethylene, polypropylene, polystyrene, various cyclic polyolefins, polymethyl methacrylate, polynorbornene, polyphenylene oxide, polycarbonate, polyamide, polyester, polytetrafluoroethylene, and various silicones. Resin, semi-cured or fully cured phenolic resin, semi-cured or fully cured epoxy resin, and other various thermoplastic or thermosetting plastics in general. It does not specifically limit regarding physical properties, such as a kind of plastic, a polymerization degree, melting | fusing point, Tg, an elasticity modulus, the light transmittance, and gas barrier property. There is no problem with a composite of a plurality of plastics. Further, there is no problem even if a metal, metal oxide, various inorganic substances, physiologically active substances, various oily substances, etc. are mixed / applied / adhered / embedded on the surface or inside of the plastic.

本発明で使用される流路加工の工程は、主に各種エンドミルによる切削加工を対象とする。切削加工は、プラスチック表面を機械的な加工により切削されるものであれば特に限定しない。また機械的切削加工であれば加工の種類、装置の詳細、切削用治具の形状、材質、及び表面状態に関しても特に限定はしない。またさらに、プラスチックを切削加工したものをニッケル電鋳などを利用して金型に転写し、その金型を利用して射出成形やホットエンボッシング成形などを利用して成形することも本特許の範囲内と判断される。なお成形温度や加圧の圧力、金型の平滑性や形状などの成形条件については一切限定は無い。なお、SU−8をはじめとする厚型レジストを利用する加工工程や、シリコンエッチングによる加工工程や、LIGAなどの、各種のフォトファブリケーションに関しては本特許の請求の範囲から外れる。   The flow path machining process used in the present invention mainly targets cutting by various end mills. The cutting process is not particularly limited as long as the plastic surface is cut by mechanical processing. Moreover, if it is a mechanical cutting process, it will not specifically limit regarding the kind of process, the detail of an apparatus, the shape of a jig for cutting, a material, and a surface state. Furthermore, it is also possible to transfer a plastic cut product to a mold using nickel electroforming, etc., and then mold using injection molding or hot embossing molding using the mold. It is judged to be within the range. There are no limitations on molding conditions such as molding temperature, pressurization pressure, mold smoothness and shape. In addition, various photofabrication such as processing steps using a thick resist such as SU-8, processing steps using silicon etching, and LIGA are not included in the scope of claims of this patent.

本発明におけるツールマークとは、切削加工により生じる微細で周期的な凹凸のことである。ツールマークに関しては、走査型電子顕微鏡で観測可能であるが、より正確にはAFMで観測及び計測を行うことがより望ましい。   The tool mark in the present invention is fine and periodic unevenness generated by cutting. The tool mark can be observed with a scanning electron microscope, but more precisely, observation and measurement with an AFM are more desirable.

本発明者は、バイオチップやマイクロ化学チップにおいて光学的手法で分析を行う場合、マイクロ流路の底面に存在するツールマークのサイズを意図的に変えて光学検出が可能か不可かを評価した結果、ツールマークの周期が1μm未満又は高さが100nm未満である場合、ツールマークが存在してもマイクロ流路における光学検出が可能であり、またツールマークそのものが非常に見えにくく実質上ツールマークが存在しないと判断して差し支えないことが判明した。その条件を満たすマイクロ流路は、光学検出においてなんら問題を見出せなかったが、それらを超える数値のツールマークが存在する場合は光学検出が著しく困難となり、バイオチップやマイクロ分析チップとしての性能は著しく低下したと判断された。  As a result of evaluating whether or not optical detection is possible by intentionally changing the size of the tool mark existing on the bottom surface of the microchannel when the present inventor performs analysis by an optical method in a biochip or a microchemical chip If the period of the tool mark is less than 1 μm or the height is less than 100 nm, optical detection in the microchannel is possible even if the tool mark exists, and the tool mark itself is very difficult to see and the tool mark is substantially It turns out that it is safe to judge that it does not exist. Microchannels that satisfy the conditions did not find any problems in optical detection, but optical detection becomes extremely difficult when there are tool marks with numerical values exceeding those, and the performance as a biochip or microanalysis chip is remarkable. It was judged to have declined.

本発明における、底刃フラット、即ち径方向のすかし角が0°の底刃を有するエンドミルを用いた切削加工によって得られたプラスチック製品は、主にバイオチップまたはマイクロ分析チップが好適な用途例として挙げられ、特に核酸チップ、プロテインチップ、抗体チップ、アプタマーチップ、糖タンパクチップ、環境計測用チップ、各種化学分析用チップ等の、プラスチック製のバイオチップが好適な用途例として挙げられるが、用途に関しても特に限定しない。   In the present invention, the plastic product obtained by cutting using an end mill having a bottom blade flat, that is, a bottom blade having a radial angle of 0 °, is preferably a biochip or a micro analysis chip. In particular, plastic biochips such as nucleic acid chips, protein chips, antibody chips, aptamer chips, glycoprotein chips, environmental measurement chips, various chemical analysis chips, etc. There is no particular limitation on the above.

本発明により得られたマイクロ流路における表面の加工精度は、Raで0.1μm以下であることが望ましい。またRyで1μm以下であることが等しく望ましい。RaならびにRyが上限値を超えると、ツールマークの弊害の項で説明したのと同じ理由により微量成分の光学検出・計測が困難となり、望ましくない。   The processing accuracy of the surface in the microchannel obtained by the present invention is preferably 0.1 μm or less in terms of Ra. It is equally desirable that Ry is 1 μm or less. If Ra and Ry exceed the upper limit values, it is not desirable because optical detection / measurement of trace components becomes difficult for the same reason as described in the adverse effect of the tool mark.

以下に実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
30mm×70mm角で厚み1mmのアクリル樹脂板(熱変形温度140℃)に図1で示されるマイクロチップ加工を行った(なおこれ以降の実施例、比較例で被加工物の材質を明記していない場合は全てアクリル樹脂であるとする。)。ここでマイクロ流路は長さ45mm、幅0.3mm、深さ0.2mmであり、貫通孔は直径1mmφである。マイクロ流路の加工にはスクエアエンドミルの底刃を研磨して作成した底刃フラットエンドミルを利用して加工した。切削加工条件は、直径0.3mmφの2枚刃のノンコート型の超鋼製エンドミルを用い、回転数2万rpm、スキャンスピード2mm/secで加工した(なおこれ以降の実施例、比較例でエンドミルの切削条件を明記していない場合は、上記条件で加工したものとする。)。なお切削液は水溶性の切削油を使用した。
(Example 1)
Microchip processing shown in FIG. 1 was performed on an acrylic resin plate (heat distortion temperature 140 ° C.) having a thickness of 30 mm × 70 mm square and a thickness of 1 mm (note that the material of the workpiece is specified in the following examples and comparative examples) If not, all are acrylic.) Here, the microchannel has a length of 45 mm, a width of 0.3 mm, and a depth of 0.2 mm, and the through hole has a diameter of 1 mmφ. The micro-channel was processed using a bottom edge flat end mill prepared by polishing the bottom edge of a square end mill. Cutting conditions were as follows: a non-coated super steel end mill with a diameter of 0.3 mmφ and a non-coated super steel was used and processed at a rotational speed of 20,000 rpm and a scanning speed of 2 mm / sec. If the cutting conditions are not specified, it shall be processed under the above conditions.) The cutting fluid used was a water-soluble cutting oil.

(実施例2)
実施例1で作成されたマイクロチップの表面に50nmの厚みのニッケルスパッタコーティングを施した後、Barett浴でニッケル電鋳を行う。電流量は45mA/cm2で20時間処理した後、アクリル樹脂の原型をクロロホルムの還流で溶解除去することで、厚み約1mmのニッケル製のマイクロ金型を得た。得られた金型を熱硬化性の接着剤で金属ブロックに接着し、その金属ブロックを射出成形機に取り付けることで射出成形を行った。成形に利用した樹脂は環状ポリオレフィンを使用した。成形温度は150℃、金型温度は50℃とした。射出成形により成形された成形品は、手作業でランナーやバリ取りを行い、図1のマイクロチップを得た。
(Example 2)
After the nickel sputter coating having a thickness of 50 nm is applied to the surface of the microchip prepared in Example 1, nickel electroforming is performed in a Barett bath. After processing for 20 hours at an electric current of 45 mA / cm 2, the acrylic resin prototype was dissolved and removed by refluxing chloroform to obtain a nickel micro mold having a thickness of about 1 mm. The obtained mold was bonded to a metal block with a thermosetting adhesive, and the metal block was attached to an injection molding machine to perform injection molding. Cyclic polyolefin was used as the resin used for molding. The molding temperature was 150 ° C. and the mold temperature was 50 ° C. The molded product formed by injection molding was manually runner and deburred to obtain the microchip of FIG.

(比較例1)
実施例1において、市販のスクエアエンドミルを用いてマイクロ流路加工を行い、図1のマイクロチップを得た。
(Comparative Example 1)
In Example 1, microchannel processing was performed using a commercially available square end mill, and the microchip of FIG. 1 was obtained.

(評価方法1)
レーザー式非接触方表面形状測定器を用いて、実施例1、実施例2及び比較例1で得たマイクロ流路の表面粗さを計測した。
(Evaluation method 1)
The surface roughness of the microchannel obtained in Example 1, Example 2 and Comparative Example 1 was measured using a laser type non-contact surface shape measuring instrument.

(評価方法2)
AFMを用いて、実施例1、実施例2及び比較例1で得たマイクロ流路の表面に存在する周期的な凹凸の存在の有無を確認し、周期的凹凸が存在する場合の周期と平均高さを計測した。
(Evaluation method 2)
Using AFM, the presence or absence of periodic unevenness present on the surface of the microchannel obtained in Example 1, Example 2 and Comparative Example 1 was confirmed, and the period and average when periodic unevenness was present Height was measured.

(評価方法3)
実施例1、実施例2及び比較例1で得た加工品の表面に、30×70mmで厚さ0.2mmのアクリルもしくは環状ポリオレフィンの平坦なシートを乗せ、プレスにより熱圧着を行った。得られた製品のマイクロ流路部に水を満たし、その状態で熱レンズ顕微鏡を利用して計測を試みた。熱レンズ顕微鏡の詳細内容については、例えば特許公開2000−356611号に詳しい。今回の評価においては、アルゴンレーザーを励起光源とし、ヘリウムネオンレーザーを検出光源とし、スポット径1μmとした。流路に流す試料は水とし、励起及び検出のレーザーが焦点を結ぶか否かを今回の判定基準とした。レーザーが焦点を結び計測に問題ない場合は問題なし、レーザーが焦点を結ばず計測が困難な場合は問題ありとした。
(Evaluation method 3)
A flat sheet of acrylic or cyclic polyolefin having a thickness of 30 mm × 70 mm and a thickness of 0.2 mm was placed on the surface of the processed product obtained in Example 1, Example 2 and Comparative Example 1, and thermocompression bonded by a press. The microchannel portion of the obtained product was filled with water, and measurement was attempted using a thermal lens microscope in that state. Details of the thermal lens microscope are detailed in, for example, Japanese Patent Publication No. 2000-356611. In this evaluation, an argon laser was used as an excitation light source, a helium neon laser was used as a detection light source, and the spot diameter was 1 μm. The sample flowing in the flow path was water, and whether or not the excitation and detection lasers were focused was used as a criterion for this evaluation. There was no problem when the laser focused and there was no problem in measurement, and there was a problem when measurement was difficult because the laser was not focused.

(評価結果)
表1にマイクロ流路の表面粗さ(Ra、Ry)、AFM計測結果(周期的凹凸が存在するか否か、存在する場合の周期と突起の高さ)、および熱レンズ顕微鏡による計測結果を示す。比較例はマイクロ流路底面において周期的凹凸も存在し、その結果熱レンズ顕微鏡による計測が困難であるのに対し、実施例は周期的凹凸が存在しないかあるいは存在しても周期の長さや突起の大きさが小さくその結果熱レンズ顕微鏡による計測が可能であることが確認された。
(Evaluation results)
Table 1 shows the microchannel surface roughness (Ra, Ry), AFM measurement results (whether periodic irregularities are present, the period and height of protrusions when they are present), and the measurement results obtained with a thermal lens microscope. Show. The comparative example also has periodic unevenness on the bottom surface of the microchannel, and as a result, it is difficult to measure with a thermal lens microscope. As a result, it was confirmed that measurement with a thermal lens microscope was possible.

Figure 2007283437
Figure 2007283437

実施例、比較例におけるマイクロ分析チップの部品の形状を示す平面の模式。The plane model which shows the shape of the components of the micro analysis chip in an Example and a comparative example.

符号の説明Explanation of symbols

1 アクリル樹脂板又は環状ポリオレフィンの樹脂板(30mm×70mm、厚み1mm)
2 成形加工又は切削加工等によって加工されたマイクロ流路(幅0.3mm、深さ0.2mm、長さ40mm)
3 切削加工によって得られた貫通孔(直径1mmφ)
1 Acrylic resin plate or cyclic polyolefin resin plate (30 mm x 70 mm, thickness 1 mm)
2 Micro channel processed by molding or cutting (width 0.3mm, depth 0.2mm, length 40mm)
3 Through hole (diameter 1mmφ) obtained by cutting

Claims (11)

プラスチックからなる表面に、幅1mm以下、深さ1mm以下のマイクロ流路を形成する方法において、底刃フラット、即ち径方向のすかし角が0°の底刃を有するエンドミルを用いて切削加工することを特徴とする、プラスチックへのマイクロ流路形成方法。 In a method of forming a micro flow path having a width of 1 mm or less and a depth of 1 mm or less on a plastic surface, cutting is performed using an end mill having a bottom blade flat, that is, a bottom blade having a radial angle of 0 °. A method for forming a micro-channel in plastic. 請求項1記載のマイクロ流路形成方法によって形成された前記マイクロ流路を有するプラスチック製品。 The plastic product which has the said micro channel formed by the micro channel formation method of Claim 1. 前記マイクロ流路の底面の表面平滑性のRaが0.1μm以下である請求項2記載のプラスチック製品。 The plastic product according to claim 2, wherein the surface smoothness Ra of the bottom surface of the microchannel is 0.1 μm or less. 前記マイクロ流路の底面の表面平滑性のRyが1μm以下である請求項2又は3記載のプラスチック製品。 The plastic product according to claim 2 or 3, wherein the surface smoothness Ry of the bottom surface of the microchannel is 1 µm or less. 前記マイクロ流路の底面の表面にツールマークがない、請求項2〜4いずれか記載のプラスチック製品。 The plastic product according to any one of claims 2 to 4, wherein there is no tool mark on the bottom surface of the microchannel. 請求項2〜5いずれか記載のプラスチック製品から構成されるバイオチップもしくはマイクロ分析チップ。 A biochip or microanalysis chip comprising the plastic product according to claim 2. 請求項2〜5いずれか記載のプラスチック製品を型として電鋳法により作成したプラスチック成形用金型。 A mold for plastic molding produced by electroforming using the plastic product according to claim 2 as a mold. 請求項7記載のプラスチック成形用金型を利用して射出成形もしくはホットエンボス成形法で成形するプラスチック製品の製造方法。 A method for producing a plastic product, which is molded by injection molding or hot embossing using the plastic molding die according to claim 7. 請求項8記載のプラスチック製品の製造方法より得られたプラスチック製のバイオチップもしくはマイクロ分析チップ。 A plastic biochip or microanalysis chip obtained by the method for producing a plastic product according to claim 8. 核酸チップ、プロテインチップ、抗体チップ、アプタマーチップ、及び糖タンパクチップから選ばれる少なくとも1つである請求項6又は9記載のプラスチック製のバイオチップ。 The plastic biochip according to claim 6 or 9, which is at least one selected from a nucleic acid chip, a protein chip, an antibody chip, an aptamer chip, and a glycoprotein chip. 化学分析用チップ、環境分析用チップ、化学合成用チップから選ばれる少なくとも1つである請求項6又は9記載のプラスチック製のバイオチップ。 The plastic biochip according to claim 6 or 9, which is at least one selected from a chip for chemical analysis, a chip for environmental analysis, and a chip for chemical synthesis.
JP2006113642A 2006-04-17 2006-04-17 Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method Pending JP2007283437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113642A JP2007283437A (en) 2006-04-17 2006-04-17 Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113642A JP2007283437A (en) 2006-04-17 2006-04-17 Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method

Publications (1)

Publication Number Publication Date
JP2007283437A true JP2007283437A (en) 2007-11-01

Family

ID=38755666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113642A Pending JP2007283437A (en) 2006-04-17 2006-04-17 Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method

Country Status (1)

Country Link
JP (1) JP2007283437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053720A1 (en) * 2006-10-31 2008-05-08 Konica Minolta Opto, Inc. Master and microreactor
WO2009057247A1 (en) 2007-10-31 2009-05-07 Panasonic Corporation Portable wireless device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112711A (en) * 1994-10-17 1996-05-07 Hitachi Tool Eng Ltd Finishing end mill
JP2000210808A (en) * 1999-01-25 2000-08-02 Toshiba Tungaloy Co Ltd End mill
JP2002127015A (en) * 2000-10-19 2002-05-08 Seiko Epson Corp Optical lens smoothing method and optical lens manufacturing method using the same, and optical lens smoothing device
JP2002210647A (en) * 2001-01-15 2002-07-30 Seiko Epson Corp Smoothing method of optical lens, manufacturing method of optical lens using it, and smoothing device of optical lens
JP2003025134A (en) * 2001-07-11 2003-01-29 Nachi Fujikoshi Corp Aluminum coating end mill
JP2003236798A (en) * 2002-02-18 2003-08-26 Kansai Tlo Kk Method and device for finishing surface of material by using ultraviolet ray or light beam with wavelength shorter than that of ultraviolet ray, and method and device for manufacturing product formed of high polymer compound by using these method and device
JP2004325304A (en) * 2003-04-25 2004-11-18 Aoi Electronics Co Ltd Columnar structure for electrophoresis device and electrophoresis device using the same
JP2004330392A (en) * 2003-05-12 2004-11-25 Mitsubishi Materials Corp Method for flattening by end mill
JP2005030927A (en) * 2003-07-04 2005-02-03 Kubota Corp Organism-related molecule microarray
JP2005042073A (en) * 2003-07-25 2005-02-17 Univ Waseda Method for connecting resin substrate, and sorting apparatus using the same
JP2005186033A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Manufacturing method of micro reactor chip
JP2005297169A (en) * 2004-04-16 2005-10-27 Nachi Fujikoshi Corp Shank type boring tool
JP2006218610A (en) * 2005-02-14 2006-08-24 Sumitomo Bakelite Co Ltd Method of forming microfluidic path to plastic, and plastic product and biochip manufactured using this method
JP2007260858A (en) * 2006-03-29 2007-10-11 Sumitomo Bakelite Co Ltd Forming method of micro channel to plastic and plastic-made biochip or micro analyzing chip manufactured by using this method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112711A (en) * 1994-10-17 1996-05-07 Hitachi Tool Eng Ltd Finishing end mill
JP2000210808A (en) * 1999-01-25 2000-08-02 Toshiba Tungaloy Co Ltd End mill
JP2002127015A (en) * 2000-10-19 2002-05-08 Seiko Epson Corp Optical lens smoothing method and optical lens manufacturing method using the same, and optical lens smoothing device
JP2002210647A (en) * 2001-01-15 2002-07-30 Seiko Epson Corp Smoothing method of optical lens, manufacturing method of optical lens using it, and smoothing device of optical lens
JP2003025134A (en) * 2001-07-11 2003-01-29 Nachi Fujikoshi Corp Aluminum coating end mill
JP2003236798A (en) * 2002-02-18 2003-08-26 Kansai Tlo Kk Method and device for finishing surface of material by using ultraviolet ray or light beam with wavelength shorter than that of ultraviolet ray, and method and device for manufacturing product formed of high polymer compound by using these method and device
JP2004325304A (en) * 2003-04-25 2004-11-18 Aoi Electronics Co Ltd Columnar structure for electrophoresis device and electrophoresis device using the same
JP2004330392A (en) * 2003-05-12 2004-11-25 Mitsubishi Materials Corp Method for flattening by end mill
JP2005030927A (en) * 2003-07-04 2005-02-03 Kubota Corp Organism-related molecule microarray
JP2005042073A (en) * 2003-07-25 2005-02-17 Univ Waseda Method for connecting resin substrate, and sorting apparatus using the same
JP2005186033A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Manufacturing method of micro reactor chip
JP2005297169A (en) * 2004-04-16 2005-10-27 Nachi Fujikoshi Corp Shank type boring tool
JP2006218610A (en) * 2005-02-14 2006-08-24 Sumitomo Bakelite Co Ltd Method of forming microfluidic path to plastic, and plastic product and biochip manufactured using this method
JP2007260858A (en) * 2006-03-29 2007-10-11 Sumitomo Bakelite Co Ltd Forming method of micro channel to plastic and plastic-made biochip or micro analyzing chip manufactured by using this method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053720A1 (en) * 2006-10-31 2008-05-08 Konica Minolta Opto, Inc. Master and microreactor
JPWO2008053720A1 (en) * 2006-10-31 2010-02-25 コニカミノルタオプト株式会社 Master and microreactors
WO2009057247A1 (en) 2007-10-31 2009-05-07 Panasonic Corporation Portable wireless device

Similar Documents

Publication Publication Date Title
Scott et al. Fabrication methods for microfluidic devices: An overview
Rötting et al. Polymer microfabrication technologies
Becker et al. Polymer microfluidic devices
Becker et al. Polymer microfabrication methods for microfluidic analytical applications
Deshmukh et al. Recent developments in hot embossing–a review
Lee et al. Microfabrication for microfluidics
Cong et al. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production
Zhang et al. Manufacturing microstructured tool inserts for the production of polymeric microfluidic devices
US20060057245A1 (en) Micro-fluidic structure, method and apparatus for its production, and use thereof
Liao et al. Tools for ultrasonic hot embossing
Mondal et al. Fabrication of wavy micromixer using soft lithography technique
JPWO2008053693A1 (en) Microchip, molding die and electroforming master
Hamed et al. Applications, materials, and fabrication of micro glass parts and devices: An overview
JP2007283437A (en) Micro-passage forming method to plastics, and plastic biochip or micro-analysis chip manufactured by using the method
Becker Fabrication of polymer microfluidic devices
JP2014122831A (en) Microfluidic device
Cheng et al. Process parameter effects on dimensional accuracy of a hot embossing process for polymer-based micro-fluidic device manufacturing
JP4622617B2 (en) Method for producing a mold for producing a microchannel substrate
JP2017154349A (en) Method of manufacturing micro flow path chip
JP2006218611A (en) Plastic product having minute flow passage
JP4513626B2 (en) Method for producing a mold for producing a microchannel substrate
JP2007260858A (en) Forming method of micro channel to plastic and plastic-made biochip or micro analyzing chip manufactured by using this method
JP2006218610A (en) Method of forming microfluidic path to plastic, and plastic product and biochip manufactured using this method
JPWO2010116856A1 (en) Microchip
Shiu et al. Non-lithographic fabrication of metallic micromold masters by laser machining and welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529