WO2009119172A1 - Surface emitting laser - Google Patents

Surface emitting laser Download PDF

Info

Publication number
WO2009119172A1
WO2009119172A1 PCT/JP2009/052335 JP2009052335W WO2009119172A1 WO 2009119172 A1 WO2009119172 A1 WO 2009119172A1 JP 2009052335 W JP2009052335 W JP 2009052335W WO 2009119172 A1 WO2009119172 A1 WO 2009119172A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
region
light emitting
temperature
Prior art date
Application number
PCT/JP2009/052335
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 屋敷
正芳 辻
隆由 阿南
尚文 鈴木
大 畠山
公良 深津
武志 赤川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2009119172A1 publication Critical patent/WO2009119172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction

Definitions

  • the present invention relates to a surface emitting laser.
  • a surface emitting laser As one of signal light sources in an optical communication network, a surface emitting laser (VCSEL: VerticalVerCavity Surface Emitting Laser) is used. In order to ensure a stable transmission distance, it is necessary to realize a surface emitting laser that emits a laser beam having a wavelength with a loss that is small when transmitting through an optical fiber and having a constant intensity.
  • VCSEL VerticalVerCavity Surface Emitting Laser
  • an optical semiconductor element has temperature dependence, and operates stably by using a cooling element such as a Peltier element.
  • a cooling element such as a Peltier element.
  • it is necessary to non-temperature-control the element characteristics so as to stably operate without a cooling element.
  • Patent Document 1 there is a problem with long-wavelength surface emitting lasers in which the optical gain decreases due to temperature rise and the slope efficiency decreases.
  • a method has been proposed in which the light output is compensated by changing the reflectance of a distributed Bragg reflector (DBR) with temperature.
  • DBR distributed Bragg reflector
  • a material containing Tl is used for the high refractive index layer constituting the upper semiconductor multilayer reflective layer 7 of FIG. 1 of Patent Document 1, and the refractive index difference between the high refractive index layer and the low refractive index layer is reduced as the temperature rises. ing.
  • the reflectance of the upper reflecting mirror is reduced as the temperature rises. Therefore, even if the optical gain decreases, it can be compensated by increasing the light output from the upper reflecting mirror.
  • the frequency response band of the semiconductor laser which is a modulation index
  • the semiconductor intrinsic component is a frequency response determined by the interaction between light and electrons.
  • the equation (2) in Non-Patent Document 1 it is expressed by two indexes of the relaxation oscillation frequency f R and the damping constant ⁇ , and an increase in f R is required for speeding up the element.
  • the increase in f R which is effective to reduce the mode volume of the resonator direction using a large take dielectric DBR refractive index difference.
  • Patent Document 1 is considered to be an effective method for eliminating the need for signal adjustment to an optical element when transmitting a long wavelength band element at a low speed over a long distance.
  • the multilayer reflective layer is made of a semiconductor, the refractive index difference between the high refractive index layer and the low refractive index layer cannot be obtained, and this is not a sufficient method for applying to higher speed optical communication. It was.
  • Non-Patent Document 1 SiO2 and Si are used as materials for the dielectric DBR.
  • the temperature dependence of the refractive indexes n (Si) and n (SiO2) of both has a relationship of dn (Si) / dT> dn (SiO2) / dT> 0, and the refractive index difference increases with increasing temperature. As the difference in refractive index widens, the reflectance increases and the light output decreases.
  • Non-Patent Document 2 reports a DBR using a benzocyclobutene (BCB) and a semiconductor as an example of a dielectric DBR using materials having different temperature dependence of the refractive index.
  • BCB benzocyclobutene
  • the refractive index difference has a relationship that increases as the temperature rises.
  • Non-patent document 3 will be described later.
  • an object of the present invention is to provide a surface emitting laser that has a stable transmission distance over a wide temperature range and is capable of high-speed modulation without a temperature adjustment mechanism.
  • the surface emitting laser according to the present invention is A first reflector; A second reflecting mirror in which a plurality of high refractive index layers and a plurality of low refractive index layers are alternately laminated; An active layer and a current confinement structure formed between the first and second reflectors, In at least one of the plurality of high refractive index layers and the plurality of low refractive index layers, materials constituting the light emitting region and the light emitting peripheral region are different, The material constituting the light emitting region has a smaller change rate of the refractive index with respect to the temperature than the material constituting the light emitting peripheral region. Further, the method of manufacturing the surface emitting laser according to the present invention is as follows.
  • the transverse mode characteristic of the surface emitting laser can be described using the in-plane distribution of the effective refractive index as a parameter.
  • FIG. 1 is a cross-sectional view of a surface emitting laser element according to an embodiment of the present invention.
  • This surface-emitting laser includes a first reflecting mirror 102 made of a multilayer reflecting film, a second reflecting mirror 109 made of a multilayer reflecting film, and an active layer 104 formed between both reflecting mirrors on an n-type semiconductor substrate 101.
  • the resonator region 121 includes the p-side electrode 110 and the n-side electrode 111.
  • the resonator region 121 forms a first n-type spacer layer 103, an active layer 104, a p-type spacer layer 105, a high-concentration p-type layer 106 that forms a tunnel junction having a current confinement structure, and a tunnel junction.
  • the high-concentration n-type layer 107 and the second n-type spacer layer 108 are included.
  • the multilayer reflective film of the second reflecting mirror 109 is composed of a low refractive index layer 123 and a high refractive index layer 124.
  • a refractive index control layer 122 the low refractive index layer 123 closest to the active layer is the refractive index control layer 122.
  • the refractive indexes of the light emitting region layer 122a and the light emitting peripheral region layer 122b on the tunnel junction having a current confinement structure are denoted by na and nb, respectively. Then, when those temperature dependencies are dna / dT and dnb / dT, the following equation (2) is established. dna / dT ⁇ dnb / dT (2)
  • the film thickness of the refractive index control layer 122 is the sum of the thickness d1 that affects the resonance wavelength when the temperature is fixed and the thickness d2 that does not affect the resonance wavelength when the temperature is fixed.
  • d2 m ⁇ / 2 (m is an integer of 0 or more).
  • the temperature dependency can be increased by increasing d2.
  • d1 is based on ⁇ / 4, but may be different from ⁇ / 4 in order to adjust the resonance wavelength in the light emitting region and the light emitting peripheral region.
  • Each layer other than the refractive index control layer 122 constituting the second reflecting mirror 109 is formed with a ⁇ / 4 thickness.
  • m is preferably 1 to 3. When m is 4 or more, the increase of the mode volume becomes remarkable and the modulation band is deteriorated.
  • first refractive index region 113 a region having a tunnel junction that becomes a current injection region to the active layer 104 serving as a light emitting portion
  • second refractive index region 114 a region around the light emitting portion.
  • the effective refractive indexes of the first refractive index region 113 and the second refractive index region 114 are neff1 and neff2, respectively, and the resonance wavelengths are ⁇ 1 and ⁇ 2.
  • the effective refractive indices are neff1o and neff2o, and the resonance wavelengths are ⁇ 1o and ⁇ 2o, respectively.
  • the following equations (3) and (4) hold. ⁇ 1o> ⁇ 2o (3) neff1o> neff2o (4)
  • neff1 neff1o + (T ⁇ To) ⁇ dneff1 / dT (5)
  • neff2 neff2o + (T ⁇ To) ⁇ dneff2 / dT (6)
  • dneff1 / dT and dneff2 / dT are the temperature dependence of the effective refractive index, and the following equation (7) is established.
  • dneff1 / dT and dneff2 / dT are determined by the temperature dependence values dna / dT and dnb / dT of the light emitting region layer 122a and the light emitting peripheral region layer 122b, and the thickness of the refractive index control layer 122.
  • the temperature dependence of the effective refractive index also depends on the positional relationship between the standing wave intensity distribution and the refractive index control layer 122. If the refractive index control layer 122 is disposed at a position where the standing wave intensity is strong, the temperature dependence of the effective refractive index. The difference between can be increased.
  • the reference refractive index difference neff1 ⁇ neff2o is determined by the resonator structure sandwiched between the first reflecting mirror and the second reflecting mirror including the current confinement structure and the structure of the reflecting mirror.
  • the current confinement structure that becomes the light emitting aperture is a buried tunnel junction structure.
  • a pnp buried structure or an oxidized constriction structure may be adopted.
  • the oxide confinement structure is preferably disposed between the substrate-side first reflecting mirror and the active layer. This is because the intensity of the standing wave generated inside the surface emitting laser becomes weaker as the distance from the active layer increases.
  • the refractive index control layer 122 of the low refractive index material BCB, methyl methacrylate resin (PMMA: polymethylmethacrylate), etc. can be considered in the light emitting region layer 122a. Further, in the light emitting peripheral region layer 122b, SiO 2 , SiN x , MgO, CaF 2 , MgF 2 , and Al 2 O 3 can be considered. As the other refractive index control layer 122, a semiconductor layer containing Tl or Bi in the light emitting region layer 122a and a semiconductor layer not containing Tl or Bi in the light emitting peripheral region layer 122b can be considered.
  • the high refractive index layer 124 containing Bi or Tl GaInAsBi, TlGaInAsP, or the like can be considered.
  • the low refractive index layer 123 containing Bi or Tl AlInAsBi, TlAlInAsP, or the like can be considered.
  • the in-plane temperature dependence may be changed by the concentration gradient of Bi or Tl.
  • a semiconductor layer from the first reflecting mirror 102 to the high-concentration n-type layer 107 forming a tunnel junction is grown by MOVPE (Metal Organic Vapor Phase Epitaxy). .
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • a tunnel junction is processed by etching.
  • the reference refractive index difference neff1 ⁇ neff2o is adjusted in this step.
  • a second n-type spacer layer 108 is buried and grown.
  • the light emitting peripheral region layer 122b having a large temperature dependency of the refractive index is formed in the refractive index control layer 122, and the first refractive index is obtained using a photolithography technique.
  • the region 113 is removed by etching.
  • a light emitting region layer 122a having a small refractive index temperature dependency is formed in the refractive index control layer 122, and is formed so as to remain only on the first refractive index region 113.
  • the second reflecting mirror 109 is formed on the entire surface, and the second n-type spacer layer 108 is exposed by dry etching the second reflecting mirror 109 as shown in FIG. 2D.
  • the second reflecting mirror 109 is made of a semiconductor or a dielectric.
  • the p-side electrode 110 and the n-side electrode 111 are formed, and electrode alloying is performed.
  • the reference refractive index difference neff1 ⁇ neff2o is adjusted by the tunnel junction etching process and the embedding process thereafter. Furthermore, it is possible to adjust the refractive index control layer by shifting the thickness of the refractive index control layer from ⁇ / 4 + m ⁇ / 2 by a small amount at the upper part of the tunnel junction and its periphery.
  • the second reflecting mirror 109 is formed by sputtering such as RF sputtering or reactive sputtering, electron beam evaporation, CVD (Chemical Vapor Deposition), ion beam assisted deposition, MOVPE, molecular beam epitaxy.
  • a method such as a method (MBE: Molecular Beam Etaxy) may be used.
  • MBE Molecular Beam Etaxy
  • a lift-off process may be used. In the case of using the lift-off process, electron beam evaporation, ion beam assisted deposition, MBE, or the like is used for film formation.
  • the material constituting the high refractive index layer 124 that is not the refractive index control layer 122 includes Si, Sb 2 S 3 , ZnSe, CdS, ZnS, TiO 2 , GaAs, AlGaAs having a small Al composition, Examples thereof include AlGaAs (Sb) having a small Al composition and AlGalnAsP having a small Al composition.
  • the material constituting the low refractive index layer 123 that is not the refractive index control layer 122 is AlGaAs, AlGaAs (Sb), AlGalnAsP, SiO 2 , SiN x , MgO, CaF 2 , MgF 2. Al 2 O 3 can be mentioned.
  • the active layer 104 includes an InGaAs quantum well, an AlGaAs quantum well, an InGaAlP quantum well, a GalnNAs (Sb) quantum well, a GalnNAs quantum well, a GaAs (Sb) quantum well, a (Ga) lnAs quantum dot, and the like.
  • Various semiconductor materials can be used.
  • the present embodiment can be applied to surface emitting laser elements having wavelengths of 780 nm, 850 nm, 980 nm, 1100 nm, 1200 nm, 1300 nm, 1480 nm, 1550 nm, and 1650 nm.
  • the AIGaAs (Sb) semiconductor multilayer mirror and the AlGalnAsP semiconductor multilayer reflector on the lnP substrate are also used as the first reflector 102. It can be applied to the invention.
  • the semiconductor substrate 101 a GaAs substrate, an lnP substrate, a GalnAs ternary substrate, or the like can be used.
  • first reflecting mirror 102 instead of forming the first reflecting mirror 102 on the semiconductor substrate 101, a layer higher than the first n-type spacer layer 103 is formed first, and the semiconductor substrate 101 is removed by etching. It is also possible to form the first reflecting mirror 102 at a certain place.
  • n-type semiconductor substrate is used as the semiconductor substrate 101
  • a semi-insulating semiconductor substrate or a p-type semiconductor substrate may be used.
  • both the p-side and n-side electrodes may be taken out from the surface side of the semiconductor substrate 101.
  • a back-emitting surface-emitting laser structure is shown, but the present invention can also be applied to a surface-emitting surface-emitting laser.
  • the oscillation wavelength ⁇ is 1.55 ⁇ m.
  • an Si-doped (concentration 8 ⁇ 10 17 cm ⁇ 3 ) InAlAs low refractive index layer having an optical thickness of ⁇ / 4 and an optical thickness of ⁇ / 4 are formed on an n-type InP semiconductor substrate 101.
  • n-type spacer layer 103 made of Si-doped (concentration 8 ⁇ 10 17 cm ⁇ 3 ) InAlAs, five quantum wells (InGaAlAs 1.6% compressive strain well layer / InGaAlAs 0.4% tensile strain barrier) Active layer 104 composed of a layer), p-type spacer layer 105 made of C-doped (concentration 8 ⁇ 10 17 cm ⁇ 3 ) InAlAs, Zn-doped (concentration 1 ⁇ 10 20 cm ⁇ 3 ) InGaAlAs forming a tunnel junction A high-concentration p-type layer 106, a Si-doped (concentration 2 ⁇ 10 19 cm ⁇ 3 ) InGaAs high-concentration n-type layer 107 forming a tunnel junction, and a second Si-doped InP (concentration 1 ⁇ 10 17 cm ⁇ 3 ).
  • each of the high-concentration p-type layer 106 and the high-concentration n-type layer 107 constituting the tunnel junction is 16 nm.
  • the unevenness at the interface between the resonator region 121 and the second reflecting mirror 109 is 5 nm, and the first refractive index region 113 is higher than the second refractive index region 114.
  • the second reflecting mirror 109 includes four sets of multilayer structures, each of which includes a high refractive index layer 124 and a low refractive index layer 123. All the high refractive index layers 124 are made of Si having an optical film thickness ⁇ / 4. Of the low refractive index layer 123, the layer closest to the active layer 104 is a refractive index control layer 122 composed of a light emitting region layer 122a made of BCB having an optical thickness of 3 ⁇ / 4 and a light emitting peripheral region layer 122b made of SiO 2. It is. The other three low refractive index layers 123 are made of SiO 2 with an optical film thickness ⁇ / 4.
  • the length from the bottom surface of the first n-type spacer layer 103 to the top surface of the second n-type spacer layer 108 via the tunnel junction is an optical film thickness of 1.5 ⁇ .
  • the active layer 104 is disposed at the antinode position of the standing wave, and the tunnel junction is disposed at the node of the standing wave.
  • a p-side electrode 110 made of Au / Ge / Ni is formed on the second n-type spacer layer 108.
  • An n-side electrode 111 made of Au / Ge / Ni is formed on the back surface of the n-type GaAs semiconductor substrate 101.
  • a method for manufacturing the surface emitting laser element according to the first embodiment will be described.
  • a semiconductor layer from the first reflecting mirror 102 to the high-concentration n-type layer 107 that forms a tunnel junction is grown on the n-type semiconductor substrate 101 by MOVPE.
  • tunnel junctions were processed by etching.
  • the etching depth at the time of tunnel junction processing is 20 nm.
  • the light emitting peripheral region layer 122 b having a large temperature dependency of the refractive index in the refractive index control layer 122 is formed in the second refractive index region 114.
  • the top of the first refractive index region 113 is removed by etching using a photolithography technique.
  • a light emitting region layer 122a having a small refractive index temperature dependency is formed in the refractive index control layer 122, and is formed so as to remain only on the first refractive index region 113.
  • the remaining multilayer reflective film of the second reflecting mirror 109 is formed on the entire surface, and the second n-type spacer layer 108 is exposed by dry etching the second reflecting mirror 109 as shown in FIG. 2D. Then, the p-side electrode 110 and the n-side electrode 111 are formed, and electrode alloying is performed. Thus, the surface emitting laser element according to Example 1 is completed.
  • FIG. 3 is a graph in which the temperature dependence of the relative refractive index difference of the effective refractive index is calculated.
  • the light emitting region layer 122a of the refractive index control layer 122 is composed of 3 ⁇ / 4 thick BCB (refractive index 1.53).
  • the relative refractive index difference is reduced by 30% or more at 25 ° C to 75 ° C. A smaller relative refractive index difference means that light confinement is weakened.
  • FIG. 4 is a graph showing the temperature dependence of the coupling efficiency to the optical waveguide, the slope efficiency of the chip output, and the fiber input power of the surface emitting laser element according to Example 1.
  • the slope efficiency decreased with increasing temperature
  • the fiber input power changed to be almost constant with temperature because the radiation angle decreased and the coupling efficiency increased with increasing temperature.
  • the transmission distance can be secured stably.
  • the dielectric DBR having a large refractive index difference a relaxation oscillation frequency exceeding 8 GHz can be obtained in a wide temperature range, and an optical communication module with low cost and low power consumption applicable to high-speed operation can be realized.
  • the present invention can be applied to a surface emitting laser for which a low cost is required for an ultra high speed computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Disclosed is a surface emitting layer comprising a first reflector (102), a second reflector (109) in which a plurality of high-refractive-index layers (124) and a plurality of low-refractive-index layers (123) are alternately arranged, and an active layer (104) and a current-narrowing structure formed between the first reflector (102) and the second reflector (109). The surface emitting layer is characterized in that a light-emitting region (122a) and a peripheral region (122b) around the light-emitting region are made of different materials in at least one layer among the high-refractive-index layers (124) and the low-refractive-index layers (123), and the material constituting the light-emitting region (122a) is smaller in refractive index change due to temperature change than the material constituting the peripheral region (122b).

Description

面発光レーザSurface emitting laser
 本発明は、面発光レーザに関する。 The present invention relates to a surface emitting laser.
 光通信ネットワークにおける信号光源の一つとして、面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)が用いられている。伝送距離を安定して確保するためには、光ファイバを伝送する際に損失が小さくなる波長を有し、一定強度を有するレーザ光を出射する面発光レーザの実現が必要となる。 As one of signal light sources in an optical communication network, a surface emitting laser (VCSEL: VerticalVerCavity Surface Emitting Laser) is used. In order to ensure a stable transmission distance, it is necessary to realize a surface emitting laser that emits a laser beam having a wavelength with a loss that is small when transmitting through an optical fiber and having a constant intensity.
 一般に、光半導体素子は温度依存性があり、ペルチェ素子などの冷却素子を用いることで安定動作する。しかしながら、低コスト・低消費電力化のためには、冷却素子なしで安定動作するように、素子特性を非温調化する必要がある。 Generally, an optical semiconductor element has temperature dependence, and operates stably by using a cooling element such as a Peltier element. However, in order to reduce cost and power consumption, it is necessary to non-temperature-control the element characteristics so as to stably operate without a cooling element.
 特許文献1では、長波長帯面発光レーザに関し、温度上昇により光利得が減少し、スロープ効率が低下する問題が提起されている。これを解決するために、分布ブラッグ反射鏡(DBR:Distributed Bragg reflector)の反射率を温度とともに変化させることで光出力を補償する方法が提案されている。特許文献1の図1の上部半導体多層膜反射層7を構成する高屈折率層にTlを含む材料を用い、温度上昇に伴い、高屈折率層と低屈折率層の屈折率差を減少させている。これにより、温度上昇とともに上部反射鏡の反射率を低減している。そのため、光利得が減少しても、上部反射鏡からの光出力を増大させることで補償できる。 In Patent Document 1, there is a problem with long-wavelength surface emitting lasers in which the optical gain decreases due to temperature rise and the slope efficiency decreases. In order to solve this, a method has been proposed in which the light output is compensated by changing the reflectance of a distributed Bragg reflector (DBR) with temperature. A material containing Tl is used for the high refractive index layer constituting the upper semiconductor multilayer reflective layer 7 of FIG. 1 of Patent Document 1, and the refractive index difference between the high refractive index layer and the low refractive index layer is reduced as the temperature rises. ing. Thereby, the reflectance of the upper reflecting mirror is reduced as the temperature rises. Therefore, even if the optical gain decreases, it can be compensated by increasing the light output from the upper reflecting mirror.
 一方、情報伝達量の増大に伴い、光通信用光源の高速化も重要となっている。変調指標である半導体レーザの周波数応答の帯域は、CR成分と半導体レーザに固有な成分に分解できる。CR成分は温度依存性が無視できるので、温度依存性については半導体固有成分に着目すればよい。半導体固有成分は、光と電子の相互作用により決まる周波数応答である。非特許文献1の式(2)で示されるように、緩和振動周波数fとダンピング定数γの2つの指標で表され、素子の高速化のためにfの増大が求められる。非特許文献1に記載されているように、fの増大には屈折率差の大きくとれる誘電体DBRを用いて共振器方向のモード体積を縮小することが有効である。 On the other hand, with an increase in the amount of information transmitted, it is important to increase the speed of the light source for optical communication. The frequency response band of the semiconductor laser, which is a modulation index, can be decomposed into a CR component and a component unique to the semiconductor laser. Since the CR component has negligible temperature dependency, attention should be paid to the semiconductor intrinsic component for the temperature dependency. The semiconductor intrinsic component is a frequency response determined by the interaction between light and electrons. As shown by the equation (2) in Non-Patent Document 1, it is expressed by two indexes of the relaxation oscillation frequency f R and the damping constant γ, and an increase in f R is required for speeding up the element. As described in Non-Patent Document 1, the increase in f R which is effective to reduce the mode volume of the resonator direction using a large take dielectric DBR refractive index difference.
 特許文献1の方法では、長波長帯の素子を低速で長距離伝送する場合に光素子への信号調整を不要とするのに有効な方法と考えられる。しかしながら、多層膜反射層が半導体で構成されているため、高屈折率層と低屈折率層との間の屈折率差がとれず、より高速な光通信に適用するには十分な方法では無かった。 The method of Patent Document 1 is considered to be an effective method for eliminating the need for signal adjustment to an optical element when transmitting a long wavelength band element at a low speed over a long distance. However, since the multilayer reflective layer is made of a semiconductor, the refractive index difference between the high refractive index layer and the low refractive index layer cannot be obtained, and this is not a sufficient method for applying to higher speed optical communication. It was.
 非特許文献1では誘電体DBRの材料としてSiO2とSiが用いられている。両者の屈折率n(Si)及びn(SiO2)の温度依存性は、dn(Si)/dT>dn(SiO2)/dT>0の関係にあり、温度上昇とともに屈折率差は広がる。屈折率差が広がると反射率が高くなり、光出力は弱まる。 In Non-Patent Document 1, SiO2 and Si are used as materials for the dielectric DBR. The temperature dependence of the refractive indexes n (Si) and n (SiO2) of both has a relationship of dn (Si) / dT> dn (SiO2) / dT> 0, and the refractive index difference increases with increasing temperature. As the difference in refractive index widens, the reflectance increases and the light output decreases.
 また、非特許文献2には、屈折率の温度依存性が異なる材料を利用した誘電体DBRの例として、ベンゾシクロブテン(BCB:Benzocyclobutene)と半導体を用いたDBRが報告されている。しかしながら、BCBの屈折率は負の温度依存性を有し、半導体の屈折率は正の温度依存性を有するため、温度上昇とともに屈折率差は広がる関係にある。なお、非特許文献3については後述する。
特開2004-214311号公報 K. Yashiki、他5名、「1.1-μm-Range High-Speed Tunnel Junction Vertical-Cavity Surface-Emitting Lasers」、IEEE photonics technology letter、2007年、p.1883-1885 阪義和、他4名、「BCB/半導体反射鏡を有する1.54μmDBRレーザの室温動作」、第60回応用物理学会学術講演会 講演予稿集 3a-ZE-41、1999年、p.980 G. R. Hadley、他5名、「Comprehensive numerical modeling of vertical cavity surface emitting lasers」、IEEE Journal of Quantum Electronics、1996年、p.607-616
Non-Patent Document 2 reports a DBR using a benzocyclobutene (BCB) and a semiconductor as an example of a dielectric DBR using materials having different temperature dependence of the refractive index. However, since the refractive index of BCB has a negative temperature dependency and the refractive index of a semiconductor has a positive temperature dependency, the refractive index difference has a relationship that increases as the temperature rises. Non-patent document 3 will be described later.
Japanese Patent Laid-Open No. 2004-214311 K. Yashiki and five others, "1.1-μm-Range High-Speed Tunnel Junction Vertical-Cavity Surface-Emitting Lasers", IEEE photonics technology letter, 2007, p. 1883-1885 Yoshikazu Han, et al., "Room-temperature operation of 1.54 μm DBR laser with BCB / semiconductor reflector", Proceedings of the 60th Annual Meeting of the Japan Society of Applied Physics 3a-ZE-41, 1999, p. 980 G. R. Hadley, et al., "Comprehensive numerical modeling of vertical cavity surface emitting lasers", IEEE Journal of Quantum Electronics, 1996, p. 607-616
 以上のことから、本発明は、温度調整機構なしで、広い温度範囲で伝送距離が安定しており、かつ、高速変調可能な面発光レーザを提供することを目的とする。 In view of the above, an object of the present invention is to provide a surface emitting laser that has a stable transmission distance over a wide temperature range and is capable of high-speed modulation without a temperature adjustment mechanism.
 本発明に係る面発光レーザは、
 第1の反射鏡と、
 複数の高屈折率層と複数の低屈折率層とが交互に積層された第2の反射鏡と、
 前記第1及び第2の反射鏡の間に形成された活性層及び電流狭窄構造とを備え、
 前記複数の高屈折率層及び前記複数の低屈折率層のうちの少なくとも1層において、発光領域と発光周辺領域とを構成する材料が異なり、
 前記発光周辺領域を構成する材料よりも前記発光領域を構成する材料の方が、屈折率の温度に対する変化率が小さいことを特徴とするものである。
 また、本発明に係る面発光レーザの製造方法は、
 第1の反射鏡を形成する工程と、
 複数の高屈折率層と複数の低屈折率層とが交互に積層された第2の反射鏡を形成する工程と、
 前記第1及び前記第2の反射鏡の間に位置する活性層及び電流狭窄構造を形成する工程と、を備え、
 前記複数の高屈折率層及び前記複数の低屈折率層のうちの少なくとも1層において、発光領域と発光周辺領域とを構成する材料が異なり、
 前記発光周辺領域を構成する材料よりも前記発光領域を構成する材料の方が、屈折率の温度に対する変化率が小さいことを特徴とするものである。
The surface emitting laser according to the present invention is
A first reflector;
A second reflecting mirror in which a plurality of high refractive index layers and a plurality of low refractive index layers are alternately laminated;
An active layer and a current confinement structure formed between the first and second reflectors,
In at least one of the plurality of high refractive index layers and the plurality of low refractive index layers, materials constituting the light emitting region and the light emitting peripheral region are different,
The material constituting the light emitting region has a smaller change rate of the refractive index with respect to the temperature than the material constituting the light emitting peripheral region.
Further, the method of manufacturing the surface emitting laser according to the present invention is as follows.
Forming a first reflecting mirror;
Forming a second reflecting mirror in which a plurality of high refractive index layers and a plurality of low refractive index layers are alternately laminated;
Forming an active layer and a current confinement structure positioned between the first and second reflecting mirrors,
In at least one of the plurality of high refractive index layers and the plurality of low refractive index layers, materials constituting the light emitting region and the light emitting peripheral region are different,
The material constituting the light emitting region has a smaller change rate of the refractive index with respect to the temperature than the material constituting the light emitting peripheral region.
 本発明によれば、温度調整機構なしで、広い温度範囲で伝送距離が安定しており、かつ、高速変調可能な面発光レーザを提供することができる。 According to the present invention, it is possible to provide a surface emitting laser having a stable transmission distance over a wide temperature range and capable of high-speed modulation without a temperature adjustment mechanism.
本発明の実施の形態に係る面発光レーザ素子の断面図である。It is sectional drawing of the surface emitting laser element which concerns on embodiment of this invention. 本発明の実施の形態に係る面発光レーザ素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the surface emitting laser element which concerns on embodiment of this invention. 本発明の実施の形態に係る面発光レーザ素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the surface emitting laser element which concerns on embodiment of this invention. 本発明の実施の形態に係る面発光レーザ素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the surface emitting laser element which concerns on embodiment of this invention. 本発明の実施の形態に係る面発光レーザ素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the surface emitting laser element which concerns on embodiment of this invention. 実施例1に係る面発光レーザの発光アパーチャの内外の実効屈折率の非屈折差の温度依存性を示すグラフである。6 is a graph showing the temperature dependence of the non-refractive difference of the effective refractive index inside and outside the light emitting aperture of the surface emitting laser according to Example 1. 実施例1に係る面発光レーザの光入力パワーの温度依存性を示すグラフである。3 is a graph showing temperature dependence of optical input power of the surface emitting laser according to Example 1.
符号の説明Explanation of symbols
101 半導体基板
102 第1の反射鏡
103 第1のn型スペーサ層
104 活性層
105 p型スペーサ層
106 高濃度p型層
107 高濃度n型層
108 第2のn型スペーサ層
109 第2の反射鏡
110 p側電極
111 n側電極
112 共振器長
113 第1の屈折率領域
114 第2の屈折率領域
121 共振器領域
122 屈折率制御層
122a 発光領域層
122b 発光周辺領域層
123 低屈折率層
124 高屈折率層
101 Semiconductor substrate 102 First reflector 103 First n-type spacer layer 104 Active layer 105 P-type spacer layer 106 High-concentration p-type layer 107 High-concentration n-type layer 108 Second n-type spacer layer 109 Second reflection Mirror 110 p-side electrode 111 n-side electrode 112 resonator length 113 first refractive index region 114 second refractive index region 121 resonator region 122 refractive index control layer 122a light emitting region layer 122b light emitting peripheral region layer 123 low refractive index layer 124 High refractive index layer
 まず、本発明の原理について説明する。非特許文献4に示される関係式(24)によると、面発光レーザの横モード特性は実効屈折率の面内分布をパラメータとして記述できる。発光アパーチャ内部共振器の共鳴波長及び実効屈折率をそれぞれλo、neff、アパーチャ外部の共鳴波長及び実効屈折率をλ1、n1とし、Δλ=λo-λ1、Δneff=neff-n1とすると、次の式(1)が成立する。
Δneff/neff=Δλ/λo・・・(1)
 この関係式から発光アパーチャの内側の領域(内部領域)と外側の領域(外部領域)の共鳴波長の差分が温度とともに変化すれば、屈折率差が変化する。これに伴い光閉じ込めが変化し、放射角を変えることができる。放射角が温度とともに変化すれば、光導波路との結合効率も温度ともに変化する。光素子のスロープ効率は温度上昇とともに低下するため、温度上昇とともに放射角が小さくなれば、光導波路との結合効率が良くなり、光導波路に入る光強度を補償できる。
First, the principle of the present invention will be described. According to the relational expression (24) shown in Non-Patent Document 4, the transverse mode characteristic of the surface emitting laser can be described using the in-plane distribution of the effective refractive index as a parameter. When the resonant wavelength and effective refractive index of the light emitting aperture internal resonator are λo and neff, respectively, and the resonant wavelength and effective refractive index outside the aperture are λ1 and n1, respectively, and Δλ = λo−λ1 and Δneff = neff−n1 (1) is established.
Δneff / neff = Δλ / λo (1)
From this relational expression, if the difference in resonance wavelength between the inner region (inner region) and the outer region (outer region) of the light emitting aperture changes with temperature, the difference in refractive index changes. Along with this, the optical confinement changes and the radiation angle can be changed. If the radiation angle changes with temperature, the coupling efficiency with the optical waveguide also changes with temperature. Since the slope efficiency of the optical element decreases with increasing temperature, if the radiation angle decreases with increasing temperature, the coupling efficiency with the optical waveguide is improved, and the light intensity entering the optical waveguide can be compensated.
 以下、本発明を適用した実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
 図1は、本発明の実施の形態に係る面発光レーザ素子の断面図である。この面発光レーザは、n型半導体基板101上に、多層反射膜からなる第1の反射鏡102、多層反射膜からなる第2の反射鏡109、両反射鏡間に形成された活性層104を含む共振器領域121、p側電極110及びn側電極111を有する。 FIG. 1 is a cross-sectional view of a surface emitting laser element according to an embodiment of the present invention. This surface-emitting laser includes a first reflecting mirror 102 made of a multilayer reflecting film, a second reflecting mirror 109 made of a multilayer reflecting film, and an active layer 104 formed between both reflecting mirrors on an n-type semiconductor substrate 101. The resonator region 121 includes the p-side electrode 110 and the n-side electrode 111.
 ここで、共振器領域121は、第1のn型スペーサ層103、活性層104、p型スペーサ層105、電流狭窄構造であるトンネル接合を形成する高濃度p型層106、トンネル接合を形成する高濃度n型層107、第2のn型スペーサ層108から構成されている。 Here, the resonator region 121 forms a first n-type spacer layer 103, an active layer 104, a p-type spacer layer 105, a high-concentration p-type layer 106 that forms a tunnel junction having a current confinement structure, and a tunnel junction. The high-concentration n-type layer 107 and the second n-type spacer layer 108 are included.
 第2の反射鏡109の多層反射膜は低屈折率層123と高屈折率層124から構成されている。また、複数ずつ形成されている高屈折率層124及び低屈折率層123のうちの少なくとも1層において、発光領域と発光周辺領域とを構成する材料が異なる。この層を屈折率制御層122と呼ぶ。本実施の形態では、活性層に最も近い低屈折率層123が屈折率制御層122である。 The multilayer reflective film of the second reflecting mirror 109 is composed of a low refractive index layer 123 and a high refractive index layer 124. In addition, in at least one of the plurality of high refractive index layers 124 and low refractive index layers 123 formed in plurality, the materials constituting the light emitting region and the light emitting peripheral region are different. This layer is called a refractive index control layer 122. In the present embodiment, the low refractive index layer 123 closest to the active layer is the refractive index control layer 122.
 屈折率制御層122のうち、電流狭窄構造であるトンネル接合上の発光領域層122aと、発光周辺領域層122bとの屈折率をそれぞれna、nbとする。そして、それらの温度依存性をそれぞれdna/dT、dnb/dTとすると、次の式(2)が成立する。
dna/dT<dnb/dT・・・(2)
 この屈折率制御層122の膜厚は、温度を固定した場合に共鳴波長に影響する厚みd1と、温度を固定した場合に共鳴波長に影響しない厚みd2との和からなる。ここで、d2=mλ/2(mは0以上の整数)である。d2は厚くなることで温度依存性を大きくできる。d1はλ/4が基準となるが、発光領域と、発光周辺領域とで共鳴波長を調整するためにλ/4から異なる値としてもよい。第2の反射鏡109を構成する屈折率制御層122以外の各層はλ/4厚で構成される。本発明の効果を得るためにはmは1~3が望ましい。mが4以上となるとモード体積の増加が顕著となり、変調帯域が劣化する。
In the refractive index control layer 122, the refractive indexes of the light emitting region layer 122a and the light emitting peripheral region layer 122b on the tunnel junction having a current confinement structure are denoted by na and nb, respectively. Then, when those temperature dependencies are dna / dT and dnb / dT, the following equation (2) is established.
dna / dT <dnb / dT (2)
The film thickness of the refractive index control layer 122 is the sum of the thickness d1 that affects the resonance wavelength when the temperature is fixed and the thickness d2 that does not affect the resonance wavelength when the temperature is fixed. Here, d2 = mλ / 2 (m is an integer of 0 or more). The temperature dependency can be increased by increasing d2. d1 is based on λ / 4, but may be different from λ / 4 in order to adjust the resonance wavelength in the light emitting region and the light emitting peripheral region. Each layer other than the refractive index control layer 122 constituting the second reflecting mirror 109 is formed with a λ / 4 thickness. In order to obtain the effect of the present invention, m is preferably 1 to 3. When m is 4 or more, the increase of the mode volume becomes remarkable and the modulation band is deteriorated.
 ここで、発光部である活性層104への電流注入領域となるトンネル接合のある領域を第1の屈折率領域113とし、発光部周辺領域を第2の屈折率領域114とする。第1の屈折率領域113、第2の屈折率領域114の実効屈折率をそれぞれneff1、neff2、共鳴波長をλ1、λ2とする。動作温度範囲の最低温度Toにおいて実効屈折率をそれぞれneff1o、neff2o、共鳴波長をλ1o、λ2oとする。
 このとき、次の式(3)、(4)が成立する。
λ1o>λ2o・・・(3)
neff1o>neff2o・・・(4)
Here, a region having a tunnel junction that becomes a current injection region to the active layer 104 serving as a light emitting portion is referred to as a first refractive index region 113, and a region around the light emitting portion is referred to as a second refractive index region 114. The effective refractive indexes of the first refractive index region 113 and the second refractive index region 114 are neff1 and neff2, respectively, and the resonance wavelengths are λ1 and λ2. At the lowest temperature To in the operating temperature range, the effective refractive indices are neff1o and neff2o, and the resonance wavelengths are λ1o and λ2o, respectively.
At this time, the following equations (3) and (4) hold.
λ1o> λ2o (3)
neff1o> neff2o (4)
 温度に対しては、次の式(5)、(6)が成立する。
neff1=neff1o+(T-To)×dneff1/dT・・・(5)
neff2=neff2o+(T-To)×dneff2/dT・・・(6)
The following equations (5) and (6) are established for the temperature.
neff1 = neff1o + (T−To) × dneff1 / dT (5)
neff2 = neff2o + (T−To) × dneff2 / dT (6)
 ここで、dneff1/dT及びdneff2/dTは実効屈折率の温度依存性であり、次の式(7)が成立する。
dneff1/dT<dneff2/dT・・・(7)
 dneff1/dTおよびdneff2/dTは発光領域層122aと発光周辺領域層122bの温度依存性dna/dT、dnb/dTの値と、屈折率制御層122の厚みによって決まる。実効屈折率の温度依存性は定在波強度分布と屈折率制御層122の位置関係にも依存し、定在波強度の強い位置に屈折率制御層122を配置すると実効屈折率の温度依存性の差分を大きくすることができる。基準となる屈折率差neff1o-neff2oは電流狭窄構造を含む第1の反射鏡と第2の反射鏡で挟まれた共振器構造や反射鏡の構造により決定される。
Here, dneff1 / dT and dneff2 / dT are the temperature dependence of the effective refractive index, and the following equation (7) is established.
dneff1 / dT <dneff2 / dT (7)
dneff1 / dT and dneff2 / dT are determined by the temperature dependence values dna / dT and dnb / dT of the light emitting region layer 122a and the light emitting peripheral region layer 122b, and the thickness of the refractive index control layer 122. The temperature dependence of the effective refractive index also depends on the positional relationship between the standing wave intensity distribution and the refractive index control layer 122. If the refractive index control layer 122 is disposed at a position where the standing wave intensity is strong, the temperature dependence of the effective refractive index. The difference between can be increased. The reference refractive index difference neff1−neff2o is determined by the resonator structure sandwiched between the first reflecting mirror and the second reflecting mirror including the current confinement structure and the structure of the reflecting mirror.
 ここでは、発光アパーチャとなる電流狭窄構造を埋め込みトンネル接合構造とした。しかし、この代わりとしてpnp埋め込み構造や酸化狭窄構造を採用してもよい。酸化狭窄構造を採用する場合には酸化狭窄構造は基板側第1の反射鏡と活性層との間に配置することが望ましい。面発光レーザ内部で生じる定在波の強度は活性層から離れるに従い弱くなるためである。 Here, the current confinement structure that becomes the light emitting aperture is a buried tunnel junction structure. However, as an alternative, a pnp buried structure or an oxidized constriction structure may be adopted. When the oxide constriction structure is employed, the oxide confinement structure is preferably disposed between the substrate-side first reflecting mirror and the active layer. This is because the intensity of the standing wave generated inside the surface emitting laser becomes weaker as the distance from the active layer increases.
 低屈折率材料の屈折率制御層122としては、発光領域層122aでは、BCBやメタクリル酸メチル樹脂(PMMA:polymethylmethacrylate)などが考えられる。また、発光周辺領域層122bでは、SiO、SiN、MgO、CaF、MgF、Alが考えられる。他の屈折率制御層122としては、発光領域層122aでは、Tl又はBiを含む半導体層、発光周辺領域層122bでは、TlやBiを含まない半導体層が考えられる。Bi又はTlを含む高屈折率層124としては、GaInAsBiやTlGaInAsPなどが考えられる。Bi又はTlを含む低屈折率層123としては、AlInAsBiやTlAlInAsPなどが考えられる。さらに、BiあるいはTlの濃度勾配によって、面内の温度依存性を変化させてもよい。 As the refractive index control layer 122 of the low refractive index material, BCB, methyl methacrylate resin (PMMA: polymethylmethacrylate), etc. can be considered in the light emitting region layer 122a. Further, in the light emitting peripheral region layer 122b, SiO 2 , SiN x , MgO, CaF 2 , MgF 2 , and Al 2 O 3 can be considered. As the other refractive index control layer 122, a semiconductor layer containing Tl or Bi in the light emitting region layer 122a and a semiconductor layer not containing Tl or Bi in the light emitting peripheral region layer 122b can be considered. As the high refractive index layer 124 containing Bi or Tl, GaInAsBi, TlGaInAsP, or the like can be considered. As the low refractive index layer 123 containing Bi or Tl, AlInAsBi, TlAlInAsP, or the like can be considered. Further, the in-plane temperature dependence may be changed by the concentration gradient of Bi or Tl.
 次に、図2A~2Dを参照して第1の実施の形態の製造方法を説明する。まず、図2Aに示すようにn型半導体基板101上に、第1の反射鏡102からトンネル接合を形成する高濃度n型層107までの半導体層をMOVPE(Metal Organic Vapor Phase Epitaxy)により成長する。そして、フォトリソグラフィによるレジストパターニング後、エッチングによりトンネル接合を加工する。基準となる屈折率差neff1o-neff2oはこの工程で調整される。 Next, the manufacturing method of the first embodiment will be described with reference to FIGS. 2A to 2D. First, as shown in FIG. 2A, on the n-type semiconductor substrate 101, a semiconductor layer from the first reflecting mirror 102 to the high-concentration n-type layer 107 forming a tunnel junction is grown by MOVPE (Metal Organic Vapor Phase Epitaxy). . Then, after resist patterning by photolithography, a tunnel junction is processed by etching. The reference refractive index difference neff1−neff2o is adjusted in this step.
 次に、図2Bに示すように第2のn型スペーサ層108を埋め込み成長する。図2Cに示すように、第2の屈折率領域114に、屈折率制御層122のうち屈折率の温度依存性の大きい発光周辺領域層122bを形成し、フォトリソグラフィ技術を用い第1の屈折率領域113上をエッチング除去する。その後、屈折率制御層122のうち屈折率の温度依存性の小さい発光領域層122aを形成し、同様に第1の屈折率領域113上のみに残すように形成する。 Next, as shown in FIG. 2B, a second n-type spacer layer 108 is buried and grown. As shown in FIG. 2C, in the second refractive index region 114, the light emitting peripheral region layer 122b having a large temperature dependency of the refractive index is formed in the refractive index control layer 122, and the first refractive index is obtained using a photolithography technique. The region 113 is removed by etching. Thereafter, a light emitting region layer 122a having a small refractive index temperature dependency is formed in the refractive index control layer 122, and is formed so as to remain only on the first refractive index region 113.
 その後、第2の反射鏡109の他の層を全面に形成し、図2Dのように第2の反射鏡109をドライエッチングすることで第2のn型スペーサ層108を露出させる。第2の反射鏡109は半導体や誘電体から構成される。そして、p側電極110、n側電極111を形成し、電極アロイを行う。以上により、実施の形態に係る面発光レーザ素子が完成する。基準となる屈折率差neff1o-neff2oはトンネル接合のエッチング加工とその後埋め込み工程で調整される。さらに屈折率制御層の厚みをトンネル接合上部とその周辺でそれぞれλ/4+mλ/2から少量ずらすことで調整することも可能である。 Thereafter, another layer of the second reflecting mirror 109 is formed on the entire surface, and the second n-type spacer layer 108 is exposed by dry etching the second reflecting mirror 109 as shown in FIG. 2D. The second reflecting mirror 109 is made of a semiconductor or a dielectric. Then, the p-side electrode 110 and the n-side electrode 111 are formed, and electrode alloying is performed. Thus, the surface emitting laser element according to the embodiment is completed. The reference refractive index difference neff1−neff2o is adjusted by the tunnel junction etching process and the embedding process thereafter. Furthermore, it is possible to adjust the refractive index control layer by shifting the thickness of the refractive index control layer from λ / 4 + mλ / 2 by a small amount at the upper part of the tunnel junction and its periphery.
 第2の反射鏡109の成膜には、RFスパッタリング法や反応性スパッタリング法などのスパッタリング法、電子ビーム蒸着法、CVD法(Chemical Vapor Deposition)、イオンビームアシスト堆積法、MOVPE、分子線エピタクシー法(MBE:Molecular Beam Epitaxy)などの方法を用いてもよい。また、第2の反射膜109を構成する材料のエッチング加工が困難な場合には、リフトオフプロセスを用いてもよい。リフトオフプロセスを用いる場合には、成膜には電子ビーム蒸着法、イオンビームアシスト堆積法、MBEなどが用いられる。 The second reflecting mirror 109 is formed by sputtering such as RF sputtering or reactive sputtering, electron beam evaporation, CVD (Chemical Vapor Deposition), ion beam assisted deposition, MOVPE, molecular beam epitaxy. A method such as a method (MBE: Molecular Beam Etaxy) may be used. In addition, when it is difficult to etch the material forming the second reflective film 109, a lift-off process may be used. In the case of using the lift-off process, electron beam evaporation, ion beam assisted deposition, MBE, or the like is used for film formation.
 第2の反射鏡109において、屈折率制御層122でない高屈折率層124を構成する材料としては、Si、Sb、ZnSe、CdS、ZnS、TiO、GaAs、Al組成の小さいAlGaAs、Al組成の小さいAlGaAs(Sb)、Al組成の小さいAlGalnAsPなどを挙げることができる。また、第2の反射鏡109において、屈折率制御層122でない低屈折率層123を構成する材料としては、AlGaAs、AlGaAs(Sb)、AlGalnAsP、SiO、SiN、MgO、CaF、MgF、Alを挙げることができる。 In the second reflecting mirror 109, the material constituting the high refractive index layer 124 that is not the refractive index control layer 122 includes Si, Sb 2 S 3 , ZnSe, CdS, ZnS, TiO 2 , GaAs, AlGaAs having a small Al composition, Examples thereof include AlGaAs (Sb) having a small Al composition and AlGalnAsP having a small Al composition. In the second reflecting mirror 109, the material constituting the low refractive index layer 123 that is not the refractive index control layer 122 is AlGaAs, AlGaAs (Sb), AlGalnAsP, SiO 2 , SiN x , MgO, CaF 2 , MgF 2. Al 2 O 3 can be mentioned.
 活性層104としては、InGaAs系量子井戸、AlGaAs系量子井戸、InGaAlP系量子井戸、GalnNAs(Sb)系量子井戸、GalnNAs系量子井戸、GaAs(Sb)系量子井戸、(Ga)lnAs量子ドットなどの種々の半導体材料を用いることかできる。さらに、本実施の形態は、波長780nm帯、850nm帯、980nm帯、1100nm帯、1200nm帯、1300nm帯1480nm帯、1550nm帯、1650nm帯のなどの面発光レーザ素子に適用することかできる。 The active layer 104 includes an InGaAs quantum well, an AlGaAs quantum well, an InGaAlP quantum well, a GalnNAs (Sb) quantum well, a GalnNAs quantum well, a GaAs (Sb) quantum well, a (Ga) lnAs quantum dot, and the like. Various semiconductor materials can be used. Furthermore, the present embodiment can be applied to surface emitting laser elements having wavelengths of 780 nm, 850 nm, 980 nm, 1100 nm, 1200 nm, 1300 nm, 1480 nm, 1550 nm, and 1650 nm.
 また、第1の反射鏡102として、GaAs基板上のAIGaAs系半導体多層膜反射鏡のほかに、lnP基板上のAIGaAs(Sb)系半導体多層膜反射鏡やAlGalnAsP系半導体多層膜反射鏡も、本発明に適用することかできる。また、半導体基板101についても、GaAs基板、lnP基板、GalnAs3元基板などを用いることかできる。 In addition to the AIGaAs semiconductor multilayer mirror on the GaAs substrate, the AIGaAs (Sb) semiconductor multilayer mirror and the AlGalnAsP semiconductor multilayer reflector on the lnP substrate are also used as the first reflector 102. It can be applied to the invention. As the semiconductor substrate 101, a GaAs substrate, an lnP substrate, a GalnAs ternary substrate, or the like can be used.
 また、第1の反射鏡102を半導体基板101上に形成するのではなく、第1のn型スペーサ層103以上の層を先に形成して、半導体基板101をエッチング除去し、半導体基板101のあった場所に第1の反射鏡102を形成することも可能である。 In addition, instead of forming the first reflecting mirror 102 on the semiconductor substrate 101, a layer higher than the first n-type spacer layer 103 is formed first, and the semiconductor substrate 101 is removed by etching. It is also possible to form the first reflecting mirror 102 at a certain place.
 また、半導体基板101としてn型半導体基板を用いたが、半絶縁性半導体基板やp型半導体基板を用いてもよい。半絶縁性半導体基板やp型半導体基板を用いた場合には、半導体基板101の表面側からp側及びn側の両電極を取り出してもよい。ここでは裏面発光型の面発光レーザ構造を示したが、表面発光型の面発光レーザにも適用可能である。 In addition, although an n-type semiconductor substrate is used as the semiconductor substrate 101, a semi-insulating semiconductor substrate or a p-type semiconductor substrate may be used. When a semi-insulating semiconductor substrate or a p-type semiconductor substrate is used, both the p-side and n-side electrodes may be taken out from the surface side of the semiconductor substrate 101. Here, a back-emitting surface-emitting laser structure is shown, but the present invention can also be applied to a surface-emitting surface-emitting laser.
 次に、図1及び図2A~2Dを用いて、本発明に係る面発光レーザの具体的な実施例1について説明する。発振波長λは1.55μmである。図1に示すように、n型InP半導体基板101上に、λ/4の光学膜厚のSiドープ(濃度8×1017cm-3)InAlAs低屈折率層及びλ/4の光学膜厚のSiドープ(濃度8×1017cm-3)In0.53Ga0.37Al0.1As高屈折率層を1組として34.5組の多層構造を備える第1の反射鏡102が形成されている。 Next, a specific example 1 of the surface emitting laser according to the present invention will be described with reference to FIG. 1 and FIGS. 2A to 2D. The oscillation wavelength λ is 1.55 μm. As shown in FIG. 1, an Si-doped (concentration 8 × 10 17 cm −3 ) InAlAs low refractive index layer having an optical thickness of λ / 4 and an optical thickness of λ / 4 are formed on an n-type InP semiconductor substrate 101. A first reflecting mirror 102 having a multilayer structure of 34.5 sets, in which a Si-doped (concentration 8 × 10 17 cm −3 ) In 0.53 Ga 0.37 Al 0.1 As high refractive index layer is formed, is formed. Has been.
 この上に、Siドープ(濃度8×1017cm-3)InAlAsからなる第1のn型スペーサ層103、5層の量子井戸(InGaAlAs1.6%圧縮歪み井戸層/InGaAlAs0.4%引っ張り歪みバリア層)から構成される活性層104、Cドープ(濃度8×1017cm-3)InAlAsからなるp型スペーサ層105、トンネル接合を形成するZnドープ(濃度1×1020cm-3)InGaAlAsからなる高濃度p型層106、トンネル接合を形成するSiドープ(濃度2×1019cm-3)InGaAs高濃度n型層107、SiドープInP(濃度1×1017cm-3)からなる第2のn型スペーサ層108、多層構造を備える第2の反射鏡109が形成されている。 On top of this, a first n-type spacer layer 103 made of Si-doped (concentration 8 × 10 17 cm −3 ) InAlAs, five quantum wells (InGaAlAs 1.6% compressive strain well layer / InGaAlAs 0.4% tensile strain barrier) Active layer 104 composed of a layer), p-type spacer layer 105 made of C-doped (concentration 8 × 10 17 cm −3 ) InAlAs, Zn-doped (concentration 1 × 10 20 cm −3 ) InGaAlAs forming a tunnel junction A high-concentration p-type layer 106, a Si-doped (concentration 2 × 10 19 cm −3 ) InGaAs high-concentration n-type layer 107 forming a tunnel junction, and a second Si-doped InP (concentration 1 × 10 17 cm −3 ). The n-type spacer layer 108 and the second reflecting mirror 109 having a multilayer structure are formed.
 トンネル接合を構成する高濃度p型層106、高濃度n型層107のそれぞれの厚みは16nmである。共振器領域121と第2の反射鏡109の界面の凹凸は5nmであり、第2の屈折率領域114よりも第1の屈折率領域113の方が高い。 The thickness of each of the high-concentration p-type layer 106 and the high-concentration n-type layer 107 constituting the tunnel junction is 16 nm. The unevenness at the interface between the resonator region 121 and the second reflecting mirror 109 is 5 nm, and the first refractive index region 113 is higher than the second refractive index region 114.
 第2の反射鏡109は、高屈折率層124及び低屈折率層123を1組として4組の多層構造を備える。全ての高屈折率層124は、光学膜厚λ/4のSiからなる。低屈折率層123のうち、活性層104に最も近い層は、光学膜厚3λ/4のBCBからなる発光領域層122a及びSiOからなる発光周辺領域層122bから構成された屈折率制御層122である。他の3つの低屈折率層123は、光学膜厚λ/4のSiOからなる。第1のn型スペーサ層103の底面からトンネル接合を介して第2のn型スペーサ層108の上面までの長さは光学膜厚1.5λである。活性層104は定在波の腹位置に配置され、トンネル接合は定在波の節に配置されている。 The second reflecting mirror 109 includes four sets of multilayer structures, each of which includes a high refractive index layer 124 and a low refractive index layer 123. All the high refractive index layers 124 are made of Si having an optical film thickness λ / 4. Of the low refractive index layer 123, the layer closest to the active layer 104 is a refractive index control layer 122 composed of a light emitting region layer 122a made of BCB having an optical thickness of 3λ / 4 and a light emitting peripheral region layer 122b made of SiO 2. It is. The other three low refractive index layers 123 are made of SiO 2 with an optical film thickness λ / 4. The length from the bottom surface of the first n-type spacer layer 103 to the top surface of the second n-type spacer layer 108 via the tunnel junction is an optical film thickness of 1.5λ. The active layer 104 is disposed at the antinode position of the standing wave, and the tunnel junction is disposed at the node of the standing wave.
 さらに、第2のn型スペーサ層108上に、Au/Ge/Niからなるp側電極110が形成されている。また、n型GaAs半導体基板101の裏面に、Au/Ge/Niからなるn側電極111が形成されている。 Furthermore, a p-side electrode 110 made of Au / Ge / Ni is formed on the second n-type spacer layer 108. An n-side electrode 111 made of Au / Ge / Ni is formed on the back surface of the n-type GaAs semiconductor substrate 101.
 次に、図2A~2Dを参照して実施例1に係る面発光レーザ素子の製造方法を説明する。まず、図2Aに示すようにn型半導体基板101上に第1の反射鏡102からトンネル接合を形成する高濃度n型層107までの半導体層をMOVPEにより成長させる。そして、フォトリソグラフィによるレジストパターニング後、エッチングによりトンネル接合を加工した。トンネル接合加工時のエッチング深さは20nmである。 Next, with reference to FIGS. 2A to 2D, a method for manufacturing the surface emitting laser element according to the first embodiment will be described. First, as shown in FIG. 2A, a semiconductor layer from the first reflecting mirror 102 to the high-concentration n-type layer 107 that forms a tunnel junction is grown on the n-type semiconductor substrate 101 by MOVPE. Then, after resist patterning by photolithography, tunnel junctions were processed by etching. The etching depth at the time of tunnel junction processing is 20 nm.
 次に、図2Bに示すように、365nmの第2のn型スペーサ層108で埋め込み成長を行う。成長条件の制御によりトンネル接合加工で生じていた段差は平坦化され5nmとなった。図2Cに示すように、第2の屈折率領域114に、屈折率制御層122のうち屈折率の温度依存性の大きい発光周辺領域層122bを形成した。そして、フォトリソグラフィ技術を用い、第1の屈折率領域113上をエッチング除去する。その後、屈折率制御層122のうち屈折率の温度依存性の小さい発光領域層122aを形成し、同様に第1の屈折率領域113上のみに残すように形成する。 Next, as shown in FIG. 2B, buried growth is performed with a second n-type spacer layer 108 of 365 nm. The level difference generated in the tunnel junction processing by the control of the growth conditions was flattened to 5 nm. As shown in FIG. 2C, the light emitting peripheral region layer 122 b having a large temperature dependency of the refractive index in the refractive index control layer 122 is formed in the second refractive index region 114. Then, the top of the first refractive index region 113 is removed by etching using a photolithography technique. Thereafter, a light emitting region layer 122a having a small refractive index temperature dependency is formed in the refractive index control layer 122, and is formed so as to remain only on the first refractive index region 113.
 その後、第2の反射鏡109の残り多層反射膜を全面に形成し、図2Dのように第2の反射鏡109をドライエッチングすることで第2のn型スペーサ層108を露出させる。そして、p側電極110、n側電極111を形成し、電極アロイを行う。以上により、実施例1に係る面発光レーザ素子が完成する。 Thereafter, the remaining multilayer reflective film of the second reflecting mirror 109 is formed on the entire surface, and the second n-type spacer layer 108 is exposed by dry etching the second reflecting mirror 109 as shown in FIG. 2D. Then, the p-side electrode 110 and the n-side electrode 111 are formed, and electrode alloying is performed. Thus, the surface emitting laser element according to Example 1 is completed.
 図3は実効屈折率の比屈折率差の温度依存性を計算したグラフである。屈折率制御層122の発光領域層122aが3λ/4厚のBCB(屈折率1.53)で構成される。BCB材料の屈折率naの温度依存性dna/dTは、dna/dT=-1.5×10-4/℃と絶対値は半導体の屈折率変化に近く、負の温度依存性を有する。25℃~75℃で比屈折率差は30%以上小さくなる。比屈折率差が小さくなることは光閉じこめは弱まることを意味する。 FIG. 3 is a graph in which the temperature dependence of the relative refractive index difference of the effective refractive index is calculated. The light emitting region layer 122a of the refractive index control layer 122 is composed of 3λ / 4 thick BCB (refractive index 1.53). The temperature dependence dna / dT of the refractive index na of the BCB material is dna / dT = −1.5 × 10 −4 / ° C., and the absolute value is close to the refractive index change of the semiconductor and has a negative temperature dependence. The relative refractive index difference is reduced by 30% or more at 25 ° C to 75 ° C. A smaller relative refractive index difference means that light confinement is weakened.
 図4は、実施例1に係る面発光レーザ素子の光導波路への結合効率、チップ出力のスロープ効率及びファイバ入力パワーの温度依存性を示したグラフである。スロープ効率が温度上昇とともに減少したが、温度上昇に伴い放射角が低減され結合効率が増加したために、ファイバ入力パワーは温度に対してほぼ一定になるように変化した。光出力が安定することで、伝送距離が安定して確保できた。また、屈折率差の大きい誘電体DBRを用いたことにより広い温度範囲で8GHzを超える緩和振動周波数が得られ、高速動作にも適用可能な低コスト・低消費電力の光通信モジュールが実現できる。 FIG. 4 is a graph showing the temperature dependence of the coupling efficiency to the optical waveguide, the slope efficiency of the chip output, and the fiber input power of the surface emitting laser element according to Example 1. Although the slope efficiency decreased with increasing temperature, the fiber input power changed to be almost constant with temperature because the radiation angle decreased and the coupling efficiency increased with increasing temperature. As the optical output is stabilized, the transmission distance can be secured stably. Further, by using the dielectric DBR having a large refractive index difference, a relaxation oscillation frequency exceeding 8 GHz can be obtained in a wide temperature range, and an optical communication module with low cost and low power consumption applicable to high-speed operation can be realized.
 この出願は、2008年3月28日に出願された日本出願特願2008-085601を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-085601 filed on Mar. 28, 2008, the entire disclosure of which is incorporated herein.
 本発明は、超高速計算機向けの低コストが要求される面発光レーザに適用できる。 The present invention can be applied to a surface emitting laser for which a low cost is required for an ultra high speed computer.

Claims (6)

  1.  第1の反射鏡と、
     複数の高屈折率層と複数の低屈折率層とが交互に積層された第2の反射鏡と、
     前記第1及び第2の反射鏡の間に形成された活性層及び電流狭窄構造とを備え、
     前記複数の高屈折率層及び前記複数の低屈折率層のうちの少なくとも1層において、発光領域と発光周辺領域とを構成する材料が異なり、
     前記発光周辺領域を構成する材料よりも前記発光領域を構成する材料の方が、屈折率の温度に対する変化率が小さいことを特徴とする面発光レーザ。
    A first reflector;
    A second reflecting mirror in which a plurality of high refractive index layers and a plurality of low refractive index layers are alternately laminated;
    An active layer and a current confinement structure formed between the first and second reflectors,
    In at least one of the plurality of high refractive index layers and the plurality of low refractive index layers, materials constituting the light emitting region and the light emitting peripheral region are different,
    A surface-emitting laser characterized in that a material constituting the light-emitting region has a smaller change rate of refractive index with respect to temperature than a material constituting the light-emitting peripheral region.
  2.  前記発光領域を構成する材料の屈折率が負の温度依存性を有することを特長とする請求項1に記載の面発光レーザ。 2. The surface emitting laser according to claim 1, wherein a refractive index of a material constituting the light emitting region has a negative temperature dependency.
  3.  前記活性層に最も近い前記高屈折率層及び/又は前記低屈折率層において、発光領域と発光周辺領域とを構成する材料が異なることを特徴とする請求項1又は2に記載の面発光レーザ。 3. The surface emitting laser according to claim 1, wherein the material constituting the light emitting region and the light emitting peripheral region is different in the high refractive index layer and / or the low refractive index layer closest to the active layer. .
  4.  前記発光領域と前記発光周辺領域とを構成する材料が異なる層の光学膜厚が、温度を固定した場合に共鳴波長差に影響する厚みd1と、温度を固定した場合に共鳴波長に影響しない厚みd2との和からなり、d2=mλ/2(mは0以上の整数)であることを特徴とする請求項1~3のいずれか一項に記載の面発光レーザ。 The optical film thickness of the layers of different materials constituting the light emitting region and the light emitting peripheral region has a thickness d1 that affects the resonance wavelength difference when the temperature is fixed, and a thickness that does not affect the resonance wavelength when the temperature is fixed. The surface emitting laser according to any one of claims 1 to 3, which is a sum of d2 and d2 = mλ / 2 (m is an integer of 0 or more).
  5.  前記発光領域を構成する材料がPMMA又はBCBであることを特徴とする請求項1~4のいずれか一項に記載の面発光レーザ。 5. The surface emitting laser according to claim 1, wherein the material constituting the light emitting region is PMMA or BCB.
  6.  第1の反射鏡を形成する工程と、
     複数の高屈折率層と複数の低屈折率層とが交互に積層された第2の反射鏡を形成する工程と、
     前記第1及び前記第2の反射鏡の間に位置する活性層及び電流狭窄構造を形成する工程と、を備え、
     前記複数の高屈折率層及び前記複数の低屈折率層のうちの少なくとも1層において、発光領域と発光周辺領域とを構成する材料が異なり、
     前記発光周辺領域を構成する材料よりも前記発光領域を構成する材料の方が、屈折率の温度に対する変化率が小さいことを特徴とする面発光レーザの製造方法。
    Forming a first reflecting mirror;
    Forming a second reflecting mirror in which a plurality of high refractive index layers and a plurality of low refractive index layers are alternately laminated;
    Forming an active layer and a current confinement structure positioned between the first and second reflecting mirrors,
    In at least one of the plurality of high refractive index layers and the plurality of low refractive index layers, materials constituting the light emitting region and the light emitting peripheral region are different,
    A method of manufacturing a surface-emitting laser, wherein the material constituting the light-emitting region has a smaller change rate with respect to temperature than the material constituting the light-emitting peripheral region.
PCT/JP2009/052335 2008-03-28 2009-02-12 Surface emitting laser WO2009119172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008085601 2008-03-28
JP2008-085601 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119172A1 true WO2009119172A1 (en) 2009-10-01

Family

ID=41113380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052335 WO2009119172A1 (en) 2008-03-28 2009-02-12 Surface emitting laser

Country Status (1)

Country Link
WO (1) WO2009119172A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869643A4 (en) * 2018-10-18 2022-07-20 Stanley Electric Co., Ltd. Vertical resonator-type light-emitting element
US11398713B2 (en) * 2017-12-04 2022-07-26 Mitsubishi Electric Corporation Electro-absorption modulator, optical semiconductor device and optical module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175615A (en) * 1991-12-25 1993-07-13 Nec Corp Lane light emission integrated element and manufacture thereof
JPH11243257A (en) * 1997-12-23 1999-09-07 Lucent Technol Inc Vertical cavity surface-emitting laser having individual optical current guide
JP2001135890A (en) * 1999-07-21 2001-05-18 Lucent Technol Inc Lateral injection vertical cavity surface-emitting laser
JP2002176226A (en) * 2000-09-22 2002-06-21 Toshiba Corp Optical element and its manufacturing method
JP2003508928A (en) * 1999-08-31 2003-03-04 ハネウェル・インコーポレーテッド Coupling cavity anti-guided vertical cavity surface emitting laser (VCSEL)
JP2004063657A (en) * 2002-07-26 2004-02-26 Ricoh Co Ltd Surface emitting laser, surface emitting laser array, light transmitting module, light transmitting/receiving module and optical communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175615A (en) * 1991-12-25 1993-07-13 Nec Corp Lane light emission integrated element and manufacture thereof
JPH11243257A (en) * 1997-12-23 1999-09-07 Lucent Technol Inc Vertical cavity surface-emitting laser having individual optical current guide
JP2001135890A (en) * 1999-07-21 2001-05-18 Lucent Technol Inc Lateral injection vertical cavity surface-emitting laser
JP2003508928A (en) * 1999-08-31 2003-03-04 ハネウェル・インコーポレーテッド Coupling cavity anti-guided vertical cavity surface emitting laser (VCSEL)
JP2002176226A (en) * 2000-09-22 2002-06-21 Toshiba Corp Optical element and its manufacturing method
JP2004063657A (en) * 2002-07-26 2004-02-26 Ricoh Co Ltd Surface emitting laser, surface emitting laser array, light transmitting module, light transmitting/receiving module and optical communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11398713B2 (en) * 2017-12-04 2022-07-26 Mitsubishi Electric Corporation Electro-absorption modulator, optical semiconductor device and optical module
EP3869643A4 (en) * 2018-10-18 2022-07-20 Stanley Electric Co., Ltd. Vertical resonator-type light-emitting element

Similar Documents

Publication Publication Date Title
KR101834015B1 (en) Hybrid vertical-cavity laser
EP3453086B1 (en) Laser device and method for its operation
US8917752B2 (en) Reflectivity-modulated grating mirror
EP1610426B1 (en) Optical semiconductor device and optical semiconductor integrated circuit
US7697588B2 (en) Structure having photonic crystal and surface-emitting laser using the same
WO2009116140A1 (en) Optical semiconductor element and its manufacturing method
JPH09512138A (en) Strain-compensated composite quantum well laser structure
Zeng et al. Photonic engineering technology for the development of terahertz quantum cascade lasers
JP2005538532A (en) Tilted cavity semiconductor laser (TCSL) and manufacturing method thereof
JP2013232682A (en) METHOD OF FABRICATING InP BASED VERTICAL CAVITY SURFACE EMITTING LASER, AND DEVICE PRODUCED WITH THIS METHOD
US6885686B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
CN115706392A (en) Reflector for VCSEL
JP4630128B2 (en) Semiconductor laser device and wavelength control method
US8576472B2 (en) Optoelectronic device with controlled temperature dependence of the emission wavelength and method of making same
JP2008098379A (en) Two dimensional photonic crystalline surface emission laser and its manufacturing method
JP4748645B2 (en) Light emitting system and optical transmission system
JP2002223033A (en) Optical element and optical system
WO2013014457A1 (en) High speed vertical-cavity suface-emitting laser
Larsson et al. Single-Mode VCSELs
Chung et al. Widely tunable coupled-ring reflector laser diode
US8374205B2 (en) Vertical cavity surface emitting laser and image forming apparatus
WO2009119172A1 (en) Surface emitting laser
US10008826B1 (en) Surface-emitting semiconductor laser
JP2009094317A (en) Surface-emitting laser
JP2008098234A (en) Surface light emitting laser element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP