WO2009116839A2 - 수지몰탈 조성물 및 이를 이용하는 도로포장 구조물 - Google Patents

수지몰탈 조성물 및 이를 이용하는 도로포장 구조물 Download PDF

Info

Publication number
WO2009116839A2
WO2009116839A2 PCT/KR2009/001442 KR2009001442W WO2009116839A2 WO 2009116839 A2 WO2009116839 A2 WO 2009116839A2 KR 2009001442 W KR2009001442 W KR 2009001442W WO 2009116839 A2 WO2009116839 A2 WO 2009116839A2
Authority
WO
WIPO (PCT)
Prior art keywords
mortar composition
resin
resin mortar
sand
composition according
Prior art date
Application number
PCT/KR2009/001442
Other languages
English (en)
French (fr)
Other versions
WO2009116839A3 (ko
WO2009116839A9 (ko
Inventor
이영회
Original Assignee
이희자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이희자 filed Critical 이희자
Publication of WO2009116839A2 publication Critical patent/WO2009116839A2/ko
Publication of WO2009116839A3 publication Critical patent/WO2009116839A3/ko
Publication of WO2009116839A9 publication Critical patent/WO2009116839A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/16Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/042Magnesium silicates, e.g. talc, sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/124Amides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/30Coherent pavings made in situ made of road-metal and binders of road-metal and other binders, e.g. synthetic material, i.e. resin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/50Flexible or elastic materials

Definitions

  • the present invention relates to a resin mortar composition used to pave the surface of a road or bridge and a road paving structure using the same.
  • pavement layers are formed on the surface of roads / bridges by paving for smooth passage of vehicles.
  • the pavement layer must be a part that directly transmits the traffic load and has a suitable strength and crack resistance.
  • it since it is exposed to moisture such as rainwater, it should have waterproof performance.
  • Pavements of these roads / bridges include concrete pavements as rigid pavements and asphalt pavements as flexible pavements.
  • the concrete pavement using cement has the advantage of low construction cost and excellent construction because it can be placed with the bottom plate such as a bridge, while the crack of the concrete is likely to occur due to the vibration caused by repeated vehicle traffic.
  • the shrinkage or expansion according to the temperature change the stress is generated by this shrinkage / expansion, which may cause cracks.
  • the eyes are installed at regular intervals. Due to the presence of these joints, vibrations are generated, which causes fatigue to the driver of the vehicle and reduces the riding comfort. It is becoming.
  • the inventors of the present invention when the urethane acrylate resin as a binder resin, the sand particles are bonded to each other by the urethane acrylate resin, the plastic deformation and temperature due to the repeated load It was found that the occurrence of cracks according to the change can be suppressed.
  • the present invention is based on this.
  • the present invention is a urethane acrylate resin as the first binder resin; Curing agent; sand; And it provides a resin mortar composition comprising a filler.
  • the present invention provides a road paving structure, characterized in that in the coating paving structure comprising a hearth, base layer, intermediate layer and surface layer, at least one layer of the base layer, intermediate layer and surface layer is formed of the above-described resin mortar composition.
  • Figure 1 schematically shows the mechanism for the load of the packaging using the resin mortar composition of the present invention.
  • Figure 2 is a photograph showing the appearance of the specimen after performing the bending strength for the specimen prepared using the resin mortar composition prepared in Example 1.
  • 3 is a graph analyzing the composition of domestic soil.
  • 5 is a graph analyzing the composition of silica sand.
  • the resin mortar composition according to the present invention is characterized by including a urethane acrylate resin as the first binder resin.
  • a pavement layer (hereinafter, referred to as a "concrete pavement layer") formed of a concrete mortar composition including cement, water, aggregate, etc.
  • a concrete pavement layer since the coefficient of thermal expansion of concrete is 10 ⁇ 10 ⁇ 6 / ° C., the pavement layer exposed to the outside repeats contraction or expansion according to the change of the ambient air temperature. Shrinkage / expansion of the concrete causes stresses, resulting in cracks.
  • Joule eyes are installed to wrap the concrete mortar composition to relieve stress.
  • cracks may occur as a result of repeated loading on these eyelids.
  • the concrete pavement layer is eroded due to the chemical reaction of the chloride, which may lead to corrosion of the reinforcing bars and aging of the bridge deck.
  • the urethane acrylate resin when used instead of cement as the binder resin in the resin mortar composition, even if the temperature of the packaging layer formed of the resin mortar composition changes or a load is repeatedly applied to the packaging layer, the sand particles are urethane acrylic. It was found that it could be tightly bound by the rate resin.
  • the urethane acrylate resin absorbs the chloride in the sand, the packaging layer does not age due to the chemical reaction of the chloride. Do not.
  • the sand particles and sand particles are bonded by a urethane acrylate resin which is the first binder resin.
  • the urethane acrylate resin as the first binder resin has a three-dimensional network structure and can behave like an elastic material. Therefore, even if a repetitive vehicle load is applied to the pavement to generate tensile stress that pulls the sand particles on both sides, the sand particles are returned to their original position due to the elasticity or flexibility of the urethane acrylate resin present between the sand particles. The restoring force to be generated is generated, whereby cracking between the sand particles can be suppressed.
  • the urethane acrylate resin is excellent in thermal stability, the urethane acrylate resin present between the sand particles is not deformed by heat even at a high temperature.
  • the urethane acrylate resin has a property of absorbing salts, the strength of the packaging layer is not lowered by the salts. As a result, the voids between the sand particles do not increase, so that the area in which the surface of the package contacts with moisture, air, or the like does not increase, and aging of the package layer can be suppressed. In addition, since the voids between the sand particles are not increased, no decrease in strength of the packaging layer is caused.
  • the resin mortar composition of this invention contains urethane acrylate resin, a hardening
  • the urethane acrylate resin which is the first binder resin, may impart durability to the packaging layer formed of the resin mortar composition of the present invention and simultaneously attach the packaging layer to the surface on which the packaging layer is formed, and also firmly bonds the sand particles to each other. You can also In particular, when using the sand containing the salt may cause a decrease in strength due to the chemical reaction of the salt, in the case of the present invention the urethane acrylate resin absorbs the salt in the sand so that the chemical reaction of the salt does not occur packaging Deterioration of the strength of the layer is not caused.
  • the urethane acrylate resin is a hybrid resin having both urethane and acrylate properties.
  • Such urethane acrylate resins are generally prepared by polymerization of urethane prepolymers with hydroxy alkyl acrylates.
  • the urethane prepolymer is formed by a polymerization reaction of a polyol and an isocyanate, and the types thereof are various.
  • examples of the hydroxy alkyl acrylates include methyl methacrylate, 2-hydroxy ethylmethacrylate, n-butyl acrylate, and the like.
  • the content of such urethane acrylate resin is suitably in the range of about 20 to 60 parts by weight based on 100 parts by weight of sand. If the content of the urethane acrylate is less than 20 parts by weight, the sand particles may not be properly mixed with the sand particles, and if the content of the urethane acrylate is more than 60 parts by weight, bleeding may occur after curing.
  • a mixed resin of a urethane acrylate resin and a polymethyl methacrylate as the second binder resin (or a mixed resin of a urethane acrylate resin, a polymethyl methacrylate resin and a hydroxyethyl methacrylate resin) ),
  • the content thereof is suitably about 20 to 60 parts by weight based on 100 parts by weight of sand.
  • the resin mortar composition of the present invention may further include a polymethyl methacrylate resin as the second binder resin in addition to the urethane acrylate resin which is the first binder resin.
  • the mixing ratio of the urethane acrylate resin as the first binder resin and the polymethyl methacrylate resin as the second binder resin is preferably used in a weight ratio of about 10 to 60:90 to 40, but is not limited thereto.
  • the polymethyl methacrylate mixed with the urethane acrylate it is possible to reduce the packaging cost while increasing the strength of the packaging layer of the resin mortar composition.
  • a hydroxy ethyl methacrylate (HEMA) resin or the like is used as the third binder resin for strengthening the strength of the packaging layer. It can be used additionally.
  • the mixing ratio of the urethane acrylate resin, polymethyl methacrylate resin and hydroxy ethyl methacrylate may be used in a weight ratio of about 10 to 60:40 to 90:10 to 40.
  • a urethane acrylate resin contains a curing agent in order to have a three-dimensional network structure.
  • the curing agent may control the curing time of the urethane acrylate resin.
  • curing agent examples include organic peroxides such as benzoyl peroxide (BPO), but are not limited thereto.
  • the benzoyl peroxide not only causes curing of the urethane acrylate resin well, but also thermally decomposes in a solvent to generate phenyl radicals and benzoate radicals to initiate polymerization of the urethane acrylate resin.
  • the curing agent is used according to the atmospheric temperature and the surface temperature to adjust the content, for example, it is preferable to mix a large amount in the winter, and a small amount in the summer.
  • the content of the curing agent is suitably about 2 to 30 parts by weight based on 100 parts by weight of sand. If the content of the curing agent is less than 2 parts by weight, curing may not occur properly. If the content of the curing agent is more than 10 parts by weight, the physical properties of the packaging layer may be reduced.
  • sand is included as a substance forming a skeleton. Since the sand may affect the workability in the field work of the resin mortar composition depending on the particle size and the roughness of the sand particles, sand having an appropriate particle diameter or roughness is used depending on the conditions of the packaging surface on which the resin mortar composition is used. It is desirable to.
  • two or more kinds of sand having different particle diameters may be mixed in order to reduce the voids between the sands as much as possible, increase the engagement between the sands, and increase durability.
  • sand having a particle size in the range of 0.2 to 0.4 mm and sand having a particle size in the range of 0.4 to 0.8 mm can be mixed at a weight ratio of 1: 1.
  • the present invention it is also possible to use sand containing salt which has not been used well in conventional building materials. Because the above-mentioned urethane acrylate resin can absorb the salt in the sand, it does not affect the strength of the packaging layer formed of the resin mortar composition.
  • the salt content in the sand is preferably in the range of 1 to 20% by weight based on the total weight of sand.
  • FIG. 3 is a graph analyzing the composition of domestic soil
  • Figure 4 is a graph analyzing the composition of Arab soil.
  • Arab soils unlike domestic soils contain SiO 2 and CaCO 3 , in particular is a silica-based soil containing a lot of SiO 2 .
  • Such silica-based Arab soils, particularly desert sand, can be reduced in size due to small particles, thereby increasing the strength of the pavement layer formed of the resin mortar composition.
  • the particle diameter of the desert sand usable in the present invention may be about 1 to 1000 ⁇ m, preferably about 3 to 50 ⁇ m.
  • the filler that fills the air gap can be used less, and the sand price is cheaper, so that the cost of paving the road or the bridge can be reduced.
  • the sand examples include white sand and silica sand. Of these, silica sand is preferable.
  • the silica sand is a sand made of quartz grains, and it is caused by the weathering of acidic rocks, and its chemical composition mainly consists of silicic anhydride SiO 2 as shown in FIG. 5.
  • the voids in the final packaging layer may increase, resulting in a decrease in strength.
  • the content of sand is 100 parts by weight, it is appropriate that the content of the urethane acrylate resin is 20 to 60 parts by weight, but is not limited thereto.
  • the kind or particle size of the gravel used in the present invention is not particularly limited.
  • the particle size of the gravel is closely related to the porosity affecting the strength of the pavement layer formed of the resin mortar composition, it is appropriate that it is in the range of about 2 to 15 mm. If the particle size of the gravel is less than 2 mm, the strength of the pavement layer formed of the resin mortar composition is increased, but the pores may be blocked, resulting in poor water permeability. On the other hand, when the particle size of the gravel is more than 15 mm, the water permeability of the pavement layer formed of the resin mortar composition is increased, but the voids may be increased to decrease the strength.
  • the resin mortar composition of the present invention includes a filler for removing fine pores formed between the sand particles. By filling the fine pores with the filler, the strength of the packaging layer formed of the resin mortar composition can be increased.
  • fillers include calcium carbonate, stone powder such as talc, and the like.
  • the calcium carbonate is mineral ore formed from calcite (CalCite), that is, CaCO 3 as a main component, contains about 56% CaO 3 , about 44% CO 2 , Al 2 O 3 , SiO 2 , Fe 2 O 3 It contains a trace amount of impurities (see Fig. 6).
  • the calcium carbonate is divided into heavy calcium carbonate prepared by simple physical processing and hard calcium carbonate prepared by chemical recrystallization. Among them, it is preferable to use heavy calcium carbonate, which is excellent in physical properties and workability and which is inexpensive.
  • the particle size of such calcium carbonate is not particularly limited. However, when calcium carbonate having a large particle diameter is used, the gap between the sand particles may not be properly filled, thereby increasing the porosity of the packaging layer formed of the resin mortar composition, thereby lowering the strength of the packaging layer. In addition, a large amount of binder resin may be used by filling the gap with a binder resin instead of calcium carbonate, which may increase the cost of manufacturing the packaging layer. Therefore, it is appropriate to use calcium carbonate having a particle diameter in the range of about 10 to 80 mu m.
  • the talc is a hydrous magnesium silicate in which silicon and water molecules containing water molecules are bonded, and the chemical composition thereof is Mg 3 Si 4 O 3 (OH) 2 (see FIG. 7).
  • the particle size of the talc is not particularly limited, but it is preferable to use a talc having a medium particle size in consideration of the strength of the packaging layer formed of the resin mortar composition. For example, it is appropriate to use talc in the range of about 50 to 200 ⁇ m.
  • the content of such a filler is preferably about 2 to 50 parts by weight based on 100 parts by weight of sand, but is not limited thereto. If the content of the filler is less than 2 parts by weight, the voids between the sand particles may not be filled by the filler and the strength of the packaging layer formed of the resin mortar composition may decrease. On the other hand, when the content of the filler is greater than 50 parts by weight, the voids between the sand particles may be blocked by the filler so much that the water permeability may be poor.
  • the resin mortar composition of the present invention may further contain any additives such as a curing accelerator, a surface conditioner, a viscosity regulator, a thickener, an antioxidant, a sunscreen, an antifoaming agent, and the like. These additives may be added to the composition in amounts known in the art.
  • the present invention may further include a curing accelerator to promote the curing of the binder resin and the curing agent to improve the density of the packaging layer.
  • a curing accelerator to promote the curing of the binder resin and the curing agent to improve the density of the packaging layer.
  • Dimethyl acetamide (DMA) may be used as the curing accelerator.
  • the curing accelerator may be included in about 4 ⁇ 10 -4 to 10 ⁇ 10 -4 parts by weight based on 100 parts by weight of the urethane acrylate resin. If the content of the curing accelerator is too small, the curing of the pavement layer is insufficient depending on the working conditions, so the properties of the pavement layer cannot be maintained. Shrinkage of the packaging layer may occur.
  • Resin mortar composition consisting of the above-mentioned components can be prepared by conventional methods known in the art.
  • the resin mortar composition may be prepared by mixing a urethane acrylate resin, a curing agent, sand, and a filler, which are the first binder resins.
  • roads or bridges consist of roadbeds, substrates, intermediate layers, and surface layers.
  • at least one layer of the base layer, the intermediate layer, and the surface layer formed on the road or the bridge of the bridge may be formed of the resin mortar composition described above.
  • the layer formed of the above-described resin mortar composition does not easily undergo plastic deformation or aging.
  • the surface layer is formed of the resin mortar composition of the present invention, not only the occurrence of plastic deformation due to repeated loading can be suppressed, but also durability and flatness can be secured, and surface water can be prevented from invading the surface layer. .
  • the thickness of the layer formed of the resin mortar composition may be a thickness known in the art.
  • the thickness of the packaging layer may range from about 2 to 20 cm.
  • the packaging layer is a surface layer may range from about 3 to 8 cm
  • the packaging layer is an intermediate layer may be about 5 to 10 cm
  • the packaging layer is a base layer may be about 5 to 10 cm.
  • the method of paving a road or a bridge using the resin mortar composition of this invention is various. For example, after removing contaminants adhering to the roadbed surface of the bridge and sand exposed on the surface, the roadbed surface of the bridge is wetted with water and then maintained in a dry saturated state. Thereafter, the above-described resin mortar composition is poured on the roadbed surface of the bridge and then flattened, and then heat is applied to cure the resin mortar composition to form a packaging layer.
  • the resin mortar composition of the present invention can be used as a building finishing material, such as building interior or exterior materials.
  • a coating layer may be formed on the surface of a substrate such as wood or metal using the above-described resin mortar composition.
  • the substrate examples include a hot dip galvanized steel sheet, an alloyed hot dip galvanized steel sheet, an electro galvanized steel sheet, a hot rolled aluminum-zinc alloy plated steel sheet, a cold rolled steel, a zinc hot dipping steel, an electrophoresis with wood, tiles, ceramics, and the like.
  • Metals such as zinc steel, alloy-plate steel, copper sheet, tin-plate steel or aluminum sheet; and the like. However, this is not limitative.
  • adipic acid and about 25 parts by weight of isocyanate were thermally polymerized in a reactor to prepare a urethane prepolymer.
  • About 30 parts by weight of methyl methacrylate, about 25 parts by weight of 2-hydroxyl ethyl methacrylate and about 0.3 parts by weight of alcohol were added thereto, followed by thermal polymerization to prepare a urethane acrylate resin.
  • a filler Approximately 4 parts by weight of calcium carbonate, a filler, is added to a sand mixture mixed with about 50 parts by weight of silica sand 5 (with a particle diameter of 0.4 to 0.8 mm) and about 50 parts by weight of silica sand (with a particle size of 0.2 to 0.4 mm). Mixed well. To the obtained mixture, about 20 parts by weight of the urethane acrylate resin prepared above and about 4 parts by weight of benzoyl peroxide (BPO) as a curing agent were added and mixed uniformly to obtain a resin mortar composition.
  • BPO benzoyl peroxide
  • a resin mortar composition was obtained in the same manner as in Example 1, except that 10 parts by weight of the urethane acrylate resin and 10 parts by weight of the polymethyl methacrylate resin were used instead of 20 parts by weight of the urethane acrylate resin.
  • the compressive strength of the specimen (specimen) formed from the resin mortar composition prepared in Example 1 was carried out as follows. The test results are shown in Table 1.
  • a circular formwork having a diameter of 10 cm and a height of 20 cm was produced. After putting the compositions prepared in Example 1 and Comparative Example 1 into the prepared circular formwork, the air in the circular formwork was removed using a rubber hammer or vibration. Thereafter, after storing each circular formwork for about 3 hours, both sides of each specimen formed by removing each circular formwork were flattened by grinding. Thereafter, the ground specimen 1 was subjected to a compressive strength test using a UTM (Universal Testing Machine) equipment.
  • UTM Universal Testing Machine
  • a specimen 1 was prepared using the resin mortar composition prepared in Example 1 as described below, and a bending beam test was performed. Was performed. The test results are shown in Table 2 and FIG.
  • a steel plate having a length of 300 mm, a width of 50 mm, and a thickness of 10 mm was produced, and then the foreign material on the surface of the rigid plate was removed by using hand grinding, and then the surface was washed with alcohol using water. Subsequently, after combining the washed rigid plate and the formwork manufactured to a length of 300 mm, a width of 50 mm and a thickness of 15 mm, the mortar compositions of Example 1 and Comparative Example 1 were poured on the surface of the rigid plate to a thickness of about 10 mm, The mortar composition was cured for about 3 hours. Thereafter, the formwork was removed to obtain specimen 1 having a length of 300 mm, a width of 50 mm, and a thickness of 10 mm.
  • each obtained specimen was stored in the chamber for at least about 12 hours, and then the low-temperature warpage test was conducted using MTS so that the packaging layer of the resin mortar composition became the upper surface.
  • the temperature in the chamber was initially about 10 ° C, after which it was -10 ° C.
  • the flexural strength of the specimen 1 produced from the resin mortar composition prepared in Example 1 was high.
  • the present invention comprises a urethane acrylate resin as the first binder resin in addition to the curing agent, sand and filler as a resin mortar composition, so that the sand particles are bonded to the urethane acrylate resin having elasticity or flexibility, so that The occurrence of cracking due to plastic deformation and temperature change can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Road Paving Structures (AREA)

Abstract

본 발명은 (a) 제1 바인더 수지로서의 우레탄 아크릴레이트 수지; (b) 경화제; (c) 모래; 및 (d) 충진제를 포함하는 수지몰탈 조성물 및 상기 조성물을 이용하여 포장된 구조물에 관한 것이다. 본 발명은 수지몰탈 조성물로서, 경화제, 모래 및 충진제 이외에 제1 바인더 수지로서 우레탄 아크릴레이트 수지를 포함함으로써, 모래 입자들 사이가 탄성 또는 유연성이 있는 우레탄 아크릴레이트 수지로 결합되어 있게 되어 반복적인 하중에 의한 소성변형 및 온도변화에 의한 균열의 발생이 억제될 수 있다.

Description

수지몰탈 조성물 및 이를 이용하는 도로포장 구조물
본 발명은 도로 또는 교량의 표면을 포장하는 데에 이용되는 수지몰탈 조성물 및 이를 이용하는 도로포장 구조물에 대한 것이다.
일반적으로 도로/교량의 표면에는 차량 등이 원활하게 통행할 수 있도록 포장공사를 하여 포장층이 형성되어 있다. 상기 포장층은 교통 하중을 직접 전달하는 부분으로서 이에 적합한 강도 및 균열 저항성이 있어야 한다. 또한, 빗물 등의 수분에 노출되어 있는 관계로 방수 성능이 있어야 한다.
이러한 도로/교량의 포장은 강성 포장(Rigid Pavement)인 콘크리트 포장과 가요성 포장(Flexible Pavement)인 아스팔트 포장이 있다. 이 중 시멘트를 이용하는 콘크리트 포장은 재료비가 저렴하고, 교량 등의 바닥판과 동시 타설이 가능하므로 시공성이 우수하다는 장점이 있는 반면, 반복적인 차량 통행에 따른 진동에 의해 콘크리트의 균열이 발생되기 쉽다. 또한, 콘크리트 포장의 경우, 온도 변화에 따라 수축 또는 팽창하며, 이러한 수축/팽창에 의해서 응력이 발생되고, 이로 인해 균열이 발생할 수 있다. 또, 콘크리트 포장시 수축/팽창에 의한 응력의 발생을 완화하고자 일정 간격으로 줄 눈을 설치하는 경우도 있는데, 이러한 줄눈의 존재로 인해 진동이 발생하여 차량 운전자에게 피로감을 주며 승차감도 저하시키는 원인이 되고 있다.
본 발명자들은 도로/교량 포장시 사용되는 수지몰탈 조성물에 있어서, 바인더 수지로서 우레탄 아크릴레이트 수지를 포함할 경우, 모래 입자들이 서로 상기 우레탄 아크릴레이트 수지에 의해 결합됨으로써 반복적인 하중에 의한 소성변형 및 온도 변화에 따른 균열의 발생이 억제될 수 있다는 것을 알았다. 본 발명은 이에 기초한 것이다.
본 발명은 제1 바인더 수지로서의 우레탄 아크릴레이트 수지; 경화제; 모래; 및 충진제를 포함하는 수지몰탈 조성물을 제공한다.
또, 본 발명은 노상, 기층, 중간층 및 표층을 포함하는 도포포장 구조물에 있어서, 상기 기층, 중간층 및 표층 중 적어도 하나의 층은 전술한 수지몰탈 조성물로 형성된 것이 특징인 도로포장 구조물을 제공한다.
도 1은 본 발명의 수지몰탈 조성물을 이용한 포장의 하중에 대한 메커니즘을 개략적으로 나타낸 것이다.
도 2는 실시예 1에서 제조된 수지몰탈 조성물을 이용하여 제작된 공시체에 대해 휨 강도를 수행한 후 공시체의 모습을 나타낸 사진이다.
도 3은 국내토양의 조성을 분석한 그래프이다.
도 4는 아랍토양의 조성을 분석한 그래프이다.
도 5는 규사의 조성을 분석한 그래프이다.
도 6은 탄산칼슘의 조성을 분석한 그래프이다.
도 7은 탈크의 조성을 분석한 그래프이다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명에 따른 수지몰탈 조성물은 제1 바인더 수지로서의 우레탄 아크릴레이트 수지를 포함하는 것을 특징으로 한다. 이로써, 본 발명의 수지몰탈 조성물로 된 포장층의 경우, 모래 입자들 간의 결합에 탄성이 생겨 반복적인 하중에 의한 소성변형 발생 및 온도변화에 의한 균열 발생이 억제될 수 있다.
일반적으로, 시멘트, 물, 골재 등을 포함하는 콘크리트몰탈 조성물로 형성된 포장층(이하, '콘크리트 포장층'이라고 함)의 경우, 다양한 원인으로 인해 균열이 발생한다. 예를 들어, 콘크리트 포장층의 경우, 콘크리트의 열팽창계수가 평균 10×10 -6/℃이기 때문에 주변 대기 온도의 변화에 따라 외부로 노출된 포장층이 수축 또는 팽창을 반복하게 된다. 이러한 콘크리트의 수축/팽창으로 인해 응력이 발생하게 되고, 이로 인해 균열이 발생하게 된다. 다만, 이러한 수축/팽창에 의한 균열을 방지하기 위해, 콘크리트 몰탈 조성물 포장시 줄 눈을 설치하여 응력을 완화하고 있다. 그러나, 이러한 줄 눈 부분에 반복적인 하중이 가해짐에 따라 균열이 발생할 수 있다. 또한, 염분을 함유하고 있는 모래를 포함하는 콘크리트몰탈 조성물로 교량을 포장할 경우, 염화물의 화학작용으로 인해 콘크리트 포장층이 침식되고, 이로 인해 철근이 부식되어 교량 상판의 노화를 초래할 수 있다.
이에, 본 발명에서는 수지몰탈 조성물 내 바인더 수지로서 시멘트 대신에 우레탄 아크릴레이트 수지를 사용할 경우, 수지몰탈 조성물로 형성된 포장층의 온도가 변하거나 상기 포장층에 반복적으로 하중이 가해지더라도 모래 입자들이 우레탄 아크릴레이트 수지에 의해서 단단히 결합되어 있을 수 있다는 것을 알았다. 또한, 본 발명의 수지몰탈 조성물 내 모래로서 염분을 함유하고 있는 모래를 사용하더라도, 우레탄 아크릴레이트 수지가 상기 모래 내 염화물을 흡수하기 때문에, 염화물의 화학작용에 의해서 포장층이 노화되는 일이 초래되지 않는다.
구체적으로, 도 1에 나타난 바와 같이, 본 발명의 수지몰탈 조성물로 형성된 포장층의 경우, 모래 입자와 모래 입자는 제1 바인더 수지인 우레탄 아크릴레이트 수지에 의해서 결합되어 있다. 여기서, 제1 바인더 수지인 우레탄 아크릴레이트 수지는 3차원 망상 구조를 이루고 있어 탄성 물질처럼 거동할 수 있다. 그렇기 때문에, 반복적인 차량 하중이 상기 포장층에 가해져 모래 입자들을 양쪽으로 잡아당기는 인장응력이 발생되더라도, 모래 입자들 사이에 존재하는 우레탄 아크릴레이트 수지의 탄성 또는 유연성으로 인해 모래 입자들을 원 위치로 회복하려는 복원력이 발생되고, 이로써 모래 입자들 사이에 균열이 발생되는 것이 억제될 수 있다.
또한, 상기 우레탄 아크릴레이트 수지가 열적 안정성이 우수하기 때문에 모래 입자들 사이에 존재하는 우레탄 아크릴레이트 수지는 고온하에서도 열에 의해 변형되지 않는다. 또한, 상기 우레탄 아크릴레이트 수지가 염분을 흡수하는 성질을 갖고 있기 때문에, 염분에 의해서 포장층의 강도가 저하되는 일은 발생하지 않는다. 이로써, 모래 입자들 사이의 공극이 증가되는 일이 발생하지 않기 때문에, 포장 표면이 수분이나 공기 등과 접촉하는 면적이 증가되지 않게 되어 포장층의 노화가 억제될 수 있다. 게다가, 모래 입자들 사이의 공극이 증가되지 않기 때문에, 포장층의 강도 저하가 초래되지 않는다.
<바인더 수지>
본 발명의 수지몰탈 조성물은 제1 바인더 수지로서의 우레탄 아크릴레이트 수지, 경화제, 모래 및 충진제를 포함한다.
상기 제1 바인더 수지인 우레탄 아크릴레이트 수지는 본 발명의 수지몰탈 조성물로 형성된 포장층에 내구력을 부여함과 동시에 포장층이 형성되는 면에 포장층을 부착시킬 수 있고, 또한 모래 입자들을 서로 단단히 결합시킬 수도 있다. 특히, 염분을 함유하고 있는 모래를 사용시 염분의 화학작용으로 인해 강도의 저하가 초래될 수 있는데, 본 발명의 경우 상기 우레탄 아크릴레이트 수지가 모래 내 염분을 흡수함으로써 염분의 화학작용이 일어나지 않게 되어 포장층의 강도의 저하가 초래되지 않는다.
상기 우레탄 아크릴레이트 수지는 우레탄의 특성과 아크릴레이트의 특성을 모두 갖고 있는 하이브리드(hybride) 수지이다. 이러한 우레탄 아크릴레이트 수지는 일반적으로 우레탄 프리폴리머(urethane prepolymer)와 하이드록시 알킬 아크릴레이트와의 중합반응에 의해서 제조된다. 상기 우레탄 프리폴리머는 폴리올(polyol)과 이소시아네이트(isocyanate)의 중합 반응에 의해서 형성되며, 그 종류는 다양하다. 또, 상기 하이드록시 알킬 아크릴레이트의 예로는 메틸 메타크릴레이트(methyl methacrylate), 2-하이드록시 에틸메타크릴레이트(2-hydroxy ethylmethacrylate), n-부틸 아크릴레이트(n-butyl acrylate) 등이 있다.
이러한 우레탄 아크릴레이트 수지의 함량은 모래 100 중량부에 대하여 약 20 내지 60 중량부 범위인 것이 적절하다. 만약, 우레탄 아크릴레이트의 함량이 20 중량부 미만이면 모래와 제대로 혼합되지 않아 모래 입자들을 제대로 결합시킬 수 없고, 우레탄 아크릴레이트의 함량이 60 중량부 초과이면 경화 후 블리딩 현상이 일어날 수 있다.
한편, 우레탄 아크릴레이트 수지와 하기 제2 바인더 수지로서의 폴리메틸 메타크릴레이트 수지(polymethyl methacrylate)의 혼합 수지(또는 우레탄 아크릴레이트 수지, 폴리메틸 메타크릴레이트 수지와 하이드록시 에틸 메타크릴레이트 수지의 혼합 수지)일 경우, 이의 함량은 모래 100 중량부에 대하여 약 20 내지 60 중량부인 것이 적절하다.
본 발명의 수지몰탈 조성물에서는 전술한 제1 바인더 수지인 우레탄 아크릴레이트 수지 이외에, 제2 바인더 수지로서 폴리메틸 메타크릴레이트(polymethyl methacrylate) 수지를 더 포함할 수 있다.
이때, 제1 바인더 수지인 우레탄 아크릴레이트 수지와 제2 바인더 수지인 폴리메틸 메타크릴레이트 수지의 혼합 비율은 약 10~60 : 90~40 중량비율로 사용되는 것이 바람직하나, 이에 제한되는 것은 아니다. 이렇게 폴리메틸 메타크릴레이트를 우레탄 아크릴레이트와 혼합 사용함으로써, 수지몰탈 조성물로 된 포장층의 강도를 더 높이면서 포장 비용을 감소시킬 수 있다.
또한, 본 발명의 수지몰탈 조성물에서는 우레탄 아크릴레이트 수지와 폴리메틸 메타크릴레이트 수지 이외에, 포장층의 강도 보강을 위해 제3 바인더 수지로서 하이드록시 에틸 메타크릴레이트(hydroxyl ethyl methacrylate, HEMA) 수지 등을 추가적으로 사용할 수 있다. 이때, 우레탄 아크릴레이트 수지, 폴리메틸 메타크릴레이트 수지 및 하이드록시 에틸 메타크릴레이트의 혼합 비율은 약 10~60 : 40~90 : 10~40 중량 비율로 사용될 수 있다.
<경화제>
본 발명의 수지몰탈 조성물에서는 우레탄 아크릴레이트 수지가 3차원 망상구조를 갖도록 하기 위하여 경화제를 포함한다. 상기 경화제는 우레탄 아크릴레이트 수지의 경화 시간을 조절할 수 있다.
상기 경화제의 예로는 벤조일 퍼록사이드(benzoyl peroxide, BPO) 등과 같은 유기 과산화물(Organic Peroxide)이 있는데, 이에 제한되지 않는다.
특히, 상기 벤조일 퍼록사이드는 우레탄 아크릴레이트 수지의 경화가 잘 일어나도록 할 뿐만 아니라, 용제 내에서 열분해되어 페닐 라디칼과 벤조에이트 라디칼을 생성하여 우레탄 아크릴레이트 수지의 중합을 개시하기도 한다.
상기 경화제는 대기온도 및 지표온도에 따라 그 사용 함량을 조절하는데, 예컨대 겨울에는 많은 양을 혼합하고, 여름에는 적은 양을 혼합하는 것이 바람직하다. 이러한 점을 고려하여, 상기 경화제의 함량은 모래 100 중량부에 대하여 2 내지 30 중량부 정도인 것이 적절하다. 만약, 경화제의 함량이 2 중량부 미만인 경우에는 경화가 제대로 일어나지 않을 수 있으며, 경화제의 함량이 10 중량부 초과인 경우에는 형성되는 포장층의 물성이 저하될 수 있다.
<모래>
본 발명의 수지몰탈 조성물에서는 골격을 이루는 물질로서 모래를 포함한다. 상기 모래는 그 입경이나 모래 입자의 거칠기에 따라 수지몰탈 조성물의 현장 작업시 작업성에도 영향을 미칠 수 있기 때문에, 수지몰탈 조성물이 이용되는 포장 표면의 조건에 따라 적절한 입경이나 거칠기를 갖는 모래를 사용하는 것이 바람직하다.
본 발명에서는 모래 사이의 공극을 최대한 감소시키고, 모래간의 맞물림 현상을 증대시켜 내구성을 증가시키기 위해, 입경이 상이한 모래 2 종 이상을 혼합할 수 있다. 예컨대, 입경이 0.2 내지 0.4 ㎜ 범위인 모래와 입경이 0.4 내지 0.8 ㎜ 범위인 모래를, 1 : 1의 중량비율로 혼합할 수 있다.
또한, 본 발명에서는 종래 건축재료에 잘 사용되지 않던 염분을 함유하는 모래도 사용할 수 있다. 왜냐하면, 모래 내 염분을 전술한 우레탄 아크릴레이트 수지가 흡수할 수 있기 때문에 수지몰탈 조성물로 형성된 포장층의 강도에 영향을 미치지 않는다. 다만, 이때 모래 내 염분의 함량은 모래 전체 중량에 대하여 1 내지 20 중량% 범위인 것이 적절하다.
또한, 본 발명에서는 아랍 및 아프리카 지역(ex. 아랍에미레이트 연합 등)의 토양, 특히 사막지역의 모래를 사용할 수 있다. 도 3은 국내토양의 조성을 분석한 그래프이고, 도 4는 아랍토양의 조성을 분석한 그래프이다. 도 3 및 4를 보면 알 수 있는 바와 같이, 아랍토양은 국내토양과 달리 SiO2와 CaCO3가 함유되어 있으며, 특히 SiO2가 많이 함유되어 있는 실리카 계열의 토양이다. 이러한 실리카 계열의 아랍토양, 특히 사막모래는 입자가 작아서 공극이 감소될 수 있어 수지몰탈 조성물로 형성된 포장층의 강도가 증가될 수 있다. 예컨대, 본 발명에서 사용 가능한 사막 모래의 입경은 약 1 내지 1000 ㎛, 바람직하게는 약 3 내지 50 ㎛ 일 수 있다. 이렇게 입경이 작은 사막 모래의 경우, 모래 사이의 공극이 적어 공극을 채우는 충진제가 적게 사용될 수 있고 또한 모래의 가격이 저렴하기 때문에, 도로나 교량의 포장시 비용이 감소될 수 있다.
상기 모래의 예로는 백사, 규사 등이 있다. 이 중 규사(silica sand)를 사용하는 것이 바람직하다. 상기 규사는 석영의 알갱이로 이루어진 모래로, 산성암의 풍화로 인해 생기며, 그 화학조성은 도 5에 나타낸 바와 같이 주로 무수규산(無水硅酸) SiO2로 이루어져 있다.
이러한 모래가 수지몰탈 조성물 내에서 너무 많은 양이 포함될 경우, 최종 포장층의 공극이 증가하여 강도 저하를 초래할 수 있다. 이런 이유로, 본 발명에서는 모래의 함량이 100 중량부일 때, 우레탄 아크릴레이트 수지의 함량이 20 내지 60 중량부인 것이 적절하나, 이에 제한되지 않는다.
상기 모래 이외에, 골격을 이루는 물질로서 자갈을 더 포함할 수 있다. 이때, 본 발명에서 사용되는 자갈의 종류나 입경은 특별히 제한되지 않는다. 다만, 자갈의 입경은 수지몰탈 조성물로 형성된 포장층의 강도에 영향을 미치는 공극률과 밀접한 관계가 있기 때문에, 약 2 내지 15 ㎜ 범위인 것이 적절하다. 만약, 자갈의 입경이 2 ㎜ 미만인 경우, 수지몰탈 조성물로 형성되는 포장층의 강도는 증가되지만 공극이 막혀서 투수성이 불량해질 수 있다. 한편, 자갈의 입경이 15 ㎜ 초과인 경우, 수지몰탈 조성물로 형성되는 포장층의 투수성은 증가되지만 공극이 증가하여 강도가 감소될 수 있다. 다만, 수지몰탈 조성물로 형성되는 포장층의 강도를 보완하기 위해서, 하기의 충진제, 예컨대 탈크나 탄산칼슘과 같은 미세 입자를 적절하게 배합하여 공극을 적절하게 감소시키는 것이 바람직하다.
<충진제>
본 발명의 수지몰탈 조성물에서는 모래 입자들 사이에 형성되는 미세한 공극을 제거하는 충진제를 포함한다. 상기 충진제에 의해서 미세 공극이 충진됨으로써, 수지몰탈 조성물로 형성되는 포장층의 강도가 높아질 수 있다. 이러한 충진제로는 탄산칼슘, 탈크와 같은 석분 등이 있다.
상기 탄산칼슘은 광물학적으로 방해석(CalCite), 즉 CaCO3를 주성분으로 형성된 광석으로서, CaO3 약 56 %, CO2 약 44 %를 함유하고 있으며, Al2O3, SiO2, Fe2O3 등 미량의 불순물을 함유하고 있다(도 6 참고). 상기 탄산칼슘은 단순 물리적 가공으로 제조되는 중질 탄산칼슘과 화학적 재결정에 의해 제조되는 경질 탄산칼슘으로 구분된다. 이 중 물리적 성질 및 가공성이 우수하며, 가격이 저렴한 중질 탄산칼슘을 사용하는 것이 바람직하다.
이러한 탄산칼슘의 입경은 특별히 제한되지 않는다. 다만, 입경이 너무 큰 탄산칼슘을 사용할 경우, 모래 입자들 사이의 틈을 제대로 충진하지 못해 수지몰탈 조성물로 형성된 포장층의 공극이 증가해서 포장층의 강도가 낮아질 수 있다. 또한, 상기 틈에 탄산칼슘 대신 바인더 수지가 충진됨으로써 다량의 바인더 수지가 사용될 수 있고, 이로 인해 포장층의 제조시 비용이 높아질 수 있다. 따라서, 입경이 약 10 내지 80 ㎛ 범위인 탄산칼슘을 사용하는 것이 적절하다.
상기 탈크(Talc)는 물 분자를 함유하고 있는 규소와 마그네숨 분자가 결합하고 있는 함수규산마그네슘으로서, 그 화학조성은 Mg3Si4O3(OH)2이다(도 7 참고). 이러한 탈크를 모래와 함께 혼합함으로써, 모래 입자들 사이에 존재하는 공극이 탈크에 의해 충진될 수 있어 수지몰탈 조성물로 형성된 포장층의 강도가 높아질 수 있다.
상기 탈크의 입경은 특별히 제한되지 않으나, 수지몰탈 조성물로 형성된 포장층의 강도 면을 고려하여 중간 정도의 입경을 갖는 탈크를 사용하는 것이 바람직하다. 예컨대, 약 50 내지 200 ㎛ 범위인 탈크를 사용하는 것이 적절하다.
이와 같은 충진제의 함량은 모래 100 중량부에 대하여 약 2 내지 50 중량부인 것이 바람직하나, 이에 제한되지 않는다. 만약 충진제의 함량이 2 중량부 미만인 경우에는 모래 입자들 사이의 공극이 충진제에 의해 충진되지 못하여 수지몰탈 조성물로 형성된 포장층의 강도가 저하될 수 있다. 한편, 충진제의 함량이 50 중량부 초과인 경우에는 모래 입자들 사이의 공극이 충진제에 의해서 너무 많이 막혀서 투수성이 불량해질 수 있다.
<기타 첨가제>
전술한 성분 들 이외에, 본 발명의 수지몰탈 조성물에는 임의의 첨가제, 예컨대 경화촉진제, 표면 조정제, 점성 조절제, 증점제, 산화 방지제, 자외선 방지제, 소포제 등을 추가적으로 함유할 수 있다. 이들 첨가제는 당해 기술분야에서 공지된 양으로 조성물에 첨가될 수 있다.
특히, 본 발명에서는 바인더 수지와 경화제의 경화를 촉진시켜 포장층의 치밀도를 개선하기 위해 경화촉진제를 더 포함할 수 있다. 상기 경화촉진제로는 디메틸 아세트아미드(dimethyl acetamide, DMA) 등을 사용할 수 있다.
상기 경화촉진제는 우레탄 아크릴레이트 수지 100 중량부에 대하여 4×10-4 내지 10×10-4 중량부 정도로 포함될 수 있다. 만약, 경화촉진제의 함량이 지나치게 적은 경우에는 포장층의 경화가 작업조건에 따라 불충분하게 이루어져서 포장층의 물성이 유지될 수 없으며, 함량이 지나치게 큰 경우에는 포장층의 경화가 너무 급격히 일어나 포장 작업시 포장층의 수축이 발생될 수 있다.
전술한 성분들로 이루어진 수지몰탈 조성물은 당 업계에서 알려진 통상적인 방법에 의해서 제조될 수 있다. 예컨대, 수지몰탈 조성물은, 제1 바인더 수지인 우레탄 아크릴레이트 수지, 경화제, 모래 및 충진제를 혼합함으로써 제조될 수 있다.
<도로포장 구조물>
일반적으로 도로 또는 교량은 노상, 기층, 중간층 및 표층으로 이루어져 있다. 본 발명의 경우, 도로 또는 교량의 노상에 형성된 기층, 중간층 및 표층 중 적어도 하나의 층이 전술한 수지몰탈 조성물로 형성될 수 있다. 여기서 전술한 수지몰탈 조성물로 형성된 층은 소성변형이나 노화가 잘 발생되지 않는다. 특히, 표층이 본 발명의 수지몰탈 조성물로 형성될 경우에는 반복적인 하중에 의한 소성변형의 발생이 억제될 뿐만 아니라, 내구성, 평탄성을 확보할 수 있고, 표면수가 표층 내로 침입하는 것을 방지할 수 있다.
이때, 상기 수지몰탈 조성물로 형성된 층(이하, '포장층'이라 함)의 두께는 당 업계에서 공지된 두께일 수 있다. 예컨대, 포장층의 두께는 약 2 내지 20 ㎝ 범위일 수 있다. 특히, 포장층이 표층일 경우 약 3 내지 8 ㎝ 범위일 수 있으며, 포장층이 중간층일 경우 약 5 내지 10 ㎝ 일 수 있으며, 포장층이 기층일 경우에는 약 5 내지 10 ㎝ 일 수 있다.
또, 본 발명의 수지몰탈 조성물을 이용하여 도로 또는 교량을 포장하는 방법은 다양하다. 예컨대, 교량의 노상 표면에 부착된 오염 물질과 표면에 노출된 모래 등을 제거한 후, 교량의 노상 표면을 물로 적신 후 건조 포화상태를 유지한다. 이후, 전술한 수지몰탈 조성물을 교량의 노상 표면에 타설한 후 평탄화 작업을 하고, 이후 열을 가해 수지몰탈 조성물을 경화시켜 포장층을 형성한다.
그 외, 본 발명의 수지몰탈 조성물은 건축 내장재 또는 외장재와 같은 건축 마감재로 이용될 수 있다. 예를 들어, 전술한 수지몰탈 조성물을 이용하여, 나무나 금속과 같은 기재(substrate)의 표면에 코팅층을 형성할 수 있다.
상기 기재(substrate)의 예로는 나무, 타일, 세라믹 등과 더불어, 용융아연도금강판, 합금화용융아연도금강판, 전기아연도금강판, 용융알루미늄-아연합금도금강판, 냉간압연강철, 아연 핫디핑 강철, 일렉트로-아연강철, 합금-플레이트강철, 구리 시트, 주석-플레이트 강철 또는 알루미늄판 등의 금속 등이 있다. 그러나, 이에 제한되지 않는다.
이하, 실시예 및 비교예를 들어 본 발명을 보다 자세히 설명할 것이다. 그러나, 본 발명이 이에 한정되는 것은 아니다.
실시예 1
1-1. 우레탄 아크릴레이트 수지의 제조
아디프산(adipic acid) 약 20 중량부와 이소시아네이트(isocyanate) 약 25 중량부를 반응기에서 열중합하여 우레탄 프리폴리머(urethane prepolymer)를 제조하였다. 여기에, 메틸 메타크릴레이트 약 30 중량부, 2-하이드록시 에틸 메타크릴레이트(2-hydroxyl ethyl methacrylate) 약 25 중량부 및 알코올 약 0.3 중량부를 첨가한 후 열중합하여 우레탄 아크릴레이트 수지를 제조하였다.
1-2. 수지몰탈 조성물의 제조
규사 5호(입경이 0.4~0.8 ㎜임) 약 50 중량부와 규사 6호(입경이 0.2~0.4 ㎜임) 약 50 중량부가 혼합된 모래 혼합물에, 충진제인 탄산칼슘 약 4 중량부를 첨가하여 균일하게 혼합하였다. 얻어진 혼합물에, 상기에서 제조된 우레탄 아크릴레이트 수지 약 20 중량부와 경화제인 벤조일 퍼록사이드(BPO) 약 4 중량부를 넣고, 균일하게 혼합하여 수지몰탈 조성물을 얻었다.
실시예 2
우레탄 아크릴레이트 수지 20 중량부 대신에 우레탄 아크릴레이트 수지 10 중량부와 폴리메틸 메타크릴레이트 수지 10 중량부를 사용하는 것 이외에는 상기 실시예 1과 동일한 방법으로 수지몰탈 조성물을 얻었다.
실험예 1 - 물성 평가
본 발명에 따른 수지몰탈 조성물의 물성을 평가하기 위하여, 하기와 같이 압축강도 및 저온 휨 시험을 수행하였다.
<압축강도>
실시예 1에서 제조된 수지몰탈 조성물로 형성된 공시체(specimen)의 압축강도는 하기와 같이 수행하였다. 시험 결과는 표 1에 나타내었다.
지름 10 ㎝, 높이 20 ㎝의 원형 거푸집을 제작하였다. 제작된 원형 거푸집 내에 실시예 1 및 비교예 1에서 제조된 조성물을 각각 넣은 후, 고무망치나 바이브레이션을 이용하여 원형 거푸집 내 공기를 제거하였다. 이후, 각 원형 거푸집을 약 3시간 동안 보관한 후, 각 원형 거푸집을 제거하여 형성된 각 공시체의 양면을 그라인딩을 이용하여 평탄하게 하였다. 이후, 그라인딩된 공시체 1을 UTM(Universal Testing Machine) 장비를 사용하여 압축강도 시험을 수행하였다.
표 1
Figure PCTKR2009001442-appb-T000001
시험 결과, 실시예 1에서 제조된 수지몰탈 조성물로 형성된 공시체 1의 압축강도는 약 67 ㎫ 정도였다. 이는 당 업계에서 알려진 콘크리트몰탈 조성물로 된 공시체(10 ㎜×200 ㎜)의 압축강도(473 ㎏f/㎠ = 약 47.5 ㎫)보다 높았다. 또한, 상기 공시체의 파괴시 변형률이 약 0.00372로 낮아 거의 변형되지 않는다는 것을 확인할 수 있었다. 이로써, 본 발명의 수지몰탈 조성물로 포장할 경우, 압축강도가 높아 거의 변형되지 않는다는 것을 알 수 있었다.
<휨 강도>
본 발명에 따른 수지몰탈 조성물의 휨 및 균열에 대한 저항성을 평가하기 위하여, 하기와 같이 실시예 1에서 제조된 수지몰탈 조성물을 이용하여 공시체(specimen) 1을 제작하여 휨 시험(Bending Beam Test)을 수행하였다. 시험 결과는 표 2 및 도 2에 나타내었다.
먼저, 길이 300 ㎜, 폭 50 ㎜, 두께 10 ㎜의 강상판을 제작한 후에 강성판의 표면을 핸드그라이딩을 이용하여 표면의 이물질을 제거한 후, 알코올을 이용하여 표면을 깨끗이 수세하였다. 이후, 수세된 강성판과 길이 300 ㎜, 폭 50 ㎜ 및 두께 15 ㎜로 제작된 거푸집을 합한 후에, 상기 강성판의 표면에 실시예 1 및 비교예 1의 몰탈 조성물을 두께 약 10 ㎜로 붓고, 약 3 시간 동안 상기 몰탈 조성물을 경화시켰다. 이후, 거푸집을 제거하여 길이 300 ㎜, 폭 50 ㎜ 및 두께 10 ㎜의 공시체 1을 얻었다. 이어서, 얻어진 각각의 공시체를 챔버 내에 약 12 시간 이상 동안 보관한 후에 수지몰탈 조성물로 된 포장층이 상면이 되도록 하여 MTS를 이용하여 저온 휨 시험을 실시하였다. 다만, 상기 챔버 내의 온도는 초기에는 약 10 ℃ 였고, 이후 -10 ℃ 였다.
표 2
Figure PCTKR2009001442-appb-T000002
시험 결과, 실시예 1에서 제조된 수지몰탈 조성물로 제작된 공시체 1의 휨 강도는 높았다. 특히, 10 ℃의 온도에서의 휨 강도는 당 업계에서 콘크리트몰탈 조성물로 포장시 설계 기준 휨 강도(약 45 ㎏f/㎠ = 약 4.5 ㎫)보다 휠씬 높았다. 이로써, 본 발명의 수지몰탈 조성물로 포장할 경우, 종래의 콘크리트 포장에 비해 휨 강도가 높음을 알 수 있었다.
본 발명은 수지몰탈 조성물로서, 경화제, 모래 및 충진제 이외에 제1 바인더 수지로서 우레탄 아크릴레이트 수지를 포함함으로써, 모래 입자들 사이가 탄성 또는 유연성이 있는 우레탄 아크릴레이트 수지로 결합되어 있게 되어 반복적인 하중에 의한 소성변형 및 온도변화에 의한 균열의 발생이 억제될 수 있다.

Claims (20)

  1. 제1 바인더 수지로서의 우레탄 아크릴레이트 수지;
    경화제;
    모래; 및
    충진제
    를 포함하는 수지몰탈 조성물.
  2. 제1항에 있어서, 제2 바인더 수지로서 폴리메틸 메타크릴레이트 수지를 더 포함하는 것이 특징인 수지몰탈 조성물.
  3. 제2항에 있어서, 상기 우레탄 아크릴레이트 수지와 폴리메틸 메타크릴레이트 수지의 혼합 비율은 10~60 : 90~40 중량 비율인 것이 특징인 수지몰탈 조성물.
  4. 제1항 또는 제2항에 있어서, 제3 바인더 수지로서 하이드록시 에틸 메타크릴레이트(Hydroxy ethyl methacrylate, HEMA) 수지를 더 포함하는 것이 특징인 수지몰탈 조성물.
  5. 제1항에 있어서, 상기 경화제는 벤조일 퍼록사이드(benzoyl peroxide)인 것이 특징이 수지몰탈 조성물.
  6. 제1항에 있어서, 상기 모래는 상이한 입경을 가진 모래 2 종류 이상의 혼합인 것이 특징인 수지몰탈 조성물.
  7. 제1항에 있어서, 상기 모래는 0.2 내지 0.4 ㎜ 범위의 입경을 가진 모래, 0.4 내지 0.8 ㎜ 범위의 입경을 가진 모래 또는 이들의 혼합인 것이 특징인 수지몰탈 조성물.
  8. 제1항에 있어서, 상기 모래는 염분을 함유하고 있는 모래인 것이 특징인 수지몰탈 조성물.
  9. 제8항에 있어서, 상기 염분의 함량은 모래 전체 중량에 대하여 1 내지 20 중량% 범위인 것이 특징인 수지몰탈 조성물.
  10. 제1항에 있어서, 자갈을 더 포함하는 것이 특징인 수지몰탈 조성물.
  11. 제10항에 있어서, 상기 자갈의 입경은 2 내지 15 ㎜ 범위인 것이 특징인 수지몰탈 조성물.
  12. 제1항에 있어서, 상기 충진제는 탄산칼슘, 탈크(Talc) 또는 이들 모두인 것이 특징인 수지몰탈 조성물.
  13. 제12항에 있어서, 상기 탄산칼슘의 입경은 10 내지 80 ㎛ 범위인 것이 특징인 수지몰탈 조성물.
  14. 제12항에 있어서, 상기 탈크의 입경은 50 내지 200 ㎛ 범위인 것이 특징인 수지몰탈 조성물.
  15. 제1항에 있어서, 경화촉진제로서 디메틸 아세트아미드(dimethyl acetamide: DMA)를 더 포함하는 것이 특징인 수지몰탈 조성물.
  16. 제1항에 있어서, 모래 100 중량부에 대하여
    우레탄 아크릴레이트 수지 20 내지 60 중량부;
    경화제 2 내지 30 중량부; 및
    충진제 2 내지 50 중량부;
    를 포함하는 수지몰탈 조성물.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서, 상기 수지몰탈 조성물은 도로 또는 교량의 노상에 형성된 포장층, 중간층 및 표층 중 적어도 하나의 층을 형성하는 것이 특징인 수지몰탈 조성물.
  18. 제17항에 있어서, 상기 수지몰탈 조성물로 형성된 층은 두께가 2 내지 20 ㎝ 범위인 것이 특징인 수지몰탈 조성물.
  19. 제1항에 있어서, 상기 수지몰탈 조성물은 건축 내장재 또는 외장재로 이용되는 것이 특징인 수지몰탈 조성물.
  20. 노상, 기층, 중간층 및 표층을 포함하는 도포포장 구조물에 있어서,
    상기 기층, 중간층 및 표층 중 적어도 하나의 층은 제1항 내지 제16항 중 어느 한 항에 기재된 수지몰탈 조성물로 형성된 것이 특징인 도로포장 구조물.
PCT/KR2009/001442 2008-03-20 2009-03-20 수지몰탈 조성물 및 이를 이용하는 도로포장 구조물 WO2009116839A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080026036A KR100869080B1 (ko) 2008-03-20 2008-03-20 수지몰탈 조성물 및 상기 조성물을 이용하여 포장된 구조물
KR10-2008-0026036 2008-03-20

Publications (3)

Publication Number Publication Date
WO2009116839A2 true WO2009116839A2 (ko) 2009-09-24
WO2009116839A3 WO2009116839A3 (ko) 2009-11-12
WO2009116839A9 WO2009116839A9 (ko) 2010-03-04

Family

ID=40284362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001442 WO2009116839A2 (ko) 2008-03-20 2009-03-20 수지몰탈 조성물 및 이를 이용하는 도로포장 구조물

Country Status (2)

Country Link
KR (1) KR100869080B1 (ko)
WO (1) WO2009116839A2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056825B1 (ko) 2011-02-18 2011-08-16 김동휘 수성바인더 수지를 이용한 몰탈 조성물과 이를 이용한 콘크리트 구조물 보수보강공법
KR101138971B1 (ko) * 2011-07-25 2012-04-25 서태주 축발광 장식 포장재 및 그 포장재를 이용한 축발광 포장 시공방법
KR101371378B1 (ko) * 2013-02-18 2014-03-12 (주)청원산업 동해 및 염화칼슘에 강한 인조화강석 보차도 경계블록 및 이의 제조방법
KR101331950B1 (ko) * 2013-05-23 2013-11-21 주식회사 에코인프라홀딩스 초경량 폴리머 콘크리트 조성물 및 이를 이용한 성형품
KR101634367B1 (ko) * 2015-06-24 2016-06-30 이은숙 수지모르타르를 이용한 콘크리트구조물 방수공법
KR101602892B1 (ko) * 2015-06-24 2016-03-11 이은숙 수지모르타르를 이용한 신축이음장치부 보수 및 보강공법
KR101632170B1 (ko) * 2015-06-24 2016-06-22 이은숙 수지모르타르를 이용한 콘크리트구조물 표면보수 및 단면복구 공법
KR101675325B1 (ko) * 2016-02-16 2016-11-11 주식회사 신연 콘크리트구조물 단면복구제를 이용한 콘크리트구조물 표면보수 및 단면복구공법
KR101835517B1 (ko) 2017-01-12 2018-03-07 주식회사 휴그린 친환경 투수블록 조성물 및 그 제조방법
KR102276178B1 (ko) 2020-06-23 2021-07-13 김진아 고분자 혼합수지를 이용한 조성물 및 상기 조성물을 이용한 시공방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970001036B1 (ko) * 1994-02-19 1997-01-25 삼성종합화학 주식회사 투수성 수지포장 조성물 및 이를 이용한 포장체
KR19990042928A (ko) * 1997-11-28 1999-06-15 정병남 수용성 수지를 이용한 다목적 공법
KR20010073807A (ko) * 2000-01-20 2001-08-03 장인순 발포 폴리머 콘크리트 및 그 제조방법
KR100518712B1 (ko) * 2005-01-24 2005-09-30 한국칼라콘크리트(주) 유성 아크릴-우레탄 수지 조성물을 포함하는 건식용 칼라 콘크리트 모르타르 및 이의 시공방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821326B1 (ko) 2007-11-15 2008-04-11 김민우 투수성 아스콘 및 박층포장조성물과 이들을 이용한컬러무늬 포장재의 시공방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970001036B1 (ko) * 1994-02-19 1997-01-25 삼성종합화학 주식회사 투수성 수지포장 조성물 및 이를 이용한 포장체
KR19990042928A (ko) * 1997-11-28 1999-06-15 정병남 수용성 수지를 이용한 다목적 공법
KR20010073807A (ko) * 2000-01-20 2001-08-03 장인순 발포 폴리머 콘크리트 및 그 제조방법
KR100518712B1 (ko) * 2005-01-24 2005-09-30 한국칼라콘크리트(주) 유성 아크릴-우레탄 수지 조성물을 포함하는 건식용 칼라 콘크리트 모르타르 및 이의 시공방법

Also Published As

Publication number Publication date
WO2009116839A3 (ko) 2009-11-12
KR100869080B1 (ko) 2008-11-21
WO2009116839A9 (ko) 2010-03-04

Similar Documents

Publication Publication Date Title
WO2009116839A2 (ko) 수지몰탈 조성물 및 이를 이용하는 도로포장 구조물
KR100880908B1 (ko) 시멘트 콘크리트 조성물 및 이를 이용한 콘크리트 교면 포장공법
KR101710300B1 (ko) 동결융해, 염해저항성 및 균열저항성을 향상시킨 초속경 라텍스 개질 콘크리트를 이용한 교면 보수 및 포장 공법
KR101911316B1 (ko) 콘크리트 구조물 보수·보강용 환경친화형 칼라 시멘트 모르타르 조성물 및 이를 이용한 콘크리트 구조물의 보수방법
KR101914735B1 (ko) 내식성 및 내마모성이 우수한 균열 억제형 시멘트 콘크리트 조성물과 이를 이용한 도로 포장 유지 보수 방법
KR101545170B1 (ko) 폴리머 개질 조강형 시멘트 콘크리트 조성물 및 이를 이용한 콘크리트 구조물의 보수공법
KR101891565B1 (ko) 습윤 경화형 시멘트 모르타르 조성물 및 이를 이용한 습윤 상태에서 시공이 가능한 콘크리트 구조물 표면 보호 공법
JP2007537966A (ja) セメントモルタル組成物及びコンクリート組成物
KR102276178B1 (ko) 고분자 혼합수지를 이용한 조성물 및 상기 조성물을 이용한 시공방법
KR101663690B1 (ko) 도로 측구 및 소파 보수 보강용 모르타르 조성물 및 이를 이용한 보수 보강 시공 방법
WO2019208890A1 (ko) 도로 포장용 결빙방지 표면처리 조성물 및 이를 이용한 도로 포장 결빙방지 표면 처리 방법
KR101663519B1 (ko) 고내구성과 자기 치유성이 있는 시멘트 콘크리트 조성물 및 이를 이용한 콘크리트 구조물의 유지보수 및 보호를 위한 덧씌우기 포장공법
KR101772394B1 (ko) 강도 및 내구성이 우수한 도로 보수용 수지 조성물 및 이를 이용한 도로 보수방법
KR101861596B1 (ko) 환경 친화적인 내진 모르타르 조성물 및 이의 제조방법
KR101302448B1 (ko) 유동성 및 초기 강도발현이 우수한 폴리머 시멘트 모르타르 조성물 및 이를 이용한 도로 보수공법
KR101802698B1 (ko) 친환경 재료를 이용한 도로 측구 및 도막 바닥 보수보강 공법
KR20130023928A (ko) 지오폴리머를 이용한 반강성 아스팔트 콘크리트 그라우트 주입재
KR101627811B1 (ko) 콘크리트 포장 보수용 초속경 칼라 시멘트 콘크리트 조성물, 그 제조 방법 및 이를 이용한 콘크리트 포장 보수공법
KR100515116B1 (ko) 교면 포장용 콘크리트 조성물 및 이를 이용한 교면 포장방법
KR102207012B1 (ko) 에폭시 수지를 포함하는 불투수성 방수아스팔트 콘크리트 조성물 및 이의 시공방법
KR101558859B1 (ko) 속경성 고연성 시멘트 복합체 및 그 제조방법
KR100872518B1 (ko) 폴리머를 포함하는 콘크리트 상판 보수용 몰탈 조성물 및 이를 이용한 보수방법
KR101194555B1 (ko) 시멘트 콘크리트 조성물 및 이를 이용한 콘크리트 구조물의 유지보수공법
KR102081856B1 (ko) 맨홀 보수용 속경성 모르타르 및 이를 이용한 맨홀 보수공법
KR101288346B1 (ko) 폴리머 개질 시멘트 콘크리트 조성물, 그 제조방법, 상기 조성물을 이용한 콘크리트 포장공법 및 콘크리트 구조물의 유지보수공법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721526

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13-01-2011 )

122 Ep: pct application non-entry in european phase

Ref document number: 09721526

Country of ref document: EP

Kind code of ref document: A2