WO2009118821A1 - 微粒子測定装置 - Google Patents

微粒子測定装置 Download PDF

Info

Publication number
WO2009118821A1
WO2009118821A1 PCT/JP2008/055516 JP2008055516W WO2009118821A1 WO 2009118821 A1 WO2009118821 A1 WO 2009118821A1 JP 2008055516 W JP2008055516 W JP 2008055516W WO 2009118821 A1 WO2009118821 A1 WO 2009118821A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged
particle size
sheath gas
aerosol
electrode
Prior art date
Application number
PCT/JP2008/055516
Other languages
English (en)
French (fr)
Inventor
浩史 奥田
大二 奥田
成 木本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2010505062A priority Critical patent/JP4888597B2/ja
Priority to PCT/JP2008/055516 priority patent/WO2009118821A1/ja
Publication of WO2009118821A1 publication Critical patent/WO2009118821A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification

Definitions

  • the present invention relates to an apparatus for measuring the number of fine particles contained in environmental gas, for example, a measurement apparatus capable of measuring the number of fine particles contained in automobile exhaust gas at once in a wide particle size band and measuring the particle size distribution.
  • Aerosols are generally colloids in which the dispersion medium is a gas and the dispersoid is a liquid or a solid, such as ultrafine particles contained in automobile exhaust gas. Then, the particle diameter can be measured and calculated by measuring the electric mobility of the particles and correcting the charging rate. This is because there is a certain relationship between the electric mobility, the charging rate, and the particle diameter, and therefore the particle diameter can be specified by specifying the electric mobility.
  • a differential electromobility measuring apparatus (see Patent Document 1) that can select fine particles having a specific electromobility and an electromobility in the vicinity thereof.
  • DMA differential electromobility measuring apparatus
  • charged sample gas is introduced from the side wall surface of the classification unit, and gas containing particles separated into a desired particle diameter is sucked out from the side wall surface, and charged particles are counted by a detector.
  • DMA can accurately measure the particle size distribution of particles in the sample gas, but it cannot count particles with a wide particle size range at once. However, in the field of particle number regulation, it is becoming essential to collectively count particles having a certain range of particle sizes. Since DMA can measure the particle size distribution, if integration is performed over a predetermined particle size range, the number of particles having a particle size in that range can be counted, but because the particle size range is measured while scanning, The particle size range cannot be measured simultaneously. Therefore, accurate measurement cannot be performed on a sample whose concentration changes with time.
  • the present inventors have used an integral-type electric mobility measuring device (hereinafter also referred to as B-DMA) for the purpose of measuring the number of particles in a wide particle size band collectively in real time.
  • B-DMA integral-type electric mobility measuring device
  • the charged aerosol is supplied from one electrode side to the classification region where the sheath gas is supplied between the central electrode and the outer electrode where the classification electric field is generated, and classified to the downstream side of the sheath gas flow.
  • a large particle size side discharge unit is provided for discharging charged fine particles having a predetermined particle size or more in the charged aerosol together with a part of the sheath gas.
  • the fine particles in the sample gas must be converted into charged particles by the charging mechanism.
  • the generated charged particles include charged particles that are charged to a valence of 1 or more, and charged particles that are charged to a valence of 2 or more (see Non-Patent Document 1).
  • the effect of multivalent charging is that a monovalent charged particle of a certain particle size and a divalent charged particle of about 1.4 times its particle size have the same electric mobility, and therefore miscounts the number of particles of that particle size Result.
  • B-DMA which does not have the function of measuring the particle size distribution, cannot eliminate the effects of multivalent charging, and miscounts the number of particles at a certain rate. Will end up.
  • DMA is an expensive device and also requires a large space. For example, installing two DMAs at a measurement site that continuously measures automobile exhaust gas is not realistic in terms of cost and installation space.
  • the present invention has an object to enable the functions of both B-DMA and ordinary differential DMA to be realized by one DMA, and to eliminate the influence of multivalent charging in B-DMA measurement. It is what.
  • a pair of counter electrodes arranged to face each other to generate an electric field for classifying charged particles by electric mobility to form a classification region, and the counter electrode
  • a power supply device connected to the counter electrode for applying a voltage for generating a classification electric field, a sheath gas supply unit for supplying uncharged gas as a sheath gas from one end of the classification region to the classification region, and one electrode of the counter electrode
  • an aerosol supply unit that has an inlet near the electrode and supplies charged aerosol from the inlet is provided.
  • the other side of the counter electrode or the intake in the vicinity of the other electrode of the counter electrode is provided downstream of the introduction port of the aerosol supply unit, and in the classified charged aerosol.
  • a classified charged particle take-out portion for taking out a specific particle size portion of the charged fine particles together with a part of the sheath gas.
  • the charge in the classified charged aerosol has a discharge port on the aerosol supply unit installation side electrode or in the vicinity of the electrode on the downstream side of the sheath gas flow from the aerosol supply unit.
  • a large particle size side discharge unit that discharges a part of the fine particle having a predetermined particle size or more together with a part of the sheath gas, and a band charged particle extraction unit that is arranged on the other end side of the classification region and extracts the charged fine particles that have passed through the classification region together with the sheath gas.
  • a common valence electron detector which is arranged downstream of the classified charged particle extraction unit and the band charged particle extraction unit and detects the number of charged fine particles sent together with the sheath gas.
  • a flow path switching mechanism and a control device are provided in order to switch between the differential mode and the integral mode.
  • the flow path switching mechanism connects one extraction part of the classified charged particle extraction part and the band charged particle extraction part to the valence electron detector, closes the other extraction part, and to the valence electron detectors of both extraction parts. It is configured to switch between connection and closure.
  • the controller switches the voltage between the counter electrodes so that the flow path switching mechanism connects the classified charged particle take-out part to the valence electron detector, and the particle size of the charged fine particles entering the intake for the classified charged particle take-out part is scanned.
  • counting error data based on multivalent charging with respect to the particle size of charged fine particles is retained, and sample particle size distribution and counting error data measured during operation in differential mode.
  • a data processing device is provided for calculating an average error with respect to the count value in the particle size band measured in the integration mode, and correcting the count value during operation in the integration mode.
  • the installation position of the inlet means that the charged aerosol can be supplied to the classification area, and the classified charging aerosol is installed for the installation position of the outlet of the large particle size side discharge section. It means that it is a position that can fulfill the action of discharging the part of the particle size or larger in the inside together with part of the sheath gas.
  • the above-mentioned “charged aerosol” is charged fine particles in the aerosol supplied to the classifier via a charger.
  • the proportion of the aerosol fine particles that have become charged fine particles of each charge before passing through the charger is the charge rate.
  • the “charge rate” can be obtained from the ratio between the total number of aerosol fine particles before charging and the number of charged fine particles charged to each charge after charging.
  • the physical quantity finally determined by the fine particle measuring apparatus of the present invention is the number of fine particles in a predetermined particle size range in the aerosol before being charged, and the output obtained by the detector is the number of charged fine particles after charging. Is the amount of electricity corresponding to the value multiplied by the number of charges of. Therefore, it is necessary to convert the output from the detector into the number of fine particles in the aerosol before charging.
  • This calculation can be performed by obtaining in advance the charging rate when the aerosol to be measured is charged by the charger of the measuring device.
  • the data processing apparatus further holds the charge rate obtained in advance for the aerosol to be measured, and measures the measurement aerosol based on the corrected count value when operating in the integration mode. It is preferable to calculate the fine particle number concentration.
  • the data processing device has a function to calculate the aerosol particle number concentration measured based on the amount of electricity measured by the detector while maintaining the charge rate, the aerosol particle number concentration is automatically calculated. Will be able to seek online.
  • a sheath gas supply unit that only a new external gas can be supplied.
  • a sheath gas supply channel that supplies a gas obtained by removing particles from a gas discharged from a large particle size discharge unit or a charged particle extraction unit together with an external gas as a sheath gas, and a large particle size side when operating in the integration mode
  • a second flow path switching mechanism for connecting the discharge section to the sheath gas supply flow path, closing the large particle size side discharge section when operating in the differential mode, and connecting the zone charged particle extraction section to the sheath gas supply flow path; It is preferable.
  • the particle size selection means is capable of obtaining fine particles in a predetermined particle size range in which not only the large particle size side but also the small particle size side is removed.
  • particle diameter selection means those described in Patent Document 2 can be used.
  • fine particles on the larger particle size side than the predetermined particle size range are removed from the discharge portion on the larger particle size side, and the fine particles on the smaller particle size side are classified in the classification region and sucked by the other electrode of the counter electrode. It is removed by adsorbing.
  • the large particle size side particle size removed from the large particle size side discharge unit and the small particle size particle size removed by the other electrode of the counter electrode are the sheath gas flow rate supplied to the classification region, from the aerosol supply unit It can be set by adjusting the flow rate of the charged aerosol gas supplied to the classification region via the inlet, the flow rate discharged from the large particle size side discharge section, and the voltage applied to the counter electrode.
  • the first example of the particle size selection means is to control the flow rate of a pump connected downstream of the large particle size side discharge unit to discharge a portion of the charged fine particles having a predetermined particle size or more together with a part of the sheath gas. .
  • the flow rate of the pump is increased, the range of the discharged particle size becomes wider on the larger particle size side, and charged particles on the larger particle size side are removed in a wide range from the banded electron take-out part. It is taken out.
  • the range of the discharged particle size is not widened on the larger side, and the charged particles on the larger particle size side are taken out from the band-charged electron take-out portion in a state where they are removed in a narrow range.
  • the power supply device connected to the counter electrode is controlled to adsorb a portion of the charged fine particles having a predetermined particle size or less to the electrode.
  • the range of the particle size adsorbed on the electrode becomes wider on the smaller particle size side, and the charged fine particles on the smaller particle size side are removed in a wide range from the banded electron take-out part. It is taken out with.
  • the applied voltage is reduced, the particle size range adsorbed on the electrode does not increase on the small side, so that the charged fine particles on the small particle size side are removed from the band-charged electron extraction portion in a narrow range.
  • the third example is a combination of the first example and the second example.
  • a Faraday cup electrometer that measures the number of charged fine particles as an electric quantity can be cited.
  • the fine particle measuring apparatus generates a classification electric field between a pair of counter electrodes to form a classification region, and supplies a charged aerosol to the classification region while supplying a sheath gas to the classification region.
  • a flow path switching mechanism is provided, and the flow controller and power The device is controlled, and the count value at the time of operation in the integration mode is corrected in the data processing device, so that the charged fine particles having a desired particle size range can be collectively measured while using one DMA.
  • counting errors based on multivalent charging can be eliminated.
  • FIG. 1 is a schematic diagram showing an embodiment as a block diagram.
  • FIG. 2A is a vertical cross-sectional view showing the classifier main body in the same embodiment.
  • 2B is a horizontal sectional view taken along the line X-X ′ of FIG. 2A.
  • FIG. 3 is a partial schematic cross-sectional view showing a gas flow in the classifier body.
  • FIG. 4 is a graph showing the theoretical error due to multivalent charging when the band of valence electrons when measuring in the integral mode is 10 nm to 140 nm.
  • FIG. 1 is a schematic diagram showing an embodiment as a block diagram.
  • 2A and 2B show a classifier main body in the same embodiment,
  • FIG. 2A is a vertical cross-sectional view, and
  • FIG. 2B is a horizontal cross-sectional view taken along the line XX ′ in FIG. 2A.
  • FIG. 3 is a partial schematic cross-sectional view showing the gas flow in the classifier body.
  • a columnar center electrode 3 is provided so as to coincide with the central axis of the case 1.
  • the inner surface of the housing 1 is an outer electrode 4, and the counter electrode is constituted by the center electrode 3 and the outer electrode 4.
  • the center electrode 3 and the outer electrode 4 generate an electric field for classifying charged fine particles according to electric mobility, and a rotating space formed between the electrodes 3 and 4 is a classification region 5.
  • Both electrodes 3 and 4 are connected to a power supply device 31, and the power supply device 31 is connected to a control unit 33.
  • the power supply device 31 that applies a voltage between the electrodes 3 and 4 is controlled by the control unit 33.
  • a sheath gas supply unit 7 for introducing an uncharged gas as a sheath gas at a constant flow rate is provided on the upper part, which is one end side of the housing 1.
  • a commutator 9 for laminating the sheath gas is provided at the upper end of the classification region 5, and the sheath gas that has passed through the commutator 9 is supplied to the classification region 5.
  • an introduction port 11 a of the aerosol supply unit 11 is provided on the outer electrode 4 side, and charged aerosol is supplied from the introduction port 11 a in a direction crossing the sheath gas flow at a constant flow rate.
  • the aerosol supply unit 11 is connected to an aerosol supply unit that includes a charger 12 that charges the supplied aerosol to form a charged aerosol and a flow meter 10 that supplies the aerosol at a constant flow rate.
  • the center electrode 3 has an intake port 12a downstream of the introduction port 11a of the aerosol supply unit, and the charged fine particles in the classified charged aerosol are classified. There is provided a classified charge electron extracting portion 12 for extracting a specific particle size portion together with a part of the sheath gas.
  • a large particle size side discharge unit 13 and a banded electron take-out unit 35 are provided on the downstream side of the sheath gas flow from the aerosol supply unit.
  • the large particle size side discharge unit 13 has a discharge port 13a on the outer electrode 4 side of the classification region 5, and discharges a portion of the charged fine particles having a predetermined particle size or more in the classified charged aerosol together with a part of the sheath gas.
  • the large particle size side discharge unit 13 includes a flow meter 15 and a solenoid valve 17 that adjusts the discharge flow rate so that the flow rate detected by the flow meter 15 becomes a predetermined flow rate.
  • the band-charged electron take-out unit 35 is disposed at the lower end of the housing 1 on the other end side of the classification region 5 and takes out charged fine particles that have passed through the classification region 5 together with the sheath gas.
  • the upper end of the center electrode 3 is supported by the casing 1 by an insulating member 10 and a commutator 9 made of an insulator, and the lower end of the center electrode 3 is supported by a supporting member 15 that also serves as a commutator for laminating the flow of sheath gas.
  • a supporting member 15 that also serves as a commutator for laminating the flow of sheath gas.
  • the diameter of the central electrode 3 is 25 mm
  • the inner diameter of the outer electrode 4 is 33 mm
  • the distance between the central electrode 3 and the outer electrode 4 is constant at about 4 mm in the cylindrical part of the classification region 5.
  • the introduction port 11 a and the discharge port 13 a have a width of 0.5 mm and are formed in a ring shape surrounding the center electrode 1 along the inner peripheral surface of the outer electrode 4.
  • the distance between both ports 11a and 13a is about 100 mm.
  • the inlet 11a and the outlet 13a may be slit-shaped.
  • the take-in port 12a of the classified load electron take-out portion 12 has a width of 0.5 mm and is formed in a ring shape along the outer peripheral surface of the center electrode 3.
  • the intake port 12a is disposed at a height between the introduction port 11a and the discharge port 13a.
  • a charged electron detector comprising a Faraday cup electrometer for detecting the number of charged fine particles sent together with the sheath gas. 40 is arranged downstream of the classified charged electron extraction unit 12 and the banded charged electron extraction unit 35.
  • a flow meter 48 and a solenoid valve 49 are connected downstream of the detector 40 to guide the sheath gas containing charged fine particles to the detector 40 at a predetermined flow rate.
  • the solenoid valve 49 is adjusted so that the detected flow rate of the flow meter 48 becomes a predetermined flow rate.
  • the sheath gas that has passed through the detector 40 is sent to a sheath gas supply channel 50 described later and reused as the sheath gas.
  • the detection electric signal of the detector 40 is guided to the data processing device 41 and the number of charged electrons is counted.
  • the data processing device 41 holds counting error data based on the multivalent charging with respect to the particle diameter of the charged electrons in order to eliminate the counting error based on the multivalent charging, and the sample particle measured during the operation in the differential mode.
  • a program for calculating an average error with respect to the count value in the particle size band measured in the integration mode from the diameter distribution and the count error data and correcting the count value during operation in the integration mode is provided.
  • a flow path switching mechanism is provided downstream of the classified load electron extraction unit 12 and the band load electron extraction unit 35.
  • the flow path switching mechanism includes a first flow path switching mechanism including three-way valves 42 and 44 and a second flow path switching mechanism including a three-way valve 46.
  • the three-way valve 42 is connected between the classified load electronic take-out unit 12 and the detector 40, and the three-way valve 44 is connected downstream of the band load electronic take-out unit 35, and one port of the three-way valve 42 and one of the three-way valves 44 are connected. The ports are connected.
  • One port of the three-way valve 46 is connected to the large particle size side discharge section 13, the other port is connected to the remaining one port of the three-way valve 44, and the remaining one port of the three-way valve 46 is the sheath gas supply channel 50 is connected to one port of a three-way valve 62 constituting the pump 52 and the aerosol flow rate adjusting flow path 60.
  • the three-way valves 42 and 44 connect one take-out part of the classified load electron take-out part 12 and the band load electron take-out part 35 to the detector 40, close the other take-out part, and both take-out parts 12 and 35. Is switched by being controlled by the control unit 33 so as to switch between connection and closure to the detector 40.
  • the sheath gas supply channel 50 connected to the sheath gas supply unit is supplied via the detector 40 and the sheath gas containing charged fine particles supplied from the band-charged electron extraction unit 35 or the large particle size side discharge unit 13 via the three-way valve 46.
  • a pump 52 is provided to suck the sheath gas and air replenished from the outside.
  • a cooler 54 that cools the sheath gas heated by the pump 52, a flow meter 56 that detects the flow rate of the sheath gas to be supplied, and a filter 58 that removes particle components are provided downstream of the pump 52.
  • the drive of the pump 52 is controlled so that the detected flow rate of the flow meter 56 becomes a predetermined flow rate.
  • An aerosol flow rate adjusting channel 60 is connected to the sheath gas supplying channel 50 via a three-way valve 62 in order to replenish air from the outside to the sheath gas supplying channel 50 or to discharge excess sheath gas to the outside.
  • This measuring device is a semi-closed system. When the air is taken in from the outside by the size of the aerosol flow rate supplied from the aerosol supply unit 11 and the leak flow rate from the pump 52 and other piping parts, the air is supplied to the device. It may be necessary to discharge outside.
  • the aerosol flow rate adjusting flow path 60 includes a pump 66 for sucking or discharging air from the outside.
  • a three-way valve 68 as an intake port and a filter 70 for removing particles for protecting the pump are installed upstream of the pump 66, and a filter 73 and a three-way valve 74 for removing particle components are connected downstream of the pump 66. ing.
  • the three-way valve 74 is for switching and connecting the aerosol flow rate adjusting flow path 60 to the three-way valve 62 or the outside.
  • the pump 66 controls the flow rate of air discharged according to the flow meter 10 of the aerosol supply unit.
  • the three-way valve 68 sucks air and supplies air to the sheath gas supply channel 50 from the pump 66 via the three-way valves 74 and 62. A flow path is formed.
  • the pump 66 controls the flow rate of air sucked according to the flow meter 10 of the aerosol supply unit.
  • a general air blowing mechanism such as a diaphragm pump, a rotary pump, a piston pump, a ring blower, a sirocco fan, a line follow fan, and a turbo fan can be used.
  • the flow path switching mechanism can be configured by combining not only a three-way valve but also a four-way valve or a two-way valve. Those valves that can be driven manually, electrically, or pneumatically are used.
  • the control device 33 switches the three-way valves 42, 44, and 46 in the differential mode and the integral mode, and controls the voltage applied between the power supply device 31 and the counter electrodes 3 and 4.
  • the classified charged particle take-out part 12 is connected to the detector 40, the large particle size side discharge part 13 is closed, the band-charged electron take-out part 35 is connected to the sheath gas supply channel 50, and the counter electrodes 3, 4 The voltage between them is changed so that the particle diameter of the charged electrons entering the intake port 12a for the classified charged fine particle extraction unit is scanned.
  • the charged particles contained in the sample gas introduced into the classification unit are subjected to electrostatic force by the electric field applied to the classification unit 5 and are attracted to the center electrode 3. At the same time, a force in the direction perpendicular to the electrostatic force is received by the sheath gas flow velocity flowing through the classifying unit 5. Particles having an electric mobility larger than a certain value determined by the strength of the electric field and the sheath gas flow velocity are adsorbed above the intake port 12a of the classified electron extraction unit 12 of the center electrode 3. Further, particles having an electric mobility smaller than a certain value are adsorbed below the intake port 12a or discharged from the band-charged electron take-out unit 35. As a result, at a certain point in time, only particles having a specific range of electric mobility determined by the intensity of the electric field and the sheath gas flow velocity are counted by the detector.
  • the particle size distribution of the charged particles contained in the sample gas can be obtained by changing the electric field applied to the classifying unit 5 with time.
  • the sheath gas flow velocity may be changed with time instead of changing the electric field applied to the classifying unit 5 with time.
  • both the electric field applied to the classification unit 5 and the sheath gas flow velocity may be changed with time.
  • the following well-known relational expression (1) between the electric mobility, the distance between the sample introduction port and the classified charged particle take-out port, the sheath gas flow rate, the sample gas flow rate, and the distance between the electrodes see Non-Patent Document 1. It is obvious that the electric mobility of the particles taken out can be changed by changing the voltage and sheath gas flow rate.
  • Zp electric mobility
  • R2 outer electrode diameter
  • R1 inner electrode diameter
  • E classification voltage
  • Qa sample gas flow rate
  • Qt sample gas flow rate + sheath gas flow rate
  • L between sample introduction port and classified charged particle take-out port distance
  • the band-charged electron take-out part 35 is connected to the detector 40, the classified charge-electron take-out part 12 is closed, the large particle size side discharge part 13 is connected to the sheath gas supply channel 50, and the counter electrodes 3, 4 The voltage between them is kept constant so that charged electrons having a predetermined particle size range are taken out by the band-charged electron take-out portion 35.
  • the charged particles contained in the sample gas introduced into the classifying unit 5 receive an electrostatic force by the electric field applied to the classifying unit and are attracted to the center electrode 3. At the same time, a force in the direction orthogonal to the electrostatic force is received by the sheath gas flow flowing through the classification unit 5.
  • particles having an electric mobility greater than a certain value are adsorbed on the counter electrode. Further, particles having an electric mobility smaller than a certain value and smaller than that value are discharged from the large particle diameter side discharge section 13. As a result, only particles having a certain range of electric mobility are counted by the detector 40 via the band-charged electron take-out unit 35.
  • the electric mobility range of the particles introduced into the detector 40 includes the sheath gas flow rate supplied to the classification region and the charged aerosol supplied from the aerosol supply unit 11 to the classification region 5 as described above as the particle size selection means. It can be set by adjusting the gas flow rate, the flow rate discharged from the large particle size side discharge unit 13, and the voltage applied to the counter electrode.
  • P is the charge valence
  • e is the elementary charge
  • ⁇ o is the dielectric constant in vacuum
  • k is the Boltzmann constant
  • T is the absolute temperature
  • nT is the number of particles having a particle size Dp
  • np is P in the particles having a particle size Dp. This is the number of charged particles.
  • FIG. 4 is a graph showing a theoretical error caused by polyvalent charging when the band of valence electrons when measuring in the integral mode is 10 nm to 140 nm.
  • the classification conditions are set so as to select monovalent particles in the above classification zone, the ratio of divalent particles of 140 nm or more entering there, and the divalent particles of 10 nm or more flowing out from there, The particle ratio is calculated using the equation (1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

【課題】微分モードと積分モードの両方の機能を1台のDMAで実現できるようにするとともに、積分モードでの測定時における多価帯電の影響を排除できるようにする。 【解決手段】好ましい形態では、微分モード時には、分級荷電子取出し部(12)が検出器(40)に接続され、大粒径側排出部(13)が閉鎖され、帯域荷電子取出し部(35)がシースガス供給流路(50)に接続され、対向電極(3,4)間の電圧は分級荷電子取出し部用の取込み口(12a)に入る荷電子の粒径が走査されるように変化させられる。積分モード時には、帯域荷電子取出し部(35)が検出器(40)に接続され、分級荷電子取出し部(12)が閉鎖され、大粒径側排出部(13)がシースガス供給流路(50)に接続され、対向電極(3,4)間の電圧は帯域荷電子取出し部(35)に所定の粒径範囲の荷電子が取り出されるように一定に保たれる。

Description

微粒子測定装置
 本発明は、環境ガスに含まれる微粒子数を測定する装置、例えば自動車排ガスに含まれる微粒子数をリアルタイムに広い粒径帯域を一括で測定し、かつ粒径分布も測定できる測定装置に関する。
 測定対象エアロゾル中の微粒子は、帯電させることにより電場中での移動速度の違いを利用して分級することができる。エアロゾルとは、一般に分散媒体が気体で、分散質が液体又は固体のコロイドであり、例えば自動車排ガスに含まれる極微小粒子などのことである。そして、微粒子の電気移動度を測定し、その帯電率を補正することにより微粒子径を測定計算することができる。電気移動度と帯電率、微粒子径との間には一定の関係があるので、電気移動度を指定することで微粒子径を指定することができるからである。
 電気移動度測定装置としては、特定の電気移動度及びそのごく近傍の電気移動度をもつ微粒子を選び出すことができる微分型電気移動度測定装置(DMA:Differential mobility analyzer)(特許文献1参照。)がよく知られている。DMAでは、分級部側壁面から帯電した試料ガスを導入し、同じく側壁面から所望の粒径に分離された粒子を含むガスを吸いだして検出器で荷電粒子を計数する。
 DMAは試料ガス中の粒子の粒度分布を精度よく測定することができるが、広い粒径幅の粒子を一括で計数することはできない。しかし、粒子数規制の現場ではある帯域の粒径をもつ粒子を一括で計数することが必須になりつつある。DMAは粒度分布を測定することができるので、所定の粒径範囲について積分をすればその範囲の粒径をもつ粒子数を計数することにはなるが、粒径範囲を走査しながら測定するので、その粒径範囲の同時計測はできない。そのため、濃度が時間的に変化している試料では正確な計測はできない。
 そこで、本発明者らはDMAの欠点を補完するために、広い粒径帯域の粒子数を一括で、リアルタイム計測する目的で積分型電気移動度測定装置(以下、B-DMAともいう。)を発明し提案している(特許文献2参照。)。そのB-DMAでは、分級電界が発生している中心電極と外側電極の間にシースガスが供給される分級領域に、一方の電極側から帯電エアロゾルを供給し、シースガス流の下流側に分級された帯電エアロゾル中の所定粒径以上の荷電微粒子をシースガスの一部とともに排出する大粒径側排出部を設ける。そして、分級領域を透過してきた荷電微粒子数を電気量として検出する。
特開2000-046720号公報 WO2007/072942号公報 高橋幹二「エアロゾル学の基礎(日本エアロゾル学会編)」第5章、森北出版、2003年 Kousaka,Y., Okuyama,K., and Adachi,M., Aerosol Sci. Technol., 4, p.209-235(1985)
 試料ガスを分級領域に導入するためには帯電機構により試料ガス中の微粒子を荷電粒子としなければならない。その際、生成した荷電粒子には1価に帯電した荷電粒子のほかに、2価又は3価以上に多価帯電した荷電粒子も含まれることが知られている(非特許文献1参照。)。多価帯電の影響は、ある粒径の1価帯電粒子とその約1.4倍粒径の2価帯電粒子は同じ電気移動度をもつことによって、その粒径の粒子数を誤カウントしてしまう結果をもたらす。また、多価帯電の確率は粒径依存性をもつことから、粒径分布を測定する機能をもたないB-DMAは多価帯電の影響を排除できず、ある割合で粒子数を誤カウントしてしまうことになる。
 B-DMAと通常の微分型DMAの2台を使用して測定すれば、この問題を解決することができる。しかし、DMAは高価な装置であり、しかも大きなスペースも必要とする。例えば、自動車排ガスを連続的に測定するような測定現場に2台のDMAを設置するのは、コストの面でも設置スペースの面でも現実的ではない。
 そこで、本発明はB-DMAと通常の微分型DMAの両方の機能を1台のDMAで実現できるようにするとともに、B-DMA測定における多価帯電の影響を排除できるようにすることを目的とするものである。
 DMAからなる微粒子測定装置の基本的な構成として、荷電微粒子を電気移動度により分級する電界を発生して分級領域を形成するために互いに対向して配置された一対の対向電極と、その対向電極に分級電界発生用電圧を印加するためにその対向電極に接続された電源装置と、分級領域の一端側から分級領域に非荷電ガスをシースガスとして供給するシースガス供給部と、対向電極の一方の電極又はその電極の近傍に導入口をもち、その導入口から帯電エアロゾルを供給するエアロゾル供給部が設けられている。
 微分モードとしてDMAの機能を実現するために、エアロゾル供給部の導入口よりもシースガス流の下流側において対向電極の他方の電極又はその電極の近傍に取込み口をもち、分級された帯電エアロゾル中の荷電微粒子の特定の粒径部分をシースガスの一部とともに取り出す分級荷電微粒子取出し部が設けられている。
 積分モードとしてB-DMAの機能を実現するために、エアロゾル供給部よりもシースガス流の下流側においてエアロゾル供給部設置側電極又はその電極の近傍に排出口をもち、分級された帯電エアロゾル中の荷電微粒子の所定粒径以上の部分をシースガスの一部とともに排出する大粒径側排出部と、分級領域の他端側に配置され、分級領域を透過した荷電微粒子をシースガスとともに取り出す帯域荷電微粒子取出し部が設けられている。
 検出器として、分級荷電微粒子取出し部及び帯域荷電微粒子取出し部の下流に配置されてシースガスとともに送られてきた荷電微粒子の粒子数を検出する共通の荷電子検出器が設けられている。
 微分モードと積分モードを切り替えて実現するために、流路切替え機構と制御装置が設けられている。流路切替え機構は分級荷電微粒子取出し部及び帯域荷電微粒子取出し部のうちの一方の取出し部を荷電子検出器に接続し、他方の取出し部を閉鎖するとともに、両取出し部の荷電子検出器への接続と閉鎖を切り替える構成をもつ。制御装置は、流路切替え機構が分級荷電微粒子取出し部を荷電子検出器に接続し、分級荷電微粒子取出し部用の取込み口に入る荷電微粒子の粒径が走査されるように対向電極間の電圧及び/又はシースガス流流速を変化させる微分モードと、流路切替え機構が帯域荷電微粒子取出し部を荷電子検出器に接続し、対向電極間の電圧を一定に保つ積分モードとの間で動作モードを切り替えるように流路切替え機構と電源装置及び/又は前記シースガス供給部を制御するものである。
 さらに、多価帯電に基づく計数誤差を除くために、荷電微粒子の粒径に対する多価帯電に基づく計数誤差データを保持し、微分モードでの動作時に測定された試料の粒径分布と計数誤差データとから積分モードで測定される粒径帯域における計数値に対する平均誤差を算出し、積分モードでの動作時の計数値を補正するデータ処理装置が設けられている。
 上述の「その電極の近傍」とはその電極と同じ側で電極に近い位置を意味している。すなわち、導入口の設置位置に関しては分級領域に帯電エアロゾルを供給する作用を果たすことのできる位置であることを意味し、大粒径側排出部の排出口の設置位置に関しては分級された帯電エアロゾル中の所定粒径以上の部分をシースガスの一部とともに排出する作用を果たすことのできる位置であることを意味している。
 上述の「帯電エアロゾル」とは帯電器を経てこの分級装置に供給されるエアロゾル中で帯電微粒子となったものである。帯電器を経る前のエアロゾル微粒子のうち各電荷の荷電微粒子となったものの割合が帯電率である。
 「帯電率」は、帯電前の全エアロゾル微粒子数と、帯電後の各電荷に帯電した荷電微粒子数との比率から求めることができる。
 本発明の微粒子測定装置で最終的に求メータい物理量は、帯電される前のエアロゾル中の所定粒径範囲の微粒子数であり、検出器で得られる出力は帯電後の荷電微粒子数に各粒子の持つ電荷数を乗じた値に対応した電気量である。そのため、検出器による出力を帯電前のエアロゾル中の微粒子数に変換する処理が必要になる。この計算は測定対象となるエアロゾルについて、この測定装置の帯電器で帯電させたときの帯電率を予め求めておくことにより行なうことができる。その計算を自動的に行なわせるために、データ処理装置は、さらに測定対象となるエアロゾルについて予め求められた帯電率を保持し、積分モードでの動作時の補正された計数値に基づいて測定エアロゾルの微粒子数濃度を算出するものであることが好ましい。
 データ処理装置が、帯電率を保持し、検出器で測定された電気量に基づいて測定されたエアロゾルの粒子数濃度を算出する機能を備えている場合には、エアロゾルの粒子数濃度を自動的にオンラインで求めることができるようになる。
 シースガス供給部としては、新たな外部ガスのみを供給するようにすることもできる。他の方法として分級領域から排出されたガスの少なくとも一部から粒子部分を除去してシースガスの一部として再利用する方法もある。そのために、大粒径側排出部又は帯域荷電微粒子取出し部から排出されるガスから粒子を取り除いたガスを外部ガスとともにシースガスとして供給するシースガス供給流路と、積分モードでの動作時に大粒径側排出部をシースガス供給流路に接続し、微分モードでの動作時に大粒径側排出部を閉鎖し、帯域荷電微粒子取出し部をシースガス供給流路に接続する第2の流路切替え機構とを備えていることが好ましい。
 積分モードでの動作時に帯域荷電微粒子取出し部から取り出される荷電微粒子の粒子分布幅を調整する粒子径選択手段を備えているのが好ましい。粒子径選択手段は大粒径側だけでなく、小粒径側も除去した所定の粒径範囲における微粒子を求められるものが好ましい。
 そのような粒子径選択手段として、特許文献2に記載されているものを使用することができる。粒子径選択手段では、所定粒径範囲よりも大粒径側の微粒子は大粒径側排出部より除去され、小粒径側の微粒子は分級領域で分級され対向電極の他方の電極に吸引されて吸着されることにより除去される。大粒径側排出部から除去される大粒径側の粒径及び対向電極の他方の電極により除去される小粒径側の粒径は、分級領域に供給されるシースガス流量、エアロゾル供給部から導入口を経て分級領域に供給される帯電エアロゾルガス流量、大粒径側排出部から排出する流量及び対向電極に印加する電圧を調整することにより設定することができる。
 粒子径選択手段の第1の例は、大粒径側排出部の下流に接続されたポンプの流量を制御して荷電微粒子の所定粒径以上の部分をシースガスの一部とともに排出するものである。この場合、ポンプの流量を大きくすると排出される粒径の範囲は粒径の大きい側で広くなり、帯域荷電子取出し部からは粒径の大きい側の荷電粒子が広い範囲で除去された状態で取り出される。また、ポンプの流量を小さくすると排出される粒径の範囲は大きい側で広くならず、帯域荷電子取出し部からは粒径の大きい側の荷電粒子が狭い範囲で除去された状態で取り出される。
 粒子径選択手段の第2の例は、対向電極に接続された電源装置を制御して荷電微粒子の所定粒径以下の部分を電極に吸着させるものである。この場合、印加電圧を大きくすると電極に吸着される粒径の範囲が粒径の小さい側で広くなり、帯域荷電子取出し部からは粒径の小さい側の荷電微粒子が広い範囲で除去された状態で取り出される。また、印加電圧を小さくすると電極に吸着される粒径の範囲が小さい側で広くならないので、帯域荷電子取出し部からは粒径の小さい側の荷電微粒子が狭い範囲で除去された状態で取り出される。
第3の例は、第1の例と第2の例を組み合わせるものである。
 検出器の好ましい一例として、荷電微粒子数を電気量として測定するファラデーカップエレクトロメータを挙げることができる。
 本発明の微粒子測定装置は、一対の対向電極間に分級電界を発生させて分級領域を形成し、その分級領域にシースガスを供給しつつ分級領域に帯電エアロゾルを供給して分級するものであるが、1台のDMAで微分型DMAの機能を果たす微分モードとB-DMAの機能を果たす積分モードを切り替えて実現するために、流路切替え機構を設け、制御装置によりその流路切替え機構と電源装置を制御するようにし、さらにデータ処理装置において積分モードでの動作時の計数値を補正するようにしたので、1台のDMAでありながら、所望の粒径範囲の荷電微粒子を一括で測定しつつ、多価帯電に基づく計数誤差を除くことができる。
図1は一実施例をブロック図として表す概略図である。 図2Aは同実施例における分級装置本体を示す垂直断面図である。 図2Bは図2AのX-X’線位置での水平断面図である。 図3は分級装置本体におけるガスの流れを示す一部概略断面図である。 図4は積分モードで測定するときの荷電子の帯域を10nmから140nmとしたときの多価帯電に起因する理論誤差を示すグラフである。
符号の説明
   1   分級装置本体の筐体
   3   中心電極
   4   外側電極
   5   分級領域
   7   シースガス供給部
  11   エアロゾル供給部
  11a   導入口
  12   分級荷電微粒子取出し部
  12a   取込み口←(図中に記載がありません)
  13   大粒径側排出部
  13a   排出口
  31   電源装置
  33   制御部
  35   帯域荷電子取出し部
  40   荷電子検出器
  41   データ処理装置
  42,44   第1の流路切替え機構の三方弁
  46   第2の流路切替え機構の三方弁
  50   シースガス供給流路
  60   シースガス供給流路
 以下に本発明を実施例に基づいて詳細に説明する。
 図1は一実施例をブロック図として表す概略図である。図2A,2Bは同実施例における分級装置本体を示しており、図2Aは垂直断面図、図2Bは図2AのX-X’線位置での水平断面図である。図3は分級装置本体におけるガスの流れを示す一部概略断面図である。
 分級装置本体の円筒状の筐体1の内部には、円柱状の中心電極3が筐体1の中心軸と一致するように設けられている。筐体1の内面は外側電極4となっており、中心電極3と外側電極4により対向電極を構成している。中心電極3と外側電極4は荷電微粒子を電気移動度により分級する電界を発生しており、両電極3,4間に形成される回転体状の空間が分級領域5となっている。両電極3,4は電源装置31に接続され、電源装置31は制御部33に接続されている。両電極3,4間に電圧を印加する電源装置31は制御部33により制御される。
 筐体1の一端側である上部には非荷電ガスをシースガスとして一定流量で導入するためのシースガス供給部7が設けられている。また、分級領域5の上端にはシースガスを層流化するための整流子9が設けられており、整流子9を経たシースガスが分級領域5に供給される。
 分級領域5で外側電極4側にはエアロゾル供給部11の導入口11aが設けられ、その導入口11aからはシースガス流を横切る方向に帯電エアロゾルが一定流量で供給される。エアロゾル供給部11には、供給されたエアロゾルを荷電して帯電エアロゾルとする帯電器12と、エアロゾルを一定流量で供給するフローメータ10とからなるエアロゾル供給部に接続されている。
 微分モードとして微分型DMAの機能を実現するために、エアロゾル供給部の導入口11aよりもシースガス流の下流側には中心電極3に取込み口12aをもち、分級された帯電エアロゾル中の荷電微粒子の特定の粒径部分をシースガスの一部とともに取り出す分級荷電子取出し部12が設けられている。
 積分モードとしてB-DMAの機能を実現するために、エアロゾル供給部よりもシースガス流の下流側に大粒径側排出部13と帯域荷電子取出し部35が設けられている。大粒径側排出部13は分級領域5の外側電極4側に排出口13aをもち、分級された帯電エアロゾル中の荷電微粒子の所定粒径以上の部分をシースガスの一部とともに排出する。大粒径側排出部13はフローメータ15と、フローメータ15による検出流量が所定の流量になるように排出流量を調整するソレノイドバルブ17とを備えている。帯域荷電子取出し部35は分級領域5の他端側である筐体1の下端に配置され、分級領域5を透過した荷電微粒子をシースガスとともに取り出す。
 中心電極3の上端は絶縁部材10と絶縁体製の整流子9により筐体1に支持され、中心電極3の下端はシースガスの流れを層流化する整流子を兼ねる支持部材15により筐体1に支持されていることによって、中心電極3と外部電極4となる筐体1との間が電気的に絶縁されている。
 中心電極3の直径は25mm、外側電極4の内側の直径は33mmであり、分級領域5の円柱状部分では中心電極3と外側電極4の間隔は約4mm程度で一定になっている。両電極3,4間には、制御装置33により制御された電源装置31から、微分モード時には1000~1500V間で変化する分級電圧が印加され、積分モード時には1000~1500Vの間の一定電圧の分級電圧が印加される。
 導入口11aと排出口13aは幅が0.5mmで、外側電極4の内周面に沿って中心電極1を取り巻くリング状に形成されている。両口11a,13a間の距離は100mm程度である。また、導入口11a及び排出口13aはスリット状であってもよい。
 分級荷電子取出し部12の取込み口12aは幅が0.5mmで、中心電極3の外周面に沿ってリング状に形成されている。取込み口12aは導入口11aと排出口13aの間の高さに配置されている。
 分級荷電子取出し部12及び帯域荷電子取出し部35の下流には、共通の検出器として、シースガスとともに送られてきた荷電微粒子の粒子数を検出するためにファラデーカップエレクトロメータからなる荷電子検出器40が配置されている。荷電微粒子を含むシースガスを所定流量で検出器40に導くために、検出器40の下流にはフローメータ48とソレノイドバルブ49が接続されている。フローメータ48の検出流量が所定流量になるようにソレノイドバルブ49が調整される。検出器40を経たシースガスは後述のシースガス供給流路50に送られてシースガスとして再利用される。
 検出器40の検出電気信号はデータ処理装置41に導かれて荷電子数が計数される。データ処理装置41は、多価帯電に基づく計数誤差を除くために、荷電子の粒径に対する多価帯電に基づく計数誤差データを保持しており、微分モードでの動作時に測定された試料の粒径分布と計数誤差データとから積分モードで測定される粒径帯域における計数値に対する平均誤差を算出し、積分モードでの動作時の計数値を補正するプログラムを備えている。
 微分モードと積分モードを切り替えて実現するために、分級荷電子取出し部12及び帯域荷電子取出し部35の下流には流路切替え機構が設けられている。その流路切替え機構は三方弁42及び44からなる第1の流路切替え機構と、三方弁46からなる第2の流路切替え機構とからなる。
 三方弁42は分級荷電子取出し部12と検出器40の間に接続され、三方弁44は帯域荷電子取出し部35の下流に接続され、三方弁42の1つのポートと三方弁44の1つのポートの間が接続されている。
 三方弁46の1つのポートは大粒径側排出部13に接続され、他のポートが三方弁44の残りの1つのポートに接続され、三方弁46の残りの1つのポートがシースガス供給流路50を構成するポンプ52とエアロゾル流量調整流路60を構成する三方弁62の1つのポートに接続されている。
 三方弁42,44は、分級荷電子取出し部12及び帯域荷電子取出し部35のうちの一方の取出し部を検出器40に接続し、他方の取出し部を閉鎖するとともに、両取出し部12,35の検出器40への接続と閉鎖を切り替えるように制御部33により制御されて切り替えられるものである。
 シースガス供給部につながるシースガス供給流路50は、帯域荷電子取出し部35又は大粒径側排出部13から三方弁46を経て供給される荷電微粒子を含むシースガスと、検出器40を経て供給されるシースガスと、外部から補充される空気を吸引するためにポンプ52を備えている。ポンプ52の下流にはポンプ52により加熱されたシースガスを冷却する冷却器54、供給するシースガス流量を検出するフローメータ56及び粒子成分を除去するフィルタ58を備えている。フローメータ56の検出流量が所定の流量になるようにポンプ52の駆動が制御される。
 シースガス供給流路50に外部から空気を補充したり、過剰になったシースガスを外部に排出したりするために、シースガス供給流路50には三方弁62を介してエアロゾル流量調整流路60が接続されている。この測定装置は半閉鎖系になっており、エアロゾル供給部11から供給されるエアロゾル流量と、ポンプ52及び他の配管部位からのリーク流量の大小によって装置外部から空気を取り込む場合と、空気を装置外に排出しなければならない場合がある。エアロゾル流量調整流路60は外部から空気を吸引、又は排出するためのポンプ66を備えている。ポンプ66の上流には、取入れ口としての三方弁68とポンプ保護のために粒子を除去するフィルタ70が設置され、ポンプ66の下流には粒子成分を除去するフィルタ73及び三方弁74が接続されている。三方弁74はエアロゾル流量調整流路60を三方弁62又は外部に切り替えて接続するためのものである。
 装置外へ空気を排出する場合、つまり所望するエアロゾル流量がリーク流量より大きい場合は、エアロゾル流量調整流路60では三方弁62,68からポンプ66から三方弁74を経て外部に空気を排出する流路が形成される。ポンプ66はエアロゾル供給部のフローメータ10に応じて排出する空気流量が制御される。
 装置外部から空気を吸引する場合、つまり所望するエアロゾル流量がリーク流量より小さい場合は、三方弁68が空気が吸引され、ポンプ66から三方弁74,62を経てシースガス供給流路50に空気を供給する流路が形成される。ポンプ66はエアロゾル供給部のフローメータ10に応じて吸引する空気流量が制御される。
 ポンプ52,66としては、ダイヤフラムポンプ、ロータリーポンプ、ピストンポンプ、リングブロア、シロッコファン、ラインフォローファン、ターボファンなど一般的送風機構を使用することができる。
 流路切替え機構は三方弁のみならず、四方弁や二方弁も組み合わせて構成することができる。それらの弁は手動、電動又は圧空により駆動できるものを使用する。
 制御装置33は微分モード時と積分モード時で三方弁42,44,46を切り替えるとともに、電源装置31から対向電極3,4間に印加される電圧を制御する。
 次に同実施例の動作を説明する。
(微分モード)
 微分モード時には、分級荷電微粒子取出し部12が検出器40に接続され、大粒径側排出部13が閉鎖され、帯域荷電子取出し部35がシースガス供給流路50に接続され、対向電極3,4間の電圧は分級荷電微粒子取出し部用の取込み口12aに入る荷電子の粒径が走査されるように変化させられる。
 分級部に導入された試料ガスに含まれる帯電粒子は分級部5に印加された電場によって静電気力を受け、中心電極3に吸引される。同時に分級部5に流れるシースガス流流速により静電気力と直交する方向に力を受ける。電場の強度とシースガス流流速により決まるある値より大きな電気移動度をもつ粒子は中心電極3の分級荷電子取出し部12の取込み口12aより上部に吸着される。また、ある値より小さな電気移動度をもつ粒子は取込み口12aより下部に吸着されるか、又は帯域荷電子取出し部35から排出される。その結果、ある時点ではその時の電場の強度とシースガス流流速で決まるある特定範囲の電気移動度を持つ粒子のみが検出器によって計数される。
 分級部5に印加される電場を時間的に変化させることにより試料ガスに含まれる帯電粒子の粒径分布を得ることができる。
 粒径分布を得るためには、分級部5に印加される電場を時間的に変化させるのに替えてシースガス流流速を時間的に変化させてもよい。又は分級部5に印加される電場とシースガス流流速の両方を時間的に変化させてもよい。
 電気移動度と、試料導入口と分級荷電微粒子取り出し口間距離、シースガス流量、試料ガス流量及び電極間距離の間の一般に良く知られている以下の関係式(1)(非特許文献1参照。)から電圧、シースガス流量を変えることで取り出される粒子の電気移動度を変化させられることは明らかである。
Figure JPOXMLDOC01-appb-I000001
Zp:電気移動度、R2:外側電極径、R1:内側電極径、E:分級電圧、Qa:試料ガス流量、Qt:試料ガス流量+シースガス流量、L:試料導入口と分級荷電微粒子取り出し口間距離
(積分モード)
 積分モード時には、帯域荷電子取出し部35が検出器40に接続され、分級荷電子取出し部12が閉鎖され、大粒径側排出部13がシースガス供給流路50に接続され、対向電極3,4間の電圧は帯域荷電子取出し部35に所定の粒径範囲の荷電子が取り出されるように一定に保たれる。
 積分モード時でも分級部5に導入された試料ガスに含まれる帯電粒子は分級部に印加された電場によって静電気力を受け、中心電極3に吸引される。同時に分級部5に流れるシースガス流により静電気力と直交する方向に力を受ける。電場の強度及びシースガス流流速を調整することにより、ある値より大きな電気移動度をもつ粒子は対向電極に吸着される。また、その値より小さなある値より小さな電気移動度をもつ粒子は大粒径側排出部13より排出される。その結果、ある特定範囲の電気移動度をもつ粒子のみが帯域荷電子取出し部35を経て検出器40によって計数される。
 検出器40に導入される粒子の電気移動度範囲は、先に粒子径選択手段として説明したように、分級領域に供給されるシースガス流量、エアロゾル供給部11から分級領域5に供給される帯電エアロゾルガス流量、大粒径側排出部13から排出する流量及び対向電極に印加する電圧を調整することにより設定することができる。
 積分モードでは広い電気移動度帯域の粒子数を一括で、リアルタイムに計測することが可能であるが、多価帯電の影響により粒子数換算時に誤差を生じる。そこで、予め微分モードにて粒径分布を計測することにより積分モードで測定する電気移動度帯域での平均の帯電率を算出し、この誤差を回避する。帯電率の計算には例えば下記の奥山らの式(2)を用いることができる(非特許文献2参照。)。
Figure JPOXMLDOC01-appb-I000002
ここで、Dp'(単位はm)は、次のように定義される。
   Dp'=exp(0.165+0.982lnDp-0.0132ln2Dp-0.0082ln3Dp)…(2)
Dpは粒径(単位はμm)である。また、pは帯電価数、eは電気素量、εoは真空の誘電率、kはボルツマン定数、Tは絶対温度、nTは粒径Dpの粒子数、npは粒径Dpの粒子中でP個帯電した粒子数である。
 図4は積分モードで測定するときの荷電子の帯域を10nmから140nmとしたときの多価帯電に起因する理論誤差を示すグラフである。本図は上記分級帯域の1価粒子を選択するよう分級条件を設定した時、そこに入ってくる140nm以上の2価以上の粒割合、及びそこから流出してしまう10nm以上の2価以上の粒子割合を(1)式を用いて算出したものである。

Claims (7)

  1.  荷電微粒子を電気移動度により分級する電界を発生して分級領域を形成するために互いに対向して配置された一対の対向電極と、
     前記一対の対向電極に分級電界発生用電圧を印加するために前記一対の対向電極に接続された電源装置と、
     前記分級領域の一端側から分級領域に非荷電ガスをシースガスとして供給するシースガス供給部と、
     前記対向電極の一方の電極又はその電極の近傍に導入口をもち、その導入口から帯電エアロゾルを供給するエアロゾル供給部と、
     前記エアロゾル供給部の導入口よりもシースガス流の下流側において前記対向電極の他方の電極又はその電極の近傍に取込み口をもち、分級された前記帯電エアロゾル中の荷電微粒子の特定の粒径部分をシースガスの一部とともに取り出す分級荷電子取出し部と、
     前記エアロゾル供給部よりもシースガス流の下流側において前記一方の電極又はその電極の近傍に排出口をもち、分級された前記帯電エアロゾル中の荷電微粒子の所定粒径以上の部分をシースガスの一部とともに排出する大粒径側排出部と、
     前記分級領域の他端側に配置され、分級領域を透過した荷電微粒子をシースガスとともに取り出す帯域荷電子取出し部と、
     前記分級荷電子取出し部及び帯域荷電子取出し部の下流に配置され、シースガスとともに送られてきた荷電微粒子の粒子数を検出する荷電子検出器と、
     前記分級荷電子取出し部及び帯域荷電子取出し部のうちの一方の取出し部を前記荷電子検出器に接続し、他方の取出し部を閉鎖するとともに、両取出し部の荷電子検出器への接続と閉鎖を切り替える流路切替え機構と、
     前記流路切替え機構が分級荷電子取出し部を前記荷電子検出器に接続し前記分級荷電子取出し部用の取込み口に入る荷電子の粒径が走査されるように前記対向電極間の電圧及び/又はシースガス流流速を変化させる微分モードと、前記流路切替え機構が帯域荷電子取出し部を前記荷電子検出器に接続し前記対向電極間の電圧を一定に保つ積分モードとの間で動作モードを切り替えるように前記流路切替え機構と前記電源装置及び/又は前記シースガス供給部を制御する制御装置と、
     荷電子の粒径に対する多価帯電に基づく計数誤差データを保持し、前記微分モードでの動作時に測定された試料の粒径分布と前記計数誤差データとから前記積分モードで測定される粒径帯域における計数値に対する平均誤差を算出し、前記積分モードでの動作時の計数値を補正するデータ処理装置と、
    を備えた微粒子測定装置。
  2.  前記データ処理装置は、さらに測定対象となるエアロゾルについて予め求められた帯電率を保持し、前記積分モードでの動作時の補正された計数値に基づいて測定エアロゾルの微粒子数濃度を算出するものである請求項1に記載の微粒子測定装置。
  3.  シースガス供給部は、前記大粒径側排出部又は帯域荷電子取出し部から排出されるガスから粒子を取り除いたガスと外部から補充したガスをシースガスとして供給するシースガス供給流路と、
     前記積分モードでの動作時に前記大粒径側排出部を前記シースガス供給流路に接続し、前記微分モードでの動作時に前記大粒径側排出部を閉鎖し、前記帯域荷電子取出し部を前記シースガス供給流路に接続する第2の流路切替え機構と、を備えている請求項1又は2に記載の微粒子測定装置。
  4.  前記積分モードでの動作時に前記帯域荷電子取出し部から取り出される荷電微粒子の粒子分布幅を調整する粒子径選択手段を備えた請求項1から3のいずれか一項に記載の微粒子測定装置。
  5.  前記粒子径選択手段は前記大粒径側排出部から排出されるガス流量及び/又は前記対向電極に印加される電圧により粒子分布幅を調整するものである請求項4に記載の微粒子測定装置。
  6.  前記粒子径選択手段は前記大粒径側排出部の下流に接続されたポンプの流量を制御して荷電微粒子の所定粒径以上の部分をシースガスの一部とともに排出するものである請求項4に記載の微粒子測定装置。
  7.  前記粒子径選択手段は前記対向電極に接続された電源装置を制御して荷電微粒子の所定粒径以下の部分を電極に吸着させるものである請求項4に記載の微粒子測定装置。
PCT/JP2008/055516 2008-03-25 2008-03-25 微粒子測定装置 WO2009118821A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010505062A JP4888597B2 (ja) 2008-03-25 2008-03-25 微粒子測定装置
PCT/JP2008/055516 WO2009118821A1 (ja) 2008-03-25 2008-03-25 微粒子測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055516 WO2009118821A1 (ja) 2008-03-25 2008-03-25 微粒子測定装置

Publications (1)

Publication Number Publication Date
WO2009118821A1 true WO2009118821A1 (ja) 2009-10-01

Family

ID=41113062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055516 WO2009118821A1 (ja) 2008-03-25 2008-03-25 微粒子測定装置

Country Status (2)

Country Link
JP (1) JP4888597B2 (ja)
WO (1) WO2009118821A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117520A (ja) * 2010-11-10 2012-06-21 Ngk Insulators Ltd フィルタ評価システム及びフィルタの評価方法
JP2016075674A (ja) * 2014-10-07 2016-05-12 日本特殊陶業株式会社 微粒子測定システム
CN106644856A (zh) * 2016-12-18 2017-05-10 中国科学院合肥物质科学研究院 小型化快速测量细粒子粒径分布的平板装置及其测量方法
CN110118709A (zh) * 2019-04-17 2019-08-13 华电电力科学研究院有限公司 一种可捕集颗粒物在线分级采样测量系统及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072942A1 (ja) * 2005-12-22 2007-06-28 Shimadzu Corporation 分級装置及び微粒子測定装置
JP2008096169A (ja) * 2006-10-06 2008-04-24 Shimadzu Corp 粒子分級装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072942A1 (ja) * 2005-12-22 2007-06-28 Shimadzu Corporation 分級装置及び微粒子測定装置
JP2008096169A (ja) * 2006-10-06 2008-04-24 Shimadzu Corp 粒子分級装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI OKUDA: "Fukyugata Hiteijo Biryushisu Nodo Keisokuki no Kaihatsu (The 1st Report)", PREPRINTS OF MEETING ON AUTOMOTIVE ENGINEERS, no. 25, 23 May 2007 (2007-05-23), pages 15 - 18 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117520A (ja) * 2010-11-10 2012-06-21 Ngk Insulators Ltd フィルタ評価システム及びフィルタの評価方法
JP2016075674A (ja) * 2014-10-07 2016-05-12 日本特殊陶業株式会社 微粒子測定システム
CN106644856A (zh) * 2016-12-18 2017-05-10 中国科学院合肥物质科学研究院 小型化快速测量细粒子粒径分布的平板装置及其测量方法
CN106644856B (zh) * 2016-12-18 2023-03-21 中国科学院合肥物质科学研究院 小型化快速测量细粒子粒径分布的平板装置及其测量方法
CN110118709A (zh) * 2019-04-17 2019-08-13 华电电力科学研究院有限公司 一种可捕集颗粒物在线分级采样测量系统及其方法
CN110118709B (zh) * 2019-04-17 2024-04-12 华电电力科学研究院有限公司 一种可捕集颗粒物在线分级采样测量系统及其方法

Also Published As

Publication number Publication date
JP4888597B2 (ja) 2012-02-29
JPWO2009118821A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP4561835B2 (ja) 分級装置及び微粒子測定装置
JP6797846B2 (ja) 粒子センサ及び粒子感知方法
EP2815226B1 (en) Apparatus and process for producing air flow and the use of such apparatus in measuring particle concentration in air flow
Yli-Ojanperä et al. Towards traceable particle number concentration standard: Single charged aerosol reference (SCAR)
JP4888597B2 (ja) 微粒子測定装置
JP2012510051A (ja) 浮遊粒子を感知するセンサ
CN104170190A (zh) 产生已知气流的装置和过程及使用该装置在已知气流中测量颗粒浓度
WO2013132154A1 (en) Apparatus and process for particle mass concentration measurement and use of an apparatus for particle mass concentration measurement
CN102590447A (zh) 一种测尘仪的标定方法及设备
JP4710787B2 (ja) 粒子分級装置
JP2018528400A5 (ja)
KR101559765B1 (ko) 양극 하전을 이용한 집진효율 상승 입자포집장치 및 이를 포함하는 입자포집 시스템
JP4905040B2 (ja) 粒子分級装置
JP2008096170A (ja) 荷電装置及び粒子分級装置
JP5094520B2 (ja) イオンフィルタ、質量分析システムおよびイオン移動度分光計
JP2023513160A (ja) エアロゾル粒子をモニタリングするための方法及び装置
KR20180117907A (ko) 먼지 측정 장치 및 방법
Intra et al. Performance evaluation of an electrometer system for ion and aerosol charge measurements
Tan et al. Submicron particle sizing by aerodynamic dynamic focusing and electrical charge measurement
KR20090090672A (ko) Dma를 이용한 입자측정기 및 dma의 내부 압력을측정하기 위한 프로그램이 내장된 기록매체
EP4007904A1 (en) Particle sensor and sensing method
SU840706A1 (ru) Способ измерени концентрации аэро-зОл
JP2011232090A (ja) 微分型電気移動度測定装置、並びに微分型電気移動度測定装置を用いた測定方法、微分型電気移動度測定装置に用いるプログラム及びそのプログラムを記録したコンピュータ読取り可能な記録媒体
He et al. Aerosol Analysis via Electrostatic Precipitation-Electrospray Ionization Mass Spectrometry (EP-ESI-MS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08738811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505062

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08738811

Country of ref document: EP

Kind code of ref document: A1